c94837382037e4ce47d0f5af0fcd98258626787c
[linux-2.6-block.git] / kernel / irq / manage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29
30 static int __init setup_forced_irqthreads(char *arg)
31 {
32         static_branch_enable(&force_irqthreads_key);
33         return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37
38 static int __irq_get_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool *state);
39
40 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
41 {
42         struct irq_data *irqd = irq_desc_get_irq_data(desc);
43         bool inprogress;
44
45         do {
46                 /*
47                  * Wait until we're out of the critical section.  This might
48                  * give the wrong answer due to the lack of memory barriers.
49                  */
50                 while (irqd_irq_inprogress(&desc->irq_data))
51                         cpu_relax();
52
53                 /* Ok, that indicated we're done: double-check carefully. */
54                 guard(raw_spinlock_irqsave)(&desc->lock);
55                 inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57                 /*
58                  * If requested and supported, check at the chip whether it
59                  * is in flight at the hardware level, i.e. already pending
60                  * in a CPU and waiting for service and acknowledge.
61                  */
62                 if (!inprogress && sync_chip) {
63                         /*
64                          * Ignore the return code. inprogress is only updated
65                          * when the chip supports it.
66                          */
67                         __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68                                                 &inprogress);
69                 }
70                 /* Oops, that failed? */
71         } while (inprogress);
72 }
73
74 /**
75  * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
76  * @irq: interrupt number to wait for
77  *
78  * This function waits for any pending hard IRQ handlers for this interrupt
79  * to complete before returning. If you use this function while holding a
80  * resource the IRQ handler may need you will deadlock. It does not take
81  * associated threaded handlers into account.
82  *
83  * Do not use this for shutdown scenarios where you must be sure that all
84  * parts (hardirq and threaded handler) have completed.
85  *
86  * Returns: false if a threaded handler is active.
87  *
88  * This function may be called - with care - from IRQ context.
89  *
90  * It does not check whether there is an interrupt in flight at the
91  * hardware level, but not serviced yet, as this might deadlock when called
92  * with interrupts disabled and the target CPU of the interrupt is the
93  * current CPU.
94  */
95 bool synchronize_hardirq(unsigned int irq)
96 {
97         struct irq_desc *desc = irq_to_desc(irq);
98
99         if (desc) {
100                 __synchronize_hardirq(desc, false);
101                 return !atomic_read(&desc->threads_active);
102         }
103
104         return true;
105 }
106 EXPORT_SYMBOL(synchronize_hardirq);
107
108 static void __synchronize_irq(struct irq_desc *desc)
109 {
110         __synchronize_hardirq(desc, true);
111         /*
112          * We made sure that no hardirq handler is running. Now verify that no
113          * threaded handlers are active.
114          */
115         wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
116 }
117
118 /**
119  * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
120  * @irq: interrupt number to wait for
121  *
122  * This function waits for any pending IRQ handlers for this interrupt to
123  * complete before returning. If you use this function while holding a
124  * resource the IRQ handler may need you will deadlock.
125  *
126  * Can only be called from preemptible code as it might sleep when
127  * an interrupt thread is associated to @irq.
128  *
129  * It optionally makes sure (when the irq chip supports that method)
130  * that the interrupt is not pending in any CPU and waiting for
131  * service.
132  */
133 void synchronize_irq(unsigned int irq)
134 {
135         struct irq_desc *desc = irq_to_desc(irq);
136
137         if (desc)
138                 __synchronize_irq(desc);
139 }
140 EXPORT_SYMBOL(synchronize_irq);
141
142 #ifdef CONFIG_SMP
143 cpumask_var_t irq_default_affinity;
144
145 static bool __irq_can_set_affinity(struct irq_desc *desc)
146 {
147         if (!desc || !irqd_can_balance(&desc->irq_data) ||
148             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
149                 return false;
150         return true;
151 }
152
153 /**
154  * irq_can_set_affinity - Check if the affinity of a given irq can be set
155  * @irq:        Interrupt to check
156  *
157  */
158 int irq_can_set_affinity(unsigned int irq)
159 {
160         return __irq_can_set_affinity(irq_to_desc(irq));
161 }
162
163 /**
164  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
165  * @irq:        Interrupt to check
166  *
167  * Like irq_can_set_affinity() above, but additionally checks for the
168  * AFFINITY_MANAGED flag.
169  */
170 bool irq_can_set_affinity_usr(unsigned int irq)
171 {
172         struct irq_desc *desc = irq_to_desc(irq);
173
174         return __irq_can_set_affinity(desc) &&
175                 !irqd_affinity_is_managed(&desc->irq_data);
176 }
177
178 /**
179  * irq_set_thread_affinity - Notify irq threads to adjust affinity
180  * @desc:       irq descriptor which has affinity changed
181  *
182  * Just set IRQTF_AFFINITY and delegate the affinity setting to the
183  * interrupt thread itself. We can not call set_cpus_allowed_ptr() here as
184  * we hold desc->lock and this code can be called from hard interrupt
185  * context.
186  */
187 static void irq_set_thread_affinity(struct irq_desc *desc)
188 {
189         struct irqaction *action;
190
191         for_each_action_of_desc(desc, action) {
192                 if (action->thread) {
193                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
194                         wake_up_process(action->thread);
195                 }
196                 if (action->secondary && action->secondary->thread) {
197                         set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
198                         wake_up_process(action->secondary->thread);
199                 }
200         }
201 }
202
203 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
204 static void irq_validate_effective_affinity(struct irq_data *data)
205 {
206         const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
207         struct irq_chip *chip = irq_data_get_irq_chip(data);
208
209         if (!cpumask_empty(m))
210                 return;
211         pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
212                      chip->name, data->irq);
213 }
214 #else
215 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
216 #endif
217
218 static DEFINE_PER_CPU(struct cpumask, __tmp_mask);
219
220 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
221                         bool force)
222 {
223         struct cpumask *tmp_mask = this_cpu_ptr(&__tmp_mask);
224         struct irq_desc *desc = irq_data_to_desc(data);
225         struct irq_chip *chip = irq_data_get_irq_chip(data);
226         const struct cpumask  *prog_mask;
227         int ret;
228
229         if (!chip || !chip->irq_set_affinity)
230                 return -EINVAL;
231
232         /*
233          * If this is a managed interrupt and housekeeping is enabled on
234          * it check whether the requested affinity mask intersects with
235          * a housekeeping CPU. If so, then remove the isolated CPUs from
236          * the mask and just keep the housekeeping CPU(s). This prevents
237          * the affinity setter from routing the interrupt to an isolated
238          * CPU to avoid that I/O submitted from a housekeeping CPU causes
239          * interrupts on an isolated one.
240          *
241          * If the masks do not intersect or include online CPU(s) then
242          * keep the requested mask. The isolated target CPUs are only
243          * receiving interrupts when the I/O operation was submitted
244          * directly from them.
245          *
246          * If all housekeeping CPUs in the affinity mask are offline, the
247          * interrupt will be migrated by the CPU hotplug code once a
248          * housekeeping CPU which belongs to the affinity mask comes
249          * online.
250          */
251         if (irqd_affinity_is_managed(data) &&
252             housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
253                 const struct cpumask *hk_mask;
254
255                 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
256
257                 cpumask_and(tmp_mask, mask, hk_mask);
258                 if (!cpumask_intersects(tmp_mask, cpu_online_mask))
259                         prog_mask = mask;
260                 else
261                         prog_mask = tmp_mask;
262         } else {
263                 prog_mask = mask;
264         }
265
266         /*
267          * Make sure we only provide online CPUs to the irqchip,
268          * unless we are being asked to force the affinity (in which
269          * case we do as we are told).
270          */
271         cpumask_and(tmp_mask, prog_mask, cpu_online_mask);
272         if (!force && !cpumask_empty(tmp_mask))
273                 ret = chip->irq_set_affinity(data, tmp_mask, force);
274         else if (force)
275                 ret = chip->irq_set_affinity(data, mask, force);
276         else
277                 ret = -EINVAL;
278
279         switch (ret) {
280         case IRQ_SET_MASK_OK:
281         case IRQ_SET_MASK_OK_DONE:
282                 cpumask_copy(desc->irq_common_data.affinity, mask);
283                 fallthrough;
284         case IRQ_SET_MASK_OK_NOCOPY:
285                 irq_validate_effective_affinity(data);
286                 irq_set_thread_affinity(desc);
287                 ret = 0;
288         }
289
290         return ret;
291 }
292
293 #ifdef CONFIG_GENERIC_PENDING_IRQ
294 static inline int irq_set_affinity_pending(struct irq_data *data,
295                                            const struct cpumask *dest)
296 {
297         struct irq_desc *desc = irq_data_to_desc(data);
298
299         irqd_set_move_pending(data);
300         irq_copy_pending(desc, dest);
301         return 0;
302 }
303 #else
304 static inline int irq_set_affinity_pending(struct irq_data *data,
305                                            const struct cpumask *dest)
306 {
307         return -EBUSY;
308 }
309 #endif
310
311 static int irq_try_set_affinity(struct irq_data *data,
312                                 const struct cpumask *dest, bool force)
313 {
314         int ret = irq_do_set_affinity(data, dest, force);
315
316         /*
317          * In case that the underlying vector management is busy and the
318          * architecture supports the generic pending mechanism then utilize
319          * this to avoid returning an error to user space.
320          */
321         if (ret == -EBUSY && !force)
322                 ret = irq_set_affinity_pending(data, dest);
323         return ret;
324 }
325
326 static bool irq_set_affinity_deactivated(struct irq_data *data,
327                                          const struct cpumask *mask)
328 {
329         struct irq_desc *desc = irq_data_to_desc(data);
330
331         /*
332          * Handle irq chips which can handle affinity only in activated
333          * state correctly
334          *
335          * If the interrupt is not yet activated, just store the affinity
336          * mask and do not call the chip driver at all. On activation the
337          * driver has to make sure anyway that the interrupt is in a
338          * usable state so startup works.
339          */
340         if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
341             irqd_is_activated(data) || !irqd_affinity_on_activate(data))
342                 return false;
343
344         cpumask_copy(desc->irq_common_data.affinity, mask);
345         irq_data_update_effective_affinity(data, mask);
346         irqd_set(data, IRQD_AFFINITY_SET);
347         return true;
348 }
349
350 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
351                             bool force)
352 {
353         struct irq_chip *chip = irq_data_get_irq_chip(data);
354         struct irq_desc *desc = irq_data_to_desc(data);
355         int ret = 0;
356
357         if (!chip || !chip->irq_set_affinity)
358                 return -EINVAL;
359
360         if (irq_set_affinity_deactivated(data, mask))
361                 return 0;
362
363         if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
364                 ret = irq_try_set_affinity(data, mask, force);
365         } else {
366                 irqd_set_move_pending(data);
367                 irq_copy_pending(desc, mask);
368         }
369
370         if (desc->affinity_notify) {
371                 kref_get(&desc->affinity_notify->kref);
372                 if (!schedule_work(&desc->affinity_notify->work)) {
373                         /* Work was already scheduled, drop our extra ref */
374                         kref_put(&desc->affinity_notify->kref,
375                                  desc->affinity_notify->release);
376                 }
377         }
378         irqd_set(data, IRQD_AFFINITY_SET);
379
380         return ret;
381 }
382
383 /**
384  * irq_update_affinity_desc - Update affinity management for an interrupt
385  * @irq:        The interrupt number to update
386  * @affinity:   Pointer to the affinity descriptor
387  *
388  * This interface can be used to configure the affinity management of
389  * interrupts which have been allocated already.
390  *
391  * There are certain limitations on when it may be used - attempts to use it
392  * for when the kernel is configured for generic IRQ reservation mode (in
393  * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
394  * managed/non-managed interrupt accounting. In addition, attempts to use it on
395  * an interrupt which is already started or which has already been configured
396  * as managed will also fail, as these mean invalid init state or double init.
397  */
398 int irq_update_affinity_desc(unsigned int irq, struct irq_affinity_desc *affinity)
399 {
400         /*
401          * Supporting this with the reservation scheme used by x86 needs
402          * some more thought. Fail it for now.
403          */
404         if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
405                 return -EOPNOTSUPP;
406
407         scoped_irqdesc_get_and_buslock(irq, 0) {
408                 struct irq_desc *desc = scoped_irqdesc;
409                 bool activated;
410
411                 /* Requires the interrupt to be shut down */
412                 if (irqd_is_started(&desc->irq_data))
413                         return -EBUSY;
414
415                 /* Interrupts which are already managed cannot be modified */
416                 if (irqd_affinity_is_managed(&desc->irq_data))
417                         return -EBUSY;
418                 /*
419                  * Deactivate the interrupt. That's required to undo
420                  * anything an earlier activation has established.
421                  */
422                 activated = irqd_is_activated(&desc->irq_data);
423                 if (activated)
424                         irq_domain_deactivate_irq(&desc->irq_data);
425
426                 if (affinity->is_managed) {
427                         irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
428                         irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
429                 }
430
431                 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
432
433                 /* Restore the activation state */
434                 if (activated)
435                         irq_domain_activate_irq(&desc->irq_data, false);
436                 return 0;
437         }
438         return -EINVAL;
439 }
440
441 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
442                               bool force)
443 {
444         struct irq_desc *desc = irq_to_desc(irq);
445
446         if (!desc)
447                 return -EINVAL;
448
449         guard(raw_spinlock_irqsave)(&desc->lock);
450         return irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
451 }
452
453 /**
454  * irq_set_affinity - Set the irq affinity of a given irq
455  * @irq:        Interrupt to set affinity
456  * @cpumask:    cpumask
457  *
458  * Fails if cpumask does not contain an online CPU
459  */
460 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
461 {
462         return __irq_set_affinity(irq, cpumask, false);
463 }
464 EXPORT_SYMBOL_GPL(irq_set_affinity);
465
466 /**
467  * irq_force_affinity - Force the irq affinity of a given irq
468  * @irq:        Interrupt to set affinity
469  * @cpumask:    cpumask
470  *
471  * Same as irq_set_affinity, but without checking the mask against
472  * online cpus.
473  *
474  * Solely for low level cpu hotplug code, where we need to make per
475  * cpu interrupts affine before the cpu becomes online.
476  */
477 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
478 {
479         return __irq_set_affinity(irq, cpumask, true);
480 }
481 EXPORT_SYMBOL_GPL(irq_force_affinity);
482
483 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m, bool setaffinity)
484 {
485         int ret = -EINVAL;
486
487         scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
488                 scoped_irqdesc->affinity_hint = m;
489                 ret = 0;
490         }
491
492         if (!ret && m && setaffinity)
493                 __irq_set_affinity(irq, m, false);
494         return ret;
495 }
496 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
497
498 static void irq_affinity_notify(struct work_struct *work)
499 {
500         struct irq_affinity_notify *notify = container_of(work, struct irq_affinity_notify, work);
501         struct irq_desc *desc = irq_to_desc(notify->irq);
502         cpumask_var_t cpumask;
503
504         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
505                 goto out;
506
507         scoped_guard(raw_spinlock_irqsave, &desc->lock) {
508                 if (irq_move_pending(&desc->irq_data))
509                         irq_get_pending(cpumask, desc);
510                 else
511                         cpumask_copy(cpumask, desc->irq_common_data.affinity);
512         }
513
514         notify->notify(notify, cpumask);
515
516         free_cpumask_var(cpumask);
517 out:
518         kref_put(&notify->kref, notify->release);
519 }
520
521 /**
522  * irq_set_affinity_notifier - control notification of IRQ affinity changes
523  * @irq:        Interrupt for which to enable/disable notification
524  * @notify:     Context for notification, or %NULL to disable
525  *              notification.  Function pointers must be initialised;
526  *              the other fields will be initialised by this function.
527  *
528  * Must be called in process context.  Notification may only be enabled
529  * after the IRQ is allocated and must be disabled before the IRQ is freed
530  * using free_irq().
531  */
532 int irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
533 {
534         struct irq_desc *desc = irq_to_desc(irq);
535         struct irq_affinity_notify *old_notify;
536
537         /* The release function is promised process context */
538         might_sleep();
539
540         if (!desc || irq_is_nmi(desc))
541                 return -EINVAL;
542
543         /* Complete initialisation of *notify */
544         if (notify) {
545                 notify->irq = irq;
546                 kref_init(&notify->kref);
547                 INIT_WORK(&notify->work, irq_affinity_notify);
548         }
549
550         scoped_guard(raw_spinlock_irqsave, &desc->lock) {
551                 old_notify = desc->affinity_notify;
552                 desc->affinity_notify = notify;
553         }
554
555         if (old_notify) {
556                 if (cancel_work_sync(&old_notify->work)) {
557                         /* Pending work had a ref, put that one too */
558                         kref_put(&old_notify->kref, old_notify->release);
559                 }
560                 kref_put(&old_notify->kref, old_notify->release);
561         }
562
563         return 0;
564 }
565 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
566
567 #ifndef CONFIG_AUTO_IRQ_AFFINITY
568 /*
569  * Generic version of the affinity autoselector.
570  */
571 int irq_setup_affinity(struct irq_desc *desc)
572 {
573         struct cpumask *set = irq_default_affinity;
574         int node = irq_desc_get_node(desc);
575
576         static DEFINE_RAW_SPINLOCK(mask_lock);
577         static struct cpumask mask;
578
579         /* Excludes PER_CPU and NO_BALANCE interrupts */
580         if (!__irq_can_set_affinity(desc))
581                 return 0;
582
583         guard(raw_spinlock)(&mask_lock);
584         /*
585          * Preserve the managed affinity setting and a userspace affinity
586          * setup, but make sure that one of the targets is online.
587          */
588         if (irqd_affinity_is_managed(&desc->irq_data) ||
589             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
590                 if (cpumask_intersects(desc->irq_common_data.affinity,
591                                        cpu_online_mask))
592                         set = desc->irq_common_data.affinity;
593                 else
594                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
595         }
596
597         cpumask_and(&mask, cpu_online_mask, set);
598         if (cpumask_empty(&mask))
599                 cpumask_copy(&mask, cpu_online_mask);
600
601         if (node != NUMA_NO_NODE) {
602                 const struct cpumask *nodemask = cpumask_of_node(node);
603
604                 /* make sure at least one of the cpus in nodemask is online */
605                 if (cpumask_intersects(&mask, nodemask))
606                         cpumask_and(&mask, &mask, nodemask);
607         }
608         return irq_do_set_affinity(&desc->irq_data, &mask, false);
609 }
610 #else
611 /* Wrapper for ALPHA specific affinity selector magic */
612 int irq_setup_affinity(struct irq_desc *desc)
613 {
614         return irq_select_affinity(irq_desc_get_irq(desc));
615 }
616 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
617 #endif /* CONFIG_SMP */
618
619
620 /**
621  * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
622  * @irq:        interrupt number to set affinity
623  * @vcpu_info:  vCPU specific data or pointer to a percpu array of vCPU
624  *              specific data for percpu_devid interrupts
625  *
626  * This function uses the vCPU specific data to set the vCPU affinity for
627  * an irq. The vCPU specific data is passed from outside, such as KVM. One
628  * example code path is as below: KVM -> IOMMU -> irq_set_vcpu_affinity().
629  */
630 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
631 {
632         scoped_irqdesc_get_and_lock(irq, 0) {
633                 struct irq_desc *desc = scoped_irqdesc;
634                 struct irq_data *data;
635                 struct irq_chip *chip;
636
637                 data = irq_desc_get_irq_data(desc);
638                 do {
639                         chip = irq_data_get_irq_chip(data);
640                         if (chip && chip->irq_set_vcpu_affinity)
641                                 break;
642
643                         data = irqd_get_parent_data(data);
644                 } while (data);
645
646                 if (!data)
647                         return -ENOSYS;
648                 return chip->irq_set_vcpu_affinity(data, vcpu_info);
649         }
650         return -EINVAL;
651 }
652 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
653
654 void __disable_irq(struct irq_desc *desc)
655 {
656         if (!desc->depth++)
657                 irq_disable(desc);
658 }
659
660 static int __disable_irq_nosync(unsigned int irq)
661 {
662         scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
663                 __disable_irq(scoped_irqdesc);
664                 return 0;
665         }
666         return -EINVAL;
667 }
668
669 /**
670  * disable_irq_nosync - disable an irq without waiting
671  * @irq: Interrupt to disable
672  *
673  * Disable the selected interrupt line.  Disables and Enables are
674  * nested.
675  * Unlike disable_irq(), this function does not ensure existing
676  * instances of the IRQ handler have completed before returning.
677  *
678  * This function may be called from IRQ context.
679  */
680 void disable_irq_nosync(unsigned int irq)
681 {
682         __disable_irq_nosync(irq);
683 }
684 EXPORT_SYMBOL(disable_irq_nosync);
685
686 /**
687  * disable_irq - disable an irq and wait for completion
688  * @irq: Interrupt to disable
689  *
690  * Disable the selected interrupt line.  Enables and Disables are nested.
691  *
692  * This function waits for any pending IRQ handlers for this interrupt to
693  * complete before returning. If you use this function while holding a
694  * resource the IRQ handler may need you will deadlock.
695  *
696  * Can only be called from preemptible code as it might sleep when an
697  * interrupt thread is associated to @irq.
698  *
699  */
700 void disable_irq(unsigned int irq)
701 {
702         might_sleep();
703         if (!__disable_irq_nosync(irq))
704                 synchronize_irq(irq);
705 }
706 EXPORT_SYMBOL(disable_irq);
707
708 /**
709  * disable_hardirq - disables an irq and waits for hardirq completion
710  * @irq: Interrupt to disable
711  *
712  * Disable the selected interrupt line.  Enables and Disables are nested.
713  *
714  * This function waits for any pending hard IRQ handlers for this interrupt
715  * to complete before returning. If you use this function while holding a
716  * resource the hard IRQ handler may need you will deadlock.
717  *
718  * When used to optimistically disable an interrupt from atomic context the
719  * return value must be checked.
720  *
721  * Returns: false if a threaded handler is active.
722  *
723  * This function may be called - with care - from IRQ context.
724  */
725 bool disable_hardirq(unsigned int irq)
726 {
727         if (!__disable_irq_nosync(irq))
728                 return synchronize_hardirq(irq);
729         return false;
730 }
731 EXPORT_SYMBOL_GPL(disable_hardirq);
732
733 /**
734  * disable_nmi_nosync - disable an nmi without waiting
735  * @irq: Interrupt to disable
736  *
737  * Disable the selected interrupt line. Disables and enables are nested.
738  *
739  * The interrupt to disable must have been requested through request_nmi.
740  * Unlike disable_nmi(), this function does not ensure existing
741  * instances of the IRQ handler have completed before returning.
742  */
743 void disable_nmi_nosync(unsigned int irq)
744 {
745         disable_irq_nosync(irq);
746 }
747
748 void __enable_irq(struct irq_desc *desc)
749 {
750         switch (desc->depth) {
751         case 0:
752  err_out:
753                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
754                      irq_desc_get_irq(desc));
755                 break;
756         case 1: {
757                 if (desc->istate & IRQS_SUSPENDED)
758                         goto err_out;
759                 /* Prevent probing on this irq: */
760                 irq_settings_set_noprobe(desc);
761                 /*
762                  * Call irq_startup() not irq_enable() here because the
763                  * interrupt might be marked NOAUTOEN so irq_startup()
764                  * needs to be invoked when it gets enabled the first time.
765                  * This is also required when __enable_irq() is invoked for
766                  * a managed and shutdown interrupt from the S3 resume
767                  * path.
768                  *
769                  * If it was already started up, then irq_startup() will
770                  * invoke irq_enable() under the hood.
771                  */
772                 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
773                 break;
774         }
775         default:
776                 desc->depth--;
777         }
778 }
779
780 /**
781  * enable_irq - enable handling of an irq
782  * @irq: Interrupt to enable
783  *
784  * Undoes the effect of one call to disable_irq().  If this matches the
785  * last disable, processing of interrupts on this IRQ line is re-enabled.
786  *
787  * This function may be called from IRQ context only when
788  * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
789  */
790 void enable_irq(unsigned int irq)
791 {
792         scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
793                 struct irq_desc *desc = scoped_irqdesc;
794
795                 if (WARN(!desc->irq_data.chip, "enable_irq before setup/request_irq: irq %u\n", irq))
796                         return;
797                 __enable_irq(desc);
798         }
799 }
800 EXPORT_SYMBOL(enable_irq);
801
802 /**
803  * enable_nmi - enable handling of an nmi
804  * @irq: Interrupt to enable
805  *
806  * The interrupt to enable must have been requested through request_nmi.
807  * Undoes the effect of one call to disable_nmi(). If this matches the last
808  * disable, processing of interrupts on this IRQ line is re-enabled.
809  */
810 void enable_nmi(unsigned int irq)
811 {
812         enable_irq(irq);
813 }
814
815 static int set_irq_wake_real(unsigned int irq, unsigned int on)
816 {
817         struct irq_desc *desc = irq_to_desc(irq);
818         int ret = -ENXIO;
819
820         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
821                 return 0;
822
823         if (desc->irq_data.chip->irq_set_wake)
824                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
825
826         return ret;
827 }
828
829 /**
830  * irq_set_irq_wake - control irq power management wakeup
831  * @irq:        interrupt to control
832  * @on: enable/disable power management wakeup
833  *
834  * Enable/disable power management wakeup mode, which is disabled by
835  * default.  Enables and disables must match, just as they match for
836  * non-wakeup mode support.
837  *
838  * Wakeup mode lets this IRQ wake the system from sleep states like
839  * "suspend to RAM".
840  *
841  * Note: irq enable/disable state is completely orthogonal to the
842  * enable/disable state of irq wake. An irq can be disabled with
843  * disable_irq() and still wake the system as long as the irq has wake
844  * enabled. If this does not hold, then the underlying irq chip and the
845  * related driver need to be investigated.
846  */
847 int irq_set_irq_wake(unsigned int irq, unsigned int on)
848 {
849         scoped_irqdesc_get_and_buslock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
850                 struct irq_desc *desc = scoped_irqdesc;
851                 int ret = 0;
852
853                 /* Don't use NMIs as wake up interrupts please */
854                 if (irq_is_nmi(desc))
855                         return -EINVAL;
856
857                 /*
858                  * wakeup-capable irqs can be shared between drivers that
859                  * don't need to have the same sleep mode behaviors.
860                  */
861                 if (on) {
862                         if (desc->wake_depth++ == 0) {
863                                 ret = set_irq_wake_real(irq, on);
864                                 if (ret)
865                                         desc->wake_depth = 0;
866                                 else
867                                         irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
868                         }
869                 } else {
870                         if (desc->wake_depth == 0) {
871                                 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
872                         } else if (--desc->wake_depth == 0) {
873                                 ret = set_irq_wake_real(irq, on);
874                                 if (ret)
875                                         desc->wake_depth = 1;
876                                 else
877                                         irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
878                         }
879                 }
880                 return ret;
881         }
882         return -EINVAL;
883 }
884 EXPORT_SYMBOL(irq_set_irq_wake);
885
886 /*
887  * Internal function that tells the architecture code whether a
888  * particular irq has been exclusively allocated or is available
889  * for driver use.
890  */
891 bool can_request_irq(unsigned int irq, unsigned long irqflags)
892 {
893         scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
894                 struct irq_desc *desc = scoped_irqdesc;
895
896                 if (irq_settings_can_request(desc)) {
897                         if (!desc->action || irqflags & desc->action->flags & IRQF_SHARED)
898                                 return true;
899                 }
900         }
901         return false;
902 }
903
904 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
905 {
906         struct irq_chip *chip = desc->irq_data.chip;
907         int ret, unmask = 0;
908
909         if (!chip || !chip->irq_set_type) {
910                 /*
911                  * IRQF_TRIGGER_* but the PIC does not support multiple
912                  * flow-types?
913                  */
914                 pr_debug("No set_type function for IRQ %d (%s)\n",
915                          irq_desc_get_irq(desc),
916                          chip ? (chip->name ? : "unknown") : "unknown");
917                 return 0;
918         }
919
920         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
921                 if (!irqd_irq_masked(&desc->irq_data))
922                         mask_irq(desc);
923                 if (!irqd_irq_disabled(&desc->irq_data))
924                         unmask = 1;
925         }
926
927         /* Mask all flags except trigger mode */
928         flags &= IRQ_TYPE_SENSE_MASK;
929         ret = chip->irq_set_type(&desc->irq_data, flags);
930
931         switch (ret) {
932         case IRQ_SET_MASK_OK:
933         case IRQ_SET_MASK_OK_DONE:
934                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
935                 irqd_set(&desc->irq_data, flags);
936                 fallthrough;
937
938         case IRQ_SET_MASK_OK_NOCOPY:
939                 flags = irqd_get_trigger_type(&desc->irq_data);
940                 irq_settings_set_trigger_mask(desc, flags);
941                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
942                 irq_settings_clr_level(desc);
943                 if (flags & IRQ_TYPE_LEVEL_MASK) {
944                         irq_settings_set_level(desc);
945                         irqd_set(&desc->irq_data, IRQD_LEVEL);
946                 }
947
948                 ret = 0;
949                 break;
950         default:
951                 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
952                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
953         }
954         if (unmask)
955                 unmask_irq(desc);
956         return ret;
957 }
958
959 #ifdef CONFIG_HARDIRQS_SW_RESEND
960 int irq_set_parent(int irq, int parent_irq)
961 {
962         scoped_irqdesc_get_and_lock(irq, 0) {
963                 scoped_irqdesc->parent_irq = parent_irq;
964                 return 0;
965         }
966         return -EINVAL;
967 }
968 EXPORT_SYMBOL_GPL(irq_set_parent);
969 #endif
970
971 /*
972  * Default primary interrupt handler for threaded interrupts. Is
973  * assigned as primary handler when request_threaded_irq is called
974  * with handler == NULL. Useful for oneshot interrupts.
975  */
976 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
977 {
978         return IRQ_WAKE_THREAD;
979 }
980
981 /*
982  * Primary handler for nested threaded interrupts. Should never be
983  * called.
984  */
985 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
986 {
987         WARN(1, "Primary handler called for nested irq %d\n", irq);
988         return IRQ_NONE;
989 }
990
991 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
992 {
993         WARN(1, "Secondary action handler called for irq %d\n", irq);
994         return IRQ_NONE;
995 }
996
997 #ifdef CONFIG_SMP
998 /*
999  * Check whether we need to change the affinity of the interrupt thread.
1000  */
1001 static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1002 {
1003         cpumask_var_t mask;
1004         bool valid = false;
1005
1006         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1007                 return;
1008
1009         __set_current_state(TASK_RUNNING);
1010
1011         /*
1012          * In case we are out of memory we set IRQTF_AFFINITY again and
1013          * try again next time
1014          */
1015         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1016                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1017                 return;
1018         }
1019
1020         scoped_guard(raw_spinlock_irq, &desc->lock) {
1021                 /*
1022                  * This code is triggered unconditionally. Check the affinity
1023                  * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1024                  */
1025                 if (cpumask_available(desc->irq_common_data.affinity)) {
1026                         const struct cpumask *m;
1027
1028                         m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1029                         cpumask_copy(mask, m);
1030                         valid = true;
1031                 }
1032         }
1033
1034         if (valid)
1035                 set_cpus_allowed_ptr(current, mask);
1036         free_cpumask_var(mask);
1037 }
1038 #else
1039 static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1040 #endif
1041
1042 static int irq_wait_for_interrupt(struct irq_desc *desc,
1043                                   struct irqaction *action)
1044 {
1045         for (;;) {
1046                 set_current_state(TASK_INTERRUPTIBLE);
1047                 irq_thread_check_affinity(desc, action);
1048
1049                 if (kthread_should_stop()) {
1050                         /* may need to run one last time */
1051                         if (test_and_clear_bit(IRQTF_RUNTHREAD,
1052                                                &action->thread_flags)) {
1053                                 __set_current_state(TASK_RUNNING);
1054                                 return 0;
1055                         }
1056                         __set_current_state(TASK_RUNNING);
1057                         return -1;
1058                 }
1059
1060                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1061                                        &action->thread_flags)) {
1062                         __set_current_state(TASK_RUNNING);
1063                         return 0;
1064                 }
1065                 schedule();
1066         }
1067 }
1068
1069 /*
1070  * Oneshot interrupts keep the irq line masked until the threaded
1071  * handler finished. unmask if the interrupt has not been disabled and
1072  * is marked MASKED.
1073  */
1074 static void irq_finalize_oneshot(struct irq_desc *desc,
1075                                  struct irqaction *action)
1076 {
1077         if (!(desc->istate & IRQS_ONESHOT) ||
1078             action->handler == irq_forced_secondary_handler)
1079                 return;
1080 again:
1081         chip_bus_lock(desc);
1082         raw_spin_lock_irq(&desc->lock);
1083
1084         /*
1085          * Implausible though it may be we need to protect us against
1086          * the following scenario:
1087          *
1088          * The thread is faster done than the hard interrupt handler
1089          * on the other CPU. If we unmask the irq line then the
1090          * interrupt can come in again and masks the line, leaves due
1091          * to IRQS_INPROGRESS and the irq line is masked forever.
1092          *
1093          * This also serializes the state of shared oneshot handlers
1094          * versus "desc->threads_oneshot |= action->thread_mask;" in
1095          * irq_wake_thread(). See the comment there which explains the
1096          * serialization.
1097          */
1098         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1099                 raw_spin_unlock_irq(&desc->lock);
1100                 chip_bus_sync_unlock(desc);
1101                 cpu_relax();
1102                 goto again;
1103         }
1104
1105         /*
1106          * Now check again, whether the thread should run. Otherwise
1107          * we would clear the threads_oneshot bit of this thread which
1108          * was just set.
1109          */
1110         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1111                 goto out_unlock;
1112
1113         desc->threads_oneshot &= ~action->thread_mask;
1114
1115         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1116             irqd_irq_masked(&desc->irq_data))
1117                 unmask_threaded_irq(desc);
1118
1119 out_unlock:
1120         raw_spin_unlock_irq(&desc->lock);
1121         chip_bus_sync_unlock(desc);
1122 }
1123
1124 /*
1125  * Interrupts explicitly requested as threaded interrupts want to be
1126  * preemptible - many of them need to sleep and wait for slow busses to
1127  * complete.
1128  */
1129 static irqreturn_t irq_thread_fn(struct irq_desc *desc, struct irqaction *action)
1130 {
1131         irqreturn_t ret = action->thread_fn(action->irq, action->dev_id);
1132
1133         if (ret == IRQ_HANDLED)
1134                 atomic_inc(&desc->threads_handled);
1135
1136         irq_finalize_oneshot(desc, action);
1137         return ret;
1138 }
1139
1140 /*
1141  * Interrupts which are not explicitly requested as threaded
1142  * interrupts rely on the implicit bh/preempt disable of the hard irq
1143  * context. So we need to disable bh here to avoid deadlocks and other
1144  * side effects.
1145  */
1146 static irqreturn_t irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1147 {
1148         irqreturn_t ret;
1149
1150         local_bh_disable();
1151         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1152                 local_irq_disable();
1153         ret = irq_thread_fn(desc, action);
1154         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1155                 local_irq_enable();
1156         local_bh_enable();
1157         return ret;
1158 }
1159
1160 void wake_threads_waitq(struct irq_desc *desc)
1161 {
1162         if (atomic_dec_and_test(&desc->threads_active))
1163                 wake_up(&desc->wait_for_threads);
1164 }
1165
1166 static void irq_thread_dtor(struct callback_head *unused)
1167 {
1168         struct task_struct *tsk = current;
1169         struct irq_desc *desc;
1170         struct irqaction *action;
1171
1172         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1173                 return;
1174
1175         action = kthread_data(tsk);
1176
1177         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1178                tsk->comm, tsk->pid, action->irq);
1179
1180
1181         desc = irq_to_desc(action->irq);
1182         /*
1183          * If IRQTF_RUNTHREAD is set, we need to decrement
1184          * desc->threads_active and wake possible waiters.
1185          */
1186         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1187                 wake_threads_waitq(desc);
1188
1189         /* Prevent a stale desc->threads_oneshot */
1190         irq_finalize_oneshot(desc, action);
1191 }
1192
1193 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1194 {
1195         struct irqaction *secondary = action->secondary;
1196
1197         if (WARN_ON_ONCE(!secondary))
1198                 return;
1199
1200         guard(raw_spinlock_irq)(&desc->lock);
1201         __irq_wake_thread(desc, secondary);
1202 }
1203
1204 /*
1205  * Internal function to notify that a interrupt thread is ready.
1206  */
1207 static void irq_thread_set_ready(struct irq_desc *desc,
1208                                  struct irqaction *action)
1209 {
1210         set_bit(IRQTF_READY, &action->thread_flags);
1211         wake_up(&desc->wait_for_threads);
1212 }
1213
1214 /*
1215  * Internal function to wake up a interrupt thread and wait until it is
1216  * ready.
1217  */
1218 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1219                                                   struct irqaction *action)
1220 {
1221         if (!action || !action->thread)
1222                 return;
1223
1224         wake_up_process(action->thread);
1225         wait_event(desc->wait_for_threads,
1226                    test_bit(IRQTF_READY, &action->thread_flags));
1227 }
1228
1229 /*
1230  * Interrupt handler thread
1231  */
1232 static int irq_thread(void *data)
1233 {
1234         struct callback_head on_exit_work;
1235         struct irqaction *action = data;
1236         struct irq_desc *desc = irq_to_desc(action->irq);
1237         irqreturn_t (*handler_fn)(struct irq_desc *desc,
1238                         struct irqaction *action);
1239
1240         irq_thread_set_ready(desc, action);
1241
1242         sched_set_fifo(current);
1243
1244         if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1245                                            &action->thread_flags))
1246                 handler_fn = irq_forced_thread_fn;
1247         else
1248                 handler_fn = irq_thread_fn;
1249
1250         init_task_work(&on_exit_work, irq_thread_dtor);
1251         task_work_add(current, &on_exit_work, TWA_NONE);
1252
1253         while (!irq_wait_for_interrupt(desc, action)) {
1254                 irqreturn_t action_ret;
1255
1256                 action_ret = handler_fn(desc, action);
1257                 if (action_ret == IRQ_WAKE_THREAD)
1258                         irq_wake_secondary(desc, action);
1259
1260                 wake_threads_waitq(desc);
1261         }
1262
1263         /*
1264          * This is the regular exit path. __free_irq() is stopping the
1265          * thread via kthread_stop() after calling
1266          * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1267          * oneshot mask bit can be set.
1268          */
1269         task_work_cancel_func(current, irq_thread_dtor);
1270         return 0;
1271 }
1272
1273 /**
1274  * irq_wake_thread - wake the irq thread for the action identified by dev_id
1275  * @irq:        Interrupt line
1276  * @dev_id:     Device identity for which the thread should be woken
1277  */
1278 void irq_wake_thread(unsigned int irq, void *dev_id)
1279 {
1280         struct irq_desc *desc = irq_to_desc(irq);
1281         struct irqaction *action;
1282
1283         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1284                 return;
1285
1286         guard(raw_spinlock_irqsave)(&desc->lock);
1287         for_each_action_of_desc(desc, action) {
1288                 if (action->dev_id == dev_id) {
1289                         if (action->thread)
1290                                 __irq_wake_thread(desc, action);
1291                         break;
1292                 }
1293         }
1294 }
1295 EXPORT_SYMBOL_GPL(irq_wake_thread);
1296
1297 static int irq_setup_forced_threading(struct irqaction *new)
1298 {
1299         if (!force_irqthreads())
1300                 return 0;
1301         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1302                 return 0;
1303
1304         /*
1305          * No further action required for interrupts which are requested as
1306          * threaded interrupts already
1307          */
1308         if (new->handler == irq_default_primary_handler)
1309                 return 0;
1310
1311         new->flags |= IRQF_ONESHOT;
1312
1313         /*
1314          * Handle the case where we have a real primary handler and a
1315          * thread handler. We force thread them as well by creating a
1316          * secondary action.
1317          */
1318         if (new->handler && new->thread_fn) {
1319                 /* Allocate the secondary action */
1320                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1321                 if (!new->secondary)
1322                         return -ENOMEM;
1323                 new->secondary->handler = irq_forced_secondary_handler;
1324                 new->secondary->thread_fn = new->thread_fn;
1325                 new->secondary->dev_id = new->dev_id;
1326                 new->secondary->irq = new->irq;
1327                 new->secondary->name = new->name;
1328         }
1329         /* Deal with the primary handler */
1330         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1331         new->thread_fn = new->handler;
1332         new->handler = irq_default_primary_handler;
1333         return 0;
1334 }
1335
1336 static int irq_request_resources(struct irq_desc *desc)
1337 {
1338         struct irq_data *d = &desc->irq_data;
1339         struct irq_chip *c = d->chip;
1340
1341         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1342 }
1343
1344 static void irq_release_resources(struct irq_desc *desc)
1345 {
1346         struct irq_data *d = &desc->irq_data;
1347         struct irq_chip *c = d->chip;
1348
1349         if (c->irq_release_resources)
1350                 c->irq_release_resources(d);
1351 }
1352
1353 static bool irq_supports_nmi(struct irq_desc *desc)
1354 {
1355         struct irq_data *d = irq_desc_get_irq_data(desc);
1356
1357 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1358         /* Only IRQs directly managed by the root irqchip can be set as NMI */
1359         if (d->parent_data)
1360                 return false;
1361 #endif
1362         /* Don't support NMIs for chips behind a slow bus */
1363         if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1364                 return false;
1365
1366         return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1367 }
1368
1369 static int irq_nmi_setup(struct irq_desc *desc)
1370 {
1371         struct irq_data *d = irq_desc_get_irq_data(desc);
1372         struct irq_chip *c = d->chip;
1373
1374         return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1375 }
1376
1377 static void irq_nmi_teardown(struct irq_desc *desc)
1378 {
1379         struct irq_data *d = irq_desc_get_irq_data(desc);
1380         struct irq_chip *c = d->chip;
1381
1382         if (c->irq_nmi_teardown)
1383                 c->irq_nmi_teardown(d);
1384 }
1385
1386 static int
1387 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1388 {
1389         struct task_struct *t;
1390
1391         if (!secondary) {
1392                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1393                                    new->name);
1394         } else {
1395                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1396                                    new->name);
1397         }
1398
1399         if (IS_ERR(t))
1400                 return PTR_ERR(t);
1401
1402         /*
1403          * We keep the reference to the task struct even if
1404          * the thread dies to avoid that the interrupt code
1405          * references an already freed task_struct.
1406          */
1407         new->thread = get_task_struct(t);
1408         /*
1409          * Tell the thread to set its affinity. This is
1410          * important for shared interrupt handlers as we do
1411          * not invoke setup_affinity() for the secondary
1412          * handlers as everything is already set up. Even for
1413          * interrupts marked with IRQF_NO_BALANCE this is
1414          * correct as we want the thread to move to the cpu(s)
1415          * on which the requesting code placed the interrupt.
1416          */
1417         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1418         return 0;
1419 }
1420
1421 /*
1422  * Internal function to register an irqaction - typically used to
1423  * allocate special interrupts that are part of the architecture.
1424  *
1425  * Locking rules:
1426  *
1427  * desc->request_mutex  Provides serialization against a concurrent free_irq()
1428  *   chip_bus_lock      Provides serialization for slow bus operations
1429  *     desc->lock       Provides serialization against hard interrupts
1430  *
1431  * chip_bus_lock and desc->lock are sufficient for all other management and
1432  * interrupt related functions. desc->request_mutex solely serializes
1433  * request/free_irq().
1434  */
1435 static int
1436 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1437 {
1438         struct irqaction *old, **old_ptr;
1439         unsigned long flags, thread_mask = 0;
1440         int ret, nested, shared = 0;
1441
1442         if (!desc)
1443                 return -EINVAL;
1444
1445         if (desc->irq_data.chip == &no_irq_chip)
1446                 return -ENOSYS;
1447         if (!try_module_get(desc->owner))
1448                 return -ENODEV;
1449
1450         new->irq = irq;
1451
1452         /*
1453          * If the trigger type is not specified by the caller,
1454          * then use the default for this interrupt.
1455          */
1456         if (!(new->flags & IRQF_TRIGGER_MASK))
1457                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1458
1459         /*
1460          * Check whether the interrupt nests into another interrupt
1461          * thread.
1462          */
1463         nested = irq_settings_is_nested_thread(desc);
1464         if (nested) {
1465                 if (!new->thread_fn) {
1466                         ret = -EINVAL;
1467                         goto out_mput;
1468                 }
1469                 /*
1470                  * Replace the primary handler which was provided from
1471                  * the driver for non nested interrupt handling by the
1472                  * dummy function which warns when called.
1473                  */
1474                 new->handler = irq_nested_primary_handler;
1475         } else {
1476                 if (irq_settings_can_thread(desc)) {
1477                         ret = irq_setup_forced_threading(new);
1478                         if (ret)
1479                                 goto out_mput;
1480                 }
1481         }
1482
1483         /*
1484          * Create a handler thread when a thread function is supplied
1485          * and the interrupt does not nest into another interrupt
1486          * thread.
1487          */
1488         if (new->thread_fn && !nested) {
1489                 ret = setup_irq_thread(new, irq, false);
1490                 if (ret)
1491                         goto out_mput;
1492                 if (new->secondary) {
1493                         ret = setup_irq_thread(new->secondary, irq, true);
1494                         if (ret)
1495                                 goto out_thread;
1496                 }
1497         }
1498
1499         /*
1500          * Drivers are often written to work w/o knowledge about the
1501          * underlying irq chip implementation, so a request for a
1502          * threaded irq without a primary hard irq context handler
1503          * requires the ONESHOT flag to be set. Some irq chips like
1504          * MSI based interrupts are per se one shot safe. Check the
1505          * chip flags, so we can avoid the unmask dance at the end of
1506          * the threaded handler for those.
1507          */
1508         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1509                 new->flags &= ~IRQF_ONESHOT;
1510
1511         /*
1512          * Protects against a concurrent __free_irq() call which might wait
1513          * for synchronize_hardirq() to complete without holding the optional
1514          * chip bus lock and desc->lock. Also protects against handing out
1515          * a recycled oneshot thread_mask bit while it's still in use by
1516          * its previous owner.
1517          */
1518         mutex_lock(&desc->request_mutex);
1519
1520         /*
1521          * Acquire bus lock as the irq_request_resources() callback below
1522          * might rely on the serialization or the magic power management
1523          * functions which are abusing the irq_bus_lock() callback,
1524          */
1525         chip_bus_lock(desc);
1526
1527         /* First installed action requests resources. */
1528         if (!desc->action) {
1529                 ret = irq_request_resources(desc);
1530                 if (ret) {
1531                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1532                                new->name, irq, desc->irq_data.chip->name);
1533                         goto out_bus_unlock;
1534                 }
1535         }
1536
1537         /*
1538          * The following block of code has to be executed atomically
1539          * protected against a concurrent interrupt and any of the other
1540          * management calls which are not serialized via
1541          * desc->request_mutex or the optional bus lock.
1542          */
1543         raw_spin_lock_irqsave(&desc->lock, flags);
1544         old_ptr = &desc->action;
1545         old = *old_ptr;
1546         if (old) {
1547                 /*
1548                  * Can't share interrupts unless both agree to and are
1549                  * the same type (level, edge, polarity). So both flag
1550                  * fields must have IRQF_SHARED set and the bits which
1551                  * set the trigger type must match. Also all must
1552                  * agree on ONESHOT.
1553                  * Interrupt lines used for NMIs cannot be shared.
1554                  */
1555                 unsigned int oldtype;
1556
1557                 if (irq_is_nmi(desc)) {
1558                         pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1559                                 new->name, irq, desc->irq_data.chip->name);
1560                         ret = -EINVAL;
1561                         goto out_unlock;
1562                 }
1563
1564                 /*
1565                  * If nobody did set the configuration before, inherit
1566                  * the one provided by the requester.
1567                  */
1568                 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1569                         oldtype = irqd_get_trigger_type(&desc->irq_data);
1570                 } else {
1571                         oldtype = new->flags & IRQF_TRIGGER_MASK;
1572                         irqd_set_trigger_type(&desc->irq_data, oldtype);
1573                 }
1574
1575                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1576                     (oldtype != (new->flags & IRQF_TRIGGER_MASK)))
1577                         goto mismatch;
1578
1579                 if ((old->flags & IRQF_ONESHOT) &&
1580                     (new->flags & IRQF_COND_ONESHOT))
1581                         new->flags |= IRQF_ONESHOT;
1582                 else if ((old->flags ^ new->flags) & IRQF_ONESHOT)
1583                         goto mismatch;
1584
1585                 /* All handlers must agree on per-cpuness */
1586                 if ((old->flags & IRQF_PERCPU) !=
1587                     (new->flags & IRQF_PERCPU))
1588                         goto mismatch;
1589
1590                 /* add new interrupt at end of irq queue */
1591                 do {
1592                         /*
1593                          * Or all existing action->thread_mask bits,
1594                          * so we can find the next zero bit for this
1595                          * new action.
1596                          */
1597                         thread_mask |= old->thread_mask;
1598                         old_ptr = &old->next;
1599                         old = *old_ptr;
1600                 } while (old);
1601                 shared = 1;
1602         }
1603
1604         /*
1605          * Setup the thread mask for this irqaction for ONESHOT. For
1606          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1607          * conditional in irq_wake_thread().
1608          */
1609         if (new->flags & IRQF_ONESHOT) {
1610                 /*
1611                  * Unlikely to have 32 resp 64 irqs sharing one line,
1612                  * but who knows.
1613                  */
1614                 if (thread_mask == ~0UL) {
1615                         ret = -EBUSY;
1616                         goto out_unlock;
1617                 }
1618                 /*
1619                  * The thread_mask for the action is or'ed to
1620                  * desc->thread_active to indicate that the
1621                  * IRQF_ONESHOT thread handler has been woken, but not
1622                  * yet finished. The bit is cleared when a thread
1623                  * completes. When all threads of a shared interrupt
1624                  * line have completed desc->threads_active becomes
1625                  * zero and the interrupt line is unmasked. See
1626                  * handle.c:irq_wake_thread() for further information.
1627                  *
1628                  * If no thread is woken by primary (hard irq context)
1629                  * interrupt handlers, then desc->threads_active is
1630                  * also checked for zero to unmask the irq line in the
1631                  * affected hard irq flow handlers
1632                  * (handle_[fasteoi|level]_irq).
1633                  *
1634                  * The new action gets the first zero bit of
1635                  * thread_mask assigned. See the loop above which or's
1636                  * all existing action->thread_mask bits.
1637                  */
1638                 new->thread_mask = 1UL << ffz(thread_mask);
1639
1640         } else if (new->handler == irq_default_primary_handler &&
1641                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1642                 /*
1643                  * The interrupt was requested with handler = NULL, so
1644                  * we use the default primary handler for it. But it
1645                  * does not have the oneshot flag set. In combination
1646                  * with level interrupts this is deadly, because the
1647                  * default primary handler just wakes the thread, then
1648                  * the irq lines is reenabled, but the device still
1649                  * has the level irq asserted. Rinse and repeat....
1650                  *
1651                  * While this works for edge type interrupts, we play
1652                  * it safe and reject unconditionally because we can't
1653                  * say for sure which type this interrupt really
1654                  * has. The type flags are unreliable as the
1655                  * underlying chip implementation can override them.
1656                  */
1657                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1658                        new->name, irq);
1659                 ret = -EINVAL;
1660                 goto out_unlock;
1661         }
1662
1663         if (!shared) {
1664                 /* Setup the type (level, edge polarity) if configured: */
1665                 if (new->flags & IRQF_TRIGGER_MASK) {
1666                         ret = __irq_set_trigger(desc,
1667                                                 new->flags & IRQF_TRIGGER_MASK);
1668
1669                         if (ret)
1670                                 goto out_unlock;
1671                 }
1672
1673                 /*
1674                  * Activate the interrupt. That activation must happen
1675                  * independently of IRQ_NOAUTOEN. request_irq() can fail
1676                  * and the callers are supposed to handle
1677                  * that. enable_irq() of an interrupt requested with
1678                  * IRQ_NOAUTOEN is not supposed to fail. The activation
1679                  * keeps it in shutdown mode, it merily associates
1680                  * resources if necessary and if that's not possible it
1681                  * fails. Interrupts which are in managed shutdown mode
1682                  * will simply ignore that activation request.
1683                  */
1684                 ret = irq_activate(desc);
1685                 if (ret)
1686                         goto out_unlock;
1687
1688                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1689                                   IRQS_ONESHOT | IRQS_WAITING);
1690                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1691
1692                 if (new->flags & IRQF_PERCPU) {
1693                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1694                         irq_settings_set_per_cpu(desc);
1695                         if (new->flags & IRQF_NO_DEBUG)
1696                                 irq_settings_set_no_debug(desc);
1697                 }
1698
1699                 if (noirqdebug)
1700                         irq_settings_set_no_debug(desc);
1701
1702                 if (new->flags & IRQF_ONESHOT)
1703                         desc->istate |= IRQS_ONESHOT;
1704
1705                 /* Exclude IRQ from balancing if requested */
1706                 if (new->flags & IRQF_NOBALANCING) {
1707                         irq_settings_set_no_balancing(desc);
1708                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1709                 }
1710
1711                 if (!(new->flags & IRQF_NO_AUTOEN) &&
1712                     irq_settings_can_autoenable(desc)) {
1713                         irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1714                 } else {
1715                         /*
1716                          * Shared interrupts do not go well with disabling
1717                          * auto enable. The sharing interrupt might request
1718                          * it while it's still disabled and then wait for
1719                          * interrupts forever.
1720                          */
1721                         WARN_ON_ONCE(new->flags & IRQF_SHARED);
1722                         /* Undo nested disables: */
1723                         desc->depth = 1;
1724                 }
1725
1726         } else if (new->flags & IRQF_TRIGGER_MASK) {
1727                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1728                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1729
1730                 if (nmsk != omsk)
1731                         /* hope the handler works with current  trigger mode */
1732                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1733                                 irq, omsk, nmsk);
1734         }
1735
1736         *old_ptr = new;
1737
1738         irq_pm_install_action(desc, new);
1739
1740         /* Reset broken irq detection when installing new handler */
1741         desc->irq_count = 0;
1742         desc->irqs_unhandled = 0;
1743
1744         /*
1745          * Check whether we disabled the irq via the spurious handler
1746          * before. Reenable it and give it another chance.
1747          */
1748         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1749                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1750                 __enable_irq(desc);
1751         }
1752
1753         raw_spin_unlock_irqrestore(&desc->lock, flags);
1754         chip_bus_sync_unlock(desc);
1755         mutex_unlock(&desc->request_mutex);
1756
1757         irq_setup_timings(desc, new);
1758
1759         wake_up_and_wait_for_irq_thread_ready(desc, new);
1760         wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1761
1762         register_irq_proc(irq, desc);
1763         new->dir = NULL;
1764         register_handler_proc(irq, new);
1765         return 0;
1766
1767 mismatch:
1768         if (!(new->flags & IRQF_PROBE_SHARED)) {
1769                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1770                        irq, new->flags, new->name, old->flags, old->name);
1771 #ifdef CONFIG_DEBUG_SHIRQ
1772                 dump_stack();
1773 #endif
1774         }
1775         ret = -EBUSY;
1776
1777 out_unlock:
1778         raw_spin_unlock_irqrestore(&desc->lock, flags);
1779
1780         if (!desc->action)
1781                 irq_release_resources(desc);
1782 out_bus_unlock:
1783         chip_bus_sync_unlock(desc);
1784         mutex_unlock(&desc->request_mutex);
1785
1786 out_thread:
1787         if (new->thread) {
1788                 struct task_struct *t = new->thread;
1789
1790                 new->thread = NULL;
1791                 kthread_stop_put(t);
1792         }
1793         if (new->secondary && new->secondary->thread) {
1794                 struct task_struct *t = new->secondary->thread;
1795
1796                 new->secondary->thread = NULL;
1797                 kthread_stop_put(t);
1798         }
1799 out_mput:
1800         module_put(desc->owner);
1801         return ret;
1802 }
1803
1804 /*
1805  * Internal function to unregister an irqaction - used to free
1806  * regular and special interrupts that are part of the architecture.
1807  */
1808 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1809 {
1810         unsigned irq = desc->irq_data.irq;
1811         struct irqaction *action, **action_ptr;
1812         unsigned long flags;
1813
1814         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1815
1816         mutex_lock(&desc->request_mutex);
1817         chip_bus_lock(desc);
1818         raw_spin_lock_irqsave(&desc->lock, flags);
1819
1820         /*
1821          * There can be multiple actions per IRQ descriptor, find the right
1822          * one based on the dev_id:
1823          */
1824         action_ptr = &desc->action;
1825         for (;;) {
1826                 action = *action_ptr;
1827
1828                 if (!action) {
1829                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1830                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1831                         chip_bus_sync_unlock(desc);
1832                         mutex_unlock(&desc->request_mutex);
1833                         return NULL;
1834                 }
1835
1836                 if (action->dev_id == dev_id)
1837                         break;
1838                 action_ptr = &action->next;
1839         }
1840
1841         /* Found it - now remove it from the list of entries: */
1842         *action_ptr = action->next;
1843
1844         irq_pm_remove_action(desc, action);
1845
1846         /* If this was the last handler, shut down the IRQ line: */
1847         if (!desc->action) {
1848                 irq_settings_clr_disable_unlazy(desc);
1849                 /* Only shutdown. Deactivate after synchronize_hardirq() */
1850                 irq_shutdown(desc);
1851         }
1852
1853 #ifdef CONFIG_SMP
1854         /* make sure affinity_hint is cleaned up */
1855         if (WARN_ON_ONCE(desc->affinity_hint))
1856                 desc->affinity_hint = NULL;
1857 #endif
1858
1859         raw_spin_unlock_irqrestore(&desc->lock, flags);
1860         /*
1861          * Drop bus_lock here so the changes which were done in the chip
1862          * callbacks above are synced out to the irq chips which hang
1863          * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1864          *
1865          * Aside of that the bus_lock can also be taken from the threaded
1866          * handler in irq_finalize_oneshot() which results in a deadlock
1867          * because kthread_stop() would wait forever for the thread to
1868          * complete, which is blocked on the bus lock.
1869          *
1870          * The still held desc->request_mutex() protects against a
1871          * concurrent request_irq() of this irq so the release of resources
1872          * and timing data is properly serialized.
1873          */
1874         chip_bus_sync_unlock(desc);
1875
1876         unregister_handler_proc(irq, action);
1877
1878         /*
1879          * Make sure it's not being used on another CPU and if the chip
1880          * supports it also make sure that there is no (not yet serviced)
1881          * interrupt in flight at the hardware level.
1882          */
1883         __synchronize_irq(desc);
1884
1885 #ifdef CONFIG_DEBUG_SHIRQ
1886         /*
1887          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1888          * event to happen even now it's being freed, so let's make sure that
1889          * is so by doing an extra call to the handler ....
1890          *
1891          * ( We do this after actually deregistering it, to make sure that a
1892          *   'real' IRQ doesn't run in parallel with our fake. )
1893          */
1894         if (action->flags & IRQF_SHARED) {
1895                 local_irq_save(flags);
1896                 action->handler(irq, dev_id);
1897                 local_irq_restore(flags);
1898         }
1899 #endif
1900
1901         /*
1902          * The action has already been removed above, but the thread writes
1903          * its oneshot mask bit when it completes. Though request_mutex is
1904          * held across this which prevents __setup_irq() from handing out
1905          * the same bit to a newly requested action.
1906          */
1907         if (action->thread) {
1908                 kthread_stop_put(action->thread);
1909                 if (action->secondary && action->secondary->thread)
1910                         kthread_stop_put(action->secondary->thread);
1911         }
1912
1913         /* Last action releases resources */
1914         if (!desc->action) {
1915                 /*
1916                  * Reacquire bus lock as irq_release_resources() might
1917                  * require it to deallocate resources over the slow bus.
1918                  */
1919                 chip_bus_lock(desc);
1920                 /*
1921                  * There is no interrupt on the fly anymore. Deactivate it
1922                  * completely.
1923                  */
1924                 scoped_guard(raw_spinlock_irqsave, &desc->lock)
1925                         irq_domain_deactivate_irq(&desc->irq_data);
1926
1927                 irq_release_resources(desc);
1928                 chip_bus_sync_unlock(desc);
1929                 irq_remove_timings(desc);
1930         }
1931
1932         mutex_unlock(&desc->request_mutex);
1933
1934         irq_chip_pm_put(&desc->irq_data);
1935         module_put(desc->owner);
1936         kfree(action->secondary);
1937         return action;
1938 }
1939
1940 /**
1941  * free_irq - free an interrupt allocated with request_irq
1942  * @irq:        Interrupt line to free
1943  * @dev_id:     Device identity to free
1944  *
1945  * Remove an interrupt handler. The handler is removed and if the interrupt
1946  * line is no longer in use by any driver it is disabled.  On a shared IRQ
1947  * the caller must ensure the interrupt is disabled on the card it drives
1948  * before calling this function. The function does not return until any
1949  * executing interrupts for this IRQ have completed.
1950  *
1951  * This function must not be called from interrupt context.
1952  *
1953  * Returns the devname argument passed to request_irq.
1954  */
1955 const void *free_irq(unsigned int irq, void *dev_id)
1956 {
1957         struct irq_desc *desc = irq_to_desc(irq);
1958         struct irqaction *action;
1959         const char *devname;
1960
1961         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1962                 return NULL;
1963
1964 #ifdef CONFIG_SMP
1965         if (WARN_ON(desc->affinity_notify))
1966                 desc->affinity_notify = NULL;
1967 #endif
1968
1969         action = __free_irq(desc, dev_id);
1970
1971         if (!action)
1972                 return NULL;
1973
1974         devname = action->name;
1975         kfree(action);
1976         return devname;
1977 }
1978 EXPORT_SYMBOL(free_irq);
1979
1980 /* This function must be called with desc->lock held */
1981 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1982 {
1983         const char *devname = NULL;
1984
1985         desc->istate &= ~IRQS_NMI;
1986
1987         if (!WARN_ON(desc->action == NULL)) {
1988                 irq_pm_remove_action(desc, desc->action);
1989                 devname = desc->action->name;
1990                 unregister_handler_proc(irq, desc->action);
1991
1992                 kfree(desc->action);
1993                 desc->action = NULL;
1994         }
1995
1996         irq_settings_clr_disable_unlazy(desc);
1997         irq_shutdown_and_deactivate(desc);
1998
1999         irq_release_resources(desc);
2000
2001         irq_chip_pm_put(&desc->irq_data);
2002         module_put(desc->owner);
2003
2004         return devname;
2005 }
2006
2007 const void *free_nmi(unsigned int irq, void *dev_id)
2008 {
2009         struct irq_desc *desc = irq_to_desc(irq);
2010
2011         if (!desc || WARN_ON(!irq_is_nmi(desc)))
2012                 return NULL;
2013
2014         if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2015                 return NULL;
2016
2017         /* NMI still enabled */
2018         if (WARN_ON(desc->depth == 0))
2019                 disable_nmi_nosync(irq);
2020
2021         guard(raw_spinlock_irqsave)(&desc->lock);
2022         irq_nmi_teardown(desc);
2023         return __cleanup_nmi(irq, desc);
2024 }
2025
2026 /**
2027  * request_threaded_irq - allocate an interrupt line
2028  * @irq:        Interrupt line to allocate
2029  * @handler:    Function to be called when the IRQ occurs.
2030  *              Primary handler for threaded interrupts.
2031  *              If handler is NULL and thread_fn != NULL
2032  *              the default primary handler is installed.
2033  * @thread_fn:  Function called from the irq handler thread
2034  *              If NULL, no irq thread is created
2035  * @irqflags:   Interrupt type flags
2036  * @devname:    An ascii name for the claiming device
2037  * @dev_id:     A cookie passed back to the handler function
2038  *
2039  * This call allocates interrupt resources and enables the interrupt line
2040  * and IRQ handling. From the point this call is made your handler function
2041  * may be invoked. Since your handler function must clear any interrupt the
2042  * board raises, you must take care both to initialise your hardware and to
2043  * set up the interrupt handler in the right order.
2044  *
2045  * If you want to set up a threaded irq handler for your device then you
2046  * need to supply @handler and @thread_fn. @handler is still called in hard
2047  * interrupt context and has to check whether the interrupt originates from
2048  * the device. If yes it needs to disable the interrupt on the device and
2049  * return IRQ_WAKE_THREAD which will wake up the handler thread and run
2050  * @thread_fn. This split handler design is necessary to support shared
2051  * interrupts.
2052  *
2053  * @dev_id must be globally unique. Normally the address of the device data
2054  * structure is used as the cookie. Since the handler receives this value
2055  * it makes sense to use it.
2056  *
2057  * If your interrupt is shared you must pass a non NULL dev_id as this is
2058  * required when freeing the interrupt.
2059  *
2060  * Flags:
2061  *
2062  *      IRQF_SHARED             Interrupt is shared
2063  *      IRQF_TRIGGER_*          Specify active edge(s) or level
2064  *      IRQF_ONESHOT            Run thread_fn with interrupt line masked
2065  */
2066 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2067                          irq_handler_t thread_fn, unsigned long irqflags,
2068                          const char *devname, void *dev_id)
2069 {
2070         struct irqaction *action;
2071         struct irq_desc *desc;
2072         int retval;
2073
2074         if (irq == IRQ_NOTCONNECTED)
2075                 return -ENOTCONN;
2076
2077         /*
2078          * Sanity-check: shared interrupts must pass in a real dev-ID,
2079          * otherwise we'll have trouble later trying to figure out
2080          * which interrupt is which (messes up the interrupt freeing
2081          * logic etc).
2082          *
2083          * Also shared interrupts do not go well with disabling auto enable.
2084          * The sharing interrupt might request it while it's still disabled
2085          * and then wait for interrupts forever.
2086          *
2087          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2088          * it cannot be set along with IRQF_NO_SUSPEND.
2089          */
2090         if (((irqflags & IRQF_SHARED) && !dev_id) ||
2091             ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2092             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2093             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2094                 return -EINVAL;
2095
2096         desc = irq_to_desc(irq);
2097         if (!desc)
2098                 return -EINVAL;
2099
2100         if (!irq_settings_can_request(desc) ||
2101             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2102                 return -EINVAL;
2103
2104         if (!handler) {
2105                 if (!thread_fn)
2106                         return -EINVAL;
2107                 handler = irq_default_primary_handler;
2108         }
2109
2110         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2111         if (!action)
2112                 return -ENOMEM;
2113
2114         action->handler = handler;
2115         action->thread_fn = thread_fn;
2116         action->flags = irqflags;
2117         action->name = devname;
2118         action->dev_id = dev_id;
2119
2120         retval = irq_chip_pm_get(&desc->irq_data);
2121         if (retval < 0) {
2122                 kfree(action);
2123                 return retval;
2124         }
2125
2126         retval = __setup_irq(irq, desc, action);
2127
2128         if (retval) {
2129                 irq_chip_pm_put(&desc->irq_data);
2130                 kfree(action->secondary);
2131                 kfree(action);
2132         }
2133
2134 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2135         if (!retval && (irqflags & IRQF_SHARED)) {
2136                 /*
2137                  * It's a shared IRQ -- the driver ought to be prepared for it
2138                  * to happen immediately, so let's make sure....
2139                  * We disable the irq to make sure that a 'real' IRQ doesn't
2140                  * run in parallel with our fake.
2141                  */
2142                 unsigned long flags;
2143
2144                 disable_irq(irq);
2145                 local_irq_save(flags);
2146
2147                 handler(irq, dev_id);
2148
2149                 local_irq_restore(flags);
2150                 enable_irq(irq);
2151         }
2152 #endif
2153         return retval;
2154 }
2155 EXPORT_SYMBOL(request_threaded_irq);
2156
2157 /**
2158  * request_any_context_irq - allocate an interrupt line
2159  * @irq:        Interrupt line to allocate
2160  * @handler:    Function to be called when the IRQ occurs.
2161  *              Threaded handler for threaded interrupts.
2162  * @flags:      Interrupt type flags
2163  * @name:       An ascii name for the claiming device
2164  * @dev_id:     A cookie passed back to the handler function
2165  *
2166  * This call allocates interrupt resources and enables the interrupt line
2167  * and IRQ handling. It selects either a hardirq or threaded handling
2168  * method depending on the context.
2169  *
2170  * Returns: On failure, it returns a negative value. On success, it returns either
2171  * IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2172  */
2173 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2174                             unsigned long flags, const char *name, void *dev_id)
2175 {
2176         struct irq_desc *desc;
2177         int ret;
2178
2179         if (irq == IRQ_NOTCONNECTED)
2180                 return -ENOTCONN;
2181
2182         desc = irq_to_desc(irq);
2183         if (!desc)
2184                 return -EINVAL;
2185
2186         if (irq_settings_is_nested_thread(desc)) {
2187                 ret = request_threaded_irq(irq, NULL, handler,
2188                                            flags, name, dev_id);
2189                 return !ret ? IRQC_IS_NESTED : ret;
2190         }
2191
2192         ret = request_irq(irq, handler, flags, name, dev_id);
2193         return !ret ? IRQC_IS_HARDIRQ : ret;
2194 }
2195 EXPORT_SYMBOL_GPL(request_any_context_irq);
2196
2197 /**
2198  * request_nmi - allocate an interrupt line for NMI delivery
2199  * @irq:        Interrupt line to allocate
2200  * @handler:    Function to be called when the IRQ occurs.
2201  *              Threaded handler for threaded interrupts.
2202  * @irqflags:   Interrupt type flags
2203  * @name:       An ascii name for the claiming device
2204  * @dev_id:     A cookie passed back to the handler function
2205  *
2206  * This call allocates interrupt resources and enables the interrupt line
2207  * and IRQ handling. It sets up the IRQ line to be handled as an NMI.
2208  *
2209  * An interrupt line delivering NMIs cannot be shared and IRQ handling
2210  * cannot be threaded.
2211  *
2212  * Interrupt lines requested for NMI delivering must produce per cpu
2213  * interrupts and have auto enabling setting disabled.
2214  *
2215  * @dev_id must be globally unique. Normally the address of the device data
2216  * structure is used as the cookie. Since the handler receives this value
2217  * it makes sense to use it.
2218  *
2219  * If the interrupt line cannot be used to deliver NMIs, function will fail
2220  * and return a negative value.
2221  */
2222 int request_nmi(unsigned int irq, irq_handler_t handler,
2223                 unsigned long irqflags, const char *name, void *dev_id)
2224 {
2225         struct irqaction *action;
2226         struct irq_desc *desc;
2227         int retval;
2228
2229         if (irq == IRQ_NOTCONNECTED)
2230                 return -ENOTCONN;
2231
2232         /* NMI cannot be shared, used for Polling */
2233         if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2234                 return -EINVAL;
2235
2236         if (!(irqflags & IRQF_PERCPU))
2237                 return -EINVAL;
2238
2239         if (!handler)
2240                 return -EINVAL;
2241
2242         desc = irq_to_desc(irq);
2243
2244         if (!desc || (irq_settings_can_autoenable(desc) &&
2245             !(irqflags & IRQF_NO_AUTOEN)) ||
2246             !irq_settings_can_request(desc) ||
2247             WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2248             !irq_supports_nmi(desc))
2249                 return -EINVAL;
2250
2251         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2252         if (!action)
2253                 return -ENOMEM;
2254
2255         action->handler = handler;
2256         action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2257         action->name = name;
2258         action->dev_id = dev_id;
2259
2260         retval = irq_chip_pm_get(&desc->irq_data);
2261         if (retval < 0)
2262                 goto err_out;
2263
2264         retval = __setup_irq(irq, desc, action);
2265         if (retval)
2266                 goto err_irq_setup;
2267
2268         scoped_guard(raw_spinlock_irqsave, &desc->lock) {
2269                 /* Setup NMI state */
2270                 desc->istate |= IRQS_NMI;
2271                 retval = irq_nmi_setup(desc);
2272                 if (retval) {
2273                         __cleanup_nmi(irq, desc);
2274                         return -EINVAL;
2275                 }
2276                 return 0;
2277         }
2278
2279 err_irq_setup:
2280         irq_chip_pm_put(&desc->irq_data);
2281 err_out:
2282         kfree(action);
2283
2284         return retval;
2285 }
2286
2287 void enable_percpu_irq(unsigned int irq, unsigned int type)
2288 {
2289         scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) {
2290                 struct irq_desc *desc = scoped_irqdesc;
2291
2292                 /*
2293                  * If the trigger type is not specified by the caller, then
2294                  * use the default for this interrupt.
2295                  */
2296                 type &= IRQ_TYPE_SENSE_MASK;
2297                 if (type == IRQ_TYPE_NONE)
2298                         type = irqd_get_trigger_type(&desc->irq_data);
2299
2300                 if (type != IRQ_TYPE_NONE) {
2301                         if (__irq_set_trigger(desc, type)) {
2302                                 WARN(1, "failed to set type for IRQ%d\n", irq);
2303                                 return;
2304                         }
2305                 }
2306                 irq_percpu_enable(desc, smp_processor_id());
2307         }
2308 }
2309 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2310
2311 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2312 {
2313         enable_percpu_irq(irq, type);
2314 }
2315
2316 /**
2317  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2318  * @irq:        Linux irq number to check for
2319  *
2320  * Must be called from a non migratable context. Returns the enable
2321  * state of a per cpu interrupt on the current cpu.
2322  */
2323 bool irq_percpu_is_enabled(unsigned int irq)
2324 {
2325         scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU)
2326                 return cpumask_test_cpu(smp_processor_id(), scoped_irqdesc->percpu_enabled);
2327         return false;
2328 }
2329 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2330
2331 void disable_percpu_irq(unsigned int irq)
2332 {
2333         scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU)
2334                 irq_percpu_disable(scoped_irqdesc, smp_processor_id());
2335 }
2336 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2337
2338 void disable_percpu_nmi(unsigned int irq)
2339 {
2340         disable_percpu_irq(irq);
2341 }
2342
2343 /*
2344  * Internal function to unregister a percpu irqaction.
2345  */
2346 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2347 {
2348         struct irq_desc *desc = irq_to_desc(irq);
2349         struct irqaction *action;
2350
2351         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2352
2353         if (!desc)
2354                 return NULL;
2355
2356         scoped_guard(raw_spinlock_irqsave, &desc->lock) {
2357                 action = desc->action;
2358                 if (!action || action->percpu_dev_id != dev_id) {
2359                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
2360                         return NULL;
2361                 }
2362
2363                 if (!cpumask_empty(desc->percpu_enabled)) {
2364                         WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2365                              irq, cpumask_first(desc->percpu_enabled));
2366                         return NULL;
2367                 }
2368
2369                 /* Found it - now remove it from the list of entries: */
2370                 desc->action = NULL;
2371                 desc->istate &= ~IRQS_NMI;
2372         }
2373
2374         unregister_handler_proc(irq, action);
2375         irq_chip_pm_put(&desc->irq_data);
2376         module_put(desc->owner);
2377         return action;
2378 }
2379
2380 /**
2381  * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2382  * @irq:        Interrupt line to free
2383  * @dev_id:     Device identity to free
2384  *
2385  * Remove a percpu interrupt handler. The handler is removed, but the
2386  * interrupt line is not disabled. This must be done on each CPU before
2387  * calling this function. The function does not return until any executing
2388  * interrupts for this IRQ have completed.
2389  *
2390  * This function must not be called from interrupt context.
2391  */
2392 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2393 {
2394         struct irq_desc *desc = irq_to_desc(irq);
2395
2396         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2397                 return;
2398
2399         chip_bus_lock(desc);
2400         kfree(__free_percpu_irq(irq, dev_id));
2401         chip_bus_sync_unlock(desc);
2402 }
2403 EXPORT_SYMBOL_GPL(free_percpu_irq);
2404
2405 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2406 {
2407         struct irq_desc *desc = irq_to_desc(irq);
2408
2409         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2410                 return;
2411
2412         if (WARN_ON(!irq_is_nmi(desc)))
2413                 return;
2414
2415         kfree(__free_percpu_irq(irq, dev_id));
2416 }
2417
2418 /**
2419  * setup_percpu_irq - setup a per-cpu interrupt
2420  * @irq:        Interrupt line to setup
2421  * @act:        irqaction for the interrupt
2422  *
2423  * Used to statically setup per-cpu interrupts in the early boot process.
2424  */
2425 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2426 {
2427         struct irq_desc *desc = irq_to_desc(irq);
2428         int retval;
2429
2430         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2431                 return -EINVAL;
2432
2433         retval = irq_chip_pm_get(&desc->irq_data);
2434         if (retval < 0)
2435                 return retval;
2436
2437         retval = __setup_irq(irq, desc, act);
2438
2439         if (retval)
2440                 irq_chip_pm_put(&desc->irq_data);
2441
2442         return retval;
2443 }
2444
2445 /**
2446  * __request_percpu_irq - allocate a percpu interrupt line
2447  * @irq:        Interrupt line to allocate
2448  * @handler:    Function to be called when the IRQ occurs.
2449  * @flags:      Interrupt type flags (IRQF_TIMER only)
2450  * @devname:    An ascii name for the claiming device
2451  * @dev_id:     A percpu cookie passed back to the handler function
2452  *
2453  * This call allocates interrupt resources and enables the interrupt on the
2454  * local CPU. If the interrupt is supposed to be enabled on other CPUs, it
2455  * has to be done on each CPU using enable_percpu_irq().
2456  *
2457  * @dev_id must be globally unique. It is a per-cpu variable, and
2458  * the handler gets called with the interrupted CPU's instance of
2459  * that variable.
2460  */
2461 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2462                          unsigned long flags, const char *devname,
2463                          void __percpu *dev_id)
2464 {
2465         struct irqaction *action;
2466         struct irq_desc *desc;
2467         int retval;
2468
2469         if (!dev_id)
2470                 return -EINVAL;
2471
2472         desc = irq_to_desc(irq);
2473         if (!desc || !irq_settings_can_request(desc) ||
2474             !irq_settings_is_per_cpu_devid(desc))
2475                 return -EINVAL;
2476
2477         if (flags && flags != IRQF_TIMER)
2478                 return -EINVAL;
2479
2480         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2481         if (!action)
2482                 return -ENOMEM;
2483
2484         action->handler = handler;
2485         action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2486         action->name = devname;
2487         action->percpu_dev_id = dev_id;
2488
2489         retval = irq_chip_pm_get(&desc->irq_data);
2490         if (retval < 0) {
2491                 kfree(action);
2492                 return retval;
2493         }
2494
2495         retval = __setup_irq(irq, desc, action);
2496
2497         if (retval) {
2498                 irq_chip_pm_put(&desc->irq_data);
2499                 kfree(action);
2500         }
2501
2502         return retval;
2503 }
2504 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2505
2506 /**
2507  * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2508  * @irq:        Interrupt line to allocate
2509  * @handler:    Function to be called when the IRQ occurs.
2510  * @name:       An ascii name for the claiming device
2511  * @dev_id:     A percpu cookie passed back to the handler function
2512  *
2513  * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2514  * have to be setup on each CPU by calling prepare_percpu_nmi() before
2515  * being enabled on the same CPU by using enable_percpu_nmi().
2516  *
2517  * @dev_id must be globally unique. It is a per-cpu variable, and the
2518  * handler gets called with the interrupted CPU's instance of that
2519  * variable.
2520  *
2521  * Interrupt lines requested for NMI delivering should have auto enabling
2522  * setting disabled.
2523  *
2524  * If the interrupt line cannot be used to deliver NMIs, function
2525  * will fail returning a negative value.
2526  */
2527 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2528                        const char *name, void __percpu *dev_id)
2529 {
2530         struct irqaction *action;
2531         struct irq_desc *desc;
2532         int retval;
2533
2534         if (!handler)
2535                 return -EINVAL;
2536
2537         desc = irq_to_desc(irq);
2538
2539         if (!desc || !irq_settings_can_request(desc) ||
2540             !irq_settings_is_per_cpu_devid(desc) ||
2541             irq_settings_can_autoenable(desc) ||
2542             !irq_supports_nmi(desc))
2543                 return -EINVAL;
2544
2545         /* The line cannot already be NMI */
2546         if (irq_is_nmi(desc))
2547                 return -EINVAL;
2548
2549         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2550         if (!action)
2551                 return -ENOMEM;
2552
2553         action->handler = handler;
2554         action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2555                 | IRQF_NOBALANCING;
2556         action->name = name;
2557         action->percpu_dev_id = dev_id;
2558
2559         retval = irq_chip_pm_get(&desc->irq_data);
2560         if (retval < 0)
2561                 goto err_out;
2562
2563         retval = __setup_irq(irq, desc, action);
2564         if (retval)
2565                 goto err_irq_setup;
2566
2567         scoped_guard(raw_spinlock_irqsave, &desc->lock)
2568                 desc->istate |= IRQS_NMI;
2569         return 0;
2570
2571 err_irq_setup:
2572         irq_chip_pm_put(&desc->irq_data);
2573 err_out:
2574         kfree(action);
2575
2576         return retval;
2577 }
2578
2579 /**
2580  * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2581  * @irq: Interrupt line to prepare for NMI delivery
2582  *
2583  * This call prepares an interrupt line to deliver NMI on the current CPU,
2584  * before that interrupt line gets enabled with enable_percpu_nmi().
2585  *
2586  * As a CPU local operation, this should be called from non-preemptible
2587  * context.
2588  *
2589  * If the interrupt line cannot be used to deliver NMIs, function will fail
2590  * returning a negative value.
2591  */
2592 int prepare_percpu_nmi(unsigned int irq)
2593 {
2594         int ret = -EINVAL;
2595
2596         WARN_ON(preemptible());
2597
2598         scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) {
2599                 if (WARN(!irq_is_nmi(scoped_irqdesc),
2600                          "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", irq))
2601                         return -EINVAL;
2602
2603                 ret = irq_nmi_setup(scoped_irqdesc);
2604                 if (ret)
2605                         pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2606         }
2607         return ret;
2608 }
2609
2610 /**
2611  * teardown_percpu_nmi - undoes NMI setup of IRQ line
2612  * @irq: Interrupt line from which CPU local NMI configuration should be removed
2613  *
2614  * This call undoes the setup done by prepare_percpu_nmi().
2615  *
2616  * IRQ line should not be enabled for the current CPU.
2617  * As a CPU local operation, this should be called from non-preemptible
2618  * context.
2619  */
2620 void teardown_percpu_nmi(unsigned int irq)
2621 {
2622         WARN_ON(preemptible());
2623
2624         scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) {
2625                 if (WARN_ON(!irq_is_nmi(scoped_irqdesc)))
2626                         return;
2627                 irq_nmi_teardown(scoped_irqdesc);
2628         }
2629 }
2630
2631 static int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, bool *state)
2632 {
2633         struct irq_chip *chip;
2634         int err = -EINVAL;
2635
2636         do {
2637                 chip = irq_data_get_irq_chip(data);
2638                 if (WARN_ON_ONCE(!chip))
2639                         return -ENODEV;
2640                 if (chip->irq_get_irqchip_state)
2641                         break;
2642 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2643                 data = data->parent_data;
2644 #else
2645                 data = NULL;
2646 #endif
2647         } while (data);
2648
2649         if (data)
2650                 err = chip->irq_get_irqchip_state(data, which, state);
2651         return err;
2652 }
2653
2654 /**
2655  * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2656  * @irq:        Interrupt line that is forwarded to a VM
2657  * @which:      One of IRQCHIP_STATE_* the caller wants to know about
2658  * @state:      a pointer to a boolean where the state is to be stored
2659  *
2660  * This call snapshots the internal irqchip state of an interrupt,
2661  * returning into @state the bit corresponding to stage @which
2662  *
2663  * This function should be called with preemption disabled if the interrupt
2664  * controller has per-cpu registers.
2665  */
2666 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool *state)
2667 {
2668         scoped_irqdesc_get_and_buslock(irq, 0) {
2669                 struct irq_data *data = irq_desc_get_irq_data(scoped_irqdesc);
2670
2671                 return __irq_get_irqchip_state(data, which, state);
2672         }
2673         return -EINVAL;
2674 }
2675 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2676
2677 /**
2678  * irq_set_irqchip_state - set the state of a forwarded interrupt.
2679  * @irq:        Interrupt line that is forwarded to a VM
2680  * @which:      State to be restored (one of IRQCHIP_STATE_*)
2681  * @val:        Value corresponding to @which
2682  *
2683  * This call sets the internal irqchip state of an interrupt, depending on
2684  * the value of @which.
2685  *
2686  * This function should be called with migration disabled if the interrupt
2687  * controller has per-cpu registers.
2688  */
2689 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool val)
2690 {
2691         scoped_irqdesc_get_and_buslock(irq, 0) {
2692                 struct irq_data *data = irq_desc_get_irq_data(scoped_irqdesc);
2693                 struct irq_chip *chip;
2694
2695                 do {
2696                         chip = irq_data_get_irq_chip(data);
2697
2698                         if (WARN_ON_ONCE(!chip))
2699                                 return -ENODEV;
2700
2701                         if (chip->irq_set_irqchip_state)
2702                                 break;
2703
2704                         data = irqd_get_parent_data(data);
2705                 } while (data);
2706
2707                 if (data)
2708                         return chip->irq_set_irqchip_state(data, which, val);
2709         }
2710         return -EINVAL;
2711 }
2712 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2713
2714 /**
2715  * irq_has_action - Check whether an interrupt is requested
2716  * @irq:        The linux irq number
2717  *
2718  * Returns: A snapshot of the current state
2719  */
2720 bool irq_has_action(unsigned int irq)
2721 {
2722         bool res;
2723
2724         rcu_read_lock();
2725         res = irq_desc_has_action(irq_to_desc(irq));
2726         rcu_read_unlock();
2727         return res;
2728 }
2729 EXPORT_SYMBOL_GPL(irq_has_action);
2730
2731 /**
2732  * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2733  * @irq:        The linux irq number
2734  * @bitmask:    The bitmask to evaluate
2735  *
2736  * Returns: True if one of the bits in @bitmask is set
2737  */
2738 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2739 {
2740         struct irq_desc *desc;
2741         bool res = false;
2742
2743         rcu_read_lock();
2744         desc = irq_to_desc(irq);
2745         if (desc)
2746                 res = !!(desc->status_use_accessors & bitmask);
2747         rcu_read_unlock();
2748         return res;
2749 }
2750 EXPORT_SYMBOL_GPL(irq_check_status_bit);