Merge tag 'x86_mm_for_6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux-block.git] / kernel / irq / manage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29
30 static int __init setup_forced_irqthreads(char *arg)
31 {
32         static_branch_enable(&force_irqthreads_key);
33         return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37
38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40         struct irq_data *irqd = irq_desc_get_irq_data(desc);
41         bool inprogress;
42
43         do {
44                 unsigned long flags;
45
46                 /*
47                  * Wait until we're out of the critical section.  This might
48                  * give the wrong answer due to the lack of memory barriers.
49                  */
50                 while (irqd_irq_inprogress(&desc->irq_data))
51                         cpu_relax();
52
53                 /* Ok, that indicated we're done: double-check carefully. */
54                 raw_spin_lock_irqsave(&desc->lock, flags);
55                 inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57                 /*
58                  * If requested and supported, check at the chip whether it
59                  * is in flight at the hardware level, i.e. already pending
60                  * in a CPU and waiting for service and acknowledge.
61                  */
62                 if (!inprogress && sync_chip) {
63                         /*
64                          * Ignore the return code. inprogress is only updated
65                          * when the chip supports it.
66                          */
67                         __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68                                                 &inprogress);
69                 }
70                 raw_spin_unlock_irqrestore(&desc->lock, flags);
71
72                 /* Oops, that failed? */
73         } while (inprogress);
74 }
75
76 /**
77  *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78  *      @irq: interrupt number to wait for
79  *
80  *      This function waits for any pending hard IRQ handlers for this
81  *      interrupt to complete before returning. If you use this
82  *      function while holding a resource the IRQ handler may need you
83  *      will deadlock. It does not take associated threaded handlers
84  *      into account.
85  *
86  *      Do not use this for shutdown scenarios where you must be sure
87  *      that all parts (hardirq and threaded handler) have completed.
88  *
89  *      Returns: false if a threaded handler is active.
90  *
91  *      This function may be called - with care - from IRQ context.
92  *
93  *      It does not check whether there is an interrupt in flight at the
94  *      hardware level, but not serviced yet, as this might deadlock when
95  *      called with interrupts disabled and the target CPU of the interrupt
96  *      is the current CPU.
97  */
98 bool synchronize_hardirq(unsigned int irq)
99 {
100         struct irq_desc *desc = irq_to_desc(irq);
101
102         if (desc) {
103                 __synchronize_hardirq(desc, false);
104                 return !atomic_read(&desc->threads_active);
105         }
106
107         return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110
111 /**
112  *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
113  *      @irq: interrupt number to wait for
114  *
115  *      This function waits for any pending IRQ handlers for this interrupt
116  *      to complete before returning. If you use this function while
117  *      holding a resource the IRQ handler may need you will deadlock.
118  *
119  *      Can only be called from preemptible code as it might sleep when
120  *      an interrupt thread is associated to @irq.
121  *
122  *      It optionally makes sure (when the irq chip supports that method)
123  *      that the interrupt is not pending in any CPU and waiting for
124  *      service.
125  */
126 void synchronize_irq(unsigned int irq)
127 {
128         struct irq_desc *desc = irq_to_desc(irq);
129
130         if (desc) {
131                 __synchronize_hardirq(desc, true);
132                 /*
133                  * We made sure that no hardirq handler is
134                  * running. Now verify that no threaded handlers are
135                  * active.
136                  */
137                 wait_event(desc->wait_for_threads,
138                            !atomic_read(&desc->threads_active));
139         }
140 }
141 EXPORT_SYMBOL(synchronize_irq);
142
143 #ifdef CONFIG_SMP
144 cpumask_var_t irq_default_affinity;
145
146 static bool __irq_can_set_affinity(struct irq_desc *desc)
147 {
148         if (!desc || !irqd_can_balance(&desc->irq_data) ||
149             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
150                 return false;
151         return true;
152 }
153
154 /**
155  *      irq_can_set_affinity - Check if the affinity of a given irq can be set
156  *      @irq:           Interrupt to check
157  *
158  */
159 int irq_can_set_affinity(unsigned int irq)
160 {
161         return __irq_can_set_affinity(irq_to_desc(irq));
162 }
163
164 /**
165  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
166  * @irq:        Interrupt to check
167  *
168  * Like irq_can_set_affinity() above, but additionally checks for the
169  * AFFINITY_MANAGED flag.
170  */
171 bool irq_can_set_affinity_usr(unsigned int irq)
172 {
173         struct irq_desc *desc = irq_to_desc(irq);
174
175         return __irq_can_set_affinity(desc) &&
176                 !irqd_affinity_is_managed(&desc->irq_data);
177 }
178
179 /**
180  *      irq_set_thread_affinity - Notify irq threads to adjust affinity
181  *      @desc:          irq descriptor which has affinity changed
182  *
183  *      We just set IRQTF_AFFINITY and delegate the affinity setting
184  *      to the interrupt thread itself. We can not call
185  *      set_cpus_allowed_ptr() here as we hold desc->lock and this
186  *      code can be called from hard interrupt context.
187  */
188 void irq_set_thread_affinity(struct irq_desc *desc)
189 {
190         struct irqaction *action;
191
192         for_each_action_of_desc(desc, action) {
193                 if (action->thread)
194                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
195                 if (action->secondary && action->secondary->thread)
196                         set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
197         }
198 }
199
200 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
201 static void irq_validate_effective_affinity(struct irq_data *data)
202 {
203         const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
204         struct irq_chip *chip = irq_data_get_irq_chip(data);
205
206         if (!cpumask_empty(m))
207                 return;
208         pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
209                      chip->name, data->irq);
210 }
211 #else
212 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
213 #endif
214
215 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
216                         bool force)
217 {
218         struct irq_desc *desc = irq_data_to_desc(data);
219         struct irq_chip *chip = irq_data_get_irq_chip(data);
220         const struct cpumask  *prog_mask;
221         int ret;
222
223         static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
224         static struct cpumask tmp_mask;
225
226         if (!chip || !chip->irq_set_affinity)
227                 return -EINVAL;
228
229         raw_spin_lock(&tmp_mask_lock);
230         /*
231          * If this is a managed interrupt and housekeeping is enabled on
232          * it check whether the requested affinity mask intersects with
233          * a housekeeping CPU. If so, then remove the isolated CPUs from
234          * the mask and just keep the housekeeping CPU(s). This prevents
235          * the affinity setter from routing the interrupt to an isolated
236          * CPU to avoid that I/O submitted from a housekeeping CPU causes
237          * interrupts on an isolated one.
238          *
239          * If the masks do not intersect or include online CPU(s) then
240          * keep the requested mask. The isolated target CPUs are only
241          * receiving interrupts when the I/O operation was submitted
242          * directly from them.
243          *
244          * If all housekeeping CPUs in the affinity mask are offline, the
245          * interrupt will be migrated by the CPU hotplug code once a
246          * housekeeping CPU which belongs to the affinity mask comes
247          * online.
248          */
249         if (irqd_affinity_is_managed(data) &&
250             housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
251                 const struct cpumask *hk_mask;
252
253                 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
254
255                 cpumask_and(&tmp_mask, mask, hk_mask);
256                 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
257                         prog_mask = mask;
258                 else
259                         prog_mask = &tmp_mask;
260         } else {
261                 prog_mask = mask;
262         }
263
264         /*
265          * Make sure we only provide online CPUs to the irqchip,
266          * unless we are being asked to force the affinity (in which
267          * case we do as we are told).
268          */
269         cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
270         if (!force && !cpumask_empty(&tmp_mask))
271                 ret = chip->irq_set_affinity(data, &tmp_mask, force);
272         else if (force)
273                 ret = chip->irq_set_affinity(data, mask, force);
274         else
275                 ret = -EINVAL;
276
277         raw_spin_unlock(&tmp_mask_lock);
278
279         switch (ret) {
280         case IRQ_SET_MASK_OK:
281         case IRQ_SET_MASK_OK_DONE:
282                 cpumask_copy(desc->irq_common_data.affinity, mask);
283                 fallthrough;
284         case IRQ_SET_MASK_OK_NOCOPY:
285                 irq_validate_effective_affinity(data);
286                 irq_set_thread_affinity(desc);
287                 ret = 0;
288         }
289
290         return ret;
291 }
292
293 #ifdef CONFIG_GENERIC_PENDING_IRQ
294 static inline int irq_set_affinity_pending(struct irq_data *data,
295                                            const struct cpumask *dest)
296 {
297         struct irq_desc *desc = irq_data_to_desc(data);
298
299         irqd_set_move_pending(data);
300         irq_copy_pending(desc, dest);
301         return 0;
302 }
303 #else
304 static inline int irq_set_affinity_pending(struct irq_data *data,
305                                            const struct cpumask *dest)
306 {
307         return -EBUSY;
308 }
309 #endif
310
311 static int irq_try_set_affinity(struct irq_data *data,
312                                 const struct cpumask *dest, bool force)
313 {
314         int ret = irq_do_set_affinity(data, dest, force);
315
316         /*
317          * In case that the underlying vector management is busy and the
318          * architecture supports the generic pending mechanism then utilize
319          * this to avoid returning an error to user space.
320          */
321         if (ret == -EBUSY && !force)
322                 ret = irq_set_affinity_pending(data, dest);
323         return ret;
324 }
325
326 static bool irq_set_affinity_deactivated(struct irq_data *data,
327                                          const struct cpumask *mask)
328 {
329         struct irq_desc *desc = irq_data_to_desc(data);
330
331         /*
332          * Handle irq chips which can handle affinity only in activated
333          * state correctly
334          *
335          * If the interrupt is not yet activated, just store the affinity
336          * mask and do not call the chip driver at all. On activation the
337          * driver has to make sure anyway that the interrupt is in a
338          * usable state so startup works.
339          */
340         if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
341             irqd_is_activated(data) || !irqd_affinity_on_activate(data))
342                 return false;
343
344         cpumask_copy(desc->irq_common_data.affinity, mask);
345         irq_data_update_effective_affinity(data, mask);
346         irqd_set(data, IRQD_AFFINITY_SET);
347         return true;
348 }
349
350 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
351                             bool force)
352 {
353         struct irq_chip *chip = irq_data_get_irq_chip(data);
354         struct irq_desc *desc = irq_data_to_desc(data);
355         int ret = 0;
356
357         if (!chip || !chip->irq_set_affinity)
358                 return -EINVAL;
359
360         if (irq_set_affinity_deactivated(data, mask))
361                 return 0;
362
363         if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
364                 ret = irq_try_set_affinity(data, mask, force);
365         } else {
366                 irqd_set_move_pending(data);
367                 irq_copy_pending(desc, mask);
368         }
369
370         if (desc->affinity_notify) {
371                 kref_get(&desc->affinity_notify->kref);
372                 if (!schedule_work(&desc->affinity_notify->work)) {
373                         /* Work was already scheduled, drop our extra ref */
374                         kref_put(&desc->affinity_notify->kref,
375                                  desc->affinity_notify->release);
376                 }
377         }
378         irqd_set(data, IRQD_AFFINITY_SET);
379
380         return ret;
381 }
382
383 /**
384  * irq_update_affinity_desc - Update affinity management for an interrupt
385  * @irq:        The interrupt number to update
386  * @affinity:   Pointer to the affinity descriptor
387  *
388  * This interface can be used to configure the affinity management of
389  * interrupts which have been allocated already.
390  *
391  * There are certain limitations on when it may be used - attempts to use it
392  * for when the kernel is configured for generic IRQ reservation mode (in
393  * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
394  * managed/non-managed interrupt accounting. In addition, attempts to use it on
395  * an interrupt which is already started or which has already been configured
396  * as managed will also fail, as these mean invalid init state or double init.
397  */
398 int irq_update_affinity_desc(unsigned int irq,
399                              struct irq_affinity_desc *affinity)
400 {
401         struct irq_desc *desc;
402         unsigned long flags;
403         bool activated;
404         int ret = 0;
405
406         /*
407          * Supporting this with the reservation scheme used by x86 needs
408          * some more thought. Fail it for now.
409          */
410         if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
411                 return -EOPNOTSUPP;
412
413         desc = irq_get_desc_buslock(irq, &flags, 0);
414         if (!desc)
415                 return -EINVAL;
416
417         /* Requires the interrupt to be shut down */
418         if (irqd_is_started(&desc->irq_data)) {
419                 ret = -EBUSY;
420                 goto out_unlock;
421         }
422
423         /* Interrupts which are already managed cannot be modified */
424         if (irqd_affinity_is_managed(&desc->irq_data)) {
425                 ret = -EBUSY;
426                 goto out_unlock;
427         }
428
429         /*
430          * Deactivate the interrupt. That's required to undo
431          * anything an earlier activation has established.
432          */
433         activated = irqd_is_activated(&desc->irq_data);
434         if (activated)
435                 irq_domain_deactivate_irq(&desc->irq_data);
436
437         if (affinity->is_managed) {
438                 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
439                 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
440         }
441
442         cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
443
444         /* Restore the activation state */
445         if (activated)
446                 irq_domain_activate_irq(&desc->irq_data, false);
447
448 out_unlock:
449         irq_put_desc_busunlock(desc, flags);
450         return ret;
451 }
452
453 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
454                               bool force)
455 {
456         struct irq_desc *desc = irq_to_desc(irq);
457         unsigned long flags;
458         int ret;
459
460         if (!desc)
461                 return -EINVAL;
462
463         raw_spin_lock_irqsave(&desc->lock, flags);
464         ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
465         raw_spin_unlock_irqrestore(&desc->lock, flags);
466         return ret;
467 }
468
469 /**
470  * irq_set_affinity - Set the irq affinity of a given irq
471  * @irq:        Interrupt to set affinity
472  * @cpumask:    cpumask
473  *
474  * Fails if cpumask does not contain an online CPU
475  */
476 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
477 {
478         return __irq_set_affinity(irq, cpumask, false);
479 }
480 EXPORT_SYMBOL_GPL(irq_set_affinity);
481
482 /**
483  * irq_force_affinity - Force the irq affinity of a given irq
484  * @irq:        Interrupt to set affinity
485  * @cpumask:    cpumask
486  *
487  * Same as irq_set_affinity, but without checking the mask against
488  * online cpus.
489  *
490  * Solely for low level cpu hotplug code, where we need to make per
491  * cpu interrupts affine before the cpu becomes online.
492  */
493 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
494 {
495         return __irq_set_affinity(irq, cpumask, true);
496 }
497 EXPORT_SYMBOL_GPL(irq_force_affinity);
498
499 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
500                               bool setaffinity)
501 {
502         unsigned long flags;
503         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
504
505         if (!desc)
506                 return -EINVAL;
507         desc->affinity_hint = m;
508         irq_put_desc_unlock(desc, flags);
509         if (m && setaffinity)
510                 __irq_set_affinity(irq, m, false);
511         return 0;
512 }
513 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
514
515 static void irq_affinity_notify(struct work_struct *work)
516 {
517         struct irq_affinity_notify *notify =
518                 container_of(work, struct irq_affinity_notify, work);
519         struct irq_desc *desc = irq_to_desc(notify->irq);
520         cpumask_var_t cpumask;
521         unsigned long flags;
522
523         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
524                 goto out;
525
526         raw_spin_lock_irqsave(&desc->lock, flags);
527         if (irq_move_pending(&desc->irq_data))
528                 irq_get_pending(cpumask, desc);
529         else
530                 cpumask_copy(cpumask, desc->irq_common_data.affinity);
531         raw_spin_unlock_irqrestore(&desc->lock, flags);
532
533         notify->notify(notify, cpumask);
534
535         free_cpumask_var(cpumask);
536 out:
537         kref_put(&notify->kref, notify->release);
538 }
539
540 /**
541  *      irq_set_affinity_notifier - control notification of IRQ affinity changes
542  *      @irq:           Interrupt for which to enable/disable notification
543  *      @notify:        Context for notification, or %NULL to disable
544  *                      notification.  Function pointers must be initialised;
545  *                      the other fields will be initialised by this function.
546  *
547  *      Must be called in process context.  Notification may only be enabled
548  *      after the IRQ is allocated and must be disabled before the IRQ is
549  *      freed using free_irq().
550  */
551 int
552 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
553 {
554         struct irq_desc *desc = irq_to_desc(irq);
555         struct irq_affinity_notify *old_notify;
556         unsigned long flags;
557
558         /* The release function is promised process context */
559         might_sleep();
560
561         if (!desc || desc->istate & IRQS_NMI)
562                 return -EINVAL;
563
564         /* Complete initialisation of *notify */
565         if (notify) {
566                 notify->irq = irq;
567                 kref_init(&notify->kref);
568                 INIT_WORK(&notify->work, irq_affinity_notify);
569         }
570
571         raw_spin_lock_irqsave(&desc->lock, flags);
572         old_notify = desc->affinity_notify;
573         desc->affinity_notify = notify;
574         raw_spin_unlock_irqrestore(&desc->lock, flags);
575
576         if (old_notify) {
577                 if (cancel_work_sync(&old_notify->work)) {
578                         /* Pending work had a ref, put that one too */
579                         kref_put(&old_notify->kref, old_notify->release);
580                 }
581                 kref_put(&old_notify->kref, old_notify->release);
582         }
583
584         return 0;
585 }
586 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
587
588 #ifndef CONFIG_AUTO_IRQ_AFFINITY
589 /*
590  * Generic version of the affinity autoselector.
591  */
592 int irq_setup_affinity(struct irq_desc *desc)
593 {
594         struct cpumask *set = irq_default_affinity;
595         int ret, node = irq_desc_get_node(desc);
596         static DEFINE_RAW_SPINLOCK(mask_lock);
597         static struct cpumask mask;
598
599         /* Excludes PER_CPU and NO_BALANCE interrupts */
600         if (!__irq_can_set_affinity(desc))
601                 return 0;
602
603         raw_spin_lock(&mask_lock);
604         /*
605          * Preserve the managed affinity setting and a userspace affinity
606          * setup, but make sure that one of the targets is online.
607          */
608         if (irqd_affinity_is_managed(&desc->irq_data) ||
609             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
610                 if (cpumask_intersects(desc->irq_common_data.affinity,
611                                        cpu_online_mask))
612                         set = desc->irq_common_data.affinity;
613                 else
614                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
615         }
616
617         cpumask_and(&mask, cpu_online_mask, set);
618         if (cpumask_empty(&mask))
619                 cpumask_copy(&mask, cpu_online_mask);
620
621         if (node != NUMA_NO_NODE) {
622                 const struct cpumask *nodemask = cpumask_of_node(node);
623
624                 /* make sure at least one of the cpus in nodemask is online */
625                 if (cpumask_intersects(&mask, nodemask))
626                         cpumask_and(&mask, &mask, nodemask);
627         }
628         ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
629         raw_spin_unlock(&mask_lock);
630         return ret;
631 }
632 #else
633 /* Wrapper for ALPHA specific affinity selector magic */
634 int irq_setup_affinity(struct irq_desc *desc)
635 {
636         return irq_select_affinity(irq_desc_get_irq(desc));
637 }
638 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
639 #endif /* CONFIG_SMP */
640
641
642 /**
643  *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
644  *      @irq: interrupt number to set affinity
645  *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
646  *                  specific data for percpu_devid interrupts
647  *
648  *      This function uses the vCPU specific data to set the vCPU
649  *      affinity for an irq. The vCPU specific data is passed from
650  *      outside, such as KVM. One example code path is as below:
651  *      KVM -> IOMMU -> irq_set_vcpu_affinity().
652  */
653 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
654 {
655         unsigned long flags;
656         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
657         struct irq_data *data;
658         struct irq_chip *chip;
659         int ret = -ENOSYS;
660
661         if (!desc)
662                 return -EINVAL;
663
664         data = irq_desc_get_irq_data(desc);
665         do {
666                 chip = irq_data_get_irq_chip(data);
667                 if (chip && chip->irq_set_vcpu_affinity)
668                         break;
669 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
670                 data = data->parent_data;
671 #else
672                 data = NULL;
673 #endif
674         } while (data);
675
676         if (data)
677                 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
678         irq_put_desc_unlock(desc, flags);
679
680         return ret;
681 }
682 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
683
684 void __disable_irq(struct irq_desc *desc)
685 {
686         if (!desc->depth++)
687                 irq_disable(desc);
688 }
689
690 static int __disable_irq_nosync(unsigned int irq)
691 {
692         unsigned long flags;
693         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
694
695         if (!desc)
696                 return -EINVAL;
697         __disable_irq(desc);
698         irq_put_desc_busunlock(desc, flags);
699         return 0;
700 }
701
702 /**
703  *      disable_irq_nosync - disable an irq without waiting
704  *      @irq: Interrupt to disable
705  *
706  *      Disable the selected interrupt line.  Disables and Enables are
707  *      nested.
708  *      Unlike disable_irq(), this function does not ensure existing
709  *      instances of the IRQ handler have completed before returning.
710  *
711  *      This function may be called from IRQ context.
712  */
713 void disable_irq_nosync(unsigned int irq)
714 {
715         __disable_irq_nosync(irq);
716 }
717 EXPORT_SYMBOL(disable_irq_nosync);
718
719 /**
720  *      disable_irq - disable an irq and wait for completion
721  *      @irq: Interrupt to disable
722  *
723  *      Disable the selected interrupt line.  Enables and Disables are
724  *      nested.
725  *      This function waits for any pending IRQ handlers for this interrupt
726  *      to complete before returning. If you use this function while
727  *      holding a resource the IRQ handler may need you will deadlock.
728  *
729  *      Can only be called from preemptible code as it might sleep when
730  *      an interrupt thread is associated to @irq.
731  *
732  */
733 void disable_irq(unsigned int irq)
734 {
735         might_sleep();
736         if (!__disable_irq_nosync(irq))
737                 synchronize_irq(irq);
738 }
739 EXPORT_SYMBOL(disable_irq);
740
741 /**
742  *      disable_hardirq - disables an irq and waits for hardirq completion
743  *      @irq: Interrupt to disable
744  *
745  *      Disable the selected interrupt line.  Enables and Disables are
746  *      nested.
747  *      This function waits for any pending hard IRQ handlers for this
748  *      interrupt to complete before returning. If you use this function while
749  *      holding a resource the hard IRQ handler may need you will deadlock.
750  *
751  *      When used to optimistically disable an interrupt from atomic context
752  *      the return value must be checked.
753  *
754  *      Returns: false if a threaded handler is active.
755  *
756  *      This function may be called - with care - from IRQ context.
757  */
758 bool disable_hardirq(unsigned int irq)
759 {
760         if (!__disable_irq_nosync(irq))
761                 return synchronize_hardirq(irq);
762
763         return false;
764 }
765 EXPORT_SYMBOL_GPL(disable_hardirq);
766
767 /**
768  *      disable_nmi_nosync - disable an nmi without waiting
769  *      @irq: Interrupt to disable
770  *
771  *      Disable the selected interrupt line. Disables and enables are
772  *      nested.
773  *      The interrupt to disable must have been requested through request_nmi.
774  *      Unlike disable_nmi(), this function does not ensure existing
775  *      instances of the IRQ handler have completed before returning.
776  */
777 void disable_nmi_nosync(unsigned int irq)
778 {
779         disable_irq_nosync(irq);
780 }
781
782 void __enable_irq(struct irq_desc *desc)
783 {
784         switch (desc->depth) {
785         case 0:
786  err_out:
787                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
788                      irq_desc_get_irq(desc));
789                 break;
790         case 1: {
791                 if (desc->istate & IRQS_SUSPENDED)
792                         goto err_out;
793                 /* Prevent probing on this irq: */
794                 irq_settings_set_noprobe(desc);
795                 /*
796                  * Call irq_startup() not irq_enable() here because the
797                  * interrupt might be marked NOAUTOEN. So irq_startup()
798                  * needs to be invoked when it gets enabled the first
799                  * time. If it was already started up, then irq_startup()
800                  * will invoke irq_enable() under the hood.
801                  */
802                 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
803                 break;
804         }
805         default:
806                 desc->depth--;
807         }
808 }
809
810 /**
811  *      enable_irq - enable handling of an irq
812  *      @irq: Interrupt to enable
813  *
814  *      Undoes the effect of one call to disable_irq().  If this
815  *      matches the last disable, processing of interrupts on this
816  *      IRQ line is re-enabled.
817  *
818  *      This function may be called from IRQ context only when
819  *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
820  */
821 void enable_irq(unsigned int irq)
822 {
823         unsigned long flags;
824         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
825
826         if (!desc)
827                 return;
828         if (WARN(!desc->irq_data.chip,
829                  KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
830                 goto out;
831
832         __enable_irq(desc);
833 out:
834         irq_put_desc_busunlock(desc, flags);
835 }
836 EXPORT_SYMBOL(enable_irq);
837
838 /**
839  *      enable_nmi - enable handling of an nmi
840  *      @irq: Interrupt to enable
841  *
842  *      The interrupt to enable must have been requested through request_nmi.
843  *      Undoes the effect of one call to disable_nmi(). If this
844  *      matches the last disable, processing of interrupts on this
845  *      IRQ line is re-enabled.
846  */
847 void enable_nmi(unsigned int irq)
848 {
849         enable_irq(irq);
850 }
851
852 static int set_irq_wake_real(unsigned int irq, unsigned int on)
853 {
854         struct irq_desc *desc = irq_to_desc(irq);
855         int ret = -ENXIO;
856
857         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
858                 return 0;
859
860         if (desc->irq_data.chip->irq_set_wake)
861                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
862
863         return ret;
864 }
865
866 /**
867  *      irq_set_irq_wake - control irq power management wakeup
868  *      @irq:   interrupt to control
869  *      @on:    enable/disable power management wakeup
870  *
871  *      Enable/disable power management wakeup mode, which is
872  *      disabled by default.  Enables and disables must match,
873  *      just as they match for non-wakeup mode support.
874  *
875  *      Wakeup mode lets this IRQ wake the system from sleep
876  *      states like "suspend to RAM".
877  *
878  *      Note: irq enable/disable state is completely orthogonal
879  *      to the enable/disable state of irq wake. An irq can be
880  *      disabled with disable_irq() and still wake the system as
881  *      long as the irq has wake enabled. If this does not hold,
882  *      then the underlying irq chip and the related driver need
883  *      to be investigated.
884  */
885 int irq_set_irq_wake(unsigned int irq, unsigned int on)
886 {
887         unsigned long flags;
888         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
889         int ret = 0;
890
891         if (!desc)
892                 return -EINVAL;
893
894         /* Don't use NMIs as wake up interrupts please */
895         if (desc->istate & IRQS_NMI) {
896                 ret = -EINVAL;
897                 goto out_unlock;
898         }
899
900         /* wakeup-capable irqs can be shared between drivers that
901          * don't need to have the same sleep mode behaviors.
902          */
903         if (on) {
904                 if (desc->wake_depth++ == 0) {
905                         ret = set_irq_wake_real(irq, on);
906                         if (ret)
907                                 desc->wake_depth = 0;
908                         else
909                                 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
910                 }
911         } else {
912                 if (desc->wake_depth == 0) {
913                         WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
914                 } else if (--desc->wake_depth == 0) {
915                         ret = set_irq_wake_real(irq, on);
916                         if (ret)
917                                 desc->wake_depth = 1;
918                         else
919                                 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
920                 }
921         }
922
923 out_unlock:
924         irq_put_desc_busunlock(desc, flags);
925         return ret;
926 }
927 EXPORT_SYMBOL(irq_set_irq_wake);
928
929 /*
930  * Internal function that tells the architecture code whether a
931  * particular irq has been exclusively allocated or is available
932  * for driver use.
933  */
934 int can_request_irq(unsigned int irq, unsigned long irqflags)
935 {
936         unsigned long flags;
937         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
938         int canrequest = 0;
939
940         if (!desc)
941                 return 0;
942
943         if (irq_settings_can_request(desc)) {
944                 if (!desc->action ||
945                     irqflags & desc->action->flags & IRQF_SHARED)
946                         canrequest = 1;
947         }
948         irq_put_desc_unlock(desc, flags);
949         return canrequest;
950 }
951
952 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
953 {
954         struct irq_chip *chip = desc->irq_data.chip;
955         int ret, unmask = 0;
956
957         if (!chip || !chip->irq_set_type) {
958                 /*
959                  * IRQF_TRIGGER_* but the PIC does not support multiple
960                  * flow-types?
961                  */
962                 pr_debug("No set_type function for IRQ %d (%s)\n",
963                          irq_desc_get_irq(desc),
964                          chip ? (chip->name ? : "unknown") : "unknown");
965                 return 0;
966         }
967
968         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
969                 if (!irqd_irq_masked(&desc->irq_data))
970                         mask_irq(desc);
971                 if (!irqd_irq_disabled(&desc->irq_data))
972                         unmask = 1;
973         }
974
975         /* Mask all flags except trigger mode */
976         flags &= IRQ_TYPE_SENSE_MASK;
977         ret = chip->irq_set_type(&desc->irq_data, flags);
978
979         switch (ret) {
980         case IRQ_SET_MASK_OK:
981         case IRQ_SET_MASK_OK_DONE:
982                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
983                 irqd_set(&desc->irq_data, flags);
984                 fallthrough;
985
986         case IRQ_SET_MASK_OK_NOCOPY:
987                 flags = irqd_get_trigger_type(&desc->irq_data);
988                 irq_settings_set_trigger_mask(desc, flags);
989                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
990                 irq_settings_clr_level(desc);
991                 if (flags & IRQ_TYPE_LEVEL_MASK) {
992                         irq_settings_set_level(desc);
993                         irqd_set(&desc->irq_data, IRQD_LEVEL);
994                 }
995
996                 ret = 0;
997                 break;
998         default:
999                 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1000                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
1001         }
1002         if (unmask)
1003                 unmask_irq(desc);
1004         return ret;
1005 }
1006
1007 #ifdef CONFIG_HARDIRQS_SW_RESEND
1008 int irq_set_parent(int irq, int parent_irq)
1009 {
1010         unsigned long flags;
1011         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1012
1013         if (!desc)
1014                 return -EINVAL;
1015
1016         desc->parent_irq = parent_irq;
1017
1018         irq_put_desc_unlock(desc, flags);
1019         return 0;
1020 }
1021 EXPORT_SYMBOL_GPL(irq_set_parent);
1022 #endif
1023
1024 /*
1025  * Default primary interrupt handler for threaded interrupts. Is
1026  * assigned as primary handler when request_threaded_irq is called
1027  * with handler == NULL. Useful for oneshot interrupts.
1028  */
1029 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1030 {
1031         return IRQ_WAKE_THREAD;
1032 }
1033
1034 /*
1035  * Primary handler for nested threaded interrupts. Should never be
1036  * called.
1037  */
1038 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1039 {
1040         WARN(1, "Primary handler called for nested irq %d\n", irq);
1041         return IRQ_NONE;
1042 }
1043
1044 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1045 {
1046         WARN(1, "Secondary action handler called for irq %d\n", irq);
1047         return IRQ_NONE;
1048 }
1049
1050 static int irq_wait_for_interrupt(struct irqaction *action)
1051 {
1052         for (;;) {
1053                 set_current_state(TASK_INTERRUPTIBLE);
1054
1055                 if (kthread_should_stop()) {
1056                         /* may need to run one last time */
1057                         if (test_and_clear_bit(IRQTF_RUNTHREAD,
1058                                                &action->thread_flags)) {
1059                                 __set_current_state(TASK_RUNNING);
1060                                 return 0;
1061                         }
1062                         __set_current_state(TASK_RUNNING);
1063                         return -1;
1064                 }
1065
1066                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1067                                        &action->thread_flags)) {
1068                         __set_current_state(TASK_RUNNING);
1069                         return 0;
1070                 }
1071                 schedule();
1072         }
1073 }
1074
1075 /*
1076  * Oneshot interrupts keep the irq line masked until the threaded
1077  * handler finished. unmask if the interrupt has not been disabled and
1078  * is marked MASKED.
1079  */
1080 static void irq_finalize_oneshot(struct irq_desc *desc,
1081                                  struct irqaction *action)
1082 {
1083         if (!(desc->istate & IRQS_ONESHOT) ||
1084             action->handler == irq_forced_secondary_handler)
1085                 return;
1086 again:
1087         chip_bus_lock(desc);
1088         raw_spin_lock_irq(&desc->lock);
1089
1090         /*
1091          * Implausible though it may be we need to protect us against
1092          * the following scenario:
1093          *
1094          * The thread is faster done than the hard interrupt handler
1095          * on the other CPU. If we unmask the irq line then the
1096          * interrupt can come in again and masks the line, leaves due
1097          * to IRQS_INPROGRESS and the irq line is masked forever.
1098          *
1099          * This also serializes the state of shared oneshot handlers
1100          * versus "desc->threads_oneshot |= action->thread_mask;" in
1101          * irq_wake_thread(). See the comment there which explains the
1102          * serialization.
1103          */
1104         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1105                 raw_spin_unlock_irq(&desc->lock);
1106                 chip_bus_sync_unlock(desc);
1107                 cpu_relax();
1108                 goto again;
1109         }
1110
1111         /*
1112          * Now check again, whether the thread should run. Otherwise
1113          * we would clear the threads_oneshot bit of this thread which
1114          * was just set.
1115          */
1116         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1117                 goto out_unlock;
1118
1119         desc->threads_oneshot &= ~action->thread_mask;
1120
1121         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1122             irqd_irq_masked(&desc->irq_data))
1123                 unmask_threaded_irq(desc);
1124
1125 out_unlock:
1126         raw_spin_unlock_irq(&desc->lock);
1127         chip_bus_sync_unlock(desc);
1128 }
1129
1130 #ifdef CONFIG_SMP
1131 /*
1132  * Check whether we need to change the affinity of the interrupt thread.
1133  */
1134 static void
1135 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1136 {
1137         cpumask_var_t mask;
1138         bool valid = true;
1139
1140         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1141                 return;
1142
1143         /*
1144          * In case we are out of memory we set IRQTF_AFFINITY again and
1145          * try again next time
1146          */
1147         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1148                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1149                 return;
1150         }
1151
1152         raw_spin_lock_irq(&desc->lock);
1153         /*
1154          * This code is triggered unconditionally. Check the affinity
1155          * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1156          */
1157         if (cpumask_available(desc->irq_common_data.affinity)) {
1158                 const struct cpumask *m;
1159
1160                 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1161                 cpumask_copy(mask, m);
1162         } else {
1163                 valid = false;
1164         }
1165         raw_spin_unlock_irq(&desc->lock);
1166
1167         if (valid)
1168                 set_cpus_allowed_ptr(current, mask);
1169         free_cpumask_var(mask);
1170 }
1171 #else
1172 static inline void
1173 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1174 #endif
1175
1176 /*
1177  * Interrupts which are not explicitly requested as threaded
1178  * interrupts rely on the implicit bh/preempt disable of the hard irq
1179  * context. So we need to disable bh here to avoid deadlocks and other
1180  * side effects.
1181  */
1182 static irqreturn_t
1183 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1184 {
1185         irqreturn_t ret;
1186
1187         local_bh_disable();
1188         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1189                 local_irq_disable();
1190         ret = action->thread_fn(action->irq, action->dev_id);
1191         if (ret == IRQ_HANDLED)
1192                 atomic_inc(&desc->threads_handled);
1193
1194         irq_finalize_oneshot(desc, action);
1195         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1196                 local_irq_enable();
1197         local_bh_enable();
1198         return ret;
1199 }
1200
1201 /*
1202  * Interrupts explicitly requested as threaded interrupts want to be
1203  * preemptible - many of them need to sleep and wait for slow busses to
1204  * complete.
1205  */
1206 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1207                 struct irqaction *action)
1208 {
1209         irqreturn_t ret;
1210
1211         ret = action->thread_fn(action->irq, action->dev_id);
1212         if (ret == IRQ_HANDLED)
1213                 atomic_inc(&desc->threads_handled);
1214
1215         irq_finalize_oneshot(desc, action);
1216         return ret;
1217 }
1218
1219 static void wake_threads_waitq(struct irq_desc *desc)
1220 {
1221         if (atomic_dec_and_test(&desc->threads_active))
1222                 wake_up(&desc->wait_for_threads);
1223 }
1224
1225 static void irq_thread_dtor(struct callback_head *unused)
1226 {
1227         struct task_struct *tsk = current;
1228         struct irq_desc *desc;
1229         struct irqaction *action;
1230
1231         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1232                 return;
1233
1234         action = kthread_data(tsk);
1235
1236         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1237                tsk->comm, tsk->pid, action->irq);
1238
1239
1240         desc = irq_to_desc(action->irq);
1241         /*
1242          * If IRQTF_RUNTHREAD is set, we need to decrement
1243          * desc->threads_active and wake possible waiters.
1244          */
1245         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1246                 wake_threads_waitq(desc);
1247
1248         /* Prevent a stale desc->threads_oneshot */
1249         irq_finalize_oneshot(desc, action);
1250 }
1251
1252 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1253 {
1254         struct irqaction *secondary = action->secondary;
1255
1256         if (WARN_ON_ONCE(!secondary))
1257                 return;
1258
1259         raw_spin_lock_irq(&desc->lock);
1260         __irq_wake_thread(desc, secondary);
1261         raw_spin_unlock_irq(&desc->lock);
1262 }
1263
1264 /*
1265  * Internal function to notify that a interrupt thread is ready.
1266  */
1267 static void irq_thread_set_ready(struct irq_desc *desc,
1268                                  struct irqaction *action)
1269 {
1270         set_bit(IRQTF_READY, &action->thread_flags);
1271         wake_up(&desc->wait_for_threads);
1272 }
1273
1274 /*
1275  * Internal function to wake up a interrupt thread and wait until it is
1276  * ready.
1277  */
1278 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1279                                                   struct irqaction *action)
1280 {
1281         if (!action || !action->thread)
1282                 return;
1283
1284         wake_up_process(action->thread);
1285         wait_event(desc->wait_for_threads,
1286                    test_bit(IRQTF_READY, &action->thread_flags));
1287 }
1288
1289 /*
1290  * Interrupt handler thread
1291  */
1292 static int irq_thread(void *data)
1293 {
1294         struct callback_head on_exit_work;
1295         struct irqaction *action = data;
1296         struct irq_desc *desc = irq_to_desc(action->irq);
1297         irqreturn_t (*handler_fn)(struct irq_desc *desc,
1298                         struct irqaction *action);
1299
1300         irq_thread_set_ready(desc, action);
1301
1302         sched_set_fifo(current);
1303
1304         if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1305                                            &action->thread_flags))
1306                 handler_fn = irq_forced_thread_fn;
1307         else
1308                 handler_fn = irq_thread_fn;
1309
1310         init_task_work(&on_exit_work, irq_thread_dtor);
1311         task_work_add(current, &on_exit_work, TWA_NONE);
1312
1313         irq_thread_check_affinity(desc, action);
1314
1315         while (!irq_wait_for_interrupt(action)) {
1316                 irqreturn_t action_ret;
1317
1318                 irq_thread_check_affinity(desc, action);
1319
1320                 action_ret = handler_fn(desc, action);
1321                 if (action_ret == IRQ_WAKE_THREAD)
1322                         irq_wake_secondary(desc, action);
1323
1324                 wake_threads_waitq(desc);
1325         }
1326
1327         /*
1328          * This is the regular exit path. __free_irq() is stopping the
1329          * thread via kthread_stop() after calling
1330          * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1331          * oneshot mask bit can be set.
1332          */
1333         task_work_cancel(current, irq_thread_dtor);
1334         return 0;
1335 }
1336
1337 /**
1338  *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1339  *      @irq:           Interrupt line
1340  *      @dev_id:        Device identity for which the thread should be woken
1341  *
1342  */
1343 void irq_wake_thread(unsigned int irq, void *dev_id)
1344 {
1345         struct irq_desc *desc = irq_to_desc(irq);
1346         struct irqaction *action;
1347         unsigned long flags;
1348
1349         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1350                 return;
1351
1352         raw_spin_lock_irqsave(&desc->lock, flags);
1353         for_each_action_of_desc(desc, action) {
1354                 if (action->dev_id == dev_id) {
1355                         if (action->thread)
1356                                 __irq_wake_thread(desc, action);
1357                         break;
1358                 }
1359         }
1360         raw_spin_unlock_irqrestore(&desc->lock, flags);
1361 }
1362 EXPORT_SYMBOL_GPL(irq_wake_thread);
1363
1364 static int irq_setup_forced_threading(struct irqaction *new)
1365 {
1366         if (!force_irqthreads())
1367                 return 0;
1368         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1369                 return 0;
1370
1371         /*
1372          * No further action required for interrupts which are requested as
1373          * threaded interrupts already
1374          */
1375         if (new->handler == irq_default_primary_handler)
1376                 return 0;
1377
1378         new->flags |= IRQF_ONESHOT;
1379
1380         /*
1381          * Handle the case where we have a real primary handler and a
1382          * thread handler. We force thread them as well by creating a
1383          * secondary action.
1384          */
1385         if (new->handler && new->thread_fn) {
1386                 /* Allocate the secondary action */
1387                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1388                 if (!new->secondary)
1389                         return -ENOMEM;
1390                 new->secondary->handler = irq_forced_secondary_handler;
1391                 new->secondary->thread_fn = new->thread_fn;
1392                 new->secondary->dev_id = new->dev_id;
1393                 new->secondary->irq = new->irq;
1394                 new->secondary->name = new->name;
1395         }
1396         /* Deal with the primary handler */
1397         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1398         new->thread_fn = new->handler;
1399         new->handler = irq_default_primary_handler;
1400         return 0;
1401 }
1402
1403 static int irq_request_resources(struct irq_desc *desc)
1404 {
1405         struct irq_data *d = &desc->irq_data;
1406         struct irq_chip *c = d->chip;
1407
1408         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1409 }
1410
1411 static void irq_release_resources(struct irq_desc *desc)
1412 {
1413         struct irq_data *d = &desc->irq_data;
1414         struct irq_chip *c = d->chip;
1415
1416         if (c->irq_release_resources)
1417                 c->irq_release_resources(d);
1418 }
1419
1420 static bool irq_supports_nmi(struct irq_desc *desc)
1421 {
1422         struct irq_data *d = irq_desc_get_irq_data(desc);
1423
1424 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1425         /* Only IRQs directly managed by the root irqchip can be set as NMI */
1426         if (d->parent_data)
1427                 return false;
1428 #endif
1429         /* Don't support NMIs for chips behind a slow bus */
1430         if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1431                 return false;
1432
1433         return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1434 }
1435
1436 static int irq_nmi_setup(struct irq_desc *desc)
1437 {
1438         struct irq_data *d = irq_desc_get_irq_data(desc);
1439         struct irq_chip *c = d->chip;
1440
1441         return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1442 }
1443
1444 static void irq_nmi_teardown(struct irq_desc *desc)
1445 {
1446         struct irq_data *d = irq_desc_get_irq_data(desc);
1447         struct irq_chip *c = d->chip;
1448
1449         if (c->irq_nmi_teardown)
1450                 c->irq_nmi_teardown(d);
1451 }
1452
1453 static int
1454 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1455 {
1456         struct task_struct *t;
1457
1458         if (!secondary) {
1459                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1460                                    new->name);
1461         } else {
1462                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1463                                    new->name);
1464         }
1465
1466         if (IS_ERR(t))
1467                 return PTR_ERR(t);
1468
1469         /*
1470          * We keep the reference to the task struct even if
1471          * the thread dies to avoid that the interrupt code
1472          * references an already freed task_struct.
1473          */
1474         new->thread = get_task_struct(t);
1475         /*
1476          * Tell the thread to set its affinity. This is
1477          * important for shared interrupt handlers as we do
1478          * not invoke setup_affinity() for the secondary
1479          * handlers as everything is already set up. Even for
1480          * interrupts marked with IRQF_NO_BALANCE this is
1481          * correct as we want the thread to move to the cpu(s)
1482          * on which the requesting code placed the interrupt.
1483          */
1484         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1485         return 0;
1486 }
1487
1488 /*
1489  * Internal function to register an irqaction - typically used to
1490  * allocate special interrupts that are part of the architecture.
1491  *
1492  * Locking rules:
1493  *
1494  * desc->request_mutex  Provides serialization against a concurrent free_irq()
1495  *   chip_bus_lock      Provides serialization for slow bus operations
1496  *     desc->lock       Provides serialization against hard interrupts
1497  *
1498  * chip_bus_lock and desc->lock are sufficient for all other management and
1499  * interrupt related functions. desc->request_mutex solely serializes
1500  * request/free_irq().
1501  */
1502 static int
1503 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1504 {
1505         struct irqaction *old, **old_ptr;
1506         unsigned long flags, thread_mask = 0;
1507         int ret, nested, shared = 0;
1508
1509         if (!desc)
1510                 return -EINVAL;
1511
1512         if (desc->irq_data.chip == &no_irq_chip)
1513                 return -ENOSYS;
1514         if (!try_module_get(desc->owner))
1515                 return -ENODEV;
1516
1517         new->irq = irq;
1518
1519         /*
1520          * If the trigger type is not specified by the caller,
1521          * then use the default for this interrupt.
1522          */
1523         if (!(new->flags & IRQF_TRIGGER_MASK))
1524                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1525
1526         /*
1527          * Check whether the interrupt nests into another interrupt
1528          * thread.
1529          */
1530         nested = irq_settings_is_nested_thread(desc);
1531         if (nested) {
1532                 if (!new->thread_fn) {
1533                         ret = -EINVAL;
1534                         goto out_mput;
1535                 }
1536                 /*
1537                  * Replace the primary handler which was provided from
1538                  * the driver for non nested interrupt handling by the
1539                  * dummy function which warns when called.
1540                  */
1541                 new->handler = irq_nested_primary_handler;
1542         } else {
1543                 if (irq_settings_can_thread(desc)) {
1544                         ret = irq_setup_forced_threading(new);
1545                         if (ret)
1546                                 goto out_mput;
1547                 }
1548         }
1549
1550         /*
1551          * Create a handler thread when a thread function is supplied
1552          * and the interrupt does not nest into another interrupt
1553          * thread.
1554          */
1555         if (new->thread_fn && !nested) {
1556                 ret = setup_irq_thread(new, irq, false);
1557                 if (ret)
1558                         goto out_mput;
1559                 if (new->secondary) {
1560                         ret = setup_irq_thread(new->secondary, irq, true);
1561                         if (ret)
1562                                 goto out_thread;
1563                 }
1564         }
1565
1566         /*
1567          * Drivers are often written to work w/o knowledge about the
1568          * underlying irq chip implementation, so a request for a
1569          * threaded irq without a primary hard irq context handler
1570          * requires the ONESHOT flag to be set. Some irq chips like
1571          * MSI based interrupts are per se one shot safe. Check the
1572          * chip flags, so we can avoid the unmask dance at the end of
1573          * the threaded handler for those.
1574          */
1575         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1576                 new->flags &= ~IRQF_ONESHOT;
1577
1578         /*
1579          * Protects against a concurrent __free_irq() call which might wait
1580          * for synchronize_hardirq() to complete without holding the optional
1581          * chip bus lock and desc->lock. Also protects against handing out
1582          * a recycled oneshot thread_mask bit while it's still in use by
1583          * its previous owner.
1584          */
1585         mutex_lock(&desc->request_mutex);
1586
1587         /*
1588          * Acquire bus lock as the irq_request_resources() callback below
1589          * might rely on the serialization or the magic power management
1590          * functions which are abusing the irq_bus_lock() callback,
1591          */
1592         chip_bus_lock(desc);
1593
1594         /* First installed action requests resources. */
1595         if (!desc->action) {
1596                 ret = irq_request_resources(desc);
1597                 if (ret) {
1598                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1599                                new->name, irq, desc->irq_data.chip->name);
1600                         goto out_bus_unlock;
1601                 }
1602         }
1603
1604         /*
1605          * The following block of code has to be executed atomically
1606          * protected against a concurrent interrupt and any of the other
1607          * management calls which are not serialized via
1608          * desc->request_mutex or the optional bus lock.
1609          */
1610         raw_spin_lock_irqsave(&desc->lock, flags);
1611         old_ptr = &desc->action;
1612         old = *old_ptr;
1613         if (old) {
1614                 /*
1615                  * Can't share interrupts unless both agree to and are
1616                  * the same type (level, edge, polarity). So both flag
1617                  * fields must have IRQF_SHARED set and the bits which
1618                  * set the trigger type must match. Also all must
1619                  * agree on ONESHOT.
1620                  * Interrupt lines used for NMIs cannot be shared.
1621                  */
1622                 unsigned int oldtype;
1623
1624                 if (desc->istate & IRQS_NMI) {
1625                         pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1626                                 new->name, irq, desc->irq_data.chip->name);
1627                         ret = -EINVAL;
1628                         goto out_unlock;
1629                 }
1630
1631                 /*
1632                  * If nobody did set the configuration before, inherit
1633                  * the one provided by the requester.
1634                  */
1635                 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1636                         oldtype = irqd_get_trigger_type(&desc->irq_data);
1637                 } else {
1638                         oldtype = new->flags & IRQF_TRIGGER_MASK;
1639                         irqd_set_trigger_type(&desc->irq_data, oldtype);
1640                 }
1641
1642                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1643                     (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1644                     ((old->flags ^ new->flags) & IRQF_ONESHOT))
1645                         goto mismatch;
1646
1647                 /* All handlers must agree on per-cpuness */
1648                 if ((old->flags & IRQF_PERCPU) !=
1649                     (new->flags & IRQF_PERCPU))
1650                         goto mismatch;
1651
1652                 /* add new interrupt at end of irq queue */
1653                 do {
1654                         /*
1655                          * Or all existing action->thread_mask bits,
1656                          * so we can find the next zero bit for this
1657                          * new action.
1658                          */
1659                         thread_mask |= old->thread_mask;
1660                         old_ptr = &old->next;
1661                         old = *old_ptr;
1662                 } while (old);
1663                 shared = 1;
1664         }
1665
1666         /*
1667          * Setup the thread mask for this irqaction for ONESHOT. For
1668          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1669          * conditional in irq_wake_thread().
1670          */
1671         if (new->flags & IRQF_ONESHOT) {
1672                 /*
1673                  * Unlikely to have 32 resp 64 irqs sharing one line,
1674                  * but who knows.
1675                  */
1676                 if (thread_mask == ~0UL) {
1677                         ret = -EBUSY;
1678                         goto out_unlock;
1679                 }
1680                 /*
1681                  * The thread_mask for the action is or'ed to
1682                  * desc->thread_active to indicate that the
1683                  * IRQF_ONESHOT thread handler has been woken, but not
1684                  * yet finished. The bit is cleared when a thread
1685                  * completes. When all threads of a shared interrupt
1686                  * line have completed desc->threads_active becomes
1687                  * zero and the interrupt line is unmasked. See
1688                  * handle.c:irq_wake_thread() for further information.
1689                  *
1690                  * If no thread is woken by primary (hard irq context)
1691                  * interrupt handlers, then desc->threads_active is
1692                  * also checked for zero to unmask the irq line in the
1693                  * affected hard irq flow handlers
1694                  * (handle_[fasteoi|level]_irq).
1695                  *
1696                  * The new action gets the first zero bit of
1697                  * thread_mask assigned. See the loop above which or's
1698                  * all existing action->thread_mask bits.
1699                  */
1700                 new->thread_mask = 1UL << ffz(thread_mask);
1701
1702         } else if (new->handler == irq_default_primary_handler &&
1703                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1704                 /*
1705                  * The interrupt was requested with handler = NULL, so
1706                  * we use the default primary handler for it. But it
1707                  * does not have the oneshot flag set. In combination
1708                  * with level interrupts this is deadly, because the
1709                  * default primary handler just wakes the thread, then
1710                  * the irq lines is reenabled, but the device still
1711                  * has the level irq asserted. Rinse and repeat....
1712                  *
1713                  * While this works for edge type interrupts, we play
1714                  * it safe and reject unconditionally because we can't
1715                  * say for sure which type this interrupt really
1716                  * has. The type flags are unreliable as the
1717                  * underlying chip implementation can override them.
1718                  */
1719                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1720                        new->name, irq);
1721                 ret = -EINVAL;
1722                 goto out_unlock;
1723         }
1724
1725         if (!shared) {
1726                 /* Setup the type (level, edge polarity) if configured: */
1727                 if (new->flags & IRQF_TRIGGER_MASK) {
1728                         ret = __irq_set_trigger(desc,
1729                                                 new->flags & IRQF_TRIGGER_MASK);
1730
1731                         if (ret)
1732                                 goto out_unlock;
1733                 }
1734
1735                 /*
1736                  * Activate the interrupt. That activation must happen
1737                  * independently of IRQ_NOAUTOEN. request_irq() can fail
1738                  * and the callers are supposed to handle
1739                  * that. enable_irq() of an interrupt requested with
1740                  * IRQ_NOAUTOEN is not supposed to fail. The activation
1741                  * keeps it in shutdown mode, it merily associates
1742                  * resources if necessary and if that's not possible it
1743                  * fails. Interrupts which are in managed shutdown mode
1744                  * will simply ignore that activation request.
1745                  */
1746                 ret = irq_activate(desc);
1747                 if (ret)
1748                         goto out_unlock;
1749
1750                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1751                                   IRQS_ONESHOT | IRQS_WAITING);
1752                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1753
1754                 if (new->flags & IRQF_PERCPU) {
1755                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1756                         irq_settings_set_per_cpu(desc);
1757                         if (new->flags & IRQF_NO_DEBUG)
1758                                 irq_settings_set_no_debug(desc);
1759                 }
1760
1761                 if (noirqdebug)
1762                         irq_settings_set_no_debug(desc);
1763
1764                 if (new->flags & IRQF_ONESHOT)
1765                         desc->istate |= IRQS_ONESHOT;
1766
1767                 /* Exclude IRQ from balancing if requested */
1768                 if (new->flags & IRQF_NOBALANCING) {
1769                         irq_settings_set_no_balancing(desc);
1770                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1771                 }
1772
1773                 if (!(new->flags & IRQF_NO_AUTOEN) &&
1774                     irq_settings_can_autoenable(desc)) {
1775                         irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1776                 } else {
1777                         /*
1778                          * Shared interrupts do not go well with disabling
1779                          * auto enable. The sharing interrupt might request
1780                          * it while it's still disabled and then wait for
1781                          * interrupts forever.
1782                          */
1783                         WARN_ON_ONCE(new->flags & IRQF_SHARED);
1784                         /* Undo nested disables: */
1785                         desc->depth = 1;
1786                 }
1787
1788         } else if (new->flags & IRQF_TRIGGER_MASK) {
1789                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1790                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1791
1792                 if (nmsk != omsk)
1793                         /* hope the handler works with current  trigger mode */
1794                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1795                                 irq, omsk, nmsk);
1796         }
1797
1798         *old_ptr = new;
1799
1800         irq_pm_install_action(desc, new);
1801
1802         /* Reset broken irq detection when installing new handler */
1803         desc->irq_count = 0;
1804         desc->irqs_unhandled = 0;
1805
1806         /*
1807          * Check whether we disabled the irq via the spurious handler
1808          * before. Reenable it and give it another chance.
1809          */
1810         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1811                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1812                 __enable_irq(desc);
1813         }
1814
1815         raw_spin_unlock_irqrestore(&desc->lock, flags);
1816         chip_bus_sync_unlock(desc);
1817         mutex_unlock(&desc->request_mutex);
1818
1819         irq_setup_timings(desc, new);
1820
1821         wake_up_and_wait_for_irq_thread_ready(desc, new);
1822         wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1823
1824         register_irq_proc(irq, desc);
1825         new->dir = NULL;
1826         register_handler_proc(irq, new);
1827         return 0;
1828
1829 mismatch:
1830         if (!(new->flags & IRQF_PROBE_SHARED)) {
1831                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1832                        irq, new->flags, new->name, old->flags, old->name);
1833 #ifdef CONFIG_DEBUG_SHIRQ
1834                 dump_stack();
1835 #endif
1836         }
1837         ret = -EBUSY;
1838
1839 out_unlock:
1840         raw_spin_unlock_irqrestore(&desc->lock, flags);
1841
1842         if (!desc->action)
1843                 irq_release_resources(desc);
1844 out_bus_unlock:
1845         chip_bus_sync_unlock(desc);
1846         mutex_unlock(&desc->request_mutex);
1847
1848 out_thread:
1849         if (new->thread) {
1850                 struct task_struct *t = new->thread;
1851
1852                 new->thread = NULL;
1853                 kthread_stop(t);
1854                 put_task_struct(t);
1855         }
1856         if (new->secondary && new->secondary->thread) {
1857                 struct task_struct *t = new->secondary->thread;
1858
1859                 new->secondary->thread = NULL;
1860                 kthread_stop(t);
1861                 put_task_struct(t);
1862         }
1863 out_mput:
1864         module_put(desc->owner);
1865         return ret;
1866 }
1867
1868 /*
1869  * Internal function to unregister an irqaction - used to free
1870  * regular and special interrupts that are part of the architecture.
1871  */
1872 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1873 {
1874         unsigned irq = desc->irq_data.irq;
1875         struct irqaction *action, **action_ptr;
1876         unsigned long flags;
1877
1878         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1879
1880         mutex_lock(&desc->request_mutex);
1881         chip_bus_lock(desc);
1882         raw_spin_lock_irqsave(&desc->lock, flags);
1883
1884         /*
1885          * There can be multiple actions per IRQ descriptor, find the right
1886          * one based on the dev_id:
1887          */
1888         action_ptr = &desc->action;
1889         for (;;) {
1890                 action = *action_ptr;
1891
1892                 if (!action) {
1893                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1894                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1895                         chip_bus_sync_unlock(desc);
1896                         mutex_unlock(&desc->request_mutex);
1897                         return NULL;
1898                 }
1899
1900                 if (action->dev_id == dev_id)
1901                         break;
1902                 action_ptr = &action->next;
1903         }
1904
1905         /* Found it - now remove it from the list of entries: */
1906         *action_ptr = action->next;
1907
1908         irq_pm_remove_action(desc, action);
1909
1910         /* If this was the last handler, shut down the IRQ line: */
1911         if (!desc->action) {
1912                 irq_settings_clr_disable_unlazy(desc);
1913                 /* Only shutdown. Deactivate after synchronize_hardirq() */
1914                 irq_shutdown(desc);
1915         }
1916
1917 #ifdef CONFIG_SMP
1918         /* make sure affinity_hint is cleaned up */
1919         if (WARN_ON_ONCE(desc->affinity_hint))
1920                 desc->affinity_hint = NULL;
1921 #endif
1922
1923         raw_spin_unlock_irqrestore(&desc->lock, flags);
1924         /*
1925          * Drop bus_lock here so the changes which were done in the chip
1926          * callbacks above are synced out to the irq chips which hang
1927          * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1928          *
1929          * Aside of that the bus_lock can also be taken from the threaded
1930          * handler in irq_finalize_oneshot() which results in a deadlock
1931          * because kthread_stop() would wait forever for the thread to
1932          * complete, which is blocked on the bus lock.
1933          *
1934          * The still held desc->request_mutex() protects against a
1935          * concurrent request_irq() of this irq so the release of resources
1936          * and timing data is properly serialized.
1937          */
1938         chip_bus_sync_unlock(desc);
1939
1940         unregister_handler_proc(irq, action);
1941
1942         /*
1943          * Make sure it's not being used on another CPU and if the chip
1944          * supports it also make sure that there is no (not yet serviced)
1945          * interrupt in flight at the hardware level.
1946          */
1947         __synchronize_hardirq(desc, true);
1948
1949 #ifdef CONFIG_DEBUG_SHIRQ
1950         /*
1951          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1952          * event to happen even now it's being freed, so let's make sure that
1953          * is so by doing an extra call to the handler ....
1954          *
1955          * ( We do this after actually deregistering it, to make sure that a
1956          *   'real' IRQ doesn't run in parallel with our fake. )
1957          */
1958         if (action->flags & IRQF_SHARED) {
1959                 local_irq_save(flags);
1960                 action->handler(irq, dev_id);
1961                 local_irq_restore(flags);
1962         }
1963 #endif
1964
1965         /*
1966          * The action has already been removed above, but the thread writes
1967          * its oneshot mask bit when it completes. Though request_mutex is
1968          * held across this which prevents __setup_irq() from handing out
1969          * the same bit to a newly requested action.
1970          */
1971         if (action->thread) {
1972                 kthread_stop(action->thread);
1973                 put_task_struct(action->thread);
1974                 if (action->secondary && action->secondary->thread) {
1975                         kthread_stop(action->secondary->thread);
1976                         put_task_struct(action->secondary->thread);
1977                 }
1978         }
1979
1980         /* Last action releases resources */
1981         if (!desc->action) {
1982                 /*
1983                  * Reacquire bus lock as irq_release_resources() might
1984                  * require it to deallocate resources over the slow bus.
1985                  */
1986                 chip_bus_lock(desc);
1987                 /*
1988                  * There is no interrupt on the fly anymore. Deactivate it
1989                  * completely.
1990                  */
1991                 raw_spin_lock_irqsave(&desc->lock, flags);
1992                 irq_domain_deactivate_irq(&desc->irq_data);
1993                 raw_spin_unlock_irqrestore(&desc->lock, flags);
1994
1995                 irq_release_resources(desc);
1996                 chip_bus_sync_unlock(desc);
1997                 irq_remove_timings(desc);
1998         }
1999
2000         mutex_unlock(&desc->request_mutex);
2001
2002         irq_chip_pm_put(&desc->irq_data);
2003         module_put(desc->owner);
2004         kfree(action->secondary);
2005         return action;
2006 }
2007
2008 /**
2009  *      free_irq - free an interrupt allocated with request_irq
2010  *      @irq: Interrupt line to free
2011  *      @dev_id: Device identity to free
2012  *
2013  *      Remove an interrupt handler. The handler is removed and if the
2014  *      interrupt line is no longer in use by any driver it is disabled.
2015  *      On a shared IRQ the caller must ensure the interrupt is disabled
2016  *      on the card it drives before calling this function. The function
2017  *      does not return until any executing interrupts for this IRQ
2018  *      have completed.
2019  *
2020  *      This function must not be called from interrupt context.
2021  *
2022  *      Returns the devname argument passed to request_irq.
2023  */
2024 const void *free_irq(unsigned int irq, void *dev_id)
2025 {
2026         struct irq_desc *desc = irq_to_desc(irq);
2027         struct irqaction *action;
2028         const char *devname;
2029
2030         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2031                 return NULL;
2032
2033 #ifdef CONFIG_SMP
2034         if (WARN_ON(desc->affinity_notify))
2035                 desc->affinity_notify = NULL;
2036 #endif
2037
2038         action = __free_irq(desc, dev_id);
2039
2040         if (!action)
2041                 return NULL;
2042
2043         devname = action->name;
2044         kfree(action);
2045         return devname;
2046 }
2047 EXPORT_SYMBOL(free_irq);
2048
2049 /* This function must be called with desc->lock held */
2050 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2051 {
2052         const char *devname = NULL;
2053
2054         desc->istate &= ~IRQS_NMI;
2055
2056         if (!WARN_ON(desc->action == NULL)) {
2057                 irq_pm_remove_action(desc, desc->action);
2058                 devname = desc->action->name;
2059                 unregister_handler_proc(irq, desc->action);
2060
2061                 kfree(desc->action);
2062                 desc->action = NULL;
2063         }
2064
2065         irq_settings_clr_disable_unlazy(desc);
2066         irq_shutdown_and_deactivate(desc);
2067
2068         irq_release_resources(desc);
2069
2070         irq_chip_pm_put(&desc->irq_data);
2071         module_put(desc->owner);
2072
2073         return devname;
2074 }
2075
2076 const void *free_nmi(unsigned int irq, void *dev_id)
2077 {
2078         struct irq_desc *desc = irq_to_desc(irq);
2079         unsigned long flags;
2080         const void *devname;
2081
2082         if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2083                 return NULL;
2084
2085         if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2086                 return NULL;
2087
2088         /* NMI still enabled */
2089         if (WARN_ON(desc->depth == 0))
2090                 disable_nmi_nosync(irq);
2091
2092         raw_spin_lock_irqsave(&desc->lock, flags);
2093
2094         irq_nmi_teardown(desc);
2095         devname = __cleanup_nmi(irq, desc);
2096
2097         raw_spin_unlock_irqrestore(&desc->lock, flags);
2098
2099         return devname;
2100 }
2101
2102 /**
2103  *      request_threaded_irq - allocate an interrupt line
2104  *      @irq: Interrupt line to allocate
2105  *      @handler: Function to be called when the IRQ occurs.
2106  *                Primary handler for threaded interrupts.
2107  *                If handler is NULL and thread_fn != NULL
2108  *                the default primary handler is installed.
2109  *      @thread_fn: Function called from the irq handler thread
2110  *                  If NULL, no irq thread is created
2111  *      @irqflags: Interrupt type flags
2112  *      @devname: An ascii name for the claiming device
2113  *      @dev_id: A cookie passed back to the handler function
2114  *
2115  *      This call allocates interrupt resources and enables the
2116  *      interrupt line and IRQ handling. From the point this
2117  *      call is made your handler function may be invoked. Since
2118  *      your handler function must clear any interrupt the board
2119  *      raises, you must take care both to initialise your hardware
2120  *      and to set up the interrupt handler in the right order.
2121  *
2122  *      If you want to set up a threaded irq handler for your device
2123  *      then you need to supply @handler and @thread_fn. @handler is
2124  *      still called in hard interrupt context and has to check
2125  *      whether the interrupt originates from the device. If yes it
2126  *      needs to disable the interrupt on the device and return
2127  *      IRQ_WAKE_THREAD which will wake up the handler thread and run
2128  *      @thread_fn. This split handler design is necessary to support
2129  *      shared interrupts.
2130  *
2131  *      Dev_id must be globally unique. Normally the address of the
2132  *      device data structure is used as the cookie. Since the handler
2133  *      receives this value it makes sense to use it.
2134  *
2135  *      If your interrupt is shared you must pass a non NULL dev_id
2136  *      as this is required when freeing the interrupt.
2137  *
2138  *      Flags:
2139  *
2140  *      IRQF_SHARED             Interrupt is shared
2141  *      IRQF_TRIGGER_*          Specify active edge(s) or level
2142  *      IRQF_ONESHOT            Run thread_fn with interrupt line masked
2143  */
2144 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2145                          irq_handler_t thread_fn, unsigned long irqflags,
2146                          const char *devname, void *dev_id)
2147 {
2148         struct irqaction *action;
2149         struct irq_desc *desc;
2150         int retval;
2151
2152         if (irq == IRQ_NOTCONNECTED)
2153                 return -ENOTCONN;
2154
2155         /*
2156          * Sanity-check: shared interrupts must pass in a real dev-ID,
2157          * otherwise we'll have trouble later trying to figure out
2158          * which interrupt is which (messes up the interrupt freeing
2159          * logic etc).
2160          *
2161          * Also shared interrupts do not go well with disabling auto enable.
2162          * The sharing interrupt might request it while it's still disabled
2163          * and then wait for interrupts forever.
2164          *
2165          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2166          * it cannot be set along with IRQF_NO_SUSPEND.
2167          */
2168         if (((irqflags & IRQF_SHARED) && !dev_id) ||
2169             ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2170             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2171             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2172                 return -EINVAL;
2173
2174         desc = irq_to_desc(irq);
2175         if (!desc)
2176                 return -EINVAL;
2177
2178         if (!irq_settings_can_request(desc) ||
2179             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2180                 return -EINVAL;
2181
2182         if (!handler) {
2183                 if (!thread_fn)
2184                         return -EINVAL;
2185                 handler = irq_default_primary_handler;
2186         }
2187
2188         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2189         if (!action)
2190                 return -ENOMEM;
2191
2192         action->handler = handler;
2193         action->thread_fn = thread_fn;
2194         action->flags = irqflags;
2195         action->name = devname;
2196         action->dev_id = dev_id;
2197
2198         retval = irq_chip_pm_get(&desc->irq_data);
2199         if (retval < 0) {
2200                 kfree(action);
2201                 return retval;
2202         }
2203
2204         retval = __setup_irq(irq, desc, action);
2205
2206         if (retval) {
2207                 irq_chip_pm_put(&desc->irq_data);
2208                 kfree(action->secondary);
2209                 kfree(action);
2210         }
2211
2212 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2213         if (!retval && (irqflags & IRQF_SHARED)) {
2214                 /*
2215                  * It's a shared IRQ -- the driver ought to be prepared for it
2216                  * to happen immediately, so let's make sure....
2217                  * We disable the irq to make sure that a 'real' IRQ doesn't
2218                  * run in parallel with our fake.
2219                  */
2220                 unsigned long flags;
2221
2222                 disable_irq(irq);
2223                 local_irq_save(flags);
2224
2225                 handler(irq, dev_id);
2226
2227                 local_irq_restore(flags);
2228                 enable_irq(irq);
2229         }
2230 #endif
2231         return retval;
2232 }
2233 EXPORT_SYMBOL(request_threaded_irq);
2234
2235 /**
2236  *      request_any_context_irq - allocate an interrupt line
2237  *      @irq: Interrupt line to allocate
2238  *      @handler: Function to be called when the IRQ occurs.
2239  *                Threaded handler for threaded interrupts.
2240  *      @flags: Interrupt type flags
2241  *      @name: An ascii name for the claiming device
2242  *      @dev_id: A cookie passed back to the handler function
2243  *
2244  *      This call allocates interrupt resources and enables the
2245  *      interrupt line and IRQ handling. It selects either a
2246  *      hardirq or threaded handling method depending on the
2247  *      context.
2248  *
2249  *      On failure, it returns a negative value. On success,
2250  *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2251  */
2252 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2253                             unsigned long flags, const char *name, void *dev_id)
2254 {
2255         struct irq_desc *desc;
2256         int ret;
2257
2258         if (irq == IRQ_NOTCONNECTED)
2259                 return -ENOTCONN;
2260
2261         desc = irq_to_desc(irq);
2262         if (!desc)
2263                 return -EINVAL;
2264
2265         if (irq_settings_is_nested_thread(desc)) {
2266                 ret = request_threaded_irq(irq, NULL, handler,
2267                                            flags, name, dev_id);
2268                 return !ret ? IRQC_IS_NESTED : ret;
2269         }
2270
2271         ret = request_irq(irq, handler, flags, name, dev_id);
2272         return !ret ? IRQC_IS_HARDIRQ : ret;
2273 }
2274 EXPORT_SYMBOL_GPL(request_any_context_irq);
2275
2276 /**
2277  *      request_nmi - allocate an interrupt line for NMI delivery
2278  *      @irq: Interrupt line to allocate
2279  *      @handler: Function to be called when the IRQ occurs.
2280  *                Threaded handler for threaded interrupts.
2281  *      @irqflags: Interrupt type flags
2282  *      @name: An ascii name for the claiming device
2283  *      @dev_id: A cookie passed back to the handler function
2284  *
2285  *      This call allocates interrupt resources and enables the
2286  *      interrupt line and IRQ handling. It sets up the IRQ line
2287  *      to be handled as an NMI.
2288  *
2289  *      An interrupt line delivering NMIs cannot be shared and IRQ handling
2290  *      cannot be threaded.
2291  *
2292  *      Interrupt lines requested for NMI delivering must produce per cpu
2293  *      interrupts and have auto enabling setting disabled.
2294  *
2295  *      Dev_id must be globally unique. Normally the address of the
2296  *      device data structure is used as the cookie. Since the handler
2297  *      receives this value it makes sense to use it.
2298  *
2299  *      If the interrupt line cannot be used to deliver NMIs, function
2300  *      will fail and return a negative value.
2301  */
2302 int request_nmi(unsigned int irq, irq_handler_t handler,
2303                 unsigned long irqflags, const char *name, void *dev_id)
2304 {
2305         struct irqaction *action;
2306         struct irq_desc *desc;
2307         unsigned long flags;
2308         int retval;
2309
2310         if (irq == IRQ_NOTCONNECTED)
2311                 return -ENOTCONN;
2312
2313         /* NMI cannot be shared, used for Polling */
2314         if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2315                 return -EINVAL;
2316
2317         if (!(irqflags & IRQF_PERCPU))
2318                 return -EINVAL;
2319
2320         if (!handler)
2321                 return -EINVAL;
2322
2323         desc = irq_to_desc(irq);
2324
2325         if (!desc || (irq_settings_can_autoenable(desc) &&
2326             !(irqflags & IRQF_NO_AUTOEN)) ||
2327             !irq_settings_can_request(desc) ||
2328             WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2329             !irq_supports_nmi(desc))
2330                 return -EINVAL;
2331
2332         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2333         if (!action)
2334                 return -ENOMEM;
2335
2336         action->handler = handler;
2337         action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2338         action->name = name;
2339         action->dev_id = dev_id;
2340
2341         retval = irq_chip_pm_get(&desc->irq_data);
2342         if (retval < 0)
2343                 goto err_out;
2344
2345         retval = __setup_irq(irq, desc, action);
2346         if (retval)
2347                 goto err_irq_setup;
2348
2349         raw_spin_lock_irqsave(&desc->lock, flags);
2350
2351         /* Setup NMI state */
2352         desc->istate |= IRQS_NMI;
2353         retval = irq_nmi_setup(desc);
2354         if (retval) {
2355                 __cleanup_nmi(irq, desc);
2356                 raw_spin_unlock_irqrestore(&desc->lock, flags);
2357                 return -EINVAL;
2358         }
2359
2360         raw_spin_unlock_irqrestore(&desc->lock, flags);
2361
2362         return 0;
2363
2364 err_irq_setup:
2365         irq_chip_pm_put(&desc->irq_data);
2366 err_out:
2367         kfree(action);
2368
2369         return retval;
2370 }
2371
2372 void enable_percpu_irq(unsigned int irq, unsigned int type)
2373 {
2374         unsigned int cpu = smp_processor_id();
2375         unsigned long flags;
2376         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2377
2378         if (!desc)
2379                 return;
2380
2381         /*
2382          * If the trigger type is not specified by the caller, then
2383          * use the default for this interrupt.
2384          */
2385         type &= IRQ_TYPE_SENSE_MASK;
2386         if (type == IRQ_TYPE_NONE)
2387                 type = irqd_get_trigger_type(&desc->irq_data);
2388
2389         if (type != IRQ_TYPE_NONE) {
2390                 int ret;
2391
2392                 ret = __irq_set_trigger(desc, type);
2393
2394                 if (ret) {
2395                         WARN(1, "failed to set type for IRQ%d\n", irq);
2396                         goto out;
2397                 }
2398         }
2399
2400         irq_percpu_enable(desc, cpu);
2401 out:
2402         irq_put_desc_unlock(desc, flags);
2403 }
2404 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2405
2406 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2407 {
2408         enable_percpu_irq(irq, type);
2409 }
2410
2411 /**
2412  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2413  * @irq:        Linux irq number to check for
2414  *
2415  * Must be called from a non migratable context. Returns the enable
2416  * state of a per cpu interrupt on the current cpu.
2417  */
2418 bool irq_percpu_is_enabled(unsigned int irq)
2419 {
2420         unsigned int cpu = smp_processor_id();
2421         struct irq_desc *desc;
2422         unsigned long flags;
2423         bool is_enabled;
2424
2425         desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2426         if (!desc)
2427                 return false;
2428
2429         is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2430         irq_put_desc_unlock(desc, flags);
2431
2432         return is_enabled;
2433 }
2434 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2435
2436 void disable_percpu_irq(unsigned int irq)
2437 {
2438         unsigned int cpu = smp_processor_id();
2439         unsigned long flags;
2440         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2441
2442         if (!desc)
2443                 return;
2444
2445         irq_percpu_disable(desc, cpu);
2446         irq_put_desc_unlock(desc, flags);
2447 }
2448 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2449
2450 void disable_percpu_nmi(unsigned int irq)
2451 {
2452         disable_percpu_irq(irq);
2453 }
2454
2455 /*
2456  * Internal function to unregister a percpu irqaction.
2457  */
2458 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2459 {
2460         struct irq_desc *desc = irq_to_desc(irq);
2461         struct irqaction *action;
2462         unsigned long flags;
2463
2464         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2465
2466         if (!desc)
2467                 return NULL;
2468
2469         raw_spin_lock_irqsave(&desc->lock, flags);
2470
2471         action = desc->action;
2472         if (!action || action->percpu_dev_id != dev_id) {
2473                 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2474                 goto bad;
2475         }
2476
2477         if (!cpumask_empty(desc->percpu_enabled)) {
2478                 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2479                      irq, cpumask_first(desc->percpu_enabled));
2480                 goto bad;
2481         }
2482
2483         /* Found it - now remove it from the list of entries: */
2484         desc->action = NULL;
2485
2486         desc->istate &= ~IRQS_NMI;
2487
2488         raw_spin_unlock_irqrestore(&desc->lock, flags);
2489
2490         unregister_handler_proc(irq, action);
2491
2492         irq_chip_pm_put(&desc->irq_data);
2493         module_put(desc->owner);
2494         return action;
2495
2496 bad:
2497         raw_spin_unlock_irqrestore(&desc->lock, flags);
2498         return NULL;
2499 }
2500
2501 /**
2502  *      remove_percpu_irq - free a per-cpu interrupt
2503  *      @irq: Interrupt line to free
2504  *      @act: irqaction for the interrupt
2505  *
2506  * Used to remove interrupts statically setup by the early boot process.
2507  */
2508 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2509 {
2510         struct irq_desc *desc = irq_to_desc(irq);
2511
2512         if (desc && irq_settings_is_per_cpu_devid(desc))
2513             __free_percpu_irq(irq, act->percpu_dev_id);
2514 }
2515
2516 /**
2517  *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2518  *      @irq: Interrupt line to free
2519  *      @dev_id: Device identity to free
2520  *
2521  *      Remove a percpu interrupt handler. The handler is removed, but
2522  *      the interrupt line is not disabled. This must be done on each
2523  *      CPU before calling this function. The function does not return
2524  *      until any executing interrupts for this IRQ have completed.
2525  *
2526  *      This function must not be called from interrupt context.
2527  */
2528 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2529 {
2530         struct irq_desc *desc = irq_to_desc(irq);
2531
2532         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2533                 return;
2534
2535         chip_bus_lock(desc);
2536         kfree(__free_percpu_irq(irq, dev_id));
2537         chip_bus_sync_unlock(desc);
2538 }
2539 EXPORT_SYMBOL_GPL(free_percpu_irq);
2540
2541 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2542 {
2543         struct irq_desc *desc = irq_to_desc(irq);
2544
2545         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2546                 return;
2547
2548         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2549                 return;
2550
2551         kfree(__free_percpu_irq(irq, dev_id));
2552 }
2553
2554 /**
2555  *      setup_percpu_irq - setup a per-cpu interrupt
2556  *      @irq: Interrupt line to setup
2557  *      @act: irqaction for the interrupt
2558  *
2559  * Used to statically setup per-cpu interrupts in the early boot process.
2560  */
2561 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2562 {
2563         struct irq_desc *desc = irq_to_desc(irq);
2564         int retval;
2565
2566         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2567                 return -EINVAL;
2568
2569         retval = irq_chip_pm_get(&desc->irq_data);
2570         if (retval < 0)
2571                 return retval;
2572
2573         retval = __setup_irq(irq, desc, act);
2574
2575         if (retval)
2576                 irq_chip_pm_put(&desc->irq_data);
2577
2578         return retval;
2579 }
2580
2581 /**
2582  *      __request_percpu_irq - allocate a percpu interrupt line
2583  *      @irq: Interrupt line to allocate
2584  *      @handler: Function to be called when the IRQ occurs.
2585  *      @flags: Interrupt type flags (IRQF_TIMER only)
2586  *      @devname: An ascii name for the claiming device
2587  *      @dev_id: A percpu cookie passed back to the handler function
2588  *
2589  *      This call allocates interrupt resources and enables the
2590  *      interrupt on the local CPU. If the interrupt is supposed to be
2591  *      enabled on other CPUs, it has to be done on each CPU using
2592  *      enable_percpu_irq().
2593  *
2594  *      Dev_id must be globally unique. It is a per-cpu variable, and
2595  *      the handler gets called with the interrupted CPU's instance of
2596  *      that variable.
2597  */
2598 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2599                          unsigned long flags, const char *devname,
2600                          void __percpu *dev_id)
2601 {
2602         struct irqaction *action;
2603         struct irq_desc *desc;
2604         int retval;
2605
2606         if (!dev_id)
2607                 return -EINVAL;
2608
2609         desc = irq_to_desc(irq);
2610         if (!desc || !irq_settings_can_request(desc) ||
2611             !irq_settings_is_per_cpu_devid(desc))
2612                 return -EINVAL;
2613
2614         if (flags && flags != IRQF_TIMER)
2615                 return -EINVAL;
2616
2617         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2618         if (!action)
2619                 return -ENOMEM;
2620
2621         action->handler = handler;
2622         action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2623         action->name = devname;
2624         action->percpu_dev_id = dev_id;
2625
2626         retval = irq_chip_pm_get(&desc->irq_data);
2627         if (retval < 0) {
2628                 kfree(action);
2629                 return retval;
2630         }
2631
2632         retval = __setup_irq(irq, desc, action);
2633
2634         if (retval) {
2635                 irq_chip_pm_put(&desc->irq_data);
2636                 kfree(action);
2637         }
2638
2639         return retval;
2640 }
2641 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2642
2643 /**
2644  *      request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2645  *      @irq: Interrupt line to allocate
2646  *      @handler: Function to be called when the IRQ occurs.
2647  *      @name: An ascii name for the claiming device
2648  *      @dev_id: A percpu cookie passed back to the handler function
2649  *
2650  *      This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2651  *      have to be setup on each CPU by calling prepare_percpu_nmi() before
2652  *      being enabled on the same CPU by using enable_percpu_nmi().
2653  *
2654  *      Dev_id must be globally unique. It is a per-cpu variable, and
2655  *      the handler gets called with the interrupted CPU's instance of
2656  *      that variable.
2657  *
2658  *      Interrupt lines requested for NMI delivering should have auto enabling
2659  *      setting disabled.
2660  *
2661  *      If the interrupt line cannot be used to deliver NMIs, function
2662  *      will fail returning a negative value.
2663  */
2664 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2665                        const char *name, void __percpu *dev_id)
2666 {
2667         struct irqaction *action;
2668         struct irq_desc *desc;
2669         unsigned long flags;
2670         int retval;
2671
2672         if (!handler)
2673                 return -EINVAL;
2674
2675         desc = irq_to_desc(irq);
2676
2677         if (!desc || !irq_settings_can_request(desc) ||
2678             !irq_settings_is_per_cpu_devid(desc) ||
2679             irq_settings_can_autoenable(desc) ||
2680             !irq_supports_nmi(desc))
2681                 return -EINVAL;
2682
2683         /* The line cannot already be NMI */
2684         if (desc->istate & IRQS_NMI)
2685                 return -EINVAL;
2686
2687         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2688         if (!action)
2689                 return -ENOMEM;
2690
2691         action->handler = handler;
2692         action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2693                 | IRQF_NOBALANCING;
2694         action->name = name;
2695         action->percpu_dev_id = dev_id;
2696
2697         retval = irq_chip_pm_get(&desc->irq_data);
2698         if (retval < 0)
2699                 goto err_out;
2700
2701         retval = __setup_irq(irq, desc, action);
2702         if (retval)
2703                 goto err_irq_setup;
2704
2705         raw_spin_lock_irqsave(&desc->lock, flags);
2706         desc->istate |= IRQS_NMI;
2707         raw_spin_unlock_irqrestore(&desc->lock, flags);
2708
2709         return 0;
2710
2711 err_irq_setup:
2712         irq_chip_pm_put(&desc->irq_data);
2713 err_out:
2714         kfree(action);
2715
2716         return retval;
2717 }
2718
2719 /**
2720  *      prepare_percpu_nmi - performs CPU local setup for NMI delivery
2721  *      @irq: Interrupt line to prepare for NMI delivery
2722  *
2723  *      This call prepares an interrupt line to deliver NMI on the current CPU,
2724  *      before that interrupt line gets enabled with enable_percpu_nmi().
2725  *
2726  *      As a CPU local operation, this should be called from non-preemptible
2727  *      context.
2728  *
2729  *      If the interrupt line cannot be used to deliver NMIs, function
2730  *      will fail returning a negative value.
2731  */
2732 int prepare_percpu_nmi(unsigned int irq)
2733 {
2734         unsigned long flags;
2735         struct irq_desc *desc;
2736         int ret = 0;
2737
2738         WARN_ON(preemptible());
2739
2740         desc = irq_get_desc_lock(irq, &flags,
2741                                  IRQ_GET_DESC_CHECK_PERCPU);
2742         if (!desc)
2743                 return -EINVAL;
2744
2745         if (WARN(!(desc->istate & IRQS_NMI),
2746                  KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2747                  irq)) {
2748                 ret = -EINVAL;
2749                 goto out;
2750         }
2751
2752         ret = irq_nmi_setup(desc);
2753         if (ret) {
2754                 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2755                 goto out;
2756         }
2757
2758 out:
2759         irq_put_desc_unlock(desc, flags);
2760         return ret;
2761 }
2762
2763 /**
2764  *      teardown_percpu_nmi - undoes NMI setup of IRQ line
2765  *      @irq: Interrupt line from which CPU local NMI configuration should be
2766  *            removed
2767  *
2768  *      This call undoes the setup done by prepare_percpu_nmi().
2769  *
2770  *      IRQ line should not be enabled for the current CPU.
2771  *
2772  *      As a CPU local operation, this should be called from non-preemptible
2773  *      context.
2774  */
2775 void teardown_percpu_nmi(unsigned int irq)
2776 {
2777         unsigned long flags;
2778         struct irq_desc *desc;
2779
2780         WARN_ON(preemptible());
2781
2782         desc = irq_get_desc_lock(irq, &flags,
2783                                  IRQ_GET_DESC_CHECK_PERCPU);
2784         if (!desc)
2785                 return;
2786
2787         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2788                 goto out;
2789
2790         irq_nmi_teardown(desc);
2791 out:
2792         irq_put_desc_unlock(desc, flags);
2793 }
2794
2795 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2796                             bool *state)
2797 {
2798         struct irq_chip *chip;
2799         int err = -EINVAL;
2800
2801         do {
2802                 chip = irq_data_get_irq_chip(data);
2803                 if (WARN_ON_ONCE(!chip))
2804                         return -ENODEV;
2805                 if (chip->irq_get_irqchip_state)
2806                         break;
2807 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2808                 data = data->parent_data;
2809 #else
2810                 data = NULL;
2811 #endif
2812         } while (data);
2813
2814         if (data)
2815                 err = chip->irq_get_irqchip_state(data, which, state);
2816         return err;
2817 }
2818
2819 /**
2820  *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2821  *      @irq: Interrupt line that is forwarded to a VM
2822  *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2823  *      @state: a pointer to a boolean where the state is to be stored
2824  *
2825  *      This call snapshots the internal irqchip state of an
2826  *      interrupt, returning into @state the bit corresponding to
2827  *      stage @which
2828  *
2829  *      This function should be called with preemption disabled if the
2830  *      interrupt controller has per-cpu registers.
2831  */
2832 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2833                           bool *state)
2834 {
2835         struct irq_desc *desc;
2836         struct irq_data *data;
2837         unsigned long flags;
2838         int err = -EINVAL;
2839
2840         desc = irq_get_desc_buslock(irq, &flags, 0);
2841         if (!desc)
2842                 return err;
2843
2844         data = irq_desc_get_irq_data(desc);
2845
2846         err = __irq_get_irqchip_state(data, which, state);
2847
2848         irq_put_desc_busunlock(desc, flags);
2849         return err;
2850 }
2851 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2852
2853 /**
2854  *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2855  *      @irq: Interrupt line that is forwarded to a VM
2856  *      @which: State to be restored (one of IRQCHIP_STATE_*)
2857  *      @val: Value corresponding to @which
2858  *
2859  *      This call sets the internal irqchip state of an interrupt,
2860  *      depending on the value of @which.
2861  *
2862  *      This function should be called with migration disabled if the
2863  *      interrupt controller has per-cpu registers.
2864  */
2865 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2866                           bool val)
2867 {
2868         struct irq_desc *desc;
2869         struct irq_data *data;
2870         struct irq_chip *chip;
2871         unsigned long flags;
2872         int err = -EINVAL;
2873
2874         desc = irq_get_desc_buslock(irq, &flags, 0);
2875         if (!desc)
2876                 return err;
2877
2878         data = irq_desc_get_irq_data(desc);
2879
2880         do {
2881                 chip = irq_data_get_irq_chip(data);
2882                 if (WARN_ON_ONCE(!chip)) {
2883                         err = -ENODEV;
2884                         goto out_unlock;
2885                 }
2886                 if (chip->irq_set_irqchip_state)
2887                         break;
2888 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2889                 data = data->parent_data;
2890 #else
2891                 data = NULL;
2892 #endif
2893         } while (data);
2894
2895         if (data)
2896                 err = chip->irq_set_irqchip_state(data, which, val);
2897
2898 out_unlock:
2899         irq_put_desc_busunlock(desc, flags);
2900         return err;
2901 }
2902 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2903
2904 /**
2905  * irq_has_action - Check whether an interrupt is requested
2906  * @irq:        The linux irq number
2907  *
2908  * Returns: A snapshot of the current state
2909  */
2910 bool irq_has_action(unsigned int irq)
2911 {
2912         bool res;
2913
2914         rcu_read_lock();
2915         res = irq_desc_has_action(irq_to_desc(irq));
2916         rcu_read_unlock();
2917         return res;
2918 }
2919 EXPORT_SYMBOL_GPL(irq_has_action);
2920
2921 /**
2922  * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2923  * @irq:        The linux irq number
2924  * @bitmask:    The bitmask to evaluate
2925  *
2926  * Returns: True if one of the bits in @bitmask is set
2927  */
2928 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2929 {
2930         struct irq_desc *desc;
2931         bool res = false;
2932
2933         rcu_read_lock();
2934         desc = irq_to_desc(irq);
2935         if (desc)
2936                 res = !!(desc->status_use_accessors & bitmask);
2937         rcu_read_unlock();
2938         return res;
2939 }
2940 EXPORT_SYMBOL_GPL(irq_check_status_bit);