genirq: Add might_sleep() to disable_irq()
[linux-block.git] / kernel / irq / manage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29
30 static int __init setup_forced_irqthreads(char *arg)
31 {
32         static_branch_enable(&force_irqthreads_key);
33         return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37
38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40         struct irq_data *irqd = irq_desc_get_irq_data(desc);
41         bool inprogress;
42
43         do {
44                 unsigned long flags;
45
46                 /*
47                  * Wait until we're out of the critical section.  This might
48                  * give the wrong answer due to the lack of memory barriers.
49                  */
50                 while (irqd_irq_inprogress(&desc->irq_data))
51                         cpu_relax();
52
53                 /* Ok, that indicated we're done: double-check carefully. */
54                 raw_spin_lock_irqsave(&desc->lock, flags);
55                 inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57                 /*
58                  * If requested and supported, check at the chip whether it
59                  * is in flight at the hardware level, i.e. already pending
60                  * in a CPU and waiting for service and acknowledge.
61                  */
62                 if (!inprogress && sync_chip) {
63                         /*
64                          * Ignore the return code. inprogress is only updated
65                          * when the chip supports it.
66                          */
67                         __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68                                                 &inprogress);
69                 }
70                 raw_spin_unlock_irqrestore(&desc->lock, flags);
71
72                 /* Oops, that failed? */
73         } while (inprogress);
74 }
75
76 /**
77  *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78  *      @irq: interrupt number to wait for
79  *
80  *      This function waits for any pending hard IRQ handlers for this
81  *      interrupt to complete before returning. If you use this
82  *      function while holding a resource the IRQ handler may need you
83  *      will deadlock. It does not take associated threaded handlers
84  *      into account.
85  *
86  *      Do not use this for shutdown scenarios where you must be sure
87  *      that all parts (hardirq and threaded handler) have completed.
88  *
89  *      Returns: false if a threaded handler is active.
90  *
91  *      This function may be called - with care - from IRQ context.
92  *
93  *      It does not check whether there is an interrupt in flight at the
94  *      hardware level, but not serviced yet, as this might deadlock when
95  *      called with interrupts disabled and the target CPU of the interrupt
96  *      is the current CPU.
97  */
98 bool synchronize_hardirq(unsigned int irq)
99 {
100         struct irq_desc *desc = irq_to_desc(irq);
101
102         if (desc) {
103                 __synchronize_hardirq(desc, false);
104                 return !atomic_read(&desc->threads_active);
105         }
106
107         return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110
111 /**
112  *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
113  *      @irq: interrupt number to wait for
114  *
115  *      This function waits for any pending IRQ handlers for this interrupt
116  *      to complete before returning. If you use this function while
117  *      holding a resource the IRQ handler may need you will deadlock.
118  *
119  *      Can only be called from preemptible code as it might sleep when
120  *      an interrupt thread is associated to @irq.
121  *
122  *      It optionally makes sure (when the irq chip supports that method)
123  *      that the interrupt is not pending in any CPU and waiting for
124  *      service.
125  */
126 void synchronize_irq(unsigned int irq)
127 {
128         struct irq_desc *desc = irq_to_desc(irq);
129
130         if (desc) {
131                 __synchronize_hardirq(desc, true);
132                 /*
133                  * We made sure that no hardirq handler is
134                  * running. Now verify that no threaded handlers are
135                  * active.
136                  */
137                 wait_event(desc->wait_for_threads,
138                            !atomic_read(&desc->threads_active));
139         }
140 }
141 EXPORT_SYMBOL(synchronize_irq);
142
143 #ifdef CONFIG_SMP
144 cpumask_var_t irq_default_affinity;
145
146 static bool __irq_can_set_affinity(struct irq_desc *desc)
147 {
148         if (!desc || !irqd_can_balance(&desc->irq_data) ||
149             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
150                 return false;
151         return true;
152 }
153
154 /**
155  *      irq_can_set_affinity - Check if the affinity of a given irq can be set
156  *      @irq:           Interrupt to check
157  *
158  */
159 int irq_can_set_affinity(unsigned int irq)
160 {
161         return __irq_can_set_affinity(irq_to_desc(irq));
162 }
163
164 /**
165  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
166  * @irq:        Interrupt to check
167  *
168  * Like irq_can_set_affinity() above, but additionally checks for the
169  * AFFINITY_MANAGED flag.
170  */
171 bool irq_can_set_affinity_usr(unsigned int irq)
172 {
173         struct irq_desc *desc = irq_to_desc(irq);
174
175         return __irq_can_set_affinity(desc) &&
176                 !irqd_affinity_is_managed(&desc->irq_data);
177 }
178
179 /**
180  *      irq_set_thread_affinity - Notify irq threads to adjust affinity
181  *      @desc:          irq descriptor which has affinity changed
182  *
183  *      We just set IRQTF_AFFINITY and delegate the affinity setting
184  *      to the interrupt thread itself. We can not call
185  *      set_cpus_allowed_ptr() here as we hold desc->lock and this
186  *      code can be called from hard interrupt context.
187  */
188 void irq_set_thread_affinity(struct irq_desc *desc)
189 {
190         struct irqaction *action;
191
192         for_each_action_of_desc(desc, action)
193                 if (action->thread)
194                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
195 }
196
197 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
198 static void irq_validate_effective_affinity(struct irq_data *data)
199 {
200         const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
201         struct irq_chip *chip = irq_data_get_irq_chip(data);
202
203         if (!cpumask_empty(m))
204                 return;
205         pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
206                      chip->name, data->irq);
207 }
208 #else
209 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
210 #endif
211
212 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
213                         bool force)
214 {
215         struct irq_desc *desc = irq_data_to_desc(data);
216         struct irq_chip *chip = irq_data_get_irq_chip(data);
217         const struct cpumask  *prog_mask;
218         int ret;
219
220         static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
221         static struct cpumask tmp_mask;
222
223         if (!chip || !chip->irq_set_affinity)
224                 return -EINVAL;
225
226         raw_spin_lock(&tmp_mask_lock);
227         /*
228          * If this is a managed interrupt and housekeeping is enabled on
229          * it check whether the requested affinity mask intersects with
230          * a housekeeping CPU. If so, then remove the isolated CPUs from
231          * the mask and just keep the housekeeping CPU(s). This prevents
232          * the affinity setter from routing the interrupt to an isolated
233          * CPU to avoid that I/O submitted from a housekeeping CPU causes
234          * interrupts on an isolated one.
235          *
236          * If the masks do not intersect or include online CPU(s) then
237          * keep the requested mask. The isolated target CPUs are only
238          * receiving interrupts when the I/O operation was submitted
239          * directly from them.
240          *
241          * If all housekeeping CPUs in the affinity mask are offline, the
242          * interrupt will be migrated by the CPU hotplug code once a
243          * housekeeping CPU which belongs to the affinity mask comes
244          * online.
245          */
246         if (irqd_affinity_is_managed(data) &&
247             housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
248                 const struct cpumask *hk_mask;
249
250                 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
251
252                 cpumask_and(&tmp_mask, mask, hk_mask);
253                 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
254                         prog_mask = mask;
255                 else
256                         prog_mask = &tmp_mask;
257         } else {
258                 prog_mask = mask;
259         }
260
261         /*
262          * Make sure we only provide online CPUs to the irqchip,
263          * unless we are being asked to force the affinity (in which
264          * case we do as we are told).
265          */
266         cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
267         if (!force && !cpumask_empty(&tmp_mask))
268                 ret = chip->irq_set_affinity(data, &tmp_mask, force);
269         else if (force)
270                 ret = chip->irq_set_affinity(data, mask, force);
271         else
272                 ret = -EINVAL;
273
274         raw_spin_unlock(&tmp_mask_lock);
275
276         switch (ret) {
277         case IRQ_SET_MASK_OK:
278         case IRQ_SET_MASK_OK_DONE:
279                 cpumask_copy(desc->irq_common_data.affinity, mask);
280                 fallthrough;
281         case IRQ_SET_MASK_OK_NOCOPY:
282                 irq_validate_effective_affinity(data);
283                 irq_set_thread_affinity(desc);
284                 ret = 0;
285         }
286
287         return ret;
288 }
289
290 #ifdef CONFIG_GENERIC_PENDING_IRQ
291 static inline int irq_set_affinity_pending(struct irq_data *data,
292                                            const struct cpumask *dest)
293 {
294         struct irq_desc *desc = irq_data_to_desc(data);
295
296         irqd_set_move_pending(data);
297         irq_copy_pending(desc, dest);
298         return 0;
299 }
300 #else
301 static inline int irq_set_affinity_pending(struct irq_data *data,
302                                            const struct cpumask *dest)
303 {
304         return -EBUSY;
305 }
306 #endif
307
308 static int irq_try_set_affinity(struct irq_data *data,
309                                 const struct cpumask *dest, bool force)
310 {
311         int ret = irq_do_set_affinity(data, dest, force);
312
313         /*
314          * In case that the underlying vector management is busy and the
315          * architecture supports the generic pending mechanism then utilize
316          * this to avoid returning an error to user space.
317          */
318         if (ret == -EBUSY && !force)
319                 ret = irq_set_affinity_pending(data, dest);
320         return ret;
321 }
322
323 static bool irq_set_affinity_deactivated(struct irq_data *data,
324                                          const struct cpumask *mask)
325 {
326         struct irq_desc *desc = irq_data_to_desc(data);
327
328         /*
329          * Handle irq chips which can handle affinity only in activated
330          * state correctly
331          *
332          * If the interrupt is not yet activated, just store the affinity
333          * mask and do not call the chip driver at all. On activation the
334          * driver has to make sure anyway that the interrupt is in a
335          * usable state so startup works.
336          */
337         if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
338             irqd_is_activated(data) || !irqd_affinity_on_activate(data))
339                 return false;
340
341         cpumask_copy(desc->irq_common_data.affinity, mask);
342         irq_data_update_effective_affinity(data, mask);
343         irqd_set(data, IRQD_AFFINITY_SET);
344         return true;
345 }
346
347 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
348                             bool force)
349 {
350         struct irq_chip *chip = irq_data_get_irq_chip(data);
351         struct irq_desc *desc = irq_data_to_desc(data);
352         int ret = 0;
353
354         if (!chip || !chip->irq_set_affinity)
355                 return -EINVAL;
356
357         if (irq_set_affinity_deactivated(data, mask))
358                 return 0;
359
360         if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
361                 ret = irq_try_set_affinity(data, mask, force);
362         } else {
363                 irqd_set_move_pending(data);
364                 irq_copy_pending(desc, mask);
365         }
366
367         if (desc->affinity_notify) {
368                 kref_get(&desc->affinity_notify->kref);
369                 if (!schedule_work(&desc->affinity_notify->work)) {
370                         /* Work was already scheduled, drop our extra ref */
371                         kref_put(&desc->affinity_notify->kref,
372                                  desc->affinity_notify->release);
373                 }
374         }
375         irqd_set(data, IRQD_AFFINITY_SET);
376
377         return ret;
378 }
379
380 /**
381  * irq_update_affinity_desc - Update affinity management for an interrupt
382  * @irq:        The interrupt number to update
383  * @affinity:   Pointer to the affinity descriptor
384  *
385  * This interface can be used to configure the affinity management of
386  * interrupts which have been allocated already.
387  *
388  * There are certain limitations on when it may be used - attempts to use it
389  * for when the kernel is configured for generic IRQ reservation mode (in
390  * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
391  * managed/non-managed interrupt accounting. In addition, attempts to use it on
392  * an interrupt which is already started or which has already been configured
393  * as managed will also fail, as these mean invalid init state or double init.
394  */
395 int irq_update_affinity_desc(unsigned int irq,
396                              struct irq_affinity_desc *affinity)
397 {
398         struct irq_desc *desc;
399         unsigned long flags;
400         bool activated;
401         int ret = 0;
402
403         /*
404          * Supporting this with the reservation scheme used by x86 needs
405          * some more thought. Fail it for now.
406          */
407         if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
408                 return -EOPNOTSUPP;
409
410         desc = irq_get_desc_buslock(irq, &flags, 0);
411         if (!desc)
412                 return -EINVAL;
413
414         /* Requires the interrupt to be shut down */
415         if (irqd_is_started(&desc->irq_data)) {
416                 ret = -EBUSY;
417                 goto out_unlock;
418         }
419
420         /* Interrupts which are already managed cannot be modified */
421         if (irqd_affinity_is_managed(&desc->irq_data)) {
422                 ret = -EBUSY;
423                 goto out_unlock;
424         }
425
426         /*
427          * Deactivate the interrupt. That's required to undo
428          * anything an earlier activation has established.
429          */
430         activated = irqd_is_activated(&desc->irq_data);
431         if (activated)
432                 irq_domain_deactivate_irq(&desc->irq_data);
433
434         if (affinity->is_managed) {
435                 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
436                 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
437         }
438
439         cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
440
441         /* Restore the activation state */
442         if (activated)
443                 irq_domain_activate_irq(&desc->irq_data, false);
444
445 out_unlock:
446         irq_put_desc_busunlock(desc, flags);
447         return ret;
448 }
449
450 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
451                               bool force)
452 {
453         struct irq_desc *desc = irq_to_desc(irq);
454         unsigned long flags;
455         int ret;
456
457         if (!desc)
458                 return -EINVAL;
459
460         raw_spin_lock_irqsave(&desc->lock, flags);
461         ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
462         raw_spin_unlock_irqrestore(&desc->lock, flags);
463         return ret;
464 }
465
466 /**
467  * irq_set_affinity - Set the irq affinity of a given irq
468  * @irq:        Interrupt to set affinity
469  * @cpumask:    cpumask
470  *
471  * Fails if cpumask does not contain an online CPU
472  */
473 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
474 {
475         return __irq_set_affinity(irq, cpumask, false);
476 }
477 EXPORT_SYMBOL_GPL(irq_set_affinity);
478
479 /**
480  * irq_force_affinity - Force the irq affinity of a given irq
481  * @irq:        Interrupt to set affinity
482  * @cpumask:    cpumask
483  *
484  * Same as irq_set_affinity, but without checking the mask against
485  * online cpus.
486  *
487  * Solely for low level cpu hotplug code, where we need to make per
488  * cpu interrupts affine before the cpu becomes online.
489  */
490 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
491 {
492         return __irq_set_affinity(irq, cpumask, true);
493 }
494 EXPORT_SYMBOL_GPL(irq_force_affinity);
495
496 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
497                               bool setaffinity)
498 {
499         unsigned long flags;
500         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
501
502         if (!desc)
503                 return -EINVAL;
504         desc->affinity_hint = m;
505         irq_put_desc_unlock(desc, flags);
506         if (m && setaffinity)
507                 __irq_set_affinity(irq, m, false);
508         return 0;
509 }
510 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
511
512 static void irq_affinity_notify(struct work_struct *work)
513 {
514         struct irq_affinity_notify *notify =
515                 container_of(work, struct irq_affinity_notify, work);
516         struct irq_desc *desc = irq_to_desc(notify->irq);
517         cpumask_var_t cpumask;
518         unsigned long flags;
519
520         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
521                 goto out;
522
523         raw_spin_lock_irqsave(&desc->lock, flags);
524         if (irq_move_pending(&desc->irq_data))
525                 irq_get_pending(cpumask, desc);
526         else
527                 cpumask_copy(cpumask, desc->irq_common_data.affinity);
528         raw_spin_unlock_irqrestore(&desc->lock, flags);
529
530         notify->notify(notify, cpumask);
531
532         free_cpumask_var(cpumask);
533 out:
534         kref_put(&notify->kref, notify->release);
535 }
536
537 /**
538  *      irq_set_affinity_notifier - control notification of IRQ affinity changes
539  *      @irq:           Interrupt for which to enable/disable notification
540  *      @notify:        Context for notification, or %NULL to disable
541  *                      notification.  Function pointers must be initialised;
542  *                      the other fields will be initialised by this function.
543  *
544  *      Must be called in process context.  Notification may only be enabled
545  *      after the IRQ is allocated and must be disabled before the IRQ is
546  *      freed using free_irq().
547  */
548 int
549 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
550 {
551         struct irq_desc *desc = irq_to_desc(irq);
552         struct irq_affinity_notify *old_notify;
553         unsigned long flags;
554
555         /* The release function is promised process context */
556         might_sleep();
557
558         if (!desc || desc->istate & IRQS_NMI)
559                 return -EINVAL;
560
561         /* Complete initialisation of *notify */
562         if (notify) {
563                 notify->irq = irq;
564                 kref_init(&notify->kref);
565                 INIT_WORK(&notify->work, irq_affinity_notify);
566         }
567
568         raw_spin_lock_irqsave(&desc->lock, flags);
569         old_notify = desc->affinity_notify;
570         desc->affinity_notify = notify;
571         raw_spin_unlock_irqrestore(&desc->lock, flags);
572
573         if (old_notify) {
574                 if (cancel_work_sync(&old_notify->work)) {
575                         /* Pending work had a ref, put that one too */
576                         kref_put(&old_notify->kref, old_notify->release);
577                 }
578                 kref_put(&old_notify->kref, old_notify->release);
579         }
580
581         return 0;
582 }
583 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
584
585 #ifndef CONFIG_AUTO_IRQ_AFFINITY
586 /*
587  * Generic version of the affinity autoselector.
588  */
589 int irq_setup_affinity(struct irq_desc *desc)
590 {
591         struct cpumask *set = irq_default_affinity;
592         int ret, node = irq_desc_get_node(desc);
593         static DEFINE_RAW_SPINLOCK(mask_lock);
594         static struct cpumask mask;
595
596         /* Excludes PER_CPU and NO_BALANCE interrupts */
597         if (!__irq_can_set_affinity(desc))
598                 return 0;
599
600         raw_spin_lock(&mask_lock);
601         /*
602          * Preserve the managed affinity setting and a userspace affinity
603          * setup, but make sure that one of the targets is online.
604          */
605         if (irqd_affinity_is_managed(&desc->irq_data) ||
606             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
607                 if (cpumask_intersects(desc->irq_common_data.affinity,
608                                        cpu_online_mask))
609                         set = desc->irq_common_data.affinity;
610                 else
611                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
612         }
613
614         cpumask_and(&mask, cpu_online_mask, set);
615         if (cpumask_empty(&mask))
616                 cpumask_copy(&mask, cpu_online_mask);
617
618         if (node != NUMA_NO_NODE) {
619                 const struct cpumask *nodemask = cpumask_of_node(node);
620
621                 /* make sure at least one of the cpus in nodemask is online */
622                 if (cpumask_intersects(&mask, nodemask))
623                         cpumask_and(&mask, &mask, nodemask);
624         }
625         ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
626         raw_spin_unlock(&mask_lock);
627         return ret;
628 }
629 #else
630 /* Wrapper for ALPHA specific affinity selector magic */
631 int irq_setup_affinity(struct irq_desc *desc)
632 {
633         return irq_select_affinity(irq_desc_get_irq(desc));
634 }
635 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
636 #endif /* CONFIG_SMP */
637
638
639 /**
640  *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
641  *      @irq: interrupt number to set affinity
642  *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
643  *                  specific data for percpu_devid interrupts
644  *
645  *      This function uses the vCPU specific data to set the vCPU
646  *      affinity for an irq. The vCPU specific data is passed from
647  *      outside, such as KVM. One example code path is as below:
648  *      KVM -> IOMMU -> irq_set_vcpu_affinity().
649  */
650 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
651 {
652         unsigned long flags;
653         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
654         struct irq_data *data;
655         struct irq_chip *chip;
656         int ret = -ENOSYS;
657
658         if (!desc)
659                 return -EINVAL;
660
661         data = irq_desc_get_irq_data(desc);
662         do {
663                 chip = irq_data_get_irq_chip(data);
664                 if (chip && chip->irq_set_vcpu_affinity)
665                         break;
666 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
667                 data = data->parent_data;
668 #else
669                 data = NULL;
670 #endif
671         } while (data);
672
673         if (data)
674                 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
675         irq_put_desc_unlock(desc, flags);
676
677         return ret;
678 }
679 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
680
681 void __disable_irq(struct irq_desc *desc)
682 {
683         if (!desc->depth++)
684                 irq_disable(desc);
685 }
686
687 static int __disable_irq_nosync(unsigned int irq)
688 {
689         unsigned long flags;
690         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
691
692         if (!desc)
693                 return -EINVAL;
694         __disable_irq(desc);
695         irq_put_desc_busunlock(desc, flags);
696         return 0;
697 }
698
699 /**
700  *      disable_irq_nosync - disable an irq without waiting
701  *      @irq: Interrupt to disable
702  *
703  *      Disable the selected interrupt line.  Disables and Enables are
704  *      nested.
705  *      Unlike disable_irq(), this function does not ensure existing
706  *      instances of the IRQ handler have completed before returning.
707  *
708  *      This function may be called from IRQ context.
709  */
710 void disable_irq_nosync(unsigned int irq)
711 {
712         __disable_irq_nosync(irq);
713 }
714 EXPORT_SYMBOL(disable_irq_nosync);
715
716 /**
717  *      disable_irq - disable an irq and wait for completion
718  *      @irq: Interrupt to disable
719  *
720  *      Disable the selected interrupt line.  Enables and Disables are
721  *      nested.
722  *      This function waits for any pending IRQ handlers for this interrupt
723  *      to complete before returning. If you use this function while
724  *      holding a resource the IRQ handler may need you will deadlock.
725  *
726  *      Can only be called from preemptible code as it might sleep when
727  *      an interrupt thread is associated to @irq.
728  *
729  */
730 void disable_irq(unsigned int irq)
731 {
732         might_sleep();
733         if (!__disable_irq_nosync(irq))
734                 synchronize_irq(irq);
735 }
736 EXPORT_SYMBOL(disable_irq);
737
738 /**
739  *      disable_hardirq - disables an irq and waits for hardirq completion
740  *      @irq: Interrupt to disable
741  *
742  *      Disable the selected interrupt line.  Enables and Disables are
743  *      nested.
744  *      This function waits for any pending hard IRQ handlers for this
745  *      interrupt to complete before returning. If you use this function while
746  *      holding a resource the hard IRQ handler may need you will deadlock.
747  *
748  *      When used to optimistically disable an interrupt from atomic context
749  *      the return value must be checked.
750  *
751  *      Returns: false if a threaded handler is active.
752  *
753  *      This function may be called - with care - from IRQ context.
754  */
755 bool disable_hardirq(unsigned int irq)
756 {
757         if (!__disable_irq_nosync(irq))
758                 return synchronize_hardirq(irq);
759
760         return false;
761 }
762 EXPORT_SYMBOL_GPL(disable_hardirq);
763
764 /**
765  *      disable_nmi_nosync - disable an nmi without waiting
766  *      @irq: Interrupt to disable
767  *
768  *      Disable the selected interrupt line. Disables and enables are
769  *      nested.
770  *      The interrupt to disable must have been requested through request_nmi.
771  *      Unlike disable_nmi(), this function does not ensure existing
772  *      instances of the IRQ handler have completed before returning.
773  */
774 void disable_nmi_nosync(unsigned int irq)
775 {
776         disable_irq_nosync(irq);
777 }
778
779 void __enable_irq(struct irq_desc *desc)
780 {
781         switch (desc->depth) {
782         case 0:
783  err_out:
784                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
785                      irq_desc_get_irq(desc));
786                 break;
787         case 1: {
788                 if (desc->istate & IRQS_SUSPENDED)
789                         goto err_out;
790                 /* Prevent probing on this irq: */
791                 irq_settings_set_noprobe(desc);
792                 /*
793                  * Call irq_startup() not irq_enable() here because the
794                  * interrupt might be marked NOAUTOEN. So irq_startup()
795                  * needs to be invoked when it gets enabled the first
796                  * time. If it was already started up, then irq_startup()
797                  * will invoke irq_enable() under the hood.
798                  */
799                 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
800                 break;
801         }
802         default:
803                 desc->depth--;
804         }
805 }
806
807 /**
808  *      enable_irq - enable handling of an irq
809  *      @irq: Interrupt to enable
810  *
811  *      Undoes the effect of one call to disable_irq().  If this
812  *      matches the last disable, processing of interrupts on this
813  *      IRQ line is re-enabled.
814  *
815  *      This function may be called from IRQ context only when
816  *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
817  */
818 void enable_irq(unsigned int irq)
819 {
820         unsigned long flags;
821         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
822
823         if (!desc)
824                 return;
825         if (WARN(!desc->irq_data.chip,
826                  KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
827                 goto out;
828
829         __enable_irq(desc);
830 out:
831         irq_put_desc_busunlock(desc, flags);
832 }
833 EXPORT_SYMBOL(enable_irq);
834
835 /**
836  *      enable_nmi - enable handling of an nmi
837  *      @irq: Interrupt to enable
838  *
839  *      The interrupt to enable must have been requested through request_nmi.
840  *      Undoes the effect of one call to disable_nmi(). If this
841  *      matches the last disable, processing of interrupts on this
842  *      IRQ line is re-enabled.
843  */
844 void enable_nmi(unsigned int irq)
845 {
846         enable_irq(irq);
847 }
848
849 static int set_irq_wake_real(unsigned int irq, unsigned int on)
850 {
851         struct irq_desc *desc = irq_to_desc(irq);
852         int ret = -ENXIO;
853
854         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
855                 return 0;
856
857         if (desc->irq_data.chip->irq_set_wake)
858                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
859
860         return ret;
861 }
862
863 /**
864  *      irq_set_irq_wake - control irq power management wakeup
865  *      @irq:   interrupt to control
866  *      @on:    enable/disable power management wakeup
867  *
868  *      Enable/disable power management wakeup mode, which is
869  *      disabled by default.  Enables and disables must match,
870  *      just as they match for non-wakeup mode support.
871  *
872  *      Wakeup mode lets this IRQ wake the system from sleep
873  *      states like "suspend to RAM".
874  *
875  *      Note: irq enable/disable state is completely orthogonal
876  *      to the enable/disable state of irq wake. An irq can be
877  *      disabled with disable_irq() and still wake the system as
878  *      long as the irq has wake enabled. If this does not hold,
879  *      then the underlying irq chip and the related driver need
880  *      to be investigated.
881  */
882 int irq_set_irq_wake(unsigned int irq, unsigned int on)
883 {
884         unsigned long flags;
885         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
886         int ret = 0;
887
888         if (!desc)
889                 return -EINVAL;
890
891         /* Don't use NMIs as wake up interrupts please */
892         if (desc->istate & IRQS_NMI) {
893                 ret = -EINVAL;
894                 goto out_unlock;
895         }
896
897         /* wakeup-capable irqs can be shared between drivers that
898          * don't need to have the same sleep mode behaviors.
899          */
900         if (on) {
901                 if (desc->wake_depth++ == 0) {
902                         ret = set_irq_wake_real(irq, on);
903                         if (ret)
904                                 desc->wake_depth = 0;
905                         else
906                                 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
907                 }
908         } else {
909                 if (desc->wake_depth == 0) {
910                         WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
911                 } else if (--desc->wake_depth == 0) {
912                         ret = set_irq_wake_real(irq, on);
913                         if (ret)
914                                 desc->wake_depth = 1;
915                         else
916                                 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
917                 }
918         }
919
920 out_unlock:
921         irq_put_desc_busunlock(desc, flags);
922         return ret;
923 }
924 EXPORT_SYMBOL(irq_set_irq_wake);
925
926 /*
927  * Internal function that tells the architecture code whether a
928  * particular irq has been exclusively allocated or is available
929  * for driver use.
930  */
931 int can_request_irq(unsigned int irq, unsigned long irqflags)
932 {
933         unsigned long flags;
934         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
935         int canrequest = 0;
936
937         if (!desc)
938                 return 0;
939
940         if (irq_settings_can_request(desc)) {
941                 if (!desc->action ||
942                     irqflags & desc->action->flags & IRQF_SHARED)
943                         canrequest = 1;
944         }
945         irq_put_desc_unlock(desc, flags);
946         return canrequest;
947 }
948
949 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
950 {
951         struct irq_chip *chip = desc->irq_data.chip;
952         int ret, unmask = 0;
953
954         if (!chip || !chip->irq_set_type) {
955                 /*
956                  * IRQF_TRIGGER_* but the PIC does not support multiple
957                  * flow-types?
958                  */
959                 pr_debug("No set_type function for IRQ %d (%s)\n",
960                          irq_desc_get_irq(desc),
961                          chip ? (chip->name ? : "unknown") : "unknown");
962                 return 0;
963         }
964
965         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
966                 if (!irqd_irq_masked(&desc->irq_data))
967                         mask_irq(desc);
968                 if (!irqd_irq_disabled(&desc->irq_data))
969                         unmask = 1;
970         }
971
972         /* Mask all flags except trigger mode */
973         flags &= IRQ_TYPE_SENSE_MASK;
974         ret = chip->irq_set_type(&desc->irq_data, flags);
975
976         switch (ret) {
977         case IRQ_SET_MASK_OK:
978         case IRQ_SET_MASK_OK_DONE:
979                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
980                 irqd_set(&desc->irq_data, flags);
981                 fallthrough;
982
983         case IRQ_SET_MASK_OK_NOCOPY:
984                 flags = irqd_get_trigger_type(&desc->irq_data);
985                 irq_settings_set_trigger_mask(desc, flags);
986                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
987                 irq_settings_clr_level(desc);
988                 if (flags & IRQ_TYPE_LEVEL_MASK) {
989                         irq_settings_set_level(desc);
990                         irqd_set(&desc->irq_data, IRQD_LEVEL);
991                 }
992
993                 ret = 0;
994                 break;
995         default:
996                 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
997                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
998         }
999         if (unmask)
1000                 unmask_irq(desc);
1001         return ret;
1002 }
1003
1004 #ifdef CONFIG_HARDIRQS_SW_RESEND
1005 int irq_set_parent(int irq, int parent_irq)
1006 {
1007         unsigned long flags;
1008         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1009
1010         if (!desc)
1011                 return -EINVAL;
1012
1013         desc->parent_irq = parent_irq;
1014
1015         irq_put_desc_unlock(desc, flags);
1016         return 0;
1017 }
1018 EXPORT_SYMBOL_GPL(irq_set_parent);
1019 #endif
1020
1021 /*
1022  * Default primary interrupt handler for threaded interrupts. Is
1023  * assigned as primary handler when request_threaded_irq is called
1024  * with handler == NULL. Useful for oneshot interrupts.
1025  */
1026 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1027 {
1028         return IRQ_WAKE_THREAD;
1029 }
1030
1031 /*
1032  * Primary handler for nested threaded interrupts. Should never be
1033  * called.
1034  */
1035 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1036 {
1037         WARN(1, "Primary handler called for nested irq %d\n", irq);
1038         return IRQ_NONE;
1039 }
1040
1041 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1042 {
1043         WARN(1, "Secondary action handler called for irq %d\n", irq);
1044         return IRQ_NONE;
1045 }
1046
1047 static int irq_wait_for_interrupt(struct irqaction *action)
1048 {
1049         for (;;) {
1050                 set_current_state(TASK_INTERRUPTIBLE);
1051
1052                 if (kthread_should_stop()) {
1053                         /* may need to run one last time */
1054                         if (test_and_clear_bit(IRQTF_RUNTHREAD,
1055                                                &action->thread_flags)) {
1056                                 __set_current_state(TASK_RUNNING);
1057                                 return 0;
1058                         }
1059                         __set_current_state(TASK_RUNNING);
1060                         return -1;
1061                 }
1062
1063                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1064                                        &action->thread_flags)) {
1065                         __set_current_state(TASK_RUNNING);
1066                         return 0;
1067                 }
1068                 schedule();
1069         }
1070 }
1071
1072 /*
1073  * Oneshot interrupts keep the irq line masked until the threaded
1074  * handler finished. unmask if the interrupt has not been disabled and
1075  * is marked MASKED.
1076  */
1077 static void irq_finalize_oneshot(struct irq_desc *desc,
1078                                  struct irqaction *action)
1079 {
1080         if (!(desc->istate & IRQS_ONESHOT) ||
1081             action->handler == irq_forced_secondary_handler)
1082                 return;
1083 again:
1084         chip_bus_lock(desc);
1085         raw_spin_lock_irq(&desc->lock);
1086
1087         /*
1088          * Implausible though it may be we need to protect us against
1089          * the following scenario:
1090          *
1091          * The thread is faster done than the hard interrupt handler
1092          * on the other CPU. If we unmask the irq line then the
1093          * interrupt can come in again and masks the line, leaves due
1094          * to IRQS_INPROGRESS and the irq line is masked forever.
1095          *
1096          * This also serializes the state of shared oneshot handlers
1097          * versus "desc->threads_oneshot |= action->thread_mask;" in
1098          * irq_wake_thread(). See the comment there which explains the
1099          * serialization.
1100          */
1101         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1102                 raw_spin_unlock_irq(&desc->lock);
1103                 chip_bus_sync_unlock(desc);
1104                 cpu_relax();
1105                 goto again;
1106         }
1107
1108         /*
1109          * Now check again, whether the thread should run. Otherwise
1110          * we would clear the threads_oneshot bit of this thread which
1111          * was just set.
1112          */
1113         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1114                 goto out_unlock;
1115
1116         desc->threads_oneshot &= ~action->thread_mask;
1117
1118         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1119             irqd_irq_masked(&desc->irq_data))
1120                 unmask_threaded_irq(desc);
1121
1122 out_unlock:
1123         raw_spin_unlock_irq(&desc->lock);
1124         chip_bus_sync_unlock(desc);
1125 }
1126
1127 #ifdef CONFIG_SMP
1128 /*
1129  * Check whether we need to change the affinity of the interrupt thread.
1130  */
1131 static void
1132 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1133 {
1134         cpumask_var_t mask;
1135         bool valid = true;
1136
1137         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1138                 return;
1139
1140         /*
1141          * In case we are out of memory we set IRQTF_AFFINITY again and
1142          * try again next time
1143          */
1144         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1145                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1146                 return;
1147         }
1148
1149         raw_spin_lock_irq(&desc->lock);
1150         /*
1151          * This code is triggered unconditionally. Check the affinity
1152          * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1153          */
1154         if (cpumask_available(desc->irq_common_data.affinity)) {
1155                 const struct cpumask *m;
1156
1157                 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1158                 cpumask_copy(mask, m);
1159         } else {
1160                 valid = false;
1161         }
1162         raw_spin_unlock_irq(&desc->lock);
1163
1164         if (valid)
1165                 set_cpus_allowed_ptr(current, mask);
1166         free_cpumask_var(mask);
1167 }
1168 #else
1169 static inline void
1170 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1171 #endif
1172
1173 /*
1174  * Interrupts which are not explicitly requested as threaded
1175  * interrupts rely on the implicit bh/preempt disable of the hard irq
1176  * context. So we need to disable bh here to avoid deadlocks and other
1177  * side effects.
1178  */
1179 static irqreturn_t
1180 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1181 {
1182         irqreturn_t ret;
1183
1184         local_bh_disable();
1185         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1186                 local_irq_disable();
1187         ret = action->thread_fn(action->irq, action->dev_id);
1188         if (ret == IRQ_HANDLED)
1189                 atomic_inc(&desc->threads_handled);
1190
1191         irq_finalize_oneshot(desc, action);
1192         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1193                 local_irq_enable();
1194         local_bh_enable();
1195         return ret;
1196 }
1197
1198 /*
1199  * Interrupts explicitly requested as threaded interrupts want to be
1200  * preemptible - many of them need to sleep and wait for slow busses to
1201  * complete.
1202  */
1203 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1204                 struct irqaction *action)
1205 {
1206         irqreturn_t ret;
1207
1208         ret = action->thread_fn(action->irq, action->dev_id);
1209         if (ret == IRQ_HANDLED)
1210                 atomic_inc(&desc->threads_handled);
1211
1212         irq_finalize_oneshot(desc, action);
1213         return ret;
1214 }
1215
1216 static void wake_threads_waitq(struct irq_desc *desc)
1217 {
1218         if (atomic_dec_and_test(&desc->threads_active))
1219                 wake_up(&desc->wait_for_threads);
1220 }
1221
1222 static void irq_thread_dtor(struct callback_head *unused)
1223 {
1224         struct task_struct *tsk = current;
1225         struct irq_desc *desc;
1226         struct irqaction *action;
1227
1228         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1229                 return;
1230
1231         action = kthread_data(tsk);
1232
1233         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1234                tsk->comm, tsk->pid, action->irq);
1235
1236
1237         desc = irq_to_desc(action->irq);
1238         /*
1239          * If IRQTF_RUNTHREAD is set, we need to decrement
1240          * desc->threads_active and wake possible waiters.
1241          */
1242         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1243                 wake_threads_waitq(desc);
1244
1245         /* Prevent a stale desc->threads_oneshot */
1246         irq_finalize_oneshot(desc, action);
1247 }
1248
1249 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1250 {
1251         struct irqaction *secondary = action->secondary;
1252
1253         if (WARN_ON_ONCE(!secondary))
1254                 return;
1255
1256         raw_spin_lock_irq(&desc->lock);
1257         __irq_wake_thread(desc, secondary);
1258         raw_spin_unlock_irq(&desc->lock);
1259 }
1260
1261 /*
1262  * Internal function to notify that a interrupt thread is ready.
1263  */
1264 static void irq_thread_set_ready(struct irq_desc *desc,
1265                                  struct irqaction *action)
1266 {
1267         set_bit(IRQTF_READY, &action->thread_flags);
1268         wake_up(&desc->wait_for_threads);
1269 }
1270
1271 /*
1272  * Internal function to wake up a interrupt thread and wait until it is
1273  * ready.
1274  */
1275 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1276                                                   struct irqaction *action)
1277 {
1278         if (!action || !action->thread)
1279                 return;
1280
1281         wake_up_process(action->thread);
1282         wait_event(desc->wait_for_threads,
1283                    test_bit(IRQTF_READY, &action->thread_flags));
1284 }
1285
1286 /*
1287  * Interrupt handler thread
1288  */
1289 static int irq_thread(void *data)
1290 {
1291         struct callback_head on_exit_work;
1292         struct irqaction *action = data;
1293         struct irq_desc *desc = irq_to_desc(action->irq);
1294         irqreturn_t (*handler_fn)(struct irq_desc *desc,
1295                         struct irqaction *action);
1296
1297         irq_thread_set_ready(desc, action);
1298
1299         sched_set_fifo(current);
1300
1301         if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1302                                            &action->thread_flags))
1303                 handler_fn = irq_forced_thread_fn;
1304         else
1305                 handler_fn = irq_thread_fn;
1306
1307         init_task_work(&on_exit_work, irq_thread_dtor);
1308         task_work_add(current, &on_exit_work, TWA_NONE);
1309
1310         irq_thread_check_affinity(desc, action);
1311
1312         while (!irq_wait_for_interrupt(action)) {
1313                 irqreturn_t action_ret;
1314
1315                 irq_thread_check_affinity(desc, action);
1316
1317                 action_ret = handler_fn(desc, action);
1318                 if (action_ret == IRQ_WAKE_THREAD)
1319                         irq_wake_secondary(desc, action);
1320
1321                 wake_threads_waitq(desc);
1322         }
1323
1324         /*
1325          * This is the regular exit path. __free_irq() is stopping the
1326          * thread via kthread_stop() after calling
1327          * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1328          * oneshot mask bit can be set.
1329          */
1330         task_work_cancel(current, irq_thread_dtor);
1331         return 0;
1332 }
1333
1334 /**
1335  *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1336  *      @irq:           Interrupt line
1337  *      @dev_id:        Device identity for which the thread should be woken
1338  *
1339  */
1340 void irq_wake_thread(unsigned int irq, void *dev_id)
1341 {
1342         struct irq_desc *desc = irq_to_desc(irq);
1343         struct irqaction *action;
1344         unsigned long flags;
1345
1346         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1347                 return;
1348
1349         raw_spin_lock_irqsave(&desc->lock, flags);
1350         for_each_action_of_desc(desc, action) {
1351                 if (action->dev_id == dev_id) {
1352                         if (action->thread)
1353                                 __irq_wake_thread(desc, action);
1354                         break;
1355                 }
1356         }
1357         raw_spin_unlock_irqrestore(&desc->lock, flags);
1358 }
1359 EXPORT_SYMBOL_GPL(irq_wake_thread);
1360
1361 static int irq_setup_forced_threading(struct irqaction *new)
1362 {
1363         if (!force_irqthreads())
1364                 return 0;
1365         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1366                 return 0;
1367
1368         /*
1369          * No further action required for interrupts which are requested as
1370          * threaded interrupts already
1371          */
1372         if (new->handler == irq_default_primary_handler)
1373                 return 0;
1374
1375         new->flags |= IRQF_ONESHOT;
1376
1377         /*
1378          * Handle the case where we have a real primary handler and a
1379          * thread handler. We force thread them as well by creating a
1380          * secondary action.
1381          */
1382         if (new->handler && new->thread_fn) {
1383                 /* Allocate the secondary action */
1384                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1385                 if (!new->secondary)
1386                         return -ENOMEM;
1387                 new->secondary->handler = irq_forced_secondary_handler;
1388                 new->secondary->thread_fn = new->thread_fn;
1389                 new->secondary->dev_id = new->dev_id;
1390                 new->secondary->irq = new->irq;
1391                 new->secondary->name = new->name;
1392         }
1393         /* Deal with the primary handler */
1394         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1395         new->thread_fn = new->handler;
1396         new->handler = irq_default_primary_handler;
1397         return 0;
1398 }
1399
1400 static int irq_request_resources(struct irq_desc *desc)
1401 {
1402         struct irq_data *d = &desc->irq_data;
1403         struct irq_chip *c = d->chip;
1404
1405         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1406 }
1407
1408 static void irq_release_resources(struct irq_desc *desc)
1409 {
1410         struct irq_data *d = &desc->irq_data;
1411         struct irq_chip *c = d->chip;
1412
1413         if (c->irq_release_resources)
1414                 c->irq_release_resources(d);
1415 }
1416
1417 static bool irq_supports_nmi(struct irq_desc *desc)
1418 {
1419         struct irq_data *d = irq_desc_get_irq_data(desc);
1420
1421 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1422         /* Only IRQs directly managed by the root irqchip can be set as NMI */
1423         if (d->parent_data)
1424                 return false;
1425 #endif
1426         /* Don't support NMIs for chips behind a slow bus */
1427         if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1428                 return false;
1429
1430         return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1431 }
1432
1433 static int irq_nmi_setup(struct irq_desc *desc)
1434 {
1435         struct irq_data *d = irq_desc_get_irq_data(desc);
1436         struct irq_chip *c = d->chip;
1437
1438         return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1439 }
1440
1441 static void irq_nmi_teardown(struct irq_desc *desc)
1442 {
1443         struct irq_data *d = irq_desc_get_irq_data(desc);
1444         struct irq_chip *c = d->chip;
1445
1446         if (c->irq_nmi_teardown)
1447                 c->irq_nmi_teardown(d);
1448 }
1449
1450 static int
1451 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1452 {
1453         struct task_struct *t;
1454
1455         if (!secondary) {
1456                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1457                                    new->name);
1458         } else {
1459                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1460                                    new->name);
1461         }
1462
1463         if (IS_ERR(t))
1464                 return PTR_ERR(t);
1465
1466         /*
1467          * We keep the reference to the task struct even if
1468          * the thread dies to avoid that the interrupt code
1469          * references an already freed task_struct.
1470          */
1471         new->thread = get_task_struct(t);
1472         /*
1473          * Tell the thread to set its affinity. This is
1474          * important for shared interrupt handlers as we do
1475          * not invoke setup_affinity() for the secondary
1476          * handlers as everything is already set up. Even for
1477          * interrupts marked with IRQF_NO_BALANCE this is
1478          * correct as we want the thread to move to the cpu(s)
1479          * on which the requesting code placed the interrupt.
1480          */
1481         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1482         return 0;
1483 }
1484
1485 /*
1486  * Internal function to register an irqaction - typically used to
1487  * allocate special interrupts that are part of the architecture.
1488  *
1489  * Locking rules:
1490  *
1491  * desc->request_mutex  Provides serialization against a concurrent free_irq()
1492  *   chip_bus_lock      Provides serialization for slow bus operations
1493  *     desc->lock       Provides serialization against hard interrupts
1494  *
1495  * chip_bus_lock and desc->lock are sufficient for all other management and
1496  * interrupt related functions. desc->request_mutex solely serializes
1497  * request/free_irq().
1498  */
1499 static int
1500 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1501 {
1502         struct irqaction *old, **old_ptr;
1503         unsigned long flags, thread_mask = 0;
1504         int ret, nested, shared = 0;
1505
1506         if (!desc)
1507                 return -EINVAL;
1508
1509         if (desc->irq_data.chip == &no_irq_chip)
1510                 return -ENOSYS;
1511         if (!try_module_get(desc->owner))
1512                 return -ENODEV;
1513
1514         new->irq = irq;
1515
1516         /*
1517          * If the trigger type is not specified by the caller,
1518          * then use the default for this interrupt.
1519          */
1520         if (!(new->flags & IRQF_TRIGGER_MASK))
1521                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1522
1523         /*
1524          * Check whether the interrupt nests into another interrupt
1525          * thread.
1526          */
1527         nested = irq_settings_is_nested_thread(desc);
1528         if (nested) {
1529                 if (!new->thread_fn) {
1530                         ret = -EINVAL;
1531                         goto out_mput;
1532                 }
1533                 /*
1534                  * Replace the primary handler which was provided from
1535                  * the driver for non nested interrupt handling by the
1536                  * dummy function which warns when called.
1537                  */
1538                 new->handler = irq_nested_primary_handler;
1539         } else {
1540                 if (irq_settings_can_thread(desc)) {
1541                         ret = irq_setup_forced_threading(new);
1542                         if (ret)
1543                                 goto out_mput;
1544                 }
1545         }
1546
1547         /*
1548          * Create a handler thread when a thread function is supplied
1549          * and the interrupt does not nest into another interrupt
1550          * thread.
1551          */
1552         if (new->thread_fn && !nested) {
1553                 ret = setup_irq_thread(new, irq, false);
1554                 if (ret)
1555                         goto out_mput;
1556                 if (new->secondary) {
1557                         ret = setup_irq_thread(new->secondary, irq, true);
1558                         if (ret)
1559                                 goto out_thread;
1560                 }
1561         }
1562
1563         /*
1564          * Drivers are often written to work w/o knowledge about the
1565          * underlying irq chip implementation, so a request for a
1566          * threaded irq without a primary hard irq context handler
1567          * requires the ONESHOT flag to be set. Some irq chips like
1568          * MSI based interrupts are per se one shot safe. Check the
1569          * chip flags, so we can avoid the unmask dance at the end of
1570          * the threaded handler for those.
1571          */
1572         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1573                 new->flags &= ~IRQF_ONESHOT;
1574
1575         /*
1576          * Protects against a concurrent __free_irq() call which might wait
1577          * for synchronize_hardirq() to complete without holding the optional
1578          * chip bus lock and desc->lock. Also protects against handing out
1579          * a recycled oneshot thread_mask bit while it's still in use by
1580          * its previous owner.
1581          */
1582         mutex_lock(&desc->request_mutex);
1583
1584         /*
1585          * Acquire bus lock as the irq_request_resources() callback below
1586          * might rely on the serialization or the magic power management
1587          * functions which are abusing the irq_bus_lock() callback,
1588          */
1589         chip_bus_lock(desc);
1590
1591         /* First installed action requests resources. */
1592         if (!desc->action) {
1593                 ret = irq_request_resources(desc);
1594                 if (ret) {
1595                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1596                                new->name, irq, desc->irq_data.chip->name);
1597                         goto out_bus_unlock;
1598                 }
1599         }
1600
1601         /*
1602          * The following block of code has to be executed atomically
1603          * protected against a concurrent interrupt and any of the other
1604          * management calls which are not serialized via
1605          * desc->request_mutex or the optional bus lock.
1606          */
1607         raw_spin_lock_irqsave(&desc->lock, flags);
1608         old_ptr = &desc->action;
1609         old = *old_ptr;
1610         if (old) {
1611                 /*
1612                  * Can't share interrupts unless both agree to and are
1613                  * the same type (level, edge, polarity). So both flag
1614                  * fields must have IRQF_SHARED set and the bits which
1615                  * set the trigger type must match. Also all must
1616                  * agree on ONESHOT.
1617                  * Interrupt lines used for NMIs cannot be shared.
1618                  */
1619                 unsigned int oldtype;
1620
1621                 if (desc->istate & IRQS_NMI) {
1622                         pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1623                                 new->name, irq, desc->irq_data.chip->name);
1624                         ret = -EINVAL;
1625                         goto out_unlock;
1626                 }
1627
1628                 /*
1629                  * If nobody did set the configuration before, inherit
1630                  * the one provided by the requester.
1631                  */
1632                 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1633                         oldtype = irqd_get_trigger_type(&desc->irq_data);
1634                 } else {
1635                         oldtype = new->flags & IRQF_TRIGGER_MASK;
1636                         irqd_set_trigger_type(&desc->irq_data, oldtype);
1637                 }
1638
1639                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1640                     (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1641                     ((old->flags ^ new->flags) & IRQF_ONESHOT))
1642                         goto mismatch;
1643
1644                 /* All handlers must agree on per-cpuness */
1645                 if ((old->flags & IRQF_PERCPU) !=
1646                     (new->flags & IRQF_PERCPU))
1647                         goto mismatch;
1648
1649                 /* add new interrupt at end of irq queue */
1650                 do {
1651                         /*
1652                          * Or all existing action->thread_mask bits,
1653                          * so we can find the next zero bit for this
1654                          * new action.
1655                          */
1656                         thread_mask |= old->thread_mask;
1657                         old_ptr = &old->next;
1658                         old = *old_ptr;
1659                 } while (old);
1660                 shared = 1;
1661         }
1662
1663         /*
1664          * Setup the thread mask for this irqaction for ONESHOT. For
1665          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1666          * conditional in irq_wake_thread().
1667          */
1668         if (new->flags & IRQF_ONESHOT) {
1669                 /*
1670                  * Unlikely to have 32 resp 64 irqs sharing one line,
1671                  * but who knows.
1672                  */
1673                 if (thread_mask == ~0UL) {
1674                         ret = -EBUSY;
1675                         goto out_unlock;
1676                 }
1677                 /*
1678                  * The thread_mask for the action is or'ed to
1679                  * desc->thread_active to indicate that the
1680                  * IRQF_ONESHOT thread handler has been woken, but not
1681                  * yet finished. The bit is cleared when a thread
1682                  * completes. When all threads of a shared interrupt
1683                  * line have completed desc->threads_active becomes
1684                  * zero and the interrupt line is unmasked. See
1685                  * handle.c:irq_wake_thread() for further information.
1686                  *
1687                  * If no thread is woken by primary (hard irq context)
1688                  * interrupt handlers, then desc->threads_active is
1689                  * also checked for zero to unmask the irq line in the
1690                  * affected hard irq flow handlers
1691                  * (handle_[fasteoi|level]_irq).
1692                  *
1693                  * The new action gets the first zero bit of
1694                  * thread_mask assigned. See the loop above which or's
1695                  * all existing action->thread_mask bits.
1696                  */
1697                 new->thread_mask = 1UL << ffz(thread_mask);
1698
1699         } else if (new->handler == irq_default_primary_handler &&
1700                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1701                 /*
1702                  * The interrupt was requested with handler = NULL, so
1703                  * we use the default primary handler for it. But it
1704                  * does not have the oneshot flag set. In combination
1705                  * with level interrupts this is deadly, because the
1706                  * default primary handler just wakes the thread, then
1707                  * the irq lines is reenabled, but the device still
1708                  * has the level irq asserted. Rinse and repeat....
1709                  *
1710                  * While this works for edge type interrupts, we play
1711                  * it safe and reject unconditionally because we can't
1712                  * say for sure which type this interrupt really
1713                  * has. The type flags are unreliable as the
1714                  * underlying chip implementation can override them.
1715                  */
1716                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1717                        new->name, irq);
1718                 ret = -EINVAL;
1719                 goto out_unlock;
1720         }
1721
1722         if (!shared) {
1723                 /* Setup the type (level, edge polarity) if configured: */
1724                 if (new->flags & IRQF_TRIGGER_MASK) {
1725                         ret = __irq_set_trigger(desc,
1726                                                 new->flags & IRQF_TRIGGER_MASK);
1727
1728                         if (ret)
1729                                 goto out_unlock;
1730                 }
1731
1732                 /*
1733                  * Activate the interrupt. That activation must happen
1734                  * independently of IRQ_NOAUTOEN. request_irq() can fail
1735                  * and the callers are supposed to handle
1736                  * that. enable_irq() of an interrupt requested with
1737                  * IRQ_NOAUTOEN is not supposed to fail. The activation
1738                  * keeps it in shutdown mode, it merily associates
1739                  * resources if necessary and if that's not possible it
1740                  * fails. Interrupts which are in managed shutdown mode
1741                  * will simply ignore that activation request.
1742                  */
1743                 ret = irq_activate(desc);
1744                 if (ret)
1745                         goto out_unlock;
1746
1747                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1748                                   IRQS_ONESHOT | IRQS_WAITING);
1749                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1750
1751                 if (new->flags & IRQF_PERCPU) {
1752                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1753                         irq_settings_set_per_cpu(desc);
1754                         if (new->flags & IRQF_NO_DEBUG)
1755                                 irq_settings_set_no_debug(desc);
1756                 }
1757
1758                 if (noirqdebug)
1759                         irq_settings_set_no_debug(desc);
1760
1761                 if (new->flags & IRQF_ONESHOT)
1762                         desc->istate |= IRQS_ONESHOT;
1763
1764                 /* Exclude IRQ from balancing if requested */
1765                 if (new->flags & IRQF_NOBALANCING) {
1766                         irq_settings_set_no_balancing(desc);
1767                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1768                 }
1769
1770                 if (!(new->flags & IRQF_NO_AUTOEN) &&
1771                     irq_settings_can_autoenable(desc)) {
1772                         irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1773                 } else {
1774                         /*
1775                          * Shared interrupts do not go well with disabling
1776                          * auto enable. The sharing interrupt might request
1777                          * it while it's still disabled and then wait for
1778                          * interrupts forever.
1779                          */
1780                         WARN_ON_ONCE(new->flags & IRQF_SHARED);
1781                         /* Undo nested disables: */
1782                         desc->depth = 1;
1783                 }
1784
1785         } else if (new->flags & IRQF_TRIGGER_MASK) {
1786                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1787                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1788
1789                 if (nmsk != omsk)
1790                         /* hope the handler works with current  trigger mode */
1791                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1792                                 irq, omsk, nmsk);
1793         }
1794
1795         *old_ptr = new;
1796
1797         irq_pm_install_action(desc, new);
1798
1799         /* Reset broken irq detection when installing new handler */
1800         desc->irq_count = 0;
1801         desc->irqs_unhandled = 0;
1802
1803         /*
1804          * Check whether we disabled the irq via the spurious handler
1805          * before. Reenable it and give it another chance.
1806          */
1807         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1808                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1809                 __enable_irq(desc);
1810         }
1811
1812         raw_spin_unlock_irqrestore(&desc->lock, flags);
1813         chip_bus_sync_unlock(desc);
1814         mutex_unlock(&desc->request_mutex);
1815
1816         irq_setup_timings(desc, new);
1817
1818         wake_up_and_wait_for_irq_thread_ready(desc, new);
1819         wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1820
1821         register_irq_proc(irq, desc);
1822         new->dir = NULL;
1823         register_handler_proc(irq, new);
1824         return 0;
1825
1826 mismatch:
1827         if (!(new->flags & IRQF_PROBE_SHARED)) {
1828                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1829                        irq, new->flags, new->name, old->flags, old->name);
1830 #ifdef CONFIG_DEBUG_SHIRQ
1831                 dump_stack();
1832 #endif
1833         }
1834         ret = -EBUSY;
1835
1836 out_unlock:
1837         raw_spin_unlock_irqrestore(&desc->lock, flags);
1838
1839         if (!desc->action)
1840                 irq_release_resources(desc);
1841 out_bus_unlock:
1842         chip_bus_sync_unlock(desc);
1843         mutex_unlock(&desc->request_mutex);
1844
1845 out_thread:
1846         if (new->thread) {
1847                 struct task_struct *t = new->thread;
1848
1849                 new->thread = NULL;
1850                 kthread_stop(t);
1851                 put_task_struct(t);
1852         }
1853         if (new->secondary && new->secondary->thread) {
1854                 struct task_struct *t = new->secondary->thread;
1855
1856                 new->secondary->thread = NULL;
1857                 kthread_stop(t);
1858                 put_task_struct(t);
1859         }
1860 out_mput:
1861         module_put(desc->owner);
1862         return ret;
1863 }
1864
1865 /*
1866  * Internal function to unregister an irqaction - used to free
1867  * regular and special interrupts that are part of the architecture.
1868  */
1869 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1870 {
1871         unsigned irq = desc->irq_data.irq;
1872         struct irqaction *action, **action_ptr;
1873         unsigned long flags;
1874
1875         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1876
1877         mutex_lock(&desc->request_mutex);
1878         chip_bus_lock(desc);
1879         raw_spin_lock_irqsave(&desc->lock, flags);
1880
1881         /*
1882          * There can be multiple actions per IRQ descriptor, find the right
1883          * one based on the dev_id:
1884          */
1885         action_ptr = &desc->action;
1886         for (;;) {
1887                 action = *action_ptr;
1888
1889                 if (!action) {
1890                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1891                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1892                         chip_bus_sync_unlock(desc);
1893                         mutex_unlock(&desc->request_mutex);
1894                         return NULL;
1895                 }
1896
1897                 if (action->dev_id == dev_id)
1898                         break;
1899                 action_ptr = &action->next;
1900         }
1901
1902         /* Found it - now remove it from the list of entries: */
1903         *action_ptr = action->next;
1904
1905         irq_pm_remove_action(desc, action);
1906
1907         /* If this was the last handler, shut down the IRQ line: */
1908         if (!desc->action) {
1909                 irq_settings_clr_disable_unlazy(desc);
1910                 /* Only shutdown. Deactivate after synchronize_hardirq() */
1911                 irq_shutdown(desc);
1912         }
1913
1914 #ifdef CONFIG_SMP
1915         /* make sure affinity_hint is cleaned up */
1916         if (WARN_ON_ONCE(desc->affinity_hint))
1917                 desc->affinity_hint = NULL;
1918 #endif
1919
1920         raw_spin_unlock_irqrestore(&desc->lock, flags);
1921         /*
1922          * Drop bus_lock here so the changes which were done in the chip
1923          * callbacks above are synced out to the irq chips which hang
1924          * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1925          *
1926          * Aside of that the bus_lock can also be taken from the threaded
1927          * handler in irq_finalize_oneshot() which results in a deadlock
1928          * because kthread_stop() would wait forever for the thread to
1929          * complete, which is blocked on the bus lock.
1930          *
1931          * The still held desc->request_mutex() protects against a
1932          * concurrent request_irq() of this irq so the release of resources
1933          * and timing data is properly serialized.
1934          */
1935         chip_bus_sync_unlock(desc);
1936
1937         unregister_handler_proc(irq, action);
1938
1939         /*
1940          * Make sure it's not being used on another CPU and if the chip
1941          * supports it also make sure that there is no (not yet serviced)
1942          * interrupt in flight at the hardware level.
1943          */
1944         __synchronize_hardirq(desc, true);
1945
1946 #ifdef CONFIG_DEBUG_SHIRQ
1947         /*
1948          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1949          * event to happen even now it's being freed, so let's make sure that
1950          * is so by doing an extra call to the handler ....
1951          *
1952          * ( We do this after actually deregistering it, to make sure that a
1953          *   'real' IRQ doesn't run in parallel with our fake. )
1954          */
1955         if (action->flags & IRQF_SHARED) {
1956                 local_irq_save(flags);
1957                 action->handler(irq, dev_id);
1958                 local_irq_restore(flags);
1959         }
1960 #endif
1961
1962         /*
1963          * The action has already been removed above, but the thread writes
1964          * its oneshot mask bit when it completes. Though request_mutex is
1965          * held across this which prevents __setup_irq() from handing out
1966          * the same bit to a newly requested action.
1967          */
1968         if (action->thread) {
1969                 kthread_stop(action->thread);
1970                 put_task_struct(action->thread);
1971                 if (action->secondary && action->secondary->thread) {
1972                         kthread_stop(action->secondary->thread);
1973                         put_task_struct(action->secondary->thread);
1974                 }
1975         }
1976
1977         /* Last action releases resources */
1978         if (!desc->action) {
1979                 /*
1980                  * Reacquire bus lock as irq_release_resources() might
1981                  * require it to deallocate resources over the slow bus.
1982                  */
1983                 chip_bus_lock(desc);
1984                 /*
1985                  * There is no interrupt on the fly anymore. Deactivate it
1986                  * completely.
1987                  */
1988                 raw_spin_lock_irqsave(&desc->lock, flags);
1989                 irq_domain_deactivate_irq(&desc->irq_data);
1990                 raw_spin_unlock_irqrestore(&desc->lock, flags);
1991
1992                 irq_release_resources(desc);
1993                 chip_bus_sync_unlock(desc);
1994                 irq_remove_timings(desc);
1995         }
1996
1997         mutex_unlock(&desc->request_mutex);
1998
1999         irq_chip_pm_put(&desc->irq_data);
2000         module_put(desc->owner);
2001         kfree(action->secondary);
2002         return action;
2003 }
2004
2005 /**
2006  *      free_irq - free an interrupt allocated with request_irq
2007  *      @irq: Interrupt line to free
2008  *      @dev_id: Device identity to free
2009  *
2010  *      Remove an interrupt handler. The handler is removed and if the
2011  *      interrupt line is no longer in use by any driver it is disabled.
2012  *      On a shared IRQ the caller must ensure the interrupt is disabled
2013  *      on the card it drives before calling this function. The function
2014  *      does not return until any executing interrupts for this IRQ
2015  *      have completed.
2016  *
2017  *      This function must not be called from interrupt context.
2018  *
2019  *      Returns the devname argument passed to request_irq.
2020  */
2021 const void *free_irq(unsigned int irq, void *dev_id)
2022 {
2023         struct irq_desc *desc = irq_to_desc(irq);
2024         struct irqaction *action;
2025         const char *devname;
2026
2027         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2028                 return NULL;
2029
2030 #ifdef CONFIG_SMP
2031         if (WARN_ON(desc->affinity_notify))
2032                 desc->affinity_notify = NULL;
2033 #endif
2034
2035         action = __free_irq(desc, dev_id);
2036
2037         if (!action)
2038                 return NULL;
2039
2040         devname = action->name;
2041         kfree(action);
2042         return devname;
2043 }
2044 EXPORT_SYMBOL(free_irq);
2045
2046 /* This function must be called with desc->lock held */
2047 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2048 {
2049         const char *devname = NULL;
2050
2051         desc->istate &= ~IRQS_NMI;
2052
2053         if (!WARN_ON(desc->action == NULL)) {
2054                 irq_pm_remove_action(desc, desc->action);
2055                 devname = desc->action->name;
2056                 unregister_handler_proc(irq, desc->action);
2057
2058                 kfree(desc->action);
2059                 desc->action = NULL;
2060         }
2061
2062         irq_settings_clr_disable_unlazy(desc);
2063         irq_shutdown_and_deactivate(desc);
2064
2065         irq_release_resources(desc);
2066
2067         irq_chip_pm_put(&desc->irq_data);
2068         module_put(desc->owner);
2069
2070         return devname;
2071 }
2072
2073 const void *free_nmi(unsigned int irq, void *dev_id)
2074 {
2075         struct irq_desc *desc = irq_to_desc(irq);
2076         unsigned long flags;
2077         const void *devname;
2078
2079         if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2080                 return NULL;
2081
2082         if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2083                 return NULL;
2084
2085         /* NMI still enabled */
2086         if (WARN_ON(desc->depth == 0))
2087                 disable_nmi_nosync(irq);
2088
2089         raw_spin_lock_irqsave(&desc->lock, flags);
2090
2091         irq_nmi_teardown(desc);
2092         devname = __cleanup_nmi(irq, desc);
2093
2094         raw_spin_unlock_irqrestore(&desc->lock, flags);
2095
2096         return devname;
2097 }
2098
2099 /**
2100  *      request_threaded_irq - allocate an interrupt line
2101  *      @irq: Interrupt line to allocate
2102  *      @handler: Function to be called when the IRQ occurs.
2103  *                Primary handler for threaded interrupts.
2104  *                If handler is NULL and thread_fn != NULL
2105  *                the default primary handler is installed.
2106  *      @thread_fn: Function called from the irq handler thread
2107  *                  If NULL, no irq thread is created
2108  *      @irqflags: Interrupt type flags
2109  *      @devname: An ascii name for the claiming device
2110  *      @dev_id: A cookie passed back to the handler function
2111  *
2112  *      This call allocates interrupt resources and enables the
2113  *      interrupt line and IRQ handling. From the point this
2114  *      call is made your handler function may be invoked. Since
2115  *      your handler function must clear any interrupt the board
2116  *      raises, you must take care both to initialise your hardware
2117  *      and to set up the interrupt handler in the right order.
2118  *
2119  *      If you want to set up a threaded irq handler for your device
2120  *      then you need to supply @handler and @thread_fn. @handler is
2121  *      still called in hard interrupt context and has to check
2122  *      whether the interrupt originates from the device. If yes it
2123  *      needs to disable the interrupt on the device and return
2124  *      IRQ_WAKE_THREAD which will wake up the handler thread and run
2125  *      @thread_fn. This split handler design is necessary to support
2126  *      shared interrupts.
2127  *
2128  *      Dev_id must be globally unique. Normally the address of the
2129  *      device data structure is used as the cookie. Since the handler
2130  *      receives this value it makes sense to use it.
2131  *
2132  *      If your interrupt is shared you must pass a non NULL dev_id
2133  *      as this is required when freeing the interrupt.
2134  *
2135  *      Flags:
2136  *
2137  *      IRQF_SHARED             Interrupt is shared
2138  *      IRQF_TRIGGER_*          Specify active edge(s) or level
2139  *      IRQF_ONESHOT            Run thread_fn with interrupt line masked
2140  */
2141 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2142                          irq_handler_t thread_fn, unsigned long irqflags,
2143                          const char *devname, void *dev_id)
2144 {
2145         struct irqaction *action;
2146         struct irq_desc *desc;
2147         int retval;
2148
2149         if (irq == IRQ_NOTCONNECTED)
2150                 return -ENOTCONN;
2151
2152         /*
2153          * Sanity-check: shared interrupts must pass in a real dev-ID,
2154          * otherwise we'll have trouble later trying to figure out
2155          * which interrupt is which (messes up the interrupt freeing
2156          * logic etc).
2157          *
2158          * Also shared interrupts do not go well with disabling auto enable.
2159          * The sharing interrupt might request it while it's still disabled
2160          * and then wait for interrupts forever.
2161          *
2162          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2163          * it cannot be set along with IRQF_NO_SUSPEND.
2164          */
2165         if (((irqflags & IRQF_SHARED) && !dev_id) ||
2166             ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2167             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2168             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2169                 return -EINVAL;
2170
2171         desc = irq_to_desc(irq);
2172         if (!desc)
2173                 return -EINVAL;
2174
2175         if (!irq_settings_can_request(desc) ||
2176             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2177                 return -EINVAL;
2178
2179         if (!handler) {
2180                 if (!thread_fn)
2181                         return -EINVAL;
2182                 handler = irq_default_primary_handler;
2183         }
2184
2185         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2186         if (!action)
2187                 return -ENOMEM;
2188
2189         action->handler = handler;
2190         action->thread_fn = thread_fn;
2191         action->flags = irqflags;
2192         action->name = devname;
2193         action->dev_id = dev_id;
2194
2195         retval = irq_chip_pm_get(&desc->irq_data);
2196         if (retval < 0) {
2197                 kfree(action);
2198                 return retval;
2199         }
2200
2201         retval = __setup_irq(irq, desc, action);
2202
2203         if (retval) {
2204                 irq_chip_pm_put(&desc->irq_data);
2205                 kfree(action->secondary);
2206                 kfree(action);
2207         }
2208
2209 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2210         if (!retval && (irqflags & IRQF_SHARED)) {
2211                 /*
2212                  * It's a shared IRQ -- the driver ought to be prepared for it
2213                  * to happen immediately, so let's make sure....
2214                  * We disable the irq to make sure that a 'real' IRQ doesn't
2215                  * run in parallel with our fake.
2216                  */
2217                 unsigned long flags;
2218
2219                 disable_irq(irq);
2220                 local_irq_save(flags);
2221
2222                 handler(irq, dev_id);
2223
2224                 local_irq_restore(flags);
2225                 enable_irq(irq);
2226         }
2227 #endif
2228         return retval;
2229 }
2230 EXPORT_SYMBOL(request_threaded_irq);
2231
2232 /**
2233  *      request_any_context_irq - allocate an interrupt line
2234  *      @irq: Interrupt line to allocate
2235  *      @handler: Function to be called when the IRQ occurs.
2236  *                Threaded handler for threaded interrupts.
2237  *      @flags: Interrupt type flags
2238  *      @name: An ascii name for the claiming device
2239  *      @dev_id: A cookie passed back to the handler function
2240  *
2241  *      This call allocates interrupt resources and enables the
2242  *      interrupt line and IRQ handling. It selects either a
2243  *      hardirq or threaded handling method depending on the
2244  *      context.
2245  *
2246  *      On failure, it returns a negative value. On success,
2247  *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2248  */
2249 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2250                             unsigned long flags, const char *name, void *dev_id)
2251 {
2252         struct irq_desc *desc;
2253         int ret;
2254
2255         if (irq == IRQ_NOTCONNECTED)
2256                 return -ENOTCONN;
2257
2258         desc = irq_to_desc(irq);
2259         if (!desc)
2260                 return -EINVAL;
2261
2262         if (irq_settings_is_nested_thread(desc)) {
2263                 ret = request_threaded_irq(irq, NULL, handler,
2264                                            flags, name, dev_id);
2265                 return !ret ? IRQC_IS_NESTED : ret;
2266         }
2267
2268         ret = request_irq(irq, handler, flags, name, dev_id);
2269         return !ret ? IRQC_IS_HARDIRQ : ret;
2270 }
2271 EXPORT_SYMBOL_GPL(request_any_context_irq);
2272
2273 /**
2274  *      request_nmi - allocate an interrupt line for NMI delivery
2275  *      @irq: Interrupt line to allocate
2276  *      @handler: Function to be called when the IRQ occurs.
2277  *                Threaded handler for threaded interrupts.
2278  *      @irqflags: Interrupt type flags
2279  *      @name: An ascii name for the claiming device
2280  *      @dev_id: A cookie passed back to the handler function
2281  *
2282  *      This call allocates interrupt resources and enables the
2283  *      interrupt line and IRQ handling. It sets up the IRQ line
2284  *      to be handled as an NMI.
2285  *
2286  *      An interrupt line delivering NMIs cannot be shared and IRQ handling
2287  *      cannot be threaded.
2288  *
2289  *      Interrupt lines requested for NMI delivering must produce per cpu
2290  *      interrupts and have auto enabling setting disabled.
2291  *
2292  *      Dev_id must be globally unique. Normally the address of the
2293  *      device data structure is used as the cookie. Since the handler
2294  *      receives this value it makes sense to use it.
2295  *
2296  *      If the interrupt line cannot be used to deliver NMIs, function
2297  *      will fail and return a negative value.
2298  */
2299 int request_nmi(unsigned int irq, irq_handler_t handler,
2300                 unsigned long irqflags, const char *name, void *dev_id)
2301 {
2302         struct irqaction *action;
2303         struct irq_desc *desc;
2304         unsigned long flags;
2305         int retval;
2306
2307         if (irq == IRQ_NOTCONNECTED)
2308                 return -ENOTCONN;
2309
2310         /* NMI cannot be shared, used for Polling */
2311         if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2312                 return -EINVAL;
2313
2314         if (!(irqflags & IRQF_PERCPU))
2315                 return -EINVAL;
2316
2317         if (!handler)
2318                 return -EINVAL;
2319
2320         desc = irq_to_desc(irq);
2321
2322         if (!desc || (irq_settings_can_autoenable(desc) &&
2323             !(irqflags & IRQF_NO_AUTOEN)) ||
2324             !irq_settings_can_request(desc) ||
2325             WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2326             !irq_supports_nmi(desc))
2327                 return -EINVAL;
2328
2329         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2330         if (!action)
2331                 return -ENOMEM;
2332
2333         action->handler = handler;
2334         action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2335         action->name = name;
2336         action->dev_id = dev_id;
2337
2338         retval = irq_chip_pm_get(&desc->irq_data);
2339         if (retval < 0)
2340                 goto err_out;
2341
2342         retval = __setup_irq(irq, desc, action);
2343         if (retval)
2344                 goto err_irq_setup;
2345
2346         raw_spin_lock_irqsave(&desc->lock, flags);
2347
2348         /* Setup NMI state */
2349         desc->istate |= IRQS_NMI;
2350         retval = irq_nmi_setup(desc);
2351         if (retval) {
2352                 __cleanup_nmi(irq, desc);
2353                 raw_spin_unlock_irqrestore(&desc->lock, flags);
2354                 return -EINVAL;
2355         }
2356
2357         raw_spin_unlock_irqrestore(&desc->lock, flags);
2358
2359         return 0;
2360
2361 err_irq_setup:
2362         irq_chip_pm_put(&desc->irq_data);
2363 err_out:
2364         kfree(action);
2365
2366         return retval;
2367 }
2368
2369 void enable_percpu_irq(unsigned int irq, unsigned int type)
2370 {
2371         unsigned int cpu = smp_processor_id();
2372         unsigned long flags;
2373         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2374
2375         if (!desc)
2376                 return;
2377
2378         /*
2379          * If the trigger type is not specified by the caller, then
2380          * use the default for this interrupt.
2381          */
2382         type &= IRQ_TYPE_SENSE_MASK;
2383         if (type == IRQ_TYPE_NONE)
2384                 type = irqd_get_trigger_type(&desc->irq_data);
2385
2386         if (type != IRQ_TYPE_NONE) {
2387                 int ret;
2388
2389                 ret = __irq_set_trigger(desc, type);
2390
2391                 if (ret) {
2392                         WARN(1, "failed to set type for IRQ%d\n", irq);
2393                         goto out;
2394                 }
2395         }
2396
2397         irq_percpu_enable(desc, cpu);
2398 out:
2399         irq_put_desc_unlock(desc, flags);
2400 }
2401 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2402
2403 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2404 {
2405         enable_percpu_irq(irq, type);
2406 }
2407
2408 /**
2409  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2410  * @irq:        Linux irq number to check for
2411  *
2412  * Must be called from a non migratable context. Returns the enable
2413  * state of a per cpu interrupt on the current cpu.
2414  */
2415 bool irq_percpu_is_enabled(unsigned int irq)
2416 {
2417         unsigned int cpu = smp_processor_id();
2418         struct irq_desc *desc;
2419         unsigned long flags;
2420         bool is_enabled;
2421
2422         desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2423         if (!desc)
2424                 return false;
2425
2426         is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2427         irq_put_desc_unlock(desc, flags);
2428
2429         return is_enabled;
2430 }
2431 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2432
2433 void disable_percpu_irq(unsigned int irq)
2434 {
2435         unsigned int cpu = smp_processor_id();
2436         unsigned long flags;
2437         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2438
2439         if (!desc)
2440                 return;
2441
2442         irq_percpu_disable(desc, cpu);
2443         irq_put_desc_unlock(desc, flags);
2444 }
2445 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2446
2447 void disable_percpu_nmi(unsigned int irq)
2448 {
2449         disable_percpu_irq(irq);
2450 }
2451
2452 /*
2453  * Internal function to unregister a percpu irqaction.
2454  */
2455 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2456 {
2457         struct irq_desc *desc = irq_to_desc(irq);
2458         struct irqaction *action;
2459         unsigned long flags;
2460
2461         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2462
2463         if (!desc)
2464                 return NULL;
2465
2466         raw_spin_lock_irqsave(&desc->lock, flags);
2467
2468         action = desc->action;
2469         if (!action || action->percpu_dev_id != dev_id) {
2470                 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2471                 goto bad;
2472         }
2473
2474         if (!cpumask_empty(desc->percpu_enabled)) {
2475                 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2476                      irq, cpumask_first(desc->percpu_enabled));
2477                 goto bad;
2478         }
2479
2480         /* Found it - now remove it from the list of entries: */
2481         desc->action = NULL;
2482
2483         desc->istate &= ~IRQS_NMI;
2484
2485         raw_spin_unlock_irqrestore(&desc->lock, flags);
2486
2487         unregister_handler_proc(irq, action);
2488
2489         irq_chip_pm_put(&desc->irq_data);
2490         module_put(desc->owner);
2491         return action;
2492
2493 bad:
2494         raw_spin_unlock_irqrestore(&desc->lock, flags);
2495         return NULL;
2496 }
2497
2498 /**
2499  *      remove_percpu_irq - free a per-cpu interrupt
2500  *      @irq: Interrupt line to free
2501  *      @act: irqaction for the interrupt
2502  *
2503  * Used to remove interrupts statically setup by the early boot process.
2504  */
2505 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2506 {
2507         struct irq_desc *desc = irq_to_desc(irq);
2508
2509         if (desc && irq_settings_is_per_cpu_devid(desc))
2510             __free_percpu_irq(irq, act->percpu_dev_id);
2511 }
2512
2513 /**
2514  *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2515  *      @irq: Interrupt line to free
2516  *      @dev_id: Device identity to free
2517  *
2518  *      Remove a percpu interrupt handler. The handler is removed, but
2519  *      the interrupt line is not disabled. This must be done on each
2520  *      CPU before calling this function. The function does not return
2521  *      until any executing interrupts for this IRQ have completed.
2522  *
2523  *      This function must not be called from interrupt context.
2524  */
2525 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2526 {
2527         struct irq_desc *desc = irq_to_desc(irq);
2528
2529         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2530                 return;
2531
2532         chip_bus_lock(desc);
2533         kfree(__free_percpu_irq(irq, dev_id));
2534         chip_bus_sync_unlock(desc);
2535 }
2536 EXPORT_SYMBOL_GPL(free_percpu_irq);
2537
2538 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2539 {
2540         struct irq_desc *desc = irq_to_desc(irq);
2541
2542         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2543                 return;
2544
2545         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2546                 return;
2547
2548         kfree(__free_percpu_irq(irq, dev_id));
2549 }
2550
2551 /**
2552  *      setup_percpu_irq - setup a per-cpu interrupt
2553  *      @irq: Interrupt line to setup
2554  *      @act: irqaction for the interrupt
2555  *
2556  * Used to statically setup per-cpu interrupts in the early boot process.
2557  */
2558 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2559 {
2560         struct irq_desc *desc = irq_to_desc(irq);
2561         int retval;
2562
2563         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2564                 return -EINVAL;
2565
2566         retval = irq_chip_pm_get(&desc->irq_data);
2567         if (retval < 0)
2568                 return retval;
2569
2570         retval = __setup_irq(irq, desc, act);
2571
2572         if (retval)
2573                 irq_chip_pm_put(&desc->irq_data);
2574
2575         return retval;
2576 }
2577
2578 /**
2579  *      __request_percpu_irq - allocate a percpu interrupt line
2580  *      @irq: Interrupt line to allocate
2581  *      @handler: Function to be called when the IRQ occurs.
2582  *      @flags: Interrupt type flags (IRQF_TIMER only)
2583  *      @devname: An ascii name for the claiming device
2584  *      @dev_id: A percpu cookie passed back to the handler function
2585  *
2586  *      This call allocates interrupt resources and enables the
2587  *      interrupt on the local CPU. If the interrupt is supposed to be
2588  *      enabled on other CPUs, it has to be done on each CPU using
2589  *      enable_percpu_irq().
2590  *
2591  *      Dev_id must be globally unique. It is a per-cpu variable, and
2592  *      the handler gets called with the interrupted CPU's instance of
2593  *      that variable.
2594  */
2595 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2596                          unsigned long flags, const char *devname,
2597                          void __percpu *dev_id)
2598 {
2599         struct irqaction *action;
2600         struct irq_desc *desc;
2601         int retval;
2602
2603         if (!dev_id)
2604                 return -EINVAL;
2605
2606         desc = irq_to_desc(irq);
2607         if (!desc || !irq_settings_can_request(desc) ||
2608             !irq_settings_is_per_cpu_devid(desc))
2609                 return -EINVAL;
2610
2611         if (flags && flags != IRQF_TIMER)
2612                 return -EINVAL;
2613
2614         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2615         if (!action)
2616                 return -ENOMEM;
2617
2618         action->handler = handler;
2619         action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2620         action->name = devname;
2621         action->percpu_dev_id = dev_id;
2622
2623         retval = irq_chip_pm_get(&desc->irq_data);
2624         if (retval < 0) {
2625                 kfree(action);
2626                 return retval;
2627         }
2628
2629         retval = __setup_irq(irq, desc, action);
2630
2631         if (retval) {
2632                 irq_chip_pm_put(&desc->irq_data);
2633                 kfree(action);
2634         }
2635
2636         return retval;
2637 }
2638 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2639
2640 /**
2641  *      request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2642  *      @irq: Interrupt line to allocate
2643  *      @handler: Function to be called when the IRQ occurs.
2644  *      @name: An ascii name for the claiming device
2645  *      @dev_id: A percpu cookie passed back to the handler function
2646  *
2647  *      This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2648  *      have to be setup on each CPU by calling prepare_percpu_nmi() before
2649  *      being enabled on the same CPU by using enable_percpu_nmi().
2650  *
2651  *      Dev_id must be globally unique. It is a per-cpu variable, and
2652  *      the handler gets called with the interrupted CPU's instance of
2653  *      that variable.
2654  *
2655  *      Interrupt lines requested for NMI delivering should have auto enabling
2656  *      setting disabled.
2657  *
2658  *      If the interrupt line cannot be used to deliver NMIs, function
2659  *      will fail returning a negative value.
2660  */
2661 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2662                        const char *name, void __percpu *dev_id)
2663 {
2664         struct irqaction *action;
2665         struct irq_desc *desc;
2666         unsigned long flags;
2667         int retval;
2668
2669         if (!handler)
2670                 return -EINVAL;
2671
2672         desc = irq_to_desc(irq);
2673
2674         if (!desc || !irq_settings_can_request(desc) ||
2675             !irq_settings_is_per_cpu_devid(desc) ||
2676             irq_settings_can_autoenable(desc) ||
2677             !irq_supports_nmi(desc))
2678                 return -EINVAL;
2679
2680         /* The line cannot already be NMI */
2681         if (desc->istate & IRQS_NMI)
2682                 return -EINVAL;
2683
2684         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2685         if (!action)
2686                 return -ENOMEM;
2687
2688         action->handler = handler;
2689         action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2690                 | IRQF_NOBALANCING;
2691         action->name = name;
2692         action->percpu_dev_id = dev_id;
2693
2694         retval = irq_chip_pm_get(&desc->irq_data);
2695         if (retval < 0)
2696                 goto err_out;
2697
2698         retval = __setup_irq(irq, desc, action);
2699         if (retval)
2700                 goto err_irq_setup;
2701
2702         raw_spin_lock_irqsave(&desc->lock, flags);
2703         desc->istate |= IRQS_NMI;
2704         raw_spin_unlock_irqrestore(&desc->lock, flags);
2705
2706         return 0;
2707
2708 err_irq_setup:
2709         irq_chip_pm_put(&desc->irq_data);
2710 err_out:
2711         kfree(action);
2712
2713         return retval;
2714 }
2715
2716 /**
2717  *      prepare_percpu_nmi - performs CPU local setup for NMI delivery
2718  *      @irq: Interrupt line to prepare for NMI delivery
2719  *
2720  *      This call prepares an interrupt line to deliver NMI on the current CPU,
2721  *      before that interrupt line gets enabled with enable_percpu_nmi().
2722  *
2723  *      As a CPU local operation, this should be called from non-preemptible
2724  *      context.
2725  *
2726  *      If the interrupt line cannot be used to deliver NMIs, function
2727  *      will fail returning a negative value.
2728  */
2729 int prepare_percpu_nmi(unsigned int irq)
2730 {
2731         unsigned long flags;
2732         struct irq_desc *desc;
2733         int ret = 0;
2734
2735         WARN_ON(preemptible());
2736
2737         desc = irq_get_desc_lock(irq, &flags,
2738                                  IRQ_GET_DESC_CHECK_PERCPU);
2739         if (!desc)
2740                 return -EINVAL;
2741
2742         if (WARN(!(desc->istate & IRQS_NMI),
2743                  KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2744                  irq)) {
2745                 ret = -EINVAL;
2746                 goto out;
2747         }
2748
2749         ret = irq_nmi_setup(desc);
2750         if (ret) {
2751                 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2752                 goto out;
2753         }
2754
2755 out:
2756         irq_put_desc_unlock(desc, flags);
2757         return ret;
2758 }
2759
2760 /**
2761  *      teardown_percpu_nmi - undoes NMI setup of IRQ line
2762  *      @irq: Interrupt line from which CPU local NMI configuration should be
2763  *            removed
2764  *
2765  *      This call undoes the setup done by prepare_percpu_nmi().
2766  *
2767  *      IRQ line should not be enabled for the current CPU.
2768  *
2769  *      As a CPU local operation, this should be called from non-preemptible
2770  *      context.
2771  */
2772 void teardown_percpu_nmi(unsigned int irq)
2773 {
2774         unsigned long flags;
2775         struct irq_desc *desc;
2776
2777         WARN_ON(preemptible());
2778
2779         desc = irq_get_desc_lock(irq, &flags,
2780                                  IRQ_GET_DESC_CHECK_PERCPU);
2781         if (!desc)
2782                 return;
2783
2784         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2785                 goto out;
2786
2787         irq_nmi_teardown(desc);
2788 out:
2789         irq_put_desc_unlock(desc, flags);
2790 }
2791
2792 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2793                             bool *state)
2794 {
2795         struct irq_chip *chip;
2796         int err = -EINVAL;
2797
2798         do {
2799                 chip = irq_data_get_irq_chip(data);
2800                 if (WARN_ON_ONCE(!chip))
2801                         return -ENODEV;
2802                 if (chip->irq_get_irqchip_state)
2803                         break;
2804 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2805                 data = data->parent_data;
2806 #else
2807                 data = NULL;
2808 #endif
2809         } while (data);
2810
2811         if (data)
2812                 err = chip->irq_get_irqchip_state(data, which, state);
2813         return err;
2814 }
2815
2816 /**
2817  *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2818  *      @irq: Interrupt line that is forwarded to a VM
2819  *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2820  *      @state: a pointer to a boolean where the state is to be stored
2821  *
2822  *      This call snapshots the internal irqchip state of an
2823  *      interrupt, returning into @state the bit corresponding to
2824  *      stage @which
2825  *
2826  *      This function should be called with preemption disabled if the
2827  *      interrupt controller has per-cpu registers.
2828  */
2829 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2830                           bool *state)
2831 {
2832         struct irq_desc *desc;
2833         struct irq_data *data;
2834         unsigned long flags;
2835         int err = -EINVAL;
2836
2837         desc = irq_get_desc_buslock(irq, &flags, 0);
2838         if (!desc)
2839                 return err;
2840
2841         data = irq_desc_get_irq_data(desc);
2842
2843         err = __irq_get_irqchip_state(data, which, state);
2844
2845         irq_put_desc_busunlock(desc, flags);
2846         return err;
2847 }
2848 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2849
2850 /**
2851  *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2852  *      @irq: Interrupt line that is forwarded to a VM
2853  *      @which: State to be restored (one of IRQCHIP_STATE_*)
2854  *      @val: Value corresponding to @which
2855  *
2856  *      This call sets the internal irqchip state of an interrupt,
2857  *      depending on the value of @which.
2858  *
2859  *      This function should be called with migration disabled if the
2860  *      interrupt controller has per-cpu registers.
2861  */
2862 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2863                           bool val)
2864 {
2865         struct irq_desc *desc;
2866         struct irq_data *data;
2867         struct irq_chip *chip;
2868         unsigned long flags;
2869         int err = -EINVAL;
2870
2871         desc = irq_get_desc_buslock(irq, &flags, 0);
2872         if (!desc)
2873                 return err;
2874
2875         data = irq_desc_get_irq_data(desc);
2876
2877         do {
2878                 chip = irq_data_get_irq_chip(data);
2879                 if (WARN_ON_ONCE(!chip)) {
2880                         err = -ENODEV;
2881                         goto out_unlock;
2882                 }
2883                 if (chip->irq_set_irqchip_state)
2884                         break;
2885 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2886                 data = data->parent_data;
2887 #else
2888                 data = NULL;
2889 #endif
2890         } while (data);
2891
2892         if (data)
2893                 err = chip->irq_set_irqchip_state(data, which, val);
2894
2895 out_unlock:
2896         irq_put_desc_busunlock(desc, flags);
2897         return err;
2898 }
2899 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2900
2901 /**
2902  * irq_has_action - Check whether an interrupt is requested
2903  * @irq:        The linux irq number
2904  *
2905  * Returns: A snapshot of the current state
2906  */
2907 bool irq_has_action(unsigned int irq)
2908 {
2909         bool res;
2910
2911         rcu_read_lock();
2912         res = irq_desc_has_action(irq_to_desc(irq));
2913         rcu_read_unlock();
2914         return res;
2915 }
2916 EXPORT_SYMBOL_GPL(irq_has_action);
2917
2918 /**
2919  * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2920  * @irq:        The linux irq number
2921  * @bitmask:    The bitmask to evaluate
2922  *
2923  * Returns: True if one of the bits in @bitmask is set
2924  */
2925 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2926 {
2927         struct irq_desc *desc;
2928         bool res = false;
2929
2930         rcu_read_lock();
2931         desc = irq_to_desc(irq);
2932         if (desc)
2933                 res = !!(desc->status_use_accessors & bitmask);
2934         rcu_read_unlock();
2935         return res;
2936 }
2937 EXPORT_SYMBOL_GPL(irq_check_status_bit);