Merge tag 'omap-for-v5.6/fixes-rc6-signed' of git://git.kernel.org/pub/scm/linux...
[linux-block.git] / kernel / irq / manage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 __read_mostly bool force_irqthreads;
29 EXPORT_SYMBOL_GPL(force_irqthreads);
30
31 static int __init setup_forced_irqthreads(char *arg)
32 {
33         force_irqthreads = true;
34         return 0;
35 }
36 early_param("threadirqs", setup_forced_irqthreads);
37 #endif
38
39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
40 {
41         struct irq_data *irqd = irq_desc_get_irq_data(desc);
42         bool inprogress;
43
44         do {
45                 unsigned long flags;
46
47                 /*
48                  * Wait until we're out of the critical section.  This might
49                  * give the wrong answer due to the lack of memory barriers.
50                  */
51                 while (irqd_irq_inprogress(&desc->irq_data))
52                         cpu_relax();
53
54                 /* Ok, that indicated we're done: double-check carefully. */
55                 raw_spin_lock_irqsave(&desc->lock, flags);
56                 inprogress = irqd_irq_inprogress(&desc->irq_data);
57
58                 /*
59                  * If requested and supported, check at the chip whether it
60                  * is in flight at the hardware level, i.e. already pending
61                  * in a CPU and waiting for service and acknowledge.
62                  */
63                 if (!inprogress && sync_chip) {
64                         /*
65                          * Ignore the return code. inprogress is only updated
66                          * when the chip supports it.
67                          */
68                         __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
69                                                 &inprogress);
70                 }
71                 raw_spin_unlock_irqrestore(&desc->lock, flags);
72
73                 /* Oops, that failed? */
74         } while (inprogress);
75 }
76
77 /**
78  *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
79  *      @irq: interrupt number to wait for
80  *
81  *      This function waits for any pending hard IRQ handlers for this
82  *      interrupt to complete before returning. If you use this
83  *      function while holding a resource the IRQ handler may need you
84  *      will deadlock. It does not take associated threaded handlers
85  *      into account.
86  *
87  *      Do not use this for shutdown scenarios where you must be sure
88  *      that all parts (hardirq and threaded handler) have completed.
89  *
90  *      Returns: false if a threaded handler is active.
91  *
92  *      This function may be called - with care - from IRQ context.
93  *
94  *      It does not check whether there is an interrupt in flight at the
95  *      hardware level, but not serviced yet, as this might deadlock when
96  *      called with interrupts disabled and the target CPU of the interrupt
97  *      is the current CPU.
98  */
99 bool synchronize_hardirq(unsigned int irq)
100 {
101         struct irq_desc *desc = irq_to_desc(irq);
102
103         if (desc) {
104                 __synchronize_hardirq(desc, false);
105                 return !atomic_read(&desc->threads_active);
106         }
107
108         return true;
109 }
110 EXPORT_SYMBOL(synchronize_hardirq);
111
112 /**
113  *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
114  *      @irq: interrupt number to wait for
115  *
116  *      This function waits for any pending IRQ handlers for this interrupt
117  *      to complete before returning. If you use this function while
118  *      holding a resource the IRQ handler may need you will deadlock.
119  *
120  *      Can only be called from preemptible code as it might sleep when
121  *      an interrupt thread is associated to @irq.
122  *
123  *      It optionally makes sure (when the irq chip supports that method)
124  *      that the interrupt is not pending in any CPU and waiting for
125  *      service.
126  */
127 void synchronize_irq(unsigned int irq)
128 {
129         struct irq_desc *desc = irq_to_desc(irq);
130
131         if (desc) {
132                 __synchronize_hardirq(desc, true);
133                 /*
134                  * We made sure that no hardirq handler is
135                  * running. Now verify that no threaded handlers are
136                  * active.
137                  */
138                 wait_event(desc->wait_for_threads,
139                            !atomic_read(&desc->threads_active));
140         }
141 }
142 EXPORT_SYMBOL(synchronize_irq);
143
144 #ifdef CONFIG_SMP
145 cpumask_var_t irq_default_affinity;
146
147 static bool __irq_can_set_affinity(struct irq_desc *desc)
148 {
149         if (!desc || !irqd_can_balance(&desc->irq_data) ||
150             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
151                 return false;
152         return true;
153 }
154
155 /**
156  *      irq_can_set_affinity - Check if the affinity of a given irq can be set
157  *      @irq:           Interrupt to check
158  *
159  */
160 int irq_can_set_affinity(unsigned int irq)
161 {
162         return __irq_can_set_affinity(irq_to_desc(irq));
163 }
164
165 /**
166  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
167  * @irq:        Interrupt to check
168  *
169  * Like irq_can_set_affinity() above, but additionally checks for the
170  * AFFINITY_MANAGED flag.
171  */
172 bool irq_can_set_affinity_usr(unsigned int irq)
173 {
174         struct irq_desc *desc = irq_to_desc(irq);
175
176         return __irq_can_set_affinity(desc) &&
177                 !irqd_affinity_is_managed(&desc->irq_data);
178 }
179
180 /**
181  *      irq_set_thread_affinity - Notify irq threads to adjust affinity
182  *      @desc:          irq descriptor which has affitnity changed
183  *
184  *      We just set IRQTF_AFFINITY and delegate the affinity setting
185  *      to the interrupt thread itself. We can not call
186  *      set_cpus_allowed_ptr() here as we hold desc->lock and this
187  *      code can be called from hard interrupt context.
188  */
189 void irq_set_thread_affinity(struct irq_desc *desc)
190 {
191         struct irqaction *action;
192
193         for_each_action_of_desc(desc, action)
194                 if (action->thread)
195                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
196 }
197
198 static void irq_validate_effective_affinity(struct irq_data *data)
199 {
200 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
201         const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
202         struct irq_chip *chip = irq_data_get_irq_chip(data);
203
204         if (!cpumask_empty(m))
205                 return;
206         pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
207                      chip->name, data->irq);
208 #endif
209 }
210
211 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
212                         bool force)
213 {
214         struct irq_desc *desc = irq_data_to_desc(data);
215         struct irq_chip *chip = irq_data_get_irq_chip(data);
216         int ret;
217
218         if (!chip || !chip->irq_set_affinity)
219                 return -EINVAL;
220
221         /*
222          * If this is a managed interrupt and housekeeping is enabled on
223          * it check whether the requested affinity mask intersects with
224          * a housekeeping CPU. If so, then remove the isolated CPUs from
225          * the mask and just keep the housekeeping CPU(s). This prevents
226          * the affinity setter from routing the interrupt to an isolated
227          * CPU to avoid that I/O submitted from a housekeeping CPU causes
228          * interrupts on an isolated one.
229          *
230          * If the masks do not intersect or include online CPU(s) then
231          * keep the requested mask. The isolated target CPUs are only
232          * receiving interrupts when the I/O operation was submitted
233          * directly from them.
234          *
235          * If all housekeeping CPUs in the affinity mask are offline, the
236          * interrupt will be migrated by the CPU hotplug code once a
237          * housekeeping CPU which belongs to the affinity mask comes
238          * online.
239          */
240         if (irqd_affinity_is_managed(data) &&
241             housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
242                 const struct cpumask *hk_mask, *prog_mask;
243
244                 static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
245                 static struct cpumask tmp_mask;
246
247                 hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
248
249                 raw_spin_lock(&tmp_mask_lock);
250                 cpumask_and(&tmp_mask, mask, hk_mask);
251                 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
252                         prog_mask = mask;
253                 else
254                         prog_mask = &tmp_mask;
255                 ret = chip->irq_set_affinity(data, prog_mask, force);
256                 raw_spin_unlock(&tmp_mask_lock);
257         } else {
258                 ret = chip->irq_set_affinity(data, mask, force);
259         }
260         switch (ret) {
261         case IRQ_SET_MASK_OK:
262         case IRQ_SET_MASK_OK_DONE:
263                 cpumask_copy(desc->irq_common_data.affinity, mask);
264                 /* fall through */
265         case IRQ_SET_MASK_OK_NOCOPY:
266                 irq_validate_effective_affinity(data);
267                 irq_set_thread_affinity(desc);
268                 ret = 0;
269         }
270
271         return ret;
272 }
273
274 #ifdef CONFIG_GENERIC_PENDING_IRQ
275 static inline int irq_set_affinity_pending(struct irq_data *data,
276                                            const struct cpumask *dest)
277 {
278         struct irq_desc *desc = irq_data_to_desc(data);
279
280         irqd_set_move_pending(data);
281         irq_copy_pending(desc, dest);
282         return 0;
283 }
284 #else
285 static inline int irq_set_affinity_pending(struct irq_data *data,
286                                            const struct cpumask *dest)
287 {
288         return -EBUSY;
289 }
290 #endif
291
292 static int irq_try_set_affinity(struct irq_data *data,
293                                 const struct cpumask *dest, bool force)
294 {
295         int ret = irq_do_set_affinity(data, dest, force);
296
297         /*
298          * In case that the underlying vector management is busy and the
299          * architecture supports the generic pending mechanism then utilize
300          * this to avoid returning an error to user space.
301          */
302         if (ret == -EBUSY && !force)
303                 ret = irq_set_affinity_pending(data, dest);
304         return ret;
305 }
306
307 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
308                             bool force)
309 {
310         struct irq_chip *chip = irq_data_get_irq_chip(data);
311         struct irq_desc *desc = irq_data_to_desc(data);
312         int ret = 0;
313
314         if (!chip || !chip->irq_set_affinity)
315                 return -EINVAL;
316
317         if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
318                 ret = irq_try_set_affinity(data, mask, force);
319         } else {
320                 irqd_set_move_pending(data);
321                 irq_copy_pending(desc, mask);
322         }
323
324         if (desc->affinity_notify) {
325                 kref_get(&desc->affinity_notify->kref);
326                 schedule_work(&desc->affinity_notify->work);
327         }
328         irqd_set(data, IRQD_AFFINITY_SET);
329
330         return ret;
331 }
332
333 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
334 {
335         struct irq_desc *desc = irq_to_desc(irq);
336         unsigned long flags;
337         int ret;
338
339         if (!desc)
340                 return -EINVAL;
341
342         raw_spin_lock_irqsave(&desc->lock, flags);
343         ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
344         raw_spin_unlock_irqrestore(&desc->lock, flags);
345         return ret;
346 }
347
348 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
349 {
350         unsigned long flags;
351         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
352
353         if (!desc)
354                 return -EINVAL;
355         desc->affinity_hint = m;
356         irq_put_desc_unlock(desc, flags);
357         /* set the initial affinity to prevent every interrupt being on CPU0 */
358         if (m)
359                 __irq_set_affinity(irq, m, false);
360         return 0;
361 }
362 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
363
364 static void irq_affinity_notify(struct work_struct *work)
365 {
366         struct irq_affinity_notify *notify =
367                 container_of(work, struct irq_affinity_notify, work);
368         struct irq_desc *desc = irq_to_desc(notify->irq);
369         cpumask_var_t cpumask;
370         unsigned long flags;
371
372         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
373                 goto out;
374
375         raw_spin_lock_irqsave(&desc->lock, flags);
376         if (irq_move_pending(&desc->irq_data))
377                 irq_get_pending(cpumask, desc);
378         else
379                 cpumask_copy(cpumask, desc->irq_common_data.affinity);
380         raw_spin_unlock_irqrestore(&desc->lock, flags);
381
382         notify->notify(notify, cpumask);
383
384         free_cpumask_var(cpumask);
385 out:
386         kref_put(&notify->kref, notify->release);
387 }
388
389 /**
390  *      irq_set_affinity_notifier - control notification of IRQ affinity changes
391  *      @irq:           Interrupt for which to enable/disable notification
392  *      @notify:        Context for notification, or %NULL to disable
393  *                      notification.  Function pointers must be initialised;
394  *                      the other fields will be initialised by this function.
395  *
396  *      Must be called in process context.  Notification may only be enabled
397  *      after the IRQ is allocated and must be disabled before the IRQ is
398  *      freed using free_irq().
399  */
400 int
401 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
402 {
403         struct irq_desc *desc = irq_to_desc(irq);
404         struct irq_affinity_notify *old_notify;
405         unsigned long flags;
406
407         /* The release function is promised process context */
408         might_sleep();
409
410         if (!desc || desc->istate & IRQS_NMI)
411                 return -EINVAL;
412
413         /* Complete initialisation of *notify */
414         if (notify) {
415                 notify->irq = irq;
416                 kref_init(&notify->kref);
417                 INIT_WORK(&notify->work, irq_affinity_notify);
418         }
419
420         raw_spin_lock_irqsave(&desc->lock, flags);
421         old_notify = desc->affinity_notify;
422         desc->affinity_notify = notify;
423         raw_spin_unlock_irqrestore(&desc->lock, flags);
424
425         if (old_notify) {
426                 cancel_work_sync(&old_notify->work);
427                 kref_put(&old_notify->kref, old_notify->release);
428         }
429
430         return 0;
431 }
432 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
433
434 #ifndef CONFIG_AUTO_IRQ_AFFINITY
435 /*
436  * Generic version of the affinity autoselector.
437  */
438 int irq_setup_affinity(struct irq_desc *desc)
439 {
440         struct cpumask *set = irq_default_affinity;
441         int ret, node = irq_desc_get_node(desc);
442         static DEFINE_RAW_SPINLOCK(mask_lock);
443         static struct cpumask mask;
444
445         /* Excludes PER_CPU and NO_BALANCE interrupts */
446         if (!__irq_can_set_affinity(desc))
447                 return 0;
448
449         raw_spin_lock(&mask_lock);
450         /*
451          * Preserve the managed affinity setting and a userspace affinity
452          * setup, but make sure that one of the targets is online.
453          */
454         if (irqd_affinity_is_managed(&desc->irq_data) ||
455             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
456                 if (cpumask_intersects(desc->irq_common_data.affinity,
457                                        cpu_online_mask))
458                         set = desc->irq_common_data.affinity;
459                 else
460                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
461         }
462
463         cpumask_and(&mask, cpu_online_mask, set);
464         if (cpumask_empty(&mask))
465                 cpumask_copy(&mask, cpu_online_mask);
466
467         if (node != NUMA_NO_NODE) {
468                 const struct cpumask *nodemask = cpumask_of_node(node);
469
470                 /* make sure at least one of the cpus in nodemask is online */
471                 if (cpumask_intersects(&mask, nodemask))
472                         cpumask_and(&mask, &mask, nodemask);
473         }
474         ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
475         raw_spin_unlock(&mask_lock);
476         return ret;
477 }
478 #else
479 /* Wrapper for ALPHA specific affinity selector magic */
480 int irq_setup_affinity(struct irq_desc *desc)
481 {
482         return irq_select_affinity(irq_desc_get_irq(desc));
483 }
484 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
485 #endif /* CONFIG_SMP */
486
487
488 /**
489  *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
490  *      @irq: interrupt number to set affinity
491  *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
492  *                  specific data for percpu_devid interrupts
493  *
494  *      This function uses the vCPU specific data to set the vCPU
495  *      affinity for an irq. The vCPU specific data is passed from
496  *      outside, such as KVM. One example code path is as below:
497  *      KVM -> IOMMU -> irq_set_vcpu_affinity().
498  */
499 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
500 {
501         unsigned long flags;
502         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
503         struct irq_data *data;
504         struct irq_chip *chip;
505         int ret = -ENOSYS;
506
507         if (!desc)
508                 return -EINVAL;
509
510         data = irq_desc_get_irq_data(desc);
511         do {
512                 chip = irq_data_get_irq_chip(data);
513                 if (chip && chip->irq_set_vcpu_affinity)
514                         break;
515 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
516                 data = data->parent_data;
517 #else
518                 data = NULL;
519 #endif
520         } while (data);
521
522         if (data)
523                 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
524         irq_put_desc_unlock(desc, flags);
525
526         return ret;
527 }
528 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
529
530 void __disable_irq(struct irq_desc *desc)
531 {
532         if (!desc->depth++)
533                 irq_disable(desc);
534 }
535
536 static int __disable_irq_nosync(unsigned int irq)
537 {
538         unsigned long flags;
539         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
540
541         if (!desc)
542                 return -EINVAL;
543         __disable_irq(desc);
544         irq_put_desc_busunlock(desc, flags);
545         return 0;
546 }
547
548 /**
549  *      disable_irq_nosync - disable an irq without waiting
550  *      @irq: Interrupt to disable
551  *
552  *      Disable the selected interrupt line.  Disables and Enables are
553  *      nested.
554  *      Unlike disable_irq(), this function does not ensure existing
555  *      instances of the IRQ handler have completed before returning.
556  *
557  *      This function may be called from IRQ context.
558  */
559 void disable_irq_nosync(unsigned int irq)
560 {
561         __disable_irq_nosync(irq);
562 }
563 EXPORT_SYMBOL(disable_irq_nosync);
564
565 /**
566  *      disable_irq - disable an irq and wait for completion
567  *      @irq: Interrupt to disable
568  *
569  *      Disable the selected interrupt line.  Enables and Disables are
570  *      nested.
571  *      This function waits for any pending IRQ handlers for this interrupt
572  *      to complete before returning. If you use this function while
573  *      holding a resource the IRQ handler may need you will deadlock.
574  *
575  *      This function may be called - with care - from IRQ context.
576  */
577 void disable_irq(unsigned int irq)
578 {
579         if (!__disable_irq_nosync(irq))
580                 synchronize_irq(irq);
581 }
582 EXPORT_SYMBOL(disable_irq);
583
584 /**
585  *      disable_hardirq - disables an irq and waits for hardirq completion
586  *      @irq: Interrupt to disable
587  *
588  *      Disable the selected interrupt line.  Enables and Disables are
589  *      nested.
590  *      This function waits for any pending hard IRQ handlers for this
591  *      interrupt to complete before returning. If you use this function while
592  *      holding a resource the hard IRQ handler may need you will deadlock.
593  *
594  *      When used to optimistically disable an interrupt from atomic context
595  *      the return value must be checked.
596  *
597  *      Returns: false if a threaded handler is active.
598  *
599  *      This function may be called - with care - from IRQ context.
600  */
601 bool disable_hardirq(unsigned int irq)
602 {
603         if (!__disable_irq_nosync(irq))
604                 return synchronize_hardirq(irq);
605
606         return false;
607 }
608 EXPORT_SYMBOL_GPL(disable_hardirq);
609
610 /**
611  *      disable_nmi_nosync - disable an nmi without waiting
612  *      @irq: Interrupt to disable
613  *
614  *      Disable the selected interrupt line. Disables and enables are
615  *      nested.
616  *      The interrupt to disable must have been requested through request_nmi.
617  *      Unlike disable_nmi(), this function does not ensure existing
618  *      instances of the IRQ handler have completed before returning.
619  */
620 void disable_nmi_nosync(unsigned int irq)
621 {
622         disable_irq_nosync(irq);
623 }
624
625 void __enable_irq(struct irq_desc *desc)
626 {
627         switch (desc->depth) {
628         case 0:
629  err_out:
630                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
631                      irq_desc_get_irq(desc));
632                 break;
633         case 1: {
634                 if (desc->istate & IRQS_SUSPENDED)
635                         goto err_out;
636                 /* Prevent probing on this irq: */
637                 irq_settings_set_noprobe(desc);
638                 /*
639                  * Call irq_startup() not irq_enable() here because the
640                  * interrupt might be marked NOAUTOEN. So irq_startup()
641                  * needs to be invoked when it gets enabled the first
642                  * time. If it was already started up, then irq_startup()
643                  * will invoke irq_enable() under the hood.
644                  */
645                 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
646                 break;
647         }
648         default:
649                 desc->depth--;
650         }
651 }
652
653 /**
654  *      enable_irq - enable handling of an irq
655  *      @irq: Interrupt to enable
656  *
657  *      Undoes the effect of one call to disable_irq().  If this
658  *      matches the last disable, processing of interrupts on this
659  *      IRQ line is re-enabled.
660  *
661  *      This function may be called from IRQ context only when
662  *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
663  */
664 void enable_irq(unsigned int irq)
665 {
666         unsigned long flags;
667         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
668
669         if (!desc)
670                 return;
671         if (WARN(!desc->irq_data.chip,
672                  KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
673                 goto out;
674
675         __enable_irq(desc);
676 out:
677         irq_put_desc_busunlock(desc, flags);
678 }
679 EXPORT_SYMBOL(enable_irq);
680
681 /**
682  *      enable_nmi - enable handling of an nmi
683  *      @irq: Interrupt to enable
684  *
685  *      The interrupt to enable must have been requested through request_nmi.
686  *      Undoes the effect of one call to disable_nmi(). If this
687  *      matches the last disable, processing of interrupts on this
688  *      IRQ line is re-enabled.
689  */
690 void enable_nmi(unsigned int irq)
691 {
692         enable_irq(irq);
693 }
694
695 static int set_irq_wake_real(unsigned int irq, unsigned int on)
696 {
697         struct irq_desc *desc = irq_to_desc(irq);
698         int ret = -ENXIO;
699
700         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
701                 return 0;
702
703         if (desc->irq_data.chip->irq_set_wake)
704                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
705
706         return ret;
707 }
708
709 /**
710  *      irq_set_irq_wake - control irq power management wakeup
711  *      @irq:   interrupt to control
712  *      @on:    enable/disable power management wakeup
713  *
714  *      Enable/disable power management wakeup mode, which is
715  *      disabled by default.  Enables and disables must match,
716  *      just as they match for non-wakeup mode support.
717  *
718  *      Wakeup mode lets this IRQ wake the system from sleep
719  *      states like "suspend to RAM".
720  *
721  *      Note: irq enable/disable state is completely orthogonal
722  *      to the enable/disable state of irq wake. An irq can be
723  *      disabled with disable_irq() and still wake the system as
724  *      long as the irq has wake enabled. If this does not hold,
725  *      then the underlying irq chip and the related driver need
726  *      to be investigated.
727  */
728 int irq_set_irq_wake(unsigned int irq, unsigned int on)
729 {
730         unsigned long flags;
731         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
732         int ret = 0;
733
734         if (!desc)
735                 return -EINVAL;
736
737         /* Don't use NMIs as wake up interrupts please */
738         if (desc->istate & IRQS_NMI) {
739                 ret = -EINVAL;
740                 goto out_unlock;
741         }
742
743         /* wakeup-capable irqs can be shared between drivers that
744          * don't need to have the same sleep mode behaviors.
745          */
746         if (on) {
747                 if (desc->wake_depth++ == 0) {
748                         ret = set_irq_wake_real(irq, on);
749                         if (ret)
750                                 desc->wake_depth = 0;
751                         else
752                                 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
753                 }
754         } else {
755                 if (desc->wake_depth == 0) {
756                         WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
757                 } else if (--desc->wake_depth == 0) {
758                         ret = set_irq_wake_real(irq, on);
759                         if (ret)
760                                 desc->wake_depth = 1;
761                         else
762                                 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
763                 }
764         }
765
766 out_unlock:
767         irq_put_desc_busunlock(desc, flags);
768         return ret;
769 }
770 EXPORT_SYMBOL(irq_set_irq_wake);
771
772 /*
773  * Internal function that tells the architecture code whether a
774  * particular irq has been exclusively allocated or is available
775  * for driver use.
776  */
777 int can_request_irq(unsigned int irq, unsigned long irqflags)
778 {
779         unsigned long flags;
780         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
781         int canrequest = 0;
782
783         if (!desc)
784                 return 0;
785
786         if (irq_settings_can_request(desc)) {
787                 if (!desc->action ||
788                     irqflags & desc->action->flags & IRQF_SHARED)
789                         canrequest = 1;
790         }
791         irq_put_desc_unlock(desc, flags);
792         return canrequest;
793 }
794
795 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
796 {
797         struct irq_chip *chip = desc->irq_data.chip;
798         int ret, unmask = 0;
799
800         if (!chip || !chip->irq_set_type) {
801                 /*
802                  * IRQF_TRIGGER_* but the PIC does not support multiple
803                  * flow-types?
804                  */
805                 pr_debug("No set_type function for IRQ %d (%s)\n",
806                          irq_desc_get_irq(desc),
807                          chip ? (chip->name ? : "unknown") : "unknown");
808                 return 0;
809         }
810
811         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
812                 if (!irqd_irq_masked(&desc->irq_data))
813                         mask_irq(desc);
814                 if (!irqd_irq_disabled(&desc->irq_data))
815                         unmask = 1;
816         }
817
818         /* Mask all flags except trigger mode */
819         flags &= IRQ_TYPE_SENSE_MASK;
820         ret = chip->irq_set_type(&desc->irq_data, flags);
821
822         switch (ret) {
823         case IRQ_SET_MASK_OK:
824         case IRQ_SET_MASK_OK_DONE:
825                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
826                 irqd_set(&desc->irq_data, flags);
827                 /* fall through */
828
829         case IRQ_SET_MASK_OK_NOCOPY:
830                 flags = irqd_get_trigger_type(&desc->irq_data);
831                 irq_settings_set_trigger_mask(desc, flags);
832                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
833                 irq_settings_clr_level(desc);
834                 if (flags & IRQ_TYPE_LEVEL_MASK) {
835                         irq_settings_set_level(desc);
836                         irqd_set(&desc->irq_data, IRQD_LEVEL);
837                 }
838
839                 ret = 0;
840                 break;
841         default:
842                 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
843                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
844         }
845         if (unmask)
846                 unmask_irq(desc);
847         return ret;
848 }
849
850 #ifdef CONFIG_HARDIRQS_SW_RESEND
851 int irq_set_parent(int irq, int parent_irq)
852 {
853         unsigned long flags;
854         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
855
856         if (!desc)
857                 return -EINVAL;
858
859         desc->parent_irq = parent_irq;
860
861         irq_put_desc_unlock(desc, flags);
862         return 0;
863 }
864 EXPORT_SYMBOL_GPL(irq_set_parent);
865 #endif
866
867 /*
868  * Default primary interrupt handler for threaded interrupts. Is
869  * assigned as primary handler when request_threaded_irq is called
870  * with handler == NULL. Useful for oneshot interrupts.
871  */
872 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
873 {
874         return IRQ_WAKE_THREAD;
875 }
876
877 /*
878  * Primary handler for nested threaded interrupts. Should never be
879  * called.
880  */
881 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
882 {
883         WARN(1, "Primary handler called for nested irq %d\n", irq);
884         return IRQ_NONE;
885 }
886
887 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
888 {
889         WARN(1, "Secondary action handler called for irq %d\n", irq);
890         return IRQ_NONE;
891 }
892
893 static int irq_wait_for_interrupt(struct irqaction *action)
894 {
895         for (;;) {
896                 set_current_state(TASK_INTERRUPTIBLE);
897
898                 if (kthread_should_stop()) {
899                         /* may need to run one last time */
900                         if (test_and_clear_bit(IRQTF_RUNTHREAD,
901                                                &action->thread_flags)) {
902                                 __set_current_state(TASK_RUNNING);
903                                 return 0;
904                         }
905                         __set_current_state(TASK_RUNNING);
906                         return -1;
907                 }
908
909                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
910                                        &action->thread_flags)) {
911                         __set_current_state(TASK_RUNNING);
912                         return 0;
913                 }
914                 schedule();
915         }
916 }
917
918 /*
919  * Oneshot interrupts keep the irq line masked until the threaded
920  * handler finished. unmask if the interrupt has not been disabled and
921  * is marked MASKED.
922  */
923 static void irq_finalize_oneshot(struct irq_desc *desc,
924                                  struct irqaction *action)
925 {
926         if (!(desc->istate & IRQS_ONESHOT) ||
927             action->handler == irq_forced_secondary_handler)
928                 return;
929 again:
930         chip_bus_lock(desc);
931         raw_spin_lock_irq(&desc->lock);
932
933         /*
934          * Implausible though it may be we need to protect us against
935          * the following scenario:
936          *
937          * The thread is faster done than the hard interrupt handler
938          * on the other CPU. If we unmask the irq line then the
939          * interrupt can come in again and masks the line, leaves due
940          * to IRQS_INPROGRESS and the irq line is masked forever.
941          *
942          * This also serializes the state of shared oneshot handlers
943          * versus "desc->threads_onehsot |= action->thread_mask;" in
944          * irq_wake_thread(). See the comment there which explains the
945          * serialization.
946          */
947         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
948                 raw_spin_unlock_irq(&desc->lock);
949                 chip_bus_sync_unlock(desc);
950                 cpu_relax();
951                 goto again;
952         }
953
954         /*
955          * Now check again, whether the thread should run. Otherwise
956          * we would clear the threads_oneshot bit of this thread which
957          * was just set.
958          */
959         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
960                 goto out_unlock;
961
962         desc->threads_oneshot &= ~action->thread_mask;
963
964         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
965             irqd_irq_masked(&desc->irq_data))
966                 unmask_threaded_irq(desc);
967
968 out_unlock:
969         raw_spin_unlock_irq(&desc->lock);
970         chip_bus_sync_unlock(desc);
971 }
972
973 #ifdef CONFIG_SMP
974 /*
975  * Check whether we need to change the affinity of the interrupt thread.
976  */
977 static void
978 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
979 {
980         cpumask_var_t mask;
981         bool valid = true;
982
983         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
984                 return;
985
986         /*
987          * In case we are out of memory we set IRQTF_AFFINITY again and
988          * try again next time
989          */
990         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
991                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
992                 return;
993         }
994
995         raw_spin_lock_irq(&desc->lock);
996         /*
997          * This code is triggered unconditionally. Check the affinity
998          * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
999          */
1000         if (cpumask_available(desc->irq_common_data.affinity)) {
1001                 const struct cpumask *m;
1002
1003                 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1004                 cpumask_copy(mask, m);
1005         } else {
1006                 valid = false;
1007         }
1008         raw_spin_unlock_irq(&desc->lock);
1009
1010         if (valid)
1011                 set_cpus_allowed_ptr(current, mask);
1012         free_cpumask_var(mask);
1013 }
1014 #else
1015 static inline void
1016 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1017 #endif
1018
1019 /*
1020  * Interrupts which are not explicitly requested as threaded
1021  * interrupts rely on the implicit bh/preempt disable of the hard irq
1022  * context. So we need to disable bh here to avoid deadlocks and other
1023  * side effects.
1024  */
1025 static irqreturn_t
1026 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1027 {
1028         irqreturn_t ret;
1029
1030         local_bh_disable();
1031         ret = action->thread_fn(action->irq, action->dev_id);
1032         if (ret == IRQ_HANDLED)
1033                 atomic_inc(&desc->threads_handled);
1034
1035         irq_finalize_oneshot(desc, action);
1036         local_bh_enable();
1037         return ret;
1038 }
1039
1040 /*
1041  * Interrupts explicitly requested as threaded interrupts want to be
1042  * preemtible - many of them need to sleep and wait for slow busses to
1043  * complete.
1044  */
1045 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1046                 struct irqaction *action)
1047 {
1048         irqreturn_t ret;
1049
1050         ret = action->thread_fn(action->irq, action->dev_id);
1051         if (ret == IRQ_HANDLED)
1052                 atomic_inc(&desc->threads_handled);
1053
1054         irq_finalize_oneshot(desc, action);
1055         return ret;
1056 }
1057
1058 static void wake_threads_waitq(struct irq_desc *desc)
1059 {
1060         if (atomic_dec_and_test(&desc->threads_active))
1061                 wake_up(&desc->wait_for_threads);
1062 }
1063
1064 static void irq_thread_dtor(struct callback_head *unused)
1065 {
1066         struct task_struct *tsk = current;
1067         struct irq_desc *desc;
1068         struct irqaction *action;
1069
1070         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1071                 return;
1072
1073         action = kthread_data(tsk);
1074
1075         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1076                tsk->comm, tsk->pid, action->irq);
1077
1078
1079         desc = irq_to_desc(action->irq);
1080         /*
1081          * If IRQTF_RUNTHREAD is set, we need to decrement
1082          * desc->threads_active and wake possible waiters.
1083          */
1084         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1085                 wake_threads_waitq(desc);
1086
1087         /* Prevent a stale desc->threads_oneshot */
1088         irq_finalize_oneshot(desc, action);
1089 }
1090
1091 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1092 {
1093         struct irqaction *secondary = action->secondary;
1094
1095         if (WARN_ON_ONCE(!secondary))
1096                 return;
1097
1098         raw_spin_lock_irq(&desc->lock);
1099         __irq_wake_thread(desc, secondary);
1100         raw_spin_unlock_irq(&desc->lock);
1101 }
1102
1103 /*
1104  * Interrupt handler thread
1105  */
1106 static int irq_thread(void *data)
1107 {
1108         struct callback_head on_exit_work;
1109         struct irqaction *action = data;
1110         struct irq_desc *desc = irq_to_desc(action->irq);
1111         irqreturn_t (*handler_fn)(struct irq_desc *desc,
1112                         struct irqaction *action);
1113
1114         if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1115                                         &action->thread_flags))
1116                 handler_fn = irq_forced_thread_fn;
1117         else
1118                 handler_fn = irq_thread_fn;
1119
1120         init_task_work(&on_exit_work, irq_thread_dtor);
1121         task_work_add(current, &on_exit_work, false);
1122
1123         irq_thread_check_affinity(desc, action);
1124
1125         while (!irq_wait_for_interrupt(action)) {
1126                 irqreturn_t action_ret;
1127
1128                 irq_thread_check_affinity(desc, action);
1129
1130                 action_ret = handler_fn(desc, action);
1131                 if (action_ret == IRQ_WAKE_THREAD)
1132                         irq_wake_secondary(desc, action);
1133
1134                 wake_threads_waitq(desc);
1135         }
1136
1137         /*
1138          * This is the regular exit path. __free_irq() is stopping the
1139          * thread via kthread_stop() after calling
1140          * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1141          * oneshot mask bit can be set.
1142          */
1143         task_work_cancel(current, irq_thread_dtor);
1144         return 0;
1145 }
1146
1147 /**
1148  *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1149  *      @irq:           Interrupt line
1150  *      @dev_id:        Device identity for which the thread should be woken
1151  *
1152  */
1153 void irq_wake_thread(unsigned int irq, void *dev_id)
1154 {
1155         struct irq_desc *desc = irq_to_desc(irq);
1156         struct irqaction *action;
1157         unsigned long flags;
1158
1159         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1160                 return;
1161
1162         raw_spin_lock_irqsave(&desc->lock, flags);
1163         for_each_action_of_desc(desc, action) {
1164                 if (action->dev_id == dev_id) {
1165                         if (action->thread)
1166                                 __irq_wake_thread(desc, action);
1167                         break;
1168                 }
1169         }
1170         raw_spin_unlock_irqrestore(&desc->lock, flags);
1171 }
1172 EXPORT_SYMBOL_GPL(irq_wake_thread);
1173
1174 static int irq_setup_forced_threading(struct irqaction *new)
1175 {
1176         if (!force_irqthreads)
1177                 return 0;
1178         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1179                 return 0;
1180
1181         /*
1182          * No further action required for interrupts which are requested as
1183          * threaded interrupts already
1184          */
1185         if (new->handler == irq_default_primary_handler)
1186                 return 0;
1187
1188         new->flags |= IRQF_ONESHOT;
1189
1190         /*
1191          * Handle the case where we have a real primary handler and a
1192          * thread handler. We force thread them as well by creating a
1193          * secondary action.
1194          */
1195         if (new->handler && new->thread_fn) {
1196                 /* Allocate the secondary action */
1197                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1198                 if (!new->secondary)
1199                         return -ENOMEM;
1200                 new->secondary->handler = irq_forced_secondary_handler;
1201                 new->secondary->thread_fn = new->thread_fn;
1202                 new->secondary->dev_id = new->dev_id;
1203                 new->secondary->irq = new->irq;
1204                 new->secondary->name = new->name;
1205         }
1206         /* Deal with the primary handler */
1207         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1208         new->thread_fn = new->handler;
1209         new->handler = irq_default_primary_handler;
1210         return 0;
1211 }
1212
1213 static int irq_request_resources(struct irq_desc *desc)
1214 {
1215         struct irq_data *d = &desc->irq_data;
1216         struct irq_chip *c = d->chip;
1217
1218         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1219 }
1220
1221 static void irq_release_resources(struct irq_desc *desc)
1222 {
1223         struct irq_data *d = &desc->irq_data;
1224         struct irq_chip *c = d->chip;
1225
1226         if (c->irq_release_resources)
1227                 c->irq_release_resources(d);
1228 }
1229
1230 static bool irq_supports_nmi(struct irq_desc *desc)
1231 {
1232         struct irq_data *d = irq_desc_get_irq_data(desc);
1233
1234 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1235         /* Only IRQs directly managed by the root irqchip can be set as NMI */
1236         if (d->parent_data)
1237                 return false;
1238 #endif
1239         /* Don't support NMIs for chips behind a slow bus */
1240         if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1241                 return false;
1242
1243         return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1244 }
1245
1246 static int irq_nmi_setup(struct irq_desc *desc)
1247 {
1248         struct irq_data *d = irq_desc_get_irq_data(desc);
1249         struct irq_chip *c = d->chip;
1250
1251         return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1252 }
1253
1254 static void irq_nmi_teardown(struct irq_desc *desc)
1255 {
1256         struct irq_data *d = irq_desc_get_irq_data(desc);
1257         struct irq_chip *c = d->chip;
1258
1259         if (c->irq_nmi_teardown)
1260                 c->irq_nmi_teardown(d);
1261 }
1262
1263 static int
1264 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1265 {
1266         struct task_struct *t;
1267         struct sched_param param = {
1268                 .sched_priority = MAX_USER_RT_PRIO/2,
1269         };
1270
1271         if (!secondary) {
1272                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1273                                    new->name);
1274         } else {
1275                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1276                                    new->name);
1277                 param.sched_priority -= 1;
1278         }
1279
1280         if (IS_ERR(t))
1281                 return PTR_ERR(t);
1282
1283         sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1284
1285         /*
1286          * We keep the reference to the task struct even if
1287          * the thread dies to avoid that the interrupt code
1288          * references an already freed task_struct.
1289          */
1290         new->thread = get_task_struct(t);
1291         /*
1292          * Tell the thread to set its affinity. This is
1293          * important for shared interrupt handlers as we do
1294          * not invoke setup_affinity() for the secondary
1295          * handlers as everything is already set up. Even for
1296          * interrupts marked with IRQF_NO_BALANCE this is
1297          * correct as we want the thread to move to the cpu(s)
1298          * on which the requesting code placed the interrupt.
1299          */
1300         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1301         return 0;
1302 }
1303
1304 /*
1305  * Internal function to register an irqaction - typically used to
1306  * allocate special interrupts that are part of the architecture.
1307  *
1308  * Locking rules:
1309  *
1310  * desc->request_mutex  Provides serialization against a concurrent free_irq()
1311  *   chip_bus_lock      Provides serialization for slow bus operations
1312  *     desc->lock       Provides serialization against hard interrupts
1313  *
1314  * chip_bus_lock and desc->lock are sufficient for all other management and
1315  * interrupt related functions. desc->request_mutex solely serializes
1316  * request/free_irq().
1317  */
1318 static int
1319 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1320 {
1321         struct irqaction *old, **old_ptr;
1322         unsigned long flags, thread_mask = 0;
1323         int ret, nested, shared = 0;
1324
1325         if (!desc)
1326                 return -EINVAL;
1327
1328         if (desc->irq_data.chip == &no_irq_chip)
1329                 return -ENOSYS;
1330         if (!try_module_get(desc->owner))
1331                 return -ENODEV;
1332
1333         new->irq = irq;
1334
1335         /*
1336          * If the trigger type is not specified by the caller,
1337          * then use the default for this interrupt.
1338          */
1339         if (!(new->flags & IRQF_TRIGGER_MASK))
1340                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1341
1342         /*
1343          * Check whether the interrupt nests into another interrupt
1344          * thread.
1345          */
1346         nested = irq_settings_is_nested_thread(desc);
1347         if (nested) {
1348                 if (!new->thread_fn) {
1349                         ret = -EINVAL;
1350                         goto out_mput;
1351                 }
1352                 /*
1353                  * Replace the primary handler which was provided from
1354                  * the driver for non nested interrupt handling by the
1355                  * dummy function which warns when called.
1356                  */
1357                 new->handler = irq_nested_primary_handler;
1358         } else {
1359                 if (irq_settings_can_thread(desc)) {
1360                         ret = irq_setup_forced_threading(new);
1361                         if (ret)
1362                                 goto out_mput;
1363                 }
1364         }
1365
1366         /*
1367          * Create a handler thread when a thread function is supplied
1368          * and the interrupt does not nest into another interrupt
1369          * thread.
1370          */
1371         if (new->thread_fn && !nested) {
1372                 ret = setup_irq_thread(new, irq, false);
1373                 if (ret)
1374                         goto out_mput;
1375                 if (new->secondary) {
1376                         ret = setup_irq_thread(new->secondary, irq, true);
1377                         if (ret)
1378                                 goto out_thread;
1379                 }
1380         }
1381
1382         /*
1383          * Drivers are often written to work w/o knowledge about the
1384          * underlying irq chip implementation, so a request for a
1385          * threaded irq without a primary hard irq context handler
1386          * requires the ONESHOT flag to be set. Some irq chips like
1387          * MSI based interrupts are per se one shot safe. Check the
1388          * chip flags, so we can avoid the unmask dance at the end of
1389          * the threaded handler for those.
1390          */
1391         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1392                 new->flags &= ~IRQF_ONESHOT;
1393
1394         /*
1395          * Protects against a concurrent __free_irq() call which might wait
1396          * for synchronize_hardirq() to complete without holding the optional
1397          * chip bus lock and desc->lock. Also protects against handing out
1398          * a recycled oneshot thread_mask bit while it's still in use by
1399          * its previous owner.
1400          */
1401         mutex_lock(&desc->request_mutex);
1402
1403         /*
1404          * Acquire bus lock as the irq_request_resources() callback below
1405          * might rely on the serialization or the magic power management
1406          * functions which are abusing the irq_bus_lock() callback,
1407          */
1408         chip_bus_lock(desc);
1409
1410         /* First installed action requests resources. */
1411         if (!desc->action) {
1412                 ret = irq_request_resources(desc);
1413                 if (ret) {
1414                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1415                                new->name, irq, desc->irq_data.chip->name);
1416                         goto out_bus_unlock;
1417                 }
1418         }
1419
1420         /*
1421          * The following block of code has to be executed atomically
1422          * protected against a concurrent interrupt and any of the other
1423          * management calls which are not serialized via
1424          * desc->request_mutex or the optional bus lock.
1425          */
1426         raw_spin_lock_irqsave(&desc->lock, flags);
1427         old_ptr = &desc->action;
1428         old = *old_ptr;
1429         if (old) {
1430                 /*
1431                  * Can't share interrupts unless both agree to and are
1432                  * the same type (level, edge, polarity). So both flag
1433                  * fields must have IRQF_SHARED set and the bits which
1434                  * set the trigger type must match. Also all must
1435                  * agree on ONESHOT.
1436                  * Interrupt lines used for NMIs cannot be shared.
1437                  */
1438                 unsigned int oldtype;
1439
1440                 if (desc->istate & IRQS_NMI) {
1441                         pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1442                                 new->name, irq, desc->irq_data.chip->name);
1443                         ret = -EINVAL;
1444                         goto out_unlock;
1445                 }
1446
1447                 /*
1448                  * If nobody did set the configuration before, inherit
1449                  * the one provided by the requester.
1450                  */
1451                 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1452                         oldtype = irqd_get_trigger_type(&desc->irq_data);
1453                 } else {
1454                         oldtype = new->flags & IRQF_TRIGGER_MASK;
1455                         irqd_set_trigger_type(&desc->irq_data, oldtype);
1456                 }
1457
1458                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1459                     (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1460                     ((old->flags ^ new->flags) & IRQF_ONESHOT))
1461                         goto mismatch;
1462
1463                 /* All handlers must agree on per-cpuness */
1464                 if ((old->flags & IRQF_PERCPU) !=
1465                     (new->flags & IRQF_PERCPU))
1466                         goto mismatch;
1467
1468                 /* add new interrupt at end of irq queue */
1469                 do {
1470                         /*
1471                          * Or all existing action->thread_mask bits,
1472                          * so we can find the next zero bit for this
1473                          * new action.
1474                          */
1475                         thread_mask |= old->thread_mask;
1476                         old_ptr = &old->next;
1477                         old = *old_ptr;
1478                 } while (old);
1479                 shared = 1;
1480         }
1481
1482         /*
1483          * Setup the thread mask for this irqaction for ONESHOT. For
1484          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1485          * conditional in irq_wake_thread().
1486          */
1487         if (new->flags & IRQF_ONESHOT) {
1488                 /*
1489                  * Unlikely to have 32 resp 64 irqs sharing one line,
1490                  * but who knows.
1491                  */
1492                 if (thread_mask == ~0UL) {
1493                         ret = -EBUSY;
1494                         goto out_unlock;
1495                 }
1496                 /*
1497                  * The thread_mask for the action is or'ed to
1498                  * desc->thread_active to indicate that the
1499                  * IRQF_ONESHOT thread handler has been woken, but not
1500                  * yet finished. The bit is cleared when a thread
1501                  * completes. When all threads of a shared interrupt
1502                  * line have completed desc->threads_active becomes
1503                  * zero and the interrupt line is unmasked. See
1504                  * handle.c:irq_wake_thread() for further information.
1505                  *
1506                  * If no thread is woken by primary (hard irq context)
1507                  * interrupt handlers, then desc->threads_active is
1508                  * also checked for zero to unmask the irq line in the
1509                  * affected hard irq flow handlers
1510                  * (handle_[fasteoi|level]_irq).
1511                  *
1512                  * The new action gets the first zero bit of
1513                  * thread_mask assigned. See the loop above which or's
1514                  * all existing action->thread_mask bits.
1515                  */
1516                 new->thread_mask = 1UL << ffz(thread_mask);
1517
1518         } else if (new->handler == irq_default_primary_handler &&
1519                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1520                 /*
1521                  * The interrupt was requested with handler = NULL, so
1522                  * we use the default primary handler for it. But it
1523                  * does not have the oneshot flag set. In combination
1524                  * with level interrupts this is deadly, because the
1525                  * default primary handler just wakes the thread, then
1526                  * the irq lines is reenabled, but the device still
1527                  * has the level irq asserted. Rinse and repeat....
1528                  *
1529                  * While this works for edge type interrupts, we play
1530                  * it safe and reject unconditionally because we can't
1531                  * say for sure which type this interrupt really
1532                  * has. The type flags are unreliable as the
1533                  * underlying chip implementation can override them.
1534                  */
1535                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1536                        new->name, irq);
1537                 ret = -EINVAL;
1538                 goto out_unlock;
1539         }
1540
1541         if (!shared) {
1542                 init_waitqueue_head(&desc->wait_for_threads);
1543
1544                 /* Setup the type (level, edge polarity) if configured: */
1545                 if (new->flags & IRQF_TRIGGER_MASK) {
1546                         ret = __irq_set_trigger(desc,
1547                                                 new->flags & IRQF_TRIGGER_MASK);
1548
1549                         if (ret)
1550                                 goto out_unlock;
1551                 }
1552
1553                 /*
1554                  * Activate the interrupt. That activation must happen
1555                  * independently of IRQ_NOAUTOEN. request_irq() can fail
1556                  * and the callers are supposed to handle
1557                  * that. enable_irq() of an interrupt requested with
1558                  * IRQ_NOAUTOEN is not supposed to fail. The activation
1559                  * keeps it in shutdown mode, it merily associates
1560                  * resources if necessary and if that's not possible it
1561                  * fails. Interrupts which are in managed shutdown mode
1562                  * will simply ignore that activation request.
1563                  */
1564                 ret = irq_activate(desc);
1565                 if (ret)
1566                         goto out_unlock;
1567
1568                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1569                                   IRQS_ONESHOT | IRQS_WAITING);
1570                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1571
1572                 if (new->flags & IRQF_PERCPU) {
1573                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1574                         irq_settings_set_per_cpu(desc);
1575                 }
1576
1577                 if (new->flags & IRQF_ONESHOT)
1578                         desc->istate |= IRQS_ONESHOT;
1579
1580                 /* Exclude IRQ from balancing if requested */
1581                 if (new->flags & IRQF_NOBALANCING) {
1582                         irq_settings_set_no_balancing(desc);
1583                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1584                 }
1585
1586                 if (irq_settings_can_autoenable(desc)) {
1587                         irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1588                 } else {
1589                         /*
1590                          * Shared interrupts do not go well with disabling
1591                          * auto enable. The sharing interrupt might request
1592                          * it while it's still disabled and then wait for
1593                          * interrupts forever.
1594                          */
1595                         WARN_ON_ONCE(new->flags & IRQF_SHARED);
1596                         /* Undo nested disables: */
1597                         desc->depth = 1;
1598                 }
1599
1600         } else if (new->flags & IRQF_TRIGGER_MASK) {
1601                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1602                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1603
1604                 if (nmsk != omsk)
1605                         /* hope the handler works with current  trigger mode */
1606                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1607                                 irq, omsk, nmsk);
1608         }
1609
1610         *old_ptr = new;
1611
1612         irq_pm_install_action(desc, new);
1613
1614         /* Reset broken irq detection when installing new handler */
1615         desc->irq_count = 0;
1616         desc->irqs_unhandled = 0;
1617
1618         /*
1619          * Check whether we disabled the irq via the spurious handler
1620          * before. Reenable it and give it another chance.
1621          */
1622         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1623                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1624                 __enable_irq(desc);
1625         }
1626
1627         raw_spin_unlock_irqrestore(&desc->lock, flags);
1628         chip_bus_sync_unlock(desc);
1629         mutex_unlock(&desc->request_mutex);
1630
1631         irq_setup_timings(desc, new);
1632
1633         /*
1634          * Strictly no need to wake it up, but hung_task complains
1635          * when no hard interrupt wakes the thread up.
1636          */
1637         if (new->thread)
1638                 wake_up_process(new->thread);
1639         if (new->secondary)
1640                 wake_up_process(new->secondary->thread);
1641
1642         register_irq_proc(irq, desc);
1643         new->dir = NULL;
1644         register_handler_proc(irq, new);
1645         return 0;
1646
1647 mismatch:
1648         if (!(new->flags & IRQF_PROBE_SHARED)) {
1649                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1650                        irq, new->flags, new->name, old->flags, old->name);
1651 #ifdef CONFIG_DEBUG_SHIRQ
1652                 dump_stack();
1653 #endif
1654         }
1655         ret = -EBUSY;
1656
1657 out_unlock:
1658         raw_spin_unlock_irqrestore(&desc->lock, flags);
1659
1660         if (!desc->action)
1661                 irq_release_resources(desc);
1662 out_bus_unlock:
1663         chip_bus_sync_unlock(desc);
1664         mutex_unlock(&desc->request_mutex);
1665
1666 out_thread:
1667         if (new->thread) {
1668                 struct task_struct *t = new->thread;
1669
1670                 new->thread = NULL;
1671                 kthread_stop(t);
1672                 put_task_struct(t);
1673         }
1674         if (new->secondary && new->secondary->thread) {
1675                 struct task_struct *t = new->secondary->thread;
1676
1677                 new->secondary->thread = NULL;
1678                 kthread_stop(t);
1679                 put_task_struct(t);
1680         }
1681 out_mput:
1682         module_put(desc->owner);
1683         return ret;
1684 }
1685
1686 /**
1687  *      setup_irq - setup an interrupt
1688  *      @irq: Interrupt line to setup
1689  *      @act: irqaction for the interrupt
1690  *
1691  * Used to statically setup interrupts in the early boot process.
1692  */
1693 int setup_irq(unsigned int irq, struct irqaction *act)
1694 {
1695         int retval;
1696         struct irq_desc *desc = irq_to_desc(irq);
1697
1698         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1699                 return -EINVAL;
1700
1701         retval = irq_chip_pm_get(&desc->irq_data);
1702         if (retval < 0)
1703                 return retval;
1704
1705         retval = __setup_irq(irq, desc, act);
1706
1707         if (retval)
1708                 irq_chip_pm_put(&desc->irq_data);
1709
1710         return retval;
1711 }
1712 EXPORT_SYMBOL_GPL(setup_irq);
1713
1714 /*
1715  * Internal function to unregister an irqaction - used to free
1716  * regular and special interrupts that are part of the architecture.
1717  */
1718 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1719 {
1720         unsigned irq = desc->irq_data.irq;
1721         struct irqaction *action, **action_ptr;
1722         unsigned long flags;
1723
1724         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1725
1726         mutex_lock(&desc->request_mutex);
1727         chip_bus_lock(desc);
1728         raw_spin_lock_irqsave(&desc->lock, flags);
1729
1730         /*
1731          * There can be multiple actions per IRQ descriptor, find the right
1732          * one based on the dev_id:
1733          */
1734         action_ptr = &desc->action;
1735         for (;;) {
1736                 action = *action_ptr;
1737
1738                 if (!action) {
1739                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1740                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1741                         chip_bus_sync_unlock(desc);
1742                         mutex_unlock(&desc->request_mutex);
1743                         return NULL;
1744                 }
1745
1746                 if (action->dev_id == dev_id)
1747                         break;
1748                 action_ptr = &action->next;
1749         }
1750
1751         /* Found it - now remove it from the list of entries: */
1752         *action_ptr = action->next;
1753
1754         irq_pm_remove_action(desc, action);
1755
1756         /* If this was the last handler, shut down the IRQ line: */
1757         if (!desc->action) {
1758                 irq_settings_clr_disable_unlazy(desc);
1759                 /* Only shutdown. Deactivate after synchronize_hardirq() */
1760                 irq_shutdown(desc);
1761         }
1762
1763 #ifdef CONFIG_SMP
1764         /* make sure affinity_hint is cleaned up */
1765         if (WARN_ON_ONCE(desc->affinity_hint))
1766                 desc->affinity_hint = NULL;
1767 #endif
1768
1769         raw_spin_unlock_irqrestore(&desc->lock, flags);
1770         /*
1771          * Drop bus_lock here so the changes which were done in the chip
1772          * callbacks above are synced out to the irq chips which hang
1773          * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1774          *
1775          * Aside of that the bus_lock can also be taken from the threaded
1776          * handler in irq_finalize_oneshot() which results in a deadlock
1777          * because kthread_stop() would wait forever for the thread to
1778          * complete, which is blocked on the bus lock.
1779          *
1780          * The still held desc->request_mutex() protects against a
1781          * concurrent request_irq() of this irq so the release of resources
1782          * and timing data is properly serialized.
1783          */
1784         chip_bus_sync_unlock(desc);
1785
1786         unregister_handler_proc(irq, action);
1787
1788         /*
1789          * Make sure it's not being used on another CPU and if the chip
1790          * supports it also make sure that there is no (not yet serviced)
1791          * interrupt in flight at the hardware level.
1792          */
1793         __synchronize_hardirq(desc, true);
1794
1795 #ifdef CONFIG_DEBUG_SHIRQ
1796         /*
1797          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1798          * event to happen even now it's being freed, so let's make sure that
1799          * is so by doing an extra call to the handler ....
1800          *
1801          * ( We do this after actually deregistering it, to make sure that a
1802          *   'real' IRQ doesn't run in parallel with our fake. )
1803          */
1804         if (action->flags & IRQF_SHARED) {
1805                 local_irq_save(flags);
1806                 action->handler(irq, dev_id);
1807                 local_irq_restore(flags);
1808         }
1809 #endif
1810
1811         /*
1812          * The action has already been removed above, but the thread writes
1813          * its oneshot mask bit when it completes. Though request_mutex is
1814          * held across this which prevents __setup_irq() from handing out
1815          * the same bit to a newly requested action.
1816          */
1817         if (action->thread) {
1818                 kthread_stop(action->thread);
1819                 put_task_struct(action->thread);
1820                 if (action->secondary && action->secondary->thread) {
1821                         kthread_stop(action->secondary->thread);
1822                         put_task_struct(action->secondary->thread);
1823                 }
1824         }
1825
1826         /* Last action releases resources */
1827         if (!desc->action) {
1828                 /*
1829                  * Reaquire bus lock as irq_release_resources() might
1830                  * require it to deallocate resources over the slow bus.
1831                  */
1832                 chip_bus_lock(desc);
1833                 /*
1834                  * There is no interrupt on the fly anymore. Deactivate it
1835                  * completely.
1836                  */
1837                 raw_spin_lock_irqsave(&desc->lock, flags);
1838                 irq_domain_deactivate_irq(&desc->irq_data);
1839                 raw_spin_unlock_irqrestore(&desc->lock, flags);
1840
1841                 irq_release_resources(desc);
1842                 chip_bus_sync_unlock(desc);
1843                 irq_remove_timings(desc);
1844         }
1845
1846         mutex_unlock(&desc->request_mutex);
1847
1848         irq_chip_pm_put(&desc->irq_data);
1849         module_put(desc->owner);
1850         kfree(action->secondary);
1851         return action;
1852 }
1853
1854 /**
1855  *      remove_irq - free an interrupt
1856  *      @irq: Interrupt line to free
1857  *      @act: irqaction for the interrupt
1858  *
1859  * Used to remove interrupts statically setup by the early boot process.
1860  */
1861 void remove_irq(unsigned int irq, struct irqaction *act)
1862 {
1863         struct irq_desc *desc = irq_to_desc(irq);
1864
1865         if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1866                 __free_irq(desc, act->dev_id);
1867 }
1868 EXPORT_SYMBOL_GPL(remove_irq);
1869
1870 /**
1871  *      free_irq - free an interrupt allocated with request_irq
1872  *      @irq: Interrupt line to free
1873  *      @dev_id: Device identity to free
1874  *
1875  *      Remove an interrupt handler. The handler is removed and if the
1876  *      interrupt line is no longer in use by any driver it is disabled.
1877  *      On a shared IRQ the caller must ensure the interrupt is disabled
1878  *      on the card it drives before calling this function. The function
1879  *      does not return until any executing interrupts for this IRQ
1880  *      have completed.
1881  *
1882  *      This function must not be called from interrupt context.
1883  *
1884  *      Returns the devname argument passed to request_irq.
1885  */
1886 const void *free_irq(unsigned int irq, void *dev_id)
1887 {
1888         struct irq_desc *desc = irq_to_desc(irq);
1889         struct irqaction *action;
1890         const char *devname;
1891
1892         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1893                 return NULL;
1894
1895 #ifdef CONFIG_SMP
1896         if (WARN_ON(desc->affinity_notify))
1897                 desc->affinity_notify = NULL;
1898 #endif
1899
1900         action = __free_irq(desc, dev_id);
1901
1902         if (!action)
1903                 return NULL;
1904
1905         devname = action->name;
1906         kfree(action);
1907         return devname;
1908 }
1909 EXPORT_SYMBOL(free_irq);
1910
1911 /* This function must be called with desc->lock held */
1912 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1913 {
1914         const char *devname = NULL;
1915
1916         desc->istate &= ~IRQS_NMI;
1917
1918         if (!WARN_ON(desc->action == NULL)) {
1919                 irq_pm_remove_action(desc, desc->action);
1920                 devname = desc->action->name;
1921                 unregister_handler_proc(irq, desc->action);
1922
1923                 kfree(desc->action);
1924                 desc->action = NULL;
1925         }
1926
1927         irq_settings_clr_disable_unlazy(desc);
1928         irq_shutdown_and_deactivate(desc);
1929
1930         irq_release_resources(desc);
1931
1932         irq_chip_pm_put(&desc->irq_data);
1933         module_put(desc->owner);
1934
1935         return devname;
1936 }
1937
1938 const void *free_nmi(unsigned int irq, void *dev_id)
1939 {
1940         struct irq_desc *desc = irq_to_desc(irq);
1941         unsigned long flags;
1942         const void *devname;
1943
1944         if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1945                 return NULL;
1946
1947         if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1948                 return NULL;
1949
1950         /* NMI still enabled */
1951         if (WARN_ON(desc->depth == 0))
1952                 disable_nmi_nosync(irq);
1953
1954         raw_spin_lock_irqsave(&desc->lock, flags);
1955
1956         irq_nmi_teardown(desc);
1957         devname = __cleanup_nmi(irq, desc);
1958
1959         raw_spin_unlock_irqrestore(&desc->lock, flags);
1960
1961         return devname;
1962 }
1963
1964 /**
1965  *      request_threaded_irq - allocate an interrupt line
1966  *      @irq: Interrupt line to allocate
1967  *      @handler: Function to be called when the IRQ occurs.
1968  *                Primary handler for threaded interrupts
1969  *                If NULL and thread_fn != NULL the default
1970  *                primary handler is installed
1971  *      @thread_fn: Function called from the irq handler thread
1972  *                  If NULL, no irq thread is created
1973  *      @irqflags: Interrupt type flags
1974  *      @devname: An ascii name for the claiming device
1975  *      @dev_id: A cookie passed back to the handler function
1976  *
1977  *      This call allocates interrupt resources and enables the
1978  *      interrupt line and IRQ handling. From the point this
1979  *      call is made your handler function may be invoked. Since
1980  *      your handler function must clear any interrupt the board
1981  *      raises, you must take care both to initialise your hardware
1982  *      and to set up the interrupt handler in the right order.
1983  *
1984  *      If you want to set up a threaded irq handler for your device
1985  *      then you need to supply @handler and @thread_fn. @handler is
1986  *      still called in hard interrupt context and has to check
1987  *      whether the interrupt originates from the device. If yes it
1988  *      needs to disable the interrupt on the device and return
1989  *      IRQ_WAKE_THREAD which will wake up the handler thread and run
1990  *      @thread_fn. This split handler design is necessary to support
1991  *      shared interrupts.
1992  *
1993  *      Dev_id must be globally unique. Normally the address of the
1994  *      device data structure is used as the cookie. Since the handler
1995  *      receives this value it makes sense to use it.
1996  *
1997  *      If your interrupt is shared you must pass a non NULL dev_id
1998  *      as this is required when freeing the interrupt.
1999  *
2000  *      Flags:
2001  *
2002  *      IRQF_SHARED             Interrupt is shared
2003  *      IRQF_TRIGGER_*          Specify active edge(s) or level
2004  *
2005  */
2006 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2007                          irq_handler_t thread_fn, unsigned long irqflags,
2008                          const char *devname, void *dev_id)
2009 {
2010         struct irqaction *action;
2011         struct irq_desc *desc;
2012         int retval;
2013
2014         if (irq == IRQ_NOTCONNECTED)
2015                 return -ENOTCONN;
2016
2017         /*
2018          * Sanity-check: shared interrupts must pass in a real dev-ID,
2019          * otherwise we'll have trouble later trying to figure out
2020          * which interrupt is which (messes up the interrupt freeing
2021          * logic etc).
2022          *
2023          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2024          * it cannot be set along with IRQF_NO_SUSPEND.
2025          */
2026         if (((irqflags & IRQF_SHARED) && !dev_id) ||
2027             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2028             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2029                 return -EINVAL;
2030
2031         desc = irq_to_desc(irq);
2032         if (!desc)
2033                 return -EINVAL;
2034
2035         if (!irq_settings_can_request(desc) ||
2036             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2037                 return -EINVAL;
2038
2039         if (!handler) {
2040                 if (!thread_fn)
2041                         return -EINVAL;
2042                 handler = irq_default_primary_handler;
2043         }
2044
2045         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2046         if (!action)
2047                 return -ENOMEM;
2048
2049         action->handler = handler;
2050         action->thread_fn = thread_fn;
2051         action->flags = irqflags;
2052         action->name = devname;
2053         action->dev_id = dev_id;
2054
2055         retval = irq_chip_pm_get(&desc->irq_data);
2056         if (retval < 0) {
2057                 kfree(action);
2058                 return retval;
2059         }
2060
2061         retval = __setup_irq(irq, desc, action);
2062
2063         if (retval) {
2064                 irq_chip_pm_put(&desc->irq_data);
2065                 kfree(action->secondary);
2066                 kfree(action);
2067         }
2068
2069 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2070         if (!retval && (irqflags & IRQF_SHARED)) {
2071                 /*
2072                  * It's a shared IRQ -- the driver ought to be prepared for it
2073                  * to happen immediately, so let's make sure....
2074                  * We disable the irq to make sure that a 'real' IRQ doesn't
2075                  * run in parallel with our fake.
2076                  */
2077                 unsigned long flags;
2078
2079                 disable_irq(irq);
2080                 local_irq_save(flags);
2081
2082                 handler(irq, dev_id);
2083
2084                 local_irq_restore(flags);
2085                 enable_irq(irq);
2086         }
2087 #endif
2088         return retval;
2089 }
2090 EXPORT_SYMBOL(request_threaded_irq);
2091
2092 /**
2093  *      request_any_context_irq - allocate an interrupt line
2094  *      @irq: Interrupt line to allocate
2095  *      @handler: Function to be called when the IRQ occurs.
2096  *                Threaded handler for threaded interrupts.
2097  *      @flags: Interrupt type flags
2098  *      @name: An ascii name for the claiming device
2099  *      @dev_id: A cookie passed back to the handler function
2100  *
2101  *      This call allocates interrupt resources and enables the
2102  *      interrupt line and IRQ handling. It selects either a
2103  *      hardirq or threaded handling method depending on the
2104  *      context.
2105  *
2106  *      On failure, it returns a negative value. On success,
2107  *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2108  */
2109 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2110                             unsigned long flags, const char *name, void *dev_id)
2111 {
2112         struct irq_desc *desc;
2113         int ret;
2114
2115         if (irq == IRQ_NOTCONNECTED)
2116                 return -ENOTCONN;
2117
2118         desc = irq_to_desc(irq);
2119         if (!desc)
2120                 return -EINVAL;
2121
2122         if (irq_settings_is_nested_thread(desc)) {
2123                 ret = request_threaded_irq(irq, NULL, handler,
2124                                            flags, name, dev_id);
2125                 return !ret ? IRQC_IS_NESTED : ret;
2126         }
2127
2128         ret = request_irq(irq, handler, flags, name, dev_id);
2129         return !ret ? IRQC_IS_HARDIRQ : ret;
2130 }
2131 EXPORT_SYMBOL_GPL(request_any_context_irq);
2132
2133 /**
2134  *      request_nmi - allocate an interrupt line for NMI delivery
2135  *      @irq: Interrupt line to allocate
2136  *      @handler: Function to be called when the IRQ occurs.
2137  *                Threaded handler for threaded interrupts.
2138  *      @irqflags: Interrupt type flags
2139  *      @name: An ascii name for the claiming device
2140  *      @dev_id: A cookie passed back to the handler function
2141  *
2142  *      This call allocates interrupt resources and enables the
2143  *      interrupt line and IRQ handling. It sets up the IRQ line
2144  *      to be handled as an NMI.
2145  *
2146  *      An interrupt line delivering NMIs cannot be shared and IRQ handling
2147  *      cannot be threaded.
2148  *
2149  *      Interrupt lines requested for NMI delivering must produce per cpu
2150  *      interrupts and have auto enabling setting disabled.
2151  *
2152  *      Dev_id must be globally unique. Normally the address of the
2153  *      device data structure is used as the cookie. Since the handler
2154  *      receives this value it makes sense to use it.
2155  *
2156  *      If the interrupt line cannot be used to deliver NMIs, function
2157  *      will fail and return a negative value.
2158  */
2159 int request_nmi(unsigned int irq, irq_handler_t handler,
2160                 unsigned long irqflags, const char *name, void *dev_id)
2161 {
2162         struct irqaction *action;
2163         struct irq_desc *desc;
2164         unsigned long flags;
2165         int retval;
2166
2167         if (irq == IRQ_NOTCONNECTED)
2168                 return -ENOTCONN;
2169
2170         /* NMI cannot be shared, used for Polling */
2171         if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2172                 return -EINVAL;
2173
2174         if (!(irqflags & IRQF_PERCPU))
2175                 return -EINVAL;
2176
2177         if (!handler)
2178                 return -EINVAL;
2179
2180         desc = irq_to_desc(irq);
2181
2182         if (!desc || irq_settings_can_autoenable(desc) ||
2183             !irq_settings_can_request(desc) ||
2184             WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2185             !irq_supports_nmi(desc))
2186                 return -EINVAL;
2187
2188         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2189         if (!action)
2190                 return -ENOMEM;
2191
2192         action->handler = handler;
2193         action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2194         action->name = name;
2195         action->dev_id = dev_id;
2196
2197         retval = irq_chip_pm_get(&desc->irq_data);
2198         if (retval < 0)
2199                 goto err_out;
2200
2201         retval = __setup_irq(irq, desc, action);
2202         if (retval)
2203                 goto err_irq_setup;
2204
2205         raw_spin_lock_irqsave(&desc->lock, flags);
2206
2207         /* Setup NMI state */
2208         desc->istate |= IRQS_NMI;
2209         retval = irq_nmi_setup(desc);
2210         if (retval) {
2211                 __cleanup_nmi(irq, desc);
2212                 raw_spin_unlock_irqrestore(&desc->lock, flags);
2213                 return -EINVAL;
2214         }
2215
2216         raw_spin_unlock_irqrestore(&desc->lock, flags);
2217
2218         return 0;
2219
2220 err_irq_setup:
2221         irq_chip_pm_put(&desc->irq_data);
2222 err_out:
2223         kfree(action);
2224
2225         return retval;
2226 }
2227
2228 void enable_percpu_irq(unsigned int irq, unsigned int type)
2229 {
2230         unsigned int cpu = smp_processor_id();
2231         unsigned long flags;
2232         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2233
2234         if (!desc)
2235                 return;
2236
2237         /*
2238          * If the trigger type is not specified by the caller, then
2239          * use the default for this interrupt.
2240          */
2241         type &= IRQ_TYPE_SENSE_MASK;
2242         if (type == IRQ_TYPE_NONE)
2243                 type = irqd_get_trigger_type(&desc->irq_data);
2244
2245         if (type != IRQ_TYPE_NONE) {
2246                 int ret;
2247
2248                 ret = __irq_set_trigger(desc, type);
2249
2250                 if (ret) {
2251                         WARN(1, "failed to set type for IRQ%d\n", irq);
2252                         goto out;
2253                 }
2254         }
2255
2256         irq_percpu_enable(desc, cpu);
2257 out:
2258         irq_put_desc_unlock(desc, flags);
2259 }
2260 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2261
2262 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2263 {
2264         enable_percpu_irq(irq, type);
2265 }
2266
2267 /**
2268  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2269  * @irq:        Linux irq number to check for
2270  *
2271  * Must be called from a non migratable context. Returns the enable
2272  * state of a per cpu interrupt on the current cpu.
2273  */
2274 bool irq_percpu_is_enabled(unsigned int irq)
2275 {
2276         unsigned int cpu = smp_processor_id();
2277         struct irq_desc *desc;
2278         unsigned long flags;
2279         bool is_enabled;
2280
2281         desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2282         if (!desc)
2283                 return false;
2284
2285         is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2286         irq_put_desc_unlock(desc, flags);
2287
2288         return is_enabled;
2289 }
2290 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2291
2292 void disable_percpu_irq(unsigned int irq)
2293 {
2294         unsigned int cpu = smp_processor_id();
2295         unsigned long flags;
2296         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2297
2298         if (!desc)
2299                 return;
2300
2301         irq_percpu_disable(desc, cpu);
2302         irq_put_desc_unlock(desc, flags);
2303 }
2304 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2305
2306 void disable_percpu_nmi(unsigned int irq)
2307 {
2308         disable_percpu_irq(irq);
2309 }
2310
2311 /*
2312  * Internal function to unregister a percpu irqaction.
2313  */
2314 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2315 {
2316         struct irq_desc *desc = irq_to_desc(irq);
2317         struct irqaction *action;
2318         unsigned long flags;
2319
2320         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2321
2322         if (!desc)
2323                 return NULL;
2324
2325         raw_spin_lock_irqsave(&desc->lock, flags);
2326
2327         action = desc->action;
2328         if (!action || action->percpu_dev_id != dev_id) {
2329                 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2330                 goto bad;
2331         }
2332
2333         if (!cpumask_empty(desc->percpu_enabled)) {
2334                 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2335                      irq, cpumask_first(desc->percpu_enabled));
2336                 goto bad;
2337         }
2338
2339         /* Found it - now remove it from the list of entries: */
2340         desc->action = NULL;
2341
2342         desc->istate &= ~IRQS_NMI;
2343
2344         raw_spin_unlock_irqrestore(&desc->lock, flags);
2345
2346         unregister_handler_proc(irq, action);
2347
2348         irq_chip_pm_put(&desc->irq_data);
2349         module_put(desc->owner);
2350         return action;
2351
2352 bad:
2353         raw_spin_unlock_irqrestore(&desc->lock, flags);
2354         return NULL;
2355 }
2356
2357 /**
2358  *      remove_percpu_irq - free a per-cpu interrupt
2359  *      @irq: Interrupt line to free
2360  *      @act: irqaction for the interrupt
2361  *
2362  * Used to remove interrupts statically setup by the early boot process.
2363  */
2364 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2365 {
2366         struct irq_desc *desc = irq_to_desc(irq);
2367
2368         if (desc && irq_settings_is_per_cpu_devid(desc))
2369             __free_percpu_irq(irq, act->percpu_dev_id);
2370 }
2371
2372 /**
2373  *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2374  *      @irq: Interrupt line to free
2375  *      @dev_id: Device identity to free
2376  *
2377  *      Remove a percpu interrupt handler. The handler is removed, but
2378  *      the interrupt line is not disabled. This must be done on each
2379  *      CPU before calling this function. The function does not return
2380  *      until any executing interrupts for this IRQ have completed.
2381  *
2382  *      This function must not be called from interrupt context.
2383  */
2384 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2385 {
2386         struct irq_desc *desc = irq_to_desc(irq);
2387
2388         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2389                 return;
2390
2391         chip_bus_lock(desc);
2392         kfree(__free_percpu_irq(irq, dev_id));
2393         chip_bus_sync_unlock(desc);
2394 }
2395 EXPORT_SYMBOL_GPL(free_percpu_irq);
2396
2397 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2398 {
2399         struct irq_desc *desc = irq_to_desc(irq);
2400
2401         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2402                 return;
2403
2404         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2405                 return;
2406
2407         kfree(__free_percpu_irq(irq, dev_id));
2408 }
2409
2410 /**
2411  *      setup_percpu_irq - setup a per-cpu interrupt
2412  *      @irq: Interrupt line to setup
2413  *      @act: irqaction for the interrupt
2414  *
2415  * Used to statically setup per-cpu interrupts in the early boot process.
2416  */
2417 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2418 {
2419         struct irq_desc *desc = irq_to_desc(irq);
2420         int retval;
2421
2422         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2423                 return -EINVAL;
2424
2425         retval = irq_chip_pm_get(&desc->irq_data);
2426         if (retval < 0)
2427                 return retval;
2428
2429         retval = __setup_irq(irq, desc, act);
2430
2431         if (retval)
2432                 irq_chip_pm_put(&desc->irq_data);
2433
2434         return retval;
2435 }
2436
2437 /**
2438  *      __request_percpu_irq - allocate a percpu interrupt line
2439  *      @irq: Interrupt line to allocate
2440  *      @handler: Function to be called when the IRQ occurs.
2441  *      @flags: Interrupt type flags (IRQF_TIMER only)
2442  *      @devname: An ascii name for the claiming device
2443  *      @dev_id: A percpu cookie passed back to the handler function
2444  *
2445  *      This call allocates interrupt resources and enables the
2446  *      interrupt on the local CPU. If the interrupt is supposed to be
2447  *      enabled on other CPUs, it has to be done on each CPU using
2448  *      enable_percpu_irq().
2449  *
2450  *      Dev_id must be globally unique. It is a per-cpu variable, and
2451  *      the handler gets called with the interrupted CPU's instance of
2452  *      that variable.
2453  */
2454 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2455                          unsigned long flags, const char *devname,
2456                          void __percpu *dev_id)
2457 {
2458         struct irqaction *action;
2459         struct irq_desc *desc;
2460         int retval;
2461
2462         if (!dev_id)
2463                 return -EINVAL;
2464
2465         desc = irq_to_desc(irq);
2466         if (!desc || !irq_settings_can_request(desc) ||
2467             !irq_settings_is_per_cpu_devid(desc))
2468                 return -EINVAL;
2469
2470         if (flags && flags != IRQF_TIMER)
2471                 return -EINVAL;
2472
2473         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2474         if (!action)
2475                 return -ENOMEM;
2476
2477         action->handler = handler;
2478         action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2479         action->name = devname;
2480         action->percpu_dev_id = dev_id;
2481
2482         retval = irq_chip_pm_get(&desc->irq_data);
2483         if (retval < 0) {
2484                 kfree(action);
2485                 return retval;
2486         }
2487
2488         retval = __setup_irq(irq, desc, action);
2489
2490         if (retval) {
2491                 irq_chip_pm_put(&desc->irq_data);
2492                 kfree(action);
2493         }
2494
2495         return retval;
2496 }
2497 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2498
2499 /**
2500  *      request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2501  *      @irq: Interrupt line to allocate
2502  *      @handler: Function to be called when the IRQ occurs.
2503  *      @name: An ascii name for the claiming device
2504  *      @dev_id: A percpu cookie passed back to the handler function
2505  *
2506  *      This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2507  *      have to be setup on each CPU by calling prepare_percpu_nmi() before
2508  *      being enabled on the same CPU by using enable_percpu_nmi().
2509  *
2510  *      Dev_id must be globally unique. It is a per-cpu variable, and
2511  *      the handler gets called with the interrupted CPU's instance of
2512  *      that variable.
2513  *
2514  *      Interrupt lines requested for NMI delivering should have auto enabling
2515  *      setting disabled.
2516  *
2517  *      If the interrupt line cannot be used to deliver NMIs, function
2518  *      will fail returning a negative value.
2519  */
2520 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2521                        const char *name, void __percpu *dev_id)
2522 {
2523         struct irqaction *action;
2524         struct irq_desc *desc;
2525         unsigned long flags;
2526         int retval;
2527
2528         if (!handler)
2529                 return -EINVAL;
2530
2531         desc = irq_to_desc(irq);
2532
2533         if (!desc || !irq_settings_can_request(desc) ||
2534             !irq_settings_is_per_cpu_devid(desc) ||
2535             irq_settings_can_autoenable(desc) ||
2536             !irq_supports_nmi(desc))
2537                 return -EINVAL;
2538
2539         /* The line cannot already be NMI */
2540         if (desc->istate & IRQS_NMI)
2541                 return -EINVAL;
2542
2543         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2544         if (!action)
2545                 return -ENOMEM;
2546
2547         action->handler = handler;
2548         action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2549                 | IRQF_NOBALANCING;
2550         action->name = name;
2551         action->percpu_dev_id = dev_id;
2552
2553         retval = irq_chip_pm_get(&desc->irq_data);
2554         if (retval < 0)
2555                 goto err_out;
2556
2557         retval = __setup_irq(irq, desc, action);
2558         if (retval)
2559                 goto err_irq_setup;
2560
2561         raw_spin_lock_irqsave(&desc->lock, flags);
2562         desc->istate |= IRQS_NMI;
2563         raw_spin_unlock_irqrestore(&desc->lock, flags);
2564
2565         return 0;
2566
2567 err_irq_setup:
2568         irq_chip_pm_put(&desc->irq_data);
2569 err_out:
2570         kfree(action);
2571
2572         return retval;
2573 }
2574
2575 /**
2576  *      prepare_percpu_nmi - performs CPU local setup for NMI delivery
2577  *      @irq: Interrupt line to prepare for NMI delivery
2578  *
2579  *      This call prepares an interrupt line to deliver NMI on the current CPU,
2580  *      before that interrupt line gets enabled with enable_percpu_nmi().
2581  *
2582  *      As a CPU local operation, this should be called from non-preemptible
2583  *      context.
2584  *
2585  *      If the interrupt line cannot be used to deliver NMIs, function
2586  *      will fail returning a negative value.
2587  */
2588 int prepare_percpu_nmi(unsigned int irq)
2589 {
2590         unsigned long flags;
2591         struct irq_desc *desc;
2592         int ret = 0;
2593
2594         WARN_ON(preemptible());
2595
2596         desc = irq_get_desc_lock(irq, &flags,
2597                                  IRQ_GET_DESC_CHECK_PERCPU);
2598         if (!desc)
2599                 return -EINVAL;
2600
2601         if (WARN(!(desc->istate & IRQS_NMI),
2602                  KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2603                  irq)) {
2604                 ret = -EINVAL;
2605                 goto out;
2606         }
2607
2608         ret = irq_nmi_setup(desc);
2609         if (ret) {
2610                 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2611                 goto out;
2612         }
2613
2614 out:
2615         irq_put_desc_unlock(desc, flags);
2616         return ret;
2617 }
2618
2619 /**
2620  *      teardown_percpu_nmi - undoes NMI setup of IRQ line
2621  *      @irq: Interrupt line from which CPU local NMI configuration should be
2622  *            removed
2623  *
2624  *      This call undoes the setup done by prepare_percpu_nmi().
2625  *
2626  *      IRQ line should not be enabled for the current CPU.
2627  *
2628  *      As a CPU local operation, this should be called from non-preemptible
2629  *      context.
2630  */
2631 void teardown_percpu_nmi(unsigned int irq)
2632 {
2633         unsigned long flags;
2634         struct irq_desc *desc;
2635
2636         WARN_ON(preemptible());
2637
2638         desc = irq_get_desc_lock(irq, &flags,
2639                                  IRQ_GET_DESC_CHECK_PERCPU);
2640         if (!desc)
2641                 return;
2642
2643         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2644                 goto out;
2645
2646         irq_nmi_teardown(desc);
2647 out:
2648         irq_put_desc_unlock(desc, flags);
2649 }
2650
2651 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2652                             bool *state)
2653 {
2654         struct irq_chip *chip;
2655         int err = -EINVAL;
2656
2657         do {
2658                 chip = irq_data_get_irq_chip(data);
2659                 if (chip->irq_get_irqchip_state)
2660                         break;
2661 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2662                 data = data->parent_data;
2663 #else
2664                 data = NULL;
2665 #endif
2666         } while (data);
2667
2668         if (data)
2669                 err = chip->irq_get_irqchip_state(data, which, state);
2670         return err;
2671 }
2672
2673 /**
2674  *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2675  *      @irq: Interrupt line that is forwarded to a VM
2676  *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2677  *      @state: a pointer to a boolean where the state is to be storeed
2678  *
2679  *      This call snapshots the internal irqchip state of an
2680  *      interrupt, returning into @state the bit corresponding to
2681  *      stage @which
2682  *
2683  *      This function should be called with preemption disabled if the
2684  *      interrupt controller has per-cpu registers.
2685  */
2686 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2687                           bool *state)
2688 {
2689         struct irq_desc *desc;
2690         struct irq_data *data;
2691         unsigned long flags;
2692         int err = -EINVAL;
2693
2694         desc = irq_get_desc_buslock(irq, &flags, 0);
2695         if (!desc)
2696                 return err;
2697
2698         data = irq_desc_get_irq_data(desc);
2699
2700         err = __irq_get_irqchip_state(data, which, state);
2701
2702         irq_put_desc_busunlock(desc, flags);
2703         return err;
2704 }
2705 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2706
2707 /**
2708  *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2709  *      @irq: Interrupt line that is forwarded to a VM
2710  *      @which: State to be restored (one of IRQCHIP_STATE_*)
2711  *      @val: Value corresponding to @which
2712  *
2713  *      This call sets the internal irqchip state of an interrupt,
2714  *      depending on the value of @which.
2715  *
2716  *      This function should be called with preemption disabled if the
2717  *      interrupt controller has per-cpu registers.
2718  */
2719 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2720                           bool val)
2721 {
2722         struct irq_desc *desc;
2723         struct irq_data *data;
2724         struct irq_chip *chip;
2725         unsigned long flags;
2726         int err = -EINVAL;
2727
2728         desc = irq_get_desc_buslock(irq, &flags, 0);
2729         if (!desc)
2730                 return err;
2731
2732         data = irq_desc_get_irq_data(desc);
2733
2734         do {
2735                 chip = irq_data_get_irq_chip(data);
2736                 if (chip->irq_set_irqchip_state)
2737                         break;
2738 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2739                 data = data->parent_data;
2740 #else
2741                 data = NULL;
2742 #endif
2743         } while (data);
2744
2745         if (data)
2746                 err = chip->irq_set_irqchip_state(data, which, val);
2747
2748         irq_put_desc_busunlock(desc, flags);
2749         return err;
2750 }
2751 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);