Merge tag 'hwmon-for-v5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck...
[linux-block.git] / kernel / irq / manage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 __read_mostly bool force_irqthreads;
29 EXPORT_SYMBOL_GPL(force_irqthreads);
30
31 static int __init setup_forced_irqthreads(char *arg)
32 {
33         force_irqthreads = true;
34         return 0;
35 }
36 early_param("threadirqs", setup_forced_irqthreads);
37 #endif
38
39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
40 {
41         struct irq_data *irqd = irq_desc_get_irq_data(desc);
42         bool inprogress;
43
44         do {
45                 unsigned long flags;
46
47                 /*
48                  * Wait until we're out of the critical section.  This might
49                  * give the wrong answer due to the lack of memory barriers.
50                  */
51                 while (irqd_irq_inprogress(&desc->irq_data))
52                         cpu_relax();
53
54                 /* Ok, that indicated we're done: double-check carefully. */
55                 raw_spin_lock_irqsave(&desc->lock, flags);
56                 inprogress = irqd_irq_inprogress(&desc->irq_data);
57
58                 /*
59                  * If requested and supported, check at the chip whether it
60                  * is in flight at the hardware level, i.e. already pending
61                  * in a CPU and waiting for service and acknowledge.
62                  */
63                 if (!inprogress && sync_chip) {
64                         /*
65                          * Ignore the return code. inprogress is only updated
66                          * when the chip supports it.
67                          */
68                         __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
69                                                 &inprogress);
70                 }
71                 raw_spin_unlock_irqrestore(&desc->lock, flags);
72
73                 /* Oops, that failed? */
74         } while (inprogress);
75 }
76
77 /**
78  *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
79  *      @irq: interrupt number to wait for
80  *
81  *      This function waits for any pending hard IRQ handlers for this
82  *      interrupt to complete before returning. If you use this
83  *      function while holding a resource the IRQ handler may need you
84  *      will deadlock. It does not take associated threaded handlers
85  *      into account.
86  *
87  *      Do not use this for shutdown scenarios where you must be sure
88  *      that all parts (hardirq and threaded handler) have completed.
89  *
90  *      Returns: false if a threaded handler is active.
91  *
92  *      This function may be called - with care - from IRQ context.
93  *
94  *      It does not check whether there is an interrupt in flight at the
95  *      hardware level, but not serviced yet, as this might deadlock when
96  *      called with interrupts disabled and the target CPU of the interrupt
97  *      is the current CPU.
98  */
99 bool synchronize_hardirq(unsigned int irq)
100 {
101         struct irq_desc *desc = irq_to_desc(irq);
102
103         if (desc) {
104                 __synchronize_hardirq(desc, false);
105                 return !atomic_read(&desc->threads_active);
106         }
107
108         return true;
109 }
110 EXPORT_SYMBOL(synchronize_hardirq);
111
112 /**
113  *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
114  *      @irq: interrupt number to wait for
115  *
116  *      This function waits for any pending IRQ handlers for this interrupt
117  *      to complete before returning. If you use this function while
118  *      holding a resource the IRQ handler may need you will deadlock.
119  *
120  *      Can only be called from preemptible code as it might sleep when
121  *      an interrupt thread is associated to @irq.
122  *
123  *      It optionally makes sure (when the irq chip supports that method)
124  *      that the interrupt is not pending in any CPU and waiting for
125  *      service.
126  */
127 void synchronize_irq(unsigned int irq)
128 {
129         struct irq_desc *desc = irq_to_desc(irq);
130
131         if (desc) {
132                 __synchronize_hardirq(desc, true);
133                 /*
134                  * We made sure that no hardirq handler is
135                  * running. Now verify that no threaded handlers are
136                  * active.
137                  */
138                 wait_event(desc->wait_for_threads,
139                            !atomic_read(&desc->threads_active));
140         }
141 }
142 EXPORT_SYMBOL(synchronize_irq);
143
144 #ifdef CONFIG_SMP
145 cpumask_var_t irq_default_affinity;
146
147 static bool __irq_can_set_affinity(struct irq_desc *desc)
148 {
149         if (!desc || !irqd_can_balance(&desc->irq_data) ||
150             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
151                 return false;
152         return true;
153 }
154
155 /**
156  *      irq_can_set_affinity - Check if the affinity of a given irq can be set
157  *      @irq:           Interrupt to check
158  *
159  */
160 int irq_can_set_affinity(unsigned int irq)
161 {
162         return __irq_can_set_affinity(irq_to_desc(irq));
163 }
164
165 /**
166  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
167  * @irq:        Interrupt to check
168  *
169  * Like irq_can_set_affinity() above, but additionally checks for the
170  * AFFINITY_MANAGED flag.
171  */
172 bool irq_can_set_affinity_usr(unsigned int irq)
173 {
174         struct irq_desc *desc = irq_to_desc(irq);
175
176         return __irq_can_set_affinity(desc) &&
177                 !irqd_affinity_is_managed(&desc->irq_data);
178 }
179
180 /**
181  *      irq_set_thread_affinity - Notify irq threads to adjust affinity
182  *      @desc:          irq descriptor which has affitnity changed
183  *
184  *      We just set IRQTF_AFFINITY and delegate the affinity setting
185  *      to the interrupt thread itself. We can not call
186  *      set_cpus_allowed_ptr() here as we hold desc->lock and this
187  *      code can be called from hard interrupt context.
188  */
189 void irq_set_thread_affinity(struct irq_desc *desc)
190 {
191         struct irqaction *action;
192
193         for_each_action_of_desc(desc, action)
194                 if (action->thread)
195                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
196 }
197
198 static void irq_validate_effective_affinity(struct irq_data *data)
199 {
200 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
201         const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
202         struct irq_chip *chip = irq_data_get_irq_chip(data);
203
204         if (!cpumask_empty(m))
205                 return;
206         pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
207                      chip->name, data->irq);
208 #endif
209 }
210
211 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
212                         bool force)
213 {
214         struct irq_desc *desc = irq_data_to_desc(data);
215         struct irq_chip *chip = irq_data_get_irq_chip(data);
216         int ret;
217
218         if (!chip || !chip->irq_set_affinity)
219                 return -EINVAL;
220
221         /*
222          * If this is a managed interrupt and housekeeping is enabled on
223          * it check whether the requested affinity mask intersects with
224          * a housekeeping CPU. If so, then remove the isolated CPUs from
225          * the mask and just keep the housekeeping CPU(s). This prevents
226          * the affinity setter from routing the interrupt to an isolated
227          * CPU to avoid that I/O submitted from a housekeeping CPU causes
228          * interrupts on an isolated one.
229          *
230          * If the masks do not intersect or include online CPU(s) then
231          * keep the requested mask. The isolated target CPUs are only
232          * receiving interrupts when the I/O operation was submitted
233          * directly from them.
234          *
235          * If all housekeeping CPUs in the affinity mask are offline, the
236          * interrupt will be migrated by the CPU hotplug code once a
237          * housekeeping CPU which belongs to the affinity mask comes
238          * online.
239          */
240         if (irqd_affinity_is_managed(data) &&
241             housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
242                 const struct cpumask *hk_mask, *prog_mask;
243
244                 static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
245                 static struct cpumask tmp_mask;
246
247                 hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
248
249                 raw_spin_lock(&tmp_mask_lock);
250                 cpumask_and(&tmp_mask, mask, hk_mask);
251                 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
252                         prog_mask = mask;
253                 else
254                         prog_mask = &tmp_mask;
255                 ret = chip->irq_set_affinity(data, prog_mask, force);
256                 raw_spin_unlock(&tmp_mask_lock);
257         } else {
258                 ret = chip->irq_set_affinity(data, mask, force);
259         }
260         switch (ret) {
261         case IRQ_SET_MASK_OK:
262         case IRQ_SET_MASK_OK_DONE:
263                 cpumask_copy(desc->irq_common_data.affinity, mask);
264                 /* fall through */
265         case IRQ_SET_MASK_OK_NOCOPY:
266                 irq_validate_effective_affinity(data);
267                 irq_set_thread_affinity(desc);
268                 ret = 0;
269         }
270
271         return ret;
272 }
273
274 #ifdef CONFIG_GENERIC_PENDING_IRQ
275 static inline int irq_set_affinity_pending(struct irq_data *data,
276                                            const struct cpumask *dest)
277 {
278         struct irq_desc *desc = irq_data_to_desc(data);
279
280         irqd_set_move_pending(data);
281         irq_copy_pending(desc, dest);
282         return 0;
283 }
284 #else
285 static inline int irq_set_affinity_pending(struct irq_data *data,
286                                            const struct cpumask *dest)
287 {
288         return -EBUSY;
289 }
290 #endif
291
292 static int irq_try_set_affinity(struct irq_data *data,
293                                 const struct cpumask *dest, bool force)
294 {
295         int ret = irq_do_set_affinity(data, dest, force);
296
297         /*
298          * In case that the underlying vector management is busy and the
299          * architecture supports the generic pending mechanism then utilize
300          * this to avoid returning an error to user space.
301          */
302         if (ret == -EBUSY && !force)
303                 ret = irq_set_affinity_pending(data, dest);
304         return ret;
305 }
306
307 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
308                             bool force)
309 {
310         struct irq_chip *chip = irq_data_get_irq_chip(data);
311         struct irq_desc *desc = irq_data_to_desc(data);
312         int ret = 0;
313
314         if (!chip || !chip->irq_set_affinity)
315                 return -EINVAL;
316
317         if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
318                 ret = irq_try_set_affinity(data, mask, force);
319         } else {
320                 irqd_set_move_pending(data);
321                 irq_copy_pending(desc, mask);
322         }
323
324         if (desc->affinity_notify) {
325                 kref_get(&desc->affinity_notify->kref);
326                 if (!schedule_work(&desc->affinity_notify->work)) {
327                         /* Work was already scheduled, drop our extra ref */
328                         kref_put(&desc->affinity_notify->kref,
329                                  desc->affinity_notify->release);
330                 }
331         }
332         irqd_set(data, IRQD_AFFINITY_SET);
333
334         return ret;
335 }
336
337 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
338 {
339         struct irq_desc *desc = irq_to_desc(irq);
340         unsigned long flags;
341         int ret;
342
343         if (!desc)
344                 return -EINVAL;
345
346         raw_spin_lock_irqsave(&desc->lock, flags);
347         ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
348         raw_spin_unlock_irqrestore(&desc->lock, flags);
349         return ret;
350 }
351
352 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
353 {
354         unsigned long flags;
355         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
356
357         if (!desc)
358                 return -EINVAL;
359         desc->affinity_hint = m;
360         irq_put_desc_unlock(desc, flags);
361         /* set the initial affinity to prevent every interrupt being on CPU0 */
362         if (m)
363                 __irq_set_affinity(irq, m, false);
364         return 0;
365 }
366 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
367
368 static void irq_affinity_notify(struct work_struct *work)
369 {
370         struct irq_affinity_notify *notify =
371                 container_of(work, struct irq_affinity_notify, work);
372         struct irq_desc *desc = irq_to_desc(notify->irq);
373         cpumask_var_t cpumask;
374         unsigned long flags;
375
376         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
377                 goto out;
378
379         raw_spin_lock_irqsave(&desc->lock, flags);
380         if (irq_move_pending(&desc->irq_data))
381                 irq_get_pending(cpumask, desc);
382         else
383                 cpumask_copy(cpumask, desc->irq_common_data.affinity);
384         raw_spin_unlock_irqrestore(&desc->lock, flags);
385
386         notify->notify(notify, cpumask);
387
388         free_cpumask_var(cpumask);
389 out:
390         kref_put(&notify->kref, notify->release);
391 }
392
393 /**
394  *      irq_set_affinity_notifier - control notification of IRQ affinity changes
395  *      @irq:           Interrupt for which to enable/disable notification
396  *      @notify:        Context for notification, or %NULL to disable
397  *                      notification.  Function pointers must be initialised;
398  *                      the other fields will be initialised by this function.
399  *
400  *      Must be called in process context.  Notification may only be enabled
401  *      after the IRQ is allocated and must be disabled before the IRQ is
402  *      freed using free_irq().
403  */
404 int
405 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
406 {
407         struct irq_desc *desc = irq_to_desc(irq);
408         struct irq_affinity_notify *old_notify;
409         unsigned long flags;
410
411         /* The release function is promised process context */
412         might_sleep();
413
414         if (!desc || desc->istate & IRQS_NMI)
415                 return -EINVAL;
416
417         /* Complete initialisation of *notify */
418         if (notify) {
419                 notify->irq = irq;
420                 kref_init(&notify->kref);
421                 INIT_WORK(&notify->work, irq_affinity_notify);
422         }
423
424         raw_spin_lock_irqsave(&desc->lock, flags);
425         old_notify = desc->affinity_notify;
426         desc->affinity_notify = notify;
427         raw_spin_unlock_irqrestore(&desc->lock, flags);
428
429         if (old_notify) {
430                 if (cancel_work_sync(&old_notify->work)) {
431                         /* Pending work had a ref, put that one too */
432                         kref_put(&old_notify->kref, old_notify->release);
433                 }
434                 kref_put(&old_notify->kref, old_notify->release);
435         }
436
437         return 0;
438 }
439 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
440
441 #ifndef CONFIG_AUTO_IRQ_AFFINITY
442 /*
443  * Generic version of the affinity autoselector.
444  */
445 int irq_setup_affinity(struct irq_desc *desc)
446 {
447         struct cpumask *set = irq_default_affinity;
448         int ret, node = irq_desc_get_node(desc);
449         static DEFINE_RAW_SPINLOCK(mask_lock);
450         static struct cpumask mask;
451
452         /* Excludes PER_CPU and NO_BALANCE interrupts */
453         if (!__irq_can_set_affinity(desc))
454                 return 0;
455
456         raw_spin_lock(&mask_lock);
457         /*
458          * Preserve the managed affinity setting and a userspace affinity
459          * setup, but make sure that one of the targets is online.
460          */
461         if (irqd_affinity_is_managed(&desc->irq_data) ||
462             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
463                 if (cpumask_intersects(desc->irq_common_data.affinity,
464                                        cpu_online_mask))
465                         set = desc->irq_common_data.affinity;
466                 else
467                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
468         }
469
470         cpumask_and(&mask, cpu_online_mask, set);
471         if (cpumask_empty(&mask))
472                 cpumask_copy(&mask, cpu_online_mask);
473
474         if (node != NUMA_NO_NODE) {
475                 const struct cpumask *nodemask = cpumask_of_node(node);
476
477                 /* make sure at least one of the cpus in nodemask is online */
478                 if (cpumask_intersects(&mask, nodemask))
479                         cpumask_and(&mask, &mask, nodemask);
480         }
481         ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
482         raw_spin_unlock(&mask_lock);
483         return ret;
484 }
485 #else
486 /* Wrapper for ALPHA specific affinity selector magic */
487 int irq_setup_affinity(struct irq_desc *desc)
488 {
489         return irq_select_affinity(irq_desc_get_irq(desc));
490 }
491 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
492 #endif /* CONFIG_SMP */
493
494
495 /**
496  *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
497  *      @irq: interrupt number to set affinity
498  *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
499  *                  specific data for percpu_devid interrupts
500  *
501  *      This function uses the vCPU specific data to set the vCPU
502  *      affinity for an irq. The vCPU specific data is passed from
503  *      outside, such as KVM. One example code path is as below:
504  *      KVM -> IOMMU -> irq_set_vcpu_affinity().
505  */
506 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
507 {
508         unsigned long flags;
509         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
510         struct irq_data *data;
511         struct irq_chip *chip;
512         int ret = -ENOSYS;
513
514         if (!desc)
515                 return -EINVAL;
516
517         data = irq_desc_get_irq_data(desc);
518         do {
519                 chip = irq_data_get_irq_chip(data);
520                 if (chip && chip->irq_set_vcpu_affinity)
521                         break;
522 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
523                 data = data->parent_data;
524 #else
525                 data = NULL;
526 #endif
527         } while (data);
528
529         if (data)
530                 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
531         irq_put_desc_unlock(desc, flags);
532
533         return ret;
534 }
535 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
536
537 void __disable_irq(struct irq_desc *desc)
538 {
539         if (!desc->depth++)
540                 irq_disable(desc);
541 }
542
543 static int __disable_irq_nosync(unsigned int irq)
544 {
545         unsigned long flags;
546         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
547
548         if (!desc)
549                 return -EINVAL;
550         __disable_irq(desc);
551         irq_put_desc_busunlock(desc, flags);
552         return 0;
553 }
554
555 /**
556  *      disable_irq_nosync - disable an irq without waiting
557  *      @irq: Interrupt to disable
558  *
559  *      Disable the selected interrupt line.  Disables and Enables are
560  *      nested.
561  *      Unlike disable_irq(), this function does not ensure existing
562  *      instances of the IRQ handler have completed before returning.
563  *
564  *      This function may be called from IRQ context.
565  */
566 void disable_irq_nosync(unsigned int irq)
567 {
568         __disable_irq_nosync(irq);
569 }
570 EXPORT_SYMBOL(disable_irq_nosync);
571
572 /**
573  *      disable_irq - disable an irq and wait for completion
574  *      @irq: Interrupt to disable
575  *
576  *      Disable the selected interrupt line.  Enables and Disables are
577  *      nested.
578  *      This function waits for any pending IRQ handlers for this interrupt
579  *      to complete before returning. If you use this function while
580  *      holding a resource the IRQ handler may need you will deadlock.
581  *
582  *      This function may be called - with care - from IRQ context.
583  */
584 void disable_irq(unsigned int irq)
585 {
586         if (!__disable_irq_nosync(irq))
587                 synchronize_irq(irq);
588 }
589 EXPORT_SYMBOL(disable_irq);
590
591 /**
592  *      disable_hardirq - disables an irq and waits for hardirq completion
593  *      @irq: Interrupt to disable
594  *
595  *      Disable the selected interrupt line.  Enables and Disables are
596  *      nested.
597  *      This function waits for any pending hard IRQ handlers for this
598  *      interrupt to complete before returning. If you use this function while
599  *      holding a resource the hard IRQ handler may need you will deadlock.
600  *
601  *      When used to optimistically disable an interrupt from atomic context
602  *      the return value must be checked.
603  *
604  *      Returns: false if a threaded handler is active.
605  *
606  *      This function may be called - with care - from IRQ context.
607  */
608 bool disable_hardirq(unsigned int irq)
609 {
610         if (!__disable_irq_nosync(irq))
611                 return synchronize_hardirq(irq);
612
613         return false;
614 }
615 EXPORT_SYMBOL_GPL(disable_hardirq);
616
617 /**
618  *      disable_nmi_nosync - disable an nmi without waiting
619  *      @irq: Interrupt to disable
620  *
621  *      Disable the selected interrupt line. Disables and enables are
622  *      nested.
623  *      The interrupt to disable must have been requested through request_nmi.
624  *      Unlike disable_nmi(), this function does not ensure existing
625  *      instances of the IRQ handler have completed before returning.
626  */
627 void disable_nmi_nosync(unsigned int irq)
628 {
629         disable_irq_nosync(irq);
630 }
631
632 void __enable_irq(struct irq_desc *desc)
633 {
634         switch (desc->depth) {
635         case 0:
636  err_out:
637                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
638                      irq_desc_get_irq(desc));
639                 break;
640         case 1: {
641                 if (desc->istate & IRQS_SUSPENDED)
642                         goto err_out;
643                 /* Prevent probing on this irq: */
644                 irq_settings_set_noprobe(desc);
645                 /*
646                  * Call irq_startup() not irq_enable() here because the
647                  * interrupt might be marked NOAUTOEN. So irq_startup()
648                  * needs to be invoked when it gets enabled the first
649                  * time. If it was already started up, then irq_startup()
650                  * will invoke irq_enable() under the hood.
651                  */
652                 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
653                 break;
654         }
655         default:
656                 desc->depth--;
657         }
658 }
659
660 /**
661  *      enable_irq - enable handling of an irq
662  *      @irq: Interrupt to enable
663  *
664  *      Undoes the effect of one call to disable_irq().  If this
665  *      matches the last disable, processing of interrupts on this
666  *      IRQ line is re-enabled.
667  *
668  *      This function may be called from IRQ context only when
669  *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
670  */
671 void enable_irq(unsigned int irq)
672 {
673         unsigned long flags;
674         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
675
676         if (!desc)
677                 return;
678         if (WARN(!desc->irq_data.chip,
679                  KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
680                 goto out;
681
682         __enable_irq(desc);
683 out:
684         irq_put_desc_busunlock(desc, flags);
685 }
686 EXPORT_SYMBOL(enable_irq);
687
688 /**
689  *      enable_nmi - enable handling of an nmi
690  *      @irq: Interrupt to enable
691  *
692  *      The interrupt to enable must have been requested through request_nmi.
693  *      Undoes the effect of one call to disable_nmi(). If this
694  *      matches the last disable, processing of interrupts on this
695  *      IRQ line is re-enabled.
696  */
697 void enable_nmi(unsigned int irq)
698 {
699         enable_irq(irq);
700 }
701
702 static int set_irq_wake_real(unsigned int irq, unsigned int on)
703 {
704         struct irq_desc *desc = irq_to_desc(irq);
705         int ret = -ENXIO;
706
707         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
708                 return 0;
709
710         if (desc->irq_data.chip->irq_set_wake)
711                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
712
713         return ret;
714 }
715
716 /**
717  *      irq_set_irq_wake - control irq power management wakeup
718  *      @irq:   interrupt to control
719  *      @on:    enable/disable power management wakeup
720  *
721  *      Enable/disable power management wakeup mode, which is
722  *      disabled by default.  Enables and disables must match,
723  *      just as they match for non-wakeup mode support.
724  *
725  *      Wakeup mode lets this IRQ wake the system from sleep
726  *      states like "suspend to RAM".
727  *
728  *      Note: irq enable/disable state is completely orthogonal
729  *      to the enable/disable state of irq wake. An irq can be
730  *      disabled with disable_irq() and still wake the system as
731  *      long as the irq has wake enabled. If this does not hold,
732  *      then the underlying irq chip and the related driver need
733  *      to be investigated.
734  */
735 int irq_set_irq_wake(unsigned int irq, unsigned int on)
736 {
737         unsigned long flags;
738         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
739         int ret = 0;
740
741         if (!desc)
742                 return -EINVAL;
743
744         /* Don't use NMIs as wake up interrupts please */
745         if (desc->istate & IRQS_NMI) {
746                 ret = -EINVAL;
747                 goto out_unlock;
748         }
749
750         /* wakeup-capable irqs can be shared between drivers that
751          * don't need to have the same sleep mode behaviors.
752          */
753         if (on) {
754                 if (desc->wake_depth++ == 0) {
755                         ret = set_irq_wake_real(irq, on);
756                         if (ret)
757                                 desc->wake_depth = 0;
758                         else
759                                 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
760                 }
761         } else {
762                 if (desc->wake_depth == 0) {
763                         WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
764                 } else if (--desc->wake_depth == 0) {
765                         ret = set_irq_wake_real(irq, on);
766                         if (ret)
767                                 desc->wake_depth = 1;
768                         else
769                                 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
770                 }
771         }
772
773 out_unlock:
774         irq_put_desc_busunlock(desc, flags);
775         return ret;
776 }
777 EXPORT_SYMBOL(irq_set_irq_wake);
778
779 /*
780  * Internal function that tells the architecture code whether a
781  * particular irq has been exclusively allocated or is available
782  * for driver use.
783  */
784 int can_request_irq(unsigned int irq, unsigned long irqflags)
785 {
786         unsigned long flags;
787         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
788         int canrequest = 0;
789
790         if (!desc)
791                 return 0;
792
793         if (irq_settings_can_request(desc)) {
794                 if (!desc->action ||
795                     irqflags & desc->action->flags & IRQF_SHARED)
796                         canrequest = 1;
797         }
798         irq_put_desc_unlock(desc, flags);
799         return canrequest;
800 }
801
802 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
803 {
804         struct irq_chip *chip = desc->irq_data.chip;
805         int ret, unmask = 0;
806
807         if (!chip || !chip->irq_set_type) {
808                 /*
809                  * IRQF_TRIGGER_* but the PIC does not support multiple
810                  * flow-types?
811                  */
812                 pr_debug("No set_type function for IRQ %d (%s)\n",
813                          irq_desc_get_irq(desc),
814                          chip ? (chip->name ? : "unknown") : "unknown");
815                 return 0;
816         }
817
818         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
819                 if (!irqd_irq_masked(&desc->irq_data))
820                         mask_irq(desc);
821                 if (!irqd_irq_disabled(&desc->irq_data))
822                         unmask = 1;
823         }
824
825         /* Mask all flags except trigger mode */
826         flags &= IRQ_TYPE_SENSE_MASK;
827         ret = chip->irq_set_type(&desc->irq_data, flags);
828
829         switch (ret) {
830         case IRQ_SET_MASK_OK:
831         case IRQ_SET_MASK_OK_DONE:
832                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
833                 irqd_set(&desc->irq_data, flags);
834                 /* fall through */
835
836         case IRQ_SET_MASK_OK_NOCOPY:
837                 flags = irqd_get_trigger_type(&desc->irq_data);
838                 irq_settings_set_trigger_mask(desc, flags);
839                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
840                 irq_settings_clr_level(desc);
841                 if (flags & IRQ_TYPE_LEVEL_MASK) {
842                         irq_settings_set_level(desc);
843                         irqd_set(&desc->irq_data, IRQD_LEVEL);
844                 }
845
846                 ret = 0;
847                 break;
848         default:
849                 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
850                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
851         }
852         if (unmask)
853                 unmask_irq(desc);
854         return ret;
855 }
856
857 #ifdef CONFIG_HARDIRQS_SW_RESEND
858 int irq_set_parent(int irq, int parent_irq)
859 {
860         unsigned long flags;
861         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
862
863         if (!desc)
864                 return -EINVAL;
865
866         desc->parent_irq = parent_irq;
867
868         irq_put_desc_unlock(desc, flags);
869         return 0;
870 }
871 EXPORT_SYMBOL_GPL(irq_set_parent);
872 #endif
873
874 /*
875  * Default primary interrupt handler for threaded interrupts. Is
876  * assigned as primary handler when request_threaded_irq is called
877  * with handler == NULL. Useful for oneshot interrupts.
878  */
879 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
880 {
881         return IRQ_WAKE_THREAD;
882 }
883
884 /*
885  * Primary handler for nested threaded interrupts. Should never be
886  * called.
887  */
888 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
889 {
890         WARN(1, "Primary handler called for nested irq %d\n", irq);
891         return IRQ_NONE;
892 }
893
894 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
895 {
896         WARN(1, "Secondary action handler called for irq %d\n", irq);
897         return IRQ_NONE;
898 }
899
900 static int irq_wait_for_interrupt(struct irqaction *action)
901 {
902         for (;;) {
903                 set_current_state(TASK_INTERRUPTIBLE);
904
905                 if (kthread_should_stop()) {
906                         /* may need to run one last time */
907                         if (test_and_clear_bit(IRQTF_RUNTHREAD,
908                                                &action->thread_flags)) {
909                                 __set_current_state(TASK_RUNNING);
910                                 return 0;
911                         }
912                         __set_current_state(TASK_RUNNING);
913                         return -1;
914                 }
915
916                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
917                                        &action->thread_flags)) {
918                         __set_current_state(TASK_RUNNING);
919                         return 0;
920                 }
921                 schedule();
922         }
923 }
924
925 /*
926  * Oneshot interrupts keep the irq line masked until the threaded
927  * handler finished. unmask if the interrupt has not been disabled and
928  * is marked MASKED.
929  */
930 static void irq_finalize_oneshot(struct irq_desc *desc,
931                                  struct irqaction *action)
932 {
933         if (!(desc->istate & IRQS_ONESHOT) ||
934             action->handler == irq_forced_secondary_handler)
935                 return;
936 again:
937         chip_bus_lock(desc);
938         raw_spin_lock_irq(&desc->lock);
939
940         /*
941          * Implausible though it may be we need to protect us against
942          * the following scenario:
943          *
944          * The thread is faster done than the hard interrupt handler
945          * on the other CPU. If we unmask the irq line then the
946          * interrupt can come in again and masks the line, leaves due
947          * to IRQS_INPROGRESS and the irq line is masked forever.
948          *
949          * This also serializes the state of shared oneshot handlers
950          * versus "desc->threads_onehsot |= action->thread_mask;" in
951          * irq_wake_thread(). See the comment there which explains the
952          * serialization.
953          */
954         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
955                 raw_spin_unlock_irq(&desc->lock);
956                 chip_bus_sync_unlock(desc);
957                 cpu_relax();
958                 goto again;
959         }
960
961         /*
962          * Now check again, whether the thread should run. Otherwise
963          * we would clear the threads_oneshot bit of this thread which
964          * was just set.
965          */
966         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
967                 goto out_unlock;
968
969         desc->threads_oneshot &= ~action->thread_mask;
970
971         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
972             irqd_irq_masked(&desc->irq_data))
973                 unmask_threaded_irq(desc);
974
975 out_unlock:
976         raw_spin_unlock_irq(&desc->lock);
977         chip_bus_sync_unlock(desc);
978 }
979
980 #ifdef CONFIG_SMP
981 /*
982  * Check whether we need to change the affinity of the interrupt thread.
983  */
984 static void
985 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
986 {
987         cpumask_var_t mask;
988         bool valid = true;
989
990         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
991                 return;
992
993         /*
994          * In case we are out of memory we set IRQTF_AFFINITY again and
995          * try again next time
996          */
997         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
998                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
999                 return;
1000         }
1001
1002         raw_spin_lock_irq(&desc->lock);
1003         /*
1004          * This code is triggered unconditionally. Check the affinity
1005          * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1006          */
1007         if (cpumask_available(desc->irq_common_data.affinity)) {
1008                 const struct cpumask *m;
1009
1010                 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1011                 cpumask_copy(mask, m);
1012         } else {
1013                 valid = false;
1014         }
1015         raw_spin_unlock_irq(&desc->lock);
1016
1017         if (valid)
1018                 set_cpus_allowed_ptr(current, mask);
1019         free_cpumask_var(mask);
1020 }
1021 #else
1022 static inline void
1023 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1024 #endif
1025
1026 /*
1027  * Interrupts which are not explicitly requested as threaded
1028  * interrupts rely on the implicit bh/preempt disable of the hard irq
1029  * context. So we need to disable bh here to avoid deadlocks and other
1030  * side effects.
1031  */
1032 static irqreturn_t
1033 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1034 {
1035         irqreturn_t ret;
1036
1037         local_bh_disable();
1038         ret = action->thread_fn(action->irq, action->dev_id);
1039         if (ret == IRQ_HANDLED)
1040                 atomic_inc(&desc->threads_handled);
1041
1042         irq_finalize_oneshot(desc, action);
1043         local_bh_enable();
1044         return ret;
1045 }
1046
1047 /*
1048  * Interrupts explicitly requested as threaded interrupts want to be
1049  * preemtible - many of them need to sleep and wait for slow busses to
1050  * complete.
1051  */
1052 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1053                 struct irqaction *action)
1054 {
1055         irqreturn_t ret;
1056
1057         ret = action->thread_fn(action->irq, action->dev_id);
1058         if (ret == IRQ_HANDLED)
1059                 atomic_inc(&desc->threads_handled);
1060
1061         irq_finalize_oneshot(desc, action);
1062         return ret;
1063 }
1064
1065 static void wake_threads_waitq(struct irq_desc *desc)
1066 {
1067         if (atomic_dec_and_test(&desc->threads_active))
1068                 wake_up(&desc->wait_for_threads);
1069 }
1070
1071 static void irq_thread_dtor(struct callback_head *unused)
1072 {
1073         struct task_struct *tsk = current;
1074         struct irq_desc *desc;
1075         struct irqaction *action;
1076
1077         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1078                 return;
1079
1080         action = kthread_data(tsk);
1081
1082         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1083                tsk->comm, tsk->pid, action->irq);
1084
1085
1086         desc = irq_to_desc(action->irq);
1087         /*
1088          * If IRQTF_RUNTHREAD is set, we need to decrement
1089          * desc->threads_active and wake possible waiters.
1090          */
1091         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1092                 wake_threads_waitq(desc);
1093
1094         /* Prevent a stale desc->threads_oneshot */
1095         irq_finalize_oneshot(desc, action);
1096 }
1097
1098 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1099 {
1100         struct irqaction *secondary = action->secondary;
1101
1102         if (WARN_ON_ONCE(!secondary))
1103                 return;
1104
1105         raw_spin_lock_irq(&desc->lock);
1106         __irq_wake_thread(desc, secondary);
1107         raw_spin_unlock_irq(&desc->lock);
1108 }
1109
1110 /*
1111  * Interrupt handler thread
1112  */
1113 static int irq_thread(void *data)
1114 {
1115         struct callback_head on_exit_work;
1116         struct irqaction *action = data;
1117         struct irq_desc *desc = irq_to_desc(action->irq);
1118         irqreturn_t (*handler_fn)(struct irq_desc *desc,
1119                         struct irqaction *action);
1120
1121         if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1122                                         &action->thread_flags))
1123                 handler_fn = irq_forced_thread_fn;
1124         else
1125                 handler_fn = irq_thread_fn;
1126
1127         init_task_work(&on_exit_work, irq_thread_dtor);
1128         task_work_add(current, &on_exit_work, false);
1129
1130         irq_thread_check_affinity(desc, action);
1131
1132         while (!irq_wait_for_interrupt(action)) {
1133                 irqreturn_t action_ret;
1134
1135                 irq_thread_check_affinity(desc, action);
1136
1137                 action_ret = handler_fn(desc, action);
1138                 if (action_ret == IRQ_WAKE_THREAD)
1139                         irq_wake_secondary(desc, action);
1140
1141                 wake_threads_waitq(desc);
1142         }
1143
1144         /*
1145          * This is the regular exit path. __free_irq() is stopping the
1146          * thread via kthread_stop() after calling
1147          * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1148          * oneshot mask bit can be set.
1149          */
1150         task_work_cancel(current, irq_thread_dtor);
1151         return 0;
1152 }
1153
1154 /**
1155  *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1156  *      @irq:           Interrupt line
1157  *      @dev_id:        Device identity for which the thread should be woken
1158  *
1159  */
1160 void irq_wake_thread(unsigned int irq, void *dev_id)
1161 {
1162         struct irq_desc *desc = irq_to_desc(irq);
1163         struct irqaction *action;
1164         unsigned long flags;
1165
1166         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1167                 return;
1168
1169         raw_spin_lock_irqsave(&desc->lock, flags);
1170         for_each_action_of_desc(desc, action) {
1171                 if (action->dev_id == dev_id) {
1172                         if (action->thread)
1173                                 __irq_wake_thread(desc, action);
1174                         break;
1175                 }
1176         }
1177         raw_spin_unlock_irqrestore(&desc->lock, flags);
1178 }
1179 EXPORT_SYMBOL_GPL(irq_wake_thread);
1180
1181 static int irq_setup_forced_threading(struct irqaction *new)
1182 {
1183         if (!force_irqthreads)
1184                 return 0;
1185         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1186                 return 0;
1187
1188         /*
1189          * No further action required for interrupts which are requested as
1190          * threaded interrupts already
1191          */
1192         if (new->handler == irq_default_primary_handler)
1193                 return 0;
1194
1195         new->flags |= IRQF_ONESHOT;
1196
1197         /*
1198          * Handle the case where we have a real primary handler and a
1199          * thread handler. We force thread them as well by creating a
1200          * secondary action.
1201          */
1202         if (new->handler && new->thread_fn) {
1203                 /* Allocate the secondary action */
1204                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1205                 if (!new->secondary)
1206                         return -ENOMEM;
1207                 new->secondary->handler = irq_forced_secondary_handler;
1208                 new->secondary->thread_fn = new->thread_fn;
1209                 new->secondary->dev_id = new->dev_id;
1210                 new->secondary->irq = new->irq;
1211                 new->secondary->name = new->name;
1212         }
1213         /* Deal with the primary handler */
1214         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1215         new->thread_fn = new->handler;
1216         new->handler = irq_default_primary_handler;
1217         return 0;
1218 }
1219
1220 static int irq_request_resources(struct irq_desc *desc)
1221 {
1222         struct irq_data *d = &desc->irq_data;
1223         struct irq_chip *c = d->chip;
1224
1225         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1226 }
1227
1228 static void irq_release_resources(struct irq_desc *desc)
1229 {
1230         struct irq_data *d = &desc->irq_data;
1231         struct irq_chip *c = d->chip;
1232
1233         if (c->irq_release_resources)
1234                 c->irq_release_resources(d);
1235 }
1236
1237 static bool irq_supports_nmi(struct irq_desc *desc)
1238 {
1239         struct irq_data *d = irq_desc_get_irq_data(desc);
1240
1241 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1242         /* Only IRQs directly managed by the root irqchip can be set as NMI */
1243         if (d->parent_data)
1244                 return false;
1245 #endif
1246         /* Don't support NMIs for chips behind a slow bus */
1247         if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1248                 return false;
1249
1250         return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1251 }
1252
1253 static int irq_nmi_setup(struct irq_desc *desc)
1254 {
1255         struct irq_data *d = irq_desc_get_irq_data(desc);
1256         struct irq_chip *c = d->chip;
1257
1258         return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1259 }
1260
1261 static void irq_nmi_teardown(struct irq_desc *desc)
1262 {
1263         struct irq_data *d = irq_desc_get_irq_data(desc);
1264         struct irq_chip *c = d->chip;
1265
1266         if (c->irq_nmi_teardown)
1267                 c->irq_nmi_teardown(d);
1268 }
1269
1270 static int
1271 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1272 {
1273         struct task_struct *t;
1274         struct sched_param param = {
1275                 .sched_priority = MAX_USER_RT_PRIO/2,
1276         };
1277
1278         if (!secondary) {
1279                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1280                                    new->name);
1281         } else {
1282                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1283                                    new->name);
1284                 param.sched_priority -= 1;
1285         }
1286
1287         if (IS_ERR(t))
1288                 return PTR_ERR(t);
1289
1290         sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1291
1292         /*
1293          * We keep the reference to the task struct even if
1294          * the thread dies to avoid that the interrupt code
1295          * references an already freed task_struct.
1296          */
1297         new->thread = get_task_struct(t);
1298         /*
1299          * Tell the thread to set its affinity. This is
1300          * important for shared interrupt handlers as we do
1301          * not invoke setup_affinity() for the secondary
1302          * handlers as everything is already set up. Even for
1303          * interrupts marked with IRQF_NO_BALANCE this is
1304          * correct as we want the thread to move to the cpu(s)
1305          * on which the requesting code placed the interrupt.
1306          */
1307         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1308         return 0;
1309 }
1310
1311 /*
1312  * Internal function to register an irqaction - typically used to
1313  * allocate special interrupts that are part of the architecture.
1314  *
1315  * Locking rules:
1316  *
1317  * desc->request_mutex  Provides serialization against a concurrent free_irq()
1318  *   chip_bus_lock      Provides serialization for slow bus operations
1319  *     desc->lock       Provides serialization against hard interrupts
1320  *
1321  * chip_bus_lock and desc->lock are sufficient for all other management and
1322  * interrupt related functions. desc->request_mutex solely serializes
1323  * request/free_irq().
1324  */
1325 static int
1326 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1327 {
1328         struct irqaction *old, **old_ptr;
1329         unsigned long flags, thread_mask = 0;
1330         int ret, nested, shared = 0;
1331
1332         if (!desc)
1333                 return -EINVAL;
1334
1335         if (desc->irq_data.chip == &no_irq_chip)
1336                 return -ENOSYS;
1337         if (!try_module_get(desc->owner))
1338                 return -ENODEV;
1339
1340         new->irq = irq;
1341
1342         /*
1343          * If the trigger type is not specified by the caller,
1344          * then use the default for this interrupt.
1345          */
1346         if (!(new->flags & IRQF_TRIGGER_MASK))
1347                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1348
1349         /*
1350          * Check whether the interrupt nests into another interrupt
1351          * thread.
1352          */
1353         nested = irq_settings_is_nested_thread(desc);
1354         if (nested) {
1355                 if (!new->thread_fn) {
1356                         ret = -EINVAL;
1357                         goto out_mput;
1358                 }
1359                 /*
1360                  * Replace the primary handler which was provided from
1361                  * the driver for non nested interrupt handling by the
1362                  * dummy function which warns when called.
1363                  */
1364                 new->handler = irq_nested_primary_handler;
1365         } else {
1366                 if (irq_settings_can_thread(desc)) {
1367                         ret = irq_setup_forced_threading(new);
1368                         if (ret)
1369                                 goto out_mput;
1370                 }
1371         }
1372
1373         /*
1374          * Create a handler thread when a thread function is supplied
1375          * and the interrupt does not nest into another interrupt
1376          * thread.
1377          */
1378         if (new->thread_fn && !nested) {
1379                 ret = setup_irq_thread(new, irq, false);
1380                 if (ret)
1381                         goto out_mput;
1382                 if (new->secondary) {
1383                         ret = setup_irq_thread(new->secondary, irq, true);
1384                         if (ret)
1385                                 goto out_thread;
1386                 }
1387         }
1388
1389         /*
1390          * Drivers are often written to work w/o knowledge about the
1391          * underlying irq chip implementation, so a request for a
1392          * threaded irq without a primary hard irq context handler
1393          * requires the ONESHOT flag to be set. Some irq chips like
1394          * MSI based interrupts are per se one shot safe. Check the
1395          * chip flags, so we can avoid the unmask dance at the end of
1396          * the threaded handler for those.
1397          */
1398         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1399                 new->flags &= ~IRQF_ONESHOT;
1400
1401         /*
1402          * Protects against a concurrent __free_irq() call which might wait
1403          * for synchronize_hardirq() to complete without holding the optional
1404          * chip bus lock and desc->lock. Also protects against handing out
1405          * a recycled oneshot thread_mask bit while it's still in use by
1406          * its previous owner.
1407          */
1408         mutex_lock(&desc->request_mutex);
1409
1410         /*
1411          * Acquire bus lock as the irq_request_resources() callback below
1412          * might rely on the serialization or the magic power management
1413          * functions which are abusing the irq_bus_lock() callback,
1414          */
1415         chip_bus_lock(desc);
1416
1417         /* First installed action requests resources. */
1418         if (!desc->action) {
1419                 ret = irq_request_resources(desc);
1420                 if (ret) {
1421                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1422                                new->name, irq, desc->irq_data.chip->name);
1423                         goto out_bus_unlock;
1424                 }
1425         }
1426
1427         /*
1428          * The following block of code has to be executed atomically
1429          * protected against a concurrent interrupt and any of the other
1430          * management calls which are not serialized via
1431          * desc->request_mutex or the optional bus lock.
1432          */
1433         raw_spin_lock_irqsave(&desc->lock, flags);
1434         old_ptr = &desc->action;
1435         old = *old_ptr;
1436         if (old) {
1437                 /*
1438                  * Can't share interrupts unless both agree to and are
1439                  * the same type (level, edge, polarity). So both flag
1440                  * fields must have IRQF_SHARED set and the bits which
1441                  * set the trigger type must match. Also all must
1442                  * agree on ONESHOT.
1443                  * Interrupt lines used for NMIs cannot be shared.
1444                  */
1445                 unsigned int oldtype;
1446
1447                 if (desc->istate & IRQS_NMI) {
1448                         pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1449                                 new->name, irq, desc->irq_data.chip->name);
1450                         ret = -EINVAL;
1451                         goto out_unlock;
1452                 }
1453
1454                 /*
1455                  * If nobody did set the configuration before, inherit
1456                  * the one provided by the requester.
1457                  */
1458                 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1459                         oldtype = irqd_get_trigger_type(&desc->irq_data);
1460                 } else {
1461                         oldtype = new->flags & IRQF_TRIGGER_MASK;
1462                         irqd_set_trigger_type(&desc->irq_data, oldtype);
1463                 }
1464
1465                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1466                     (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1467                     ((old->flags ^ new->flags) & IRQF_ONESHOT))
1468                         goto mismatch;
1469
1470                 /* All handlers must agree on per-cpuness */
1471                 if ((old->flags & IRQF_PERCPU) !=
1472                     (new->flags & IRQF_PERCPU))
1473                         goto mismatch;
1474
1475                 /* add new interrupt at end of irq queue */
1476                 do {
1477                         /*
1478                          * Or all existing action->thread_mask bits,
1479                          * so we can find the next zero bit for this
1480                          * new action.
1481                          */
1482                         thread_mask |= old->thread_mask;
1483                         old_ptr = &old->next;
1484                         old = *old_ptr;
1485                 } while (old);
1486                 shared = 1;
1487         }
1488
1489         /*
1490          * Setup the thread mask for this irqaction for ONESHOT. For
1491          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1492          * conditional in irq_wake_thread().
1493          */
1494         if (new->flags & IRQF_ONESHOT) {
1495                 /*
1496                  * Unlikely to have 32 resp 64 irqs sharing one line,
1497                  * but who knows.
1498                  */
1499                 if (thread_mask == ~0UL) {
1500                         ret = -EBUSY;
1501                         goto out_unlock;
1502                 }
1503                 /*
1504                  * The thread_mask for the action is or'ed to
1505                  * desc->thread_active to indicate that the
1506                  * IRQF_ONESHOT thread handler has been woken, but not
1507                  * yet finished. The bit is cleared when a thread
1508                  * completes. When all threads of a shared interrupt
1509                  * line have completed desc->threads_active becomes
1510                  * zero and the interrupt line is unmasked. See
1511                  * handle.c:irq_wake_thread() for further information.
1512                  *
1513                  * If no thread is woken by primary (hard irq context)
1514                  * interrupt handlers, then desc->threads_active is
1515                  * also checked for zero to unmask the irq line in the
1516                  * affected hard irq flow handlers
1517                  * (handle_[fasteoi|level]_irq).
1518                  *
1519                  * The new action gets the first zero bit of
1520                  * thread_mask assigned. See the loop above which or's
1521                  * all existing action->thread_mask bits.
1522                  */
1523                 new->thread_mask = 1UL << ffz(thread_mask);
1524
1525         } else if (new->handler == irq_default_primary_handler &&
1526                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1527                 /*
1528                  * The interrupt was requested with handler = NULL, so
1529                  * we use the default primary handler for it. But it
1530                  * does not have the oneshot flag set. In combination
1531                  * with level interrupts this is deadly, because the
1532                  * default primary handler just wakes the thread, then
1533                  * the irq lines is reenabled, but the device still
1534                  * has the level irq asserted. Rinse and repeat....
1535                  *
1536                  * While this works for edge type interrupts, we play
1537                  * it safe and reject unconditionally because we can't
1538                  * say for sure which type this interrupt really
1539                  * has. The type flags are unreliable as the
1540                  * underlying chip implementation can override them.
1541                  */
1542                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1543                        new->name, irq);
1544                 ret = -EINVAL;
1545                 goto out_unlock;
1546         }
1547
1548         if (!shared) {
1549                 init_waitqueue_head(&desc->wait_for_threads);
1550
1551                 /* Setup the type (level, edge polarity) if configured: */
1552                 if (new->flags & IRQF_TRIGGER_MASK) {
1553                         ret = __irq_set_trigger(desc,
1554                                                 new->flags & IRQF_TRIGGER_MASK);
1555
1556                         if (ret)
1557                                 goto out_unlock;
1558                 }
1559
1560                 /*
1561                  * Activate the interrupt. That activation must happen
1562                  * independently of IRQ_NOAUTOEN. request_irq() can fail
1563                  * and the callers are supposed to handle
1564                  * that. enable_irq() of an interrupt requested with
1565                  * IRQ_NOAUTOEN is not supposed to fail. The activation
1566                  * keeps it in shutdown mode, it merily associates
1567                  * resources if necessary and if that's not possible it
1568                  * fails. Interrupts which are in managed shutdown mode
1569                  * will simply ignore that activation request.
1570                  */
1571                 ret = irq_activate(desc);
1572                 if (ret)
1573                         goto out_unlock;
1574
1575                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1576                                   IRQS_ONESHOT | IRQS_WAITING);
1577                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1578
1579                 if (new->flags & IRQF_PERCPU) {
1580                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1581                         irq_settings_set_per_cpu(desc);
1582                 }
1583
1584                 if (new->flags & IRQF_ONESHOT)
1585                         desc->istate |= IRQS_ONESHOT;
1586
1587                 /* Exclude IRQ from balancing if requested */
1588                 if (new->flags & IRQF_NOBALANCING) {
1589                         irq_settings_set_no_balancing(desc);
1590                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1591                 }
1592
1593                 if (irq_settings_can_autoenable(desc)) {
1594                         irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1595                 } else {
1596                         /*
1597                          * Shared interrupts do not go well with disabling
1598                          * auto enable. The sharing interrupt might request
1599                          * it while it's still disabled and then wait for
1600                          * interrupts forever.
1601                          */
1602                         WARN_ON_ONCE(new->flags & IRQF_SHARED);
1603                         /* Undo nested disables: */
1604                         desc->depth = 1;
1605                 }
1606
1607         } else if (new->flags & IRQF_TRIGGER_MASK) {
1608                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1609                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1610
1611                 if (nmsk != omsk)
1612                         /* hope the handler works with current  trigger mode */
1613                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1614                                 irq, omsk, nmsk);
1615         }
1616
1617         *old_ptr = new;
1618
1619         irq_pm_install_action(desc, new);
1620
1621         /* Reset broken irq detection when installing new handler */
1622         desc->irq_count = 0;
1623         desc->irqs_unhandled = 0;
1624
1625         /*
1626          * Check whether we disabled the irq via the spurious handler
1627          * before. Reenable it and give it another chance.
1628          */
1629         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1630                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1631                 __enable_irq(desc);
1632         }
1633
1634         raw_spin_unlock_irqrestore(&desc->lock, flags);
1635         chip_bus_sync_unlock(desc);
1636         mutex_unlock(&desc->request_mutex);
1637
1638         irq_setup_timings(desc, new);
1639
1640         /*
1641          * Strictly no need to wake it up, but hung_task complains
1642          * when no hard interrupt wakes the thread up.
1643          */
1644         if (new->thread)
1645                 wake_up_process(new->thread);
1646         if (new->secondary)
1647                 wake_up_process(new->secondary->thread);
1648
1649         register_irq_proc(irq, desc);
1650         new->dir = NULL;
1651         register_handler_proc(irq, new);
1652         return 0;
1653
1654 mismatch:
1655         if (!(new->flags & IRQF_PROBE_SHARED)) {
1656                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1657                        irq, new->flags, new->name, old->flags, old->name);
1658 #ifdef CONFIG_DEBUG_SHIRQ
1659                 dump_stack();
1660 #endif
1661         }
1662         ret = -EBUSY;
1663
1664 out_unlock:
1665         raw_spin_unlock_irqrestore(&desc->lock, flags);
1666
1667         if (!desc->action)
1668                 irq_release_resources(desc);
1669 out_bus_unlock:
1670         chip_bus_sync_unlock(desc);
1671         mutex_unlock(&desc->request_mutex);
1672
1673 out_thread:
1674         if (new->thread) {
1675                 struct task_struct *t = new->thread;
1676
1677                 new->thread = NULL;
1678                 kthread_stop(t);
1679                 put_task_struct(t);
1680         }
1681         if (new->secondary && new->secondary->thread) {
1682                 struct task_struct *t = new->secondary->thread;
1683
1684                 new->secondary->thread = NULL;
1685                 kthread_stop(t);
1686                 put_task_struct(t);
1687         }
1688 out_mput:
1689         module_put(desc->owner);
1690         return ret;
1691 }
1692
1693 /**
1694  *      setup_irq - setup an interrupt
1695  *      @irq: Interrupt line to setup
1696  *      @act: irqaction for the interrupt
1697  *
1698  * Used to statically setup interrupts in the early boot process.
1699  */
1700 int setup_irq(unsigned int irq, struct irqaction *act)
1701 {
1702         int retval;
1703         struct irq_desc *desc = irq_to_desc(irq);
1704
1705         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1706                 return -EINVAL;
1707
1708         retval = irq_chip_pm_get(&desc->irq_data);
1709         if (retval < 0)
1710                 return retval;
1711
1712         retval = __setup_irq(irq, desc, act);
1713
1714         if (retval)
1715                 irq_chip_pm_put(&desc->irq_data);
1716
1717         return retval;
1718 }
1719 EXPORT_SYMBOL_GPL(setup_irq);
1720
1721 /*
1722  * Internal function to unregister an irqaction - used to free
1723  * regular and special interrupts that are part of the architecture.
1724  */
1725 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1726 {
1727         unsigned irq = desc->irq_data.irq;
1728         struct irqaction *action, **action_ptr;
1729         unsigned long flags;
1730
1731         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1732
1733         mutex_lock(&desc->request_mutex);
1734         chip_bus_lock(desc);
1735         raw_spin_lock_irqsave(&desc->lock, flags);
1736
1737         /*
1738          * There can be multiple actions per IRQ descriptor, find the right
1739          * one based on the dev_id:
1740          */
1741         action_ptr = &desc->action;
1742         for (;;) {
1743                 action = *action_ptr;
1744
1745                 if (!action) {
1746                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1747                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1748                         chip_bus_sync_unlock(desc);
1749                         mutex_unlock(&desc->request_mutex);
1750                         return NULL;
1751                 }
1752
1753                 if (action->dev_id == dev_id)
1754                         break;
1755                 action_ptr = &action->next;
1756         }
1757
1758         /* Found it - now remove it from the list of entries: */
1759         *action_ptr = action->next;
1760
1761         irq_pm_remove_action(desc, action);
1762
1763         /* If this was the last handler, shut down the IRQ line: */
1764         if (!desc->action) {
1765                 irq_settings_clr_disable_unlazy(desc);
1766                 /* Only shutdown. Deactivate after synchronize_hardirq() */
1767                 irq_shutdown(desc);
1768         }
1769
1770 #ifdef CONFIG_SMP
1771         /* make sure affinity_hint is cleaned up */
1772         if (WARN_ON_ONCE(desc->affinity_hint))
1773                 desc->affinity_hint = NULL;
1774 #endif
1775
1776         raw_spin_unlock_irqrestore(&desc->lock, flags);
1777         /*
1778          * Drop bus_lock here so the changes which were done in the chip
1779          * callbacks above are synced out to the irq chips which hang
1780          * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1781          *
1782          * Aside of that the bus_lock can also be taken from the threaded
1783          * handler in irq_finalize_oneshot() which results in a deadlock
1784          * because kthread_stop() would wait forever for the thread to
1785          * complete, which is blocked on the bus lock.
1786          *
1787          * The still held desc->request_mutex() protects against a
1788          * concurrent request_irq() of this irq so the release of resources
1789          * and timing data is properly serialized.
1790          */
1791         chip_bus_sync_unlock(desc);
1792
1793         unregister_handler_proc(irq, action);
1794
1795         /*
1796          * Make sure it's not being used on another CPU and if the chip
1797          * supports it also make sure that there is no (not yet serviced)
1798          * interrupt in flight at the hardware level.
1799          */
1800         __synchronize_hardirq(desc, true);
1801
1802 #ifdef CONFIG_DEBUG_SHIRQ
1803         /*
1804          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1805          * event to happen even now it's being freed, so let's make sure that
1806          * is so by doing an extra call to the handler ....
1807          *
1808          * ( We do this after actually deregistering it, to make sure that a
1809          *   'real' IRQ doesn't run in parallel with our fake. )
1810          */
1811         if (action->flags & IRQF_SHARED) {
1812                 local_irq_save(flags);
1813                 action->handler(irq, dev_id);
1814                 local_irq_restore(flags);
1815         }
1816 #endif
1817
1818         /*
1819          * The action has already been removed above, but the thread writes
1820          * its oneshot mask bit when it completes. Though request_mutex is
1821          * held across this which prevents __setup_irq() from handing out
1822          * the same bit to a newly requested action.
1823          */
1824         if (action->thread) {
1825                 kthread_stop(action->thread);
1826                 put_task_struct(action->thread);
1827                 if (action->secondary && action->secondary->thread) {
1828                         kthread_stop(action->secondary->thread);
1829                         put_task_struct(action->secondary->thread);
1830                 }
1831         }
1832
1833         /* Last action releases resources */
1834         if (!desc->action) {
1835                 /*
1836                  * Reaquire bus lock as irq_release_resources() might
1837                  * require it to deallocate resources over the slow bus.
1838                  */
1839                 chip_bus_lock(desc);
1840                 /*
1841                  * There is no interrupt on the fly anymore. Deactivate it
1842                  * completely.
1843                  */
1844                 raw_spin_lock_irqsave(&desc->lock, flags);
1845                 irq_domain_deactivate_irq(&desc->irq_data);
1846                 raw_spin_unlock_irqrestore(&desc->lock, flags);
1847
1848                 irq_release_resources(desc);
1849                 chip_bus_sync_unlock(desc);
1850                 irq_remove_timings(desc);
1851         }
1852
1853         mutex_unlock(&desc->request_mutex);
1854
1855         irq_chip_pm_put(&desc->irq_data);
1856         module_put(desc->owner);
1857         kfree(action->secondary);
1858         return action;
1859 }
1860
1861 /**
1862  *      remove_irq - free an interrupt
1863  *      @irq: Interrupt line to free
1864  *      @act: irqaction for the interrupt
1865  *
1866  * Used to remove interrupts statically setup by the early boot process.
1867  */
1868 void remove_irq(unsigned int irq, struct irqaction *act)
1869 {
1870         struct irq_desc *desc = irq_to_desc(irq);
1871
1872         if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1873                 __free_irq(desc, act->dev_id);
1874 }
1875 EXPORT_SYMBOL_GPL(remove_irq);
1876
1877 /**
1878  *      free_irq - free an interrupt allocated with request_irq
1879  *      @irq: Interrupt line to free
1880  *      @dev_id: Device identity to free
1881  *
1882  *      Remove an interrupt handler. The handler is removed and if the
1883  *      interrupt line is no longer in use by any driver it is disabled.
1884  *      On a shared IRQ the caller must ensure the interrupt is disabled
1885  *      on the card it drives before calling this function. The function
1886  *      does not return until any executing interrupts for this IRQ
1887  *      have completed.
1888  *
1889  *      This function must not be called from interrupt context.
1890  *
1891  *      Returns the devname argument passed to request_irq.
1892  */
1893 const void *free_irq(unsigned int irq, void *dev_id)
1894 {
1895         struct irq_desc *desc = irq_to_desc(irq);
1896         struct irqaction *action;
1897         const char *devname;
1898
1899         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1900                 return NULL;
1901
1902 #ifdef CONFIG_SMP
1903         if (WARN_ON(desc->affinity_notify))
1904                 desc->affinity_notify = NULL;
1905 #endif
1906
1907         action = __free_irq(desc, dev_id);
1908
1909         if (!action)
1910                 return NULL;
1911
1912         devname = action->name;
1913         kfree(action);
1914         return devname;
1915 }
1916 EXPORT_SYMBOL(free_irq);
1917
1918 /* This function must be called with desc->lock held */
1919 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1920 {
1921         const char *devname = NULL;
1922
1923         desc->istate &= ~IRQS_NMI;
1924
1925         if (!WARN_ON(desc->action == NULL)) {
1926                 irq_pm_remove_action(desc, desc->action);
1927                 devname = desc->action->name;
1928                 unregister_handler_proc(irq, desc->action);
1929
1930                 kfree(desc->action);
1931                 desc->action = NULL;
1932         }
1933
1934         irq_settings_clr_disable_unlazy(desc);
1935         irq_shutdown_and_deactivate(desc);
1936
1937         irq_release_resources(desc);
1938
1939         irq_chip_pm_put(&desc->irq_data);
1940         module_put(desc->owner);
1941
1942         return devname;
1943 }
1944
1945 const void *free_nmi(unsigned int irq, void *dev_id)
1946 {
1947         struct irq_desc *desc = irq_to_desc(irq);
1948         unsigned long flags;
1949         const void *devname;
1950
1951         if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1952                 return NULL;
1953
1954         if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1955                 return NULL;
1956
1957         /* NMI still enabled */
1958         if (WARN_ON(desc->depth == 0))
1959                 disable_nmi_nosync(irq);
1960
1961         raw_spin_lock_irqsave(&desc->lock, flags);
1962
1963         irq_nmi_teardown(desc);
1964         devname = __cleanup_nmi(irq, desc);
1965
1966         raw_spin_unlock_irqrestore(&desc->lock, flags);
1967
1968         return devname;
1969 }
1970
1971 /**
1972  *      request_threaded_irq - allocate an interrupt line
1973  *      @irq: Interrupt line to allocate
1974  *      @handler: Function to be called when the IRQ occurs.
1975  *                Primary handler for threaded interrupts
1976  *                If NULL and thread_fn != NULL the default
1977  *                primary handler is installed
1978  *      @thread_fn: Function called from the irq handler thread
1979  *                  If NULL, no irq thread is created
1980  *      @irqflags: Interrupt type flags
1981  *      @devname: An ascii name for the claiming device
1982  *      @dev_id: A cookie passed back to the handler function
1983  *
1984  *      This call allocates interrupt resources and enables the
1985  *      interrupt line and IRQ handling. From the point this
1986  *      call is made your handler function may be invoked. Since
1987  *      your handler function must clear any interrupt the board
1988  *      raises, you must take care both to initialise your hardware
1989  *      and to set up the interrupt handler in the right order.
1990  *
1991  *      If you want to set up a threaded irq handler for your device
1992  *      then you need to supply @handler and @thread_fn. @handler is
1993  *      still called in hard interrupt context and has to check
1994  *      whether the interrupt originates from the device. If yes it
1995  *      needs to disable the interrupt on the device and return
1996  *      IRQ_WAKE_THREAD which will wake up the handler thread and run
1997  *      @thread_fn. This split handler design is necessary to support
1998  *      shared interrupts.
1999  *
2000  *      Dev_id must be globally unique. Normally the address of the
2001  *      device data structure is used as the cookie. Since the handler
2002  *      receives this value it makes sense to use it.
2003  *
2004  *      If your interrupt is shared you must pass a non NULL dev_id
2005  *      as this is required when freeing the interrupt.
2006  *
2007  *      Flags:
2008  *
2009  *      IRQF_SHARED             Interrupt is shared
2010  *      IRQF_TRIGGER_*          Specify active edge(s) or level
2011  *
2012  */
2013 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2014                          irq_handler_t thread_fn, unsigned long irqflags,
2015                          const char *devname, void *dev_id)
2016 {
2017         struct irqaction *action;
2018         struct irq_desc *desc;
2019         int retval;
2020
2021         if (irq == IRQ_NOTCONNECTED)
2022                 return -ENOTCONN;
2023
2024         /*
2025          * Sanity-check: shared interrupts must pass in a real dev-ID,
2026          * otherwise we'll have trouble later trying to figure out
2027          * which interrupt is which (messes up the interrupt freeing
2028          * logic etc).
2029          *
2030          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2031          * it cannot be set along with IRQF_NO_SUSPEND.
2032          */
2033         if (((irqflags & IRQF_SHARED) && !dev_id) ||
2034             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2035             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2036                 return -EINVAL;
2037
2038         desc = irq_to_desc(irq);
2039         if (!desc)
2040                 return -EINVAL;
2041
2042         if (!irq_settings_can_request(desc) ||
2043             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2044                 return -EINVAL;
2045
2046         if (!handler) {
2047                 if (!thread_fn)
2048                         return -EINVAL;
2049                 handler = irq_default_primary_handler;
2050         }
2051
2052         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2053         if (!action)
2054                 return -ENOMEM;
2055
2056         action->handler = handler;
2057         action->thread_fn = thread_fn;
2058         action->flags = irqflags;
2059         action->name = devname;
2060         action->dev_id = dev_id;
2061
2062         retval = irq_chip_pm_get(&desc->irq_data);
2063         if (retval < 0) {
2064                 kfree(action);
2065                 return retval;
2066         }
2067
2068         retval = __setup_irq(irq, desc, action);
2069
2070         if (retval) {
2071                 irq_chip_pm_put(&desc->irq_data);
2072                 kfree(action->secondary);
2073                 kfree(action);
2074         }
2075
2076 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2077         if (!retval && (irqflags & IRQF_SHARED)) {
2078                 /*
2079                  * It's a shared IRQ -- the driver ought to be prepared for it
2080                  * to happen immediately, so let's make sure....
2081                  * We disable the irq to make sure that a 'real' IRQ doesn't
2082                  * run in parallel with our fake.
2083                  */
2084                 unsigned long flags;
2085
2086                 disable_irq(irq);
2087                 local_irq_save(flags);
2088
2089                 handler(irq, dev_id);
2090
2091                 local_irq_restore(flags);
2092                 enable_irq(irq);
2093         }
2094 #endif
2095         return retval;
2096 }
2097 EXPORT_SYMBOL(request_threaded_irq);
2098
2099 /**
2100  *      request_any_context_irq - allocate an interrupt line
2101  *      @irq: Interrupt line to allocate
2102  *      @handler: Function to be called when the IRQ occurs.
2103  *                Threaded handler for threaded interrupts.
2104  *      @flags: Interrupt type flags
2105  *      @name: An ascii name for the claiming device
2106  *      @dev_id: A cookie passed back to the handler function
2107  *
2108  *      This call allocates interrupt resources and enables the
2109  *      interrupt line and IRQ handling. It selects either a
2110  *      hardirq or threaded handling method depending on the
2111  *      context.
2112  *
2113  *      On failure, it returns a negative value. On success,
2114  *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2115  */
2116 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2117                             unsigned long flags, const char *name, void *dev_id)
2118 {
2119         struct irq_desc *desc;
2120         int ret;
2121
2122         if (irq == IRQ_NOTCONNECTED)
2123                 return -ENOTCONN;
2124
2125         desc = irq_to_desc(irq);
2126         if (!desc)
2127                 return -EINVAL;
2128
2129         if (irq_settings_is_nested_thread(desc)) {
2130                 ret = request_threaded_irq(irq, NULL, handler,
2131                                            flags, name, dev_id);
2132                 return !ret ? IRQC_IS_NESTED : ret;
2133         }
2134
2135         ret = request_irq(irq, handler, flags, name, dev_id);
2136         return !ret ? IRQC_IS_HARDIRQ : ret;
2137 }
2138 EXPORT_SYMBOL_GPL(request_any_context_irq);
2139
2140 /**
2141  *      request_nmi - allocate an interrupt line for NMI delivery
2142  *      @irq: Interrupt line to allocate
2143  *      @handler: Function to be called when the IRQ occurs.
2144  *                Threaded handler for threaded interrupts.
2145  *      @irqflags: Interrupt type flags
2146  *      @name: An ascii name for the claiming device
2147  *      @dev_id: A cookie passed back to the handler function
2148  *
2149  *      This call allocates interrupt resources and enables the
2150  *      interrupt line and IRQ handling. It sets up the IRQ line
2151  *      to be handled as an NMI.
2152  *
2153  *      An interrupt line delivering NMIs cannot be shared and IRQ handling
2154  *      cannot be threaded.
2155  *
2156  *      Interrupt lines requested for NMI delivering must produce per cpu
2157  *      interrupts and have auto enabling setting disabled.
2158  *
2159  *      Dev_id must be globally unique. Normally the address of the
2160  *      device data structure is used as the cookie. Since the handler
2161  *      receives this value it makes sense to use it.
2162  *
2163  *      If the interrupt line cannot be used to deliver NMIs, function
2164  *      will fail and return a negative value.
2165  */
2166 int request_nmi(unsigned int irq, irq_handler_t handler,
2167                 unsigned long irqflags, const char *name, void *dev_id)
2168 {
2169         struct irqaction *action;
2170         struct irq_desc *desc;
2171         unsigned long flags;
2172         int retval;
2173
2174         if (irq == IRQ_NOTCONNECTED)
2175                 return -ENOTCONN;
2176
2177         /* NMI cannot be shared, used for Polling */
2178         if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2179                 return -EINVAL;
2180
2181         if (!(irqflags & IRQF_PERCPU))
2182                 return -EINVAL;
2183
2184         if (!handler)
2185                 return -EINVAL;
2186
2187         desc = irq_to_desc(irq);
2188
2189         if (!desc || irq_settings_can_autoenable(desc) ||
2190             !irq_settings_can_request(desc) ||
2191             WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2192             !irq_supports_nmi(desc))
2193                 return -EINVAL;
2194
2195         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2196         if (!action)
2197                 return -ENOMEM;
2198
2199         action->handler = handler;
2200         action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2201         action->name = name;
2202         action->dev_id = dev_id;
2203
2204         retval = irq_chip_pm_get(&desc->irq_data);
2205         if (retval < 0)
2206                 goto err_out;
2207
2208         retval = __setup_irq(irq, desc, action);
2209         if (retval)
2210                 goto err_irq_setup;
2211
2212         raw_spin_lock_irqsave(&desc->lock, flags);
2213
2214         /* Setup NMI state */
2215         desc->istate |= IRQS_NMI;
2216         retval = irq_nmi_setup(desc);
2217         if (retval) {
2218                 __cleanup_nmi(irq, desc);
2219                 raw_spin_unlock_irqrestore(&desc->lock, flags);
2220                 return -EINVAL;
2221         }
2222
2223         raw_spin_unlock_irqrestore(&desc->lock, flags);
2224
2225         return 0;
2226
2227 err_irq_setup:
2228         irq_chip_pm_put(&desc->irq_data);
2229 err_out:
2230         kfree(action);
2231
2232         return retval;
2233 }
2234
2235 void enable_percpu_irq(unsigned int irq, unsigned int type)
2236 {
2237         unsigned int cpu = smp_processor_id();
2238         unsigned long flags;
2239         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2240
2241         if (!desc)
2242                 return;
2243
2244         /*
2245          * If the trigger type is not specified by the caller, then
2246          * use the default for this interrupt.
2247          */
2248         type &= IRQ_TYPE_SENSE_MASK;
2249         if (type == IRQ_TYPE_NONE)
2250                 type = irqd_get_trigger_type(&desc->irq_data);
2251
2252         if (type != IRQ_TYPE_NONE) {
2253                 int ret;
2254
2255                 ret = __irq_set_trigger(desc, type);
2256
2257                 if (ret) {
2258                         WARN(1, "failed to set type for IRQ%d\n", irq);
2259                         goto out;
2260                 }
2261         }
2262
2263         irq_percpu_enable(desc, cpu);
2264 out:
2265         irq_put_desc_unlock(desc, flags);
2266 }
2267 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2268
2269 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2270 {
2271         enable_percpu_irq(irq, type);
2272 }
2273
2274 /**
2275  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2276  * @irq:        Linux irq number to check for
2277  *
2278  * Must be called from a non migratable context. Returns the enable
2279  * state of a per cpu interrupt on the current cpu.
2280  */
2281 bool irq_percpu_is_enabled(unsigned int irq)
2282 {
2283         unsigned int cpu = smp_processor_id();
2284         struct irq_desc *desc;
2285         unsigned long flags;
2286         bool is_enabled;
2287
2288         desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2289         if (!desc)
2290                 return false;
2291
2292         is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2293         irq_put_desc_unlock(desc, flags);
2294
2295         return is_enabled;
2296 }
2297 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2298
2299 void disable_percpu_irq(unsigned int irq)
2300 {
2301         unsigned int cpu = smp_processor_id();
2302         unsigned long flags;
2303         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2304
2305         if (!desc)
2306                 return;
2307
2308         irq_percpu_disable(desc, cpu);
2309         irq_put_desc_unlock(desc, flags);
2310 }
2311 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2312
2313 void disable_percpu_nmi(unsigned int irq)
2314 {
2315         disable_percpu_irq(irq);
2316 }
2317
2318 /*
2319  * Internal function to unregister a percpu irqaction.
2320  */
2321 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2322 {
2323         struct irq_desc *desc = irq_to_desc(irq);
2324         struct irqaction *action;
2325         unsigned long flags;
2326
2327         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2328
2329         if (!desc)
2330                 return NULL;
2331
2332         raw_spin_lock_irqsave(&desc->lock, flags);
2333
2334         action = desc->action;
2335         if (!action || action->percpu_dev_id != dev_id) {
2336                 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2337                 goto bad;
2338         }
2339
2340         if (!cpumask_empty(desc->percpu_enabled)) {
2341                 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2342                      irq, cpumask_first(desc->percpu_enabled));
2343                 goto bad;
2344         }
2345
2346         /* Found it - now remove it from the list of entries: */
2347         desc->action = NULL;
2348
2349         desc->istate &= ~IRQS_NMI;
2350
2351         raw_spin_unlock_irqrestore(&desc->lock, flags);
2352
2353         unregister_handler_proc(irq, action);
2354
2355         irq_chip_pm_put(&desc->irq_data);
2356         module_put(desc->owner);
2357         return action;
2358
2359 bad:
2360         raw_spin_unlock_irqrestore(&desc->lock, flags);
2361         return NULL;
2362 }
2363
2364 /**
2365  *      remove_percpu_irq - free a per-cpu interrupt
2366  *      @irq: Interrupt line to free
2367  *      @act: irqaction for the interrupt
2368  *
2369  * Used to remove interrupts statically setup by the early boot process.
2370  */
2371 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2372 {
2373         struct irq_desc *desc = irq_to_desc(irq);
2374
2375         if (desc && irq_settings_is_per_cpu_devid(desc))
2376             __free_percpu_irq(irq, act->percpu_dev_id);
2377 }
2378
2379 /**
2380  *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2381  *      @irq: Interrupt line to free
2382  *      @dev_id: Device identity to free
2383  *
2384  *      Remove a percpu interrupt handler. The handler is removed, but
2385  *      the interrupt line is not disabled. This must be done on each
2386  *      CPU before calling this function. The function does not return
2387  *      until any executing interrupts for this IRQ have completed.
2388  *
2389  *      This function must not be called from interrupt context.
2390  */
2391 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2392 {
2393         struct irq_desc *desc = irq_to_desc(irq);
2394
2395         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2396                 return;
2397
2398         chip_bus_lock(desc);
2399         kfree(__free_percpu_irq(irq, dev_id));
2400         chip_bus_sync_unlock(desc);
2401 }
2402 EXPORT_SYMBOL_GPL(free_percpu_irq);
2403
2404 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2405 {
2406         struct irq_desc *desc = irq_to_desc(irq);
2407
2408         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2409                 return;
2410
2411         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2412                 return;
2413
2414         kfree(__free_percpu_irq(irq, dev_id));
2415 }
2416
2417 /**
2418  *      setup_percpu_irq - setup a per-cpu interrupt
2419  *      @irq: Interrupt line to setup
2420  *      @act: irqaction for the interrupt
2421  *
2422  * Used to statically setup per-cpu interrupts in the early boot process.
2423  */
2424 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2425 {
2426         struct irq_desc *desc = irq_to_desc(irq);
2427         int retval;
2428
2429         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2430                 return -EINVAL;
2431
2432         retval = irq_chip_pm_get(&desc->irq_data);
2433         if (retval < 0)
2434                 return retval;
2435
2436         retval = __setup_irq(irq, desc, act);
2437
2438         if (retval)
2439                 irq_chip_pm_put(&desc->irq_data);
2440
2441         return retval;
2442 }
2443
2444 /**
2445  *      __request_percpu_irq - allocate a percpu interrupt line
2446  *      @irq: Interrupt line to allocate
2447  *      @handler: Function to be called when the IRQ occurs.
2448  *      @flags: Interrupt type flags (IRQF_TIMER only)
2449  *      @devname: An ascii name for the claiming device
2450  *      @dev_id: A percpu cookie passed back to the handler function
2451  *
2452  *      This call allocates interrupt resources and enables the
2453  *      interrupt on the local CPU. If the interrupt is supposed to be
2454  *      enabled on other CPUs, it has to be done on each CPU using
2455  *      enable_percpu_irq().
2456  *
2457  *      Dev_id must be globally unique. It is a per-cpu variable, and
2458  *      the handler gets called with the interrupted CPU's instance of
2459  *      that variable.
2460  */
2461 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2462                          unsigned long flags, const char *devname,
2463                          void __percpu *dev_id)
2464 {
2465         struct irqaction *action;
2466         struct irq_desc *desc;
2467         int retval;
2468
2469         if (!dev_id)
2470                 return -EINVAL;
2471
2472         desc = irq_to_desc(irq);
2473         if (!desc || !irq_settings_can_request(desc) ||
2474             !irq_settings_is_per_cpu_devid(desc))
2475                 return -EINVAL;
2476
2477         if (flags && flags != IRQF_TIMER)
2478                 return -EINVAL;
2479
2480         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2481         if (!action)
2482                 return -ENOMEM;
2483
2484         action->handler = handler;
2485         action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2486         action->name = devname;
2487         action->percpu_dev_id = dev_id;
2488
2489         retval = irq_chip_pm_get(&desc->irq_data);
2490         if (retval < 0) {
2491                 kfree(action);
2492                 return retval;
2493         }
2494
2495         retval = __setup_irq(irq, desc, action);
2496
2497         if (retval) {
2498                 irq_chip_pm_put(&desc->irq_data);
2499                 kfree(action);
2500         }
2501
2502         return retval;
2503 }
2504 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2505
2506 /**
2507  *      request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2508  *      @irq: Interrupt line to allocate
2509  *      @handler: Function to be called when the IRQ occurs.
2510  *      @name: An ascii name for the claiming device
2511  *      @dev_id: A percpu cookie passed back to the handler function
2512  *
2513  *      This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2514  *      have to be setup on each CPU by calling prepare_percpu_nmi() before
2515  *      being enabled on the same CPU by using enable_percpu_nmi().
2516  *
2517  *      Dev_id must be globally unique. It is a per-cpu variable, and
2518  *      the handler gets called with the interrupted CPU's instance of
2519  *      that variable.
2520  *
2521  *      Interrupt lines requested for NMI delivering should have auto enabling
2522  *      setting disabled.
2523  *
2524  *      If the interrupt line cannot be used to deliver NMIs, function
2525  *      will fail returning a negative value.
2526  */
2527 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2528                        const char *name, void __percpu *dev_id)
2529 {
2530         struct irqaction *action;
2531         struct irq_desc *desc;
2532         unsigned long flags;
2533         int retval;
2534
2535         if (!handler)
2536                 return -EINVAL;
2537
2538         desc = irq_to_desc(irq);
2539
2540         if (!desc || !irq_settings_can_request(desc) ||
2541             !irq_settings_is_per_cpu_devid(desc) ||
2542             irq_settings_can_autoenable(desc) ||
2543             !irq_supports_nmi(desc))
2544                 return -EINVAL;
2545
2546         /* The line cannot already be NMI */
2547         if (desc->istate & IRQS_NMI)
2548                 return -EINVAL;
2549
2550         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2551         if (!action)
2552                 return -ENOMEM;
2553
2554         action->handler = handler;
2555         action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2556                 | IRQF_NOBALANCING;
2557         action->name = name;
2558         action->percpu_dev_id = dev_id;
2559
2560         retval = irq_chip_pm_get(&desc->irq_data);
2561         if (retval < 0)
2562                 goto err_out;
2563
2564         retval = __setup_irq(irq, desc, action);
2565         if (retval)
2566                 goto err_irq_setup;
2567
2568         raw_spin_lock_irqsave(&desc->lock, flags);
2569         desc->istate |= IRQS_NMI;
2570         raw_spin_unlock_irqrestore(&desc->lock, flags);
2571
2572         return 0;
2573
2574 err_irq_setup:
2575         irq_chip_pm_put(&desc->irq_data);
2576 err_out:
2577         kfree(action);
2578
2579         return retval;
2580 }
2581
2582 /**
2583  *      prepare_percpu_nmi - performs CPU local setup for NMI delivery
2584  *      @irq: Interrupt line to prepare for NMI delivery
2585  *
2586  *      This call prepares an interrupt line to deliver NMI on the current CPU,
2587  *      before that interrupt line gets enabled with enable_percpu_nmi().
2588  *
2589  *      As a CPU local operation, this should be called from non-preemptible
2590  *      context.
2591  *
2592  *      If the interrupt line cannot be used to deliver NMIs, function
2593  *      will fail returning a negative value.
2594  */
2595 int prepare_percpu_nmi(unsigned int irq)
2596 {
2597         unsigned long flags;
2598         struct irq_desc *desc;
2599         int ret = 0;
2600
2601         WARN_ON(preemptible());
2602
2603         desc = irq_get_desc_lock(irq, &flags,
2604                                  IRQ_GET_DESC_CHECK_PERCPU);
2605         if (!desc)
2606                 return -EINVAL;
2607
2608         if (WARN(!(desc->istate & IRQS_NMI),
2609                  KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2610                  irq)) {
2611                 ret = -EINVAL;
2612                 goto out;
2613         }
2614
2615         ret = irq_nmi_setup(desc);
2616         if (ret) {
2617                 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2618                 goto out;
2619         }
2620
2621 out:
2622         irq_put_desc_unlock(desc, flags);
2623         return ret;
2624 }
2625
2626 /**
2627  *      teardown_percpu_nmi - undoes NMI setup of IRQ line
2628  *      @irq: Interrupt line from which CPU local NMI configuration should be
2629  *            removed
2630  *
2631  *      This call undoes the setup done by prepare_percpu_nmi().
2632  *
2633  *      IRQ line should not be enabled for the current CPU.
2634  *
2635  *      As a CPU local operation, this should be called from non-preemptible
2636  *      context.
2637  */
2638 void teardown_percpu_nmi(unsigned int irq)
2639 {
2640         unsigned long flags;
2641         struct irq_desc *desc;
2642
2643         WARN_ON(preemptible());
2644
2645         desc = irq_get_desc_lock(irq, &flags,
2646                                  IRQ_GET_DESC_CHECK_PERCPU);
2647         if (!desc)
2648                 return;
2649
2650         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2651                 goto out;
2652
2653         irq_nmi_teardown(desc);
2654 out:
2655         irq_put_desc_unlock(desc, flags);
2656 }
2657
2658 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2659                             bool *state)
2660 {
2661         struct irq_chip *chip;
2662         int err = -EINVAL;
2663
2664         do {
2665                 chip = irq_data_get_irq_chip(data);
2666                 if (chip->irq_get_irqchip_state)
2667                         break;
2668 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2669                 data = data->parent_data;
2670 #else
2671                 data = NULL;
2672 #endif
2673         } while (data);
2674
2675         if (data)
2676                 err = chip->irq_get_irqchip_state(data, which, state);
2677         return err;
2678 }
2679
2680 /**
2681  *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2682  *      @irq: Interrupt line that is forwarded to a VM
2683  *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2684  *      @state: a pointer to a boolean where the state is to be storeed
2685  *
2686  *      This call snapshots the internal irqchip state of an
2687  *      interrupt, returning into @state the bit corresponding to
2688  *      stage @which
2689  *
2690  *      This function should be called with preemption disabled if the
2691  *      interrupt controller has per-cpu registers.
2692  */
2693 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2694                           bool *state)
2695 {
2696         struct irq_desc *desc;
2697         struct irq_data *data;
2698         unsigned long flags;
2699         int err = -EINVAL;
2700
2701         desc = irq_get_desc_buslock(irq, &flags, 0);
2702         if (!desc)
2703                 return err;
2704
2705         data = irq_desc_get_irq_data(desc);
2706
2707         err = __irq_get_irqchip_state(data, which, state);
2708
2709         irq_put_desc_busunlock(desc, flags);
2710         return err;
2711 }
2712 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2713
2714 /**
2715  *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2716  *      @irq: Interrupt line that is forwarded to a VM
2717  *      @which: State to be restored (one of IRQCHIP_STATE_*)
2718  *      @val: Value corresponding to @which
2719  *
2720  *      This call sets the internal irqchip state of an interrupt,
2721  *      depending on the value of @which.
2722  *
2723  *      This function should be called with preemption disabled if the
2724  *      interrupt controller has per-cpu registers.
2725  */
2726 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2727                           bool val)
2728 {
2729         struct irq_desc *desc;
2730         struct irq_data *data;
2731         struct irq_chip *chip;
2732         unsigned long flags;
2733         int err = -EINVAL;
2734
2735         desc = irq_get_desc_buslock(irq, &flags, 0);
2736         if (!desc)
2737                 return err;
2738
2739         data = irq_desc_get_irq_data(desc);
2740
2741         do {
2742                 chip = irq_data_get_irq_chip(data);
2743                 if (chip->irq_set_irqchip_state)
2744                         break;
2745 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2746                 data = data->parent_data;
2747 #else
2748                 data = NULL;
2749 #endif
2750         } while (data);
2751
2752         if (data)
2753                 err = chip->irq_set_irqchip_state(data, which, val);
2754
2755         irq_put_desc_busunlock(desc, flags);
2756         return err;
2757 }
2758 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);