ffe0c3d52306377a1a1cfd7e0765df7ec0d4f3e5
[linux-2.6-block.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *              Probes initial implementation (includes suggestions from
9  *              Rusty Russell).
10  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
11  *              hlists and exceptions notifier as suggested by Andi Kleen.
12  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
13  *              interface to access function arguments.
14  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
15  *              exceptions notifier to be first on the priority list.
16  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18  *              <prasanna@in.ibm.com> added function-return probes.
19  */
20
21 #define pr_fmt(fmt) "kprobes: " fmt
22
23 #include <linux/kprobes.h>
24 #include <linux/hash.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/stddef.h>
28 #include <linux/export.h>
29 #include <linux/kallsyms.h>
30 #include <linux/freezer.h>
31 #include <linux/seq_file.h>
32 #include <linux/debugfs.h>
33 #include <linux/sysctl.h>
34 #include <linux/kdebug.h>
35 #include <linux/memory.h>
36 #include <linux/ftrace.h>
37 #include <linux/cpu.h>
38 #include <linux/jump_label.h>
39 #include <linux/static_call.h>
40 #include <linux/perf_event.h>
41 #include <linux/execmem.h>
42 #include <linux/cleanup.h>
43
44 #include <asm/sections.h>
45 #include <asm/cacheflush.h>
46 #include <asm/errno.h>
47 #include <linux/uaccess.h>
48
49 #define KPROBE_HASH_BITS 6
50 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
51
52 #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
53 #define kprobe_sysctls_init() do { } while (0)
54 #endif
55
56 static int kprobes_initialized;
57 /* kprobe_table can be accessed by
58  * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
59  * Or
60  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
61  */
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63
64 /* NOTE: change this value only with 'kprobe_mutex' held */
65 static bool kprobes_all_disarmed;
66
67 /* This protects 'kprobe_table' and 'optimizing_list' */
68 static DEFINE_MUTEX(kprobe_mutex);
69 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
70
71 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
72                                         unsigned int __unused)
73 {
74         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
75 }
76
77 /*
78  * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
79  * kprobes can not probe.
80  */
81 static LIST_HEAD(kprobe_blacklist);
82
83 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
84 /*
85  * 'kprobe::ainsn.insn' points to the copy of the instruction to be
86  * single-stepped. x86_64, POWER4 and above have no-exec support and
87  * stepping on the instruction on a vmalloced/kmalloced/data page
88  * is a recipe for disaster
89  */
90 struct kprobe_insn_page {
91         struct list_head list;
92         kprobe_opcode_t *insns;         /* Page of instruction slots */
93         struct kprobe_insn_cache *cache;
94         int nused;
95         int ngarbage;
96         char slot_used[];
97 };
98
99 static int slots_per_page(struct kprobe_insn_cache *c)
100 {
101         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
102 }
103
104 enum kprobe_slot_state {
105         SLOT_CLEAN = 0,
106         SLOT_DIRTY = 1,
107         SLOT_USED = 2,
108 };
109
110 void __weak *alloc_insn_page(void)
111 {
112         /*
113          * Use execmem_alloc() so this page is within +/- 2GB of where the
114          * kernel image and loaded module images reside. This is required
115          * for most of the architectures.
116          * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
117          */
118         return execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE);
119 }
120
121 static void free_insn_page(void *page)
122 {
123         execmem_free(page);
124 }
125
126 struct kprobe_insn_cache kprobe_insn_slots = {
127         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
128         .alloc = alloc_insn_page,
129         .free = free_insn_page,
130         .sym = KPROBE_INSN_PAGE_SYM,
131         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
132         .insn_size = MAX_INSN_SIZE,
133         .nr_garbage = 0,
134 };
135 static int collect_garbage_slots(struct kprobe_insn_cache *c);
136
137 /**
138  * __get_insn_slot() - Find a slot on an executable page for an instruction.
139  * We allocate an executable page if there's no room on existing ones.
140  */
141 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
142 {
143         struct kprobe_insn_page *kip;
144
145         /* Since the slot array is not protected by rcu, we need a mutex */
146         guard(mutex)(&c->mutex);
147         do {
148                 guard(rcu)();
149                 list_for_each_entry_rcu(kip, &c->pages, list) {
150                         if (kip->nused < slots_per_page(c)) {
151                                 int i;
152
153                                 for (i = 0; i < slots_per_page(c); i++) {
154                                         if (kip->slot_used[i] == SLOT_CLEAN) {
155                                                 kip->slot_used[i] = SLOT_USED;
156                                                 kip->nused++;
157                                                 return kip->insns + (i * c->insn_size);
158                                         }
159                                 }
160                                 /* kip->nused is broken. Fix it. */
161                                 kip->nused = slots_per_page(c);
162                                 WARN_ON(1);
163                         }
164                 }
165         /* If there are any garbage slots, collect it and try again. */
166         } while (c->nr_garbage && collect_garbage_slots(c) == 0);
167
168         /* All out of space.  Need to allocate a new page. */
169         kip = kmalloc(struct_size(kip, slot_used, slots_per_page(c)), GFP_KERNEL);
170         if (!kip)
171                 return NULL;
172
173         kip->insns = c->alloc();
174         if (!kip->insns) {
175                 kfree(kip);
176                 return NULL;
177         }
178         INIT_LIST_HEAD(&kip->list);
179         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
180         kip->slot_used[0] = SLOT_USED;
181         kip->nused = 1;
182         kip->ngarbage = 0;
183         kip->cache = c;
184         list_add_rcu(&kip->list, &c->pages);
185
186         /* Record the perf ksymbol register event after adding the page */
187         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
188                            PAGE_SIZE, false, c->sym);
189
190         return kip->insns;
191 }
192
193 /* Return true if all garbages are collected, otherwise false. */
194 static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
195 {
196         kip->slot_used[idx] = SLOT_CLEAN;
197         kip->nused--;
198         if (kip->nused != 0)
199                 return false;
200
201         /*
202          * Page is no longer in use.  Free it unless
203          * it's the last one.  We keep the last one
204          * so as not to have to set it up again the
205          * next time somebody inserts a probe.
206          */
207         if (!list_is_singular(&kip->list)) {
208                 /*
209                  * Record perf ksymbol unregister event before removing
210                  * the page.
211                  */
212                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
213                                    (unsigned long)kip->insns, PAGE_SIZE, true,
214                                    kip->cache->sym);
215                 list_del_rcu(&kip->list);
216                 synchronize_rcu();
217                 kip->cache->free(kip->insns);
218                 kfree(kip);
219         }
220         return true;
221 }
222
223 static int collect_garbage_slots(struct kprobe_insn_cache *c)
224 {
225         struct kprobe_insn_page *kip, *next;
226
227         /* Ensure no-one is interrupted on the garbages */
228         synchronize_rcu();
229
230         list_for_each_entry_safe(kip, next, &c->pages, list) {
231                 int i;
232
233                 if (kip->ngarbage == 0)
234                         continue;
235                 kip->ngarbage = 0;      /* we will collect all garbages */
236                 for (i = 0; i < slots_per_page(c); i++) {
237                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
238                                 break;
239                 }
240         }
241         c->nr_garbage = 0;
242         return 0;
243 }
244
245 static long __find_insn_page(struct kprobe_insn_cache *c,
246         kprobe_opcode_t *slot, struct kprobe_insn_page **pkip)
247 {
248         struct kprobe_insn_page *kip = NULL;
249         long idx;
250
251         guard(rcu)();
252         list_for_each_entry_rcu(kip, &c->pages, list) {
253                 idx = ((long)slot - (long)kip->insns) /
254                         (c->insn_size * sizeof(kprobe_opcode_t));
255                 if (idx >= 0 && idx < slots_per_page(c)) {
256                         *pkip = kip;
257                         return idx;
258                 }
259         }
260         /* Could not find this slot. */
261         WARN_ON(1);
262         *pkip = NULL;
263         return -1;
264 }
265
266 void __free_insn_slot(struct kprobe_insn_cache *c,
267                       kprobe_opcode_t *slot, int dirty)
268 {
269         struct kprobe_insn_page *kip = NULL;
270         long idx;
271
272         guard(mutex)(&c->mutex);
273         idx = __find_insn_page(c, slot, &kip);
274         /* Mark and sweep: this may sleep */
275         if (kip) {
276                 /* Check double free */
277                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
278                 if (dirty) {
279                         kip->slot_used[idx] = SLOT_DIRTY;
280                         kip->ngarbage++;
281                         if (++c->nr_garbage > slots_per_page(c))
282                                 collect_garbage_slots(c);
283                 } else {
284                         collect_one_slot(kip, idx);
285                 }
286         }
287 }
288
289 /*
290  * Check given address is on the page of kprobe instruction slots.
291  * This will be used for checking whether the address on a stack
292  * is on a text area or not.
293  */
294 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
295 {
296         struct kprobe_insn_page *kip;
297         bool ret = false;
298
299         rcu_read_lock();
300         list_for_each_entry_rcu(kip, &c->pages, list) {
301                 if (addr >= (unsigned long)kip->insns &&
302                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
303                         ret = true;
304                         break;
305                 }
306         }
307         rcu_read_unlock();
308
309         return ret;
310 }
311
312 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
313                              unsigned long *value, char *type, char *sym)
314 {
315         struct kprobe_insn_page *kip;
316         int ret = -ERANGE;
317
318         rcu_read_lock();
319         list_for_each_entry_rcu(kip, &c->pages, list) {
320                 if ((*symnum)--)
321                         continue;
322                 strscpy(sym, c->sym, KSYM_NAME_LEN);
323                 *type = 't';
324                 *value = (unsigned long)kip->insns;
325                 ret = 0;
326                 break;
327         }
328         rcu_read_unlock();
329
330         return ret;
331 }
332
333 #ifdef CONFIG_OPTPROBES
334 void __weak *alloc_optinsn_page(void)
335 {
336         return alloc_insn_page();
337 }
338
339 void __weak free_optinsn_page(void *page)
340 {
341         free_insn_page(page);
342 }
343
344 /* For optimized_kprobe buffer */
345 struct kprobe_insn_cache kprobe_optinsn_slots = {
346         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
347         .alloc = alloc_optinsn_page,
348         .free = free_optinsn_page,
349         .sym = KPROBE_OPTINSN_PAGE_SYM,
350         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
351         /* .insn_size is initialized later */
352         .nr_garbage = 0,
353 };
354 #endif /* CONFIG_OPTPROBES */
355 #endif /* __ARCH_WANT_KPROBES_INSN_SLOT */
356
357 /* We have preemption disabled.. so it is safe to use __ versions */
358 static inline void set_kprobe_instance(struct kprobe *kp)
359 {
360         __this_cpu_write(kprobe_instance, kp);
361 }
362
363 static inline void reset_kprobe_instance(void)
364 {
365         __this_cpu_write(kprobe_instance, NULL);
366 }
367
368 /*
369  * This routine is called either:
370  *      - under the 'kprobe_mutex' - during kprobe_[un]register().
371  *                              OR
372  *      - with preemption disabled - from architecture specific code.
373  */
374 struct kprobe *get_kprobe(void *addr)
375 {
376         struct hlist_head *head;
377         struct kprobe *p;
378
379         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
380         hlist_for_each_entry_rcu(p, head, hlist,
381                                  lockdep_is_held(&kprobe_mutex)) {
382                 if (p->addr == addr)
383                         return p;
384         }
385
386         return NULL;
387 }
388 NOKPROBE_SYMBOL(get_kprobe);
389
390 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
391
392 /* Return true if 'p' is an aggregator */
393 static inline bool kprobe_aggrprobe(struct kprobe *p)
394 {
395         return p->pre_handler == aggr_pre_handler;
396 }
397
398 /* Return true if 'p' is unused */
399 static inline bool kprobe_unused(struct kprobe *p)
400 {
401         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
402                list_empty(&p->list);
403 }
404
405 /* Keep all fields in the kprobe consistent. */
406 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
407 {
408         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
409         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
410 }
411
412 #ifdef CONFIG_OPTPROBES
413 /* NOTE: This is protected by 'kprobe_mutex'. */
414 static bool kprobes_allow_optimization;
415
416 /*
417  * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
418  * This must be called from arch-dep optimized caller.
419  */
420 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
421 {
422         struct kprobe *kp;
423
424         list_for_each_entry_rcu(kp, &p->list, list) {
425                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
426                         set_kprobe_instance(kp);
427                         kp->pre_handler(kp, regs);
428                 }
429                 reset_kprobe_instance();
430         }
431 }
432 NOKPROBE_SYMBOL(opt_pre_handler);
433
434 /* Free optimized instructions and optimized_kprobe */
435 static void free_aggr_kprobe(struct kprobe *p)
436 {
437         struct optimized_kprobe *op;
438
439         op = container_of(p, struct optimized_kprobe, kp);
440         arch_remove_optimized_kprobe(op);
441         arch_remove_kprobe(p);
442         kfree(op);
443 }
444
445 /* Return true if the kprobe is ready for optimization. */
446 static inline int kprobe_optready(struct kprobe *p)
447 {
448         struct optimized_kprobe *op;
449
450         if (kprobe_aggrprobe(p)) {
451                 op = container_of(p, struct optimized_kprobe, kp);
452                 return arch_prepared_optinsn(&op->optinsn);
453         }
454
455         return 0;
456 }
457
458 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
459 bool kprobe_disarmed(struct kprobe *p)
460 {
461         struct optimized_kprobe *op;
462
463         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
464         if (!kprobe_aggrprobe(p))
465                 return kprobe_disabled(p);
466
467         op = container_of(p, struct optimized_kprobe, kp);
468
469         return kprobe_disabled(p) && list_empty(&op->list);
470 }
471
472 /* Return true if the probe is queued on (un)optimizing lists */
473 static bool kprobe_queued(struct kprobe *p)
474 {
475         struct optimized_kprobe *op;
476
477         if (kprobe_aggrprobe(p)) {
478                 op = container_of(p, struct optimized_kprobe, kp);
479                 if (!list_empty(&op->list))
480                         return true;
481         }
482         return false;
483 }
484
485 /*
486  * Return an optimized kprobe whose optimizing code replaces
487  * instructions including 'addr' (exclude breakpoint).
488  */
489 static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
490 {
491         int i;
492         struct kprobe *p = NULL;
493         struct optimized_kprobe *op;
494
495         /* Don't check i == 0, since that is a breakpoint case. */
496         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
497                 p = get_kprobe(addr - i);
498
499         if (p && kprobe_optready(p)) {
500                 op = container_of(p, struct optimized_kprobe, kp);
501                 if (arch_within_optimized_kprobe(op, addr))
502                         return p;
503         }
504
505         return NULL;
506 }
507
508 /* Optimization staging list, protected by 'kprobe_mutex' */
509 static LIST_HEAD(optimizing_list);
510 static LIST_HEAD(unoptimizing_list);
511 static LIST_HEAD(freeing_list);
512
513 static void kprobe_optimizer(struct work_struct *work);
514 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
515 #define OPTIMIZE_DELAY 5
516
517 /*
518  * Optimize (replace a breakpoint with a jump) kprobes listed on
519  * 'optimizing_list'.
520  */
521 static void do_optimize_kprobes(void)
522 {
523         lockdep_assert_held(&text_mutex);
524         /*
525          * The optimization/unoptimization refers 'online_cpus' via
526          * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
527          * And same time, 'text_mutex' will be held in cpu-hotplug and here.
528          * This combination can cause a deadlock (cpu-hotplug tries to lock
529          * 'text_mutex' but stop_machine() can not be done because
530          * the 'online_cpus' has been changed)
531          * To avoid this deadlock, caller must have locked cpu-hotplug
532          * for preventing cpu-hotplug outside of 'text_mutex' locking.
533          */
534         lockdep_assert_cpus_held();
535
536         /* Optimization never be done when disarmed */
537         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
538             list_empty(&optimizing_list))
539                 return;
540
541         arch_optimize_kprobes(&optimizing_list);
542 }
543
544 /*
545  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
546  * if need) kprobes listed on 'unoptimizing_list'.
547  */
548 static void do_unoptimize_kprobes(void)
549 {
550         struct optimized_kprobe *op, *tmp;
551
552         lockdep_assert_held(&text_mutex);
553         /* See comment in do_optimize_kprobes() */
554         lockdep_assert_cpus_held();
555
556         if (!list_empty(&unoptimizing_list))
557                 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
558
559         /* Loop on 'freeing_list' for disarming and removing from kprobe hash list */
560         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
561                 /* Switching from detour code to origin */
562                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
563                 /* Disarm probes if marked disabled and not gone */
564                 if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp))
565                         arch_disarm_kprobe(&op->kp);
566                 if (kprobe_unused(&op->kp)) {
567                         /*
568                          * Remove unused probes from hash list. After waiting
569                          * for synchronization, these probes are reclaimed.
570                          * (reclaiming is done by do_free_cleaned_kprobes().)
571                          */
572                         hlist_del_rcu(&op->kp.hlist);
573                 } else
574                         list_del_init(&op->list);
575         }
576 }
577
578 /* Reclaim all kprobes on the 'freeing_list' */
579 static void do_free_cleaned_kprobes(void)
580 {
581         struct optimized_kprobe *op, *tmp;
582
583         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
584                 list_del_init(&op->list);
585                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
586                         /*
587                          * This must not happen, but if there is a kprobe
588                          * still in use, keep it on kprobes hash list.
589                          */
590                         continue;
591                 }
592                 free_aggr_kprobe(&op->kp);
593         }
594 }
595
596 /* Start optimizer after OPTIMIZE_DELAY passed */
597 static void kick_kprobe_optimizer(void)
598 {
599         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
600 }
601
602 /* Kprobe jump optimizer */
603 static void kprobe_optimizer(struct work_struct *work)
604 {
605         guard(mutex)(&kprobe_mutex);
606
607         scoped_guard(cpus_read_lock) {
608                 guard(mutex)(&text_mutex);
609
610                 /*
611                  * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
612                  * kprobes before waiting for quiesence period.
613                  */
614                 do_unoptimize_kprobes();
615
616                 /*
617                  * Step 2: Wait for quiesence period to ensure all potentially
618                  * preempted tasks to have normally scheduled. Because optprobe
619                  * may modify multiple instructions, there is a chance that Nth
620                  * instruction is preempted. In that case, such tasks can return
621                  * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
622                  * Note that on non-preemptive kernel, this is transparently converted
623                  * to synchronoze_sched() to wait for all interrupts to have completed.
624                  */
625                 synchronize_rcu_tasks();
626
627                 /* Step 3: Optimize kprobes after quiesence period */
628                 do_optimize_kprobes();
629
630                 /* Step 4: Free cleaned kprobes after quiesence period */
631                 do_free_cleaned_kprobes();
632         }
633
634         /* Step 5: Kick optimizer again if needed */
635         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
636                 kick_kprobe_optimizer();
637 }
638
639 static void wait_for_kprobe_optimizer_locked(void)
640 {
641         lockdep_assert_held(&kprobe_mutex);
642
643         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
644                 mutex_unlock(&kprobe_mutex);
645
646                 /* This will also make 'optimizing_work' execute immmediately */
647                 flush_delayed_work(&optimizing_work);
648                 /* 'optimizing_work' might not have been queued yet, relax */
649                 cpu_relax();
650
651                 mutex_lock(&kprobe_mutex);
652         }
653 }
654
655 /* Wait for completing optimization and unoptimization */
656 void wait_for_kprobe_optimizer(void)
657 {
658         guard(mutex)(&kprobe_mutex);
659
660         wait_for_kprobe_optimizer_locked();
661 }
662
663 bool optprobe_queued_unopt(struct optimized_kprobe *op)
664 {
665         struct optimized_kprobe *_op;
666
667         list_for_each_entry(_op, &unoptimizing_list, list) {
668                 if (op == _op)
669                         return true;
670         }
671
672         return false;
673 }
674
675 /* Optimize kprobe if p is ready to be optimized */
676 static void optimize_kprobe(struct kprobe *p)
677 {
678         struct optimized_kprobe *op;
679
680         /* Check if the kprobe is disabled or not ready for optimization. */
681         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
682             (kprobe_disabled(p) || kprobes_all_disarmed))
683                 return;
684
685         /* kprobes with 'post_handler' can not be optimized */
686         if (p->post_handler)
687                 return;
688
689         op = container_of(p, struct optimized_kprobe, kp);
690
691         /* Check there is no other kprobes at the optimized instructions */
692         if (arch_check_optimized_kprobe(op) < 0)
693                 return;
694
695         /* Check if it is already optimized. */
696         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
697                 if (optprobe_queued_unopt(op)) {
698                         /* This is under unoptimizing. Just dequeue the probe */
699                         list_del_init(&op->list);
700                 }
701                 return;
702         }
703         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
704
705         /*
706          * On the 'unoptimizing_list' and 'optimizing_list',
707          * 'op' must have OPTIMIZED flag
708          */
709         if (WARN_ON_ONCE(!list_empty(&op->list)))
710                 return;
711
712         list_add(&op->list, &optimizing_list);
713         kick_kprobe_optimizer();
714 }
715
716 /* Short cut to direct unoptimizing */
717 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
718 {
719         lockdep_assert_cpus_held();
720         arch_unoptimize_kprobe(op);
721         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
722 }
723
724 /* Unoptimize a kprobe if p is optimized */
725 static void unoptimize_kprobe(struct kprobe *p, bool force)
726 {
727         struct optimized_kprobe *op;
728
729         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
730                 return; /* This is not an optprobe nor optimized */
731
732         op = container_of(p, struct optimized_kprobe, kp);
733         if (!kprobe_optimized(p))
734                 return;
735
736         if (!list_empty(&op->list)) {
737                 if (optprobe_queued_unopt(op)) {
738                         /* Queued in unoptimizing queue */
739                         if (force) {
740                                 /*
741                                  * Forcibly unoptimize the kprobe here, and queue it
742                                  * in the freeing list for release afterwards.
743                                  */
744                                 force_unoptimize_kprobe(op);
745                                 list_move(&op->list, &freeing_list);
746                         }
747                 } else {
748                         /* Dequeue from the optimizing queue */
749                         list_del_init(&op->list);
750                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
751                 }
752                 return;
753         }
754
755         /* Optimized kprobe case */
756         if (force) {
757                 /* Forcibly update the code: this is a special case */
758                 force_unoptimize_kprobe(op);
759         } else {
760                 list_add(&op->list, &unoptimizing_list);
761                 kick_kprobe_optimizer();
762         }
763 }
764
765 /* Cancel unoptimizing for reusing */
766 static int reuse_unused_kprobe(struct kprobe *ap)
767 {
768         struct optimized_kprobe *op;
769
770         /*
771          * Unused kprobe MUST be on the way of delayed unoptimizing (means
772          * there is still a relative jump) and disabled.
773          */
774         op = container_of(ap, struct optimized_kprobe, kp);
775         WARN_ON_ONCE(list_empty(&op->list));
776         /* Enable the probe again */
777         ap->flags &= ~KPROBE_FLAG_DISABLED;
778         /* Optimize it again. (remove from 'op->list') */
779         if (!kprobe_optready(ap))
780                 return -EINVAL;
781
782         optimize_kprobe(ap);
783         return 0;
784 }
785
786 /* Remove optimized instructions */
787 static void kill_optimized_kprobe(struct kprobe *p)
788 {
789         struct optimized_kprobe *op;
790
791         op = container_of(p, struct optimized_kprobe, kp);
792         if (!list_empty(&op->list))
793                 /* Dequeue from the (un)optimization queue */
794                 list_del_init(&op->list);
795         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
796
797         if (kprobe_unused(p)) {
798                 /*
799                  * Unused kprobe is on unoptimizing or freeing list. We move it
800                  * to freeing_list and let the kprobe_optimizer() remove it from
801                  * the kprobe hash list and free it.
802                  */
803                 if (optprobe_queued_unopt(op))
804                         list_move(&op->list, &freeing_list);
805         }
806
807         /* Don't touch the code, because it is already freed. */
808         arch_remove_optimized_kprobe(op);
809 }
810
811 static inline
812 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
813 {
814         if (!kprobe_ftrace(p))
815                 arch_prepare_optimized_kprobe(op, p);
816 }
817
818 /* Try to prepare optimized instructions */
819 static void prepare_optimized_kprobe(struct kprobe *p)
820 {
821         struct optimized_kprobe *op;
822
823         op = container_of(p, struct optimized_kprobe, kp);
824         __prepare_optimized_kprobe(op, p);
825 }
826
827 /* Allocate new optimized_kprobe and try to prepare optimized instructions. */
828 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
829 {
830         struct optimized_kprobe *op;
831
832         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
833         if (!op)
834                 return NULL;
835
836         INIT_LIST_HEAD(&op->list);
837         op->kp.addr = p->addr;
838         __prepare_optimized_kprobe(op, p);
839
840         return &op->kp;
841 }
842
843 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
844
845 /*
846  * Prepare an optimized_kprobe and optimize it.
847  * NOTE: 'p' must be a normal registered kprobe.
848  */
849 static void try_to_optimize_kprobe(struct kprobe *p)
850 {
851         struct kprobe *ap;
852         struct optimized_kprobe *op;
853
854         /* Impossible to optimize ftrace-based kprobe. */
855         if (kprobe_ftrace(p))
856                 return;
857
858         /* For preparing optimization, jump_label_text_reserved() is called. */
859         guard(cpus_read_lock)();
860         guard(jump_label_lock)();
861         guard(mutex)(&text_mutex);
862
863         ap = alloc_aggr_kprobe(p);
864         if (!ap)
865                 return;
866
867         op = container_of(ap, struct optimized_kprobe, kp);
868         if (!arch_prepared_optinsn(&op->optinsn)) {
869                 /* If failed to setup optimizing, fallback to kprobe. */
870                 arch_remove_optimized_kprobe(op);
871                 kfree(op);
872                 return;
873         }
874
875         init_aggr_kprobe(ap, p);
876         optimize_kprobe(ap);    /* This just kicks optimizer thread. */
877 }
878
879 static void optimize_all_kprobes(void)
880 {
881         struct hlist_head *head;
882         struct kprobe *p;
883         unsigned int i;
884
885         guard(mutex)(&kprobe_mutex);
886         /* If optimization is already allowed, just return. */
887         if (kprobes_allow_optimization)
888                 return;
889
890         cpus_read_lock();
891         kprobes_allow_optimization = true;
892         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
893                 head = &kprobe_table[i];
894                 hlist_for_each_entry(p, head, hlist)
895                         if (!kprobe_disabled(p))
896                                 optimize_kprobe(p);
897         }
898         cpus_read_unlock();
899         pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
900 }
901
902 #ifdef CONFIG_SYSCTL
903 static void unoptimize_all_kprobes(void)
904 {
905         struct hlist_head *head;
906         struct kprobe *p;
907         unsigned int i;
908
909         guard(mutex)(&kprobe_mutex);
910         /* If optimization is already prohibited, just return. */
911         if (!kprobes_allow_optimization)
912                 return;
913
914         cpus_read_lock();
915         kprobes_allow_optimization = false;
916         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
917                 head = &kprobe_table[i];
918                 hlist_for_each_entry(p, head, hlist) {
919                         if (!kprobe_disabled(p))
920                                 unoptimize_kprobe(p, false);
921                 }
922         }
923         cpus_read_unlock();
924         /* Wait for unoptimizing completion. */
925         wait_for_kprobe_optimizer_locked();
926         pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
927 }
928
929 static DEFINE_MUTEX(kprobe_sysctl_mutex);
930 static int sysctl_kprobes_optimization;
931 static int proc_kprobes_optimization_handler(const struct ctl_table *table,
932                                              int write, void *buffer,
933                                              size_t *length, loff_t *ppos)
934 {
935         int ret;
936
937         guard(mutex)(&kprobe_sysctl_mutex);
938         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
939         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
940
941         if (sysctl_kprobes_optimization)
942                 optimize_all_kprobes();
943         else
944                 unoptimize_all_kprobes();
945
946         return ret;
947 }
948
949 static const struct ctl_table kprobe_sysctls[] = {
950         {
951                 .procname       = "kprobes-optimization",
952                 .data           = &sysctl_kprobes_optimization,
953                 .maxlen         = sizeof(int),
954                 .mode           = 0644,
955                 .proc_handler   = proc_kprobes_optimization_handler,
956                 .extra1         = SYSCTL_ZERO,
957                 .extra2         = SYSCTL_ONE,
958         },
959 };
960
961 static void __init kprobe_sysctls_init(void)
962 {
963         register_sysctl_init("debug", kprobe_sysctls);
964 }
965 #endif /* CONFIG_SYSCTL */
966
967 /* Put a breakpoint for a probe. */
968 static void __arm_kprobe(struct kprobe *p)
969 {
970         struct kprobe *_p;
971
972         lockdep_assert_held(&text_mutex);
973
974         /* Find the overlapping optimized kprobes. */
975         _p = get_optimized_kprobe(p->addr);
976         if (unlikely(_p))
977                 /* Fallback to unoptimized kprobe */
978                 unoptimize_kprobe(_p, true);
979
980         arch_arm_kprobe(p);
981         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
982 }
983
984 /* Remove the breakpoint of a probe. */
985 static void __disarm_kprobe(struct kprobe *p, bool reopt)
986 {
987         struct kprobe *_p;
988
989         lockdep_assert_held(&text_mutex);
990
991         /* Try to unoptimize */
992         unoptimize_kprobe(p, kprobes_all_disarmed);
993
994         if (!kprobe_queued(p)) {
995                 arch_disarm_kprobe(p);
996                 /* If another kprobe was blocked, re-optimize it. */
997                 _p = get_optimized_kprobe(p->addr);
998                 if (unlikely(_p) && reopt)
999                         optimize_kprobe(_p);
1000         }
1001         /*
1002          * TODO: Since unoptimization and real disarming will be done by
1003          * the worker thread, we can not check whether another probe are
1004          * unoptimized because of this probe here. It should be re-optimized
1005          * by the worker thread.
1006          */
1007 }
1008
1009 #else /* !CONFIG_OPTPROBES */
1010
1011 #define optimize_kprobe(p)                      do {} while (0)
1012 #define unoptimize_kprobe(p, f)                 do {} while (0)
1013 #define kill_optimized_kprobe(p)                do {} while (0)
1014 #define prepare_optimized_kprobe(p)             do {} while (0)
1015 #define try_to_optimize_kprobe(p)               do {} while (0)
1016 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
1017 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
1018 #define kprobe_disarmed(p)                      kprobe_disabled(p)
1019 #define wait_for_kprobe_optimizer_locked()                      \
1020         lockdep_assert_held(&kprobe_mutex)
1021
1022 static int reuse_unused_kprobe(struct kprobe *ap)
1023 {
1024         /*
1025          * If the optimized kprobe is NOT supported, the aggr kprobe is
1026          * released at the same time that the last aggregated kprobe is
1027          * unregistered.
1028          * Thus there should be no chance to reuse unused kprobe.
1029          */
1030         WARN_ON_ONCE(1);
1031         return -EINVAL;
1032 }
1033
1034 static void free_aggr_kprobe(struct kprobe *p)
1035 {
1036         arch_remove_kprobe(p);
1037         kfree(p);
1038 }
1039
1040 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1041 {
1042         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1043 }
1044 #endif /* CONFIG_OPTPROBES */
1045
1046 #ifdef CONFIG_KPROBES_ON_FTRACE
1047 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1048         .func = kprobe_ftrace_handler,
1049         .flags = FTRACE_OPS_FL_SAVE_REGS,
1050 };
1051
1052 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1053         .func = kprobe_ftrace_handler,
1054         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1055 };
1056
1057 static int kprobe_ipmodify_enabled;
1058 static int kprobe_ftrace_enabled;
1059 bool kprobe_ftrace_disabled;
1060
1061 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1062                                int *cnt)
1063 {
1064         int ret;
1065
1066         lockdep_assert_held(&kprobe_mutex);
1067
1068         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1069         if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1070                 return ret;
1071
1072         if (*cnt == 0) {
1073                 ret = register_ftrace_function(ops);
1074                 if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret)) {
1075                         /*
1076                          * At this point, sinec ops is not registered, we should be sefe from
1077                          * registering empty filter.
1078                          */
1079                         ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1080                         return ret;
1081                 }
1082         }
1083
1084         (*cnt)++;
1085         return ret;
1086 }
1087
1088 static int arm_kprobe_ftrace(struct kprobe *p)
1089 {
1090         bool ipmodify = (p->post_handler != NULL);
1091
1092         return __arm_kprobe_ftrace(p,
1093                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1094                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1095 }
1096
1097 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1098                                   int *cnt)
1099 {
1100         int ret;
1101
1102         lockdep_assert_held(&kprobe_mutex);
1103
1104         if (*cnt == 1) {
1105                 ret = unregister_ftrace_function(ops);
1106                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1107                         return ret;
1108         }
1109
1110         (*cnt)--;
1111
1112         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1113         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1114                   p->addr, ret);
1115         return ret;
1116 }
1117
1118 static int disarm_kprobe_ftrace(struct kprobe *p)
1119 {
1120         bool ipmodify = (p->post_handler != NULL);
1121
1122         return __disarm_kprobe_ftrace(p,
1123                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1124                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1125 }
1126
1127 void kprobe_ftrace_kill(void)
1128 {
1129         kprobe_ftrace_disabled = true;
1130 }
1131 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1132 static inline int arm_kprobe_ftrace(struct kprobe *p)
1133 {
1134         return -ENODEV;
1135 }
1136
1137 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1138 {
1139         return -ENODEV;
1140 }
1141 #endif
1142
1143 static int prepare_kprobe(struct kprobe *p)
1144 {
1145         /* Must ensure p->addr is really on ftrace */
1146         if (kprobe_ftrace(p))
1147                 return arch_prepare_kprobe_ftrace(p);
1148
1149         return arch_prepare_kprobe(p);
1150 }
1151
1152 static int arm_kprobe(struct kprobe *kp)
1153 {
1154         if (unlikely(kprobe_ftrace(kp)))
1155                 return arm_kprobe_ftrace(kp);
1156
1157         guard(cpus_read_lock)();
1158         guard(mutex)(&text_mutex);
1159         __arm_kprobe(kp);
1160         return 0;
1161 }
1162
1163 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1164 {
1165         if (unlikely(kprobe_ftrace(kp)))
1166                 return disarm_kprobe_ftrace(kp);
1167
1168         guard(cpus_read_lock)();
1169         guard(mutex)(&text_mutex);
1170         __disarm_kprobe(kp, reopt);
1171         return 0;
1172 }
1173
1174 /*
1175  * Aggregate handlers for multiple kprobes support - these handlers
1176  * take care of invoking the individual kprobe handlers on p->list
1177  */
1178 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1179 {
1180         struct kprobe *kp;
1181
1182         list_for_each_entry_rcu(kp, &p->list, list) {
1183                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1184                         set_kprobe_instance(kp);
1185                         if (kp->pre_handler(kp, regs))
1186                                 return 1;
1187                 }
1188                 reset_kprobe_instance();
1189         }
1190         return 0;
1191 }
1192 NOKPROBE_SYMBOL(aggr_pre_handler);
1193
1194 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1195                               unsigned long flags)
1196 {
1197         struct kprobe *kp;
1198
1199         list_for_each_entry_rcu(kp, &p->list, list) {
1200                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1201                         set_kprobe_instance(kp);
1202                         kp->post_handler(kp, regs, flags);
1203                         reset_kprobe_instance();
1204                 }
1205         }
1206 }
1207 NOKPROBE_SYMBOL(aggr_post_handler);
1208
1209 /* Walks the list and increments 'nmissed' if 'p' has child probes. */
1210 void kprobes_inc_nmissed_count(struct kprobe *p)
1211 {
1212         struct kprobe *kp;
1213
1214         if (!kprobe_aggrprobe(p)) {
1215                 p->nmissed++;
1216         } else {
1217                 list_for_each_entry_rcu(kp, &p->list, list)
1218                         kp->nmissed++;
1219         }
1220 }
1221 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1222
1223 static struct kprobe kprobe_busy = {
1224         .addr = (void *) get_kprobe,
1225 };
1226
1227 void kprobe_busy_begin(void)
1228 {
1229         struct kprobe_ctlblk *kcb;
1230
1231         preempt_disable();
1232         __this_cpu_write(current_kprobe, &kprobe_busy);
1233         kcb = get_kprobe_ctlblk();
1234         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1235 }
1236
1237 void kprobe_busy_end(void)
1238 {
1239         __this_cpu_write(current_kprobe, NULL);
1240         preempt_enable();
1241 }
1242
1243 /* Add the new probe to 'ap->list'. */
1244 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1245 {
1246         if (p->post_handler)
1247                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1248
1249         list_add_rcu(&p->list, &ap->list);
1250         if (p->post_handler && !ap->post_handler)
1251                 ap->post_handler = aggr_post_handler;
1252
1253         return 0;
1254 }
1255
1256 /*
1257  * Fill in the required fields of the aggregator kprobe. Replace the
1258  * earlier kprobe in the hlist with the aggregator kprobe.
1259  */
1260 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1261 {
1262         /* Copy the insn slot of 'p' to 'ap'. */
1263         copy_kprobe(p, ap);
1264         flush_insn_slot(ap);
1265         ap->addr = p->addr;
1266         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1267         ap->pre_handler = aggr_pre_handler;
1268         /* We don't care the kprobe which has gone. */
1269         if (p->post_handler && !kprobe_gone(p))
1270                 ap->post_handler = aggr_post_handler;
1271
1272         INIT_LIST_HEAD(&ap->list);
1273         INIT_HLIST_NODE(&ap->hlist);
1274
1275         list_add_rcu(&p->list, &ap->list);
1276         hlist_replace_rcu(&p->hlist, &ap->hlist);
1277 }
1278
1279 /*
1280  * This registers the second or subsequent kprobe at the same address.
1281  */
1282 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1283 {
1284         int ret = 0;
1285         struct kprobe *ap = orig_p;
1286
1287         scoped_guard(cpus_read_lock) {
1288                 /* For preparing optimization, jump_label_text_reserved() is called */
1289                 guard(jump_label_lock)();
1290                 guard(mutex)(&text_mutex);
1291
1292                 if (!kprobe_aggrprobe(orig_p)) {
1293                         /* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1294                         ap = alloc_aggr_kprobe(orig_p);
1295                         if (!ap)
1296                                 return -ENOMEM;
1297                         init_aggr_kprobe(ap, orig_p);
1298                 } else if (kprobe_unused(ap)) {
1299                         /* This probe is going to die. Rescue it */
1300                         ret = reuse_unused_kprobe(ap);
1301                         if (ret)
1302                                 return ret;
1303                 }
1304
1305                 if (kprobe_gone(ap)) {
1306                         /*
1307                          * Attempting to insert new probe at the same location that
1308                          * had a probe in the module vaddr area which already
1309                          * freed. So, the instruction slot has already been
1310                          * released. We need a new slot for the new probe.
1311                          */
1312                         ret = arch_prepare_kprobe(ap);
1313                         if (ret)
1314                                 /*
1315                                  * Even if fail to allocate new slot, don't need to
1316                                  * free the 'ap'. It will be used next time, or
1317                                  * freed by unregister_kprobe().
1318                                  */
1319                                 return ret;
1320
1321                         /* Prepare optimized instructions if possible. */
1322                         prepare_optimized_kprobe(ap);
1323
1324                         /*
1325                          * Clear gone flag to prevent allocating new slot again, and
1326                          * set disabled flag because it is not armed yet.
1327                          */
1328                         ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1329                                         | KPROBE_FLAG_DISABLED;
1330                 }
1331
1332                 /* Copy the insn slot of 'p' to 'ap'. */
1333                 copy_kprobe(ap, p);
1334                 ret = add_new_kprobe(ap, p);
1335         }
1336
1337         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1338                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1339                 if (!kprobes_all_disarmed) {
1340                         /* Arm the breakpoint again. */
1341                         ret = arm_kprobe(ap);
1342                         if (ret) {
1343                                 ap->flags |= KPROBE_FLAG_DISABLED;
1344                                 list_del_rcu(&p->list);
1345                                 synchronize_rcu();
1346                         }
1347                 }
1348         }
1349         return ret;
1350 }
1351
1352 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1353 {
1354         /* The '__kprobes' functions and entry code must not be probed. */
1355         return addr >= (unsigned long)__kprobes_text_start &&
1356                addr < (unsigned long)__kprobes_text_end;
1357 }
1358
1359 static bool __within_kprobe_blacklist(unsigned long addr)
1360 {
1361         struct kprobe_blacklist_entry *ent;
1362
1363         if (arch_within_kprobe_blacklist(addr))
1364                 return true;
1365         /*
1366          * If 'kprobe_blacklist' is defined, check the address and
1367          * reject any probe registration in the prohibited area.
1368          */
1369         list_for_each_entry(ent, &kprobe_blacklist, list) {
1370                 if (addr >= ent->start_addr && addr < ent->end_addr)
1371                         return true;
1372         }
1373         return false;
1374 }
1375
1376 bool within_kprobe_blacklist(unsigned long addr)
1377 {
1378         char symname[KSYM_NAME_LEN], *p;
1379
1380         if (__within_kprobe_blacklist(addr))
1381                 return true;
1382
1383         /* Check if the address is on a suffixed-symbol */
1384         if (!lookup_symbol_name(addr, symname)) {
1385                 p = strchr(symname, '.');
1386                 if (!p)
1387                         return false;
1388                 *p = '\0';
1389                 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1390                 if (addr)
1391                         return __within_kprobe_blacklist(addr);
1392         }
1393         return false;
1394 }
1395
1396 /*
1397  * arch_adjust_kprobe_addr - adjust the address
1398  * @addr: symbol base address
1399  * @offset: offset within the symbol
1400  * @on_func_entry: was this @addr+@offset on the function entry
1401  *
1402  * Typically returns @addr + @offset, except for special cases where the
1403  * function might be prefixed by a CFI landing pad, in that case any offset
1404  * inside the landing pad is mapped to the first 'real' instruction of the
1405  * symbol.
1406  *
1407  * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1408  * instruction at +0.
1409  */
1410 kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1411                                                 unsigned long offset,
1412                                                 bool *on_func_entry)
1413 {
1414         *on_func_entry = !offset;
1415         return (kprobe_opcode_t *)(addr + offset);
1416 }
1417
1418 /*
1419  * If 'symbol_name' is specified, look it up and add the 'offset'
1420  * to it. This way, we can specify a relative address to a symbol.
1421  * This returns encoded errors if it fails to look up symbol or invalid
1422  * combination of parameters.
1423  */
1424 static kprobe_opcode_t *
1425 _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1426              unsigned long offset, bool *on_func_entry)
1427 {
1428         if ((symbol_name && addr) || (!symbol_name && !addr))
1429                 return ERR_PTR(-EINVAL);
1430
1431         if (symbol_name) {
1432                 /*
1433                  * Input: @sym + @offset
1434                  * Output: @addr + @offset
1435                  *
1436                  * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1437                  *       argument into it's output!
1438                  */
1439                 addr = kprobe_lookup_name(symbol_name, offset);
1440                 if (!addr)
1441                         return ERR_PTR(-ENOENT);
1442         }
1443
1444         /*
1445          * So here we have @addr + @offset, displace it into a new
1446          * @addr' + @offset' where @addr' is the symbol start address.
1447          */
1448         addr = (void *)addr + offset;
1449         if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1450                 return ERR_PTR(-ENOENT);
1451         addr = (void *)addr - offset;
1452
1453         /*
1454          * Then ask the architecture to re-combine them, taking care of
1455          * magical function entry details while telling us if this was indeed
1456          * at the start of the function.
1457          */
1458         addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1459         if (!addr)
1460                 return ERR_PTR(-EINVAL);
1461
1462         return addr;
1463 }
1464
1465 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1466 {
1467         bool on_func_entry;
1468
1469         return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1470 }
1471
1472 /*
1473  * Check the 'p' is valid and return the aggregator kprobe
1474  * at the same address.
1475  */
1476 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1477 {
1478         struct kprobe *ap, *list_p;
1479
1480         lockdep_assert_held(&kprobe_mutex);
1481
1482         ap = get_kprobe(p->addr);
1483         if (unlikely(!ap))
1484                 return NULL;
1485
1486         if (p == ap)
1487                 return ap;
1488
1489         list_for_each_entry(list_p, &ap->list, list)
1490                 if (list_p == p)
1491                 /* kprobe p is a valid probe */
1492                         return ap;
1493
1494         return NULL;
1495 }
1496
1497 /*
1498  * Warn and return error if the kprobe is being re-registered since
1499  * there must be a software bug.
1500  */
1501 static inline int warn_kprobe_rereg(struct kprobe *p)
1502 {
1503         guard(mutex)(&kprobe_mutex);
1504
1505         if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1506                 return -EINVAL;
1507
1508         return 0;
1509 }
1510
1511 static int check_ftrace_location(struct kprobe *p)
1512 {
1513         unsigned long addr = (unsigned long)p->addr;
1514
1515         if (ftrace_location(addr) == addr) {
1516 #ifdef CONFIG_KPROBES_ON_FTRACE
1517                 p->flags |= KPROBE_FLAG_FTRACE;
1518 #else
1519                 return -EINVAL;
1520 #endif
1521         }
1522         return 0;
1523 }
1524
1525 static bool is_cfi_preamble_symbol(unsigned long addr)
1526 {
1527         char symbuf[KSYM_NAME_LEN];
1528
1529         if (lookup_symbol_name(addr, symbuf))
1530                 return false;
1531
1532         return str_has_prefix(symbuf, "__cfi_") ||
1533                 str_has_prefix(symbuf, "__pfx_");
1534 }
1535
1536 static int check_kprobe_address_safe(struct kprobe *p,
1537                                      struct module **probed_mod)
1538 {
1539         int ret;
1540
1541         ret = check_ftrace_location(p);
1542         if (ret)
1543                 return ret;
1544
1545         guard(jump_label_lock)();
1546
1547         /* Ensure the address is in a text area, and find a module if exists. */
1548         *probed_mod = NULL;
1549         if (!core_kernel_text((unsigned long) p->addr)) {
1550                 guard(rcu)();
1551                 *probed_mod = __module_text_address((unsigned long) p->addr);
1552                 if (!(*probed_mod))
1553                         return -EINVAL;
1554
1555                 /*
1556                  * We must hold a refcount of the probed module while updating
1557                  * its code to prohibit unexpected unloading.
1558                  */
1559                 if (unlikely(!try_module_get(*probed_mod)))
1560                         return -ENOENT;
1561         }
1562         /* Ensure it is not in reserved area. */
1563         if (in_gate_area_no_mm((unsigned long) p->addr) ||
1564             within_kprobe_blacklist((unsigned long) p->addr) ||
1565             jump_label_text_reserved(p->addr, p->addr) ||
1566             static_call_text_reserved(p->addr, p->addr) ||
1567             find_bug((unsigned long)p->addr) ||
1568             is_cfi_preamble_symbol((unsigned long)p->addr)) {
1569                 module_put(*probed_mod);
1570                 return -EINVAL;
1571         }
1572
1573         /* Get module refcount and reject __init functions for loaded modules. */
1574         if (IS_ENABLED(CONFIG_MODULES) && *probed_mod) {
1575                 /*
1576                  * If the module freed '.init.text', we couldn't insert
1577                  * kprobes in there.
1578                  */
1579                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1580                     !module_is_coming(*probed_mod)) {
1581                         module_put(*probed_mod);
1582                         return -ENOENT;
1583                 }
1584         }
1585
1586         return 0;
1587 }
1588
1589 static int __register_kprobe(struct kprobe *p)
1590 {
1591         int ret;
1592         struct kprobe *old_p;
1593
1594         guard(mutex)(&kprobe_mutex);
1595
1596         old_p = get_kprobe(p->addr);
1597         if (old_p)
1598                 /* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1599                 return register_aggr_kprobe(old_p, p);
1600
1601         scoped_guard(cpus_read_lock) {
1602                 /* Prevent text modification */
1603                 guard(mutex)(&text_mutex);
1604                 ret = prepare_kprobe(p);
1605                 if (ret)
1606                         return ret;
1607         }
1608
1609         INIT_HLIST_NODE(&p->hlist);
1610         hlist_add_head_rcu(&p->hlist,
1611                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1612
1613         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1614                 ret = arm_kprobe(p);
1615                 if (ret) {
1616                         hlist_del_rcu(&p->hlist);
1617                         synchronize_rcu();
1618                 }
1619         }
1620
1621         /* Try to optimize kprobe */
1622         try_to_optimize_kprobe(p);
1623         return 0;
1624 }
1625
1626 int register_kprobe(struct kprobe *p)
1627 {
1628         int ret;
1629         struct module *probed_mod;
1630         kprobe_opcode_t *addr;
1631         bool on_func_entry;
1632
1633         /* Canonicalize probe address from symbol */
1634         addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1635         if (IS_ERR(addr))
1636                 return PTR_ERR(addr);
1637         p->addr = addr;
1638
1639         ret = warn_kprobe_rereg(p);
1640         if (ret)
1641                 return ret;
1642
1643         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1644         p->flags &= KPROBE_FLAG_DISABLED;
1645         if (on_func_entry)
1646                 p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1647         p->nmissed = 0;
1648         INIT_LIST_HEAD(&p->list);
1649
1650         ret = check_kprobe_address_safe(p, &probed_mod);
1651         if (ret)
1652                 return ret;
1653
1654         ret = __register_kprobe(p);
1655
1656         if (probed_mod)
1657                 module_put(probed_mod);
1658
1659         return ret;
1660 }
1661 EXPORT_SYMBOL_GPL(register_kprobe);
1662
1663 /* Check if all probes on the 'ap' are disabled. */
1664 static bool aggr_kprobe_disabled(struct kprobe *ap)
1665 {
1666         struct kprobe *kp;
1667
1668         lockdep_assert_held(&kprobe_mutex);
1669
1670         list_for_each_entry(kp, &ap->list, list)
1671                 if (!kprobe_disabled(kp))
1672                         /*
1673                          * Since there is an active probe on the list,
1674                          * we can't disable this 'ap'.
1675                          */
1676                         return false;
1677
1678         return true;
1679 }
1680
1681 static struct kprobe *__disable_kprobe(struct kprobe *p)
1682 {
1683         struct kprobe *orig_p;
1684         int ret;
1685
1686         lockdep_assert_held(&kprobe_mutex);
1687
1688         /* Get an original kprobe for return */
1689         orig_p = __get_valid_kprobe(p);
1690         if (unlikely(orig_p == NULL))
1691                 return ERR_PTR(-EINVAL);
1692
1693         if (kprobe_disabled(p))
1694                 return orig_p;
1695
1696         /* Disable probe if it is a child probe */
1697         if (p != orig_p)
1698                 p->flags |= KPROBE_FLAG_DISABLED;
1699
1700         /* Try to disarm and disable this/parent probe */
1701         if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1702                 /*
1703                  * Don't be lazy here.  Even if 'kprobes_all_disarmed'
1704                  * is false, 'orig_p' might not have been armed yet.
1705                  * Note arm_all_kprobes() __tries__ to arm all kprobes
1706                  * on the best effort basis.
1707                  */
1708                 if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1709                         ret = disarm_kprobe(orig_p, true);
1710                         if (ret) {
1711                                 p->flags &= ~KPROBE_FLAG_DISABLED;
1712                                 return ERR_PTR(ret);
1713                         }
1714                 }
1715                 orig_p->flags |= KPROBE_FLAG_DISABLED;
1716         }
1717
1718         return orig_p;
1719 }
1720
1721 /*
1722  * Unregister a kprobe without a scheduler synchronization.
1723  */
1724 static int __unregister_kprobe_top(struct kprobe *p)
1725 {
1726         struct kprobe *ap, *list_p;
1727
1728         /* Disable kprobe. This will disarm it if needed. */
1729         ap = __disable_kprobe(p);
1730         if (IS_ERR(ap))
1731                 return PTR_ERR(ap);
1732
1733         WARN_ON(ap != p && !kprobe_aggrprobe(ap));
1734
1735         /*
1736          * If the probe is an independent(and non-optimized) kprobe
1737          * (not an aggrprobe), the last kprobe on the aggrprobe, or
1738          * kprobe is already disarmed, just remove from the hash list.
1739          */
1740         if (ap == p ||
1741                 (list_is_singular(&ap->list) && kprobe_disarmed(ap))) {
1742                 /*
1743                  * !disarmed could be happen if the probe is under delayed
1744                  * unoptimizing.
1745                  */
1746                 hlist_del_rcu(&ap->hlist);
1747                 return 0;
1748         }
1749
1750         /* If disabling probe has special handlers, update aggrprobe */
1751         if (p->post_handler && !kprobe_gone(p)) {
1752                 list_for_each_entry(list_p, &ap->list, list) {
1753                         if ((list_p != p) && (list_p->post_handler))
1754                                 break;
1755                 }
1756                 /* No other probe has post_handler */
1757                 if (list_entry_is_head(list_p, &ap->list, list)) {
1758                         /*
1759                          * For the kprobe-on-ftrace case, we keep the
1760                          * post_handler setting to identify this aggrprobe
1761                          * armed with kprobe_ipmodify_ops.
1762                          */
1763                         if (!kprobe_ftrace(ap))
1764                                 ap->post_handler = NULL;
1765                 }
1766         }
1767
1768         /*
1769          * Remove from the aggrprobe: this path will do nothing in
1770          * __unregister_kprobe_bottom().
1771          */
1772         list_del_rcu(&p->list);
1773         if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1774                 /*
1775                  * Try to optimize this probe again, because post
1776                  * handler may have been changed.
1777                  */
1778                 optimize_kprobe(ap);
1779         return 0;
1780
1781 }
1782
1783 static void __unregister_kprobe_bottom(struct kprobe *p)
1784 {
1785         struct kprobe *ap;
1786
1787         if (list_empty(&p->list))
1788                 /* This is an independent kprobe */
1789                 arch_remove_kprobe(p);
1790         else if (list_is_singular(&p->list)) {
1791                 /* This is the last child of an aggrprobe */
1792                 ap = list_entry(p->list.next, struct kprobe, list);
1793                 list_del(&p->list);
1794                 free_aggr_kprobe(ap);
1795         }
1796         /* Otherwise, do nothing. */
1797 }
1798
1799 int register_kprobes(struct kprobe **kps, int num)
1800 {
1801         int i, ret = 0;
1802
1803         if (num <= 0)
1804                 return -EINVAL;
1805         for (i = 0; i < num; i++) {
1806                 ret = register_kprobe(kps[i]);
1807                 if (ret < 0) {
1808                         if (i > 0)
1809                                 unregister_kprobes(kps, i);
1810                         break;
1811                 }
1812         }
1813         return ret;
1814 }
1815 EXPORT_SYMBOL_GPL(register_kprobes);
1816
1817 void unregister_kprobe(struct kprobe *p)
1818 {
1819         unregister_kprobes(&p, 1);
1820 }
1821 EXPORT_SYMBOL_GPL(unregister_kprobe);
1822
1823 void unregister_kprobes(struct kprobe **kps, int num)
1824 {
1825         int i;
1826
1827         if (num <= 0)
1828                 return;
1829         scoped_guard(mutex, &kprobe_mutex) {
1830                 for (i = 0; i < num; i++)
1831                         if (__unregister_kprobe_top(kps[i]) < 0)
1832                                 kps[i]->addr = NULL;
1833         }
1834         synchronize_rcu();
1835         for (i = 0; i < num; i++)
1836                 if (kps[i]->addr)
1837                         __unregister_kprobe_bottom(kps[i]);
1838 }
1839 EXPORT_SYMBOL_GPL(unregister_kprobes);
1840
1841 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1842                                         unsigned long val, void *data)
1843 {
1844         return NOTIFY_DONE;
1845 }
1846 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1847
1848 static struct notifier_block kprobe_exceptions_nb = {
1849         .notifier_call = kprobe_exceptions_notify,
1850         .priority = 0x7fffffff /* we need to be notified first */
1851 };
1852
1853 #ifdef CONFIG_KRETPROBES
1854
1855 #if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1856
1857 /* callbacks for objpool of kretprobe instances */
1858 static int kretprobe_init_inst(void *nod, void *context)
1859 {
1860         struct kretprobe_instance *ri = nod;
1861
1862         ri->rph = context;
1863         return 0;
1864 }
1865 static int kretprobe_fini_pool(struct objpool_head *head, void *context)
1866 {
1867         kfree(context);
1868         return 0;
1869 }
1870
1871 static void free_rp_inst_rcu(struct rcu_head *head)
1872 {
1873         struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1874         struct kretprobe_holder *rph = ri->rph;
1875
1876         objpool_drop(ri, &rph->pool);
1877 }
1878 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1879
1880 static void recycle_rp_inst(struct kretprobe_instance *ri)
1881 {
1882         struct kretprobe *rp = get_kretprobe(ri);
1883
1884         if (likely(rp))
1885                 objpool_push(ri, &rp->rph->pool);
1886         else
1887                 call_rcu(&ri->rcu, free_rp_inst_rcu);
1888 }
1889 NOKPROBE_SYMBOL(recycle_rp_inst);
1890
1891 /*
1892  * This function is called from delayed_put_task_struct() when a task is
1893  * dead and cleaned up to recycle any kretprobe instances associated with
1894  * this task. These left over instances represent probed functions that
1895  * have been called but will never return.
1896  */
1897 void kprobe_flush_task(struct task_struct *tk)
1898 {
1899         struct kretprobe_instance *ri;
1900         struct llist_node *node;
1901
1902         /* Early boot, not yet initialized. */
1903         if (unlikely(!kprobes_initialized))
1904                 return;
1905
1906         kprobe_busy_begin();
1907
1908         node = __llist_del_all(&tk->kretprobe_instances);
1909         while (node) {
1910                 ri = container_of(node, struct kretprobe_instance, llist);
1911                 node = node->next;
1912
1913                 recycle_rp_inst(ri);
1914         }
1915
1916         kprobe_busy_end();
1917 }
1918 NOKPROBE_SYMBOL(kprobe_flush_task);
1919
1920 static inline void free_rp_inst(struct kretprobe *rp)
1921 {
1922         struct kretprobe_holder *rph = rp->rph;
1923
1924         if (!rph)
1925                 return;
1926         rp->rph = NULL;
1927         objpool_fini(&rph->pool);
1928 }
1929
1930 /* This assumes the 'tsk' is the current task or the is not running. */
1931 static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1932                                                   struct llist_node **cur)
1933 {
1934         struct kretprobe_instance *ri = NULL;
1935         struct llist_node *node = *cur;
1936
1937         if (!node)
1938                 node = tsk->kretprobe_instances.first;
1939         else
1940                 node = node->next;
1941
1942         while (node) {
1943                 ri = container_of(node, struct kretprobe_instance, llist);
1944                 if (ri->ret_addr != kretprobe_trampoline_addr()) {
1945                         *cur = node;
1946                         return ri->ret_addr;
1947                 }
1948                 node = node->next;
1949         }
1950         return NULL;
1951 }
1952 NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1953
1954 /**
1955  * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1956  * @tsk: Target task
1957  * @fp: A frame pointer
1958  * @cur: a storage of the loop cursor llist_node pointer for next call
1959  *
1960  * Find the correct return address modified by a kretprobe on @tsk in unsigned
1961  * long type. If it finds the return address, this returns that address value,
1962  * or this returns 0.
1963  * The @tsk must be 'current' or a task which is not running. @fp is a hint
1964  * to get the currect return address - which is compared with the
1965  * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1966  * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
1967  * first call, but '@cur' itself must NOT NULL.
1968  */
1969 unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
1970                                       struct llist_node **cur)
1971 {
1972         struct kretprobe_instance *ri;
1973         kprobe_opcode_t *ret;
1974
1975         if (WARN_ON_ONCE(!cur))
1976                 return 0;
1977
1978         do {
1979                 ret = __kretprobe_find_ret_addr(tsk, cur);
1980                 if (!ret)
1981                         break;
1982                 ri = container_of(*cur, struct kretprobe_instance, llist);
1983         } while (ri->fp != fp);
1984
1985         return (unsigned long)ret;
1986 }
1987 NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
1988
1989 void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
1990                                         kprobe_opcode_t *correct_ret_addr)
1991 {
1992         /*
1993          * Do nothing by default. Please fill this to update the fake return
1994          * address on the stack with the correct one on each arch if possible.
1995          */
1996 }
1997
1998 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1999                                              void *frame_pointer)
2000 {
2001         struct kretprobe_instance *ri = NULL;
2002         struct llist_node *first, *node = NULL;
2003         kprobe_opcode_t *correct_ret_addr;
2004         struct kretprobe *rp;
2005
2006         /* Find correct address and all nodes for this frame. */
2007         correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2008         if (!correct_ret_addr) {
2009                 pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2010                 BUG_ON(1);
2011         }
2012
2013         /*
2014          * Set the return address as the instruction pointer, because if the
2015          * user handler calls stack_trace_save_regs() with this 'regs',
2016          * the stack trace will start from the instruction pointer.
2017          */
2018         instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2019
2020         /* Run the user handler of the nodes. */
2021         first = current->kretprobe_instances.first;
2022         while (first) {
2023                 ri = container_of(first, struct kretprobe_instance, llist);
2024
2025                 if (WARN_ON_ONCE(ri->fp != frame_pointer))
2026                         break;
2027
2028                 rp = get_kretprobe(ri);
2029                 if (rp && rp->handler) {
2030                         struct kprobe *prev = kprobe_running();
2031
2032                         __this_cpu_write(current_kprobe, &rp->kp);
2033                         ri->ret_addr = correct_ret_addr;
2034                         rp->handler(ri, regs);
2035                         __this_cpu_write(current_kprobe, prev);
2036                 }
2037                 if (first == node)
2038                         break;
2039
2040                 first = first->next;
2041         }
2042
2043         arch_kretprobe_fixup_return(regs, correct_ret_addr);
2044
2045         /* Unlink all nodes for this frame. */
2046         first = current->kretprobe_instances.first;
2047         current->kretprobe_instances.first = node->next;
2048         node->next = NULL;
2049
2050         /* Recycle free instances. */
2051         while (first) {
2052                 ri = container_of(first, struct kretprobe_instance, llist);
2053                 first = first->next;
2054
2055                 recycle_rp_inst(ri);
2056         }
2057
2058         return (unsigned long)correct_ret_addr;
2059 }
2060 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2061
2062 /*
2063  * This kprobe pre_handler is registered with every kretprobe. When probe
2064  * hits it will set up the return probe.
2065  */
2066 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2067 {
2068         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2069         struct kretprobe_holder *rph = rp->rph;
2070         struct kretprobe_instance *ri;
2071
2072         ri = objpool_pop(&rph->pool);
2073         if (!ri) {
2074                 rp->nmissed++;
2075                 return 0;
2076         }
2077
2078         if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2079                 objpool_push(ri, &rph->pool);
2080                 return 0;
2081         }
2082
2083         arch_prepare_kretprobe(ri, regs);
2084
2085         __llist_add(&ri->llist, &current->kretprobe_instances);
2086
2087         return 0;
2088 }
2089 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2090 #else /* CONFIG_KRETPROBE_ON_RETHOOK */
2091 /*
2092  * This kprobe pre_handler is registered with every kretprobe. When probe
2093  * hits it will set up the return probe.
2094  */
2095 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2096 {
2097         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2098         struct kretprobe_instance *ri;
2099         struct rethook_node *rhn;
2100
2101         rhn = rethook_try_get(rp->rh);
2102         if (!rhn) {
2103                 rp->nmissed++;
2104                 return 0;
2105         }
2106
2107         ri = container_of(rhn, struct kretprobe_instance, node);
2108
2109         if (rp->entry_handler && rp->entry_handler(ri, regs))
2110                 rethook_recycle(rhn);
2111         else
2112                 rethook_hook(rhn, regs, kprobe_ftrace(p));
2113
2114         return 0;
2115 }
2116 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2117
2118 static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2119                                       unsigned long ret_addr,
2120                                       struct pt_regs *regs)
2121 {
2122         struct kretprobe *rp = (struct kretprobe *)data;
2123         struct kretprobe_instance *ri;
2124         struct kprobe_ctlblk *kcb;
2125
2126         /* The data must NOT be null. This means rethook data structure is broken. */
2127         if (WARN_ON_ONCE(!data) || !rp->handler)
2128                 return;
2129
2130         __this_cpu_write(current_kprobe, &rp->kp);
2131         kcb = get_kprobe_ctlblk();
2132         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2133
2134         ri = container_of(rh, struct kretprobe_instance, node);
2135         rp->handler(ri, regs);
2136
2137         __this_cpu_write(current_kprobe, NULL);
2138 }
2139 NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2140
2141 #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2142
2143 /**
2144  * kprobe_on_func_entry() -- check whether given address is function entry
2145  * @addr: Target address
2146  * @sym:  Target symbol name
2147  * @offset: The offset from the symbol or the address
2148  *
2149  * This checks whether the given @addr+@offset or @sym+@offset is on the
2150  * function entry address or not.
2151  * This returns 0 if it is the function entry, or -EINVAL if it is not.
2152  * And also it returns -ENOENT if it fails the symbol or address lookup.
2153  * Caller must pass @addr or @sym (either one must be NULL), or this
2154  * returns -EINVAL.
2155  */
2156 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2157 {
2158         bool on_func_entry;
2159         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2160
2161         if (IS_ERR(kp_addr))
2162                 return PTR_ERR(kp_addr);
2163
2164         if (!on_func_entry)
2165                 return -EINVAL;
2166
2167         return 0;
2168 }
2169
2170 int register_kretprobe(struct kretprobe *rp)
2171 {
2172         int ret;
2173         int i;
2174         void *addr;
2175
2176         ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2177         if (ret)
2178                 return ret;
2179
2180         /* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2181         if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2182                 return -EINVAL;
2183
2184         if (kretprobe_blacklist_size) {
2185                 addr = kprobe_addr(&rp->kp);
2186                 if (IS_ERR(addr))
2187                         return PTR_ERR(addr);
2188
2189                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2190                         if (kretprobe_blacklist[i].addr == addr)
2191                                 return -EINVAL;
2192                 }
2193         }
2194
2195         if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2196                 return -E2BIG;
2197
2198         rp->kp.pre_handler = pre_handler_kretprobe;
2199         rp->kp.post_handler = NULL;
2200
2201         /* Pre-allocate memory for max kretprobe instances */
2202         if (rp->maxactive <= 0)
2203                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2204
2205 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2206         rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler,
2207                                 sizeof(struct kretprobe_instance) +
2208                                 rp->data_size, rp->maxactive);
2209         if (IS_ERR(rp->rh))
2210                 return PTR_ERR(rp->rh);
2211
2212         rp->nmissed = 0;
2213         /* Establish function entry probe point */
2214         ret = register_kprobe(&rp->kp);
2215         if (ret != 0) {
2216                 rethook_free(rp->rh);
2217                 rp->rh = NULL;
2218         }
2219 #else   /* !CONFIG_KRETPROBE_ON_RETHOOK */
2220         rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2221         if (!rp->rph)
2222                 return -ENOMEM;
2223
2224         if (objpool_init(&rp->rph->pool, rp->maxactive, rp->data_size +
2225                         sizeof(struct kretprobe_instance), GFP_KERNEL,
2226                         rp->rph, kretprobe_init_inst, kretprobe_fini_pool)) {
2227                 kfree(rp->rph);
2228                 rp->rph = NULL;
2229                 return -ENOMEM;
2230         }
2231         rcu_assign_pointer(rp->rph->rp, rp);
2232         rp->nmissed = 0;
2233         /* Establish function entry probe point */
2234         ret = register_kprobe(&rp->kp);
2235         if (ret != 0)
2236                 free_rp_inst(rp);
2237 #endif
2238         return ret;
2239 }
2240 EXPORT_SYMBOL_GPL(register_kretprobe);
2241
2242 int register_kretprobes(struct kretprobe **rps, int num)
2243 {
2244         int ret = 0, i;
2245
2246         if (num <= 0)
2247                 return -EINVAL;
2248         for (i = 0; i < num; i++) {
2249                 ret = register_kretprobe(rps[i]);
2250                 if (ret < 0) {
2251                         if (i > 0)
2252                                 unregister_kretprobes(rps, i);
2253                         break;
2254                 }
2255         }
2256         return ret;
2257 }
2258 EXPORT_SYMBOL_GPL(register_kretprobes);
2259
2260 void unregister_kretprobe(struct kretprobe *rp)
2261 {
2262         unregister_kretprobes(&rp, 1);
2263 }
2264 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2265
2266 void unregister_kretprobes(struct kretprobe **rps, int num)
2267 {
2268         int i;
2269
2270         if (num <= 0)
2271                 return;
2272         for (i = 0; i < num; i++) {
2273                 guard(mutex)(&kprobe_mutex);
2274
2275                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2276                         rps[i]->kp.addr = NULL;
2277 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2278                 rethook_free(rps[i]->rh);
2279 #else
2280                 rcu_assign_pointer(rps[i]->rph->rp, NULL);
2281 #endif
2282         }
2283
2284         synchronize_rcu();
2285         for (i = 0; i < num; i++) {
2286                 if (rps[i]->kp.addr) {
2287                         __unregister_kprobe_bottom(&rps[i]->kp);
2288 #ifndef CONFIG_KRETPROBE_ON_RETHOOK
2289                         free_rp_inst(rps[i]);
2290 #endif
2291                 }
2292         }
2293 }
2294 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2295
2296 #else /* CONFIG_KRETPROBES */
2297 int register_kretprobe(struct kretprobe *rp)
2298 {
2299         return -EOPNOTSUPP;
2300 }
2301 EXPORT_SYMBOL_GPL(register_kretprobe);
2302
2303 int register_kretprobes(struct kretprobe **rps, int num)
2304 {
2305         return -EOPNOTSUPP;
2306 }
2307 EXPORT_SYMBOL_GPL(register_kretprobes);
2308
2309 void unregister_kretprobe(struct kretprobe *rp)
2310 {
2311 }
2312 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2313
2314 void unregister_kretprobes(struct kretprobe **rps, int num)
2315 {
2316 }
2317 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2318
2319 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2320 {
2321         return 0;
2322 }
2323 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2324
2325 #endif /* CONFIG_KRETPROBES */
2326
2327 /* Set the kprobe gone and remove its instruction buffer. */
2328 static void kill_kprobe(struct kprobe *p)
2329 {
2330         struct kprobe *kp;
2331
2332         lockdep_assert_held(&kprobe_mutex);
2333
2334         /*
2335          * The module is going away. We should disarm the kprobe which
2336          * is using ftrace, because ftrace framework is still available at
2337          * 'MODULE_STATE_GOING' notification.
2338          */
2339         if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2340                 disarm_kprobe_ftrace(p);
2341
2342         p->flags |= KPROBE_FLAG_GONE;
2343         if (kprobe_aggrprobe(p)) {
2344                 /*
2345                  * If this is an aggr_kprobe, we have to list all the
2346                  * chained probes and mark them GONE.
2347                  */
2348                 list_for_each_entry(kp, &p->list, list)
2349                         kp->flags |= KPROBE_FLAG_GONE;
2350                 p->post_handler = NULL;
2351                 kill_optimized_kprobe(p);
2352         }
2353         /*
2354          * Here, we can remove insn_slot safely, because no thread calls
2355          * the original probed function (which will be freed soon) any more.
2356          */
2357         arch_remove_kprobe(p);
2358 }
2359
2360 /* Disable one kprobe */
2361 int disable_kprobe(struct kprobe *kp)
2362 {
2363         struct kprobe *p;
2364
2365         guard(mutex)(&kprobe_mutex);
2366
2367         /* Disable this kprobe */
2368         p = __disable_kprobe(kp);
2369
2370         return IS_ERR(p) ? PTR_ERR(p) : 0;
2371 }
2372 EXPORT_SYMBOL_GPL(disable_kprobe);
2373
2374 /* Enable one kprobe */
2375 int enable_kprobe(struct kprobe *kp)
2376 {
2377         int ret = 0;
2378         struct kprobe *p;
2379
2380         guard(mutex)(&kprobe_mutex);
2381
2382         /* Check whether specified probe is valid. */
2383         p = __get_valid_kprobe(kp);
2384         if (unlikely(p == NULL))
2385                 return -EINVAL;
2386
2387         if (kprobe_gone(kp))
2388                 /* This kprobe has gone, we couldn't enable it. */
2389                 return -EINVAL;
2390
2391         if (p != kp)
2392                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2393
2394         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2395                 p->flags &= ~KPROBE_FLAG_DISABLED;
2396                 ret = arm_kprobe(p);
2397                 if (ret) {
2398                         p->flags |= KPROBE_FLAG_DISABLED;
2399                         if (p != kp)
2400                                 kp->flags |= KPROBE_FLAG_DISABLED;
2401                 }
2402         }
2403         return ret;
2404 }
2405 EXPORT_SYMBOL_GPL(enable_kprobe);
2406
2407 /* Caller must NOT call this in usual path. This is only for critical case */
2408 void dump_kprobe(struct kprobe *kp)
2409 {
2410         pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2411                kp->symbol_name, kp->offset, kp->addr);
2412 }
2413 NOKPROBE_SYMBOL(dump_kprobe);
2414
2415 int kprobe_add_ksym_blacklist(unsigned long entry)
2416 {
2417         struct kprobe_blacklist_entry *ent;
2418         unsigned long offset = 0, size = 0;
2419
2420         if (!kernel_text_address(entry) ||
2421             !kallsyms_lookup_size_offset(entry, &size, &offset))
2422                 return -EINVAL;
2423
2424         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2425         if (!ent)
2426                 return -ENOMEM;
2427         ent->start_addr = entry;
2428         ent->end_addr = entry + size;
2429         INIT_LIST_HEAD(&ent->list);
2430         list_add_tail(&ent->list, &kprobe_blacklist);
2431
2432         return (int)size;
2433 }
2434
2435 /* Add all symbols in given area into kprobe blacklist */
2436 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2437 {
2438         unsigned long entry;
2439         int ret = 0;
2440
2441         for (entry = start; entry < end; entry += ret) {
2442                 ret = kprobe_add_ksym_blacklist(entry);
2443                 if (ret < 0)
2444                         return ret;
2445                 if (ret == 0)   /* In case of alias symbol */
2446                         ret = 1;
2447         }
2448         return 0;
2449 }
2450
2451 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2452                                    char *type, char *sym)
2453 {
2454         return -ERANGE;
2455 }
2456
2457 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2458                        char *sym)
2459 {
2460 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2461         if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2462                 return 0;
2463 #ifdef CONFIG_OPTPROBES
2464         if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2465                 return 0;
2466 #endif
2467 #endif
2468         if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2469                 return 0;
2470         return -ERANGE;
2471 }
2472
2473 int __init __weak arch_populate_kprobe_blacklist(void)
2474 {
2475         return 0;
2476 }
2477
2478 /*
2479  * Lookup and populate the kprobe_blacklist.
2480  *
2481  * Unlike the kretprobe blacklist, we'll need to determine
2482  * the range of addresses that belong to the said functions,
2483  * since a kprobe need not necessarily be at the beginning
2484  * of a function.
2485  */
2486 static int __init populate_kprobe_blacklist(unsigned long *start,
2487                                              unsigned long *end)
2488 {
2489         unsigned long entry;
2490         unsigned long *iter;
2491         int ret;
2492
2493         for (iter = start; iter < end; iter++) {
2494                 entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2495                 ret = kprobe_add_ksym_blacklist(entry);
2496                 if (ret == -EINVAL)
2497                         continue;
2498                 if (ret < 0)
2499                         return ret;
2500         }
2501
2502         /* Symbols in '__kprobes_text' are blacklisted */
2503         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2504                                         (unsigned long)__kprobes_text_end);
2505         if (ret)
2506                 return ret;
2507
2508         /* Symbols in 'noinstr' section are blacklisted */
2509         ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2510                                         (unsigned long)__noinstr_text_end);
2511
2512         return ret ? : arch_populate_kprobe_blacklist();
2513 }
2514
2515 #ifdef CONFIG_MODULES
2516 /* Remove all symbols in given area from kprobe blacklist */
2517 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2518 {
2519         struct kprobe_blacklist_entry *ent, *n;
2520
2521         list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2522                 if (ent->start_addr < start || ent->start_addr >= end)
2523                         continue;
2524                 list_del(&ent->list);
2525                 kfree(ent);
2526         }
2527 }
2528
2529 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2530 {
2531         kprobe_remove_area_blacklist(entry, entry + 1);
2532 }
2533
2534 static void add_module_kprobe_blacklist(struct module *mod)
2535 {
2536         unsigned long start, end;
2537         int i;
2538
2539         if (mod->kprobe_blacklist) {
2540                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2541                         kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2542         }
2543
2544         start = (unsigned long)mod->kprobes_text_start;
2545         if (start) {
2546                 end = start + mod->kprobes_text_size;
2547                 kprobe_add_area_blacklist(start, end);
2548         }
2549
2550         start = (unsigned long)mod->noinstr_text_start;
2551         if (start) {
2552                 end = start + mod->noinstr_text_size;
2553                 kprobe_add_area_blacklist(start, end);
2554         }
2555 }
2556
2557 static void remove_module_kprobe_blacklist(struct module *mod)
2558 {
2559         unsigned long start, end;
2560         int i;
2561
2562         if (mod->kprobe_blacklist) {
2563                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2564                         kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2565         }
2566
2567         start = (unsigned long)mod->kprobes_text_start;
2568         if (start) {
2569                 end = start + mod->kprobes_text_size;
2570                 kprobe_remove_area_blacklist(start, end);
2571         }
2572
2573         start = (unsigned long)mod->noinstr_text_start;
2574         if (start) {
2575                 end = start + mod->noinstr_text_size;
2576                 kprobe_remove_area_blacklist(start, end);
2577         }
2578 }
2579
2580 /* Module notifier call back, checking kprobes on the module */
2581 static int kprobes_module_callback(struct notifier_block *nb,
2582                                    unsigned long val, void *data)
2583 {
2584         struct module *mod = data;
2585         struct hlist_head *head;
2586         struct kprobe *p;
2587         unsigned int i;
2588         int checkcore = (val == MODULE_STATE_GOING);
2589
2590         guard(mutex)(&kprobe_mutex);
2591
2592         if (val == MODULE_STATE_COMING)
2593                 add_module_kprobe_blacklist(mod);
2594
2595         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2596                 return NOTIFY_DONE;
2597
2598         /*
2599          * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2600          * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2601          * notified, only '.init.text' section would be freed. We need to
2602          * disable kprobes which have been inserted in the sections.
2603          */
2604         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2605                 head = &kprobe_table[i];
2606                 hlist_for_each_entry(p, head, hlist)
2607                         if (within_module_init((unsigned long)p->addr, mod) ||
2608                             (checkcore &&
2609                              within_module_core((unsigned long)p->addr, mod))) {
2610                                 /*
2611                                  * The vaddr this probe is installed will soon
2612                                  * be vfreed buy not synced to disk. Hence,
2613                                  * disarming the breakpoint isn't needed.
2614                                  *
2615                                  * Note, this will also move any optimized probes
2616                                  * that are pending to be removed from their
2617                                  * corresponding lists to the 'freeing_list' and
2618                                  * will not be touched by the delayed
2619                                  * kprobe_optimizer() work handler.
2620                                  */
2621                                 kill_kprobe(p);
2622                         }
2623         }
2624         if (val == MODULE_STATE_GOING)
2625                 remove_module_kprobe_blacklist(mod);
2626         return NOTIFY_DONE;
2627 }
2628
2629 static struct notifier_block kprobe_module_nb = {
2630         .notifier_call = kprobes_module_callback,
2631         .priority = 0
2632 };
2633
2634 static int kprobe_register_module_notifier(void)
2635 {
2636         return register_module_notifier(&kprobe_module_nb);
2637 }
2638 #else
2639 static int kprobe_register_module_notifier(void)
2640 {
2641         return 0;
2642 }
2643 #endif /* CONFIG_MODULES */
2644
2645 void kprobe_free_init_mem(void)
2646 {
2647         void *start = (void *)(&__init_begin);
2648         void *end = (void *)(&__init_end);
2649         struct hlist_head *head;
2650         struct kprobe *p;
2651         int i;
2652
2653         guard(mutex)(&kprobe_mutex);
2654
2655         /* Kill all kprobes on initmem because the target code has been freed. */
2656         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2657                 head = &kprobe_table[i];
2658                 hlist_for_each_entry(p, head, hlist) {
2659                         if (start <= (void *)p->addr && (void *)p->addr < end)
2660                                 kill_kprobe(p);
2661                 }
2662         }
2663 }
2664
2665 static int __init init_kprobes(void)
2666 {
2667         int i, err;
2668
2669         /* FIXME allocate the probe table, currently defined statically */
2670         /* initialize all list heads */
2671         for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2672                 INIT_HLIST_HEAD(&kprobe_table[i]);
2673
2674         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2675                                         __stop_kprobe_blacklist);
2676         if (err)
2677                 pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2678
2679         if (kretprobe_blacklist_size) {
2680                 /* lookup the function address from its name */
2681                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2682                         kretprobe_blacklist[i].addr =
2683                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2684                         if (!kretprobe_blacklist[i].addr)
2685                                 pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2686                                        kretprobe_blacklist[i].name);
2687                 }
2688         }
2689
2690         /* By default, kprobes are armed */
2691         kprobes_all_disarmed = false;
2692
2693 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2694         /* Init 'kprobe_optinsn_slots' for allocation */
2695         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2696 #endif
2697
2698         err = arch_init_kprobes();
2699         if (!err)
2700                 err = register_die_notifier(&kprobe_exceptions_nb);
2701         if (!err)
2702                 err = kprobe_register_module_notifier();
2703
2704         kprobes_initialized = (err == 0);
2705         kprobe_sysctls_init();
2706         return err;
2707 }
2708 early_initcall(init_kprobes);
2709
2710 #if defined(CONFIG_OPTPROBES)
2711 static int __init init_optprobes(void)
2712 {
2713         /*
2714          * Enable kprobe optimization - this kicks the optimizer which
2715          * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2716          * not spawned in early initcall. So delay the optimization.
2717          */
2718         optimize_all_kprobes();
2719
2720         return 0;
2721 }
2722 subsys_initcall(init_optprobes);
2723 #endif
2724
2725 #ifdef CONFIG_DEBUG_FS
2726 static void report_probe(struct seq_file *pi, struct kprobe *p,
2727                 const char *sym, int offset, char *modname, struct kprobe *pp)
2728 {
2729         char *kprobe_type;
2730         void *addr = p->addr;
2731
2732         if (p->pre_handler == pre_handler_kretprobe)
2733                 kprobe_type = "r";
2734         else
2735                 kprobe_type = "k";
2736
2737         if (!kallsyms_show_value(pi->file->f_cred))
2738                 addr = NULL;
2739
2740         if (sym)
2741                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2742                         addr, kprobe_type, sym, offset,
2743                         (modname ? modname : " "));
2744         else    /* try to use %pS */
2745                 seq_printf(pi, "%px  %s  %pS ",
2746                         addr, kprobe_type, p->addr);
2747
2748         if (!pp)
2749                 pp = p;
2750         seq_printf(pi, "%s%s%s%s\n",
2751                 (kprobe_gone(p) ? "[GONE]" : ""),
2752                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2753                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2754                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2755 }
2756
2757 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2758 {
2759         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2760 }
2761
2762 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2763 {
2764         (*pos)++;
2765         if (*pos >= KPROBE_TABLE_SIZE)
2766                 return NULL;
2767         return pos;
2768 }
2769
2770 static void kprobe_seq_stop(struct seq_file *f, void *v)
2771 {
2772         /* Nothing to do */
2773 }
2774
2775 static int show_kprobe_addr(struct seq_file *pi, void *v)
2776 {
2777         struct hlist_head *head;
2778         struct kprobe *p, *kp;
2779         const char *sym;
2780         unsigned int i = *(loff_t *) v;
2781         unsigned long offset = 0;
2782         char *modname, namebuf[KSYM_NAME_LEN];
2783
2784         head = &kprobe_table[i];
2785         preempt_disable();
2786         hlist_for_each_entry_rcu(p, head, hlist) {
2787                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2788                                         &offset, &modname, namebuf);
2789                 if (kprobe_aggrprobe(p)) {
2790                         list_for_each_entry_rcu(kp, &p->list, list)
2791                                 report_probe(pi, kp, sym, offset, modname, p);
2792                 } else
2793                         report_probe(pi, p, sym, offset, modname, NULL);
2794         }
2795         preempt_enable();
2796         return 0;
2797 }
2798
2799 static const struct seq_operations kprobes_sops = {
2800         .start = kprobe_seq_start,
2801         .next  = kprobe_seq_next,
2802         .stop  = kprobe_seq_stop,
2803         .show  = show_kprobe_addr
2804 };
2805
2806 DEFINE_SEQ_ATTRIBUTE(kprobes);
2807
2808 /* kprobes/blacklist -- shows which functions can not be probed */
2809 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2810 {
2811         mutex_lock(&kprobe_mutex);
2812         return seq_list_start(&kprobe_blacklist, *pos);
2813 }
2814
2815 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2816 {
2817         return seq_list_next(v, &kprobe_blacklist, pos);
2818 }
2819
2820 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2821 {
2822         struct kprobe_blacklist_entry *ent =
2823                 list_entry(v, struct kprobe_blacklist_entry, list);
2824
2825         /*
2826          * If '/proc/kallsyms' is not showing kernel address, we won't
2827          * show them here either.
2828          */
2829         if (!kallsyms_show_value(m->file->f_cred))
2830                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2831                            (void *)ent->start_addr);
2832         else
2833                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2834                            (void *)ent->end_addr, (void *)ent->start_addr);
2835         return 0;
2836 }
2837
2838 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2839 {
2840         mutex_unlock(&kprobe_mutex);
2841 }
2842
2843 static const struct seq_operations kprobe_blacklist_sops = {
2844         .start = kprobe_blacklist_seq_start,
2845         .next  = kprobe_blacklist_seq_next,
2846         .stop  = kprobe_blacklist_seq_stop,
2847         .show  = kprobe_blacklist_seq_show,
2848 };
2849 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2850
2851 static int arm_all_kprobes(void)
2852 {
2853         struct hlist_head *head;
2854         struct kprobe *p;
2855         unsigned int i, total = 0, errors = 0;
2856         int err, ret = 0;
2857
2858         guard(mutex)(&kprobe_mutex);
2859
2860         /* If kprobes are armed, just return */
2861         if (!kprobes_all_disarmed)
2862                 return 0;
2863
2864         /*
2865          * optimize_kprobe() called by arm_kprobe() checks
2866          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2867          * arm_kprobe.
2868          */
2869         kprobes_all_disarmed = false;
2870         /* Arming kprobes doesn't optimize kprobe itself */
2871         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2872                 head = &kprobe_table[i];
2873                 /* Arm all kprobes on a best-effort basis */
2874                 hlist_for_each_entry(p, head, hlist) {
2875                         if (!kprobe_disabled(p)) {
2876                                 err = arm_kprobe(p);
2877                                 if (err)  {
2878                                         errors++;
2879                                         ret = err;
2880                                 }
2881                                 total++;
2882                         }
2883                 }
2884         }
2885
2886         if (errors)
2887                 pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2888                         errors, total);
2889         else
2890                 pr_info("Kprobes globally enabled\n");
2891
2892         return ret;
2893 }
2894
2895 static int disarm_all_kprobes(void)
2896 {
2897         struct hlist_head *head;
2898         struct kprobe *p;
2899         unsigned int i, total = 0, errors = 0;
2900         int err, ret = 0;
2901
2902         guard(mutex)(&kprobe_mutex);
2903
2904         /* If kprobes are already disarmed, just return */
2905         if (kprobes_all_disarmed)
2906                 return 0;
2907
2908         kprobes_all_disarmed = true;
2909
2910         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2911                 head = &kprobe_table[i];
2912                 /* Disarm all kprobes on a best-effort basis */
2913                 hlist_for_each_entry(p, head, hlist) {
2914                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2915                                 err = disarm_kprobe(p, false);
2916                                 if (err) {
2917                                         errors++;
2918                                         ret = err;
2919                                 }
2920                                 total++;
2921                         }
2922                 }
2923         }
2924
2925         if (errors)
2926                 pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2927                         errors, total);
2928         else
2929                 pr_info("Kprobes globally disabled\n");
2930
2931         /* Wait for disarming all kprobes by optimizer */
2932         wait_for_kprobe_optimizer_locked();
2933         return ret;
2934 }
2935
2936 /*
2937  * XXX: The debugfs bool file interface doesn't allow for callbacks
2938  * when the bool state is switched. We can reuse that facility when
2939  * available
2940  */
2941 static ssize_t read_enabled_file_bool(struct file *file,
2942                char __user *user_buf, size_t count, loff_t *ppos)
2943 {
2944         char buf[3];
2945
2946         if (!kprobes_all_disarmed)
2947                 buf[0] = '1';
2948         else
2949                 buf[0] = '0';
2950         buf[1] = '\n';
2951         buf[2] = 0x00;
2952         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2953 }
2954
2955 static ssize_t write_enabled_file_bool(struct file *file,
2956                const char __user *user_buf, size_t count, loff_t *ppos)
2957 {
2958         bool enable;
2959         int ret;
2960
2961         ret = kstrtobool_from_user(user_buf, count, &enable);
2962         if (ret)
2963                 return ret;
2964
2965         ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
2966         if (ret)
2967                 return ret;
2968
2969         return count;
2970 }
2971
2972 static const struct file_operations fops_kp = {
2973         .read =         read_enabled_file_bool,
2974         .write =        write_enabled_file_bool,
2975         .llseek =       default_llseek,
2976 };
2977
2978 static int __init debugfs_kprobe_init(void)
2979 {
2980         struct dentry *dir;
2981
2982         dir = debugfs_create_dir("kprobes", NULL);
2983
2984         debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2985
2986         debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
2987
2988         debugfs_create_file("blacklist", 0400, dir, NULL,
2989                             &kprobe_blacklist_fops);
2990
2991         return 0;
2992 }
2993
2994 late_initcall(debugfs_kprobe_init);
2995 #endif /* CONFIG_DEBUG_FS */