Merge tag 'pm-6.10-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[linux-block.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/syscall_user_dispatch.h>
57 #include <linux/jiffies.h>
58 #include <linux/futex.h>
59 #include <linux/compat.h>
60 #include <linux/kthread.h>
61 #include <linux/task_io_accounting_ops.h>
62 #include <linux/rcupdate.h>
63 #include <linux/ptrace.h>
64 #include <linux/mount.h>
65 #include <linux/audit.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/proc_fs.h>
69 #include <linux/profile.h>
70 #include <linux/rmap.h>
71 #include <linux/ksm.h>
72 #include <linux/acct.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/tsacct_kern.h>
75 #include <linux/cn_proc.h>
76 #include <linux/freezer.h>
77 #include <linux/delayacct.h>
78 #include <linux/taskstats_kern.h>
79 #include <linux/tty.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100 #include <linux/stackprotector.h>
101 #include <linux/user_events.h>
102 #include <linux/iommu.h>
103 #include <linux/rseq.h>
104 #include <uapi/linux/pidfd.h>
105 #include <linux/pidfs.h>
106
107 #include <asm/pgalloc.h>
108 #include <linux/uaccess.h>
109 #include <asm/mmu_context.h>
110 #include <asm/cacheflush.h>
111 #include <asm/tlbflush.h>
112
113 #include <trace/events/sched.h>
114
115 #define CREATE_TRACE_POINTS
116 #include <trace/events/task.h>
117
118 /*
119  * Minimum number of threads to boot the kernel
120  */
121 #define MIN_THREADS 20
122
123 /*
124  * Maximum number of threads
125  */
126 #define MAX_THREADS FUTEX_TID_MASK
127
128 /*
129  * Protected counters by write_lock_irq(&tasklist_lock)
130  */
131 unsigned long total_forks;      /* Handle normal Linux uptimes. */
132 int nr_threads;                 /* The idle threads do not count.. */
133
134 static int max_threads;         /* tunable limit on nr_threads */
135
136 #define NAMED_ARRAY_INDEX(x)    [x] = __stringify(x)
137
138 static const char * const resident_page_types[] = {
139         NAMED_ARRAY_INDEX(MM_FILEPAGES),
140         NAMED_ARRAY_INDEX(MM_ANONPAGES),
141         NAMED_ARRAY_INDEX(MM_SWAPENTS),
142         NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
143 };
144
145 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
146
147 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
148
149 #ifdef CONFIG_PROVE_RCU
150 int lockdep_tasklist_lock_is_held(void)
151 {
152         return lockdep_is_held(&tasklist_lock);
153 }
154 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
155 #endif /* #ifdef CONFIG_PROVE_RCU */
156
157 int nr_processes(void)
158 {
159         int cpu;
160         int total = 0;
161
162         for_each_possible_cpu(cpu)
163                 total += per_cpu(process_counts, cpu);
164
165         return total;
166 }
167
168 void __weak arch_release_task_struct(struct task_struct *tsk)
169 {
170 }
171
172 static struct kmem_cache *task_struct_cachep;
173
174 static inline struct task_struct *alloc_task_struct_node(int node)
175 {
176         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
177 }
178
179 static inline void free_task_struct(struct task_struct *tsk)
180 {
181         kmem_cache_free(task_struct_cachep, tsk);
182 }
183
184 /*
185  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
186  * kmemcache based allocator.
187  */
188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
189
190 #  ifdef CONFIG_VMAP_STACK
191 /*
192  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
193  * flush.  Try to minimize the number of calls by caching stacks.
194  */
195 #define NR_CACHED_STACKS 2
196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
197
198 struct vm_stack {
199         struct rcu_head rcu;
200         struct vm_struct *stack_vm_area;
201 };
202
203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
204 {
205         unsigned int i;
206
207         for (i = 0; i < NR_CACHED_STACKS; i++) {
208                 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
209                         continue;
210                 return true;
211         }
212         return false;
213 }
214
215 static void thread_stack_free_rcu(struct rcu_head *rh)
216 {
217         struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
218
219         if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
220                 return;
221
222         vfree(vm_stack);
223 }
224
225 static void thread_stack_delayed_free(struct task_struct *tsk)
226 {
227         struct vm_stack *vm_stack = tsk->stack;
228
229         vm_stack->stack_vm_area = tsk->stack_vm_area;
230         call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
231 }
232
233 static int free_vm_stack_cache(unsigned int cpu)
234 {
235         struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
236         int i;
237
238         for (i = 0; i < NR_CACHED_STACKS; i++) {
239                 struct vm_struct *vm_stack = cached_vm_stacks[i];
240
241                 if (!vm_stack)
242                         continue;
243
244                 vfree(vm_stack->addr);
245                 cached_vm_stacks[i] = NULL;
246         }
247
248         return 0;
249 }
250
251 static int memcg_charge_kernel_stack(struct vm_struct *vm)
252 {
253         int i;
254         int ret;
255         int nr_charged = 0;
256
257         BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
258
259         for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
260                 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
261                 if (ret)
262                         goto err;
263                 nr_charged++;
264         }
265         return 0;
266 err:
267         for (i = 0; i < nr_charged; i++)
268                 memcg_kmem_uncharge_page(vm->pages[i], 0);
269         return ret;
270 }
271
272 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
273 {
274         struct vm_struct *vm;
275         void *stack;
276         int i;
277
278         for (i = 0; i < NR_CACHED_STACKS; i++) {
279                 struct vm_struct *s;
280
281                 s = this_cpu_xchg(cached_stacks[i], NULL);
282
283                 if (!s)
284                         continue;
285
286                 /* Reset stack metadata. */
287                 kasan_unpoison_range(s->addr, THREAD_SIZE);
288
289                 stack = kasan_reset_tag(s->addr);
290
291                 /* Clear stale pointers from reused stack. */
292                 memset(stack, 0, THREAD_SIZE);
293
294                 if (memcg_charge_kernel_stack(s)) {
295                         vfree(s->addr);
296                         return -ENOMEM;
297                 }
298
299                 tsk->stack_vm_area = s;
300                 tsk->stack = stack;
301                 return 0;
302         }
303
304         /*
305          * Allocated stacks are cached and later reused by new threads,
306          * so memcg accounting is performed manually on assigning/releasing
307          * stacks to tasks. Drop __GFP_ACCOUNT.
308          */
309         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
310                                      VMALLOC_START, VMALLOC_END,
311                                      THREADINFO_GFP & ~__GFP_ACCOUNT,
312                                      PAGE_KERNEL,
313                                      0, node, __builtin_return_address(0));
314         if (!stack)
315                 return -ENOMEM;
316
317         vm = find_vm_area(stack);
318         if (memcg_charge_kernel_stack(vm)) {
319                 vfree(stack);
320                 return -ENOMEM;
321         }
322         /*
323          * We can't call find_vm_area() in interrupt context, and
324          * free_thread_stack() can be called in interrupt context,
325          * so cache the vm_struct.
326          */
327         tsk->stack_vm_area = vm;
328         stack = kasan_reset_tag(stack);
329         tsk->stack = stack;
330         return 0;
331 }
332
333 static void free_thread_stack(struct task_struct *tsk)
334 {
335         if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336                 thread_stack_delayed_free(tsk);
337
338         tsk->stack = NULL;
339         tsk->stack_vm_area = NULL;
340 }
341
342 #  else /* !CONFIG_VMAP_STACK */
343
344 static void thread_stack_free_rcu(struct rcu_head *rh)
345 {
346         __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
347 }
348
349 static void thread_stack_delayed_free(struct task_struct *tsk)
350 {
351         struct rcu_head *rh = tsk->stack;
352
353         call_rcu(rh, thread_stack_free_rcu);
354 }
355
356 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
357 {
358         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
359                                              THREAD_SIZE_ORDER);
360
361         if (likely(page)) {
362                 tsk->stack = kasan_reset_tag(page_address(page));
363                 return 0;
364         }
365         return -ENOMEM;
366 }
367
368 static void free_thread_stack(struct task_struct *tsk)
369 {
370         thread_stack_delayed_free(tsk);
371         tsk->stack = NULL;
372 }
373
374 #  endif /* CONFIG_VMAP_STACK */
375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
376
377 static struct kmem_cache *thread_stack_cache;
378
379 static void thread_stack_free_rcu(struct rcu_head *rh)
380 {
381         kmem_cache_free(thread_stack_cache, rh);
382 }
383
384 static void thread_stack_delayed_free(struct task_struct *tsk)
385 {
386         struct rcu_head *rh = tsk->stack;
387
388         call_rcu(rh, thread_stack_free_rcu);
389 }
390
391 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
392 {
393         unsigned long *stack;
394         stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
395         stack = kasan_reset_tag(stack);
396         tsk->stack = stack;
397         return stack ? 0 : -ENOMEM;
398 }
399
400 static void free_thread_stack(struct task_struct *tsk)
401 {
402         thread_stack_delayed_free(tsk);
403         tsk->stack = NULL;
404 }
405
406 void thread_stack_cache_init(void)
407 {
408         thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
409                                         THREAD_SIZE, THREAD_SIZE, 0, 0,
410                                         THREAD_SIZE, NULL);
411         BUG_ON(thread_stack_cache == NULL);
412 }
413
414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
415
416 /* SLAB cache for signal_struct structures (tsk->signal) */
417 static struct kmem_cache *signal_cachep;
418
419 /* SLAB cache for sighand_struct structures (tsk->sighand) */
420 struct kmem_cache *sighand_cachep;
421
422 /* SLAB cache for files_struct structures (tsk->files) */
423 struct kmem_cache *files_cachep;
424
425 /* SLAB cache for fs_struct structures (tsk->fs) */
426 struct kmem_cache *fs_cachep;
427
428 /* SLAB cache for vm_area_struct structures */
429 static struct kmem_cache *vm_area_cachep;
430
431 /* SLAB cache for mm_struct structures (tsk->mm) */
432 static struct kmem_cache *mm_cachep;
433
434 #ifdef CONFIG_PER_VMA_LOCK
435
436 /* SLAB cache for vm_area_struct.lock */
437 static struct kmem_cache *vma_lock_cachep;
438
439 static bool vma_lock_alloc(struct vm_area_struct *vma)
440 {
441         vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
442         if (!vma->vm_lock)
443                 return false;
444
445         init_rwsem(&vma->vm_lock->lock);
446         vma->vm_lock_seq = -1;
447
448         return true;
449 }
450
451 static inline void vma_lock_free(struct vm_area_struct *vma)
452 {
453         kmem_cache_free(vma_lock_cachep, vma->vm_lock);
454 }
455
456 #else /* CONFIG_PER_VMA_LOCK */
457
458 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
459 static inline void vma_lock_free(struct vm_area_struct *vma) {}
460
461 #endif /* CONFIG_PER_VMA_LOCK */
462
463 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
464 {
465         struct vm_area_struct *vma;
466
467         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
468         if (!vma)
469                 return NULL;
470
471         vma_init(vma, mm);
472         if (!vma_lock_alloc(vma)) {
473                 kmem_cache_free(vm_area_cachep, vma);
474                 return NULL;
475         }
476
477         return vma;
478 }
479
480 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
481 {
482         struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
483
484         if (!new)
485                 return NULL;
486
487         ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
488         ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
489         /*
490          * orig->shared.rb may be modified concurrently, but the clone
491          * will be reinitialized.
492          */
493         data_race(memcpy(new, orig, sizeof(*new)));
494         if (!vma_lock_alloc(new)) {
495                 kmem_cache_free(vm_area_cachep, new);
496                 return NULL;
497         }
498         INIT_LIST_HEAD(&new->anon_vma_chain);
499         vma_numab_state_init(new);
500         dup_anon_vma_name(orig, new);
501
502         return new;
503 }
504
505 void __vm_area_free(struct vm_area_struct *vma)
506 {
507         vma_numab_state_free(vma);
508         free_anon_vma_name(vma);
509         vma_lock_free(vma);
510         kmem_cache_free(vm_area_cachep, vma);
511 }
512
513 #ifdef CONFIG_PER_VMA_LOCK
514 static void vm_area_free_rcu_cb(struct rcu_head *head)
515 {
516         struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
517                                                   vm_rcu);
518
519         /* The vma should not be locked while being destroyed. */
520         VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
521         __vm_area_free(vma);
522 }
523 #endif
524
525 void vm_area_free(struct vm_area_struct *vma)
526 {
527 #ifdef CONFIG_PER_VMA_LOCK
528         call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
529 #else
530         __vm_area_free(vma);
531 #endif
532 }
533
534 static void account_kernel_stack(struct task_struct *tsk, int account)
535 {
536         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
537                 struct vm_struct *vm = task_stack_vm_area(tsk);
538                 int i;
539
540                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
541                         mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
542                                               account * (PAGE_SIZE / 1024));
543         } else {
544                 void *stack = task_stack_page(tsk);
545
546                 /* All stack pages are in the same node. */
547                 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
548                                       account * (THREAD_SIZE / 1024));
549         }
550 }
551
552 void exit_task_stack_account(struct task_struct *tsk)
553 {
554         account_kernel_stack(tsk, -1);
555
556         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
557                 struct vm_struct *vm;
558                 int i;
559
560                 vm = task_stack_vm_area(tsk);
561                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
562                         memcg_kmem_uncharge_page(vm->pages[i], 0);
563         }
564 }
565
566 static void release_task_stack(struct task_struct *tsk)
567 {
568         if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
569                 return;  /* Better to leak the stack than to free prematurely */
570
571         free_thread_stack(tsk);
572 }
573
574 #ifdef CONFIG_THREAD_INFO_IN_TASK
575 void put_task_stack(struct task_struct *tsk)
576 {
577         if (refcount_dec_and_test(&tsk->stack_refcount))
578                 release_task_stack(tsk);
579 }
580 #endif
581
582 void free_task(struct task_struct *tsk)
583 {
584 #ifdef CONFIG_SECCOMP
585         WARN_ON_ONCE(tsk->seccomp.filter);
586 #endif
587         release_user_cpus_ptr(tsk);
588         scs_release(tsk);
589
590 #ifndef CONFIG_THREAD_INFO_IN_TASK
591         /*
592          * The task is finally done with both the stack and thread_info,
593          * so free both.
594          */
595         release_task_stack(tsk);
596 #else
597         /*
598          * If the task had a separate stack allocation, it should be gone
599          * by now.
600          */
601         WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
602 #endif
603         rt_mutex_debug_task_free(tsk);
604         ftrace_graph_exit_task(tsk);
605         arch_release_task_struct(tsk);
606         if (tsk->flags & PF_KTHREAD)
607                 free_kthread_struct(tsk);
608         bpf_task_storage_free(tsk);
609         free_task_struct(tsk);
610 }
611 EXPORT_SYMBOL(free_task);
612
613 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
614 {
615         struct file *exe_file;
616
617         exe_file = get_mm_exe_file(oldmm);
618         RCU_INIT_POINTER(mm->exe_file, exe_file);
619         /*
620          * We depend on the oldmm having properly denied write access to the
621          * exe_file already.
622          */
623         if (exe_file && deny_write_access(exe_file))
624                 pr_warn_once("deny_write_access() failed in %s\n", __func__);
625 }
626
627 #ifdef CONFIG_MMU
628 static __latent_entropy int dup_mmap(struct mm_struct *mm,
629                                         struct mm_struct *oldmm)
630 {
631         struct vm_area_struct *mpnt, *tmp;
632         int retval;
633         unsigned long charge = 0;
634         LIST_HEAD(uf);
635         VMA_ITERATOR(vmi, mm, 0);
636
637         uprobe_start_dup_mmap();
638         if (mmap_write_lock_killable(oldmm)) {
639                 retval = -EINTR;
640                 goto fail_uprobe_end;
641         }
642         flush_cache_dup_mm(oldmm);
643         uprobe_dup_mmap(oldmm, mm);
644         /*
645          * Not linked in yet - no deadlock potential:
646          */
647         mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
648
649         /* No ordering required: file already has been exposed. */
650         dup_mm_exe_file(mm, oldmm);
651
652         mm->total_vm = oldmm->total_vm;
653         mm->data_vm = oldmm->data_vm;
654         mm->exec_vm = oldmm->exec_vm;
655         mm->stack_vm = oldmm->stack_vm;
656
657         retval = ksm_fork(mm, oldmm);
658         if (retval)
659                 goto out;
660         khugepaged_fork(mm, oldmm);
661
662         /* Use __mt_dup() to efficiently build an identical maple tree. */
663         retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
664         if (unlikely(retval))
665                 goto out;
666
667         mt_clear_in_rcu(vmi.mas.tree);
668         for_each_vma(vmi, mpnt) {
669                 struct file *file;
670
671                 vma_start_write(mpnt);
672                 if (mpnt->vm_flags & VM_DONTCOPY) {
673                         retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
674                                                     mpnt->vm_end, GFP_KERNEL);
675                         if (retval)
676                                 goto loop_out;
677
678                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
679                         continue;
680                 }
681                 charge = 0;
682                 /*
683                  * Don't duplicate many vmas if we've been oom-killed (for
684                  * example)
685                  */
686                 if (fatal_signal_pending(current)) {
687                         retval = -EINTR;
688                         goto loop_out;
689                 }
690                 if (mpnt->vm_flags & VM_ACCOUNT) {
691                         unsigned long len = vma_pages(mpnt);
692
693                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
694                                 goto fail_nomem;
695                         charge = len;
696                 }
697                 tmp = vm_area_dup(mpnt);
698                 if (!tmp)
699                         goto fail_nomem;
700                 retval = vma_dup_policy(mpnt, tmp);
701                 if (retval)
702                         goto fail_nomem_policy;
703                 tmp->vm_mm = mm;
704                 retval = dup_userfaultfd(tmp, &uf);
705                 if (retval)
706                         goto fail_nomem_anon_vma_fork;
707                 if (tmp->vm_flags & VM_WIPEONFORK) {
708                         /*
709                          * VM_WIPEONFORK gets a clean slate in the child.
710                          * Don't prepare anon_vma until fault since we don't
711                          * copy page for current vma.
712                          */
713                         tmp->anon_vma = NULL;
714                 } else if (anon_vma_fork(tmp, mpnt))
715                         goto fail_nomem_anon_vma_fork;
716                 vm_flags_clear(tmp, VM_LOCKED_MASK);
717                 /*
718                  * Copy/update hugetlb private vma information.
719                  */
720                 if (is_vm_hugetlb_page(tmp))
721                         hugetlb_dup_vma_private(tmp);
722
723                 /*
724                  * Link the vma into the MT. After using __mt_dup(), memory
725                  * allocation is not necessary here, so it cannot fail.
726                  */
727                 vma_iter_bulk_store(&vmi, tmp);
728
729                 mm->map_count++;
730
731                 if (tmp->vm_ops && tmp->vm_ops->open)
732                         tmp->vm_ops->open(tmp);
733
734                 file = tmp->vm_file;
735                 if (file) {
736                         struct address_space *mapping = file->f_mapping;
737
738                         get_file(file);
739                         i_mmap_lock_write(mapping);
740                         if (vma_is_shared_maywrite(tmp))
741                                 mapping_allow_writable(mapping);
742                         flush_dcache_mmap_lock(mapping);
743                         /* insert tmp into the share list, just after mpnt */
744                         vma_interval_tree_insert_after(tmp, mpnt,
745                                         &mapping->i_mmap);
746                         flush_dcache_mmap_unlock(mapping);
747                         i_mmap_unlock_write(mapping);
748                 }
749
750                 if (!(tmp->vm_flags & VM_WIPEONFORK))
751                         retval = copy_page_range(tmp, mpnt);
752
753                 if (retval) {
754                         mpnt = vma_next(&vmi);
755                         goto loop_out;
756                 }
757         }
758         /* a new mm has just been created */
759         retval = arch_dup_mmap(oldmm, mm);
760 loop_out:
761         vma_iter_free(&vmi);
762         if (!retval) {
763                 mt_set_in_rcu(vmi.mas.tree);
764         } else if (mpnt) {
765                 /*
766                  * The entire maple tree has already been duplicated. If the
767                  * mmap duplication fails, mark the failure point with
768                  * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
769                  * stop releasing VMAs that have not been duplicated after this
770                  * point.
771                  */
772                 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
773                 mas_store(&vmi.mas, XA_ZERO_ENTRY);
774         }
775 out:
776         mmap_write_unlock(mm);
777         flush_tlb_mm(oldmm);
778         mmap_write_unlock(oldmm);
779         dup_userfaultfd_complete(&uf);
780 fail_uprobe_end:
781         uprobe_end_dup_mmap();
782         return retval;
783
784 fail_nomem_anon_vma_fork:
785         mpol_put(vma_policy(tmp));
786 fail_nomem_policy:
787         vm_area_free(tmp);
788 fail_nomem:
789         retval = -ENOMEM;
790         vm_unacct_memory(charge);
791         goto loop_out;
792 }
793
794 static inline int mm_alloc_pgd(struct mm_struct *mm)
795 {
796         mm->pgd = pgd_alloc(mm);
797         if (unlikely(!mm->pgd))
798                 return -ENOMEM;
799         return 0;
800 }
801
802 static inline void mm_free_pgd(struct mm_struct *mm)
803 {
804         pgd_free(mm, mm->pgd);
805 }
806 #else
807 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
808 {
809         mmap_write_lock(oldmm);
810         dup_mm_exe_file(mm, oldmm);
811         mmap_write_unlock(oldmm);
812         return 0;
813 }
814 #define mm_alloc_pgd(mm)        (0)
815 #define mm_free_pgd(mm)
816 #endif /* CONFIG_MMU */
817
818 static void check_mm(struct mm_struct *mm)
819 {
820         int i;
821
822         BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
823                          "Please make sure 'struct resident_page_types[]' is updated as well");
824
825         for (i = 0; i < NR_MM_COUNTERS; i++) {
826                 long x = percpu_counter_sum(&mm->rss_stat[i]);
827
828                 if (unlikely(x))
829                         pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
830                                  mm, resident_page_types[i], x);
831         }
832
833         if (mm_pgtables_bytes(mm))
834                 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
835                                 mm_pgtables_bytes(mm));
836
837 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
838         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
839 #endif
840 }
841
842 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
843 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
844
845 static void do_check_lazy_tlb(void *arg)
846 {
847         struct mm_struct *mm = arg;
848
849         WARN_ON_ONCE(current->active_mm == mm);
850 }
851
852 static void do_shoot_lazy_tlb(void *arg)
853 {
854         struct mm_struct *mm = arg;
855
856         if (current->active_mm == mm) {
857                 WARN_ON_ONCE(current->mm);
858                 current->active_mm = &init_mm;
859                 switch_mm(mm, &init_mm, current);
860         }
861 }
862
863 static void cleanup_lazy_tlbs(struct mm_struct *mm)
864 {
865         if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
866                 /*
867                  * In this case, lazy tlb mms are refounted and would not reach
868                  * __mmdrop until all CPUs have switched away and mmdrop()ed.
869                  */
870                 return;
871         }
872
873         /*
874          * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
875          * requires lazy mm users to switch to another mm when the refcount
876          * drops to zero, before the mm is freed. This requires IPIs here to
877          * switch kernel threads to init_mm.
878          *
879          * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
880          * switch with the final userspace teardown TLB flush which leaves the
881          * mm lazy on this CPU but no others, reducing the need for additional
882          * IPIs here. There are cases where a final IPI is still required here,
883          * such as the final mmdrop being performed on a different CPU than the
884          * one exiting, or kernel threads using the mm when userspace exits.
885          *
886          * IPI overheads have not found to be expensive, but they could be
887          * reduced in a number of possible ways, for example (roughly
888          * increasing order of complexity):
889          * - The last lazy reference created by exit_mm() could instead switch
890          *   to init_mm, however it's probable this will run on the same CPU
891          *   immediately afterwards, so this may not reduce IPIs much.
892          * - A batch of mms requiring IPIs could be gathered and freed at once.
893          * - CPUs store active_mm where it can be remotely checked without a
894          *   lock, to filter out false-positives in the cpumask.
895          * - After mm_users or mm_count reaches zero, switching away from the
896          *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
897          *   with some batching or delaying of the final IPIs.
898          * - A delayed freeing and RCU-like quiescing sequence based on mm
899          *   switching to avoid IPIs completely.
900          */
901         on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
902         if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
903                 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
904 }
905
906 /*
907  * Called when the last reference to the mm
908  * is dropped: either by a lazy thread or by
909  * mmput. Free the page directory and the mm.
910  */
911 void __mmdrop(struct mm_struct *mm)
912 {
913         BUG_ON(mm == &init_mm);
914         WARN_ON_ONCE(mm == current->mm);
915
916         /* Ensure no CPUs are using this as their lazy tlb mm */
917         cleanup_lazy_tlbs(mm);
918
919         WARN_ON_ONCE(mm == current->active_mm);
920         mm_free_pgd(mm);
921         destroy_context(mm);
922         mmu_notifier_subscriptions_destroy(mm);
923         check_mm(mm);
924         put_user_ns(mm->user_ns);
925         mm_pasid_drop(mm);
926         mm_destroy_cid(mm);
927         percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
928
929         free_mm(mm);
930 }
931 EXPORT_SYMBOL_GPL(__mmdrop);
932
933 static void mmdrop_async_fn(struct work_struct *work)
934 {
935         struct mm_struct *mm;
936
937         mm = container_of(work, struct mm_struct, async_put_work);
938         __mmdrop(mm);
939 }
940
941 static void mmdrop_async(struct mm_struct *mm)
942 {
943         if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
944                 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
945                 schedule_work(&mm->async_put_work);
946         }
947 }
948
949 static inline void free_signal_struct(struct signal_struct *sig)
950 {
951         taskstats_tgid_free(sig);
952         sched_autogroup_exit(sig);
953         /*
954          * __mmdrop is not safe to call from softirq context on x86 due to
955          * pgd_dtor so postpone it to the async context
956          */
957         if (sig->oom_mm)
958                 mmdrop_async(sig->oom_mm);
959         kmem_cache_free(signal_cachep, sig);
960 }
961
962 static inline void put_signal_struct(struct signal_struct *sig)
963 {
964         if (refcount_dec_and_test(&sig->sigcnt))
965                 free_signal_struct(sig);
966 }
967
968 void __put_task_struct(struct task_struct *tsk)
969 {
970         WARN_ON(!tsk->exit_state);
971         WARN_ON(refcount_read(&tsk->usage));
972         WARN_ON(tsk == current);
973
974         io_uring_free(tsk);
975         cgroup_free(tsk);
976         task_numa_free(tsk, true);
977         security_task_free(tsk);
978         exit_creds(tsk);
979         delayacct_tsk_free(tsk);
980         put_signal_struct(tsk->signal);
981         sched_core_free(tsk);
982         free_task(tsk);
983 }
984 EXPORT_SYMBOL_GPL(__put_task_struct);
985
986 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
987 {
988         struct task_struct *task = container_of(rhp, struct task_struct, rcu);
989
990         __put_task_struct(task);
991 }
992 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
993
994 void __init __weak arch_task_cache_init(void) { }
995
996 /*
997  * set_max_threads
998  */
999 static void set_max_threads(unsigned int max_threads_suggested)
1000 {
1001         u64 threads;
1002         unsigned long nr_pages = totalram_pages();
1003
1004         /*
1005          * The number of threads shall be limited such that the thread
1006          * structures may only consume a small part of the available memory.
1007          */
1008         if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1009                 threads = MAX_THREADS;
1010         else
1011                 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1012                                     (u64) THREAD_SIZE * 8UL);
1013
1014         if (threads > max_threads_suggested)
1015                 threads = max_threads_suggested;
1016
1017         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1018 }
1019
1020 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1021 /* Initialized by the architecture: */
1022 int arch_task_struct_size __read_mostly;
1023 #endif
1024
1025 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1026 {
1027         /* Fetch thread_struct whitelist for the architecture. */
1028         arch_thread_struct_whitelist(offset, size);
1029
1030         /*
1031          * Handle zero-sized whitelist or empty thread_struct, otherwise
1032          * adjust offset to position of thread_struct in task_struct.
1033          */
1034         if (unlikely(*size == 0))
1035                 *offset = 0;
1036         else
1037                 *offset += offsetof(struct task_struct, thread);
1038 }
1039
1040 void __init fork_init(void)
1041 {
1042         int i;
1043 #ifndef ARCH_MIN_TASKALIGN
1044 #define ARCH_MIN_TASKALIGN      0
1045 #endif
1046         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1047         unsigned long useroffset, usersize;
1048
1049         /* create a slab on which task_structs can be allocated */
1050         task_struct_whitelist(&useroffset, &usersize);
1051         task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1052                         arch_task_struct_size, align,
1053                         SLAB_PANIC|SLAB_ACCOUNT,
1054                         useroffset, usersize, NULL);
1055
1056         /* do the arch specific task caches init */
1057         arch_task_cache_init();
1058
1059         set_max_threads(MAX_THREADS);
1060
1061         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1062         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1063         init_task.signal->rlim[RLIMIT_SIGPENDING] =
1064                 init_task.signal->rlim[RLIMIT_NPROC];
1065
1066         for (i = 0; i < UCOUNT_COUNTS; i++)
1067                 init_user_ns.ucount_max[i] = max_threads/2;
1068
1069         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1070         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1071         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1072         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1073
1074 #ifdef CONFIG_VMAP_STACK
1075         cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1076                           NULL, free_vm_stack_cache);
1077 #endif
1078
1079         scs_init();
1080
1081         lockdep_init_task(&init_task);
1082         uprobes_init();
1083 }
1084
1085 int __weak arch_dup_task_struct(struct task_struct *dst,
1086                                                struct task_struct *src)
1087 {
1088         *dst = *src;
1089         return 0;
1090 }
1091
1092 void set_task_stack_end_magic(struct task_struct *tsk)
1093 {
1094         unsigned long *stackend;
1095
1096         stackend = end_of_stack(tsk);
1097         *stackend = STACK_END_MAGIC;    /* for overflow detection */
1098 }
1099
1100 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1101 {
1102         struct task_struct *tsk;
1103         int err;
1104
1105         if (node == NUMA_NO_NODE)
1106                 node = tsk_fork_get_node(orig);
1107         tsk = alloc_task_struct_node(node);
1108         if (!tsk)
1109                 return NULL;
1110
1111         err = arch_dup_task_struct(tsk, orig);
1112         if (err)
1113                 goto free_tsk;
1114
1115         err = alloc_thread_stack_node(tsk, node);
1116         if (err)
1117                 goto free_tsk;
1118
1119 #ifdef CONFIG_THREAD_INFO_IN_TASK
1120         refcount_set(&tsk->stack_refcount, 1);
1121 #endif
1122         account_kernel_stack(tsk, 1);
1123
1124         err = scs_prepare(tsk, node);
1125         if (err)
1126                 goto free_stack;
1127
1128 #ifdef CONFIG_SECCOMP
1129         /*
1130          * We must handle setting up seccomp filters once we're under
1131          * the sighand lock in case orig has changed between now and
1132          * then. Until then, filter must be NULL to avoid messing up
1133          * the usage counts on the error path calling free_task.
1134          */
1135         tsk->seccomp.filter = NULL;
1136 #endif
1137
1138         setup_thread_stack(tsk, orig);
1139         clear_user_return_notifier(tsk);
1140         clear_tsk_need_resched(tsk);
1141         set_task_stack_end_magic(tsk);
1142         clear_syscall_work_syscall_user_dispatch(tsk);
1143
1144 #ifdef CONFIG_STACKPROTECTOR
1145         tsk->stack_canary = get_random_canary();
1146 #endif
1147         if (orig->cpus_ptr == &orig->cpus_mask)
1148                 tsk->cpus_ptr = &tsk->cpus_mask;
1149         dup_user_cpus_ptr(tsk, orig, node);
1150
1151         /*
1152          * One for the user space visible state that goes away when reaped.
1153          * One for the scheduler.
1154          */
1155         refcount_set(&tsk->rcu_users, 2);
1156         /* One for the rcu users */
1157         refcount_set(&tsk->usage, 1);
1158 #ifdef CONFIG_BLK_DEV_IO_TRACE
1159         tsk->btrace_seq = 0;
1160 #endif
1161         tsk->splice_pipe = NULL;
1162         tsk->task_frag.page = NULL;
1163         tsk->wake_q.next = NULL;
1164         tsk->worker_private = NULL;
1165
1166         kcov_task_init(tsk);
1167         kmsan_task_create(tsk);
1168         kmap_local_fork(tsk);
1169
1170 #ifdef CONFIG_FAULT_INJECTION
1171         tsk->fail_nth = 0;
1172 #endif
1173
1174 #ifdef CONFIG_BLK_CGROUP
1175         tsk->throttle_disk = NULL;
1176         tsk->use_memdelay = 0;
1177 #endif
1178
1179 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1180         tsk->pasid_activated = 0;
1181 #endif
1182
1183 #ifdef CONFIG_MEMCG
1184         tsk->active_memcg = NULL;
1185 #endif
1186
1187 #ifdef CONFIG_CPU_SUP_INTEL
1188         tsk->reported_split_lock = 0;
1189 #endif
1190
1191 #ifdef CONFIG_SCHED_MM_CID
1192         tsk->mm_cid = -1;
1193         tsk->last_mm_cid = -1;
1194         tsk->mm_cid_active = 0;
1195         tsk->migrate_from_cpu = -1;
1196 #endif
1197         return tsk;
1198
1199 free_stack:
1200         exit_task_stack_account(tsk);
1201         free_thread_stack(tsk);
1202 free_tsk:
1203         free_task_struct(tsk);
1204         return NULL;
1205 }
1206
1207 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1208
1209 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1210
1211 static int __init coredump_filter_setup(char *s)
1212 {
1213         default_dump_filter =
1214                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1215                 MMF_DUMP_FILTER_MASK;
1216         return 1;
1217 }
1218
1219 __setup("coredump_filter=", coredump_filter_setup);
1220
1221 #include <linux/init_task.h>
1222
1223 static void mm_init_aio(struct mm_struct *mm)
1224 {
1225 #ifdef CONFIG_AIO
1226         spin_lock_init(&mm->ioctx_lock);
1227         mm->ioctx_table = NULL;
1228 #endif
1229 }
1230
1231 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1232                                            struct task_struct *p)
1233 {
1234 #ifdef CONFIG_MEMCG
1235         if (mm->owner == p)
1236                 WRITE_ONCE(mm->owner, NULL);
1237 #endif
1238 }
1239
1240 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1241 {
1242 #ifdef CONFIG_MEMCG
1243         mm->owner = p;
1244 #endif
1245 }
1246
1247 static void mm_init_uprobes_state(struct mm_struct *mm)
1248 {
1249 #ifdef CONFIG_UPROBES
1250         mm->uprobes_state.xol_area = NULL;
1251 #endif
1252 }
1253
1254 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1255         struct user_namespace *user_ns)
1256 {
1257         mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1258         mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1259         atomic_set(&mm->mm_users, 1);
1260         atomic_set(&mm->mm_count, 1);
1261         seqcount_init(&mm->write_protect_seq);
1262         mmap_init_lock(mm);
1263         INIT_LIST_HEAD(&mm->mmlist);
1264 #ifdef CONFIG_PER_VMA_LOCK
1265         mm->mm_lock_seq = 0;
1266 #endif
1267         mm_pgtables_bytes_init(mm);
1268         mm->map_count = 0;
1269         mm->locked_vm = 0;
1270         atomic64_set(&mm->pinned_vm, 0);
1271         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1272         spin_lock_init(&mm->page_table_lock);
1273         spin_lock_init(&mm->arg_lock);
1274         mm_init_cpumask(mm);
1275         mm_init_aio(mm);
1276         mm_init_owner(mm, p);
1277         mm_pasid_init(mm);
1278         RCU_INIT_POINTER(mm->exe_file, NULL);
1279         mmu_notifier_subscriptions_init(mm);
1280         init_tlb_flush_pending(mm);
1281 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1282         mm->pmd_huge_pte = NULL;
1283 #endif
1284         mm_init_uprobes_state(mm);
1285         hugetlb_count_init(mm);
1286
1287         if (current->mm) {
1288                 mm->flags = mmf_init_flags(current->mm->flags);
1289                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1290         } else {
1291                 mm->flags = default_dump_filter;
1292                 mm->def_flags = 0;
1293         }
1294
1295         if (mm_alloc_pgd(mm))
1296                 goto fail_nopgd;
1297
1298         if (init_new_context(p, mm))
1299                 goto fail_nocontext;
1300
1301         if (mm_alloc_cid(mm))
1302                 goto fail_cid;
1303
1304         if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1305                                      NR_MM_COUNTERS))
1306                 goto fail_pcpu;
1307
1308         mm->user_ns = get_user_ns(user_ns);
1309         lru_gen_init_mm(mm);
1310         return mm;
1311
1312 fail_pcpu:
1313         mm_destroy_cid(mm);
1314 fail_cid:
1315         destroy_context(mm);
1316 fail_nocontext:
1317         mm_free_pgd(mm);
1318 fail_nopgd:
1319         free_mm(mm);
1320         return NULL;
1321 }
1322
1323 /*
1324  * Allocate and initialize an mm_struct.
1325  */
1326 struct mm_struct *mm_alloc(void)
1327 {
1328         struct mm_struct *mm;
1329
1330         mm = allocate_mm();
1331         if (!mm)
1332                 return NULL;
1333
1334         memset(mm, 0, sizeof(*mm));
1335         return mm_init(mm, current, current_user_ns());
1336 }
1337
1338 static inline void __mmput(struct mm_struct *mm)
1339 {
1340         VM_BUG_ON(atomic_read(&mm->mm_users));
1341
1342         uprobe_clear_state(mm);
1343         exit_aio(mm);
1344         ksm_exit(mm);
1345         khugepaged_exit(mm); /* must run before exit_mmap */
1346         exit_mmap(mm);
1347         mm_put_huge_zero_folio(mm);
1348         set_mm_exe_file(mm, NULL);
1349         if (!list_empty(&mm->mmlist)) {
1350                 spin_lock(&mmlist_lock);
1351                 list_del(&mm->mmlist);
1352                 spin_unlock(&mmlist_lock);
1353         }
1354         if (mm->binfmt)
1355                 module_put(mm->binfmt->module);
1356         lru_gen_del_mm(mm);
1357         mmdrop(mm);
1358 }
1359
1360 /*
1361  * Decrement the use count and release all resources for an mm.
1362  */
1363 void mmput(struct mm_struct *mm)
1364 {
1365         might_sleep();
1366
1367         if (atomic_dec_and_test(&mm->mm_users))
1368                 __mmput(mm);
1369 }
1370 EXPORT_SYMBOL_GPL(mmput);
1371
1372 #ifdef CONFIG_MMU
1373 static void mmput_async_fn(struct work_struct *work)
1374 {
1375         struct mm_struct *mm = container_of(work, struct mm_struct,
1376                                             async_put_work);
1377
1378         __mmput(mm);
1379 }
1380
1381 void mmput_async(struct mm_struct *mm)
1382 {
1383         if (atomic_dec_and_test(&mm->mm_users)) {
1384                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1385                 schedule_work(&mm->async_put_work);
1386         }
1387 }
1388 EXPORT_SYMBOL_GPL(mmput_async);
1389 #endif
1390
1391 /**
1392  * set_mm_exe_file - change a reference to the mm's executable file
1393  * @mm: The mm to change.
1394  * @new_exe_file: The new file to use.
1395  *
1396  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1397  *
1398  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1399  * invocations: in mmput() nobody alive left, in execve it happens before
1400  * the new mm is made visible to anyone.
1401  *
1402  * Can only fail if new_exe_file != NULL.
1403  */
1404 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1405 {
1406         struct file *old_exe_file;
1407
1408         /*
1409          * It is safe to dereference the exe_file without RCU as
1410          * this function is only called if nobody else can access
1411          * this mm -- see comment above for justification.
1412          */
1413         old_exe_file = rcu_dereference_raw(mm->exe_file);
1414
1415         if (new_exe_file) {
1416                 /*
1417                  * We expect the caller (i.e., sys_execve) to already denied
1418                  * write access, so this is unlikely to fail.
1419                  */
1420                 if (unlikely(deny_write_access(new_exe_file)))
1421                         return -EACCES;
1422                 get_file(new_exe_file);
1423         }
1424         rcu_assign_pointer(mm->exe_file, new_exe_file);
1425         if (old_exe_file) {
1426                 allow_write_access(old_exe_file);
1427                 fput(old_exe_file);
1428         }
1429         return 0;
1430 }
1431
1432 /**
1433  * replace_mm_exe_file - replace a reference to the mm's executable file
1434  * @mm: The mm to change.
1435  * @new_exe_file: The new file to use.
1436  *
1437  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1438  *
1439  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1440  */
1441 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1442 {
1443         struct vm_area_struct *vma;
1444         struct file *old_exe_file;
1445         int ret = 0;
1446
1447         /* Forbid mm->exe_file change if old file still mapped. */
1448         old_exe_file = get_mm_exe_file(mm);
1449         if (old_exe_file) {
1450                 VMA_ITERATOR(vmi, mm, 0);
1451                 mmap_read_lock(mm);
1452                 for_each_vma(vmi, vma) {
1453                         if (!vma->vm_file)
1454                                 continue;
1455                         if (path_equal(&vma->vm_file->f_path,
1456                                        &old_exe_file->f_path)) {
1457                                 ret = -EBUSY;
1458                                 break;
1459                         }
1460                 }
1461                 mmap_read_unlock(mm);
1462                 fput(old_exe_file);
1463                 if (ret)
1464                         return ret;
1465         }
1466
1467         ret = deny_write_access(new_exe_file);
1468         if (ret)
1469                 return -EACCES;
1470         get_file(new_exe_file);
1471
1472         /* set the new file */
1473         mmap_write_lock(mm);
1474         old_exe_file = rcu_dereference_raw(mm->exe_file);
1475         rcu_assign_pointer(mm->exe_file, new_exe_file);
1476         mmap_write_unlock(mm);
1477
1478         if (old_exe_file) {
1479                 allow_write_access(old_exe_file);
1480                 fput(old_exe_file);
1481         }
1482         return 0;
1483 }
1484
1485 /**
1486  * get_mm_exe_file - acquire a reference to the mm's executable file
1487  * @mm: The mm of interest.
1488  *
1489  * Returns %NULL if mm has no associated executable file.
1490  * User must release file via fput().
1491  */
1492 struct file *get_mm_exe_file(struct mm_struct *mm)
1493 {
1494         struct file *exe_file;
1495
1496         rcu_read_lock();
1497         exe_file = get_file_rcu(&mm->exe_file);
1498         rcu_read_unlock();
1499         return exe_file;
1500 }
1501
1502 /**
1503  * get_task_exe_file - acquire a reference to the task's executable file
1504  * @task: The task.
1505  *
1506  * Returns %NULL if task's mm (if any) has no associated executable file or
1507  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1508  * User must release file via fput().
1509  */
1510 struct file *get_task_exe_file(struct task_struct *task)
1511 {
1512         struct file *exe_file = NULL;
1513         struct mm_struct *mm;
1514
1515         task_lock(task);
1516         mm = task->mm;
1517         if (mm) {
1518                 if (!(task->flags & PF_KTHREAD))
1519                         exe_file = get_mm_exe_file(mm);
1520         }
1521         task_unlock(task);
1522         return exe_file;
1523 }
1524
1525 /**
1526  * get_task_mm - acquire a reference to the task's mm
1527  * @task: The task.
1528  *
1529  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1530  * this kernel workthread has transiently adopted a user mm with use_mm,
1531  * to do its AIO) is not set and if so returns a reference to it, after
1532  * bumping up the use count.  User must release the mm via mmput()
1533  * after use.  Typically used by /proc and ptrace.
1534  */
1535 struct mm_struct *get_task_mm(struct task_struct *task)
1536 {
1537         struct mm_struct *mm;
1538
1539         task_lock(task);
1540         mm = task->mm;
1541         if (mm) {
1542                 if (task->flags & PF_KTHREAD)
1543                         mm = NULL;
1544                 else
1545                         mmget(mm);
1546         }
1547         task_unlock(task);
1548         return mm;
1549 }
1550 EXPORT_SYMBOL_GPL(get_task_mm);
1551
1552 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1553 {
1554         struct mm_struct *mm;
1555         int err;
1556
1557         err =  down_read_killable(&task->signal->exec_update_lock);
1558         if (err)
1559                 return ERR_PTR(err);
1560
1561         mm = get_task_mm(task);
1562         if (mm && mm != current->mm &&
1563                         !ptrace_may_access(task, mode)) {
1564                 mmput(mm);
1565                 mm = ERR_PTR(-EACCES);
1566         }
1567         up_read(&task->signal->exec_update_lock);
1568
1569         return mm;
1570 }
1571
1572 static void complete_vfork_done(struct task_struct *tsk)
1573 {
1574         struct completion *vfork;
1575
1576         task_lock(tsk);
1577         vfork = tsk->vfork_done;
1578         if (likely(vfork)) {
1579                 tsk->vfork_done = NULL;
1580                 complete(vfork);
1581         }
1582         task_unlock(tsk);
1583 }
1584
1585 static int wait_for_vfork_done(struct task_struct *child,
1586                                 struct completion *vfork)
1587 {
1588         unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1589         int killed;
1590
1591         cgroup_enter_frozen();
1592         killed = wait_for_completion_state(vfork, state);
1593         cgroup_leave_frozen(false);
1594
1595         if (killed) {
1596                 task_lock(child);
1597                 child->vfork_done = NULL;
1598                 task_unlock(child);
1599         }
1600
1601         put_task_struct(child);
1602         return killed;
1603 }
1604
1605 /* Please note the differences between mmput and mm_release.
1606  * mmput is called whenever we stop holding onto a mm_struct,
1607  * error success whatever.
1608  *
1609  * mm_release is called after a mm_struct has been removed
1610  * from the current process.
1611  *
1612  * This difference is important for error handling, when we
1613  * only half set up a mm_struct for a new process and need to restore
1614  * the old one.  Because we mmput the new mm_struct before
1615  * restoring the old one. . .
1616  * Eric Biederman 10 January 1998
1617  */
1618 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1619 {
1620         uprobe_free_utask(tsk);
1621
1622         /* Get rid of any cached register state */
1623         deactivate_mm(tsk, mm);
1624
1625         /*
1626          * Signal userspace if we're not exiting with a core dump
1627          * because we want to leave the value intact for debugging
1628          * purposes.
1629          */
1630         if (tsk->clear_child_tid) {
1631                 if (atomic_read(&mm->mm_users) > 1) {
1632                         /*
1633                          * We don't check the error code - if userspace has
1634                          * not set up a proper pointer then tough luck.
1635                          */
1636                         put_user(0, tsk->clear_child_tid);
1637                         do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1638                                         1, NULL, NULL, 0, 0);
1639                 }
1640                 tsk->clear_child_tid = NULL;
1641         }
1642
1643         /*
1644          * All done, finally we can wake up parent and return this mm to him.
1645          * Also kthread_stop() uses this completion for synchronization.
1646          */
1647         if (tsk->vfork_done)
1648                 complete_vfork_done(tsk);
1649 }
1650
1651 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1652 {
1653         futex_exit_release(tsk);
1654         mm_release(tsk, mm);
1655 }
1656
1657 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1658 {
1659         futex_exec_release(tsk);
1660         mm_release(tsk, mm);
1661 }
1662
1663 /**
1664  * dup_mm() - duplicates an existing mm structure
1665  * @tsk: the task_struct with which the new mm will be associated.
1666  * @oldmm: the mm to duplicate.
1667  *
1668  * Allocates a new mm structure and duplicates the provided @oldmm structure
1669  * content into it.
1670  *
1671  * Return: the duplicated mm or NULL on failure.
1672  */
1673 static struct mm_struct *dup_mm(struct task_struct *tsk,
1674                                 struct mm_struct *oldmm)
1675 {
1676         struct mm_struct *mm;
1677         int err;
1678
1679         mm = allocate_mm();
1680         if (!mm)
1681                 goto fail_nomem;
1682
1683         memcpy(mm, oldmm, sizeof(*mm));
1684
1685         if (!mm_init(mm, tsk, mm->user_ns))
1686                 goto fail_nomem;
1687
1688         err = dup_mmap(mm, oldmm);
1689         if (err)
1690                 goto free_pt;
1691
1692         mm->hiwater_rss = get_mm_rss(mm);
1693         mm->hiwater_vm = mm->total_vm;
1694
1695         if (mm->binfmt && !try_module_get(mm->binfmt->module))
1696                 goto free_pt;
1697
1698         return mm;
1699
1700 free_pt:
1701         /* don't put binfmt in mmput, we haven't got module yet */
1702         mm->binfmt = NULL;
1703         mm_init_owner(mm, NULL);
1704         mmput(mm);
1705
1706 fail_nomem:
1707         return NULL;
1708 }
1709
1710 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1711 {
1712         struct mm_struct *mm, *oldmm;
1713
1714         tsk->min_flt = tsk->maj_flt = 0;
1715         tsk->nvcsw = tsk->nivcsw = 0;
1716 #ifdef CONFIG_DETECT_HUNG_TASK
1717         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1718         tsk->last_switch_time = 0;
1719 #endif
1720
1721         tsk->mm = NULL;
1722         tsk->active_mm = NULL;
1723
1724         /*
1725          * Are we cloning a kernel thread?
1726          *
1727          * We need to steal a active VM for that..
1728          */
1729         oldmm = current->mm;
1730         if (!oldmm)
1731                 return 0;
1732
1733         if (clone_flags & CLONE_VM) {
1734                 mmget(oldmm);
1735                 mm = oldmm;
1736         } else {
1737                 mm = dup_mm(tsk, current->mm);
1738                 if (!mm)
1739                         return -ENOMEM;
1740         }
1741
1742         tsk->mm = mm;
1743         tsk->active_mm = mm;
1744         sched_mm_cid_fork(tsk);
1745         return 0;
1746 }
1747
1748 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1749 {
1750         struct fs_struct *fs = current->fs;
1751         if (clone_flags & CLONE_FS) {
1752                 /* tsk->fs is already what we want */
1753                 spin_lock(&fs->lock);
1754                 /* "users" and "in_exec" locked for check_unsafe_exec() */
1755                 if (fs->in_exec) {
1756                         spin_unlock(&fs->lock);
1757                         return -EAGAIN;
1758                 }
1759                 fs->users++;
1760                 spin_unlock(&fs->lock);
1761                 return 0;
1762         }
1763         tsk->fs = copy_fs_struct(fs);
1764         if (!tsk->fs)
1765                 return -ENOMEM;
1766         return 0;
1767 }
1768
1769 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1770                       int no_files)
1771 {
1772         struct files_struct *oldf, *newf;
1773         int error = 0;
1774
1775         /*
1776          * A background process may not have any files ...
1777          */
1778         oldf = current->files;
1779         if (!oldf)
1780                 goto out;
1781
1782         if (no_files) {
1783                 tsk->files = NULL;
1784                 goto out;
1785         }
1786
1787         if (clone_flags & CLONE_FILES) {
1788                 atomic_inc(&oldf->count);
1789                 goto out;
1790         }
1791
1792         newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1793         if (!newf)
1794                 goto out;
1795
1796         tsk->files = newf;
1797         error = 0;
1798 out:
1799         return error;
1800 }
1801
1802 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1803 {
1804         struct sighand_struct *sig;
1805
1806         if (clone_flags & CLONE_SIGHAND) {
1807                 refcount_inc(&current->sighand->count);
1808                 return 0;
1809         }
1810         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1811         RCU_INIT_POINTER(tsk->sighand, sig);
1812         if (!sig)
1813                 return -ENOMEM;
1814
1815         refcount_set(&sig->count, 1);
1816         spin_lock_irq(&current->sighand->siglock);
1817         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1818         spin_unlock_irq(&current->sighand->siglock);
1819
1820         /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1821         if (clone_flags & CLONE_CLEAR_SIGHAND)
1822                 flush_signal_handlers(tsk, 0);
1823
1824         return 0;
1825 }
1826
1827 void __cleanup_sighand(struct sighand_struct *sighand)
1828 {
1829         if (refcount_dec_and_test(&sighand->count)) {
1830                 signalfd_cleanup(sighand);
1831                 /*
1832                  * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1833                  * without an RCU grace period, see __lock_task_sighand().
1834                  */
1835                 kmem_cache_free(sighand_cachep, sighand);
1836         }
1837 }
1838
1839 /*
1840  * Initialize POSIX timer handling for a thread group.
1841  */
1842 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1843 {
1844         struct posix_cputimers *pct = &sig->posix_cputimers;
1845         unsigned long cpu_limit;
1846
1847         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1848         posix_cputimers_group_init(pct, cpu_limit);
1849 }
1850
1851 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1852 {
1853         struct signal_struct *sig;
1854
1855         if (clone_flags & CLONE_THREAD)
1856                 return 0;
1857
1858         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1859         tsk->signal = sig;
1860         if (!sig)
1861                 return -ENOMEM;
1862
1863         sig->nr_threads = 1;
1864         sig->quick_threads = 1;
1865         atomic_set(&sig->live, 1);
1866         refcount_set(&sig->sigcnt, 1);
1867
1868         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1869         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1870         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1871
1872         init_waitqueue_head(&sig->wait_chldexit);
1873         sig->curr_target = tsk;
1874         init_sigpending(&sig->shared_pending);
1875         INIT_HLIST_HEAD(&sig->multiprocess);
1876         seqlock_init(&sig->stats_lock);
1877         prev_cputime_init(&sig->prev_cputime);
1878
1879 #ifdef CONFIG_POSIX_TIMERS
1880         INIT_LIST_HEAD(&sig->posix_timers);
1881         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1882         sig->real_timer.function = it_real_fn;
1883 #endif
1884
1885         task_lock(current->group_leader);
1886         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1887         task_unlock(current->group_leader);
1888
1889         posix_cpu_timers_init_group(sig);
1890
1891         tty_audit_fork(sig);
1892         sched_autogroup_fork(sig);
1893
1894         sig->oom_score_adj = current->signal->oom_score_adj;
1895         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1896
1897         mutex_init(&sig->cred_guard_mutex);
1898         init_rwsem(&sig->exec_update_lock);
1899
1900         return 0;
1901 }
1902
1903 static void copy_seccomp(struct task_struct *p)
1904 {
1905 #ifdef CONFIG_SECCOMP
1906         /*
1907          * Must be called with sighand->lock held, which is common to
1908          * all threads in the group. Holding cred_guard_mutex is not
1909          * needed because this new task is not yet running and cannot
1910          * be racing exec.
1911          */
1912         assert_spin_locked(&current->sighand->siglock);
1913
1914         /* Ref-count the new filter user, and assign it. */
1915         get_seccomp_filter(current);
1916         p->seccomp = current->seccomp;
1917
1918         /*
1919          * Explicitly enable no_new_privs here in case it got set
1920          * between the task_struct being duplicated and holding the
1921          * sighand lock. The seccomp state and nnp must be in sync.
1922          */
1923         if (task_no_new_privs(current))
1924                 task_set_no_new_privs(p);
1925
1926         /*
1927          * If the parent gained a seccomp mode after copying thread
1928          * flags and between before we held the sighand lock, we have
1929          * to manually enable the seccomp thread flag here.
1930          */
1931         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1932                 set_task_syscall_work(p, SECCOMP);
1933 #endif
1934 }
1935
1936 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1937 {
1938         current->clear_child_tid = tidptr;
1939
1940         return task_pid_vnr(current);
1941 }
1942
1943 static void rt_mutex_init_task(struct task_struct *p)
1944 {
1945         raw_spin_lock_init(&p->pi_lock);
1946 #ifdef CONFIG_RT_MUTEXES
1947         p->pi_waiters = RB_ROOT_CACHED;
1948         p->pi_top_task = NULL;
1949         p->pi_blocked_on = NULL;
1950 #endif
1951 }
1952
1953 static inline void init_task_pid_links(struct task_struct *task)
1954 {
1955         enum pid_type type;
1956
1957         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1958                 INIT_HLIST_NODE(&task->pid_links[type]);
1959 }
1960
1961 static inline void
1962 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1963 {
1964         if (type == PIDTYPE_PID)
1965                 task->thread_pid = pid;
1966         else
1967                 task->signal->pids[type] = pid;
1968 }
1969
1970 static inline void rcu_copy_process(struct task_struct *p)
1971 {
1972 #ifdef CONFIG_PREEMPT_RCU
1973         p->rcu_read_lock_nesting = 0;
1974         p->rcu_read_unlock_special.s = 0;
1975         p->rcu_blocked_node = NULL;
1976         INIT_LIST_HEAD(&p->rcu_node_entry);
1977 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1978 #ifdef CONFIG_TASKS_RCU
1979         p->rcu_tasks_holdout = false;
1980         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1981         p->rcu_tasks_idle_cpu = -1;
1982         INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1983 #endif /* #ifdef CONFIG_TASKS_RCU */
1984 #ifdef CONFIG_TASKS_TRACE_RCU
1985         p->trc_reader_nesting = 0;
1986         p->trc_reader_special.s = 0;
1987         INIT_LIST_HEAD(&p->trc_holdout_list);
1988         INIT_LIST_HEAD(&p->trc_blkd_node);
1989 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1990 }
1991
1992 /**
1993  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1994  * @pid:   the struct pid for which to create a pidfd
1995  * @flags: flags of the new @pidfd
1996  * @ret: Where to return the file for the pidfd.
1997  *
1998  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1999  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2000  *
2001  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2002  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2003  * pidfd file are prepared.
2004  *
2005  * If this function returns successfully the caller is responsible to either
2006  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2007  * order to install the pidfd into its file descriptor table or they must use
2008  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2009  * respectively.
2010  *
2011  * This function is useful when a pidfd must already be reserved but there
2012  * might still be points of failure afterwards and the caller wants to ensure
2013  * that no pidfd is leaked into its file descriptor table.
2014  *
2015  * Return: On success, a reserved pidfd is returned from the function and a new
2016  *         pidfd file is returned in the last argument to the function. On
2017  *         error, a negative error code is returned from the function and the
2018  *         last argument remains unchanged.
2019  */
2020 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2021 {
2022         int pidfd;
2023         struct file *pidfd_file;
2024
2025         pidfd = get_unused_fd_flags(O_CLOEXEC);
2026         if (pidfd < 0)
2027                 return pidfd;
2028
2029         pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2030         if (IS_ERR(pidfd_file)) {
2031                 put_unused_fd(pidfd);
2032                 return PTR_ERR(pidfd_file);
2033         }
2034         /*
2035          * anon_inode_getfile() ignores everything outside of the
2036          * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2037          */
2038         pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2039         *ret = pidfd_file;
2040         return pidfd;
2041 }
2042
2043 /**
2044  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2045  * @pid:   the struct pid for which to create a pidfd
2046  * @flags: flags of the new @pidfd
2047  * @ret: Where to return the pidfd.
2048  *
2049  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2050  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2051  *
2052  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2053  * task identified by @pid must be a thread-group leader.
2054  *
2055  * If this function returns successfully the caller is responsible to either
2056  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2057  * order to install the pidfd into its file descriptor table or they must use
2058  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2059  * respectively.
2060  *
2061  * This function is useful when a pidfd must already be reserved but there
2062  * might still be points of failure afterwards and the caller wants to ensure
2063  * that no pidfd is leaked into its file descriptor table.
2064  *
2065  * Return: On success, a reserved pidfd is returned from the function and a new
2066  *         pidfd file is returned in the last argument to the function. On
2067  *         error, a negative error code is returned from the function and the
2068  *         last argument remains unchanged.
2069  */
2070 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2071 {
2072         bool thread = flags & PIDFD_THREAD;
2073
2074         if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2075                 return -EINVAL;
2076
2077         return __pidfd_prepare(pid, flags, ret);
2078 }
2079
2080 static void __delayed_free_task(struct rcu_head *rhp)
2081 {
2082         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2083
2084         free_task(tsk);
2085 }
2086
2087 static __always_inline void delayed_free_task(struct task_struct *tsk)
2088 {
2089         if (IS_ENABLED(CONFIG_MEMCG))
2090                 call_rcu(&tsk->rcu, __delayed_free_task);
2091         else
2092                 free_task(tsk);
2093 }
2094
2095 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2096 {
2097         /* Skip if kernel thread */
2098         if (!tsk->mm)
2099                 return;
2100
2101         /* Skip if spawning a thread or using vfork */
2102         if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2103                 return;
2104
2105         /* We need to synchronize with __set_oom_adj */
2106         mutex_lock(&oom_adj_mutex);
2107         set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2108         /* Update the values in case they were changed after copy_signal */
2109         tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2110         tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2111         mutex_unlock(&oom_adj_mutex);
2112 }
2113
2114 #ifdef CONFIG_RV
2115 static void rv_task_fork(struct task_struct *p)
2116 {
2117         int i;
2118
2119         for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2120                 p->rv[i].da_mon.monitoring = false;
2121 }
2122 #else
2123 #define rv_task_fork(p) do {} while (0)
2124 #endif
2125
2126 /*
2127  * This creates a new process as a copy of the old one,
2128  * but does not actually start it yet.
2129  *
2130  * It copies the registers, and all the appropriate
2131  * parts of the process environment (as per the clone
2132  * flags). The actual kick-off is left to the caller.
2133  */
2134 __latent_entropy struct task_struct *copy_process(
2135                                         struct pid *pid,
2136                                         int trace,
2137                                         int node,
2138                                         struct kernel_clone_args *args)
2139 {
2140         int pidfd = -1, retval;
2141         struct task_struct *p;
2142         struct multiprocess_signals delayed;
2143         struct file *pidfile = NULL;
2144         const u64 clone_flags = args->flags;
2145         struct nsproxy *nsp = current->nsproxy;
2146
2147         /*
2148          * Don't allow sharing the root directory with processes in a different
2149          * namespace
2150          */
2151         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2152                 return ERR_PTR(-EINVAL);
2153
2154         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2155                 return ERR_PTR(-EINVAL);
2156
2157         /*
2158          * Thread groups must share signals as well, and detached threads
2159          * can only be started up within the thread group.
2160          */
2161         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2162                 return ERR_PTR(-EINVAL);
2163
2164         /*
2165          * Shared signal handlers imply shared VM. By way of the above,
2166          * thread groups also imply shared VM. Blocking this case allows
2167          * for various simplifications in other code.
2168          */
2169         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2170                 return ERR_PTR(-EINVAL);
2171
2172         /*
2173          * Siblings of global init remain as zombies on exit since they are
2174          * not reaped by their parent (swapper). To solve this and to avoid
2175          * multi-rooted process trees, prevent global and container-inits
2176          * from creating siblings.
2177          */
2178         if ((clone_flags & CLONE_PARENT) &&
2179                                 current->signal->flags & SIGNAL_UNKILLABLE)
2180                 return ERR_PTR(-EINVAL);
2181
2182         /*
2183          * If the new process will be in a different pid or user namespace
2184          * do not allow it to share a thread group with the forking task.
2185          */
2186         if (clone_flags & CLONE_THREAD) {
2187                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2188                     (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2189                         return ERR_PTR(-EINVAL);
2190         }
2191
2192         if (clone_flags & CLONE_PIDFD) {
2193                 /*
2194                  * - CLONE_DETACHED is blocked so that we can potentially
2195                  *   reuse it later for CLONE_PIDFD.
2196                  */
2197                 if (clone_flags & CLONE_DETACHED)
2198                         return ERR_PTR(-EINVAL);
2199         }
2200
2201         /*
2202          * Force any signals received before this point to be delivered
2203          * before the fork happens.  Collect up signals sent to multiple
2204          * processes that happen during the fork and delay them so that
2205          * they appear to happen after the fork.
2206          */
2207         sigemptyset(&delayed.signal);
2208         INIT_HLIST_NODE(&delayed.node);
2209
2210         spin_lock_irq(&current->sighand->siglock);
2211         if (!(clone_flags & CLONE_THREAD))
2212                 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2213         recalc_sigpending();
2214         spin_unlock_irq(&current->sighand->siglock);
2215         retval = -ERESTARTNOINTR;
2216         if (task_sigpending(current))
2217                 goto fork_out;
2218
2219         retval = -ENOMEM;
2220         p = dup_task_struct(current, node);
2221         if (!p)
2222                 goto fork_out;
2223         p->flags &= ~PF_KTHREAD;
2224         if (args->kthread)
2225                 p->flags |= PF_KTHREAD;
2226         if (args->user_worker) {
2227                 /*
2228                  * Mark us a user worker, and block any signal that isn't
2229                  * fatal or STOP
2230                  */
2231                 p->flags |= PF_USER_WORKER;
2232                 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2233         }
2234         if (args->io_thread)
2235                 p->flags |= PF_IO_WORKER;
2236
2237         if (args->name)
2238                 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2239
2240         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2241         /*
2242          * Clear TID on mm_release()?
2243          */
2244         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2245
2246         ftrace_graph_init_task(p);
2247
2248         rt_mutex_init_task(p);
2249
2250         lockdep_assert_irqs_enabled();
2251 #ifdef CONFIG_PROVE_LOCKING
2252         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2253 #endif
2254         retval = copy_creds(p, clone_flags);
2255         if (retval < 0)
2256                 goto bad_fork_free;
2257
2258         retval = -EAGAIN;
2259         if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2260                 if (p->real_cred->user != INIT_USER &&
2261                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2262                         goto bad_fork_cleanup_count;
2263         }
2264         current->flags &= ~PF_NPROC_EXCEEDED;
2265
2266         /*
2267          * If multiple threads are within copy_process(), then this check
2268          * triggers too late. This doesn't hurt, the check is only there
2269          * to stop root fork bombs.
2270          */
2271         retval = -EAGAIN;
2272         if (data_race(nr_threads >= max_threads))
2273                 goto bad_fork_cleanup_count;
2274
2275         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
2276         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2277         p->flags |= PF_FORKNOEXEC;
2278         INIT_LIST_HEAD(&p->children);
2279         INIT_LIST_HEAD(&p->sibling);
2280         rcu_copy_process(p);
2281         p->vfork_done = NULL;
2282         spin_lock_init(&p->alloc_lock);
2283
2284         init_sigpending(&p->pending);
2285
2286         p->utime = p->stime = p->gtime = 0;
2287 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2288         p->utimescaled = p->stimescaled = 0;
2289 #endif
2290         prev_cputime_init(&p->prev_cputime);
2291
2292 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2293         seqcount_init(&p->vtime.seqcount);
2294         p->vtime.starttime = 0;
2295         p->vtime.state = VTIME_INACTIVE;
2296 #endif
2297
2298 #ifdef CONFIG_IO_URING
2299         p->io_uring = NULL;
2300 #endif
2301
2302         p->default_timer_slack_ns = current->timer_slack_ns;
2303
2304 #ifdef CONFIG_PSI
2305         p->psi_flags = 0;
2306 #endif
2307
2308         task_io_accounting_init(&p->ioac);
2309         acct_clear_integrals(p);
2310
2311         posix_cputimers_init(&p->posix_cputimers);
2312
2313         p->io_context = NULL;
2314         audit_set_context(p, NULL);
2315         cgroup_fork(p);
2316         if (args->kthread) {
2317                 if (!set_kthread_struct(p))
2318                         goto bad_fork_cleanup_delayacct;
2319         }
2320 #ifdef CONFIG_NUMA
2321         p->mempolicy = mpol_dup(p->mempolicy);
2322         if (IS_ERR(p->mempolicy)) {
2323                 retval = PTR_ERR(p->mempolicy);
2324                 p->mempolicy = NULL;
2325                 goto bad_fork_cleanup_delayacct;
2326         }
2327 #endif
2328 #ifdef CONFIG_CPUSETS
2329         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2330         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2331         seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2332 #endif
2333 #ifdef CONFIG_TRACE_IRQFLAGS
2334         memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2335         p->irqtrace.hardirq_disable_ip  = _THIS_IP_;
2336         p->irqtrace.softirq_enable_ip   = _THIS_IP_;
2337         p->softirqs_enabled             = 1;
2338         p->softirq_context              = 0;
2339 #endif
2340
2341         p->pagefault_disabled = 0;
2342
2343 #ifdef CONFIG_LOCKDEP
2344         lockdep_init_task(p);
2345 #endif
2346
2347 #ifdef CONFIG_DEBUG_MUTEXES
2348         p->blocked_on = NULL; /* not blocked yet */
2349 #endif
2350 #ifdef CONFIG_BCACHE
2351         p->sequential_io        = 0;
2352         p->sequential_io_avg    = 0;
2353 #endif
2354 #ifdef CONFIG_BPF_SYSCALL
2355         RCU_INIT_POINTER(p->bpf_storage, NULL);
2356         p->bpf_ctx = NULL;
2357 #endif
2358
2359         /* Perform scheduler related setup. Assign this task to a CPU. */
2360         retval = sched_fork(clone_flags, p);
2361         if (retval)
2362                 goto bad_fork_cleanup_policy;
2363
2364         retval = perf_event_init_task(p, clone_flags);
2365         if (retval)
2366                 goto bad_fork_cleanup_policy;
2367         retval = audit_alloc(p);
2368         if (retval)
2369                 goto bad_fork_cleanup_perf;
2370         /* copy all the process information */
2371         shm_init_task(p);
2372         retval = security_task_alloc(p, clone_flags);
2373         if (retval)
2374                 goto bad_fork_cleanup_audit;
2375         retval = copy_semundo(clone_flags, p);
2376         if (retval)
2377                 goto bad_fork_cleanup_security;
2378         retval = copy_files(clone_flags, p, args->no_files);
2379         if (retval)
2380                 goto bad_fork_cleanup_semundo;
2381         retval = copy_fs(clone_flags, p);
2382         if (retval)
2383                 goto bad_fork_cleanup_files;
2384         retval = copy_sighand(clone_flags, p);
2385         if (retval)
2386                 goto bad_fork_cleanup_fs;
2387         retval = copy_signal(clone_flags, p);
2388         if (retval)
2389                 goto bad_fork_cleanup_sighand;
2390         retval = copy_mm(clone_flags, p);
2391         if (retval)
2392                 goto bad_fork_cleanup_signal;
2393         retval = copy_namespaces(clone_flags, p);
2394         if (retval)
2395                 goto bad_fork_cleanup_mm;
2396         retval = copy_io(clone_flags, p);
2397         if (retval)
2398                 goto bad_fork_cleanup_namespaces;
2399         retval = copy_thread(p, args);
2400         if (retval)
2401                 goto bad_fork_cleanup_io;
2402
2403         stackleak_task_init(p);
2404
2405         if (pid != &init_struct_pid) {
2406                 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2407                                 args->set_tid_size);
2408                 if (IS_ERR(pid)) {
2409                         retval = PTR_ERR(pid);
2410                         goto bad_fork_cleanup_thread;
2411                 }
2412         }
2413
2414         /*
2415          * This has to happen after we've potentially unshared the file
2416          * descriptor table (so that the pidfd doesn't leak into the child
2417          * if the fd table isn't shared).
2418          */
2419         if (clone_flags & CLONE_PIDFD) {
2420                 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2421
2422                 /* Note that no task has been attached to @pid yet. */
2423                 retval = __pidfd_prepare(pid, flags, &pidfile);
2424                 if (retval < 0)
2425                         goto bad_fork_free_pid;
2426                 pidfd = retval;
2427
2428                 retval = put_user(pidfd, args->pidfd);
2429                 if (retval)
2430                         goto bad_fork_put_pidfd;
2431         }
2432
2433 #ifdef CONFIG_BLOCK
2434         p->plug = NULL;
2435 #endif
2436         futex_init_task(p);
2437
2438         /*
2439          * sigaltstack should be cleared when sharing the same VM
2440          */
2441         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2442                 sas_ss_reset(p);
2443
2444         /*
2445          * Syscall tracing and stepping should be turned off in the
2446          * child regardless of CLONE_PTRACE.
2447          */
2448         user_disable_single_step(p);
2449         clear_task_syscall_work(p, SYSCALL_TRACE);
2450 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2451         clear_task_syscall_work(p, SYSCALL_EMU);
2452 #endif
2453         clear_tsk_latency_tracing(p);
2454
2455         /* ok, now we should be set up.. */
2456         p->pid = pid_nr(pid);
2457         if (clone_flags & CLONE_THREAD) {
2458                 p->group_leader = current->group_leader;
2459                 p->tgid = current->tgid;
2460         } else {
2461                 p->group_leader = p;
2462                 p->tgid = p->pid;
2463         }
2464
2465         p->nr_dirtied = 0;
2466         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2467         p->dirty_paused_when = 0;
2468
2469         p->pdeath_signal = 0;
2470         p->task_works = NULL;
2471         clear_posix_cputimers_work(p);
2472
2473 #ifdef CONFIG_KRETPROBES
2474         p->kretprobe_instances.first = NULL;
2475 #endif
2476 #ifdef CONFIG_RETHOOK
2477         p->rethooks.first = NULL;
2478 #endif
2479
2480         /*
2481          * Ensure that the cgroup subsystem policies allow the new process to be
2482          * forked. It should be noted that the new process's css_set can be changed
2483          * between here and cgroup_post_fork() if an organisation operation is in
2484          * progress.
2485          */
2486         retval = cgroup_can_fork(p, args);
2487         if (retval)
2488                 goto bad_fork_put_pidfd;
2489
2490         /*
2491          * Now that the cgroups are pinned, re-clone the parent cgroup and put
2492          * the new task on the correct runqueue. All this *before* the task
2493          * becomes visible.
2494          *
2495          * This isn't part of ->can_fork() because while the re-cloning is
2496          * cgroup specific, it unconditionally needs to place the task on a
2497          * runqueue.
2498          */
2499         sched_cgroup_fork(p, args);
2500
2501         /*
2502          * From this point on we must avoid any synchronous user-space
2503          * communication until we take the tasklist-lock. In particular, we do
2504          * not want user-space to be able to predict the process start-time by
2505          * stalling fork(2) after we recorded the start_time but before it is
2506          * visible to the system.
2507          */
2508
2509         p->start_time = ktime_get_ns();
2510         p->start_boottime = ktime_get_boottime_ns();
2511
2512         /*
2513          * Make it visible to the rest of the system, but dont wake it up yet.
2514          * Need tasklist lock for parent etc handling!
2515          */
2516         write_lock_irq(&tasklist_lock);
2517
2518         /* CLONE_PARENT re-uses the old parent */
2519         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2520                 p->real_parent = current->real_parent;
2521                 p->parent_exec_id = current->parent_exec_id;
2522                 if (clone_flags & CLONE_THREAD)
2523                         p->exit_signal = -1;
2524                 else
2525                         p->exit_signal = current->group_leader->exit_signal;
2526         } else {
2527                 p->real_parent = current;
2528                 p->parent_exec_id = current->self_exec_id;
2529                 p->exit_signal = args->exit_signal;
2530         }
2531
2532         klp_copy_process(p);
2533
2534         sched_core_fork(p);
2535
2536         spin_lock(&current->sighand->siglock);
2537
2538         rv_task_fork(p);
2539
2540         rseq_fork(p, clone_flags);
2541
2542         /* Don't start children in a dying pid namespace */
2543         if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2544                 retval = -ENOMEM;
2545                 goto bad_fork_cancel_cgroup;
2546         }
2547
2548         /* Let kill terminate clone/fork in the middle */
2549         if (fatal_signal_pending(current)) {
2550                 retval = -EINTR;
2551                 goto bad_fork_cancel_cgroup;
2552         }
2553
2554         /* No more failure paths after this point. */
2555
2556         /*
2557          * Copy seccomp details explicitly here, in case they were changed
2558          * before holding sighand lock.
2559          */
2560         copy_seccomp(p);
2561
2562         init_task_pid_links(p);
2563         if (likely(p->pid)) {
2564                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2565
2566                 init_task_pid(p, PIDTYPE_PID, pid);
2567                 if (thread_group_leader(p)) {
2568                         init_task_pid(p, PIDTYPE_TGID, pid);
2569                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2570                         init_task_pid(p, PIDTYPE_SID, task_session(current));
2571
2572                         if (is_child_reaper(pid)) {
2573                                 ns_of_pid(pid)->child_reaper = p;
2574                                 p->signal->flags |= SIGNAL_UNKILLABLE;
2575                         }
2576                         p->signal->shared_pending.signal = delayed.signal;
2577                         p->signal->tty = tty_kref_get(current->signal->tty);
2578                         /*
2579                          * Inherit has_child_subreaper flag under the same
2580                          * tasklist_lock with adding child to the process tree
2581                          * for propagate_has_child_subreaper optimization.
2582                          */
2583                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2584                                                          p->real_parent->signal->is_child_subreaper;
2585                         list_add_tail(&p->sibling, &p->real_parent->children);
2586                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
2587                         attach_pid(p, PIDTYPE_TGID);
2588                         attach_pid(p, PIDTYPE_PGID);
2589                         attach_pid(p, PIDTYPE_SID);
2590                         __this_cpu_inc(process_counts);
2591                 } else {
2592                         current->signal->nr_threads++;
2593                         current->signal->quick_threads++;
2594                         atomic_inc(&current->signal->live);
2595                         refcount_inc(&current->signal->sigcnt);
2596                         task_join_group_stop(p);
2597                         list_add_tail_rcu(&p->thread_node,
2598                                           &p->signal->thread_head);
2599                 }
2600                 attach_pid(p, PIDTYPE_PID);
2601                 nr_threads++;
2602         }
2603         total_forks++;
2604         hlist_del_init(&delayed.node);
2605         spin_unlock(&current->sighand->siglock);
2606         syscall_tracepoint_update(p);
2607         write_unlock_irq(&tasklist_lock);
2608
2609         if (pidfile)
2610                 fd_install(pidfd, pidfile);
2611
2612         proc_fork_connector(p);
2613         sched_post_fork(p);
2614         cgroup_post_fork(p, args);
2615         perf_event_fork(p);
2616
2617         trace_task_newtask(p, clone_flags);
2618         uprobe_copy_process(p, clone_flags);
2619         user_events_fork(p, clone_flags);
2620
2621         copy_oom_score_adj(clone_flags, p);
2622
2623         return p;
2624
2625 bad_fork_cancel_cgroup:
2626         sched_core_free(p);
2627         spin_unlock(&current->sighand->siglock);
2628         write_unlock_irq(&tasklist_lock);
2629         cgroup_cancel_fork(p, args);
2630 bad_fork_put_pidfd:
2631         if (clone_flags & CLONE_PIDFD) {
2632                 fput(pidfile);
2633                 put_unused_fd(pidfd);
2634         }
2635 bad_fork_free_pid:
2636         if (pid != &init_struct_pid)
2637                 free_pid(pid);
2638 bad_fork_cleanup_thread:
2639         exit_thread(p);
2640 bad_fork_cleanup_io:
2641         if (p->io_context)
2642                 exit_io_context(p);
2643 bad_fork_cleanup_namespaces:
2644         exit_task_namespaces(p);
2645 bad_fork_cleanup_mm:
2646         if (p->mm) {
2647                 mm_clear_owner(p->mm, p);
2648                 mmput(p->mm);
2649         }
2650 bad_fork_cleanup_signal:
2651         if (!(clone_flags & CLONE_THREAD))
2652                 free_signal_struct(p->signal);
2653 bad_fork_cleanup_sighand:
2654         __cleanup_sighand(p->sighand);
2655 bad_fork_cleanup_fs:
2656         exit_fs(p); /* blocking */
2657 bad_fork_cleanup_files:
2658         exit_files(p); /* blocking */
2659 bad_fork_cleanup_semundo:
2660         exit_sem(p);
2661 bad_fork_cleanup_security:
2662         security_task_free(p);
2663 bad_fork_cleanup_audit:
2664         audit_free(p);
2665 bad_fork_cleanup_perf:
2666         perf_event_free_task(p);
2667 bad_fork_cleanup_policy:
2668         lockdep_free_task(p);
2669 #ifdef CONFIG_NUMA
2670         mpol_put(p->mempolicy);
2671 #endif
2672 bad_fork_cleanup_delayacct:
2673         delayacct_tsk_free(p);
2674 bad_fork_cleanup_count:
2675         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2676         exit_creds(p);
2677 bad_fork_free:
2678         WRITE_ONCE(p->__state, TASK_DEAD);
2679         exit_task_stack_account(p);
2680         put_task_stack(p);
2681         delayed_free_task(p);
2682 fork_out:
2683         spin_lock_irq(&current->sighand->siglock);
2684         hlist_del_init(&delayed.node);
2685         spin_unlock_irq(&current->sighand->siglock);
2686         return ERR_PTR(retval);
2687 }
2688
2689 static inline void init_idle_pids(struct task_struct *idle)
2690 {
2691         enum pid_type type;
2692
2693         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2694                 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2695                 init_task_pid(idle, type, &init_struct_pid);
2696         }
2697 }
2698
2699 static int idle_dummy(void *dummy)
2700 {
2701         /* This function is never called */
2702         return 0;
2703 }
2704
2705 struct task_struct * __init fork_idle(int cpu)
2706 {
2707         struct task_struct *task;
2708         struct kernel_clone_args args = {
2709                 .flags          = CLONE_VM,
2710                 .fn             = &idle_dummy,
2711                 .fn_arg         = NULL,
2712                 .kthread        = 1,
2713                 .idle           = 1,
2714         };
2715
2716         task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2717         if (!IS_ERR(task)) {
2718                 init_idle_pids(task);
2719                 init_idle(task, cpu);
2720         }
2721
2722         return task;
2723 }
2724
2725 /*
2726  * This is like kernel_clone(), but shaved down and tailored to just
2727  * creating io_uring workers. It returns a created task, or an error pointer.
2728  * The returned task is inactive, and the caller must fire it up through
2729  * wake_up_new_task(p). All signals are blocked in the created task.
2730  */
2731 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2732 {
2733         unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2734                                 CLONE_IO;
2735         struct kernel_clone_args args = {
2736                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2737                                     CLONE_UNTRACED) & ~CSIGNAL),
2738                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2739                 .fn             = fn,
2740                 .fn_arg         = arg,
2741                 .io_thread      = 1,
2742                 .user_worker    = 1,
2743         };
2744
2745         return copy_process(NULL, 0, node, &args);
2746 }
2747
2748 /*
2749  *  Ok, this is the main fork-routine.
2750  *
2751  * It copies the process, and if successful kick-starts
2752  * it and waits for it to finish using the VM if required.
2753  *
2754  * args->exit_signal is expected to be checked for sanity by the caller.
2755  */
2756 pid_t kernel_clone(struct kernel_clone_args *args)
2757 {
2758         u64 clone_flags = args->flags;
2759         struct completion vfork;
2760         struct pid *pid;
2761         struct task_struct *p;
2762         int trace = 0;
2763         pid_t nr;
2764
2765         /*
2766          * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2767          * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2768          * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2769          * field in struct clone_args and it still doesn't make sense to have
2770          * them both point at the same memory location. Performing this check
2771          * here has the advantage that we don't need to have a separate helper
2772          * to check for legacy clone().
2773          */
2774         if ((clone_flags & CLONE_PIDFD) &&
2775             (clone_flags & CLONE_PARENT_SETTID) &&
2776             (args->pidfd == args->parent_tid))
2777                 return -EINVAL;
2778
2779         /*
2780          * Determine whether and which event to report to ptracer.  When
2781          * called from kernel_thread or CLONE_UNTRACED is explicitly
2782          * requested, no event is reported; otherwise, report if the event
2783          * for the type of forking is enabled.
2784          */
2785         if (!(clone_flags & CLONE_UNTRACED)) {
2786                 if (clone_flags & CLONE_VFORK)
2787                         trace = PTRACE_EVENT_VFORK;
2788                 else if (args->exit_signal != SIGCHLD)
2789                         trace = PTRACE_EVENT_CLONE;
2790                 else
2791                         trace = PTRACE_EVENT_FORK;
2792
2793                 if (likely(!ptrace_event_enabled(current, trace)))
2794                         trace = 0;
2795         }
2796
2797         p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2798         add_latent_entropy();
2799
2800         if (IS_ERR(p))
2801                 return PTR_ERR(p);
2802
2803         /*
2804          * Do this prior waking up the new thread - the thread pointer
2805          * might get invalid after that point, if the thread exits quickly.
2806          */
2807         trace_sched_process_fork(current, p);
2808
2809         pid = get_task_pid(p, PIDTYPE_PID);
2810         nr = pid_vnr(pid);
2811
2812         if (clone_flags & CLONE_PARENT_SETTID)
2813                 put_user(nr, args->parent_tid);
2814
2815         if (clone_flags & CLONE_VFORK) {
2816                 p->vfork_done = &vfork;
2817                 init_completion(&vfork);
2818                 get_task_struct(p);
2819         }
2820
2821         if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2822                 /* lock the task to synchronize with memcg migration */
2823                 task_lock(p);
2824                 lru_gen_add_mm(p->mm);
2825                 task_unlock(p);
2826         }
2827
2828         wake_up_new_task(p);
2829
2830         /* forking complete and child started to run, tell ptracer */
2831         if (unlikely(trace))
2832                 ptrace_event_pid(trace, pid);
2833
2834         if (clone_flags & CLONE_VFORK) {
2835                 if (!wait_for_vfork_done(p, &vfork))
2836                         ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2837         }
2838
2839         put_pid(pid);
2840         return nr;
2841 }
2842
2843 /*
2844  * Create a kernel thread.
2845  */
2846 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2847                     unsigned long flags)
2848 {
2849         struct kernel_clone_args args = {
2850                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2851                                     CLONE_UNTRACED) & ~CSIGNAL),
2852                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2853                 .fn             = fn,
2854                 .fn_arg         = arg,
2855                 .name           = name,
2856                 .kthread        = 1,
2857         };
2858
2859         return kernel_clone(&args);
2860 }
2861
2862 /*
2863  * Create a user mode thread.
2864  */
2865 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2866 {
2867         struct kernel_clone_args args = {
2868                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2869                                     CLONE_UNTRACED) & ~CSIGNAL),
2870                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2871                 .fn             = fn,
2872                 .fn_arg         = arg,
2873         };
2874
2875         return kernel_clone(&args);
2876 }
2877
2878 #ifdef __ARCH_WANT_SYS_FORK
2879 SYSCALL_DEFINE0(fork)
2880 {
2881 #ifdef CONFIG_MMU
2882         struct kernel_clone_args args = {
2883                 .exit_signal = SIGCHLD,
2884         };
2885
2886         return kernel_clone(&args);
2887 #else
2888         /* can not support in nommu mode */
2889         return -EINVAL;
2890 #endif
2891 }
2892 #endif
2893
2894 #ifdef __ARCH_WANT_SYS_VFORK
2895 SYSCALL_DEFINE0(vfork)
2896 {
2897         struct kernel_clone_args args = {
2898                 .flags          = CLONE_VFORK | CLONE_VM,
2899                 .exit_signal    = SIGCHLD,
2900         };
2901
2902         return kernel_clone(&args);
2903 }
2904 #endif
2905
2906 #ifdef __ARCH_WANT_SYS_CLONE
2907 #ifdef CONFIG_CLONE_BACKWARDS
2908 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2909                  int __user *, parent_tidptr,
2910                  unsigned long, tls,
2911                  int __user *, child_tidptr)
2912 #elif defined(CONFIG_CLONE_BACKWARDS2)
2913 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2914                  int __user *, parent_tidptr,
2915                  int __user *, child_tidptr,
2916                  unsigned long, tls)
2917 #elif defined(CONFIG_CLONE_BACKWARDS3)
2918 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2919                 int, stack_size,
2920                 int __user *, parent_tidptr,
2921                 int __user *, child_tidptr,
2922                 unsigned long, tls)
2923 #else
2924 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2925                  int __user *, parent_tidptr,
2926                  int __user *, child_tidptr,
2927                  unsigned long, tls)
2928 #endif
2929 {
2930         struct kernel_clone_args args = {
2931                 .flags          = (lower_32_bits(clone_flags) & ~CSIGNAL),
2932                 .pidfd          = parent_tidptr,
2933                 .child_tid      = child_tidptr,
2934                 .parent_tid     = parent_tidptr,
2935                 .exit_signal    = (lower_32_bits(clone_flags) & CSIGNAL),
2936                 .stack          = newsp,
2937                 .tls            = tls,
2938         };
2939
2940         return kernel_clone(&args);
2941 }
2942 #endif
2943
2944 #ifdef __ARCH_WANT_SYS_CLONE3
2945
2946 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2947                                               struct clone_args __user *uargs,
2948                                               size_t usize)
2949 {
2950         int err;
2951         struct clone_args args;
2952         pid_t *kset_tid = kargs->set_tid;
2953
2954         BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2955                      CLONE_ARGS_SIZE_VER0);
2956         BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2957                      CLONE_ARGS_SIZE_VER1);
2958         BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2959                      CLONE_ARGS_SIZE_VER2);
2960         BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2961
2962         if (unlikely(usize > PAGE_SIZE))
2963                 return -E2BIG;
2964         if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2965                 return -EINVAL;
2966
2967         err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2968         if (err)
2969                 return err;
2970
2971         if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2972                 return -EINVAL;
2973
2974         if (unlikely(!args.set_tid && args.set_tid_size > 0))
2975                 return -EINVAL;
2976
2977         if (unlikely(args.set_tid && args.set_tid_size == 0))
2978                 return -EINVAL;
2979
2980         /*
2981          * Verify that higher 32bits of exit_signal are unset and that
2982          * it is a valid signal
2983          */
2984         if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2985                      !valid_signal(args.exit_signal)))
2986                 return -EINVAL;
2987
2988         if ((args.flags & CLONE_INTO_CGROUP) &&
2989             (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2990                 return -EINVAL;
2991
2992         *kargs = (struct kernel_clone_args){
2993                 .flags          = args.flags,
2994                 .pidfd          = u64_to_user_ptr(args.pidfd),
2995                 .child_tid      = u64_to_user_ptr(args.child_tid),
2996                 .parent_tid     = u64_to_user_ptr(args.parent_tid),
2997                 .exit_signal    = args.exit_signal,
2998                 .stack          = args.stack,
2999                 .stack_size     = args.stack_size,
3000                 .tls            = args.tls,
3001                 .set_tid_size   = args.set_tid_size,
3002                 .cgroup         = args.cgroup,
3003         };
3004
3005         if (args.set_tid &&
3006                 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3007                         (kargs->set_tid_size * sizeof(pid_t))))
3008                 return -EFAULT;
3009
3010         kargs->set_tid = kset_tid;
3011
3012         return 0;
3013 }
3014
3015 /**
3016  * clone3_stack_valid - check and prepare stack
3017  * @kargs: kernel clone args
3018  *
3019  * Verify that the stack arguments userspace gave us are sane.
3020  * In addition, set the stack direction for userspace since it's easy for us to
3021  * determine.
3022  */
3023 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3024 {
3025         if (kargs->stack == 0) {
3026                 if (kargs->stack_size > 0)
3027                         return false;
3028         } else {
3029                 if (kargs->stack_size == 0)
3030                         return false;
3031
3032                 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3033                         return false;
3034
3035 #if !defined(CONFIG_STACK_GROWSUP)
3036                 kargs->stack += kargs->stack_size;
3037 #endif
3038         }
3039
3040         return true;
3041 }
3042
3043 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3044 {
3045         /* Verify that no unknown flags are passed along. */
3046         if (kargs->flags &
3047             ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3048                 return false;
3049
3050         /*
3051          * - make the CLONE_DETACHED bit reusable for clone3
3052          * - make the CSIGNAL bits reusable for clone3
3053          */
3054         if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3055                 return false;
3056
3057         if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3058             (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3059                 return false;
3060
3061         if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3062             kargs->exit_signal)
3063                 return false;
3064
3065         if (!clone3_stack_valid(kargs))
3066                 return false;
3067
3068         return true;
3069 }
3070
3071 /**
3072  * sys_clone3 - create a new process with specific properties
3073  * @uargs: argument structure
3074  * @size:  size of @uargs
3075  *
3076  * clone3() is the extensible successor to clone()/clone2().
3077  * It takes a struct as argument that is versioned by its size.
3078  *
3079  * Return: On success, a positive PID for the child process.
3080  *         On error, a negative errno number.
3081  */
3082 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3083 {
3084         int err;
3085
3086         struct kernel_clone_args kargs;
3087         pid_t set_tid[MAX_PID_NS_LEVEL];
3088
3089         kargs.set_tid = set_tid;
3090
3091         err = copy_clone_args_from_user(&kargs, uargs, size);
3092         if (err)
3093                 return err;
3094
3095         if (!clone3_args_valid(&kargs))
3096                 return -EINVAL;
3097
3098         return kernel_clone(&kargs);
3099 }
3100 #endif
3101
3102 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3103 {
3104         struct task_struct *leader, *parent, *child;
3105         int res;
3106
3107         read_lock(&tasklist_lock);
3108         leader = top = top->group_leader;
3109 down:
3110         for_each_thread(leader, parent) {
3111                 list_for_each_entry(child, &parent->children, sibling) {
3112                         res = visitor(child, data);
3113                         if (res) {
3114                                 if (res < 0)
3115                                         goto out;
3116                                 leader = child;
3117                                 goto down;
3118                         }
3119 up:
3120                         ;
3121                 }
3122         }
3123
3124         if (leader != top) {
3125                 child = leader;
3126                 parent = child->real_parent;
3127                 leader = parent->group_leader;
3128                 goto up;
3129         }
3130 out:
3131         read_unlock(&tasklist_lock);
3132 }
3133
3134 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3135 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3136 #endif
3137
3138 static void sighand_ctor(void *data)
3139 {
3140         struct sighand_struct *sighand = data;
3141
3142         spin_lock_init(&sighand->siglock);
3143         init_waitqueue_head(&sighand->signalfd_wqh);
3144 }
3145
3146 void __init mm_cache_init(void)
3147 {
3148         unsigned int mm_size;
3149
3150         /*
3151          * The mm_cpumask is located at the end of mm_struct, and is
3152          * dynamically sized based on the maximum CPU number this system
3153          * can have, taking hotplug into account (nr_cpu_ids).
3154          */
3155         mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3156
3157         mm_cachep = kmem_cache_create_usercopy("mm_struct",
3158                         mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3159                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3160                         offsetof(struct mm_struct, saved_auxv),
3161                         sizeof_field(struct mm_struct, saved_auxv),
3162                         NULL);
3163 }
3164
3165 void __init proc_caches_init(void)
3166 {
3167         sighand_cachep = kmem_cache_create("sighand_cache",
3168                         sizeof(struct sighand_struct), 0,
3169                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3170                         SLAB_ACCOUNT, sighand_ctor);
3171         signal_cachep = kmem_cache_create("signal_cache",
3172                         sizeof(struct signal_struct), 0,
3173                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3174                         NULL);
3175         files_cachep = kmem_cache_create("files_cache",
3176                         sizeof(struct files_struct), 0,
3177                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3178                         NULL);
3179         fs_cachep = kmem_cache_create("fs_cache",
3180                         sizeof(struct fs_struct), 0,
3181                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3182                         NULL);
3183
3184         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3185 #ifdef CONFIG_PER_VMA_LOCK
3186         vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3187 #endif
3188         mmap_init();
3189         nsproxy_cache_init();
3190 }
3191
3192 /*
3193  * Check constraints on flags passed to the unshare system call.
3194  */
3195 static int check_unshare_flags(unsigned long unshare_flags)
3196 {
3197         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3198                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3199                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3200                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3201                                 CLONE_NEWTIME))
3202                 return -EINVAL;
3203         /*
3204          * Not implemented, but pretend it works if there is nothing
3205          * to unshare.  Note that unsharing the address space or the
3206          * signal handlers also need to unshare the signal queues (aka
3207          * CLONE_THREAD).
3208          */
3209         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3210                 if (!thread_group_empty(current))
3211                         return -EINVAL;
3212         }
3213         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3214                 if (refcount_read(&current->sighand->count) > 1)
3215                         return -EINVAL;
3216         }
3217         if (unshare_flags & CLONE_VM) {
3218                 if (!current_is_single_threaded())
3219                         return -EINVAL;
3220         }
3221
3222         return 0;
3223 }
3224
3225 /*
3226  * Unshare the filesystem structure if it is being shared
3227  */
3228 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3229 {
3230         struct fs_struct *fs = current->fs;
3231
3232         if (!(unshare_flags & CLONE_FS) || !fs)
3233                 return 0;
3234
3235         /* don't need lock here; in the worst case we'll do useless copy */
3236         if (fs->users == 1)
3237                 return 0;
3238
3239         *new_fsp = copy_fs_struct(fs);
3240         if (!*new_fsp)
3241                 return -ENOMEM;
3242
3243         return 0;
3244 }
3245
3246 /*
3247  * Unshare file descriptor table if it is being shared
3248  */
3249 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3250                struct files_struct **new_fdp)
3251 {
3252         struct files_struct *fd = current->files;
3253         int error = 0;
3254
3255         if ((unshare_flags & CLONE_FILES) &&
3256             (fd && atomic_read(&fd->count) > 1)) {
3257                 *new_fdp = dup_fd(fd, max_fds, &error);
3258                 if (!*new_fdp)
3259                         return error;
3260         }
3261
3262         return 0;
3263 }
3264
3265 /*
3266  * unshare allows a process to 'unshare' part of the process
3267  * context which was originally shared using clone.  copy_*
3268  * functions used by kernel_clone() cannot be used here directly
3269  * because they modify an inactive task_struct that is being
3270  * constructed. Here we are modifying the current, active,
3271  * task_struct.
3272  */
3273 int ksys_unshare(unsigned long unshare_flags)
3274 {
3275         struct fs_struct *fs, *new_fs = NULL;
3276         struct files_struct *new_fd = NULL;
3277         struct cred *new_cred = NULL;
3278         struct nsproxy *new_nsproxy = NULL;
3279         int do_sysvsem = 0;
3280         int err;
3281
3282         /*
3283          * If unsharing a user namespace must also unshare the thread group
3284          * and unshare the filesystem root and working directories.
3285          */
3286         if (unshare_flags & CLONE_NEWUSER)
3287                 unshare_flags |= CLONE_THREAD | CLONE_FS;
3288         /*
3289          * If unsharing vm, must also unshare signal handlers.
3290          */
3291         if (unshare_flags & CLONE_VM)
3292                 unshare_flags |= CLONE_SIGHAND;
3293         /*
3294          * If unsharing a signal handlers, must also unshare the signal queues.
3295          */
3296         if (unshare_flags & CLONE_SIGHAND)
3297                 unshare_flags |= CLONE_THREAD;
3298         /*
3299          * If unsharing namespace, must also unshare filesystem information.
3300          */
3301         if (unshare_flags & CLONE_NEWNS)
3302                 unshare_flags |= CLONE_FS;
3303
3304         err = check_unshare_flags(unshare_flags);
3305         if (err)
3306                 goto bad_unshare_out;
3307         /*
3308          * CLONE_NEWIPC must also detach from the undolist: after switching
3309          * to a new ipc namespace, the semaphore arrays from the old
3310          * namespace are unreachable.
3311          */
3312         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3313                 do_sysvsem = 1;
3314         err = unshare_fs(unshare_flags, &new_fs);
3315         if (err)
3316                 goto bad_unshare_out;
3317         err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3318         if (err)
3319                 goto bad_unshare_cleanup_fs;
3320         err = unshare_userns(unshare_flags, &new_cred);
3321         if (err)
3322                 goto bad_unshare_cleanup_fd;
3323         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3324                                          new_cred, new_fs);
3325         if (err)
3326                 goto bad_unshare_cleanup_cred;
3327
3328         if (new_cred) {
3329                 err = set_cred_ucounts(new_cred);
3330                 if (err)
3331                         goto bad_unshare_cleanup_cred;
3332         }
3333
3334         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3335                 if (do_sysvsem) {
3336                         /*
3337                          * CLONE_SYSVSEM is equivalent to sys_exit().
3338                          */
3339                         exit_sem(current);
3340                 }
3341                 if (unshare_flags & CLONE_NEWIPC) {
3342                         /* Orphan segments in old ns (see sem above). */
3343                         exit_shm(current);
3344                         shm_init_task(current);
3345                 }
3346
3347                 if (new_nsproxy)
3348                         switch_task_namespaces(current, new_nsproxy);
3349
3350                 task_lock(current);
3351
3352                 if (new_fs) {
3353                         fs = current->fs;
3354                         spin_lock(&fs->lock);
3355                         current->fs = new_fs;
3356                         if (--fs->users)
3357                                 new_fs = NULL;
3358                         else
3359                                 new_fs = fs;
3360                         spin_unlock(&fs->lock);
3361                 }
3362
3363                 if (new_fd)
3364                         swap(current->files, new_fd);
3365
3366                 task_unlock(current);
3367
3368                 if (new_cred) {
3369                         /* Install the new user namespace */
3370                         commit_creds(new_cred);
3371                         new_cred = NULL;
3372                 }
3373         }
3374
3375         perf_event_namespaces(current);
3376
3377 bad_unshare_cleanup_cred:
3378         if (new_cred)
3379                 put_cred(new_cred);
3380 bad_unshare_cleanup_fd:
3381         if (new_fd)
3382                 put_files_struct(new_fd);
3383
3384 bad_unshare_cleanup_fs:
3385         if (new_fs)
3386                 free_fs_struct(new_fs);
3387
3388 bad_unshare_out:
3389         return err;
3390 }
3391
3392 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3393 {
3394         return ksys_unshare(unshare_flags);
3395 }
3396
3397 /*
3398  *      Helper to unshare the files of the current task.
3399  *      We don't want to expose copy_files internals to
3400  *      the exec layer of the kernel.
3401  */
3402
3403 int unshare_files(void)
3404 {
3405         struct task_struct *task = current;
3406         struct files_struct *old, *copy = NULL;
3407         int error;
3408
3409         error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3410         if (error || !copy)
3411                 return error;
3412
3413         old = task->files;
3414         task_lock(task);
3415         task->files = copy;
3416         task_unlock(task);
3417         put_files_struct(old);
3418         return 0;
3419 }
3420
3421 int sysctl_max_threads(struct ctl_table *table, int write,
3422                        void *buffer, size_t *lenp, loff_t *ppos)
3423 {
3424         struct ctl_table t;
3425         int ret;
3426         int threads = max_threads;
3427         int min = 1;
3428         int max = MAX_THREADS;
3429
3430         t = *table;
3431         t.data = &threads;
3432         t.extra1 = &min;
3433         t.extra2 = &max;
3434
3435         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3436         if (ret || !write)
3437                 return ret;
3438
3439         max_threads = threads;
3440
3441         return 0;
3442 }