Merge tag 'nfsd-5.4' of git://linux-nfs.org/~bfields/linux
[linux-2.6-block.git] / kernel / irq / manage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <uapi/linux/sched/types.h>
22 #include <linux/task_work.h>
23
24 #include "internals.h"
25
26 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
27 __read_mostly bool force_irqthreads;
28 EXPORT_SYMBOL_GPL(force_irqthreads);
29
30 static int __init setup_forced_irqthreads(char *arg)
31 {
32         force_irqthreads = true;
33         return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37
38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40         struct irq_data *irqd = irq_desc_get_irq_data(desc);
41         bool inprogress;
42
43         do {
44                 unsigned long flags;
45
46                 /*
47                  * Wait until we're out of the critical section.  This might
48                  * give the wrong answer due to the lack of memory barriers.
49                  */
50                 while (irqd_irq_inprogress(&desc->irq_data))
51                         cpu_relax();
52
53                 /* Ok, that indicated we're done: double-check carefully. */
54                 raw_spin_lock_irqsave(&desc->lock, flags);
55                 inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57                 /*
58                  * If requested and supported, check at the chip whether it
59                  * is in flight at the hardware level, i.e. already pending
60                  * in a CPU and waiting for service and acknowledge.
61                  */
62                 if (!inprogress && sync_chip) {
63                         /*
64                          * Ignore the return code. inprogress is only updated
65                          * when the chip supports it.
66                          */
67                         __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68                                                 &inprogress);
69                 }
70                 raw_spin_unlock_irqrestore(&desc->lock, flags);
71
72                 /* Oops, that failed? */
73         } while (inprogress);
74 }
75
76 /**
77  *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78  *      @irq: interrupt number to wait for
79  *
80  *      This function waits for any pending hard IRQ handlers for this
81  *      interrupt to complete before returning. If you use this
82  *      function while holding a resource the IRQ handler may need you
83  *      will deadlock. It does not take associated threaded handlers
84  *      into account.
85  *
86  *      Do not use this for shutdown scenarios where you must be sure
87  *      that all parts (hardirq and threaded handler) have completed.
88  *
89  *      Returns: false if a threaded handler is active.
90  *
91  *      This function may be called - with care - from IRQ context.
92  *
93  *      It does not check whether there is an interrupt in flight at the
94  *      hardware level, but not serviced yet, as this might deadlock when
95  *      called with interrupts disabled and the target CPU of the interrupt
96  *      is the current CPU.
97  */
98 bool synchronize_hardirq(unsigned int irq)
99 {
100         struct irq_desc *desc = irq_to_desc(irq);
101
102         if (desc) {
103                 __synchronize_hardirq(desc, false);
104                 return !atomic_read(&desc->threads_active);
105         }
106
107         return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110
111 /**
112  *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
113  *      @irq: interrupt number to wait for
114  *
115  *      This function waits for any pending IRQ handlers for this interrupt
116  *      to complete before returning. If you use this function while
117  *      holding a resource the IRQ handler may need you will deadlock.
118  *
119  *      Can only be called from preemptible code as it might sleep when
120  *      an interrupt thread is associated to @irq.
121  *
122  *      It optionally makes sure (when the irq chip supports that method)
123  *      that the interrupt is not pending in any CPU and waiting for
124  *      service.
125  */
126 void synchronize_irq(unsigned int irq)
127 {
128         struct irq_desc *desc = irq_to_desc(irq);
129
130         if (desc) {
131                 __synchronize_hardirq(desc, true);
132                 /*
133                  * We made sure that no hardirq handler is
134                  * running. Now verify that no threaded handlers are
135                  * active.
136                  */
137                 wait_event(desc->wait_for_threads,
138                            !atomic_read(&desc->threads_active));
139         }
140 }
141 EXPORT_SYMBOL(synchronize_irq);
142
143 #ifdef CONFIG_SMP
144 cpumask_var_t irq_default_affinity;
145
146 static bool __irq_can_set_affinity(struct irq_desc *desc)
147 {
148         if (!desc || !irqd_can_balance(&desc->irq_data) ||
149             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
150                 return false;
151         return true;
152 }
153
154 /**
155  *      irq_can_set_affinity - Check if the affinity of a given irq can be set
156  *      @irq:           Interrupt to check
157  *
158  */
159 int irq_can_set_affinity(unsigned int irq)
160 {
161         return __irq_can_set_affinity(irq_to_desc(irq));
162 }
163
164 /**
165  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
166  * @irq:        Interrupt to check
167  *
168  * Like irq_can_set_affinity() above, but additionally checks for the
169  * AFFINITY_MANAGED flag.
170  */
171 bool irq_can_set_affinity_usr(unsigned int irq)
172 {
173         struct irq_desc *desc = irq_to_desc(irq);
174
175         return __irq_can_set_affinity(desc) &&
176                 !irqd_affinity_is_managed(&desc->irq_data);
177 }
178
179 /**
180  *      irq_set_thread_affinity - Notify irq threads to adjust affinity
181  *      @desc:          irq descriptor which has affitnity changed
182  *
183  *      We just set IRQTF_AFFINITY and delegate the affinity setting
184  *      to the interrupt thread itself. We can not call
185  *      set_cpus_allowed_ptr() here as we hold desc->lock and this
186  *      code can be called from hard interrupt context.
187  */
188 void irq_set_thread_affinity(struct irq_desc *desc)
189 {
190         struct irqaction *action;
191
192         for_each_action_of_desc(desc, action)
193                 if (action->thread)
194                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
195 }
196
197 static void irq_validate_effective_affinity(struct irq_data *data)
198 {
199 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
200         const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
201         struct irq_chip *chip = irq_data_get_irq_chip(data);
202
203         if (!cpumask_empty(m))
204                 return;
205         pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
206                      chip->name, data->irq);
207 #endif
208 }
209
210 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
211                         bool force)
212 {
213         struct irq_desc *desc = irq_data_to_desc(data);
214         struct irq_chip *chip = irq_data_get_irq_chip(data);
215         int ret;
216
217         if (!chip || !chip->irq_set_affinity)
218                 return -EINVAL;
219
220         ret = chip->irq_set_affinity(data, mask, force);
221         switch (ret) {
222         case IRQ_SET_MASK_OK:
223         case IRQ_SET_MASK_OK_DONE:
224                 cpumask_copy(desc->irq_common_data.affinity, mask);
225                 /* fall through */
226         case IRQ_SET_MASK_OK_NOCOPY:
227                 irq_validate_effective_affinity(data);
228                 irq_set_thread_affinity(desc);
229                 ret = 0;
230         }
231
232         return ret;
233 }
234
235 #ifdef CONFIG_GENERIC_PENDING_IRQ
236 static inline int irq_set_affinity_pending(struct irq_data *data,
237                                            const struct cpumask *dest)
238 {
239         struct irq_desc *desc = irq_data_to_desc(data);
240
241         irqd_set_move_pending(data);
242         irq_copy_pending(desc, dest);
243         return 0;
244 }
245 #else
246 static inline int irq_set_affinity_pending(struct irq_data *data,
247                                            const struct cpumask *dest)
248 {
249         return -EBUSY;
250 }
251 #endif
252
253 static int irq_try_set_affinity(struct irq_data *data,
254                                 const struct cpumask *dest, bool force)
255 {
256         int ret = irq_do_set_affinity(data, dest, force);
257
258         /*
259          * In case that the underlying vector management is busy and the
260          * architecture supports the generic pending mechanism then utilize
261          * this to avoid returning an error to user space.
262          */
263         if (ret == -EBUSY && !force)
264                 ret = irq_set_affinity_pending(data, dest);
265         return ret;
266 }
267
268 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
269                             bool force)
270 {
271         struct irq_chip *chip = irq_data_get_irq_chip(data);
272         struct irq_desc *desc = irq_data_to_desc(data);
273         int ret = 0;
274
275         if (!chip || !chip->irq_set_affinity)
276                 return -EINVAL;
277
278         if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
279                 ret = irq_try_set_affinity(data, mask, force);
280         } else {
281                 irqd_set_move_pending(data);
282                 irq_copy_pending(desc, mask);
283         }
284
285         if (desc->affinity_notify) {
286                 kref_get(&desc->affinity_notify->kref);
287                 schedule_work(&desc->affinity_notify->work);
288         }
289         irqd_set(data, IRQD_AFFINITY_SET);
290
291         return ret;
292 }
293
294 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
295 {
296         struct irq_desc *desc = irq_to_desc(irq);
297         unsigned long flags;
298         int ret;
299
300         if (!desc)
301                 return -EINVAL;
302
303         raw_spin_lock_irqsave(&desc->lock, flags);
304         ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
305         raw_spin_unlock_irqrestore(&desc->lock, flags);
306         return ret;
307 }
308
309 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
310 {
311         unsigned long flags;
312         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
313
314         if (!desc)
315                 return -EINVAL;
316         desc->affinity_hint = m;
317         irq_put_desc_unlock(desc, flags);
318         /* set the initial affinity to prevent every interrupt being on CPU0 */
319         if (m)
320                 __irq_set_affinity(irq, m, false);
321         return 0;
322 }
323 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
324
325 static void irq_affinity_notify(struct work_struct *work)
326 {
327         struct irq_affinity_notify *notify =
328                 container_of(work, struct irq_affinity_notify, work);
329         struct irq_desc *desc = irq_to_desc(notify->irq);
330         cpumask_var_t cpumask;
331         unsigned long flags;
332
333         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
334                 goto out;
335
336         raw_spin_lock_irqsave(&desc->lock, flags);
337         if (irq_move_pending(&desc->irq_data))
338                 irq_get_pending(cpumask, desc);
339         else
340                 cpumask_copy(cpumask, desc->irq_common_data.affinity);
341         raw_spin_unlock_irqrestore(&desc->lock, flags);
342
343         notify->notify(notify, cpumask);
344
345         free_cpumask_var(cpumask);
346 out:
347         kref_put(&notify->kref, notify->release);
348 }
349
350 /**
351  *      irq_set_affinity_notifier - control notification of IRQ affinity changes
352  *      @irq:           Interrupt for which to enable/disable notification
353  *      @notify:        Context for notification, or %NULL to disable
354  *                      notification.  Function pointers must be initialised;
355  *                      the other fields will be initialised by this function.
356  *
357  *      Must be called in process context.  Notification may only be enabled
358  *      after the IRQ is allocated and must be disabled before the IRQ is
359  *      freed using free_irq().
360  */
361 int
362 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
363 {
364         struct irq_desc *desc = irq_to_desc(irq);
365         struct irq_affinity_notify *old_notify;
366         unsigned long flags;
367
368         /* The release function is promised process context */
369         might_sleep();
370
371         if (!desc || desc->istate & IRQS_NMI)
372                 return -EINVAL;
373
374         /* Complete initialisation of *notify */
375         if (notify) {
376                 notify->irq = irq;
377                 kref_init(&notify->kref);
378                 INIT_WORK(&notify->work, irq_affinity_notify);
379         }
380
381         raw_spin_lock_irqsave(&desc->lock, flags);
382         old_notify = desc->affinity_notify;
383         desc->affinity_notify = notify;
384         raw_spin_unlock_irqrestore(&desc->lock, flags);
385
386         if (old_notify) {
387                 cancel_work_sync(&old_notify->work);
388                 kref_put(&old_notify->kref, old_notify->release);
389         }
390
391         return 0;
392 }
393 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
394
395 #ifndef CONFIG_AUTO_IRQ_AFFINITY
396 /*
397  * Generic version of the affinity autoselector.
398  */
399 int irq_setup_affinity(struct irq_desc *desc)
400 {
401         struct cpumask *set = irq_default_affinity;
402         int ret, node = irq_desc_get_node(desc);
403         static DEFINE_RAW_SPINLOCK(mask_lock);
404         static struct cpumask mask;
405
406         /* Excludes PER_CPU and NO_BALANCE interrupts */
407         if (!__irq_can_set_affinity(desc))
408                 return 0;
409
410         raw_spin_lock(&mask_lock);
411         /*
412          * Preserve the managed affinity setting and a userspace affinity
413          * setup, but make sure that one of the targets is online.
414          */
415         if (irqd_affinity_is_managed(&desc->irq_data) ||
416             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
417                 if (cpumask_intersects(desc->irq_common_data.affinity,
418                                        cpu_online_mask))
419                         set = desc->irq_common_data.affinity;
420                 else
421                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
422         }
423
424         cpumask_and(&mask, cpu_online_mask, set);
425         if (cpumask_empty(&mask))
426                 cpumask_copy(&mask, cpu_online_mask);
427
428         if (node != NUMA_NO_NODE) {
429                 const struct cpumask *nodemask = cpumask_of_node(node);
430
431                 /* make sure at least one of the cpus in nodemask is online */
432                 if (cpumask_intersects(&mask, nodemask))
433                         cpumask_and(&mask, &mask, nodemask);
434         }
435         ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
436         raw_spin_unlock(&mask_lock);
437         return ret;
438 }
439 #else
440 /* Wrapper for ALPHA specific affinity selector magic */
441 int irq_setup_affinity(struct irq_desc *desc)
442 {
443         return irq_select_affinity(irq_desc_get_irq(desc));
444 }
445 #endif
446
447 /*
448  * Called when a bogus affinity is set via /proc/irq
449  */
450 int irq_select_affinity_usr(unsigned int irq)
451 {
452         struct irq_desc *desc = irq_to_desc(irq);
453         unsigned long flags;
454         int ret;
455
456         raw_spin_lock_irqsave(&desc->lock, flags);
457         ret = irq_setup_affinity(desc);
458         raw_spin_unlock_irqrestore(&desc->lock, flags);
459         return ret;
460 }
461 #endif
462
463 /**
464  *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
465  *      @irq: interrupt number to set affinity
466  *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
467  *                  specific data for percpu_devid interrupts
468  *
469  *      This function uses the vCPU specific data to set the vCPU
470  *      affinity for an irq. The vCPU specific data is passed from
471  *      outside, such as KVM. One example code path is as below:
472  *      KVM -> IOMMU -> irq_set_vcpu_affinity().
473  */
474 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
475 {
476         unsigned long flags;
477         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
478         struct irq_data *data;
479         struct irq_chip *chip;
480         int ret = -ENOSYS;
481
482         if (!desc)
483                 return -EINVAL;
484
485         data = irq_desc_get_irq_data(desc);
486         do {
487                 chip = irq_data_get_irq_chip(data);
488                 if (chip && chip->irq_set_vcpu_affinity)
489                         break;
490 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
491                 data = data->parent_data;
492 #else
493                 data = NULL;
494 #endif
495         } while (data);
496
497         if (data)
498                 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
499         irq_put_desc_unlock(desc, flags);
500
501         return ret;
502 }
503 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
504
505 void __disable_irq(struct irq_desc *desc)
506 {
507         if (!desc->depth++)
508                 irq_disable(desc);
509 }
510
511 static int __disable_irq_nosync(unsigned int irq)
512 {
513         unsigned long flags;
514         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
515
516         if (!desc)
517                 return -EINVAL;
518         __disable_irq(desc);
519         irq_put_desc_busunlock(desc, flags);
520         return 0;
521 }
522
523 /**
524  *      disable_irq_nosync - disable an irq without waiting
525  *      @irq: Interrupt to disable
526  *
527  *      Disable the selected interrupt line.  Disables and Enables are
528  *      nested.
529  *      Unlike disable_irq(), this function does not ensure existing
530  *      instances of the IRQ handler have completed before returning.
531  *
532  *      This function may be called from IRQ context.
533  */
534 void disable_irq_nosync(unsigned int irq)
535 {
536         __disable_irq_nosync(irq);
537 }
538 EXPORT_SYMBOL(disable_irq_nosync);
539
540 /**
541  *      disable_irq - disable an irq and wait for completion
542  *      @irq: Interrupt to disable
543  *
544  *      Disable the selected interrupt line.  Enables and Disables are
545  *      nested.
546  *      This function waits for any pending IRQ handlers for this interrupt
547  *      to complete before returning. If you use this function while
548  *      holding a resource the IRQ handler may need you will deadlock.
549  *
550  *      This function may be called - with care - from IRQ context.
551  */
552 void disable_irq(unsigned int irq)
553 {
554         if (!__disable_irq_nosync(irq))
555                 synchronize_irq(irq);
556 }
557 EXPORT_SYMBOL(disable_irq);
558
559 /**
560  *      disable_hardirq - disables an irq and waits for hardirq completion
561  *      @irq: Interrupt to disable
562  *
563  *      Disable the selected interrupt line.  Enables and Disables are
564  *      nested.
565  *      This function waits for any pending hard IRQ handlers for this
566  *      interrupt to complete before returning. If you use this function while
567  *      holding a resource the hard IRQ handler may need you will deadlock.
568  *
569  *      When used to optimistically disable an interrupt from atomic context
570  *      the return value must be checked.
571  *
572  *      Returns: false if a threaded handler is active.
573  *
574  *      This function may be called - with care - from IRQ context.
575  */
576 bool disable_hardirq(unsigned int irq)
577 {
578         if (!__disable_irq_nosync(irq))
579                 return synchronize_hardirq(irq);
580
581         return false;
582 }
583 EXPORT_SYMBOL_GPL(disable_hardirq);
584
585 /**
586  *      disable_nmi_nosync - disable an nmi without waiting
587  *      @irq: Interrupt to disable
588  *
589  *      Disable the selected interrupt line. Disables and enables are
590  *      nested.
591  *      The interrupt to disable must have been requested through request_nmi.
592  *      Unlike disable_nmi(), this function does not ensure existing
593  *      instances of the IRQ handler have completed before returning.
594  */
595 void disable_nmi_nosync(unsigned int irq)
596 {
597         disable_irq_nosync(irq);
598 }
599
600 void __enable_irq(struct irq_desc *desc)
601 {
602         switch (desc->depth) {
603         case 0:
604  err_out:
605                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
606                      irq_desc_get_irq(desc));
607                 break;
608         case 1: {
609                 if (desc->istate & IRQS_SUSPENDED)
610                         goto err_out;
611                 /* Prevent probing on this irq: */
612                 irq_settings_set_noprobe(desc);
613                 /*
614                  * Call irq_startup() not irq_enable() here because the
615                  * interrupt might be marked NOAUTOEN. So irq_startup()
616                  * needs to be invoked when it gets enabled the first
617                  * time. If it was already started up, then irq_startup()
618                  * will invoke irq_enable() under the hood.
619                  */
620                 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
621                 break;
622         }
623         default:
624                 desc->depth--;
625         }
626 }
627
628 /**
629  *      enable_irq - enable handling of an irq
630  *      @irq: Interrupt to enable
631  *
632  *      Undoes the effect of one call to disable_irq().  If this
633  *      matches the last disable, processing of interrupts on this
634  *      IRQ line is re-enabled.
635  *
636  *      This function may be called from IRQ context only when
637  *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
638  */
639 void enable_irq(unsigned int irq)
640 {
641         unsigned long flags;
642         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
643
644         if (!desc)
645                 return;
646         if (WARN(!desc->irq_data.chip,
647                  KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
648                 goto out;
649
650         __enable_irq(desc);
651 out:
652         irq_put_desc_busunlock(desc, flags);
653 }
654 EXPORT_SYMBOL(enable_irq);
655
656 /**
657  *      enable_nmi - enable handling of an nmi
658  *      @irq: Interrupt to enable
659  *
660  *      The interrupt to enable must have been requested through request_nmi.
661  *      Undoes the effect of one call to disable_nmi(). If this
662  *      matches the last disable, processing of interrupts on this
663  *      IRQ line is re-enabled.
664  */
665 void enable_nmi(unsigned int irq)
666 {
667         enable_irq(irq);
668 }
669
670 static int set_irq_wake_real(unsigned int irq, unsigned int on)
671 {
672         struct irq_desc *desc = irq_to_desc(irq);
673         int ret = -ENXIO;
674
675         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
676                 return 0;
677
678         if (desc->irq_data.chip->irq_set_wake)
679                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
680
681         return ret;
682 }
683
684 /**
685  *      irq_set_irq_wake - control irq power management wakeup
686  *      @irq:   interrupt to control
687  *      @on:    enable/disable power management wakeup
688  *
689  *      Enable/disable power management wakeup mode, which is
690  *      disabled by default.  Enables and disables must match,
691  *      just as they match for non-wakeup mode support.
692  *
693  *      Wakeup mode lets this IRQ wake the system from sleep
694  *      states like "suspend to RAM".
695  */
696 int irq_set_irq_wake(unsigned int irq, unsigned int on)
697 {
698         unsigned long flags;
699         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
700         int ret = 0;
701
702         if (!desc)
703                 return -EINVAL;
704
705         /* Don't use NMIs as wake up interrupts please */
706         if (desc->istate & IRQS_NMI) {
707                 ret = -EINVAL;
708                 goto out_unlock;
709         }
710
711         /* wakeup-capable irqs can be shared between drivers that
712          * don't need to have the same sleep mode behaviors.
713          */
714         if (on) {
715                 if (desc->wake_depth++ == 0) {
716                         ret = set_irq_wake_real(irq, on);
717                         if (ret)
718                                 desc->wake_depth = 0;
719                         else
720                                 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
721                 }
722         } else {
723                 if (desc->wake_depth == 0) {
724                         WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
725                 } else if (--desc->wake_depth == 0) {
726                         ret = set_irq_wake_real(irq, on);
727                         if (ret)
728                                 desc->wake_depth = 1;
729                         else
730                                 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
731                 }
732         }
733
734 out_unlock:
735         irq_put_desc_busunlock(desc, flags);
736         return ret;
737 }
738 EXPORT_SYMBOL(irq_set_irq_wake);
739
740 /*
741  * Internal function that tells the architecture code whether a
742  * particular irq has been exclusively allocated or is available
743  * for driver use.
744  */
745 int can_request_irq(unsigned int irq, unsigned long irqflags)
746 {
747         unsigned long flags;
748         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
749         int canrequest = 0;
750
751         if (!desc)
752                 return 0;
753
754         if (irq_settings_can_request(desc)) {
755                 if (!desc->action ||
756                     irqflags & desc->action->flags & IRQF_SHARED)
757                         canrequest = 1;
758         }
759         irq_put_desc_unlock(desc, flags);
760         return canrequest;
761 }
762
763 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
764 {
765         struct irq_chip *chip = desc->irq_data.chip;
766         int ret, unmask = 0;
767
768         if (!chip || !chip->irq_set_type) {
769                 /*
770                  * IRQF_TRIGGER_* but the PIC does not support multiple
771                  * flow-types?
772                  */
773                 pr_debug("No set_type function for IRQ %d (%s)\n",
774                          irq_desc_get_irq(desc),
775                          chip ? (chip->name ? : "unknown") : "unknown");
776                 return 0;
777         }
778
779         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
780                 if (!irqd_irq_masked(&desc->irq_data))
781                         mask_irq(desc);
782                 if (!irqd_irq_disabled(&desc->irq_data))
783                         unmask = 1;
784         }
785
786         /* Mask all flags except trigger mode */
787         flags &= IRQ_TYPE_SENSE_MASK;
788         ret = chip->irq_set_type(&desc->irq_data, flags);
789
790         switch (ret) {
791         case IRQ_SET_MASK_OK:
792         case IRQ_SET_MASK_OK_DONE:
793                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
794                 irqd_set(&desc->irq_data, flags);
795                 /* fall through */
796
797         case IRQ_SET_MASK_OK_NOCOPY:
798                 flags = irqd_get_trigger_type(&desc->irq_data);
799                 irq_settings_set_trigger_mask(desc, flags);
800                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
801                 irq_settings_clr_level(desc);
802                 if (flags & IRQ_TYPE_LEVEL_MASK) {
803                         irq_settings_set_level(desc);
804                         irqd_set(&desc->irq_data, IRQD_LEVEL);
805                 }
806
807                 ret = 0;
808                 break;
809         default:
810                 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
811                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
812         }
813         if (unmask)
814                 unmask_irq(desc);
815         return ret;
816 }
817
818 #ifdef CONFIG_HARDIRQS_SW_RESEND
819 int irq_set_parent(int irq, int parent_irq)
820 {
821         unsigned long flags;
822         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
823
824         if (!desc)
825                 return -EINVAL;
826
827         desc->parent_irq = parent_irq;
828
829         irq_put_desc_unlock(desc, flags);
830         return 0;
831 }
832 EXPORT_SYMBOL_GPL(irq_set_parent);
833 #endif
834
835 /*
836  * Default primary interrupt handler for threaded interrupts. Is
837  * assigned as primary handler when request_threaded_irq is called
838  * with handler == NULL. Useful for oneshot interrupts.
839  */
840 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
841 {
842         return IRQ_WAKE_THREAD;
843 }
844
845 /*
846  * Primary handler for nested threaded interrupts. Should never be
847  * called.
848  */
849 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
850 {
851         WARN(1, "Primary handler called for nested irq %d\n", irq);
852         return IRQ_NONE;
853 }
854
855 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
856 {
857         WARN(1, "Secondary action handler called for irq %d\n", irq);
858         return IRQ_NONE;
859 }
860
861 static int irq_wait_for_interrupt(struct irqaction *action)
862 {
863         for (;;) {
864                 set_current_state(TASK_INTERRUPTIBLE);
865
866                 if (kthread_should_stop()) {
867                         /* may need to run one last time */
868                         if (test_and_clear_bit(IRQTF_RUNTHREAD,
869                                                &action->thread_flags)) {
870                                 __set_current_state(TASK_RUNNING);
871                                 return 0;
872                         }
873                         __set_current_state(TASK_RUNNING);
874                         return -1;
875                 }
876
877                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
878                                        &action->thread_flags)) {
879                         __set_current_state(TASK_RUNNING);
880                         return 0;
881                 }
882                 schedule();
883         }
884 }
885
886 /*
887  * Oneshot interrupts keep the irq line masked until the threaded
888  * handler finished. unmask if the interrupt has not been disabled and
889  * is marked MASKED.
890  */
891 static void irq_finalize_oneshot(struct irq_desc *desc,
892                                  struct irqaction *action)
893 {
894         if (!(desc->istate & IRQS_ONESHOT) ||
895             action->handler == irq_forced_secondary_handler)
896                 return;
897 again:
898         chip_bus_lock(desc);
899         raw_spin_lock_irq(&desc->lock);
900
901         /*
902          * Implausible though it may be we need to protect us against
903          * the following scenario:
904          *
905          * The thread is faster done than the hard interrupt handler
906          * on the other CPU. If we unmask the irq line then the
907          * interrupt can come in again and masks the line, leaves due
908          * to IRQS_INPROGRESS and the irq line is masked forever.
909          *
910          * This also serializes the state of shared oneshot handlers
911          * versus "desc->threads_onehsot |= action->thread_mask;" in
912          * irq_wake_thread(). See the comment there which explains the
913          * serialization.
914          */
915         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
916                 raw_spin_unlock_irq(&desc->lock);
917                 chip_bus_sync_unlock(desc);
918                 cpu_relax();
919                 goto again;
920         }
921
922         /*
923          * Now check again, whether the thread should run. Otherwise
924          * we would clear the threads_oneshot bit of this thread which
925          * was just set.
926          */
927         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
928                 goto out_unlock;
929
930         desc->threads_oneshot &= ~action->thread_mask;
931
932         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
933             irqd_irq_masked(&desc->irq_data))
934                 unmask_threaded_irq(desc);
935
936 out_unlock:
937         raw_spin_unlock_irq(&desc->lock);
938         chip_bus_sync_unlock(desc);
939 }
940
941 #ifdef CONFIG_SMP
942 /*
943  * Check whether we need to change the affinity of the interrupt thread.
944  */
945 static void
946 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
947 {
948         cpumask_var_t mask;
949         bool valid = true;
950
951         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
952                 return;
953
954         /*
955          * In case we are out of memory we set IRQTF_AFFINITY again and
956          * try again next time
957          */
958         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
959                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
960                 return;
961         }
962
963         raw_spin_lock_irq(&desc->lock);
964         /*
965          * This code is triggered unconditionally. Check the affinity
966          * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
967          */
968         if (cpumask_available(desc->irq_common_data.affinity)) {
969                 const struct cpumask *m;
970
971                 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
972                 cpumask_copy(mask, m);
973         } else {
974                 valid = false;
975         }
976         raw_spin_unlock_irq(&desc->lock);
977
978         if (valid)
979                 set_cpus_allowed_ptr(current, mask);
980         free_cpumask_var(mask);
981 }
982 #else
983 static inline void
984 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
985 #endif
986
987 /*
988  * Interrupts which are not explicitly requested as threaded
989  * interrupts rely on the implicit bh/preempt disable of the hard irq
990  * context. So we need to disable bh here to avoid deadlocks and other
991  * side effects.
992  */
993 static irqreturn_t
994 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
995 {
996         irqreturn_t ret;
997
998         local_bh_disable();
999         ret = action->thread_fn(action->irq, action->dev_id);
1000         if (ret == IRQ_HANDLED)
1001                 atomic_inc(&desc->threads_handled);
1002
1003         irq_finalize_oneshot(desc, action);
1004         local_bh_enable();
1005         return ret;
1006 }
1007
1008 /*
1009  * Interrupts explicitly requested as threaded interrupts want to be
1010  * preemtible - many of them need to sleep and wait for slow busses to
1011  * complete.
1012  */
1013 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1014                 struct irqaction *action)
1015 {
1016         irqreturn_t ret;
1017
1018         ret = action->thread_fn(action->irq, action->dev_id);
1019         if (ret == IRQ_HANDLED)
1020                 atomic_inc(&desc->threads_handled);
1021
1022         irq_finalize_oneshot(desc, action);
1023         return ret;
1024 }
1025
1026 static void wake_threads_waitq(struct irq_desc *desc)
1027 {
1028         if (atomic_dec_and_test(&desc->threads_active))
1029                 wake_up(&desc->wait_for_threads);
1030 }
1031
1032 static void irq_thread_dtor(struct callback_head *unused)
1033 {
1034         struct task_struct *tsk = current;
1035         struct irq_desc *desc;
1036         struct irqaction *action;
1037
1038         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1039                 return;
1040
1041         action = kthread_data(tsk);
1042
1043         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1044                tsk->comm, tsk->pid, action->irq);
1045
1046
1047         desc = irq_to_desc(action->irq);
1048         /*
1049          * If IRQTF_RUNTHREAD is set, we need to decrement
1050          * desc->threads_active and wake possible waiters.
1051          */
1052         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1053                 wake_threads_waitq(desc);
1054
1055         /* Prevent a stale desc->threads_oneshot */
1056         irq_finalize_oneshot(desc, action);
1057 }
1058
1059 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1060 {
1061         struct irqaction *secondary = action->secondary;
1062
1063         if (WARN_ON_ONCE(!secondary))
1064                 return;
1065
1066         raw_spin_lock_irq(&desc->lock);
1067         __irq_wake_thread(desc, secondary);
1068         raw_spin_unlock_irq(&desc->lock);
1069 }
1070
1071 /*
1072  * Interrupt handler thread
1073  */
1074 static int irq_thread(void *data)
1075 {
1076         struct callback_head on_exit_work;
1077         struct irqaction *action = data;
1078         struct irq_desc *desc = irq_to_desc(action->irq);
1079         irqreturn_t (*handler_fn)(struct irq_desc *desc,
1080                         struct irqaction *action);
1081
1082         if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1083                                         &action->thread_flags))
1084                 handler_fn = irq_forced_thread_fn;
1085         else
1086                 handler_fn = irq_thread_fn;
1087
1088         init_task_work(&on_exit_work, irq_thread_dtor);
1089         task_work_add(current, &on_exit_work, false);
1090
1091         irq_thread_check_affinity(desc, action);
1092
1093         while (!irq_wait_for_interrupt(action)) {
1094                 irqreturn_t action_ret;
1095
1096                 irq_thread_check_affinity(desc, action);
1097
1098                 action_ret = handler_fn(desc, action);
1099                 if (action_ret == IRQ_WAKE_THREAD)
1100                         irq_wake_secondary(desc, action);
1101
1102                 wake_threads_waitq(desc);
1103         }
1104
1105         /*
1106          * This is the regular exit path. __free_irq() is stopping the
1107          * thread via kthread_stop() after calling
1108          * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1109          * oneshot mask bit can be set.
1110          */
1111         task_work_cancel(current, irq_thread_dtor);
1112         return 0;
1113 }
1114
1115 /**
1116  *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1117  *      @irq:           Interrupt line
1118  *      @dev_id:        Device identity for which the thread should be woken
1119  *
1120  */
1121 void irq_wake_thread(unsigned int irq, void *dev_id)
1122 {
1123         struct irq_desc *desc = irq_to_desc(irq);
1124         struct irqaction *action;
1125         unsigned long flags;
1126
1127         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1128                 return;
1129
1130         raw_spin_lock_irqsave(&desc->lock, flags);
1131         for_each_action_of_desc(desc, action) {
1132                 if (action->dev_id == dev_id) {
1133                         if (action->thread)
1134                                 __irq_wake_thread(desc, action);
1135                         break;
1136                 }
1137         }
1138         raw_spin_unlock_irqrestore(&desc->lock, flags);
1139 }
1140 EXPORT_SYMBOL_GPL(irq_wake_thread);
1141
1142 static int irq_setup_forced_threading(struct irqaction *new)
1143 {
1144         if (!force_irqthreads)
1145                 return 0;
1146         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1147                 return 0;
1148
1149         /*
1150          * No further action required for interrupts which are requested as
1151          * threaded interrupts already
1152          */
1153         if (new->handler == irq_default_primary_handler)
1154                 return 0;
1155
1156         new->flags |= IRQF_ONESHOT;
1157
1158         /*
1159          * Handle the case where we have a real primary handler and a
1160          * thread handler. We force thread them as well by creating a
1161          * secondary action.
1162          */
1163         if (new->handler && new->thread_fn) {
1164                 /* Allocate the secondary action */
1165                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1166                 if (!new->secondary)
1167                         return -ENOMEM;
1168                 new->secondary->handler = irq_forced_secondary_handler;
1169                 new->secondary->thread_fn = new->thread_fn;
1170                 new->secondary->dev_id = new->dev_id;
1171                 new->secondary->irq = new->irq;
1172                 new->secondary->name = new->name;
1173         }
1174         /* Deal with the primary handler */
1175         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1176         new->thread_fn = new->handler;
1177         new->handler = irq_default_primary_handler;
1178         return 0;
1179 }
1180
1181 static int irq_request_resources(struct irq_desc *desc)
1182 {
1183         struct irq_data *d = &desc->irq_data;
1184         struct irq_chip *c = d->chip;
1185
1186         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1187 }
1188
1189 static void irq_release_resources(struct irq_desc *desc)
1190 {
1191         struct irq_data *d = &desc->irq_data;
1192         struct irq_chip *c = d->chip;
1193
1194         if (c->irq_release_resources)
1195                 c->irq_release_resources(d);
1196 }
1197
1198 static bool irq_supports_nmi(struct irq_desc *desc)
1199 {
1200         struct irq_data *d = irq_desc_get_irq_data(desc);
1201
1202 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1203         /* Only IRQs directly managed by the root irqchip can be set as NMI */
1204         if (d->parent_data)
1205                 return false;
1206 #endif
1207         /* Don't support NMIs for chips behind a slow bus */
1208         if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1209                 return false;
1210
1211         return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1212 }
1213
1214 static int irq_nmi_setup(struct irq_desc *desc)
1215 {
1216         struct irq_data *d = irq_desc_get_irq_data(desc);
1217         struct irq_chip *c = d->chip;
1218
1219         return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1220 }
1221
1222 static void irq_nmi_teardown(struct irq_desc *desc)
1223 {
1224         struct irq_data *d = irq_desc_get_irq_data(desc);
1225         struct irq_chip *c = d->chip;
1226
1227         if (c->irq_nmi_teardown)
1228                 c->irq_nmi_teardown(d);
1229 }
1230
1231 static int
1232 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1233 {
1234         struct task_struct *t;
1235         struct sched_param param = {
1236                 .sched_priority = MAX_USER_RT_PRIO/2,
1237         };
1238
1239         if (!secondary) {
1240                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1241                                    new->name);
1242         } else {
1243                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1244                                    new->name);
1245                 param.sched_priority -= 1;
1246         }
1247
1248         if (IS_ERR(t))
1249                 return PTR_ERR(t);
1250
1251         sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1252
1253         /*
1254          * We keep the reference to the task struct even if
1255          * the thread dies to avoid that the interrupt code
1256          * references an already freed task_struct.
1257          */
1258         new->thread = get_task_struct(t);
1259         /*
1260          * Tell the thread to set its affinity. This is
1261          * important for shared interrupt handlers as we do
1262          * not invoke setup_affinity() for the secondary
1263          * handlers as everything is already set up. Even for
1264          * interrupts marked with IRQF_NO_BALANCE this is
1265          * correct as we want the thread to move to the cpu(s)
1266          * on which the requesting code placed the interrupt.
1267          */
1268         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1269         return 0;
1270 }
1271
1272 /*
1273  * Internal function to register an irqaction - typically used to
1274  * allocate special interrupts that are part of the architecture.
1275  *
1276  * Locking rules:
1277  *
1278  * desc->request_mutex  Provides serialization against a concurrent free_irq()
1279  *   chip_bus_lock      Provides serialization for slow bus operations
1280  *     desc->lock       Provides serialization against hard interrupts
1281  *
1282  * chip_bus_lock and desc->lock are sufficient for all other management and
1283  * interrupt related functions. desc->request_mutex solely serializes
1284  * request/free_irq().
1285  */
1286 static int
1287 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1288 {
1289         struct irqaction *old, **old_ptr;
1290         unsigned long flags, thread_mask = 0;
1291         int ret, nested, shared = 0;
1292
1293         if (!desc)
1294                 return -EINVAL;
1295
1296         if (desc->irq_data.chip == &no_irq_chip)
1297                 return -ENOSYS;
1298         if (!try_module_get(desc->owner))
1299                 return -ENODEV;
1300
1301         new->irq = irq;
1302
1303         /*
1304          * If the trigger type is not specified by the caller,
1305          * then use the default for this interrupt.
1306          */
1307         if (!(new->flags & IRQF_TRIGGER_MASK))
1308                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1309
1310         /*
1311          * Check whether the interrupt nests into another interrupt
1312          * thread.
1313          */
1314         nested = irq_settings_is_nested_thread(desc);
1315         if (nested) {
1316                 if (!new->thread_fn) {
1317                         ret = -EINVAL;
1318                         goto out_mput;
1319                 }
1320                 /*
1321                  * Replace the primary handler which was provided from
1322                  * the driver for non nested interrupt handling by the
1323                  * dummy function which warns when called.
1324                  */
1325                 new->handler = irq_nested_primary_handler;
1326         } else {
1327                 if (irq_settings_can_thread(desc)) {
1328                         ret = irq_setup_forced_threading(new);
1329                         if (ret)
1330                                 goto out_mput;
1331                 }
1332         }
1333
1334         /*
1335          * Create a handler thread when a thread function is supplied
1336          * and the interrupt does not nest into another interrupt
1337          * thread.
1338          */
1339         if (new->thread_fn && !nested) {
1340                 ret = setup_irq_thread(new, irq, false);
1341                 if (ret)
1342                         goto out_mput;
1343                 if (new->secondary) {
1344                         ret = setup_irq_thread(new->secondary, irq, true);
1345                         if (ret)
1346                                 goto out_thread;
1347                 }
1348         }
1349
1350         /*
1351          * Drivers are often written to work w/o knowledge about the
1352          * underlying irq chip implementation, so a request for a
1353          * threaded irq without a primary hard irq context handler
1354          * requires the ONESHOT flag to be set. Some irq chips like
1355          * MSI based interrupts are per se one shot safe. Check the
1356          * chip flags, so we can avoid the unmask dance at the end of
1357          * the threaded handler for those.
1358          */
1359         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1360                 new->flags &= ~IRQF_ONESHOT;
1361
1362         /*
1363          * Protects against a concurrent __free_irq() call which might wait
1364          * for synchronize_hardirq() to complete without holding the optional
1365          * chip bus lock and desc->lock. Also protects against handing out
1366          * a recycled oneshot thread_mask bit while it's still in use by
1367          * its previous owner.
1368          */
1369         mutex_lock(&desc->request_mutex);
1370
1371         /*
1372          * Acquire bus lock as the irq_request_resources() callback below
1373          * might rely on the serialization or the magic power management
1374          * functions which are abusing the irq_bus_lock() callback,
1375          */
1376         chip_bus_lock(desc);
1377
1378         /* First installed action requests resources. */
1379         if (!desc->action) {
1380                 ret = irq_request_resources(desc);
1381                 if (ret) {
1382                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1383                                new->name, irq, desc->irq_data.chip->name);
1384                         goto out_bus_unlock;
1385                 }
1386         }
1387
1388         /*
1389          * The following block of code has to be executed atomically
1390          * protected against a concurrent interrupt and any of the other
1391          * management calls which are not serialized via
1392          * desc->request_mutex or the optional bus lock.
1393          */
1394         raw_spin_lock_irqsave(&desc->lock, flags);
1395         old_ptr = &desc->action;
1396         old = *old_ptr;
1397         if (old) {
1398                 /*
1399                  * Can't share interrupts unless both agree to and are
1400                  * the same type (level, edge, polarity). So both flag
1401                  * fields must have IRQF_SHARED set and the bits which
1402                  * set the trigger type must match. Also all must
1403                  * agree on ONESHOT.
1404                  * Interrupt lines used for NMIs cannot be shared.
1405                  */
1406                 unsigned int oldtype;
1407
1408                 if (desc->istate & IRQS_NMI) {
1409                         pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1410                                 new->name, irq, desc->irq_data.chip->name);
1411                         ret = -EINVAL;
1412                         goto out_unlock;
1413                 }
1414
1415                 /*
1416                  * If nobody did set the configuration before, inherit
1417                  * the one provided by the requester.
1418                  */
1419                 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1420                         oldtype = irqd_get_trigger_type(&desc->irq_data);
1421                 } else {
1422                         oldtype = new->flags & IRQF_TRIGGER_MASK;
1423                         irqd_set_trigger_type(&desc->irq_data, oldtype);
1424                 }
1425
1426                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1427                     (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1428                     ((old->flags ^ new->flags) & IRQF_ONESHOT))
1429                         goto mismatch;
1430
1431                 /* All handlers must agree on per-cpuness */
1432                 if ((old->flags & IRQF_PERCPU) !=
1433                     (new->flags & IRQF_PERCPU))
1434                         goto mismatch;
1435
1436                 /* add new interrupt at end of irq queue */
1437                 do {
1438                         /*
1439                          * Or all existing action->thread_mask bits,
1440                          * so we can find the next zero bit for this
1441                          * new action.
1442                          */
1443                         thread_mask |= old->thread_mask;
1444                         old_ptr = &old->next;
1445                         old = *old_ptr;
1446                 } while (old);
1447                 shared = 1;
1448         }
1449
1450         /*
1451          * Setup the thread mask for this irqaction for ONESHOT. For
1452          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1453          * conditional in irq_wake_thread().
1454          */
1455         if (new->flags & IRQF_ONESHOT) {
1456                 /*
1457                  * Unlikely to have 32 resp 64 irqs sharing one line,
1458                  * but who knows.
1459                  */
1460                 if (thread_mask == ~0UL) {
1461                         ret = -EBUSY;
1462                         goto out_unlock;
1463                 }
1464                 /*
1465                  * The thread_mask for the action is or'ed to
1466                  * desc->thread_active to indicate that the
1467                  * IRQF_ONESHOT thread handler has been woken, but not
1468                  * yet finished. The bit is cleared when a thread
1469                  * completes. When all threads of a shared interrupt
1470                  * line have completed desc->threads_active becomes
1471                  * zero and the interrupt line is unmasked. See
1472                  * handle.c:irq_wake_thread() for further information.
1473                  *
1474                  * If no thread is woken by primary (hard irq context)
1475                  * interrupt handlers, then desc->threads_active is
1476                  * also checked for zero to unmask the irq line in the
1477                  * affected hard irq flow handlers
1478                  * (handle_[fasteoi|level]_irq).
1479                  *
1480                  * The new action gets the first zero bit of
1481                  * thread_mask assigned. See the loop above which or's
1482                  * all existing action->thread_mask bits.
1483                  */
1484                 new->thread_mask = 1UL << ffz(thread_mask);
1485
1486         } else if (new->handler == irq_default_primary_handler &&
1487                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1488                 /*
1489                  * The interrupt was requested with handler = NULL, so
1490                  * we use the default primary handler for it. But it
1491                  * does not have the oneshot flag set. In combination
1492                  * with level interrupts this is deadly, because the
1493                  * default primary handler just wakes the thread, then
1494                  * the irq lines is reenabled, but the device still
1495                  * has the level irq asserted. Rinse and repeat....
1496                  *
1497                  * While this works for edge type interrupts, we play
1498                  * it safe and reject unconditionally because we can't
1499                  * say for sure which type this interrupt really
1500                  * has. The type flags are unreliable as the
1501                  * underlying chip implementation can override them.
1502                  */
1503                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1504                        irq);
1505                 ret = -EINVAL;
1506                 goto out_unlock;
1507         }
1508
1509         if (!shared) {
1510                 init_waitqueue_head(&desc->wait_for_threads);
1511
1512                 /* Setup the type (level, edge polarity) if configured: */
1513                 if (new->flags & IRQF_TRIGGER_MASK) {
1514                         ret = __irq_set_trigger(desc,
1515                                                 new->flags & IRQF_TRIGGER_MASK);
1516
1517                         if (ret)
1518                                 goto out_unlock;
1519                 }
1520
1521                 /*
1522                  * Activate the interrupt. That activation must happen
1523                  * independently of IRQ_NOAUTOEN. request_irq() can fail
1524                  * and the callers are supposed to handle
1525                  * that. enable_irq() of an interrupt requested with
1526                  * IRQ_NOAUTOEN is not supposed to fail. The activation
1527                  * keeps it in shutdown mode, it merily associates
1528                  * resources if necessary and if that's not possible it
1529                  * fails. Interrupts which are in managed shutdown mode
1530                  * will simply ignore that activation request.
1531                  */
1532                 ret = irq_activate(desc);
1533                 if (ret)
1534                         goto out_unlock;
1535
1536                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1537                                   IRQS_ONESHOT | IRQS_WAITING);
1538                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1539
1540                 if (new->flags & IRQF_PERCPU) {
1541                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1542                         irq_settings_set_per_cpu(desc);
1543                 }
1544
1545                 if (new->flags & IRQF_ONESHOT)
1546                         desc->istate |= IRQS_ONESHOT;
1547
1548                 /* Exclude IRQ from balancing if requested */
1549                 if (new->flags & IRQF_NOBALANCING) {
1550                         irq_settings_set_no_balancing(desc);
1551                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1552                 }
1553
1554                 if (irq_settings_can_autoenable(desc)) {
1555                         irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1556                 } else {
1557                         /*
1558                          * Shared interrupts do not go well with disabling
1559                          * auto enable. The sharing interrupt might request
1560                          * it while it's still disabled and then wait for
1561                          * interrupts forever.
1562                          */
1563                         WARN_ON_ONCE(new->flags & IRQF_SHARED);
1564                         /* Undo nested disables: */
1565                         desc->depth = 1;
1566                 }
1567
1568         } else if (new->flags & IRQF_TRIGGER_MASK) {
1569                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1570                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1571
1572                 if (nmsk != omsk)
1573                         /* hope the handler works with current  trigger mode */
1574                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1575                                 irq, omsk, nmsk);
1576         }
1577
1578         *old_ptr = new;
1579
1580         irq_pm_install_action(desc, new);
1581
1582         /* Reset broken irq detection when installing new handler */
1583         desc->irq_count = 0;
1584         desc->irqs_unhandled = 0;
1585
1586         /*
1587          * Check whether we disabled the irq via the spurious handler
1588          * before. Reenable it and give it another chance.
1589          */
1590         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1591                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1592                 __enable_irq(desc);
1593         }
1594
1595         raw_spin_unlock_irqrestore(&desc->lock, flags);
1596         chip_bus_sync_unlock(desc);
1597         mutex_unlock(&desc->request_mutex);
1598
1599         irq_setup_timings(desc, new);
1600
1601         /*
1602          * Strictly no need to wake it up, but hung_task complains
1603          * when no hard interrupt wakes the thread up.
1604          */
1605         if (new->thread)
1606                 wake_up_process(new->thread);
1607         if (new->secondary)
1608                 wake_up_process(new->secondary->thread);
1609
1610         register_irq_proc(irq, desc);
1611         new->dir = NULL;
1612         register_handler_proc(irq, new);
1613         return 0;
1614
1615 mismatch:
1616         if (!(new->flags & IRQF_PROBE_SHARED)) {
1617                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1618                        irq, new->flags, new->name, old->flags, old->name);
1619 #ifdef CONFIG_DEBUG_SHIRQ
1620                 dump_stack();
1621 #endif
1622         }
1623         ret = -EBUSY;
1624
1625 out_unlock:
1626         raw_spin_unlock_irqrestore(&desc->lock, flags);
1627
1628         if (!desc->action)
1629                 irq_release_resources(desc);
1630 out_bus_unlock:
1631         chip_bus_sync_unlock(desc);
1632         mutex_unlock(&desc->request_mutex);
1633
1634 out_thread:
1635         if (new->thread) {
1636                 struct task_struct *t = new->thread;
1637
1638                 new->thread = NULL;
1639                 kthread_stop(t);
1640                 put_task_struct(t);
1641         }
1642         if (new->secondary && new->secondary->thread) {
1643                 struct task_struct *t = new->secondary->thread;
1644
1645                 new->secondary->thread = NULL;
1646                 kthread_stop(t);
1647                 put_task_struct(t);
1648         }
1649 out_mput:
1650         module_put(desc->owner);
1651         return ret;
1652 }
1653
1654 /**
1655  *      setup_irq - setup an interrupt
1656  *      @irq: Interrupt line to setup
1657  *      @act: irqaction for the interrupt
1658  *
1659  * Used to statically setup interrupts in the early boot process.
1660  */
1661 int setup_irq(unsigned int irq, struct irqaction *act)
1662 {
1663         int retval;
1664         struct irq_desc *desc = irq_to_desc(irq);
1665
1666         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1667                 return -EINVAL;
1668
1669         retval = irq_chip_pm_get(&desc->irq_data);
1670         if (retval < 0)
1671                 return retval;
1672
1673         retval = __setup_irq(irq, desc, act);
1674
1675         if (retval)
1676                 irq_chip_pm_put(&desc->irq_data);
1677
1678         return retval;
1679 }
1680 EXPORT_SYMBOL_GPL(setup_irq);
1681
1682 /*
1683  * Internal function to unregister an irqaction - used to free
1684  * regular and special interrupts that are part of the architecture.
1685  */
1686 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1687 {
1688         unsigned irq = desc->irq_data.irq;
1689         struct irqaction *action, **action_ptr;
1690         unsigned long flags;
1691
1692         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1693
1694         mutex_lock(&desc->request_mutex);
1695         chip_bus_lock(desc);
1696         raw_spin_lock_irqsave(&desc->lock, flags);
1697
1698         /*
1699          * There can be multiple actions per IRQ descriptor, find the right
1700          * one based on the dev_id:
1701          */
1702         action_ptr = &desc->action;
1703         for (;;) {
1704                 action = *action_ptr;
1705
1706                 if (!action) {
1707                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1708                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1709                         chip_bus_sync_unlock(desc);
1710                         mutex_unlock(&desc->request_mutex);
1711                         return NULL;
1712                 }
1713
1714                 if (action->dev_id == dev_id)
1715                         break;
1716                 action_ptr = &action->next;
1717         }
1718
1719         /* Found it - now remove it from the list of entries: */
1720         *action_ptr = action->next;
1721
1722         irq_pm_remove_action(desc, action);
1723
1724         /* If this was the last handler, shut down the IRQ line: */
1725         if (!desc->action) {
1726                 irq_settings_clr_disable_unlazy(desc);
1727                 /* Only shutdown. Deactivate after synchronize_hardirq() */
1728                 irq_shutdown(desc);
1729         }
1730
1731 #ifdef CONFIG_SMP
1732         /* make sure affinity_hint is cleaned up */
1733         if (WARN_ON_ONCE(desc->affinity_hint))
1734                 desc->affinity_hint = NULL;
1735 #endif
1736
1737         raw_spin_unlock_irqrestore(&desc->lock, flags);
1738         /*
1739          * Drop bus_lock here so the changes which were done in the chip
1740          * callbacks above are synced out to the irq chips which hang
1741          * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1742          *
1743          * Aside of that the bus_lock can also be taken from the threaded
1744          * handler in irq_finalize_oneshot() which results in a deadlock
1745          * because kthread_stop() would wait forever for the thread to
1746          * complete, which is blocked on the bus lock.
1747          *
1748          * The still held desc->request_mutex() protects against a
1749          * concurrent request_irq() of this irq so the release of resources
1750          * and timing data is properly serialized.
1751          */
1752         chip_bus_sync_unlock(desc);
1753
1754         unregister_handler_proc(irq, action);
1755
1756         /*
1757          * Make sure it's not being used on another CPU and if the chip
1758          * supports it also make sure that there is no (not yet serviced)
1759          * interrupt in flight at the hardware level.
1760          */
1761         __synchronize_hardirq(desc, true);
1762
1763 #ifdef CONFIG_DEBUG_SHIRQ
1764         /*
1765          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1766          * event to happen even now it's being freed, so let's make sure that
1767          * is so by doing an extra call to the handler ....
1768          *
1769          * ( We do this after actually deregistering it, to make sure that a
1770          *   'real' IRQ doesn't run in parallel with our fake. )
1771          */
1772         if (action->flags & IRQF_SHARED) {
1773                 local_irq_save(flags);
1774                 action->handler(irq, dev_id);
1775                 local_irq_restore(flags);
1776         }
1777 #endif
1778
1779         /*
1780          * The action has already been removed above, but the thread writes
1781          * its oneshot mask bit when it completes. Though request_mutex is
1782          * held across this which prevents __setup_irq() from handing out
1783          * the same bit to a newly requested action.
1784          */
1785         if (action->thread) {
1786                 kthread_stop(action->thread);
1787                 put_task_struct(action->thread);
1788                 if (action->secondary && action->secondary->thread) {
1789                         kthread_stop(action->secondary->thread);
1790                         put_task_struct(action->secondary->thread);
1791                 }
1792         }
1793
1794         /* Last action releases resources */
1795         if (!desc->action) {
1796                 /*
1797                  * Reaquire bus lock as irq_release_resources() might
1798                  * require it to deallocate resources over the slow bus.
1799                  */
1800                 chip_bus_lock(desc);
1801                 /*
1802                  * There is no interrupt on the fly anymore. Deactivate it
1803                  * completely.
1804                  */
1805                 raw_spin_lock_irqsave(&desc->lock, flags);
1806                 irq_domain_deactivate_irq(&desc->irq_data);
1807                 raw_spin_unlock_irqrestore(&desc->lock, flags);
1808
1809                 irq_release_resources(desc);
1810                 chip_bus_sync_unlock(desc);
1811                 irq_remove_timings(desc);
1812         }
1813
1814         mutex_unlock(&desc->request_mutex);
1815
1816         irq_chip_pm_put(&desc->irq_data);
1817         module_put(desc->owner);
1818         kfree(action->secondary);
1819         return action;
1820 }
1821
1822 /**
1823  *      remove_irq - free an interrupt
1824  *      @irq: Interrupt line to free
1825  *      @act: irqaction for the interrupt
1826  *
1827  * Used to remove interrupts statically setup by the early boot process.
1828  */
1829 void remove_irq(unsigned int irq, struct irqaction *act)
1830 {
1831         struct irq_desc *desc = irq_to_desc(irq);
1832
1833         if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1834                 __free_irq(desc, act->dev_id);
1835 }
1836 EXPORT_SYMBOL_GPL(remove_irq);
1837
1838 /**
1839  *      free_irq - free an interrupt allocated with request_irq
1840  *      @irq: Interrupt line to free
1841  *      @dev_id: Device identity to free
1842  *
1843  *      Remove an interrupt handler. The handler is removed and if the
1844  *      interrupt line is no longer in use by any driver it is disabled.
1845  *      On a shared IRQ the caller must ensure the interrupt is disabled
1846  *      on the card it drives before calling this function. The function
1847  *      does not return until any executing interrupts for this IRQ
1848  *      have completed.
1849  *
1850  *      This function must not be called from interrupt context.
1851  *
1852  *      Returns the devname argument passed to request_irq.
1853  */
1854 const void *free_irq(unsigned int irq, void *dev_id)
1855 {
1856         struct irq_desc *desc = irq_to_desc(irq);
1857         struct irqaction *action;
1858         const char *devname;
1859
1860         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1861                 return NULL;
1862
1863 #ifdef CONFIG_SMP
1864         if (WARN_ON(desc->affinity_notify))
1865                 desc->affinity_notify = NULL;
1866 #endif
1867
1868         action = __free_irq(desc, dev_id);
1869
1870         if (!action)
1871                 return NULL;
1872
1873         devname = action->name;
1874         kfree(action);
1875         return devname;
1876 }
1877 EXPORT_SYMBOL(free_irq);
1878
1879 /* This function must be called with desc->lock held */
1880 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1881 {
1882         const char *devname = NULL;
1883
1884         desc->istate &= ~IRQS_NMI;
1885
1886         if (!WARN_ON(desc->action == NULL)) {
1887                 irq_pm_remove_action(desc, desc->action);
1888                 devname = desc->action->name;
1889                 unregister_handler_proc(irq, desc->action);
1890
1891                 kfree(desc->action);
1892                 desc->action = NULL;
1893         }
1894
1895         irq_settings_clr_disable_unlazy(desc);
1896         irq_shutdown_and_deactivate(desc);
1897
1898         irq_release_resources(desc);
1899
1900         irq_chip_pm_put(&desc->irq_data);
1901         module_put(desc->owner);
1902
1903         return devname;
1904 }
1905
1906 const void *free_nmi(unsigned int irq, void *dev_id)
1907 {
1908         struct irq_desc *desc = irq_to_desc(irq);
1909         unsigned long flags;
1910         const void *devname;
1911
1912         if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1913                 return NULL;
1914
1915         if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1916                 return NULL;
1917
1918         /* NMI still enabled */
1919         if (WARN_ON(desc->depth == 0))
1920                 disable_nmi_nosync(irq);
1921
1922         raw_spin_lock_irqsave(&desc->lock, flags);
1923
1924         irq_nmi_teardown(desc);
1925         devname = __cleanup_nmi(irq, desc);
1926
1927         raw_spin_unlock_irqrestore(&desc->lock, flags);
1928
1929         return devname;
1930 }
1931
1932 /**
1933  *      request_threaded_irq - allocate an interrupt line
1934  *      @irq: Interrupt line to allocate
1935  *      @handler: Function to be called when the IRQ occurs.
1936  *                Primary handler for threaded interrupts
1937  *                If NULL and thread_fn != NULL the default
1938  *                primary handler is installed
1939  *      @thread_fn: Function called from the irq handler thread
1940  *                  If NULL, no irq thread is created
1941  *      @irqflags: Interrupt type flags
1942  *      @devname: An ascii name for the claiming device
1943  *      @dev_id: A cookie passed back to the handler function
1944  *
1945  *      This call allocates interrupt resources and enables the
1946  *      interrupt line and IRQ handling. From the point this
1947  *      call is made your handler function may be invoked. Since
1948  *      your handler function must clear any interrupt the board
1949  *      raises, you must take care both to initialise your hardware
1950  *      and to set up the interrupt handler in the right order.
1951  *
1952  *      If you want to set up a threaded irq handler for your device
1953  *      then you need to supply @handler and @thread_fn. @handler is
1954  *      still called in hard interrupt context and has to check
1955  *      whether the interrupt originates from the device. If yes it
1956  *      needs to disable the interrupt on the device and return
1957  *      IRQ_WAKE_THREAD which will wake up the handler thread and run
1958  *      @thread_fn. This split handler design is necessary to support
1959  *      shared interrupts.
1960  *
1961  *      Dev_id must be globally unique. Normally the address of the
1962  *      device data structure is used as the cookie. Since the handler
1963  *      receives this value it makes sense to use it.
1964  *
1965  *      If your interrupt is shared you must pass a non NULL dev_id
1966  *      as this is required when freeing the interrupt.
1967  *
1968  *      Flags:
1969  *
1970  *      IRQF_SHARED             Interrupt is shared
1971  *      IRQF_TRIGGER_*          Specify active edge(s) or level
1972  *
1973  */
1974 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1975                          irq_handler_t thread_fn, unsigned long irqflags,
1976                          const char *devname, void *dev_id)
1977 {
1978         struct irqaction *action;
1979         struct irq_desc *desc;
1980         int retval;
1981
1982         if (irq == IRQ_NOTCONNECTED)
1983                 return -ENOTCONN;
1984
1985         /*
1986          * Sanity-check: shared interrupts must pass in a real dev-ID,
1987          * otherwise we'll have trouble later trying to figure out
1988          * which interrupt is which (messes up the interrupt freeing
1989          * logic etc).
1990          *
1991          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1992          * it cannot be set along with IRQF_NO_SUSPEND.
1993          */
1994         if (((irqflags & IRQF_SHARED) && !dev_id) ||
1995             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1996             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1997                 return -EINVAL;
1998
1999         desc = irq_to_desc(irq);
2000         if (!desc)
2001                 return -EINVAL;
2002
2003         if (!irq_settings_can_request(desc) ||
2004             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2005                 return -EINVAL;
2006
2007         if (!handler) {
2008                 if (!thread_fn)
2009                         return -EINVAL;
2010                 handler = irq_default_primary_handler;
2011         }
2012
2013         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2014         if (!action)
2015                 return -ENOMEM;
2016
2017         action->handler = handler;
2018         action->thread_fn = thread_fn;
2019         action->flags = irqflags;
2020         action->name = devname;
2021         action->dev_id = dev_id;
2022
2023         retval = irq_chip_pm_get(&desc->irq_data);
2024         if (retval < 0) {
2025                 kfree(action);
2026                 return retval;
2027         }
2028
2029         retval = __setup_irq(irq, desc, action);
2030
2031         if (retval) {
2032                 irq_chip_pm_put(&desc->irq_data);
2033                 kfree(action->secondary);
2034                 kfree(action);
2035         }
2036
2037 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2038         if (!retval && (irqflags & IRQF_SHARED)) {
2039                 /*
2040                  * It's a shared IRQ -- the driver ought to be prepared for it
2041                  * to happen immediately, so let's make sure....
2042                  * We disable the irq to make sure that a 'real' IRQ doesn't
2043                  * run in parallel with our fake.
2044                  */
2045                 unsigned long flags;
2046
2047                 disable_irq(irq);
2048                 local_irq_save(flags);
2049
2050                 handler(irq, dev_id);
2051
2052                 local_irq_restore(flags);
2053                 enable_irq(irq);
2054         }
2055 #endif
2056         return retval;
2057 }
2058 EXPORT_SYMBOL(request_threaded_irq);
2059
2060 /**
2061  *      request_any_context_irq - allocate an interrupt line
2062  *      @irq: Interrupt line to allocate
2063  *      @handler: Function to be called when the IRQ occurs.
2064  *                Threaded handler for threaded interrupts.
2065  *      @flags: Interrupt type flags
2066  *      @name: An ascii name for the claiming device
2067  *      @dev_id: A cookie passed back to the handler function
2068  *
2069  *      This call allocates interrupt resources and enables the
2070  *      interrupt line and IRQ handling. It selects either a
2071  *      hardirq or threaded handling method depending on the
2072  *      context.
2073  *
2074  *      On failure, it returns a negative value. On success,
2075  *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2076  */
2077 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2078                             unsigned long flags, const char *name, void *dev_id)
2079 {
2080         struct irq_desc *desc;
2081         int ret;
2082
2083         if (irq == IRQ_NOTCONNECTED)
2084                 return -ENOTCONN;
2085
2086         desc = irq_to_desc(irq);
2087         if (!desc)
2088                 return -EINVAL;
2089
2090         if (irq_settings_is_nested_thread(desc)) {
2091                 ret = request_threaded_irq(irq, NULL, handler,
2092                                            flags, name, dev_id);
2093                 return !ret ? IRQC_IS_NESTED : ret;
2094         }
2095
2096         ret = request_irq(irq, handler, flags, name, dev_id);
2097         return !ret ? IRQC_IS_HARDIRQ : ret;
2098 }
2099 EXPORT_SYMBOL_GPL(request_any_context_irq);
2100
2101 /**
2102  *      request_nmi - allocate an interrupt line for NMI delivery
2103  *      @irq: Interrupt line to allocate
2104  *      @handler: Function to be called when the IRQ occurs.
2105  *                Threaded handler for threaded interrupts.
2106  *      @irqflags: Interrupt type flags
2107  *      @name: An ascii name for the claiming device
2108  *      @dev_id: A cookie passed back to the handler function
2109  *
2110  *      This call allocates interrupt resources and enables the
2111  *      interrupt line and IRQ handling. It sets up the IRQ line
2112  *      to be handled as an NMI.
2113  *
2114  *      An interrupt line delivering NMIs cannot be shared and IRQ handling
2115  *      cannot be threaded.
2116  *
2117  *      Interrupt lines requested for NMI delivering must produce per cpu
2118  *      interrupts and have auto enabling setting disabled.
2119  *
2120  *      Dev_id must be globally unique. Normally the address of the
2121  *      device data structure is used as the cookie. Since the handler
2122  *      receives this value it makes sense to use it.
2123  *
2124  *      If the interrupt line cannot be used to deliver NMIs, function
2125  *      will fail and return a negative value.
2126  */
2127 int request_nmi(unsigned int irq, irq_handler_t handler,
2128                 unsigned long irqflags, const char *name, void *dev_id)
2129 {
2130         struct irqaction *action;
2131         struct irq_desc *desc;
2132         unsigned long flags;
2133         int retval;
2134
2135         if (irq == IRQ_NOTCONNECTED)
2136                 return -ENOTCONN;
2137
2138         /* NMI cannot be shared, used for Polling */
2139         if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2140                 return -EINVAL;
2141
2142         if (!(irqflags & IRQF_PERCPU))
2143                 return -EINVAL;
2144
2145         if (!handler)
2146                 return -EINVAL;
2147
2148         desc = irq_to_desc(irq);
2149
2150         if (!desc || irq_settings_can_autoenable(desc) ||
2151             !irq_settings_can_request(desc) ||
2152             WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2153             !irq_supports_nmi(desc))
2154                 return -EINVAL;
2155
2156         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2157         if (!action)
2158                 return -ENOMEM;
2159
2160         action->handler = handler;
2161         action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2162         action->name = name;
2163         action->dev_id = dev_id;
2164
2165         retval = irq_chip_pm_get(&desc->irq_data);
2166         if (retval < 0)
2167                 goto err_out;
2168
2169         retval = __setup_irq(irq, desc, action);
2170         if (retval)
2171                 goto err_irq_setup;
2172
2173         raw_spin_lock_irqsave(&desc->lock, flags);
2174
2175         /* Setup NMI state */
2176         desc->istate |= IRQS_NMI;
2177         retval = irq_nmi_setup(desc);
2178         if (retval) {
2179                 __cleanup_nmi(irq, desc);
2180                 raw_spin_unlock_irqrestore(&desc->lock, flags);
2181                 return -EINVAL;
2182         }
2183
2184         raw_spin_unlock_irqrestore(&desc->lock, flags);
2185
2186         return 0;
2187
2188 err_irq_setup:
2189         irq_chip_pm_put(&desc->irq_data);
2190 err_out:
2191         kfree(action);
2192
2193         return retval;
2194 }
2195
2196 void enable_percpu_irq(unsigned int irq, unsigned int type)
2197 {
2198         unsigned int cpu = smp_processor_id();
2199         unsigned long flags;
2200         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2201
2202         if (!desc)
2203                 return;
2204
2205         /*
2206          * If the trigger type is not specified by the caller, then
2207          * use the default for this interrupt.
2208          */
2209         type &= IRQ_TYPE_SENSE_MASK;
2210         if (type == IRQ_TYPE_NONE)
2211                 type = irqd_get_trigger_type(&desc->irq_data);
2212
2213         if (type != IRQ_TYPE_NONE) {
2214                 int ret;
2215
2216                 ret = __irq_set_trigger(desc, type);
2217
2218                 if (ret) {
2219                         WARN(1, "failed to set type for IRQ%d\n", irq);
2220                         goto out;
2221                 }
2222         }
2223
2224         irq_percpu_enable(desc, cpu);
2225 out:
2226         irq_put_desc_unlock(desc, flags);
2227 }
2228 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2229
2230 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2231 {
2232         enable_percpu_irq(irq, type);
2233 }
2234
2235 /**
2236  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2237  * @irq:        Linux irq number to check for
2238  *
2239  * Must be called from a non migratable context. Returns the enable
2240  * state of a per cpu interrupt on the current cpu.
2241  */
2242 bool irq_percpu_is_enabled(unsigned int irq)
2243 {
2244         unsigned int cpu = smp_processor_id();
2245         struct irq_desc *desc;
2246         unsigned long flags;
2247         bool is_enabled;
2248
2249         desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2250         if (!desc)
2251                 return false;
2252
2253         is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2254         irq_put_desc_unlock(desc, flags);
2255
2256         return is_enabled;
2257 }
2258 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2259
2260 void disable_percpu_irq(unsigned int irq)
2261 {
2262         unsigned int cpu = smp_processor_id();
2263         unsigned long flags;
2264         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2265
2266         if (!desc)
2267                 return;
2268
2269         irq_percpu_disable(desc, cpu);
2270         irq_put_desc_unlock(desc, flags);
2271 }
2272 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2273
2274 void disable_percpu_nmi(unsigned int irq)
2275 {
2276         disable_percpu_irq(irq);
2277 }
2278
2279 /*
2280  * Internal function to unregister a percpu irqaction.
2281  */
2282 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2283 {
2284         struct irq_desc *desc = irq_to_desc(irq);
2285         struct irqaction *action;
2286         unsigned long flags;
2287
2288         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2289
2290         if (!desc)
2291                 return NULL;
2292
2293         raw_spin_lock_irqsave(&desc->lock, flags);
2294
2295         action = desc->action;
2296         if (!action || action->percpu_dev_id != dev_id) {
2297                 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2298                 goto bad;
2299         }
2300
2301         if (!cpumask_empty(desc->percpu_enabled)) {
2302                 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2303                      irq, cpumask_first(desc->percpu_enabled));
2304                 goto bad;
2305         }
2306
2307         /* Found it - now remove it from the list of entries: */
2308         desc->action = NULL;
2309
2310         desc->istate &= ~IRQS_NMI;
2311
2312         raw_spin_unlock_irqrestore(&desc->lock, flags);
2313
2314         unregister_handler_proc(irq, action);
2315
2316         irq_chip_pm_put(&desc->irq_data);
2317         module_put(desc->owner);
2318         return action;
2319
2320 bad:
2321         raw_spin_unlock_irqrestore(&desc->lock, flags);
2322         return NULL;
2323 }
2324
2325 /**
2326  *      remove_percpu_irq - free a per-cpu interrupt
2327  *      @irq: Interrupt line to free
2328  *      @act: irqaction for the interrupt
2329  *
2330  * Used to remove interrupts statically setup by the early boot process.
2331  */
2332 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2333 {
2334         struct irq_desc *desc = irq_to_desc(irq);
2335
2336         if (desc && irq_settings_is_per_cpu_devid(desc))
2337             __free_percpu_irq(irq, act->percpu_dev_id);
2338 }
2339
2340 /**
2341  *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2342  *      @irq: Interrupt line to free
2343  *      @dev_id: Device identity to free
2344  *
2345  *      Remove a percpu interrupt handler. The handler is removed, but
2346  *      the interrupt line is not disabled. This must be done on each
2347  *      CPU before calling this function. The function does not return
2348  *      until any executing interrupts for this IRQ have completed.
2349  *
2350  *      This function must not be called from interrupt context.
2351  */
2352 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2353 {
2354         struct irq_desc *desc = irq_to_desc(irq);
2355
2356         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2357                 return;
2358
2359         chip_bus_lock(desc);
2360         kfree(__free_percpu_irq(irq, dev_id));
2361         chip_bus_sync_unlock(desc);
2362 }
2363 EXPORT_SYMBOL_GPL(free_percpu_irq);
2364
2365 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2366 {
2367         struct irq_desc *desc = irq_to_desc(irq);
2368
2369         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2370                 return;
2371
2372         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2373                 return;
2374
2375         kfree(__free_percpu_irq(irq, dev_id));
2376 }
2377
2378 /**
2379  *      setup_percpu_irq - setup a per-cpu interrupt
2380  *      @irq: Interrupt line to setup
2381  *      @act: irqaction for the interrupt
2382  *
2383  * Used to statically setup per-cpu interrupts in the early boot process.
2384  */
2385 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2386 {
2387         struct irq_desc *desc = irq_to_desc(irq);
2388         int retval;
2389
2390         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2391                 return -EINVAL;
2392
2393         retval = irq_chip_pm_get(&desc->irq_data);
2394         if (retval < 0)
2395                 return retval;
2396
2397         retval = __setup_irq(irq, desc, act);
2398
2399         if (retval)
2400                 irq_chip_pm_put(&desc->irq_data);
2401
2402         return retval;
2403 }
2404
2405 /**
2406  *      __request_percpu_irq - allocate a percpu interrupt line
2407  *      @irq: Interrupt line to allocate
2408  *      @handler: Function to be called when the IRQ occurs.
2409  *      @flags: Interrupt type flags (IRQF_TIMER only)
2410  *      @devname: An ascii name for the claiming device
2411  *      @dev_id: A percpu cookie passed back to the handler function
2412  *
2413  *      This call allocates interrupt resources and enables the
2414  *      interrupt on the local CPU. If the interrupt is supposed to be
2415  *      enabled on other CPUs, it has to be done on each CPU using
2416  *      enable_percpu_irq().
2417  *
2418  *      Dev_id must be globally unique. It is a per-cpu variable, and
2419  *      the handler gets called with the interrupted CPU's instance of
2420  *      that variable.
2421  */
2422 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2423                          unsigned long flags, const char *devname,
2424                          void __percpu *dev_id)
2425 {
2426         struct irqaction *action;
2427         struct irq_desc *desc;
2428         int retval;
2429
2430         if (!dev_id)
2431                 return -EINVAL;
2432
2433         desc = irq_to_desc(irq);
2434         if (!desc || !irq_settings_can_request(desc) ||
2435             !irq_settings_is_per_cpu_devid(desc))
2436                 return -EINVAL;
2437
2438         if (flags && flags != IRQF_TIMER)
2439                 return -EINVAL;
2440
2441         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2442         if (!action)
2443                 return -ENOMEM;
2444
2445         action->handler = handler;
2446         action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2447         action->name = devname;
2448         action->percpu_dev_id = dev_id;
2449
2450         retval = irq_chip_pm_get(&desc->irq_data);
2451         if (retval < 0) {
2452                 kfree(action);
2453                 return retval;
2454         }
2455
2456         retval = __setup_irq(irq, desc, action);
2457
2458         if (retval) {
2459                 irq_chip_pm_put(&desc->irq_data);
2460                 kfree(action);
2461         }
2462
2463         return retval;
2464 }
2465 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2466
2467 /**
2468  *      request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2469  *      @irq: Interrupt line to allocate
2470  *      @handler: Function to be called when the IRQ occurs.
2471  *      @name: An ascii name for the claiming device
2472  *      @dev_id: A percpu cookie passed back to the handler function
2473  *
2474  *      This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2475  *      have to be setup on each CPU by calling prepare_percpu_nmi() before
2476  *      being enabled on the same CPU by using enable_percpu_nmi().
2477  *
2478  *      Dev_id must be globally unique. It is a per-cpu variable, and
2479  *      the handler gets called with the interrupted CPU's instance of
2480  *      that variable.
2481  *
2482  *      Interrupt lines requested for NMI delivering should have auto enabling
2483  *      setting disabled.
2484  *
2485  *      If the interrupt line cannot be used to deliver NMIs, function
2486  *      will fail returning a negative value.
2487  */
2488 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2489                        const char *name, void __percpu *dev_id)
2490 {
2491         struct irqaction *action;
2492         struct irq_desc *desc;
2493         unsigned long flags;
2494         int retval;
2495
2496         if (!handler)
2497                 return -EINVAL;
2498
2499         desc = irq_to_desc(irq);
2500
2501         if (!desc || !irq_settings_can_request(desc) ||
2502             !irq_settings_is_per_cpu_devid(desc) ||
2503             irq_settings_can_autoenable(desc) ||
2504             !irq_supports_nmi(desc))
2505                 return -EINVAL;
2506
2507         /* The line cannot already be NMI */
2508         if (desc->istate & IRQS_NMI)
2509                 return -EINVAL;
2510
2511         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2512         if (!action)
2513                 return -ENOMEM;
2514
2515         action->handler = handler;
2516         action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2517                 | IRQF_NOBALANCING;
2518         action->name = name;
2519         action->percpu_dev_id = dev_id;
2520
2521         retval = irq_chip_pm_get(&desc->irq_data);
2522         if (retval < 0)
2523                 goto err_out;
2524
2525         retval = __setup_irq(irq, desc, action);
2526         if (retval)
2527                 goto err_irq_setup;
2528
2529         raw_spin_lock_irqsave(&desc->lock, flags);
2530         desc->istate |= IRQS_NMI;
2531         raw_spin_unlock_irqrestore(&desc->lock, flags);
2532
2533         return 0;
2534
2535 err_irq_setup:
2536         irq_chip_pm_put(&desc->irq_data);
2537 err_out:
2538         kfree(action);
2539
2540         return retval;
2541 }
2542
2543 /**
2544  *      prepare_percpu_nmi - performs CPU local setup for NMI delivery
2545  *      @irq: Interrupt line to prepare for NMI delivery
2546  *
2547  *      This call prepares an interrupt line to deliver NMI on the current CPU,
2548  *      before that interrupt line gets enabled with enable_percpu_nmi().
2549  *
2550  *      As a CPU local operation, this should be called from non-preemptible
2551  *      context.
2552  *
2553  *      If the interrupt line cannot be used to deliver NMIs, function
2554  *      will fail returning a negative value.
2555  */
2556 int prepare_percpu_nmi(unsigned int irq)
2557 {
2558         unsigned long flags;
2559         struct irq_desc *desc;
2560         int ret = 0;
2561
2562         WARN_ON(preemptible());
2563
2564         desc = irq_get_desc_lock(irq, &flags,
2565                                  IRQ_GET_DESC_CHECK_PERCPU);
2566         if (!desc)
2567                 return -EINVAL;
2568
2569         if (WARN(!(desc->istate & IRQS_NMI),
2570                  KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2571                  irq)) {
2572                 ret = -EINVAL;
2573                 goto out;
2574         }
2575
2576         ret = irq_nmi_setup(desc);
2577         if (ret) {
2578                 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2579                 goto out;
2580         }
2581
2582 out:
2583         irq_put_desc_unlock(desc, flags);
2584         return ret;
2585 }
2586
2587 /**
2588  *      teardown_percpu_nmi - undoes NMI setup of IRQ line
2589  *      @irq: Interrupt line from which CPU local NMI configuration should be
2590  *            removed
2591  *
2592  *      This call undoes the setup done by prepare_percpu_nmi().
2593  *
2594  *      IRQ line should not be enabled for the current CPU.
2595  *
2596  *      As a CPU local operation, this should be called from non-preemptible
2597  *      context.
2598  */
2599 void teardown_percpu_nmi(unsigned int irq)
2600 {
2601         unsigned long flags;
2602         struct irq_desc *desc;
2603
2604         WARN_ON(preemptible());
2605
2606         desc = irq_get_desc_lock(irq, &flags,
2607                                  IRQ_GET_DESC_CHECK_PERCPU);
2608         if (!desc)
2609                 return;
2610
2611         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2612                 goto out;
2613
2614         irq_nmi_teardown(desc);
2615 out:
2616         irq_put_desc_unlock(desc, flags);
2617 }
2618
2619 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2620                             bool *state)
2621 {
2622         struct irq_chip *chip;
2623         int err = -EINVAL;
2624
2625         do {
2626                 chip = irq_data_get_irq_chip(data);
2627                 if (chip->irq_get_irqchip_state)
2628                         break;
2629 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2630                 data = data->parent_data;
2631 #else
2632                 data = NULL;
2633 #endif
2634         } while (data);
2635
2636         if (data)
2637                 err = chip->irq_get_irqchip_state(data, which, state);
2638         return err;
2639 }
2640
2641 /**
2642  *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2643  *      @irq: Interrupt line that is forwarded to a VM
2644  *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2645  *      @state: a pointer to a boolean where the state is to be storeed
2646  *
2647  *      This call snapshots the internal irqchip state of an
2648  *      interrupt, returning into @state the bit corresponding to
2649  *      stage @which
2650  *
2651  *      This function should be called with preemption disabled if the
2652  *      interrupt controller has per-cpu registers.
2653  */
2654 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2655                           bool *state)
2656 {
2657         struct irq_desc *desc;
2658         struct irq_data *data;
2659         unsigned long flags;
2660         int err = -EINVAL;
2661
2662         desc = irq_get_desc_buslock(irq, &flags, 0);
2663         if (!desc)
2664                 return err;
2665
2666         data = irq_desc_get_irq_data(desc);
2667
2668         err = __irq_get_irqchip_state(data, which, state);
2669
2670         irq_put_desc_busunlock(desc, flags);
2671         return err;
2672 }
2673 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2674
2675 /**
2676  *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2677  *      @irq: Interrupt line that is forwarded to a VM
2678  *      @which: State to be restored (one of IRQCHIP_STATE_*)
2679  *      @val: Value corresponding to @which
2680  *
2681  *      This call sets the internal irqchip state of an interrupt,
2682  *      depending on the value of @which.
2683  *
2684  *      This function should be called with preemption disabled if the
2685  *      interrupt controller has per-cpu registers.
2686  */
2687 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2688                           bool val)
2689 {
2690         struct irq_desc *desc;
2691         struct irq_data *data;
2692         struct irq_chip *chip;
2693         unsigned long flags;
2694         int err = -EINVAL;
2695
2696         desc = irq_get_desc_buslock(irq, &flags, 0);
2697         if (!desc)
2698                 return err;
2699
2700         data = irq_desc_get_irq_data(desc);
2701
2702         do {
2703                 chip = irq_data_get_irq_chip(data);
2704                 if (chip->irq_set_irqchip_state)
2705                         break;
2706 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2707                 data = data->parent_data;
2708 #else
2709                 data = NULL;
2710 #endif
2711         } while (data);
2712
2713         if (data)
2714                 err = chip->irq_set_irqchip_state(data, which, val);
2715
2716         irq_put_desc_busunlock(desc, flags);
2717         return err;
2718 }
2719 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);