Merge tag 'media/v6.8-2' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[linux-block.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72 #include <linux/uaccess.h>
73
74 #include <uapi/linux/wait.h>
75
76 #include <asm/unistd.h>
77 #include <asm/mmu_context.h>
78
79 #include "exit.h"
80
81 /*
82  * The default value should be high enough to not crash a system that randomly
83  * crashes its kernel from time to time, but low enough to at least not permit
84  * overflowing 32-bit refcounts or the ldsem writer count.
85  */
86 static unsigned int oops_limit = 10000;
87
88 #ifdef CONFIG_SYSCTL
89 static struct ctl_table kern_exit_table[] = {
90         {
91                 .procname       = "oops_limit",
92                 .data           = &oops_limit,
93                 .maxlen         = sizeof(oops_limit),
94                 .mode           = 0644,
95                 .proc_handler   = proc_douintvec,
96         },
97         { }
98 };
99
100 static __init int kernel_exit_sysctls_init(void)
101 {
102         register_sysctl_init("kernel", kern_exit_table);
103         return 0;
104 }
105 late_initcall(kernel_exit_sysctls_init);
106 #endif
107
108 static atomic_t oops_count = ATOMIC_INIT(0);
109
110 #ifdef CONFIG_SYSFS
111 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
112                                char *page)
113 {
114         return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
115 }
116
117 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
118
119 static __init int kernel_exit_sysfs_init(void)
120 {
121         sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
122         return 0;
123 }
124 late_initcall(kernel_exit_sysfs_init);
125 #endif
126
127 static void __unhash_process(struct task_struct *p, bool group_dead)
128 {
129         nr_threads--;
130         detach_pid(p, PIDTYPE_PID);
131         if (group_dead) {
132                 detach_pid(p, PIDTYPE_TGID);
133                 detach_pid(p, PIDTYPE_PGID);
134                 detach_pid(p, PIDTYPE_SID);
135
136                 list_del_rcu(&p->tasks);
137                 list_del_init(&p->sibling);
138                 __this_cpu_dec(process_counts);
139         }
140         list_del_rcu(&p->thread_node);
141 }
142
143 /*
144  * This function expects the tasklist_lock write-locked.
145  */
146 static void __exit_signal(struct task_struct *tsk)
147 {
148         struct signal_struct *sig = tsk->signal;
149         bool group_dead = thread_group_leader(tsk);
150         struct sighand_struct *sighand;
151         struct tty_struct *tty;
152         u64 utime, stime;
153
154         sighand = rcu_dereference_check(tsk->sighand,
155                                         lockdep_tasklist_lock_is_held());
156         spin_lock(&sighand->siglock);
157
158 #ifdef CONFIG_POSIX_TIMERS
159         posix_cpu_timers_exit(tsk);
160         if (group_dead)
161                 posix_cpu_timers_exit_group(tsk);
162 #endif
163
164         if (group_dead) {
165                 tty = sig->tty;
166                 sig->tty = NULL;
167         } else {
168                 /*
169                  * If there is any task waiting for the group exit
170                  * then notify it:
171                  */
172                 if (sig->notify_count > 0 && !--sig->notify_count)
173                         wake_up_process(sig->group_exec_task);
174
175                 if (tsk == sig->curr_target)
176                         sig->curr_target = next_thread(tsk);
177         }
178
179         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
180                               sizeof(unsigned long long));
181
182         /*
183          * Accumulate here the counters for all threads as they die. We could
184          * skip the group leader because it is the last user of signal_struct,
185          * but we want to avoid the race with thread_group_cputime() which can
186          * see the empty ->thread_head list.
187          */
188         task_cputime(tsk, &utime, &stime);
189         write_seqlock(&sig->stats_lock);
190         sig->utime += utime;
191         sig->stime += stime;
192         sig->gtime += task_gtime(tsk);
193         sig->min_flt += tsk->min_flt;
194         sig->maj_flt += tsk->maj_flt;
195         sig->nvcsw += tsk->nvcsw;
196         sig->nivcsw += tsk->nivcsw;
197         sig->inblock += task_io_get_inblock(tsk);
198         sig->oublock += task_io_get_oublock(tsk);
199         task_io_accounting_add(&sig->ioac, &tsk->ioac);
200         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
201         sig->nr_threads--;
202         __unhash_process(tsk, group_dead);
203         write_sequnlock(&sig->stats_lock);
204
205         /*
206          * Do this under ->siglock, we can race with another thread
207          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
208          */
209         flush_sigqueue(&tsk->pending);
210         tsk->sighand = NULL;
211         spin_unlock(&sighand->siglock);
212
213         __cleanup_sighand(sighand);
214         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
215         if (group_dead) {
216                 flush_sigqueue(&sig->shared_pending);
217                 tty_kref_put(tty);
218         }
219 }
220
221 static void delayed_put_task_struct(struct rcu_head *rhp)
222 {
223         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
224
225         kprobe_flush_task(tsk);
226         rethook_flush_task(tsk);
227         perf_event_delayed_put(tsk);
228         trace_sched_process_free(tsk);
229         put_task_struct(tsk);
230 }
231
232 void put_task_struct_rcu_user(struct task_struct *task)
233 {
234         if (refcount_dec_and_test(&task->rcu_users))
235                 call_rcu(&task->rcu, delayed_put_task_struct);
236 }
237
238 void __weak release_thread(struct task_struct *dead_task)
239 {
240 }
241
242 void release_task(struct task_struct *p)
243 {
244         struct task_struct *leader;
245         struct pid *thread_pid;
246         int zap_leader;
247 repeat:
248         /* don't need to get the RCU readlock here - the process is dead and
249          * can't be modifying its own credentials. But shut RCU-lockdep up */
250         rcu_read_lock();
251         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
252         rcu_read_unlock();
253
254         cgroup_release(p);
255
256         write_lock_irq(&tasklist_lock);
257         ptrace_release_task(p);
258         thread_pid = get_pid(p->thread_pid);
259         __exit_signal(p);
260
261         /*
262          * If we are the last non-leader member of the thread
263          * group, and the leader is zombie, then notify the
264          * group leader's parent process. (if it wants notification.)
265          */
266         zap_leader = 0;
267         leader = p->group_leader;
268         if (leader != p && thread_group_empty(leader)
269                         && leader->exit_state == EXIT_ZOMBIE) {
270                 /*
271                  * If we were the last child thread and the leader has
272                  * exited already, and the leader's parent ignores SIGCHLD,
273                  * then we are the one who should release the leader.
274                  */
275                 zap_leader = do_notify_parent(leader, leader->exit_signal);
276                 if (zap_leader)
277                         leader->exit_state = EXIT_DEAD;
278         }
279
280         write_unlock_irq(&tasklist_lock);
281         seccomp_filter_release(p);
282         proc_flush_pid(thread_pid);
283         put_pid(thread_pid);
284         release_thread(p);
285         put_task_struct_rcu_user(p);
286
287         p = leader;
288         if (unlikely(zap_leader))
289                 goto repeat;
290 }
291
292 int rcuwait_wake_up(struct rcuwait *w)
293 {
294         int ret = 0;
295         struct task_struct *task;
296
297         rcu_read_lock();
298
299         /*
300          * Order condition vs @task, such that everything prior to the load
301          * of @task is visible. This is the condition as to why the user called
302          * rcuwait_wake() in the first place. Pairs with set_current_state()
303          * barrier (A) in rcuwait_wait_event().
304          *
305          *    WAIT                WAKE
306          *    [S] tsk = current   [S] cond = true
307          *        MB (A)              MB (B)
308          *    [L] cond            [L] tsk
309          */
310         smp_mb(); /* (B) */
311
312         task = rcu_dereference(w->task);
313         if (task)
314                 ret = wake_up_process(task);
315         rcu_read_unlock();
316
317         return ret;
318 }
319 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
320
321 /*
322  * Determine if a process group is "orphaned", according to the POSIX
323  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
324  * by terminal-generated stop signals.  Newly orphaned process groups are
325  * to receive a SIGHUP and a SIGCONT.
326  *
327  * "I ask you, have you ever known what it is to be an orphan?"
328  */
329 static int will_become_orphaned_pgrp(struct pid *pgrp,
330                                         struct task_struct *ignored_task)
331 {
332         struct task_struct *p;
333
334         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
335                 if ((p == ignored_task) ||
336                     (p->exit_state && thread_group_empty(p)) ||
337                     is_global_init(p->real_parent))
338                         continue;
339
340                 if (task_pgrp(p->real_parent) != pgrp &&
341                     task_session(p->real_parent) == task_session(p))
342                         return 0;
343         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
344
345         return 1;
346 }
347
348 int is_current_pgrp_orphaned(void)
349 {
350         int retval;
351
352         read_lock(&tasklist_lock);
353         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
354         read_unlock(&tasklist_lock);
355
356         return retval;
357 }
358
359 static bool has_stopped_jobs(struct pid *pgrp)
360 {
361         struct task_struct *p;
362
363         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
364                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
365                         return true;
366         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
367
368         return false;
369 }
370
371 /*
372  * Check to see if any process groups have become orphaned as
373  * a result of our exiting, and if they have any stopped jobs,
374  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
375  */
376 static void
377 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
378 {
379         struct pid *pgrp = task_pgrp(tsk);
380         struct task_struct *ignored_task = tsk;
381
382         if (!parent)
383                 /* exit: our father is in a different pgrp than
384                  * we are and we were the only connection outside.
385                  */
386                 parent = tsk->real_parent;
387         else
388                 /* reparent: our child is in a different pgrp than
389                  * we are, and it was the only connection outside.
390                  */
391                 ignored_task = NULL;
392
393         if (task_pgrp(parent) != pgrp &&
394             task_session(parent) == task_session(tsk) &&
395             will_become_orphaned_pgrp(pgrp, ignored_task) &&
396             has_stopped_jobs(pgrp)) {
397                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
398                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
399         }
400 }
401
402 static void coredump_task_exit(struct task_struct *tsk)
403 {
404         struct core_state *core_state;
405
406         /*
407          * Serialize with any possible pending coredump.
408          * We must hold siglock around checking core_state
409          * and setting PF_POSTCOREDUMP.  The core-inducing thread
410          * will increment ->nr_threads for each thread in the
411          * group without PF_POSTCOREDUMP set.
412          */
413         spin_lock_irq(&tsk->sighand->siglock);
414         tsk->flags |= PF_POSTCOREDUMP;
415         core_state = tsk->signal->core_state;
416         spin_unlock_irq(&tsk->sighand->siglock);
417
418         /* The vhost_worker does not particpate in coredumps */
419         if (core_state &&
420             ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
421                 struct core_thread self;
422
423                 self.task = current;
424                 if (self.task->flags & PF_SIGNALED)
425                         self.next = xchg(&core_state->dumper.next, &self);
426                 else
427                         self.task = NULL;
428                 /*
429                  * Implies mb(), the result of xchg() must be visible
430                  * to core_state->dumper.
431                  */
432                 if (atomic_dec_and_test(&core_state->nr_threads))
433                         complete(&core_state->startup);
434
435                 for (;;) {
436                         set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
437                         if (!self.task) /* see coredump_finish() */
438                                 break;
439                         schedule();
440                 }
441                 __set_current_state(TASK_RUNNING);
442         }
443 }
444
445 #ifdef CONFIG_MEMCG
446 /*
447  * A task is exiting.   If it owned this mm, find a new owner for the mm.
448  */
449 void mm_update_next_owner(struct mm_struct *mm)
450 {
451         struct task_struct *c, *g, *p = current;
452
453 retry:
454         /*
455          * If the exiting or execing task is not the owner, it's
456          * someone else's problem.
457          */
458         if (mm->owner != p)
459                 return;
460         /*
461          * The current owner is exiting/execing and there are no other
462          * candidates.  Do not leave the mm pointing to a possibly
463          * freed task structure.
464          */
465         if (atomic_read(&mm->mm_users) <= 1) {
466                 WRITE_ONCE(mm->owner, NULL);
467                 return;
468         }
469
470         read_lock(&tasklist_lock);
471         /*
472          * Search in the children
473          */
474         list_for_each_entry(c, &p->children, sibling) {
475                 if (c->mm == mm)
476                         goto assign_new_owner;
477         }
478
479         /*
480          * Search in the siblings
481          */
482         list_for_each_entry(c, &p->real_parent->children, sibling) {
483                 if (c->mm == mm)
484                         goto assign_new_owner;
485         }
486
487         /*
488          * Search through everything else, we should not get here often.
489          */
490         for_each_process(g) {
491                 if (g->flags & PF_KTHREAD)
492                         continue;
493                 for_each_thread(g, c) {
494                         if (c->mm == mm)
495                                 goto assign_new_owner;
496                         if (c->mm)
497                                 break;
498                 }
499         }
500         read_unlock(&tasklist_lock);
501         /*
502          * We found no owner yet mm_users > 1: this implies that we are
503          * most likely racing with swapoff (try_to_unuse()) or /proc or
504          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
505          */
506         WRITE_ONCE(mm->owner, NULL);
507         return;
508
509 assign_new_owner:
510         BUG_ON(c == p);
511         get_task_struct(c);
512         /*
513          * The task_lock protects c->mm from changing.
514          * We always want mm->owner->mm == mm
515          */
516         task_lock(c);
517         /*
518          * Delay read_unlock() till we have the task_lock()
519          * to ensure that c does not slip away underneath us
520          */
521         read_unlock(&tasklist_lock);
522         if (c->mm != mm) {
523                 task_unlock(c);
524                 put_task_struct(c);
525                 goto retry;
526         }
527         WRITE_ONCE(mm->owner, c);
528         lru_gen_migrate_mm(mm);
529         task_unlock(c);
530         put_task_struct(c);
531 }
532 #endif /* CONFIG_MEMCG */
533
534 /*
535  * Turn us into a lazy TLB process if we
536  * aren't already..
537  */
538 static void exit_mm(void)
539 {
540         struct mm_struct *mm = current->mm;
541
542         exit_mm_release(current, mm);
543         if (!mm)
544                 return;
545         mmap_read_lock(mm);
546         mmgrab_lazy_tlb(mm);
547         BUG_ON(mm != current->active_mm);
548         /* more a memory barrier than a real lock */
549         task_lock(current);
550         /*
551          * When a thread stops operating on an address space, the loop
552          * in membarrier_private_expedited() may not observe that
553          * tsk->mm, and the loop in membarrier_global_expedited() may
554          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
555          * rq->membarrier_state, so those would not issue an IPI.
556          * Membarrier requires a memory barrier after accessing
557          * user-space memory, before clearing tsk->mm or the
558          * rq->membarrier_state.
559          */
560         smp_mb__after_spinlock();
561         local_irq_disable();
562         current->mm = NULL;
563         membarrier_update_current_mm(NULL);
564         enter_lazy_tlb(mm, current);
565         local_irq_enable();
566         task_unlock(current);
567         mmap_read_unlock(mm);
568         mm_update_next_owner(mm);
569         mmput(mm);
570         if (test_thread_flag(TIF_MEMDIE))
571                 exit_oom_victim();
572 }
573
574 static struct task_struct *find_alive_thread(struct task_struct *p)
575 {
576         struct task_struct *t;
577
578         for_each_thread(p, t) {
579                 if (!(t->flags & PF_EXITING))
580                         return t;
581         }
582         return NULL;
583 }
584
585 static struct task_struct *find_child_reaper(struct task_struct *father,
586                                                 struct list_head *dead)
587         __releases(&tasklist_lock)
588         __acquires(&tasklist_lock)
589 {
590         struct pid_namespace *pid_ns = task_active_pid_ns(father);
591         struct task_struct *reaper = pid_ns->child_reaper;
592         struct task_struct *p, *n;
593
594         if (likely(reaper != father))
595                 return reaper;
596
597         reaper = find_alive_thread(father);
598         if (reaper) {
599                 pid_ns->child_reaper = reaper;
600                 return reaper;
601         }
602
603         write_unlock_irq(&tasklist_lock);
604
605         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
606                 list_del_init(&p->ptrace_entry);
607                 release_task(p);
608         }
609
610         zap_pid_ns_processes(pid_ns);
611         write_lock_irq(&tasklist_lock);
612
613         return father;
614 }
615
616 /*
617  * When we die, we re-parent all our children, and try to:
618  * 1. give them to another thread in our thread group, if such a member exists
619  * 2. give it to the first ancestor process which prctl'd itself as a
620  *    child_subreaper for its children (like a service manager)
621  * 3. give it to the init process (PID 1) in our pid namespace
622  */
623 static struct task_struct *find_new_reaper(struct task_struct *father,
624                                            struct task_struct *child_reaper)
625 {
626         struct task_struct *thread, *reaper;
627
628         thread = find_alive_thread(father);
629         if (thread)
630                 return thread;
631
632         if (father->signal->has_child_subreaper) {
633                 unsigned int ns_level = task_pid(father)->level;
634                 /*
635                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
636                  * We can't check reaper != child_reaper to ensure we do not
637                  * cross the namespaces, the exiting parent could be injected
638                  * by setns() + fork().
639                  * We check pid->level, this is slightly more efficient than
640                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
641                  */
642                 for (reaper = father->real_parent;
643                      task_pid(reaper)->level == ns_level;
644                      reaper = reaper->real_parent) {
645                         if (reaper == &init_task)
646                                 break;
647                         if (!reaper->signal->is_child_subreaper)
648                                 continue;
649                         thread = find_alive_thread(reaper);
650                         if (thread)
651                                 return thread;
652                 }
653         }
654
655         return child_reaper;
656 }
657
658 /*
659 * Any that need to be release_task'd are put on the @dead list.
660  */
661 static void reparent_leader(struct task_struct *father, struct task_struct *p,
662                                 struct list_head *dead)
663 {
664         if (unlikely(p->exit_state == EXIT_DEAD))
665                 return;
666
667         /* We don't want people slaying init. */
668         p->exit_signal = SIGCHLD;
669
670         /* If it has exited notify the new parent about this child's death. */
671         if (!p->ptrace &&
672             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
673                 if (do_notify_parent(p, p->exit_signal)) {
674                         p->exit_state = EXIT_DEAD;
675                         list_add(&p->ptrace_entry, dead);
676                 }
677         }
678
679         kill_orphaned_pgrp(p, father);
680 }
681
682 /*
683  * This does two things:
684  *
685  * A.  Make init inherit all the child processes
686  * B.  Check to see if any process groups have become orphaned
687  *      as a result of our exiting, and if they have any stopped
688  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
689  */
690 static void forget_original_parent(struct task_struct *father,
691                                         struct list_head *dead)
692 {
693         struct task_struct *p, *t, *reaper;
694
695         if (unlikely(!list_empty(&father->ptraced)))
696                 exit_ptrace(father, dead);
697
698         /* Can drop and reacquire tasklist_lock */
699         reaper = find_child_reaper(father, dead);
700         if (list_empty(&father->children))
701                 return;
702
703         reaper = find_new_reaper(father, reaper);
704         list_for_each_entry(p, &father->children, sibling) {
705                 for_each_thread(p, t) {
706                         RCU_INIT_POINTER(t->real_parent, reaper);
707                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
708                         if (likely(!t->ptrace))
709                                 t->parent = t->real_parent;
710                         if (t->pdeath_signal)
711                                 group_send_sig_info(t->pdeath_signal,
712                                                     SEND_SIG_NOINFO, t,
713                                                     PIDTYPE_TGID);
714                 }
715                 /*
716                  * If this is a threaded reparent there is no need to
717                  * notify anyone anything has happened.
718                  */
719                 if (!same_thread_group(reaper, father))
720                         reparent_leader(father, p, dead);
721         }
722         list_splice_tail_init(&father->children, &reaper->children);
723 }
724
725 /*
726  * Send signals to all our closest relatives so that they know
727  * to properly mourn us..
728  */
729 static void exit_notify(struct task_struct *tsk, int group_dead)
730 {
731         bool autoreap;
732         struct task_struct *p, *n;
733         LIST_HEAD(dead);
734
735         write_lock_irq(&tasklist_lock);
736         forget_original_parent(tsk, &dead);
737
738         if (group_dead)
739                 kill_orphaned_pgrp(tsk->group_leader, NULL);
740
741         tsk->exit_state = EXIT_ZOMBIE;
742         if (unlikely(tsk->ptrace)) {
743                 int sig = thread_group_leader(tsk) &&
744                                 thread_group_empty(tsk) &&
745                                 !ptrace_reparented(tsk) ?
746                         tsk->exit_signal : SIGCHLD;
747                 autoreap = do_notify_parent(tsk, sig);
748         } else if (thread_group_leader(tsk)) {
749                 autoreap = thread_group_empty(tsk) &&
750                         do_notify_parent(tsk, tsk->exit_signal);
751         } else {
752                 autoreap = true;
753         }
754
755         if (autoreap) {
756                 tsk->exit_state = EXIT_DEAD;
757                 list_add(&tsk->ptrace_entry, &dead);
758         }
759
760         /* mt-exec, de_thread() is waiting for group leader */
761         if (unlikely(tsk->signal->notify_count < 0))
762                 wake_up_process(tsk->signal->group_exec_task);
763         write_unlock_irq(&tasklist_lock);
764
765         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
766                 list_del_init(&p->ptrace_entry);
767                 release_task(p);
768         }
769 }
770
771 #ifdef CONFIG_DEBUG_STACK_USAGE
772 static void check_stack_usage(void)
773 {
774         static DEFINE_SPINLOCK(low_water_lock);
775         static int lowest_to_date = THREAD_SIZE;
776         unsigned long free;
777
778         free = stack_not_used(current);
779
780         if (free >= lowest_to_date)
781                 return;
782
783         spin_lock(&low_water_lock);
784         if (free < lowest_to_date) {
785                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
786                         current->comm, task_pid_nr(current), free);
787                 lowest_to_date = free;
788         }
789         spin_unlock(&low_water_lock);
790 }
791 #else
792 static inline void check_stack_usage(void) {}
793 #endif
794
795 static void synchronize_group_exit(struct task_struct *tsk, long code)
796 {
797         struct sighand_struct *sighand = tsk->sighand;
798         struct signal_struct *signal = tsk->signal;
799
800         spin_lock_irq(&sighand->siglock);
801         signal->quick_threads--;
802         if ((signal->quick_threads == 0) &&
803             !(signal->flags & SIGNAL_GROUP_EXIT)) {
804                 signal->flags = SIGNAL_GROUP_EXIT;
805                 signal->group_exit_code = code;
806                 signal->group_stop_count = 0;
807         }
808         spin_unlock_irq(&sighand->siglock);
809 }
810
811 void __noreturn do_exit(long code)
812 {
813         struct task_struct *tsk = current;
814         int group_dead;
815
816         WARN_ON(irqs_disabled());
817
818         synchronize_group_exit(tsk, code);
819
820         WARN_ON(tsk->plug);
821
822         kcov_task_exit(tsk);
823         kmsan_task_exit(tsk);
824
825         coredump_task_exit(tsk);
826         ptrace_event(PTRACE_EVENT_EXIT, code);
827         user_events_exit(tsk);
828
829         io_uring_files_cancel();
830         exit_signals(tsk);  /* sets PF_EXITING */
831
832         acct_update_integrals(tsk);
833         group_dead = atomic_dec_and_test(&tsk->signal->live);
834         if (group_dead) {
835                 /*
836                  * If the last thread of global init has exited, panic
837                  * immediately to get a useable coredump.
838                  */
839                 if (unlikely(is_global_init(tsk)))
840                         panic("Attempted to kill init! exitcode=0x%08x\n",
841                                 tsk->signal->group_exit_code ?: (int)code);
842
843 #ifdef CONFIG_POSIX_TIMERS
844                 hrtimer_cancel(&tsk->signal->real_timer);
845                 exit_itimers(tsk);
846 #endif
847                 if (tsk->mm)
848                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
849         }
850         acct_collect(code, group_dead);
851         if (group_dead)
852                 tty_audit_exit();
853         audit_free(tsk);
854
855         tsk->exit_code = code;
856         taskstats_exit(tsk, group_dead);
857
858         exit_mm();
859
860         if (group_dead)
861                 acct_process();
862         trace_sched_process_exit(tsk);
863
864         exit_sem(tsk);
865         exit_shm(tsk);
866         exit_files(tsk);
867         exit_fs(tsk);
868         if (group_dead)
869                 disassociate_ctty(1);
870         exit_task_namespaces(tsk);
871         exit_task_work(tsk);
872         exit_thread(tsk);
873
874         /*
875          * Flush inherited counters to the parent - before the parent
876          * gets woken up by child-exit notifications.
877          *
878          * because of cgroup mode, must be called before cgroup_exit()
879          */
880         perf_event_exit_task(tsk);
881
882         sched_autogroup_exit_task(tsk);
883         cgroup_exit(tsk);
884
885         /*
886          * FIXME: do that only when needed, using sched_exit tracepoint
887          */
888         flush_ptrace_hw_breakpoint(tsk);
889
890         exit_tasks_rcu_start();
891         exit_notify(tsk, group_dead);
892         proc_exit_connector(tsk);
893         mpol_put_task_policy(tsk);
894 #ifdef CONFIG_FUTEX
895         if (unlikely(current->pi_state_cache))
896                 kfree(current->pi_state_cache);
897 #endif
898         /*
899          * Make sure we are holding no locks:
900          */
901         debug_check_no_locks_held();
902
903         if (tsk->io_context)
904                 exit_io_context(tsk);
905
906         if (tsk->splice_pipe)
907                 free_pipe_info(tsk->splice_pipe);
908
909         if (tsk->task_frag.page)
910                 put_page(tsk->task_frag.page);
911
912         exit_task_stack_account(tsk);
913
914         check_stack_usage();
915         preempt_disable();
916         if (tsk->nr_dirtied)
917                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
918         exit_rcu();
919         exit_tasks_rcu_finish();
920
921         lockdep_free_task(tsk);
922         do_task_dead();
923 }
924
925 void __noreturn make_task_dead(int signr)
926 {
927         /*
928          * Take the task off the cpu after something catastrophic has
929          * happened.
930          *
931          * We can get here from a kernel oops, sometimes with preemption off.
932          * Start by checking for critical errors.
933          * Then fix up important state like USER_DS and preemption.
934          * Then do everything else.
935          */
936         struct task_struct *tsk = current;
937         unsigned int limit;
938
939         if (unlikely(in_interrupt()))
940                 panic("Aiee, killing interrupt handler!");
941         if (unlikely(!tsk->pid))
942                 panic("Attempted to kill the idle task!");
943
944         if (unlikely(irqs_disabled())) {
945                 pr_info("note: %s[%d] exited with irqs disabled\n",
946                         current->comm, task_pid_nr(current));
947                 local_irq_enable();
948         }
949         if (unlikely(in_atomic())) {
950                 pr_info("note: %s[%d] exited with preempt_count %d\n",
951                         current->comm, task_pid_nr(current),
952                         preempt_count());
953                 preempt_count_set(PREEMPT_ENABLED);
954         }
955
956         /*
957          * Every time the system oopses, if the oops happens while a reference
958          * to an object was held, the reference leaks.
959          * If the oops doesn't also leak memory, repeated oopsing can cause
960          * reference counters to wrap around (if they're not using refcount_t).
961          * This means that repeated oopsing can make unexploitable-looking bugs
962          * exploitable through repeated oopsing.
963          * To make sure this can't happen, place an upper bound on how often the
964          * kernel may oops without panic().
965          */
966         limit = READ_ONCE(oops_limit);
967         if (atomic_inc_return(&oops_count) >= limit && limit)
968                 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
969
970         /*
971          * We're taking recursive faults here in make_task_dead. Safest is to just
972          * leave this task alone and wait for reboot.
973          */
974         if (unlikely(tsk->flags & PF_EXITING)) {
975                 pr_alert("Fixing recursive fault but reboot is needed!\n");
976                 futex_exit_recursive(tsk);
977                 tsk->exit_state = EXIT_DEAD;
978                 refcount_inc(&tsk->rcu_users);
979                 do_task_dead();
980         }
981
982         do_exit(signr);
983 }
984
985 SYSCALL_DEFINE1(exit, int, error_code)
986 {
987         do_exit((error_code&0xff)<<8);
988 }
989
990 /*
991  * Take down every thread in the group.  This is called by fatal signals
992  * as well as by sys_exit_group (below).
993  */
994 void __noreturn
995 do_group_exit(int exit_code)
996 {
997         struct signal_struct *sig = current->signal;
998
999         if (sig->flags & SIGNAL_GROUP_EXIT)
1000                 exit_code = sig->group_exit_code;
1001         else if (sig->group_exec_task)
1002                 exit_code = 0;
1003         else {
1004                 struct sighand_struct *const sighand = current->sighand;
1005
1006                 spin_lock_irq(&sighand->siglock);
1007                 if (sig->flags & SIGNAL_GROUP_EXIT)
1008                         /* Another thread got here before we took the lock.  */
1009                         exit_code = sig->group_exit_code;
1010                 else if (sig->group_exec_task)
1011                         exit_code = 0;
1012                 else {
1013                         sig->group_exit_code = exit_code;
1014                         sig->flags = SIGNAL_GROUP_EXIT;
1015                         zap_other_threads(current);
1016                 }
1017                 spin_unlock_irq(&sighand->siglock);
1018         }
1019
1020         do_exit(exit_code);
1021         /* NOTREACHED */
1022 }
1023
1024 /*
1025  * this kills every thread in the thread group. Note that any externally
1026  * wait4()-ing process will get the correct exit code - even if this
1027  * thread is not the thread group leader.
1028  */
1029 SYSCALL_DEFINE1(exit_group, int, error_code)
1030 {
1031         do_group_exit((error_code & 0xff) << 8);
1032         /* NOTREACHED */
1033         return 0;
1034 }
1035
1036 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1037 {
1038         return  wo->wo_type == PIDTYPE_MAX ||
1039                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1040 }
1041
1042 static int
1043 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1044 {
1045         if (!eligible_pid(wo, p))
1046                 return 0;
1047
1048         /*
1049          * Wait for all children (clone and not) if __WALL is set or
1050          * if it is traced by us.
1051          */
1052         if (ptrace || (wo->wo_flags & __WALL))
1053                 return 1;
1054
1055         /*
1056          * Otherwise, wait for clone children *only* if __WCLONE is set;
1057          * otherwise, wait for non-clone children *only*.
1058          *
1059          * Note: a "clone" child here is one that reports to its parent
1060          * using a signal other than SIGCHLD, or a non-leader thread which
1061          * we can only see if it is traced by us.
1062          */
1063         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1064                 return 0;
1065
1066         return 1;
1067 }
1068
1069 /*
1070  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1071  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1072  * the lock and this task is uninteresting.  If we return nonzero, we have
1073  * released the lock and the system call should return.
1074  */
1075 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1076 {
1077         int state, status;
1078         pid_t pid = task_pid_vnr(p);
1079         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1080         struct waitid_info *infop;
1081
1082         if (!likely(wo->wo_flags & WEXITED))
1083                 return 0;
1084
1085         if (unlikely(wo->wo_flags & WNOWAIT)) {
1086                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1087                         ? p->signal->group_exit_code : p->exit_code;
1088                 get_task_struct(p);
1089                 read_unlock(&tasklist_lock);
1090                 sched_annotate_sleep();
1091                 if (wo->wo_rusage)
1092                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1093                 put_task_struct(p);
1094                 goto out_info;
1095         }
1096         /*
1097          * Move the task's state to DEAD/TRACE, only one thread can do this.
1098          */
1099         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1100                 EXIT_TRACE : EXIT_DEAD;
1101         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1102                 return 0;
1103         /*
1104          * We own this thread, nobody else can reap it.
1105          */
1106         read_unlock(&tasklist_lock);
1107         sched_annotate_sleep();
1108
1109         /*
1110          * Check thread_group_leader() to exclude the traced sub-threads.
1111          */
1112         if (state == EXIT_DEAD && thread_group_leader(p)) {
1113                 struct signal_struct *sig = p->signal;
1114                 struct signal_struct *psig = current->signal;
1115                 unsigned long maxrss;
1116                 u64 tgutime, tgstime;
1117
1118                 /*
1119                  * The resource counters for the group leader are in its
1120                  * own task_struct.  Those for dead threads in the group
1121                  * are in its signal_struct, as are those for the child
1122                  * processes it has previously reaped.  All these
1123                  * accumulate in the parent's signal_struct c* fields.
1124                  *
1125                  * We don't bother to take a lock here to protect these
1126                  * p->signal fields because the whole thread group is dead
1127                  * and nobody can change them.
1128                  *
1129                  * psig->stats_lock also protects us from our sub-threads
1130                  * which can reap other children at the same time. Until
1131                  * we change k_getrusage()-like users to rely on this lock
1132                  * we have to take ->siglock as well.
1133                  *
1134                  * We use thread_group_cputime_adjusted() to get times for
1135                  * the thread group, which consolidates times for all threads
1136                  * in the group including the group leader.
1137                  */
1138                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1139                 spin_lock_irq(&current->sighand->siglock);
1140                 write_seqlock(&psig->stats_lock);
1141                 psig->cutime += tgutime + sig->cutime;
1142                 psig->cstime += tgstime + sig->cstime;
1143                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1144                 psig->cmin_flt +=
1145                         p->min_flt + sig->min_flt + sig->cmin_flt;
1146                 psig->cmaj_flt +=
1147                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1148                 psig->cnvcsw +=
1149                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1150                 psig->cnivcsw +=
1151                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1152                 psig->cinblock +=
1153                         task_io_get_inblock(p) +
1154                         sig->inblock + sig->cinblock;
1155                 psig->coublock +=
1156                         task_io_get_oublock(p) +
1157                         sig->oublock + sig->coublock;
1158                 maxrss = max(sig->maxrss, sig->cmaxrss);
1159                 if (psig->cmaxrss < maxrss)
1160                         psig->cmaxrss = maxrss;
1161                 task_io_accounting_add(&psig->ioac, &p->ioac);
1162                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1163                 write_sequnlock(&psig->stats_lock);
1164                 spin_unlock_irq(&current->sighand->siglock);
1165         }
1166
1167         if (wo->wo_rusage)
1168                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1169         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1170                 ? p->signal->group_exit_code : p->exit_code;
1171         wo->wo_stat = status;
1172
1173         if (state == EXIT_TRACE) {
1174                 write_lock_irq(&tasklist_lock);
1175                 /* We dropped tasklist, ptracer could die and untrace */
1176                 ptrace_unlink(p);
1177
1178                 /* If parent wants a zombie, don't release it now */
1179                 state = EXIT_ZOMBIE;
1180                 if (do_notify_parent(p, p->exit_signal))
1181                         state = EXIT_DEAD;
1182                 p->exit_state = state;
1183                 write_unlock_irq(&tasklist_lock);
1184         }
1185         if (state == EXIT_DEAD)
1186                 release_task(p);
1187
1188 out_info:
1189         infop = wo->wo_info;
1190         if (infop) {
1191                 if ((status & 0x7f) == 0) {
1192                         infop->cause = CLD_EXITED;
1193                         infop->status = status >> 8;
1194                 } else {
1195                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1196                         infop->status = status & 0x7f;
1197                 }
1198                 infop->pid = pid;
1199                 infop->uid = uid;
1200         }
1201
1202         return pid;
1203 }
1204
1205 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1206 {
1207         if (ptrace) {
1208                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1209                         return &p->exit_code;
1210         } else {
1211                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1212                         return &p->signal->group_exit_code;
1213         }
1214         return NULL;
1215 }
1216
1217 /**
1218  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1219  * @wo: wait options
1220  * @ptrace: is the wait for ptrace
1221  * @p: task to wait for
1222  *
1223  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1224  *
1225  * CONTEXT:
1226  * read_lock(&tasklist_lock), which is released if return value is
1227  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1228  *
1229  * RETURNS:
1230  * 0 if wait condition didn't exist and search for other wait conditions
1231  * should continue.  Non-zero return, -errno on failure and @p's pid on
1232  * success, implies that tasklist_lock is released and wait condition
1233  * search should terminate.
1234  */
1235 static int wait_task_stopped(struct wait_opts *wo,
1236                                 int ptrace, struct task_struct *p)
1237 {
1238         struct waitid_info *infop;
1239         int exit_code, *p_code, why;
1240         uid_t uid = 0; /* unneeded, required by compiler */
1241         pid_t pid;
1242
1243         /*
1244          * Traditionally we see ptrace'd stopped tasks regardless of options.
1245          */
1246         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1247                 return 0;
1248
1249         if (!task_stopped_code(p, ptrace))
1250                 return 0;
1251
1252         exit_code = 0;
1253         spin_lock_irq(&p->sighand->siglock);
1254
1255         p_code = task_stopped_code(p, ptrace);
1256         if (unlikely(!p_code))
1257                 goto unlock_sig;
1258
1259         exit_code = *p_code;
1260         if (!exit_code)
1261                 goto unlock_sig;
1262
1263         if (!unlikely(wo->wo_flags & WNOWAIT))
1264                 *p_code = 0;
1265
1266         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1267 unlock_sig:
1268         spin_unlock_irq(&p->sighand->siglock);
1269         if (!exit_code)
1270                 return 0;
1271
1272         /*
1273          * Now we are pretty sure this task is interesting.
1274          * Make sure it doesn't get reaped out from under us while we
1275          * give up the lock and then examine it below.  We don't want to
1276          * keep holding onto the tasklist_lock while we call getrusage and
1277          * possibly take page faults for user memory.
1278          */
1279         get_task_struct(p);
1280         pid = task_pid_vnr(p);
1281         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1282         read_unlock(&tasklist_lock);
1283         sched_annotate_sleep();
1284         if (wo->wo_rusage)
1285                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1286         put_task_struct(p);
1287
1288         if (likely(!(wo->wo_flags & WNOWAIT)))
1289                 wo->wo_stat = (exit_code << 8) | 0x7f;
1290
1291         infop = wo->wo_info;
1292         if (infop) {
1293                 infop->cause = why;
1294                 infop->status = exit_code;
1295                 infop->pid = pid;
1296                 infop->uid = uid;
1297         }
1298         return pid;
1299 }
1300
1301 /*
1302  * Handle do_wait work for one task in a live, non-stopped state.
1303  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1304  * the lock and this task is uninteresting.  If we return nonzero, we have
1305  * released the lock and the system call should return.
1306  */
1307 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1308 {
1309         struct waitid_info *infop;
1310         pid_t pid;
1311         uid_t uid;
1312
1313         if (!unlikely(wo->wo_flags & WCONTINUED))
1314                 return 0;
1315
1316         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1317                 return 0;
1318
1319         spin_lock_irq(&p->sighand->siglock);
1320         /* Re-check with the lock held.  */
1321         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1322                 spin_unlock_irq(&p->sighand->siglock);
1323                 return 0;
1324         }
1325         if (!unlikely(wo->wo_flags & WNOWAIT))
1326                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1327         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1328         spin_unlock_irq(&p->sighand->siglock);
1329
1330         pid = task_pid_vnr(p);
1331         get_task_struct(p);
1332         read_unlock(&tasklist_lock);
1333         sched_annotate_sleep();
1334         if (wo->wo_rusage)
1335                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1336         put_task_struct(p);
1337
1338         infop = wo->wo_info;
1339         if (!infop) {
1340                 wo->wo_stat = 0xffff;
1341         } else {
1342                 infop->cause = CLD_CONTINUED;
1343                 infop->pid = pid;
1344                 infop->uid = uid;
1345                 infop->status = SIGCONT;
1346         }
1347         return pid;
1348 }
1349
1350 /*
1351  * Consider @p for a wait by @parent.
1352  *
1353  * -ECHILD should be in ->notask_error before the first call.
1354  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1355  * Returns zero if the search for a child should continue;
1356  * then ->notask_error is 0 if @p is an eligible child,
1357  * or still -ECHILD.
1358  */
1359 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1360                                 struct task_struct *p)
1361 {
1362         /*
1363          * We can race with wait_task_zombie() from another thread.
1364          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1365          * can't confuse the checks below.
1366          */
1367         int exit_state = READ_ONCE(p->exit_state);
1368         int ret;
1369
1370         if (unlikely(exit_state == EXIT_DEAD))
1371                 return 0;
1372
1373         ret = eligible_child(wo, ptrace, p);
1374         if (!ret)
1375                 return ret;
1376
1377         if (unlikely(exit_state == EXIT_TRACE)) {
1378                 /*
1379                  * ptrace == 0 means we are the natural parent. In this case
1380                  * we should clear notask_error, debugger will notify us.
1381                  */
1382                 if (likely(!ptrace))
1383                         wo->notask_error = 0;
1384                 return 0;
1385         }
1386
1387         if (likely(!ptrace) && unlikely(p->ptrace)) {
1388                 /*
1389                  * If it is traced by its real parent's group, just pretend
1390                  * the caller is ptrace_do_wait() and reap this child if it
1391                  * is zombie.
1392                  *
1393                  * This also hides group stop state from real parent; otherwise
1394                  * a single stop can be reported twice as group and ptrace stop.
1395                  * If a ptracer wants to distinguish these two events for its
1396                  * own children it should create a separate process which takes
1397                  * the role of real parent.
1398                  */
1399                 if (!ptrace_reparented(p))
1400                         ptrace = 1;
1401         }
1402
1403         /* slay zombie? */
1404         if (exit_state == EXIT_ZOMBIE) {
1405                 /* we don't reap group leaders with subthreads */
1406                 if (!delay_group_leader(p)) {
1407                         /*
1408                          * A zombie ptracee is only visible to its ptracer.
1409                          * Notification and reaping will be cascaded to the
1410                          * real parent when the ptracer detaches.
1411                          */
1412                         if (unlikely(ptrace) || likely(!p->ptrace))
1413                                 return wait_task_zombie(wo, p);
1414                 }
1415
1416                 /*
1417                  * Allow access to stopped/continued state via zombie by
1418                  * falling through.  Clearing of notask_error is complex.
1419                  *
1420                  * When !@ptrace:
1421                  *
1422                  * If WEXITED is set, notask_error should naturally be
1423                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1424                  * so, if there are live subthreads, there are events to
1425                  * wait for.  If all subthreads are dead, it's still safe
1426                  * to clear - this function will be called again in finite
1427                  * amount time once all the subthreads are released and
1428                  * will then return without clearing.
1429                  *
1430                  * When @ptrace:
1431                  *
1432                  * Stopped state is per-task and thus can't change once the
1433                  * target task dies.  Only continued and exited can happen.
1434                  * Clear notask_error if WCONTINUED | WEXITED.
1435                  */
1436                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1437                         wo->notask_error = 0;
1438         } else {
1439                 /*
1440                  * @p is alive and it's gonna stop, continue or exit, so
1441                  * there always is something to wait for.
1442                  */
1443                 wo->notask_error = 0;
1444         }
1445
1446         /*
1447          * Wait for stopped.  Depending on @ptrace, different stopped state
1448          * is used and the two don't interact with each other.
1449          */
1450         ret = wait_task_stopped(wo, ptrace, p);
1451         if (ret)
1452                 return ret;
1453
1454         /*
1455          * Wait for continued.  There's only one continued state and the
1456          * ptracer can consume it which can confuse the real parent.  Don't
1457          * use WCONTINUED from ptracer.  You don't need or want it.
1458          */
1459         return wait_task_continued(wo, p);
1460 }
1461
1462 /*
1463  * Do the work of do_wait() for one thread in the group, @tsk.
1464  *
1465  * -ECHILD should be in ->notask_error before the first call.
1466  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1467  * Returns zero if the search for a child should continue; then
1468  * ->notask_error is 0 if there were any eligible children,
1469  * or still -ECHILD.
1470  */
1471 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1472 {
1473         struct task_struct *p;
1474
1475         list_for_each_entry(p, &tsk->children, sibling) {
1476                 int ret = wait_consider_task(wo, 0, p);
1477
1478                 if (ret)
1479                         return ret;
1480         }
1481
1482         return 0;
1483 }
1484
1485 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1486 {
1487         struct task_struct *p;
1488
1489         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1490                 int ret = wait_consider_task(wo, 1, p);
1491
1492                 if (ret)
1493                         return ret;
1494         }
1495
1496         return 0;
1497 }
1498
1499 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1500 {
1501         if (!eligible_pid(wo, p))
1502                 return false;
1503
1504         if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1505                 return false;
1506
1507         return true;
1508 }
1509
1510 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1511                                 int sync, void *key)
1512 {
1513         struct wait_opts *wo = container_of(wait, struct wait_opts,
1514                                                 child_wait);
1515         struct task_struct *p = key;
1516
1517         if (pid_child_should_wake(wo, p))
1518                 return default_wake_function(wait, mode, sync, key);
1519
1520         return 0;
1521 }
1522
1523 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1524 {
1525         __wake_up_sync_key(&parent->signal->wait_chldexit,
1526                            TASK_INTERRUPTIBLE, p);
1527 }
1528
1529 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1530                                  struct task_struct *target)
1531 {
1532         struct task_struct *parent =
1533                 !ptrace ? target->real_parent : target->parent;
1534
1535         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1536                                      same_thread_group(current, parent));
1537 }
1538
1539 /*
1540  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1541  * and tracee lists to find the target task.
1542  */
1543 static int do_wait_pid(struct wait_opts *wo)
1544 {
1545         bool ptrace;
1546         struct task_struct *target;
1547         int retval;
1548
1549         ptrace = false;
1550         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1551         if (target && is_effectively_child(wo, ptrace, target)) {
1552                 retval = wait_consider_task(wo, ptrace, target);
1553                 if (retval)
1554                         return retval;
1555         }
1556
1557         ptrace = true;
1558         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1559         if (target && target->ptrace &&
1560             is_effectively_child(wo, ptrace, target)) {
1561                 retval = wait_consider_task(wo, ptrace, target);
1562                 if (retval)
1563                         return retval;
1564         }
1565
1566         return 0;
1567 }
1568
1569 long __do_wait(struct wait_opts *wo)
1570 {
1571         long retval;
1572
1573         /*
1574          * If there is nothing that can match our criteria, just get out.
1575          * We will clear ->notask_error to zero if we see any child that
1576          * might later match our criteria, even if we are not able to reap
1577          * it yet.
1578          */
1579         wo->notask_error = -ECHILD;
1580         if ((wo->wo_type < PIDTYPE_MAX) &&
1581            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1582                 goto notask;
1583
1584         read_lock(&tasklist_lock);
1585
1586         if (wo->wo_type == PIDTYPE_PID) {
1587                 retval = do_wait_pid(wo);
1588                 if (retval)
1589                         return retval;
1590         } else {
1591                 struct task_struct *tsk = current;
1592
1593                 do {
1594                         retval = do_wait_thread(wo, tsk);
1595                         if (retval)
1596                                 return retval;
1597
1598                         retval = ptrace_do_wait(wo, tsk);
1599                         if (retval)
1600                                 return retval;
1601
1602                         if (wo->wo_flags & __WNOTHREAD)
1603                                 break;
1604                 } while_each_thread(current, tsk);
1605         }
1606         read_unlock(&tasklist_lock);
1607
1608 notask:
1609         retval = wo->notask_error;
1610         if (!retval && !(wo->wo_flags & WNOHANG))
1611                 return -ERESTARTSYS;
1612
1613         return retval;
1614 }
1615
1616 static long do_wait(struct wait_opts *wo)
1617 {
1618         int retval;
1619
1620         trace_sched_process_wait(wo->wo_pid);
1621
1622         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1623         wo->child_wait.private = current;
1624         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1625
1626         do {
1627                 set_current_state(TASK_INTERRUPTIBLE);
1628                 retval = __do_wait(wo);
1629                 if (retval != -ERESTARTSYS)
1630                         break;
1631                 if (signal_pending(current))
1632                         break;
1633                 schedule();
1634         } while (1);
1635
1636         __set_current_state(TASK_RUNNING);
1637         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1638         return retval;
1639 }
1640
1641 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1642                           struct waitid_info *infop, int options,
1643                           struct rusage *ru)
1644 {
1645         unsigned int f_flags = 0;
1646         struct pid *pid = NULL;
1647         enum pid_type type;
1648
1649         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1650                         __WNOTHREAD|__WCLONE|__WALL))
1651                 return -EINVAL;
1652         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1653                 return -EINVAL;
1654
1655         switch (which) {
1656         case P_ALL:
1657                 type = PIDTYPE_MAX;
1658                 break;
1659         case P_PID:
1660                 type = PIDTYPE_PID;
1661                 if (upid <= 0)
1662                         return -EINVAL;
1663
1664                 pid = find_get_pid(upid);
1665                 break;
1666         case P_PGID:
1667                 type = PIDTYPE_PGID;
1668                 if (upid < 0)
1669                         return -EINVAL;
1670
1671                 if (upid)
1672                         pid = find_get_pid(upid);
1673                 else
1674                         pid = get_task_pid(current, PIDTYPE_PGID);
1675                 break;
1676         case P_PIDFD:
1677                 type = PIDTYPE_PID;
1678                 if (upid < 0)
1679                         return -EINVAL;
1680
1681                 pid = pidfd_get_pid(upid, &f_flags);
1682                 if (IS_ERR(pid))
1683                         return PTR_ERR(pid);
1684
1685                 break;
1686         default:
1687                 return -EINVAL;
1688         }
1689
1690         wo->wo_type     = type;
1691         wo->wo_pid      = pid;
1692         wo->wo_flags    = options;
1693         wo->wo_info     = infop;
1694         wo->wo_rusage   = ru;
1695         if (f_flags & O_NONBLOCK)
1696                 wo->wo_flags |= WNOHANG;
1697
1698         return 0;
1699 }
1700
1701 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1702                           int options, struct rusage *ru)
1703 {
1704         struct wait_opts wo;
1705         long ret;
1706
1707         ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1708         if (ret)
1709                 return ret;
1710
1711         ret = do_wait(&wo);
1712         if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1713                 ret = -EAGAIN;
1714
1715         put_pid(wo.wo_pid);
1716         return ret;
1717 }
1718
1719 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1720                 infop, int, options, struct rusage __user *, ru)
1721 {
1722         struct rusage r;
1723         struct waitid_info info = {.status = 0};
1724         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1725         int signo = 0;
1726
1727         if (err > 0) {
1728                 signo = SIGCHLD;
1729                 err = 0;
1730                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1731                         return -EFAULT;
1732         }
1733         if (!infop)
1734                 return err;
1735
1736         if (!user_write_access_begin(infop, sizeof(*infop)))
1737                 return -EFAULT;
1738
1739         unsafe_put_user(signo, &infop->si_signo, Efault);
1740         unsafe_put_user(0, &infop->si_errno, Efault);
1741         unsafe_put_user(info.cause, &infop->si_code, Efault);
1742         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1743         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1744         unsafe_put_user(info.status, &infop->si_status, Efault);
1745         user_write_access_end();
1746         return err;
1747 Efault:
1748         user_write_access_end();
1749         return -EFAULT;
1750 }
1751
1752 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1753                   struct rusage *ru)
1754 {
1755         struct wait_opts wo;
1756         struct pid *pid = NULL;
1757         enum pid_type type;
1758         long ret;
1759
1760         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1761                         __WNOTHREAD|__WCLONE|__WALL))
1762                 return -EINVAL;
1763
1764         /* -INT_MIN is not defined */
1765         if (upid == INT_MIN)
1766                 return -ESRCH;
1767
1768         if (upid == -1)
1769                 type = PIDTYPE_MAX;
1770         else if (upid < 0) {
1771                 type = PIDTYPE_PGID;
1772                 pid = find_get_pid(-upid);
1773         } else if (upid == 0) {
1774                 type = PIDTYPE_PGID;
1775                 pid = get_task_pid(current, PIDTYPE_PGID);
1776         } else /* upid > 0 */ {
1777                 type = PIDTYPE_PID;
1778                 pid = find_get_pid(upid);
1779         }
1780
1781         wo.wo_type      = type;
1782         wo.wo_pid       = pid;
1783         wo.wo_flags     = options | WEXITED;
1784         wo.wo_info      = NULL;
1785         wo.wo_stat      = 0;
1786         wo.wo_rusage    = ru;
1787         ret = do_wait(&wo);
1788         put_pid(pid);
1789         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1790                 ret = -EFAULT;
1791
1792         return ret;
1793 }
1794
1795 int kernel_wait(pid_t pid, int *stat)
1796 {
1797         struct wait_opts wo = {
1798                 .wo_type        = PIDTYPE_PID,
1799                 .wo_pid         = find_get_pid(pid),
1800                 .wo_flags       = WEXITED,
1801         };
1802         int ret;
1803
1804         ret = do_wait(&wo);
1805         if (ret > 0 && wo.wo_stat)
1806                 *stat = wo.wo_stat;
1807         put_pid(wo.wo_pid);
1808         return ret;
1809 }
1810
1811 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1812                 int, options, struct rusage __user *, ru)
1813 {
1814         struct rusage r;
1815         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1816
1817         if (err > 0) {
1818                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1819                         return -EFAULT;
1820         }
1821         return err;
1822 }
1823
1824 #ifdef __ARCH_WANT_SYS_WAITPID
1825
1826 /*
1827  * sys_waitpid() remains for compatibility. waitpid() should be
1828  * implemented by calling sys_wait4() from libc.a.
1829  */
1830 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1831 {
1832         return kernel_wait4(pid, stat_addr, options, NULL);
1833 }
1834
1835 #endif
1836
1837 #ifdef CONFIG_COMPAT
1838 COMPAT_SYSCALL_DEFINE4(wait4,
1839         compat_pid_t, pid,
1840         compat_uint_t __user *, stat_addr,
1841         int, options,
1842         struct compat_rusage __user *, ru)
1843 {
1844         struct rusage r;
1845         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1846         if (err > 0) {
1847                 if (ru && put_compat_rusage(&r, ru))
1848                         return -EFAULT;
1849         }
1850         return err;
1851 }
1852
1853 COMPAT_SYSCALL_DEFINE5(waitid,
1854                 int, which, compat_pid_t, pid,
1855                 struct compat_siginfo __user *, infop, int, options,
1856                 struct compat_rusage __user *, uru)
1857 {
1858         struct rusage ru;
1859         struct waitid_info info = {.status = 0};
1860         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1861         int signo = 0;
1862         if (err > 0) {
1863                 signo = SIGCHLD;
1864                 err = 0;
1865                 if (uru) {
1866                         /* kernel_waitid() overwrites everything in ru */
1867                         if (COMPAT_USE_64BIT_TIME)
1868                                 err = copy_to_user(uru, &ru, sizeof(ru));
1869                         else
1870                                 err = put_compat_rusage(&ru, uru);
1871                         if (err)
1872                                 return -EFAULT;
1873                 }
1874         }
1875
1876         if (!infop)
1877                 return err;
1878
1879         if (!user_write_access_begin(infop, sizeof(*infop)))
1880                 return -EFAULT;
1881
1882         unsafe_put_user(signo, &infop->si_signo, Efault);
1883         unsafe_put_user(0, &infop->si_errno, Efault);
1884         unsafe_put_user(info.cause, &infop->si_code, Efault);
1885         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1886         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1887         unsafe_put_user(info.status, &infop->si_status, Efault);
1888         user_write_access_end();
1889         return err;
1890 Efault:
1891         user_write_access_end();
1892         return -EFAULT;
1893 }
1894 #endif
1895
1896 /**
1897  * thread_group_exited - check that a thread group has exited
1898  * @pid: tgid of thread group to be checked.
1899  *
1900  * Test if the thread group represented by tgid has exited (all
1901  * threads are zombies, dead or completely gone).
1902  *
1903  * Return: true if the thread group has exited. false otherwise.
1904  */
1905 bool thread_group_exited(struct pid *pid)
1906 {
1907         struct task_struct *task;
1908         bool exited;
1909
1910         rcu_read_lock();
1911         task = pid_task(pid, PIDTYPE_PID);
1912         exited = !task ||
1913                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1914         rcu_read_unlock();
1915
1916         return exited;
1917 }
1918 EXPORT_SYMBOL(thread_group_exited);
1919
1920 /*
1921  * This needs to be __function_aligned as GCC implicitly makes any
1922  * implementation of abort() cold and drops alignment specified by
1923  * -falign-functions=N.
1924  *
1925  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1926  */
1927 __weak __function_aligned void abort(void)
1928 {
1929         BUG();
1930
1931         /* if that doesn't kill us, halt */
1932         panic("Oops failed to kill thread");
1933 }
1934 EXPORT_SYMBOL(abort);