kernel/kexec_file.c: split up __kexec_load_puragory
[linux-2.6-block.git] / kernel / kexec_file.c
1 /*
2  * kexec: kexec_file_load system call
3  *
4  * Copyright (C) 2014 Red Hat Inc.
5  * Authors:
6  *      Vivek Goyal <vgoyal@redhat.com>
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <linux/fs.h>
22 #include <linux/ima.h>
23 #include <crypto/hash.h>
24 #include <crypto/sha.h>
25 #include <linux/elf.h>
26 #include <linux/elfcore.h>
27 #include <linux/kernel.h>
28 #include <linux/kexec.h>
29 #include <linux/slab.h>
30 #include <linux/syscalls.h>
31 #include <linux/vmalloc.h>
32 #include "kexec_internal.h"
33
34 static int kexec_calculate_store_digests(struct kimage *image);
35
36 /*
37  * Currently this is the only default function that is exported as some
38  * architectures need it to do additional handlings.
39  * In the future, other default functions may be exported too if required.
40  */
41 int kexec_image_probe_default(struct kimage *image, void *buf,
42                               unsigned long buf_len)
43 {
44         const struct kexec_file_ops * const *fops;
45         int ret = -ENOEXEC;
46
47         for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
48                 ret = (*fops)->probe(buf, buf_len);
49                 if (!ret) {
50                         image->fops = *fops;
51                         return ret;
52                 }
53         }
54
55         return ret;
56 }
57
58 /* Architectures can provide this probe function */
59 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
60                                          unsigned long buf_len)
61 {
62         return kexec_image_probe_default(image, buf, buf_len);
63 }
64
65 static void *kexec_image_load_default(struct kimage *image)
66 {
67         if (!image->fops || !image->fops->load)
68                 return ERR_PTR(-ENOEXEC);
69
70         return image->fops->load(image, image->kernel_buf,
71                                  image->kernel_buf_len, image->initrd_buf,
72                                  image->initrd_buf_len, image->cmdline_buf,
73                                  image->cmdline_buf_len);
74 }
75
76 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
77 {
78         return kexec_image_load_default(image);
79 }
80
81 static int kexec_image_post_load_cleanup_default(struct kimage *image)
82 {
83         if (!image->fops || !image->fops->cleanup)
84                 return 0;
85
86         return image->fops->cleanup(image->image_loader_data);
87 }
88
89 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
90 {
91         return kexec_image_post_load_cleanup_default(image);
92 }
93
94 #ifdef CONFIG_KEXEC_VERIFY_SIG
95 static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
96                                           unsigned long buf_len)
97 {
98         if (!image->fops || !image->fops->verify_sig) {
99                 pr_debug("kernel loader does not support signature verification.\n");
100                 return -EKEYREJECTED;
101         }
102
103         return image->fops->verify_sig(buf, buf_len);
104 }
105
106 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
107                                         unsigned long buf_len)
108 {
109         return kexec_image_verify_sig_default(image, buf, buf_len);
110 }
111 #endif
112
113 /*
114  * arch_kexec_apply_relocations_add - apply relocations of type RELA
115  * @pi:         Purgatory to be relocated.
116  * @section:    Section relocations applying to.
117  * @relsec:     Section containing RELAs.
118  * @symtab:     Corresponding symtab.
119  *
120  * Return: 0 on success, negative errno on error.
121  */
122 int __weak
123 arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
124                                  const Elf_Shdr *relsec, const Elf_Shdr *symtab)
125 {
126         pr_err("RELA relocation unsupported.\n");
127         return -ENOEXEC;
128 }
129
130 /*
131  * arch_kexec_apply_relocations - apply relocations of type REL
132  * @pi:         Purgatory to be relocated.
133  * @section:    Section relocations applying to.
134  * @relsec:     Section containing RELs.
135  * @symtab:     Corresponding symtab.
136  *
137  * Return: 0 on success, negative errno on error.
138  */
139 int __weak
140 arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
141                              const Elf_Shdr *relsec, const Elf_Shdr *symtab)
142 {
143         pr_err("REL relocation unsupported.\n");
144         return -ENOEXEC;
145 }
146
147 /*
148  * Free up memory used by kernel, initrd, and command line. This is temporary
149  * memory allocation which is not needed any more after these buffers have
150  * been loaded into separate segments and have been copied elsewhere.
151  */
152 void kimage_file_post_load_cleanup(struct kimage *image)
153 {
154         struct purgatory_info *pi = &image->purgatory_info;
155
156         vfree(image->kernel_buf);
157         image->kernel_buf = NULL;
158
159         vfree(image->initrd_buf);
160         image->initrd_buf = NULL;
161
162         kfree(image->cmdline_buf);
163         image->cmdline_buf = NULL;
164
165         vfree(pi->purgatory_buf);
166         pi->purgatory_buf = NULL;
167
168         vfree(pi->sechdrs);
169         pi->sechdrs = NULL;
170
171         /* See if architecture has anything to cleanup post load */
172         arch_kimage_file_post_load_cleanup(image);
173
174         /*
175          * Above call should have called into bootloader to free up
176          * any data stored in kimage->image_loader_data. It should
177          * be ok now to free it up.
178          */
179         kfree(image->image_loader_data);
180         image->image_loader_data = NULL;
181 }
182
183 /*
184  * In file mode list of segments is prepared by kernel. Copy relevant
185  * data from user space, do error checking, prepare segment list
186  */
187 static int
188 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
189                              const char __user *cmdline_ptr,
190                              unsigned long cmdline_len, unsigned flags)
191 {
192         int ret = 0;
193         void *ldata;
194         loff_t size;
195
196         ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
197                                        &size, INT_MAX, READING_KEXEC_IMAGE);
198         if (ret)
199                 return ret;
200         image->kernel_buf_len = size;
201
202         /* IMA needs to pass the measurement list to the next kernel. */
203         ima_add_kexec_buffer(image);
204
205         /* Call arch image probe handlers */
206         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
207                                             image->kernel_buf_len);
208         if (ret)
209                 goto out;
210
211 #ifdef CONFIG_KEXEC_VERIFY_SIG
212         ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
213                                            image->kernel_buf_len);
214         if (ret) {
215                 pr_debug("kernel signature verification failed.\n");
216                 goto out;
217         }
218         pr_debug("kernel signature verification successful.\n");
219 #endif
220         /* It is possible that there no initramfs is being loaded */
221         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
222                 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
223                                                &size, INT_MAX,
224                                                READING_KEXEC_INITRAMFS);
225                 if (ret)
226                         goto out;
227                 image->initrd_buf_len = size;
228         }
229
230         if (cmdline_len) {
231                 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
232                 if (IS_ERR(image->cmdline_buf)) {
233                         ret = PTR_ERR(image->cmdline_buf);
234                         image->cmdline_buf = NULL;
235                         goto out;
236                 }
237
238                 image->cmdline_buf_len = cmdline_len;
239
240                 /* command line should be a string with last byte null */
241                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
242                         ret = -EINVAL;
243                         goto out;
244                 }
245         }
246
247         /* Call arch image load handlers */
248         ldata = arch_kexec_kernel_image_load(image);
249
250         if (IS_ERR(ldata)) {
251                 ret = PTR_ERR(ldata);
252                 goto out;
253         }
254
255         image->image_loader_data = ldata;
256 out:
257         /* In case of error, free up all allocated memory in this function */
258         if (ret)
259                 kimage_file_post_load_cleanup(image);
260         return ret;
261 }
262
263 static int
264 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
265                        int initrd_fd, const char __user *cmdline_ptr,
266                        unsigned long cmdline_len, unsigned long flags)
267 {
268         int ret;
269         struct kimage *image;
270         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
271
272         image = do_kimage_alloc_init();
273         if (!image)
274                 return -ENOMEM;
275
276         image->file_mode = 1;
277
278         if (kexec_on_panic) {
279                 /* Enable special crash kernel control page alloc policy. */
280                 image->control_page = crashk_res.start;
281                 image->type = KEXEC_TYPE_CRASH;
282         }
283
284         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
285                                            cmdline_ptr, cmdline_len, flags);
286         if (ret)
287                 goto out_free_image;
288
289         ret = sanity_check_segment_list(image);
290         if (ret)
291                 goto out_free_post_load_bufs;
292
293         ret = -ENOMEM;
294         image->control_code_page = kimage_alloc_control_pages(image,
295                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
296         if (!image->control_code_page) {
297                 pr_err("Could not allocate control_code_buffer\n");
298                 goto out_free_post_load_bufs;
299         }
300
301         if (!kexec_on_panic) {
302                 image->swap_page = kimage_alloc_control_pages(image, 0);
303                 if (!image->swap_page) {
304                         pr_err("Could not allocate swap buffer\n");
305                         goto out_free_control_pages;
306                 }
307         }
308
309         *rimage = image;
310         return 0;
311 out_free_control_pages:
312         kimage_free_page_list(&image->control_pages);
313 out_free_post_load_bufs:
314         kimage_file_post_load_cleanup(image);
315 out_free_image:
316         kfree(image);
317         return ret;
318 }
319
320 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
321                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
322                 unsigned long, flags)
323 {
324         int ret = 0, i;
325         struct kimage **dest_image, *image;
326
327         /* We only trust the superuser with rebooting the system. */
328         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
329                 return -EPERM;
330
331         /* Make sure we have a legal set of flags */
332         if (flags != (flags & KEXEC_FILE_FLAGS))
333                 return -EINVAL;
334
335         image = NULL;
336
337         if (!mutex_trylock(&kexec_mutex))
338                 return -EBUSY;
339
340         dest_image = &kexec_image;
341         if (flags & KEXEC_FILE_ON_CRASH) {
342                 dest_image = &kexec_crash_image;
343                 if (kexec_crash_image)
344                         arch_kexec_unprotect_crashkres();
345         }
346
347         if (flags & KEXEC_FILE_UNLOAD)
348                 goto exchange;
349
350         /*
351          * In case of crash, new kernel gets loaded in reserved region. It is
352          * same memory where old crash kernel might be loaded. Free any
353          * current crash dump kernel before we corrupt it.
354          */
355         if (flags & KEXEC_FILE_ON_CRASH)
356                 kimage_free(xchg(&kexec_crash_image, NULL));
357
358         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
359                                      cmdline_len, flags);
360         if (ret)
361                 goto out;
362
363         ret = machine_kexec_prepare(image);
364         if (ret)
365                 goto out;
366
367         /*
368          * Some architecture(like S390) may touch the crash memory before
369          * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
370          */
371         ret = kimage_crash_copy_vmcoreinfo(image);
372         if (ret)
373                 goto out;
374
375         ret = kexec_calculate_store_digests(image);
376         if (ret)
377                 goto out;
378
379         for (i = 0; i < image->nr_segments; i++) {
380                 struct kexec_segment *ksegment;
381
382                 ksegment = &image->segment[i];
383                 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
384                          i, ksegment->buf, ksegment->bufsz, ksegment->mem,
385                          ksegment->memsz);
386
387                 ret = kimage_load_segment(image, &image->segment[i]);
388                 if (ret)
389                         goto out;
390         }
391
392         kimage_terminate(image);
393
394         /*
395          * Free up any temporary buffers allocated which are not needed
396          * after image has been loaded
397          */
398         kimage_file_post_load_cleanup(image);
399 exchange:
400         image = xchg(dest_image, image);
401 out:
402         if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
403                 arch_kexec_protect_crashkres();
404
405         mutex_unlock(&kexec_mutex);
406         kimage_free(image);
407         return ret;
408 }
409
410 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
411                                     struct kexec_buf *kbuf)
412 {
413         struct kimage *image = kbuf->image;
414         unsigned long temp_start, temp_end;
415
416         temp_end = min(end, kbuf->buf_max);
417         temp_start = temp_end - kbuf->memsz;
418
419         do {
420                 /* align down start */
421                 temp_start = temp_start & (~(kbuf->buf_align - 1));
422
423                 if (temp_start < start || temp_start < kbuf->buf_min)
424                         return 0;
425
426                 temp_end = temp_start + kbuf->memsz - 1;
427
428                 /*
429                  * Make sure this does not conflict with any of existing
430                  * segments
431                  */
432                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
433                         temp_start = temp_start - PAGE_SIZE;
434                         continue;
435                 }
436
437                 /* We found a suitable memory range */
438                 break;
439         } while (1);
440
441         /* If we are here, we found a suitable memory range */
442         kbuf->mem = temp_start;
443
444         /* Success, stop navigating through remaining System RAM ranges */
445         return 1;
446 }
447
448 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
449                                      struct kexec_buf *kbuf)
450 {
451         struct kimage *image = kbuf->image;
452         unsigned long temp_start, temp_end;
453
454         temp_start = max(start, kbuf->buf_min);
455
456         do {
457                 temp_start = ALIGN(temp_start, kbuf->buf_align);
458                 temp_end = temp_start + kbuf->memsz - 1;
459
460                 if (temp_end > end || temp_end > kbuf->buf_max)
461                         return 0;
462                 /*
463                  * Make sure this does not conflict with any of existing
464                  * segments
465                  */
466                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
467                         temp_start = temp_start + PAGE_SIZE;
468                         continue;
469                 }
470
471                 /* We found a suitable memory range */
472                 break;
473         } while (1);
474
475         /* If we are here, we found a suitable memory range */
476         kbuf->mem = temp_start;
477
478         /* Success, stop navigating through remaining System RAM ranges */
479         return 1;
480 }
481
482 static int locate_mem_hole_callback(struct resource *res, void *arg)
483 {
484         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
485         u64 start = res->start, end = res->end;
486         unsigned long sz = end - start + 1;
487
488         /* Returning 0 will take to next memory range */
489         if (sz < kbuf->memsz)
490                 return 0;
491
492         if (end < kbuf->buf_min || start > kbuf->buf_max)
493                 return 0;
494
495         /*
496          * Allocate memory top down with-in ram range. Otherwise bottom up
497          * allocation.
498          */
499         if (kbuf->top_down)
500                 return locate_mem_hole_top_down(start, end, kbuf);
501         return locate_mem_hole_bottom_up(start, end, kbuf);
502 }
503
504 /**
505  * arch_kexec_walk_mem - call func(data) on free memory regions
506  * @kbuf:       Context info for the search. Also passed to @func.
507  * @func:       Function to call for each memory region.
508  *
509  * Return: The memory walk will stop when func returns a non-zero value
510  * and that value will be returned. If all free regions are visited without
511  * func returning non-zero, then zero will be returned.
512  */
513 int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
514                                int (*func)(struct resource *, void *))
515 {
516         if (kbuf->image->type == KEXEC_TYPE_CRASH)
517                 return walk_iomem_res_desc(crashk_res.desc,
518                                            IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
519                                            crashk_res.start, crashk_res.end,
520                                            kbuf, func);
521         else
522                 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
523 }
524
525 /**
526  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
527  * @kbuf:       Parameters for the memory search.
528  *
529  * On success, kbuf->mem will have the start address of the memory region found.
530  *
531  * Return: 0 on success, negative errno on error.
532  */
533 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
534 {
535         int ret;
536
537         ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
538
539         return ret == 1 ? 0 : -EADDRNOTAVAIL;
540 }
541
542 /**
543  * kexec_add_buffer - place a buffer in a kexec segment
544  * @kbuf:       Buffer contents and memory parameters.
545  *
546  * This function assumes that kexec_mutex is held.
547  * On successful return, @kbuf->mem will have the physical address of
548  * the buffer in memory.
549  *
550  * Return: 0 on success, negative errno on error.
551  */
552 int kexec_add_buffer(struct kexec_buf *kbuf)
553 {
554
555         struct kexec_segment *ksegment;
556         int ret;
557
558         /* Currently adding segment this way is allowed only in file mode */
559         if (!kbuf->image->file_mode)
560                 return -EINVAL;
561
562         if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
563                 return -EINVAL;
564
565         /*
566          * Make sure we are not trying to add buffer after allocating
567          * control pages. All segments need to be placed first before
568          * any control pages are allocated. As control page allocation
569          * logic goes through list of segments to make sure there are
570          * no destination overlaps.
571          */
572         if (!list_empty(&kbuf->image->control_pages)) {
573                 WARN_ON(1);
574                 return -EINVAL;
575         }
576
577         /* Ensure minimum alignment needed for segments. */
578         kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
579         kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
580
581         /* Walk the RAM ranges and allocate a suitable range for the buffer */
582         ret = kexec_locate_mem_hole(kbuf);
583         if (ret)
584                 return ret;
585
586         /* Found a suitable memory range */
587         ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
588         ksegment->kbuf = kbuf->buffer;
589         ksegment->bufsz = kbuf->bufsz;
590         ksegment->mem = kbuf->mem;
591         ksegment->memsz = kbuf->memsz;
592         kbuf->image->nr_segments++;
593         return 0;
594 }
595
596 /* Calculate and store the digest of segments */
597 static int kexec_calculate_store_digests(struct kimage *image)
598 {
599         struct crypto_shash *tfm;
600         struct shash_desc *desc;
601         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
602         size_t desc_size, nullsz;
603         char *digest;
604         void *zero_buf;
605         struct kexec_sha_region *sha_regions;
606         struct purgatory_info *pi = &image->purgatory_info;
607
608         if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
609                 return 0;
610
611         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
612         zero_buf_sz = PAGE_SIZE;
613
614         tfm = crypto_alloc_shash("sha256", 0, 0);
615         if (IS_ERR(tfm)) {
616                 ret = PTR_ERR(tfm);
617                 goto out;
618         }
619
620         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
621         desc = kzalloc(desc_size, GFP_KERNEL);
622         if (!desc) {
623                 ret = -ENOMEM;
624                 goto out_free_tfm;
625         }
626
627         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
628         sha_regions = vzalloc(sha_region_sz);
629         if (!sha_regions)
630                 goto out_free_desc;
631
632         desc->tfm   = tfm;
633         desc->flags = 0;
634
635         ret = crypto_shash_init(desc);
636         if (ret < 0)
637                 goto out_free_sha_regions;
638
639         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
640         if (!digest) {
641                 ret = -ENOMEM;
642                 goto out_free_sha_regions;
643         }
644
645         for (j = i = 0; i < image->nr_segments; i++) {
646                 struct kexec_segment *ksegment;
647
648                 ksegment = &image->segment[i];
649                 /*
650                  * Skip purgatory as it will be modified once we put digest
651                  * info in purgatory.
652                  */
653                 if (ksegment->kbuf == pi->purgatory_buf)
654                         continue;
655
656                 ret = crypto_shash_update(desc, ksegment->kbuf,
657                                           ksegment->bufsz);
658                 if (ret)
659                         break;
660
661                 /*
662                  * Assume rest of the buffer is filled with zero and
663                  * update digest accordingly.
664                  */
665                 nullsz = ksegment->memsz - ksegment->bufsz;
666                 while (nullsz) {
667                         unsigned long bytes = nullsz;
668
669                         if (bytes > zero_buf_sz)
670                                 bytes = zero_buf_sz;
671                         ret = crypto_shash_update(desc, zero_buf, bytes);
672                         if (ret)
673                                 break;
674                         nullsz -= bytes;
675                 }
676
677                 if (ret)
678                         break;
679
680                 sha_regions[j].start = ksegment->mem;
681                 sha_regions[j].len = ksegment->memsz;
682                 j++;
683         }
684
685         if (!ret) {
686                 ret = crypto_shash_final(desc, digest);
687                 if (ret)
688                         goto out_free_digest;
689                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
690                                                      sha_regions, sha_region_sz, 0);
691                 if (ret)
692                         goto out_free_digest;
693
694                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
695                                                      digest, SHA256_DIGEST_SIZE, 0);
696                 if (ret)
697                         goto out_free_digest;
698         }
699
700 out_free_digest:
701         kfree(digest);
702 out_free_sha_regions:
703         vfree(sha_regions);
704 out_free_desc:
705         kfree(desc);
706 out_free_tfm:
707         kfree(tfm);
708 out:
709         return ret;
710 }
711
712 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
713 /*
714  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
715  * @pi:         Purgatory to be loaded.
716  * @kbuf:       Buffer to setup.
717  *
718  * Allocates the memory needed for the buffer. Caller is responsible to free
719  * the memory after use.
720  *
721  * Return: 0 on success, negative errno on error.
722  */
723 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
724                                       struct kexec_buf *kbuf)
725 {
726         const Elf_Shdr *sechdrs;
727         unsigned long bss_align;
728         unsigned long bss_sz;
729         unsigned long align;
730         int i, ret;
731
732         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
733         bss_align = 1;
734         bss_sz = 0;
735
736         for (i = 0; i < pi->ehdr->e_shnum; i++) {
737                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
738                         continue;
739
740                 align = sechdrs[i].sh_addralign;
741                 if (sechdrs[i].sh_type != SHT_NOBITS) {
742                         if (kbuf->buf_align < align)
743                                 kbuf->buf_align = align;
744                         kbuf->bufsz = ALIGN(kbuf->bufsz, align);
745                         kbuf->bufsz += sechdrs[i].sh_size;
746                 } else {
747                         if (bss_align < align)
748                                 bss_align = align;
749                         bss_sz = ALIGN(bss_sz, align);
750                         bss_sz += sechdrs[i].sh_size;
751                 }
752         }
753         kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
754         kbuf->memsz = kbuf->bufsz + bss_sz;
755         if (kbuf->buf_align < bss_align)
756                 kbuf->buf_align = bss_align;
757
758         kbuf->buffer = vzalloc(kbuf->bufsz);
759         if (!kbuf->buffer)
760                 return -ENOMEM;
761         pi->purgatory_buf = kbuf->buffer;
762
763         ret = kexec_add_buffer(kbuf);
764         if (ret)
765                 goto out;
766         pi->purgatory_load_addr = kbuf->mem;
767
768         return 0;
769 out:
770         vfree(pi->purgatory_buf);
771         pi->purgatory_buf = NULL;
772         return ret;
773 }
774
775 /*
776  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
777  * @pi:         Purgatory to be loaded.
778  * @kbuf:       Buffer prepared to store purgatory.
779  *
780  * Allocates the memory needed for the buffer. Caller is responsible to free
781  * the memory after use.
782  *
783  * Return: 0 on success, negative errno on error.
784  */
785 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
786                                          struct kexec_buf *kbuf)
787 {
788         unsigned long curr_load_addr;
789         unsigned long load_addr;
790         unsigned long bss_addr;
791         unsigned long offset;
792         unsigned char *buf_addr;
793         unsigned char *src;
794         Elf_Shdr *sechdrs;
795         int entry_sidx = -1;
796         int i;
797
798         sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
799         if (!sechdrs)
800                 return -ENOMEM;
801         memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
802                pi->ehdr->e_shnum * sizeof(Elf_Shdr));
803         pi->sechdrs = sechdrs;
804
805         /*
806          * We seem to have multiple copies of sections. First copy is which
807          * is embedded in kernel in read only section. Some of these sections
808          * will be copied to a temporary buffer and relocated. And these
809          * sections will finally be copied to their final destination at
810          * segment load time.
811          *
812          * Use ->sh_offset to reflect section address in memory. It will
813          * point to original read only copy if section is not allocatable.
814          * Otherwise it will point to temporary copy which will be relocated.
815          *
816          * Use ->sh_addr to contain final address of the section where it
817          * will go during execution time.
818          */
819         for (i = 0; i < pi->ehdr->e_shnum; i++) {
820                 if (sechdrs[i].sh_type == SHT_NOBITS)
821                         continue;
822
823                 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
824                                                 sechdrs[i].sh_offset;
825         }
826
827         /*
828          * Identify entry point section and make entry relative to section
829          * start.
830          */
831         kbuf->image->start = pi->ehdr->e_entry;
832         for (i = 0; i < pi->ehdr->e_shnum; i++) {
833                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
834                         continue;
835
836                 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
837                         continue;
838
839                 /* Make entry section relative */
840                 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
841                     ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
842                      pi->ehdr->e_entry)) {
843                         entry_sidx = i;
844                         kbuf->image->start -= sechdrs[i].sh_addr;
845                         break;
846                 }
847         }
848
849         /* Load SHF_ALLOC sections */
850         buf_addr = kbuf->buffer;
851         load_addr = curr_load_addr = kbuf->mem;
852         bss_addr = load_addr + kbuf->bufsz;
853
854         for (i = 0; i < pi->ehdr->e_shnum; i++) {
855                 unsigned long align;
856
857                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
858                         continue;
859
860                 align = sechdrs[i].sh_addralign;
861                 if (sechdrs[i].sh_type != SHT_NOBITS) {
862                         curr_load_addr = ALIGN(curr_load_addr, align);
863                         offset = curr_load_addr - load_addr;
864                         /* We already modifed ->sh_offset to keep src addr */
865                         src = (char *) sechdrs[i].sh_offset;
866                         memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
867
868                         /* Store load address and source address of section */
869                         sechdrs[i].sh_addr = curr_load_addr;
870
871                         /*
872                          * This section got copied to temporary buffer. Update
873                          * ->sh_offset accordingly.
874                          */
875                         sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
876
877                         /* Advance to the next address */
878                         curr_load_addr += sechdrs[i].sh_size;
879                 } else {
880                         bss_addr = ALIGN(bss_addr, align);
881                         sechdrs[i].sh_addr = bss_addr;
882                         bss_addr += sechdrs[i].sh_size;
883                 }
884         }
885
886         /* Update entry point based on load address of text section */
887         if (entry_sidx >= 0)
888                 kbuf->image->start += sechdrs[entry_sidx].sh_addr;
889
890         return 0;
891 }
892
893 static int kexec_apply_relocations(struct kimage *image)
894 {
895         int i, ret;
896         struct purgatory_info *pi = &image->purgatory_info;
897         const Elf_Shdr *sechdrs;
898
899         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
900
901         for (i = 0; i < pi->ehdr->e_shnum; i++) {
902                 const Elf_Shdr *relsec;
903                 const Elf_Shdr *symtab;
904                 Elf_Shdr *section;
905
906                 relsec = sechdrs + i;
907
908                 if (relsec->sh_type != SHT_RELA &&
909                     relsec->sh_type != SHT_REL)
910                         continue;
911
912                 /*
913                  * For section of type SHT_RELA/SHT_REL,
914                  * ->sh_link contains section header index of associated
915                  * symbol table. And ->sh_info contains section header
916                  * index of section to which relocations apply.
917                  */
918                 if (relsec->sh_info >= pi->ehdr->e_shnum ||
919                     relsec->sh_link >= pi->ehdr->e_shnum)
920                         return -ENOEXEC;
921
922                 section = pi->sechdrs + relsec->sh_info;
923                 symtab = sechdrs + relsec->sh_link;
924
925                 if (!(section->sh_flags & SHF_ALLOC))
926                         continue;
927
928                 /*
929                  * symtab->sh_link contain section header index of associated
930                  * string table.
931                  */
932                 if (symtab->sh_link >= pi->ehdr->e_shnum)
933                         /* Invalid section number? */
934                         continue;
935
936                 /*
937                  * Respective architecture needs to provide support for applying
938                  * relocations of type SHT_RELA/SHT_REL.
939                  */
940                 if (relsec->sh_type == SHT_RELA)
941                         ret = arch_kexec_apply_relocations_add(pi, section,
942                                                                relsec, symtab);
943                 else if (relsec->sh_type == SHT_REL)
944                         ret = arch_kexec_apply_relocations(pi, section,
945                                                            relsec, symtab);
946                 if (ret)
947                         return ret;
948         }
949
950         return 0;
951 }
952
953 /* Load relocatable purgatory object and relocate it appropriately */
954 int kexec_load_purgatory(struct kimage *image, unsigned long min,
955                          unsigned long max, int top_down,
956                          unsigned long *load_addr)
957 {
958         struct purgatory_info *pi = &image->purgatory_info;
959         int ret;
960         struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1,
961                                   .buf_min = min, .buf_max = max,
962                                   .top_down = top_down };
963
964         if (kexec_purgatory_size <= 0)
965                 return -EINVAL;
966
967         pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
968
969         ret = kexec_purgatory_setup_kbuf(pi, &kbuf);
970         if (ret)
971                 return ret;
972
973         ret = kexec_purgatory_setup_sechdrs(pi, &kbuf);
974         if (ret)
975                 goto out_free_kbuf;
976
977         ret = kexec_apply_relocations(image);
978         if (ret)
979                 goto out;
980
981         *load_addr = pi->purgatory_load_addr;
982         return 0;
983 out:
984         vfree(pi->sechdrs);
985         pi->sechdrs = NULL;
986 out_free_kbuf:
987         vfree(pi->purgatory_buf);
988         pi->purgatory_buf = NULL;
989         return ret;
990 }
991
992 /*
993  * kexec_purgatory_find_symbol - find a symbol in the purgatory
994  * @pi:         Purgatory to search in.
995  * @name:       Name of the symbol.
996  *
997  * Return: pointer to symbol in read-only symtab on success, NULL on error.
998  */
999 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1000                                                   const char *name)
1001 {
1002         const Elf_Shdr *sechdrs;
1003         const Elf_Ehdr *ehdr;
1004         const Elf_Sym *syms;
1005         const char *strtab;
1006         int i, k;
1007
1008         if (!pi->ehdr)
1009                 return NULL;
1010
1011         ehdr = pi->ehdr;
1012         sechdrs = (void *)ehdr + ehdr->e_shoff;
1013
1014         for (i = 0; i < ehdr->e_shnum; i++) {
1015                 if (sechdrs[i].sh_type != SHT_SYMTAB)
1016                         continue;
1017
1018                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
1019                         /* Invalid strtab section number */
1020                         continue;
1021                 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1022                 syms = (void *)ehdr + sechdrs[i].sh_offset;
1023
1024                 /* Go through symbols for a match */
1025                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1026                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1027                                 continue;
1028
1029                         if (strcmp(strtab + syms[k].st_name, name) != 0)
1030                                 continue;
1031
1032                         if (syms[k].st_shndx == SHN_UNDEF ||
1033                             syms[k].st_shndx >= ehdr->e_shnum) {
1034                                 pr_debug("Symbol: %s has bad section index %d.\n",
1035                                                 name, syms[k].st_shndx);
1036                                 return NULL;
1037                         }
1038
1039                         /* Found the symbol we are looking for */
1040                         return &syms[k];
1041                 }
1042         }
1043
1044         return NULL;
1045 }
1046
1047 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1048 {
1049         struct purgatory_info *pi = &image->purgatory_info;
1050         const Elf_Sym *sym;
1051         Elf_Shdr *sechdr;
1052
1053         sym = kexec_purgatory_find_symbol(pi, name);
1054         if (!sym)
1055                 return ERR_PTR(-EINVAL);
1056
1057         sechdr = &pi->sechdrs[sym->st_shndx];
1058
1059         /*
1060          * Returns the address where symbol will finally be loaded after
1061          * kexec_load_segment()
1062          */
1063         return (void *)(sechdr->sh_addr + sym->st_value);
1064 }
1065
1066 /*
1067  * Get or set value of a symbol. If "get_value" is true, symbol value is
1068  * returned in buf otherwise symbol value is set based on value in buf.
1069  */
1070 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1071                                    void *buf, unsigned int size, bool get_value)
1072 {
1073         struct purgatory_info *pi = &image->purgatory_info;
1074         const Elf_Sym *sym;
1075         Elf_Shdr *sec;
1076         char *sym_buf;
1077
1078         sym = kexec_purgatory_find_symbol(pi, name);
1079         if (!sym)
1080                 return -EINVAL;
1081
1082         if (sym->st_size != size) {
1083                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1084                        name, (unsigned long)sym->st_size, size);
1085                 return -EINVAL;
1086         }
1087
1088         sec = pi->sechdrs + sym->st_shndx;
1089
1090         if (sec->sh_type == SHT_NOBITS) {
1091                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1092                        get_value ? "get" : "set");
1093                 return -EINVAL;
1094         }
1095
1096         sym_buf = (char *)sec->sh_offset + sym->st_value;
1097
1098         if (get_value)
1099                 memcpy((void *)buf, sym_buf, size);
1100         else
1101                 memcpy((void *)sym_buf, buf, size);
1102
1103         return 0;
1104 }
1105 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1106
1107 int crash_exclude_mem_range(struct crash_mem *mem,
1108                             unsigned long long mstart, unsigned long long mend)
1109 {
1110         int i, j;
1111         unsigned long long start, end;
1112         struct crash_mem_range temp_range = {0, 0};
1113
1114         for (i = 0; i < mem->nr_ranges; i++) {
1115                 start = mem->ranges[i].start;
1116                 end = mem->ranges[i].end;
1117
1118                 if (mstart > end || mend < start)
1119                         continue;
1120
1121                 /* Truncate any area outside of range */
1122                 if (mstart < start)
1123                         mstart = start;
1124                 if (mend > end)
1125                         mend = end;
1126
1127                 /* Found completely overlapping range */
1128                 if (mstart == start && mend == end) {
1129                         mem->ranges[i].start = 0;
1130                         mem->ranges[i].end = 0;
1131                         if (i < mem->nr_ranges - 1) {
1132                                 /* Shift rest of the ranges to left */
1133                                 for (j = i; j < mem->nr_ranges - 1; j++) {
1134                                         mem->ranges[j].start =
1135                                                 mem->ranges[j+1].start;
1136                                         mem->ranges[j].end =
1137                                                         mem->ranges[j+1].end;
1138                                 }
1139                         }
1140                         mem->nr_ranges--;
1141                         return 0;
1142                 }
1143
1144                 if (mstart > start && mend < end) {
1145                         /* Split original range */
1146                         mem->ranges[i].end = mstart - 1;
1147                         temp_range.start = mend + 1;
1148                         temp_range.end = end;
1149                 } else if (mstart != start)
1150                         mem->ranges[i].end = mstart - 1;
1151                 else
1152                         mem->ranges[i].start = mend + 1;
1153                 break;
1154         }
1155
1156         /* If a split happened, add the split to array */
1157         if (!temp_range.end)
1158                 return 0;
1159
1160         /* Split happened */
1161         if (i == mem->max_nr_ranges - 1)
1162                 return -ENOMEM;
1163
1164         /* Location where new range should go */
1165         j = i + 1;
1166         if (j < mem->nr_ranges) {
1167                 /* Move over all ranges one slot towards the end */
1168                 for (i = mem->nr_ranges - 1; i >= j; i--)
1169                         mem->ranges[i + 1] = mem->ranges[i];
1170         }
1171
1172         mem->ranges[j].start = temp_range.start;
1173         mem->ranges[j].end = temp_range.end;
1174         mem->nr_ranges++;
1175         return 0;
1176 }
1177
1178 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1179                           void **addr, unsigned long *sz)
1180 {
1181         Elf64_Ehdr *ehdr;
1182         Elf64_Phdr *phdr;
1183         unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1184         unsigned char *buf;
1185         unsigned int cpu, i;
1186         unsigned long long notes_addr;
1187         unsigned long mstart, mend;
1188
1189         /* extra phdr for vmcoreinfo elf note */
1190         nr_phdr = nr_cpus + 1;
1191         nr_phdr += mem->nr_ranges;
1192
1193         /*
1194          * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1195          * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1196          * I think this is required by tools like gdb. So same physical
1197          * memory will be mapped in two elf headers. One will contain kernel
1198          * text virtual addresses and other will have __va(physical) addresses.
1199          */
1200
1201         nr_phdr++;
1202         elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1203         elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1204
1205         buf = vzalloc(elf_sz);
1206         if (!buf)
1207                 return -ENOMEM;
1208
1209         ehdr = (Elf64_Ehdr *)buf;
1210         phdr = (Elf64_Phdr *)(ehdr + 1);
1211         memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1212         ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1213         ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1214         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1215         ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1216         memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1217         ehdr->e_type = ET_CORE;
1218         ehdr->e_machine = ELF_ARCH;
1219         ehdr->e_version = EV_CURRENT;
1220         ehdr->e_phoff = sizeof(Elf64_Ehdr);
1221         ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1222         ehdr->e_phentsize = sizeof(Elf64_Phdr);
1223
1224         /* Prepare one phdr of type PT_NOTE for each present cpu */
1225         for_each_present_cpu(cpu) {
1226                 phdr->p_type = PT_NOTE;
1227                 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1228                 phdr->p_offset = phdr->p_paddr = notes_addr;
1229                 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1230                 (ehdr->e_phnum)++;
1231                 phdr++;
1232         }
1233
1234         /* Prepare one PT_NOTE header for vmcoreinfo */
1235         phdr->p_type = PT_NOTE;
1236         phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1237         phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1238         (ehdr->e_phnum)++;
1239         phdr++;
1240
1241         /* Prepare PT_LOAD type program header for kernel text region */
1242         if (kernel_map) {
1243                 phdr->p_type = PT_LOAD;
1244                 phdr->p_flags = PF_R|PF_W|PF_X;
1245                 phdr->p_vaddr = (Elf64_Addr)_text;
1246                 phdr->p_filesz = phdr->p_memsz = _end - _text;
1247                 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1248                 ehdr->e_phnum++;
1249                 phdr++;
1250         }
1251
1252         /* Go through all the ranges in mem->ranges[] and prepare phdr */
1253         for (i = 0; i < mem->nr_ranges; i++) {
1254                 mstart = mem->ranges[i].start;
1255                 mend = mem->ranges[i].end;
1256
1257                 phdr->p_type = PT_LOAD;
1258                 phdr->p_flags = PF_R|PF_W|PF_X;
1259                 phdr->p_offset  = mstart;
1260
1261                 phdr->p_paddr = mstart;
1262                 phdr->p_vaddr = (unsigned long long) __va(mstart);
1263                 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1264                 phdr->p_align = 0;
1265                 ehdr->e_phnum++;
1266                 phdr++;
1267                 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1268                         phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1269                         ehdr->e_phnum, phdr->p_offset);
1270         }
1271
1272         *addr = buf;
1273         *sz = elf_sz;
1274         return 0;
1275 }