Merge tag 'ovl-fixes-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs
[linux-2.6-block.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52
53 #include "internal.h"
54
55 #include <asm/irq_regs.h>
56
57 typedef int (*remote_function_f)(void *);
58
59 struct remote_function_call {
60         struct task_struct      *p;
61         remote_function_f       func;
62         void                    *info;
63         int                     ret;
64 };
65
66 static void remote_function(void *data)
67 {
68         struct remote_function_call *tfc = data;
69         struct task_struct *p = tfc->p;
70
71         if (p) {
72                 /* -EAGAIN */
73                 if (task_cpu(p) != smp_processor_id())
74                         return;
75
76                 /*
77                  * Now that we're on right CPU with IRQs disabled, we can test
78                  * if we hit the right task without races.
79                  */
80
81                 tfc->ret = -ESRCH; /* No such (running) process */
82                 if (p != current)
83                         return;
84         }
85
86         tfc->ret = tfc->func(tfc->info);
87 }
88
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:          the task to evaluate
92  * @func:       the function to be called
93  * @info:       the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *          -ESRCH  - when the process isn't running
100  *          -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105         struct remote_function_call data = {
106                 .p      = p,
107                 .func   = func,
108                 .info   = info,
109                 .ret    = -EAGAIN,
110         };
111         int ret;
112
113         do {
114                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115                 if (!ret)
116                         ret = data.ret;
117         } while (ret == -EAGAIN);
118
119         return ret;
120 }
121
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:       the function to be called
125  * @info:       the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133         struct remote_function_call data = {
134                 .p      = NULL,
135                 .func   = func,
136                 .info   = info,
137                 .ret    = -ENXIO, /* No such CPU */
138         };
139
140         smp_call_function_single(cpu, remote_function, &data, 1);
141
142         return data.ret;
143 }
144
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152                           struct perf_event_context *ctx)
153 {
154         raw_spin_lock(&cpuctx->ctx.lock);
155         if (ctx)
156                 raw_spin_lock(&ctx->lock);
157 }
158
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160                             struct perf_event_context *ctx)
161 {
162         if (ctx)
163                 raw_spin_unlock(&ctx->lock);
164         raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166
167 #define TASK_TOMBSTONE ((void *)-1L)
168
169 static bool is_kernel_event(struct perf_event *event)
170 {
171         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194                         struct perf_event_context *, void *);
195
196 struct event_function_struct {
197         struct perf_event *event;
198         event_f func;
199         void *data;
200 };
201
202 static int event_function(void *info)
203 {
204         struct event_function_struct *efs = info;
205         struct perf_event *event = efs->event;
206         struct perf_event_context *ctx = event->ctx;
207         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208         struct perf_event_context *task_ctx = cpuctx->task_ctx;
209         int ret = 0;
210
211         lockdep_assert_irqs_disabled();
212
213         perf_ctx_lock(cpuctx, task_ctx);
214         /*
215          * Since we do the IPI call without holding ctx->lock things can have
216          * changed, double check we hit the task we set out to hit.
217          */
218         if (ctx->task) {
219                 if (ctx->task != current) {
220                         ret = -ESRCH;
221                         goto unlock;
222                 }
223
224                 /*
225                  * We only use event_function_call() on established contexts,
226                  * and event_function() is only ever called when active (or
227                  * rather, we'll have bailed in task_function_call() or the
228                  * above ctx->task != current test), therefore we must have
229                  * ctx->is_active here.
230                  */
231                 WARN_ON_ONCE(!ctx->is_active);
232                 /*
233                  * And since we have ctx->is_active, cpuctx->task_ctx must
234                  * match.
235                  */
236                 WARN_ON_ONCE(task_ctx != ctx);
237         } else {
238                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
239         }
240
241         efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243         perf_ctx_unlock(cpuctx, task_ctx);
244
245         return ret;
246 }
247
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250         struct perf_event_context *ctx = event->ctx;
251         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252         struct event_function_struct efs = {
253                 .event = event,
254                 .func = func,
255                 .data = data,
256         };
257
258         if (!event->parent) {
259                 /*
260                  * If this is a !child event, we must hold ctx::mutex to
261                  * stabilize the the event->ctx relation. See
262                  * perf_event_ctx_lock().
263                  */
264                 lockdep_assert_held(&ctx->mutex);
265         }
266
267         if (!task) {
268                 cpu_function_call(event->cpu, event_function, &efs);
269                 return;
270         }
271
272         if (task == TASK_TOMBSTONE)
273                 return;
274
275 again:
276         if (!task_function_call(task, event_function, &efs))
277                 return;
278
279         raw_spin_lock_irq(&ctx->lock);
280         /*
281          * Reload the task pointer, it might have been changed by
282          * a concurrent perf_event_context_sched_out().
283          */
284         task = ctx->task;
285         if (task == TASK_TOMBSTONE) {
286                 raw_spin_unlock_irq(&ctx->lock);
287                 return;
288         }
289         if (ctx->is_active) {
290                 raw_spin_unlock_irq(&ctx->lock);
291                 goto again;
292         }
293         func(event, NULL, ctx, data);
294         raw_spin_unlock_irq(&ctx->lock);
295 }
296
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303         struct perf_event_context *ctx = event->ctx;
304         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305         struct task_struct *task = READ_ONCE(ctx->task);
306         struct perf_event_context *task_ctx = NULL;
307
308         lockdep_assert_irqs_disabled();
309
310         if (task) {
311                 if (task == TASK_TOMBSTONE)
312                         return;
313
314                 task_ctx = ctx;
315         }
316
317         perf_ctx_lock(cpuctx, task_ctx);
318
319         task = ctx->task;
320         if (task == TASK_TOMBSTONE)
321                 goto unlock;
322
323         if (task) {
324                 /*
325                  * We must be either inactive or active and the right task,
326                  * otherwise we're screwed, since we cannot IPI to somewhere
327                  * else.
328                  */
329                 if (ctx->is_active) {
330                         if (WARN_ON_ONCE(task != current))
331                                 goto unlock;
332
333                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334                                 goto unlock;
335                 }
336         } else {
337                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338         }
339
340         func(event, cpuctx, ctx, data);
341 unlock:
342         perf_ctx_unlock(cpuctx, task_ctx);
343 }
344
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346                        PERF_FLAG_FD_OUTPUT  |\
347                        PERF_FLAG_PID_CGROUP |\
348                        PERF_FLAG_FD_CLOEXEC)
349
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354         (PERF_SAMPLE_BRANCH_KERNEL |\
355          PERF_SAMPLE_BRANCH_HV)
356
357 enum event_type_t {
358         EVENT_FLEXIBLE = 0x1,
359         EVENT_PINNED = 0x2,
360         EVENT_TIME = 0x4,
361         /* see ctx_resched() for details */
362         EVENT_CPU = 0x8,
363         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE         100000
411 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
413
414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
418
419 static int perf_sample_allowed_ns __read_mostly =
420         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421
422 static void update_perf_cpu_limits(void)
423 {
424         u64 tmp = perf_sample_period_ns;
425
426         tmp *= sysctl_perf_cpu_time_max_percent;
427         tmp = div_u64(tmp, 100);
428         if (!tmp)
429                 tmp = 1;
430
431         WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437                 void __user *buffer, size_t *lenp,
438                 loff_t *ppos)
439 {
440         int ret;
441         int perf_cpu = sysctl_perf_cpu_time_max_percent;
442         /*
443          * If throttling is disabled don't allow the write:
444          */
445         if (write && (perf_cpu == 100 || perf_cpu == 0))
446                 return -EINVAL;
447
448         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449         if (ret || !write)
450                 return ret;
451
452         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454         update_perf_cpu_limits();
455
456         return 0;
457 }
458
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462                                 void __user *buffer, size_t *lenp,
463                                 loff_t *ppos)
464 {
465         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466
467         if (ret || !write)
468                 return ret;
469
470         if (sysctl_perf_cpu_time_max_percent == 100 ||
471             sysctl_perf_cpu_time_max_percent == 0) {
472                 printk(KERN_WARNING
473                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474                 WRITE_ONCE(perf_sample_allowed_ns, 0);
475         } else {
476                 update_perf_cpu_limits();
477         }
478
479         return 0;
480 }
481
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490
491 static u64 __report_avg;
492 static u64 __report_allowed;
493
494 static void perf_duration_warn(struct irq_work *w)
495 {
496         printk_ratelimited(KERN_INFO
497                 "perf: interrupt took too long (%lld > %lld), lowering "
498                 "kernel.perf_event_max_sample_rate to %d\n",
499                 __report_avg, __report_allowed,
500                 sysctl_perf_event_sample_rate);
501 }
502
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508         u64 running_len;
509         u64 avg_len;
510         u32 max;
511
512         if (max_len == 0)
513                 return;
514
515         /* Decay the counter by 1 average sample. */
516         running_len = __this_cpu_read(running_sample_length);
517         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518         running_len += sample_len_ns;
519         __this_cpu_write(running_sample_length, running_len);
520
521         /*
522          * Note: this will be biased artifically low until we have
523          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524          * from having to maintain a count.
525          */
526         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527         if (avg_len <= max_len)
528                 return;
529
530         __report_avg = avg_len;
531         __report_allowed = max_len;
532
533         /*
534          * Compute a throttle threshold 25% below the current duration.
535          */
536         avg_len += avg_len / 4;
537         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538         if (avg_len < max)
539                 max /= (u32)avg_len;
540         else
541                 max = 1;
542
543         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544         WRITE_ONCE(max_samples_per_tick, max);
545
546         sysctl_perf_event_sample_rate = max * HZ;
547         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548
549         if (!irq_work_queue(&perf_duration_work)) {
550                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551                              "kernel.perf_event_max_sample_rate to %d\n",
552                              __report_avg, __report_allowed,
553                              sysctl_perf_event_sample_rate);
554         }
555 }
556
557 static atomic64_t perf_event_id;
558
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560                               enum event_type_t event_type);
561
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563                              enum event_type_t event_type,
564                              struct task_struct *task);
565
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568
569 void __weak perf_event_print_debug(void)        { }
570
571 extern __weak const char *perf_pmu_name(void)
572 {
573         return "pmu";
574 }
575
576 static inline u64 perf_clock(void)
577 {
578         return local_clock();
579 }
580
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583         return event->clock();
584 }
585
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611         struct perf_event *leader = event->group_leader;
612
613         if (leader->state <= PERF_EVENT_STATE_OFF)
614                 return leader->state;
615
616         return event->state;
617 }
618
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622         enum perf_event_state state = __perf_effective_state(event);
623         u64 delta = now - event->tstamp;
624
625         *enabled = event->total_time_enabled;
626         if (state >= PERF_EVENT_STATE_INACTIVE)
627                 *enabled += delta;
628
629         *running = event->total_time_running;
630         if (state >= PERF_EVENT_STATE_ACTIVE)
631                 *running += delta;
632 }
633
634 static void perf_event_update_time(struct perf_event *event)
635 {
636         u64 now = perf_event_time(event);
637
638         __perf_update_times(event, now, &event->total_time_enabled,
639                                         &event->total_time_running);
640         event->tstamp = now;
641 }
642
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645         struct perf_event *sibling;
646
647         for_each_sibling_event(sibling, leader)
648                 perf_event_update_time(sibling);
649 }
650
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654         if (event->state == state)
655                 return;
656
657         perf_event_update_time(event);
658         /*
659          * If a group leader gets enabled/disabled all its siblings
660          * are affected too.
661          */
662         if ((event->state < 0) ^ (state < 0))
663                 perf_event_update_sibling_time(event);
664
665         WRITE_ONCE(event->state, state);
666 }
667
668 #ifdef CONFIG_CGROUP_PERF
669
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673         struct perf_event_context *ctx = event->ctx;
674         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
676         /* @event doesn't care about cgroup */
677         if (!event->cgrp)
678                 return true;
679
680         /* wants specific cgroup scope but @cpuctx isn't associated with any */
681         if (!cpuctx->cgrp)
682                 return false;
683
684         /*
685          * Cgroup scoping is recursive.  An event enabled for a cgroup is
686          * also enabled for all its descendant cgroups.  If @cpuctx's
687          * cgroup is a descendant of @event's (the test covers identity
688          * case), it's a match.
689          */
690         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691                                     event->cgrp->css.cgroup);
692 }
693
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696         css_put(&event->cgrp->css);
697         event->cgrp = NULL;
698 }
699
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702         return event->cgrp != NULL;
703 }
704
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707         struct perf_cgroup_info *t;
708
709         t = per_cpu_ptr(event->cgrp->info, event->cpu);
710         return t->time;
711 }
712
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715         struct perf_cgroup_info *info;
716         u64 now;
717
718         now = perf_clock();
719
720         info = this_cpu_ptr(cgrp->info);
721
722         info->time += now - info->timestamp;
723         info->timestamp = now;
724 }
725
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728         struct perf_cgroup *cgrp = cpuctx->cgrp;
729         struct cgroup_subsys_state *css;
730
731         if (cgrp) {
732                 for (css = &cgrp->css; css; css = css->parent) {
733                         cgrp = container_of(css, struct perf_cgroup, css);
734                         __update_cgrp_time(cgrp);
735                 }
736         }
737 }
738
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741         struct perf_cgroup *cgrp;
742
743         /*
744          * ensure we access cgroup data only when needed and
745          * when we know the cgroup is pinned (css_get)
746          */
747         if (!is_cgroup_event(event))
748                 return;
749
750         cgrp = perf_cgroup_from_task(current, event->ctx);
751         /*
752          * Do not update time when cgroup is not active
753          */
754         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755                 __update_cgrp_time(event->cgrp);
756 }
757
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760                           struct perf_event_context *ctx)
761 {
762         struct perf_cgroup *cgrp;
763         struct perf_cgroup_info *info;
764         struct cgroup_subsys_state *css;
765
766         /*
767          * ctx->lock held by caller
768          * ensure we do not access cgroup data
769          * unless we have the cgroup pinned (css_get)
770          */
771         if (!task || !ctx->nr_cgroups)
772                 return;
773
774         cgrp = perf_cgroup_from_task(task, ctx);
775
776         for (css = &cgrp->css; css; css = css->parent) {
777                 cgrp = container_of(css, struct perf_cgroup, css);
778                 info = this_cpu_ptr(cgrp->info);
779                 info->timestamp = ctx->timestamp;
780         }
781 }
782
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
785 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
787
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796         struct perf_cpu_context *cpuctx;
797         struct list_head *list;
798         unsigned long flags;
799
800         /*
801          * Disable interrupts and preemption to avoid this CPU's
802          * cgrp_cpuctx_entry to change under us.
803          */
804         local_irq_save(flags);
805
806         list = this_cpu_ptr(&cgrp_cpuctx_list);
807         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809
810                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811                 perf_pmu_disable(cpuctx->ctx.pmu);
812
813                 if (mode & PERF_CGROUP_SWOUT) {
814                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815                         /*
816                          * must not be done before ctxswout due
817                          * to event_filter_match() in event_sched_out()
818                          */
819                         cpuctx->cgrp = NULL;
820                 }
821
822                 if (mode & PERF_CGROUP_SWIN) {
823                         WARN_ON_ONCE(cpuctx->cgrp);
824                         /*
825                          * set cgrp before ctxsw in to allow
826                          * event_filter_match() to not have to pass
827                          * task around
828                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
829                          * because cgorup events are only per-cpu
830                          */
831                         cpuctx->cgrp = perf_cgroup_from_task(task,
832                                                              &cpuctx->ctx);
833                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834                 }
835                 perf_pmu_enable(cpuctx->ctx.pmu);
836                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837         }
838
839         local_irq_restore(flags);
840 }
841
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843                                          struct task_struct *next)
844 {
845         struct perf_cgroup *cgrp1;
846         struct perf_cgroup *cgrp2 = NULL;
847
848         rcu_read_lock();
849         /*
850          * we come here when we know perf_cgroup_events > 0
851          * we do not need to pass the ctx here because we know
852          * we are holding the rcu lock
853          */
854         cgrp1 = perf_cgroup_from_task(task, NULL);
855         cgrp2 = perf_cgroup_from_task(next, NULL);
856
857         /*
858          * only schedule out current cgroup events if we know
859          * that we are switching to a different cgroup. Otherwise,
860          * do no touch the cgroup events.
861          */
862         if (cgrp1 != cgrp2)
863                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864
865         rcu_read_unlock();
866 }
867
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869                                         struct task_struct *task)
870 {
871         struct perf_cgroup *cgrp1;
872         struct perf_cgroup *cgrp2 = NULL;
873
874         rcu_read_lock();
875         /*
876          * we come here when we know perf_cgroup_events > 0
877          * we do not need to pass the ctx here because we know
878          * we are holding the rcu lock
879          */
880         cgrp1 = perf_cgroup_from_task(task, NULL);
881         cgrp2 = perf_cgroup_from_task(prev, NULL);
882
883         /*
884          * only need to schedule in cgroup events if we are changing
885          * cgroup during ctxsw. Cgroup events were not scheduled
886          * out of ctxsw out if that was not the case.
887          */
888         if (cgrp1 != cgrp2)
889                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890
891         rcu_read_unlock();
892 }
893
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895                                       struct perf_event_attr *attr,
896                                       struct perf_event *group_leader)
897 {
898         struct perf_cgroup *cgrp;
899         struct cgroup_subsys_state *css;
900         struct fd f = fdget(fd);
901         int ret = 0;
902
903         if (!f.file)
904                 return -EBADF;
905
906         css = css_tryget_online_from_dir(f.file->f_path.dentry,
907                                          &perf_event_cgrp_subsys);
908         if (IS_ERR(css)) {
909                 ret = PTR_ERR(css);
910                 goto out;
911         }
912
913         cgrp = container_of(css, struct perf_cgroup, css);
914         event->cgrp = cgrp;
915
916         /*
917          * all events in a group must monitor
918          * the same cgroup because a task belongs
919          * to only one perf cgroup at a time
920          */
921         if (group_leader && group_leader->cgrp != cgrp) {
922                 perf_detach_cgroup(event);
923                 ret = -EINVAL;
924         }
925 out:
926         fdput(f);
927         return ret;
928 }
929
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933         struct perf_cgroup_info *t;
934         t = per_cpu_ptr(event->cgrp->info, event->cpu);
935         event->shadow_ctx_time = now - t->timestamp;
936 }
937
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944                          struct perf_event_context *ctx, bool add)
945 {
946         struct perf_cpu_context *cpuctx;
947         struct list_head *cpuctx_entry;
948
949         if (!is_cgroup_event(event))
950                 return;
951
952         /*
953          * Because cgroup events are always per-cpu events,
954          * this will always be called from the right CPU.
955          */
956         cpuctx = __get_cpu_context(ctx);
957
958         /*
959          * Since setting cpuctx->cgrp is conditional on the current @cgrp
960          * matching the event's cgroup, we must do this for every new event,
961          * because if the first would mismatch, the second would not try again
962          * and we would leave cpuctx->cgrp unset.
963          */
964         if (add && !cpuctx->cgrp) {
965                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
967                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968                         cpuctx->cgrp = cgrp;
969         }
970
971         if (add && ctx->nr_cgroups++)
972                 return;
973         else if (!add && --ctx->nr_cgroups)
974                 return;
975
976         /* no cgroup running */
977         if (!add)
978                 cpuctx->cgrp = NULL;
979
980         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981         if (add)
982                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983         else
984                 list_del(cpuctx_entry);
985 }
986
987 #else /* !CONFIG_CGROUP_PERF */
988
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992         return true;
993 }
994
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000         return 0;
1001 }
1002
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012                                          struct task_struct *next)
1013 {
1014 }
1015
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017                                         struct task_struct *task)
1018 {
1019 }
1020
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022                                       struct perf_event_attr *attr,
1023                                       struct perf_event *group_leader)
1024 {
1025         return -EINVAL;
1026 }
1027
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030                           struct perf_event_context *ctx)
1031 {
1032 }
1033
1034 void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046         return 0;
1047 }
1048
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051                          struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054
1055 #endif
1056
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067         struct perf_cpu_context *cpuctx;
1068         bool rotations;
1069
1070         lockdep_assert_irqs_disabled();
1071
1072         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073         rotations = perf_rotate_context(cpuctx);
1074
1075         raw_spin_lock(&cpuctx->hrtimer_lock);
1076         if (rotations)
1077                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078         else
1079                 cpuctx->hrtimer_active = 0;
1080         raw_spin_unlock(&cpuctx->hrtimer_lock);
1081
1082         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087         struct hrtimer *timer = &cpuctx->hrtimer;
1088         struct pmu *pmu = cpuctx->ctx.pmu;
1089         u64 interval;
1090
1091         /* no multiplexing needed for SW PMU */
1092         if (pmu->task_ctx_nr == perf_sw_context)
1093                 return;
1094
1095         /*
1096          * check default is sane, if not set then force to
1097          * default interval (1/tick)
1098          */
1099         interval = pmu->hrtimer_interval_ms;
1100         if (interval < 1)
1101                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102
1103         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104
1105         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1107         timer->function = perf_mux_hrtimer_handler;
1108 }
1109
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112         struct hrtimer *timer = &cpuctx->hrtimer;
1113         struct pmu *pmu = cpuctx->ctx.pmu;
1114         unsigned long flags;
1115
1116         /* not for SW PMU */
1117         if (pmu->task_ctx_nr == perf_sw_context)
1118                 return 0;
1119
1120         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121         if (!cpuctx->hrtimer_active) {
1122                 cpuctx->hrtimer_active = 1;
1123                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1125         }
1126         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127
1128         return 0;
1129 }
1130
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134         if (!(*count)++)
1135                 pmu->pmu_disable(pmu);
1136 }
1137
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141         if (!--(*count))
1142                 pmu->pmu_enable(pmu);
1143 }
1144
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156
1157         lockdep_assert_irqs_disabled();
1158
1159         WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161         list_add(&ctx->active_ctx_list, head);
1162 }
1163
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166         lockdep_assert_irqs_disabled();
1167
1168         WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170         list_del_init(&ctx->active_ctx_list);
1171 }
1172
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175         refcount_inc(&ctx->refcount);
1176 }
1177
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180         struct perf_event_context *ctx;
1181
1182         ctx = container_of(head, struct perf_event_context, rcu_head);
1183         kfree(ctx->task_ctx_data);
1184         kfree(ctx);
1185 }
1186
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189         if (refcount_dec_and_test(&ctx->refcount)) {
1190                 if (ctx->parent_ctx)
1191                         put_ctx(ctx->parent_ctx);
1192                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193                         put_task_struct(ctx->task);
1194                 call_rcu(&ctx->rcu_head, free_ctx);
1195         }
1196 }
1197
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()    [ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()                   [ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()         [ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event() [ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *      task_struct::perf_event_mutex
1253  *        perf_event_context::mutex
1254  *          perf_event::child_mutex;
1255  *            perf_event_context::lock
1256  *          perf_event::mmap_mutex
1257  *          mmap_sem
1258  *            perf_addr_filters_head::lock
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *        cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267         struct perf_event_context *ctx;
1268
1269 again:
1270         rcu_read_lock();
1271         ctx = READ_ONCE(event->ctx);
1272         if (!refcount_inc_not_zero(&ctx->refcount)) {
1273                 rcu_read_unlock();
1274                 goto again;
1275         }
1276         rcu_read_unlock();
1277
1278         mutex_lock_nested(&ctx->mutex, nesting);
1279         if (event->ctx != ctx) {
1280                 mutex_unlock(&ctx->mutex);
1281                 put_ctx(ctx);
1282                 goto again;
1283         }
1284
1285         return ctx;
1286 }
1287
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291         return perf_event_ctx_lock_nested(event, 0);
1292 }
1293
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295                                   struct perf_event_context *ctx)
1296 {
1297         mutex_unlock(&ctx->mutex);
1298         put_ctx(ctx);
1299 }
1300
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311         lockdep_assert_held(&ctx->lock);
1312
1313         if (parent_ctx)
1314                 ctx->parent_ctx = NULL;
1315         ctx->generation++;
1316
1317         return parent_ctx;
1318 }
1319
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321                                 enum pid_type type)
1322 {
1323         u32 nr;
1324         /*
1325          * only top level events have the pid namespace they were created in
1326          */
1327         if (event->parent)
1328                 event = event->parent;
1329
1330         nr = __task_pid_nr_ns(p, type, event->ns);
1331         /* avoid -1 if it is idle thread or runs in another ns */
1332         if (!nr && !pid_alive(p))
1333                 nr = -1;
1334         return nr;
1335 }
1336
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344         return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353         u64 id = event->id;
1354
1355         if (event->parent)
1356                 id = event->parent->id;
1357
1358         return id;
1359 }
1360
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370         struct perf_event_context *ctx;
1371
1372 retry:
1373         /*
1374          * One of the few rules of preemptible RCU is that one cannot do
1375          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376          * part of the read side critical section was irqs-enabled -- see
1377          * rcu_read_unlock_special().
1378          *
1379          * Since ctx->lock nests under rq->lock we must ensure the entire read
1380          * side critical section has interrupts disabled.
1381          */
1382         local_irq_save(*flags);
1383         rcu_read_lock();
1384         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385         if (ctx) {
1386                 /*
1387                  * If this context is a clone of another, it might
1388                  * get swapped for another underneath us by
1389                  * perf_event_task_sched_out, though the
1390                  * rcu_read_lock() protects us from any context
1391                  * getting freed.  Lock the context and check if it
1392                  * got swapped before we could get the lock, and retry
1393                  * if so.  If we locked the right context, then it
1394                  * can't get swapped on us any more.
1395                  */
1396                 raw_spin_lock(&ctx->lock);
1397                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398                         raw_spin_unlock(&ctx->lock);
1399                         rcu_read_unlock();
1400                         local_irq_restore(*flags);
1401                         goto retry;
1402                 }
1403
1404                 if (ctx->task == TASK_TOMBSTONE ||
1405                     !refcount_inc_not_zero(&ctx->refcount)) {
1406                         raw_spin_unlock(&ctx->lock);
1407                         ctx = NULL;
1408                 } else {
1409                         WARN_ON_ONCE(ctx->task != task);
1410                 }
1411         }
1412         rcu_read_unlock();
1413         if (!ctx)
1414                 local_irq_restore(*flags);
1415         return ctx;
1416 }
1417
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426         struct perf_event_context *ctx;
1427         unsigned long flags;
1428
1429         ctx = perf_lock_task_context(task, ctxn, &flags);
1430         if (ctx) {
1431                 ++ctx->pin_count;
1432                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433         }
1434         return ctx;
1435 }
1436
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439         unsigned long flags;
1440
1441         raw_spin_lock_irqsave(&ctx->lock, flags);
1442         --ctx->pin_count;
1443         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445
1446 /*
1447  * Update the record of the current time in a context.
1448  */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451         u64 now = perf_clock();
1452
1453         ctx->time += now - ctx->timestamp;
1454         ctx->timestamp = now;
1455 }
1456
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459         struct perf_event_context *ctx = event->ctx;
1460
1461         if (is_cgroup_event(event))
1462                 return perf_cgroup_event_time(event);
1463
1464         return ctx ? ctx->time : 0;
1465 }
1466
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469         struct perf_event_context *ctx = event->ctx;
1470         enum event_type_t event_type;
1471
1472         lockdep_assert_held(&ctx->lock);
1473
1474         /*
1475          * It's 'group type', really, because if our group leader is
1476          * pinned, so are we.
1477          */
1478         if (event->group_leader != event)
1479                 event = event->group_leader;
1480
1481         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482         if (!ctx->task)
1483                 event_type |= EVENT_CPU;
1484
1485         return event_type;
1486 }
1487
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493         RB_CLEAR_NODE(&event->group_node);
1494         event->group_index = 0;
1495 }
1496
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504         if (event->attr.pinned)
1505                 return &ctx->pinned_groups;
1506         else
1507                 return &ctx->flexible_groups;
1508 }
1509
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515         groups->tree = RB_ROOT;
1516         groups->index = 0;
1517 }
1518
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528         if (left->cpu < right->cpu)
1529                 return true;
1530         if (left->cpu > right->cpu)
1531                 return false;
1532
1533         if (left->group_index < right->group_index)
1534                 return true;
1535         if (left->group_index > right->group_index)
1536                 return false;
1537
1538         return false;
1539 }
1540
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548                          struct perf_event *event)
1549 {
1550         struct perf_event *node_event;
1551         struct rb_node *parent;
1552         struct rb_node **node;
1553
1554         event->group_index = ++groups->index;
1555
1556         node = &groups->tree.rb_node;
1557         parent = *node;
1558
1559         while (*node) {
1560                 parent = *node;
1561                 node_event = container_of(*node, struct perf_event, group_node);
1562
1563                 if (perf_event_groups_less(event, node_event))
1564                         node = &parent->rb_left;
1565                 else
1566                         node = &parent->rb_right;
1567         }
1568
1569         rb_link_node(&event->group_node, parent, node);
1570         rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579         struct perf_event_groups *groups;
1580
1581         groups = get_event_groups(event, ctx);
1582         perf_event_groups_insert(groups, event);
1583 }
1584
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590                          struct perf_event *event)
1591 {
1592         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593                      RB_EMPTY_ROOT(&groups->tree));
1594
1595         rb_erase(&event->group_node, &groups->tree);
1596         init_event_group(event);
1597 }
1598
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605         struct perf_event_groups *groups;
1606
1607         groups = get_event_groups(event, ctx);
1608         perf_event_groups_delete(groups, event);
1609 }
1610
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617         struct perf_event *node_event = NULL, *match = NULL;
1618         struct rb_node *node = groups->tree.rb_node;
1619
1620         while (node) {
1621                 node_event = container_of(node, struct perf_event, group_node);
1622
1623                 if (cpu < node_event->cpu) {
1624                         node = node->rb_left;
1625                 } else if (cpu > node_event->cpu) {
1626                         node = node->rb_right;
1627                 } else {
1628                         match = node_event;
1629                         node = node->rb_left;
1630                 }
1631         }
1632
1633         return match;
1634 }
1635
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642         struct perf_event *next;
1643
1644         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645         if (next && next->cpu == event->cpu)
1646                 return next;
1647
1648         return NULL;
1649 }
1650
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)                       \
1655         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1656                                 typeof(*event), group_node); event;     \
1657                 event = rb_entry_safe(rb_next(&event->group_node),      \
1658                                 typeof(*event), group_node))
1659
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667         lockdep_assert_held(&ctx->lock);
1668
1669         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670         event->attach_state |= PERF_ATTACH_CONTEXT;
1671
1672         event->tstamp = perf_event_time(event);
1673
1674         /*
1675          * If we're a stand alone event or group leader, we go to the context
1676          * list, group events are kept attached to the group so that
1677          * perf_group_detach can, at all times, locate all siblings.
1678          */
1679         if (event->group_leader == event) {
1680                 event->group_caps = event->event_caps;
1681                 add_event_to_groups(event, ctx);
1682         }
1683
1684         list_update_cgroup_event(event, ctx, true);
1685
1686         list_add_rcu(&event->event_entry, &ctx->event_list);
1687         ctx->nr_events++;
1688         if (event->attr.inherit_stat)
1689                 ctx->nr_stat++;
1690
1691         ctx->generation++;
1692 }
1693
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700                                               PERF_EVENT_STATE_INACTIVE;
1701 }
1702
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705         int entry = sizeof(u64); /* value */
1706         int size = 0;
1707         int nr = 1;
1708
1709         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710                 size += sizeof(u64);
1711
1712         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713                 size += sizeof(u64);
1714
1715         if (event->attr.read_format & PERF_FORMAT_ID)
1716                 entry += sizeof(u64);
1717
1718         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719                 nr += nr_siblings;
1720                 size += sizeof(u64);
1721         }
1722
1723         size += entry * nr;
1724         event->read_size = size;
1725 }
1726
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729         struct perf_sample_data *data;
1730         u16 size = 0;
1731
1732         if (sample_type & PERF_SAMPLE_IP)
1733                 size += sizeof(data->ip);
1734
1735         if (sample_type & PERF_SAMPLE_ADDR)
1736                 size += sizeof(data->addr);
1737
1738         if (sample_type & PERF_SAMPLE_PERIOD)
1739                 size += sizeof(data->period);
1740
1741         if (sample_type & PERF_SAMPLE_WEIGHT)
1742                 size += sizeof(data->weight);
1743
1744         if (sample_type & PERF_SAMPLE_READ)
1745                 size += event->read_size;
1746
1747         if (sample_type & PERF_SAMPLE_DATA_SRC)
1748                 size += sizeof(data->data_src.val);
1749
1750         if (sample_type & PERF_SAMPLE_TRANSACTION)
1751                 size += sizeof(data->txn);
1752
1753         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754                 size += sizeof(data->phys_addr);
1755
1756         event->header_size = size;
1757 }
1758
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765         __perf_event_read_size(event,
1766                                event->group_leader->nr_siblings);
1767         __perf_event_header_size(event, event->attr.sample_type);
1768 }
1769
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772         struct perf_sample_data *data;
1773         u64 sample_type = event->attr.sample_type;
1774         u16 size = 0;
1775
1776         if (sample_type & PERF_SAMPLE_TID)
1777                 size += sizeof(data->tid_entry);
1778
1779         if (sample_type & PERF_SAMPLE_TIME)
1780                 size += sizeof(data->time);
1781
1782         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783                 size += sizeof(data->id);
1784
1785         if (sample_type & PERF_SAMPLE_ID)
1786                 size += sizeof(data->id);
1787
1788         if (sample_type & PERF_SAMPLE_STREAM_ID)
1789                 size += sizeof(data->stream_id);
1790
1791         if (sample_type & PERF_SAMPLE_CPU)
1792                 size += sizeof(data->cpu_entry);
1793
1794         event->id_header_size = size;
1795 }
1796
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799         /*
1800          * The values computed here will be over-written when we actually
1801          * attach the event.
1802          */
1803         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805         perf_event__id_header_size(event);
1806
1807         /*
1808          * Sum the lot; should not exceed the 64k limit we have on records.
1809          * Conservative limit to allow for callchains and other variable fields.
1810          */
1811         if (event->read_size + event->header_size +
1812             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813                 return false;
1814
1815         return true;
1816 }
1817
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820         struct perf_event *group_leader = event->group_leader, *pos;
1821
1822         lockdep_assert_held(&event->ctx->lock);
1823
1824         /*
1825          * We can have double attach due to group movement in perf_event_open.
1826          */
1827         if (event->attach_state & PERF_ATTACH_GROUP)
1828                 return;
1829
1830         event->attach_state |= PERF_ATTACH_GROUP;
1831
1832         if (group_leader == event)
1833                 return;
1834
1835         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
1837         group_leader->group_caps &= event->event_caps;
1838
1839         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840         group_leader->nr_siblings++;
1841
1842         perf_event__header_size(group_leader);
1843
1844         for_each_sibling_event(pos, group_leader)
1845                 perf_event__header_size(pos);
1846 }
1847
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855         WARN_ON_ONCE(event->ctx != ctx);
1856         lockdep_assert_held(&ctx->lock);
1857
1858         /*
1859          * We can have double detach due to exit/hot-unplug + close.
1860          */
1861         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862                 return;
1863
1864         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
1866         list_update_cgroup_event(event, ctx, false);
1867
1868         ctx->nr_events--;
1869         if (event->attr.inherit_stat)
1870                 ctx->nr_stat--;
1871
1872         list_del_rcu(&event->event_entry);
1873
1874         if (event->group_leader == event)
1875                 del_event_from_groups(event, ctx);
1876
1877         /*
1878          * If event was in error state, then keep it
1879          * that way, otherwise bogus counts will be
1880          * returned on read(). The only way to get out
1881          * of error state is by explicit re-enabling
1882          * of the event
1883          */
1884         if (event->state > PERF_EVENT_STATE_OFF)
1885                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886
1887         ctx->generation++;
1888 }
1889
1890 static int
1891 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1892 {
1893         if (!has_aux(aux_event))
1894                 return 0;
1895
1896         if (!event->pmu->aux_output_match)
1897                 return 0;
1898
1899         return event->pmu->aux_output_match(aux_event);
1900 }
1901
1902 static void put_event(struct perf_event *event);
1903 static void event_sched_out(struct perf_event *event,
1904                             struct perf_cpu_context *cpuctx,
1905                             struct perf_event_context *ctx);
1906
1907 static void perf_put_aux_event(struct perf_event *event)
1908 {
1909         struct perf_event_context *ctx = event->ctx;
1910         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1911         struct perf_event *iter;
1912
1913         /*
1914          * If event uses aux_event tear down the link
1915          */
1916         if (event->aux_event) {
1917                 iter = event->aux_event;
1918                 event->aux_event = NULL;
1919                 put_event(iter);
1920                 return;
1921         }
1922
1923         /*
1924          * If the event is an aux_event, tear down all links to
1925          * it from other events.
1926          */
1927         for_each_sibling_event(iter, event->group_leader) {
1928                 if (iter->aux_event != event)
1929                         continue;
1930
1931                 iter->aux_event = NULL;
1932                 put_event(event);
1933
1934                 /*
1935                  * If it's ACTIVE, schedule it out and put it into ERROR
1936                  * state so that we don't try to schedule it again. Note
1937                  * that perf_event_enable() will clear the ERROR status.
1938                  */
1939                 event_sched_out(iter, cpuctx, ctx);
1940                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1941         }
1942 }
1943
1944 static int perf_get_aux_event(struct perf_event *event,
1945                               struct perf_event *group_leader)
1946 {
1947         /*
1948          * Our group leader must be an aux event if we want to be
1949          * an aux_output. This way, the aux event will precede its
1950          * aux_output events in the group, and therefore will always
1951          * schedule first.
1952          */
1953         if (!group_leader)
1954                 return 0;
1955
1956         if (!perf_aux_output_match(event, group_leader))
1957                 return 0;
1958
1959         if (!atomic_long_inc_not_zero(&group_leader->refcount))
1960                 return 0;
1961
1962         /*
1963          * Link aux_outputs to their aux event; this is undone in
1964          * perf_group_detach() by perf_put_aux_event(). When the
1965          * group in torn down, the aux_output events loose their
1966          * link to the aux_event and can't schedule any more.
1967          */
1968         event->aux_event = group_leader;
1969
1970         return 1;
1971 }
1972
1973 static void perf_group_detach(struct perf_event *event)
1974 {
1975         struct perf_event *sibling, *tmp;
1976         struct perf_event_context *ctx = event->ctx;
1977
1978         lockdep_assert_held(&ctx->lock);
1979
1980         /*
1981          * We can have double detach due to exit/hot-unplug + close.
1982          */
1983         if (!(event->attach_state & PERF_ATTACH_GROUP))
1984                 return;
1985
1986         event->attach_state &= ~PERF_ATTACH_GROUP;
1987
1988         perf_put_aux_event(event);
1989
1990         /*
1991          * If this is a sibling, remove it from its group.
1992          */
1993         if (event->group_leader != event) {
1994                 list_del_init(&event->sibling_list);
1995                 event->group_leader->nr_siblings--;
1996                 goto out;
1997         }
1998
1999         /*
2000          * If this was a group event with sibling events then
2001          * upgrade the siblings to singleton events by adding them
2002          * to whatever list we are on.
2003          */
2004         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2005
2006                 sibling->group_leader = sibling;
2007                 list_del_init(&sibling->sibling_list);
2008
2009                 /* Inherit group flags from the previous leader */
2010                 sibling->group_caps = event->group_caps;
2011
2012                 if (!RB_EMPTY_NODE(&event->group_node)) {
2013                         add_event_to_groups(sibling, event->ctx);
2014
2015                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2016                                 struct list_head *list = sibling->attr.pinned ?
2017                                         &ctx->pinned_active : &ctx->flexible_active;
2018
2019                                 list_add_tail(&sibling->active_list, list);
2020                         }
2021                 }
2022
2023                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2024         }
2025
2026 out:
2027         perf_event__header_size(event->group_leader);
2028
2029         for_each_sibling_event(tmp, event->group_leader)
2030                 perf_event__header_size(tmp);
2031 }
2032
2033 static bool is_orphaned_event(struct perf_event *event)
2034 {
2035         return event->state == PERF_EVENT_STATE_DEAD;
2036 }
2037
2038 static inline int __pmu_filter_match(struct perf_event *event)
2039 {
2040         struct pmu *pmu = event->pmu;
2041         return pmu->filter_match ? pmu->filter_match(event) : 1;
2042 }
2043
2044 /*
2045  * Check whether we should attempt to schedule an event group based on
2046  * PMU-specific filtering. An event group can consist of HW and SW events,
2047  * potentially with a SW leader, so we must check all the filters, to
2048  * determine whether a group is schedulable:
2049  */
2050 static inline int pmu_filter_match(struct perf_event *event)
2051 {
2052         struct perf_event *sibling;
2053
2054         if (!__pmu_filter_match(event))
2055                 return 0;
2056
2057         for_each_sibling_event(sibling, event) {
2058                 if (!__pmu_filter_match(sibling))
2059                         return 0;
2060         }
2061
2062         return 1;
2063 }
2064
2065 static inline int
2066 event_filter_match(struct perf_event *event)
2067 {
2068         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2069                perf_cgroup_match(event) && pmu_filter_match(event);
2070 }
2071
2072 static void
2073 event_sched_out(struct perf_event *event,
2074                   struct perf_cpu_context *cpuctx,
2075                   struct perf_event_context *ctx)
2076 {
2077         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2078
2079         WARN_ON_ONCE(event->ctx != ctx);
2080         lockdep_assert_held(&ctx->lock);
2081
2082         if (event->state != PERF_EVENT_STATE_ACTIVE)
2083                 return;
2084
2085         /*
2086          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2087          * we can schedule events _OUT_ individually through things like
2088          * __perf_remove_from_context().
2089          */
2090         list_del_init(&event->active_list);
2091
2092         perf_pmu_disable(event->pmu);
2093
2094         event->pmu->del(event, 0);
2095         event->oncpu = -1;
2096
2097         if (READ_ONCE(event->pending_disable) >= 0) {
2098                 WRITE_ONCE(event->pending_disable, -1);
2099                 state = PERF_EVENT_STATE_OFF;
2100         }
2101         perf_event_set_state(event, state);
2102
2103         if (!is_software_event(event))
2104                 cpuctx->active_oncpu--;
2105         if (!--ctx->nr_active)
2106                 perf_event_ctx_deactivate(ctx);
2107         if (event->attr.freq && event->attr.sample_freq)
2108                 ctx->nr_freq--;
2109         if (event->attr.exclusive || !cpuctx->active_oncpu)
2110                 cpuctx->exclusive = 0;
2111
2112         perf_pmu_enable(event->pmu);
2113 }
2114
2115 static void
2116 group_sched_out(struct perf_event *group_event,
2117                 struct perf_cpu_context *cpuctx,
2118                 struct perf_event_context *ctx)
2119 {
2120         struct perf_event *event;
2121
2122         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2123                 return;
2124
2125         perf_pmu_disable(ctx->pmu);
2126
2127         event_sched_out(group_event, cpuctx, ctx);
2128
2129         /*
2130          * Schedule out siblings (if any):
2131          */
2132         for_each_sibling_event(event, group_event)
2133                 event_sched_out(event, cpuctx, ctx);
2134
2135         perf_pmu_enable(ctx->pmu);
2136
2137         if (group_event->attr.exclusive)
2138                 cpuctx->exclusive = 0;
2139 }
2140
2141 #define DETACH_GROUP    0x01UL
2142
2143 /*
2144  * Cross CPU call to remove a performance event
2145  *
2146  * We disable the event on the hardware level first. After that we
2147  * remove it from the context list.
2148  */
2149 static void
2150 __perf_remove_from_context(struct perf_event *event,
2151                            struct perf_cpu_context *cpuctx,
2152                            struct perf_event_context *ctx,
2153                            void *info)
2154 {
2155         unsigned long flags = (unsigned long)info;
2156
2157         if (ctx->is_active & EVENT_TIME) {
2158                 update_context_time(ctx);
2159                 update_cgrp_time_from_cpuctx(cpuctx);
2160         }
2161
2162         event_sched_out(event, cpuctx, ctx);
2163         if (flags & DETACH_GROUP)
2164                 perf_group_detach(event);
2165         list_del_event(event, ctx);
2166
2167         if (!ctx->nr_events && ctx->is_active) {
2168                 ctx->is_active = 0;
2169                 if (ctx->task) {
2170                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2171                         cpuctx->task_ctx = NULL;
2172                 }
2173         }
2174 }
2175
2176 /*
2177  * Remove the event from a task's (or a CPU's) list of events.
2178  *
2179  * If event->ctx is a cloned context, callers must make sure that
2180  * every task struct that event->ctx->task could possibly point to
2181  * remains valid.  This is OK when called from perf_release since
2182  * that only calls us on the top-level context, which can't be a clone.
2183  * When called from perf_event_exit_task, it's OK because the
2184  * context has been detached from its task.
2185  */
2186 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2187 {
2188         struct perf_event_context *ctx = event->ctx;
2189
2190         lockdep_assert_held(&ctx->mutex);
2191
2192         event_function_call(event, __perf_remove_from_context, (void *)flags);
2193
2194         /*
2195          * The above event_function_call() can NO-OP when it hits
2196          * TASK_TOMBSTONE. In that case we must already have been detached
2197          * from the context (by perf_event_exit_event()) but the grouping
2198          * might still be in-tact.
2199          */
2200         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2201         if ((flags & DETACH_GROUP) &&
2202             (event->attach_state & PERF_ATTACH_GROUP)) {
2203                 /*
2204                  * Since in that case we cannot possibly be scheduled, simply
2205                  * detach now.
2206                  */
2207                 raw_spin_lock_irq(&ctx->lock);
2208                 perf_group_detach(event);
2209                 raw_spin_unlock_irq(&ctx->lock);
2210         }
2211 }
2212
2213 /*
2214  * Cross CPU call to disable a performance event
2215  */
2216 static void __perf_event_disable(struct perf_event *event,
2217                                  struct perf_cpu_context *cpuctx,
2218                                  struct perf_event_context *ctx,
2219                                  void *info)
2220 {
2221         if (event->state < PERF_EVENT_STATE_INACTIVE)
2222                 return;
2223
2224         if (ctx->is_active & EVENT_TIME) {
2225                 update_context_time(ctx);
2226                 update_cgrp_time_from_event(event);
2227         }
2228
2229         if (event == event->group_leader)
2230                 group_sched_out(event, cpuctx, ctx);
2231         else
2232                 event_sched_out(event, cpuctx, ctx);
2233
2234         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2235 }
2236
2237 /*
2238  * Disable an event.
2239  *
2240  * If event->ctx is a cloned context, callers must make sure that
2241  * every task struct that event->ctx->task could possibly point to
2242  * remains valid.  This condition is satisifed when called through
2243  * perf_event_for_each_child or perf_event_for_each because they
2244  * hold the top-level event's child_mutex, so any descendant that
2245  * goes to exit will block in perf_event_exit_event().
2246  *
2247  * When called from perf_pending_event it's OK because event->ctx
2248  * is the current context on this CPU and preemption is disabled,
2249  * hence we can't get into perf_event_task_sched_out for this context.
2250  */
2251 static void _perf_event_disable(struct perf_event *event)
2252 {
2253         struct perf_event_context *ctx = event->ctx;
2254
2255         raw_spin_lock_irq(&ctx->lock);
2256         if (event->state <= PERF_EVENT_STATE_OFF) {
2257                 raw_spin_unlock_irq(&ctx->lock);
2258                 return;
2259         }
2260         raw_spin_unlock_irq(&ctx->lock);
2261
2262         event_function_call(event, __perf_event_disable, NULL);
2263 }
2264
2265 void perf_event_disable_local(struct perf_event *event)
2266 {
2267         event_function_local(event, __perf_event_disable, NULL);
2268 }
2269
2270 /*
2271  * Strictly speaking kernel users cannot create groups and therefore this
2272  * interface does not need the perf_event_ctx_lock() magic.
2273  */
2274 void perf_event_disable(struct perf_event *event)
2275 {
2276         struct perf_event_context *ctx;
2277
2278         ctx = perf_event_ctx_lock(event);
2279         _perf_event_disable(event);
2280         perf_event_ctx_unlock(event, ctx);
2281 }
2282 EXPORT_SYMBOL_GPL(perf_event_disable);
2283
2284 void perf_event_disable_inatomic(struct perf_event *event)
2285 {
2286         WRITE_ONCE(event->pending_disable, smp_processor_id());
2287         /* can fail, see perf_pending_event_disable() */
2288         irq_work_queue(&event->pending);
2289 }
2290
2291 static void perf_set_shadow_time(struct perf_event *event,
2292                                  struct perf_event_context *ctx)
2293 {
2294         /*
2295          * use the correct time source for the time snapshot
2296          *
2297          * We could get by without this by leveraging the
2298          * fact that to get to this function, the caller
2299          * has most likely already called update_context_time()
2300          * and update_cgrp_time_xx() and thus both timestamp
2301          * are identical (or very close). Given that tstamp is,
2302          * already adjusted for cgroup, we could say that:
2303          *    tstamp - ctx->timestamp
2304          * is equivalent to
2305          *    tstamp - cgrp->timestamp.
2306          *
2307          * Then, in perf_output_read(), the calculation would
2308          * work with no changes because:
2309          * - event is guaranteed scheduled in
2310          * - no scheduled out in between
2311          * - thus the timestamp would be the same
2312          *
2313          * But this is a bit hairy.
2314          *
2315          * So instead, we have an explicit cgroup call to remain
2316          * within the time time source all along. We believe it
2317          * is cleaner and simpler to understand.
2318          */
2319         if (is_cgroup_event(event))
2320                 perf_cgroup_set_shadow_time(event, event->tstamp);
2321         else
2322                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2323 }
2324
2325 #define MAX_INTERRUPTS (~0ULL)
2326
2327 static void perf_log_throttle(struct perf_event *event, int enable);
2328 static void perf_log_itrace_start(struct perf_event *event);
2329
2330 static int
2331 event_sched_in(struct perf_event *event,
2332                  struct perf_cpu_context *cpuctx,
2333                  struct perf_event_context *ctx)
2334 {
2335         int ret = 0;
2336
2337         lockdep_assert_held(&ctx->lock);
2338
2339         if (event->state <= PERF_EVENT_STATE_OFF)
2340                 return 0;
2341
2342         WRITE_ONCE(event->oncpu, smp_processor_id());
2343         /*
2344          * Order event::oncpu write to happen before the ACTIVE state is
2345          * visible. This allows perf_event_{stop,read}() to observe the correct
2346          * ->oncpu if it sees ACTIVE.
2347          */
2348         smp_wmb();
2349         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2350
2351         /*
2352          * Unthrottle events, since we scheduled we might have missed several
2353          * ticks already, also for a heavily scheduling task there is little
2354          * guarantee it'll get a tick in a timely manner.
2355          */
2356         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2357                 perf_log_throttle(event, 1);
2358                 event->hw.interrupts = 0;
2359         }
2360
2361         perf_pmu_disable(event->pmu);
2362
2363         perf_set_shadow_time(event, ctx);
2364
2365         perf_log_itrace_start(event);
2366
2367         if (event->pmu->add(event, PERF_EF_START)) {
2368                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2369                 event->oncpu = -1;
2370                 ret = -EAGAIN;
2371                 goto out;
2372         }
2373
2374         if (!is_software_event(event))
2375                 cpuctx->active_oncpu++;
2376         if (!ctx->nr_active++)
2377                 perf_event_ctx_activate(ctx);
2378         if (event->attr.freq && event->attr.sample_freq)
2379                 ctx->nr_freq++;
2380
2381         if (event->attr.exclusive)
2382                 cpuctx->exclusive = 1;
2383
2384 out:
2385         perf_pmu_enable(event->pmu);
2386
2387         return ret;
2388 }
2389
2390 static int
2391 group_sched_in(struct perf_event *group_event,
2392                struct perf_cpu_context *cpuctx,
2393                struct perf_event_context *ctx)
2394 {
2395         struct perf_event *event, *partial_group = NULL;
2396         struct pmu *pmu = ctx->pmu;
2397
2398         if (group_event->state == PERF_EVENT_STATE_OFF)
2399                 return 0;
2400
2401         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2402
2403         if (event_sched_in(group_event, cpuctx, ctx)) {
2404                 pmu->cancel_txn(pmu);
2405                 perf_mux_hrtimer_restart(cpuctx);
2406                 return -EAGAIN;
2407         }
2408
2409         /*
2410          * Schedule in siblings as one group (if any):
2411          */
2412         for_each_sibling_event(event, group_event) {
2413                 if (event_sched_in(event, cpuctx, ctx)) {
2414                         partial_group = event;
2415                         goto group_error;
2416                 }
2417         }
2418
2419         if (!pmu->commit_txn(pmu))
2420                 return 0;
2421
2422 group_error:
2423         /*
2424          * Groups can be scheduled in as one unit only, so undo any
2425          * partial group before returning:
2426          * The events up to the failed event are scheduled out normally.
2427          */
2428         for_each_sibling_event(event, group_event) {
2429                 if (event == partial_group)
2430                         break;
2431
2432                 event_sched_out(event, cpuctx, ctx);
2433         }
2434         event_sched_out(group_event, cpuctx, ctx);
2435
2436         pmu->cancel_txn(pmu);
2437
2438         perf_mux_hrtimer_restart(cpuctx);
2439
2440         return -EAGAIN;
2441 }
2442
2443 /*
2444  * Work out whether we can put this event group on the CPU now.
2445  */
2446 static int group_can_go_on(struct perf_event *event,
2447                            struct perf_cpu_context *cpuctx,
2448                            int can_add_hw)
2449 {
2450         /*
2451          * Groups consisting entirely of software events can always go on.
2452          */
2453         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2454                 return 1;
2455         /*
2456          * If an exclusive group is already on, no other hardware
2457          * events can go on.
2458          */
2459         if (cpuctx->exclusive)
2460                 return 0;
2461         /*
2462          * If this group is exclusive and there are already
2463          * events on the CPU, it can't go on.
2464          */
2465         if (event->attr.exclusive && cpuctx->active_oncpu)
2466                 return 0;
2467         /*
2468          * Otherwise, try to add it if all previous groups were able
2469          * to go on.
2470          */
2471         return can_add_hw;
2472 }
2473
2474 static void add_event_to_ctx(struct perf_event *event,
2475                                struct perf_event_context *ctx)
2476 {
2477         list_add_event(event, ctx);
2478         perf_group_attach(event);
2479 }
2480
2481 static void ctx_sched_out(struct perf_event_context *ctx,
2482                           struct perf_cpu_context *cpuctx,
2483                           enum event_type_t event_type);
2484 static void
2485 ctx_sched_in(struct perf_event_context *ctx,
2486              struct perf_cpu_context *cpuctx,
2487              enum event_type_t event_type,
2488              struct task_struct *task);
2489
2490 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2491                                struct perf_event_context *ctx,
2492                                enum event_type_t event_type)
2493 {
2494         if (!cpuctx->task_ctx)
2495                 return;
2496
2497         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2498                 return;
2499
2500         ctx_sched_out(ctx, cpuctx, event_type);
2501 }
2502
2503 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2504                                 struct perf_event_context *ctx,
2505                                 struct task_struct *task)
2506 {
2507         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2508         if (ctx)
2509                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2510         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2511         if (ctx)
2512                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2513 }
2514
2515 /*
2516  * We want to maintain the following priority of scheduling:
2517  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2518  *  - task pinned (EVENT_PINNED)
2519  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2520  *  - task flexible (EVENT_FLEXIBLE).
2521  *
2522  * In order to avoid unscheduling and scheduling back in everything every
2523  * time an event is added, only do it for the groups of equal priority and
2524  * below.
2525  *
2526  * This can be called after a batch operation on task events, in which case
2527  * event_type is a bit mask of the types of events involved. For CPU events,
2528  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2529  */
2530 static void ctx_resched(struct perf_cpu_context *cpuctx,
2531                         struct perf_event_context *task_ctx,
2532                         enum event_type_t event_type)
2533 {
2534         enum event_type_t ctx_event_type;
2535         bool cpu_event = !!(event_type & EVENT_CPU);
2536
2537         /*
2538          * If pinned groups are involved, flexible groups also need to be
2539          * scheduled out.
2540          */
2541         if (event_type & EVENT_PINNED)
2542                 event_type |= EVENT_FLEXIBLE;
2543
2544         ctx_event_type = event_type & EVENT_ALL;
2545
2546         perf_pmu_disable(cpuctx->ctx.pmu);
2547         if (task_ctx)
2548                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2549
2550         /*
2551          * Decide which cpu ctx groups to schedule out based on the types
2552          * of events that caused rescheduling:
2553          *  - EVENT_CPU: schedule out corresponding groups;
2554          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2555          *  - otherwise, do nothing more.
2556          */
2557         if (cpu_event)
2558                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2559         else if (ctx_event_type & EVENT_PINNED)
2560                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2561
2562         perf_event_sched_in(cpuctx, task_ctx, current);
2563         perf_pmu_enable(cpuctx->ctx.pmu);
2564 }
2565
2566 void perf_pmu_resched(struct pmu *pmu)
2567 {
2568         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2569         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2570
2571         perf_ctx_lock(cpuctx, task_ctx);
2572         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2573         perf_ctx_unlock(cpuctx, task_ctx);
2574 }
2575
2576 /*
2577  * Cross CPU call to install and enable a performance event
2578  *
2579  * Very similar to remote_function() + event_function() but cannot assume that
2580  * things like ctx->is_active and cpuctx->task_ctx are set.
2581  */
2582 static int  __perf_install_in_context(void *info)
2583 {
2584         struct perf_event *event = info;
2585         struct perf_event_context *ctx = event->ctx;
2586         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2587         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2588         bool reprogram = true;
2589         int ret = 0;
2590
2591         raw_spin_lock(&cpuctx->ctx.lock);
2592         if (ctx->task) {
2593                 raw_spin_lock(&ctx->lock);
2594                 task_ctx = ctx;
2595
2596                 reprogram = (ctx->task == current);
2597
2598                 /*
2599                  * If the task is running, it must be running on this CPU,
2600                  * otherwise we cannot reprogram things.
2601                  *
2602                  * If its not running, we don't care, ctx->lock will
2603                  * serialize against it becoming runnable.
2604                  */
2605                 if (task_curr(ctx->task) && !reprogram) {
2606                         ret = -ESRCH;
2607                         goto unlock;
2608                 }
2609
2610                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2611         } else if (task_ctx) {
2612                 raw_spin_lock(&task_ctx->lock);
2613         }
2614
2615 #ifdef CONFIG_CGROUP_PERF
2616         if (is_cgroup_event(event)) {
2617                 /*
2618                  * If the current cgroup doesn't match the event's
2619                  * cgroup, we should not try to schedule it.
2620                  */
2621                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2622                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2623                                         event->cgrp->css.cgroup);
2624         }
2625 #endif
2626
2627         if (reprogram) {
2628                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2629                 add_event_to_ctx(event, ctx);
2630                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2631         } else {
2632                 add_event_to_ctx(event, ctx);
2633         }
2634
2635 unlock:
2636         perf_ctx_unlock(cpuctx, task_ctx);
2637
2638         return ret;
2639 }
2640
2641 static bool exclusive_event_installable(struct perf_event *event,
2642                                         struct perf_event_context *ctx);
2643
2644 /*
2645  * Attach a performance event to a context.
2646  *
2647  * Very similar to event_function_call, see comment there.
2648  */
2649 static void
2650 perf_install_in_context(struct perf_event_context *ctx,
2651                         struct perf_event *event,
2652                         int cpu)
2653 {
2654         struct task_struct *task = READ_ONCE(ctx->task);
2655
2656         lockdep_assert_held(&ctx->mutex);
2657
2658         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2659
2660         if (event->cpu != -1)
2661                 event->cpu = cpu;
2662
2663         /*
2664          * Ensures that if we can observe event->ctx, both the event and ctx
2665          * will be 'complete'. See perf_iterate_sb_cpu().
2666          */
2667         smp_store_release(&event->ctx, ctx);
2668
2669         if (!task) {
2670                 cpu_function_call(cpu, __perf_install_in_context, event);
2671                 return;
2672         }
2673
2674         /*
2675          * Should not happen, we validate the ctx is still alive before calling.
2676          */
2677         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2678                 return;
2679
2680         /*
2681          * Installing events is tricky because we cannot rely on ctx->is_active
2682          * to be set in case this is the nr_events 0 -> 1 transition.
2683          *
2684          * Instead we use task_curr(), which tells us if the task is running.
2685          * However, since we use task_curr() outside of rq::lock, we can race
2686          * against the actual state. This means the result can be wrong.
2687          *
2688          * If we get a false positive, we retry, this is harmless.
2689          *
2690          * If we get a false negative, things are complicated. If we are after
2691          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2692          * value must be correct. If we're before, it doesn't matter since
2693          * perf_event_context_sched_in() will program the counter.
2694          *
2695          * However, this hinges on the remote context switch having observed
2696          * our task->perf_event_ctxp[] store, such that it will in fact take
2697          * ctx::lock in perf_event_context_sched_in().
2698          *
2699          * We do this by task_function_call(), if the IPI fails to hit the task
2700          * we know any future context switch of task must see the
2701          * perf_event_ctpx[] store.
2702          */
2703
2704         /*
2705          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2706          * task_cpu() load, such that if the IPI then does not find the task
2707          * running, a future context switch of that task must observe the
2708          * store.
2709          */
2710         smp_mb();
2711 again:
2712         if (!task_function_call(task, __perf_install_in_context, event))
2713                 return;
2714
2715         raw_spin_lock_irq(&ctx->lock);
2716         task = ctx->task;
2717         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2718                 /*
2719                  * Cannot happen because we already checked above (which also
2720                  * cannot happen), and we hold ctx->mutex, which serializes us
2721                  * against perf_event_exit_task_context().
2722                  */
2723                 raw_spin_unlock_irq(&ctx->lock);
2724                 return;
2725         }
2726         /*
2727          * If the task is not running, ctx->lock will avoid it becoming so,
2728          * thus we can safely install the event.
2729          */
2730         if (task_curr(task)) {
2731                 raw_spin_unlock_irq(&ctx->lock);
2732                 goto again;
2733         }
2734         add_event_to_ctx(event, ctx);
2735         raw_spin_unlock_irq(&ctx->lock);
2736 }
2737
2738 /*
2739  * Cross CPU call to enable a performance event
2740  */
2741 static void __perf_event_enable(struct perf_event *event,
2742                                 struct perf_cpu_context *cpuctx,
2743                                 struct perf_event_context *ctx,
2744                                 void *info)
2745 {
2746         struct perf_event *leader = event->group_leader;
2747         struct perf_event_context *task_ctx;
2748
2749         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2750             event->state <= PERF_EVENT_STATE_ERROR)
2751                 return;
2752
2753         if (ctx->is_active)
2754                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2755
2756         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2757
2758         if (!ctx->is_active)
2759                 return;
2760
2761         if (!event_filter_match(event)) {
2762                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2763                 return;
2764         }
2765
2766         /*
2767          * If the event is in a group and isn't the group leader,
2768          * then don't put it on unless the group is on.
2769          */
2770         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2771                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2772                 return;
2773         }
2774
2775         task_ctx = cpuctx->task_ctx;
2776         if (ctx->task)
2777                 WARN_ON_ONCE(task_ctx != ctx);
2778
2779         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2780 }
2781
2782 /*
2783  * Enable an event.
2784  *
2785  * If event->ctx is a cloned context, callers must make sure that
2786  * every task struct that event->ctx->task could possibly point to
2787  * remains valid.  This condition is satisfied when called through
2788  * perf_event_for_each_child or perf_event_for_each as described
2789  * for perf_event_disable.
2790  */
2791 static void _perf_event_enable(struct perf_event *event)
2792 {
2793         struct perf_event_context *ctx = event->ctx;
2794
2795         raw_spin_lock_irq(&ctx->lock);
2796         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2797             event->state <  PERF_EVENT_STATE_ERROR) {
2798                 raw_spin_unlock_irq(&ctx->lock);
2799                 return;
2800         }
2801
2802         /*
2803          * If the event is in error state, clear that first.
2804          *
2805          * That way, if we see the event in error state below, we know that it
2806          * has gone back into error state, as distinct from the task having
2807          * been scheduled away before the cross-call arrived.
2808          */
2809         if (event->state == PERF_EVENT_STATE_ERROR)
2810                 event->state = PERF_EVENT_STATE_OFF;
2811         raw_spin_unlock_irq(&ctx->lock);
2812
2813         event_function_call(event, __perf_event_enable, NULL);
2814 }
2815
2816 /*
2817  * See perf_event_disable();
2818  */
2819 void perf_event_enable(struct perf_event *event)
2820 {
2821         struct perf_event_context *ctx;
2822
2823         ctx = perf_event_ctx_lock(event);
2824         _perf_event_enable(event);
2825         perf_event_ctx_unlock(event, ctx);
2826 }
2827 EXPORT_SYMBOL_GPL(perf_event_enable);
2828
2829 struct stop_event_data {
2830         struct perf_event       *event;
2831         unsigned int            restart;
2832 };
2833
2834 static int __perf_event_stop(void *info)
2835 {
2836         struct stop_event_data *sd = info;
2837         struct perf_event *event = sd->event;
2838
2839         /* if it's already INACTIVE, do nothing */
2840         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2841                 return 0;
2842
2843         /* matches smp_wmb() in event_sched_in() */
2844         smp_rmb();
2845
2846         /*
2847          * There is a window with interrupts enabled before we get here,
2848          * so we need to check again lest we try to stop another CPU's event.
2849          */
2850         if (READ_ONCE(event->oncpu) != smp_processor_id())
2851                 return -EAGAIN;
2852
2853         event->pmu->stop(event, PERF_EF_UPDATE);
2854
2855         /*
2856          * May race with the actual stop (through perf_pmu_output_stop()),
2857          * but it is only used for events with AUX ring buffer, and such
2858          * events will refuse to restart because of rb::aux_mmap_count==0,
2859          * see comments in perf_aux_output_begin().
2860          *
2861          * Since this is happening on an event-local CPU, no trace is lost
2862          * while restarting.
2863          */
2864         if (sd->restart)
2865                 event->pmu->start(event, 0);
2866
2867         return 0;
2868 }
2869
2870 static int perf_event_stop(struct perf_event *event, int restart)
2871 {
2872         struct stop_event_data sd = {
2873                 .event          = event,
2874                 .restart        = restart,
2875         };
2876         int ret = 0;
2877
2878         do {
2879                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2880                         return 0;
2881
2882                 /* matches smp_wmb() in event_sched_in() */
2883                 smp_rmb();
2884
2885                 /*
2886                  * We only want to restart ACTIVE events, so if the event goes
2887                  * inactive here (event->oncpu==-1), there's nothing more to do;
2888                  * fall through with ret==-ENXIO.
2889                  */
2890                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2891                                         __perf_event_stop, &sd);
2892         } while (ret == -EAGAIN);
2893
2894         return ret;
2895 }
2896
2897 /*
2898  * In order to contain the amount of racy and tricky in the address filter
2899  * configuration management, it is a two part process:
2900  *
2901  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2902  *      we update the addresses of corresponding vmas in
2903  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
2904  * (p2) when an event is scheduled in (pmu::add), it calls
2905  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2906  *      if the generation has changed since the previous call.
2907  *
2908  * If (p1) happens while the event is active, we restart it to force (p2).
2909  *
2910  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2911  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2912  *     ioctl;
2913  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2914  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2915  *     for reading;
2916  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2917  *     of exec.
2918  */
2919 void perf_event_addr_filters_sync(struct perf_event *event)
2920 {
2921         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2922
2923         if (!has_addr_filter(event))
2924                 return;
2925
2926         raw_spin_lock(&ifh->lock);
2927         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2928                 event->pmu->addr_filters_sync(event);
2929                 event->hw.addr_filters_gen = event->addr_filters_gen;
2930         }
2931         raw_spin_unlock(&ifh->lock);
2932 }
2933 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2934
2935 static int _perf_event_refresh(struct perf_event *event, int refresh)
2936 {
2937         /*
2938          * not supported on inherited events
2939          */
2940         if (event->attr.inherit || !is_sampling_event(event))
2941                 return -EINVAL;
2942
2943         atomic_add(refresh, &event->event_limit);
2944         _perf_event_enable(event);
2945
2946         return 0;
2947 }
2948
2949 /*
2950  * See perf_event_disable()
2951  */
2952 int perf_event_refresh(struct perf_event *event, int refresh)
2953 {
2954         struct perf_event_context *ctx;
2955         int ret;
2956
2957         ctx = perf_event_ctx_lock(event);
2958         ret = _perf_event_refresh(event, refresh);
2959         perf_event_ctx_unlock(event, ctx);
2960
2961         return ret;
2962 }
2963 EXPORT_SYMBOL_GPL(perf_event_refresh);
2964
2965 static int perf_event_modify_breakpoint(struct perf_event *bp,
2966                                          struct perf_event_attr *attr)
2967 {
2968         int err;
2969
2970         _perf_event_disable(bp);
2971
2972         err = modify_user_hw_breakpoint_check(bp, attr, true);
2973
2974         if (!bp->attr.disabled)
2975                 _perf_event_enable(bp);
2976
2977         return err;
2978 }
2979
2980 static int perf_event_modify_attr(struct perf_event *event,
2981                                   struct perf_event_attr *attr)
2982 {
2983         if (event->attr.type != attr->type)
2984                 return -EINVAL;
2985
2986         switch (event->attr.type) {
2987         case PERF_TYPE_BREAKPOINT:
2988                 return perf_event_modify_breakpoint(event, attr);
2989         default:
2990                 /* Place holder for future additions. */
2991                 return -EOPNOTSUPP;
2992         }
2993 }
2994
2995 static void ctx_sched_out(struct perf_event_context *ctx,
2996                           struct perf_cpu_context *cpuctx,
2997                           enum event_type_t event_type)
2998 {
2999         struct perf_event *event, *tmp;
3000         int is_active = ctx->is_active;
3001
3002         lockdep_assert_held(&ctx->lock);
3003
3004         if (likely(!ctx->nr_events)) {
3005                 /*
3006                  * See __perf_remove_from_context().
3007                  */
3008                 WARN_ON_ONCE(ctx->is_active);
3009                 if (ctx->task)
3010                         WARN_ON_ONCE(cpuctx->task_ctx);
3011                 return;
3012         }
3013
3014         ctx->is_active &= ~event_type;
3015         if (!(ctx->is_active & EVENT_ALL))
3016                 ctx->is_active = 0;
3017
3018         if (ctx->task) {
3019                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3020                 if (!ctx->is_active)
3021                         cpuctx->task_ctx = NULL;
3022         }
3023
3024         /*
3025          * Always update time if it was set; not only when it changes.
3026          * Otherwise we can 'forget' to update time for any but the last
3027          * context we sched out. For example:
3028          *
3029          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3030          *   ctx_sched_out(.event_type = EVENT_PINNED)
3031          *
3032          * would only update time for the pinned events.
3033          */
3034         if (is_active & EVENT_TIME) {
3035                 /* update (and stop) ctx time */
3036                 update_context_time(ctx);
3037                 update_cgrp_time_from_cpuctx(cpuctx);
3038         }
3039
3040         is_active ^= ctx->is_active; /* changed bits */
3041
3042         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3043                 return;
3044
3045         /*
3046          * If we had been multiplexing, no rotations are necessary, now no events
3047          * are active.
3048          */
3049         ctx->rotate_necessary = 0;
3050
3051         perf_pmu_disable(ctx->pmu);
3052         if (is_active & EVENT_PINNED) {
3053                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3054                         group_sched_out(event, cpuctx, ctx);
3055         }
3056
3057         if (is_active & EVENT_FLEXIBLE) {
3058                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3059                         group_sched_out(event, cpuctx, ctx);
3060         }
3061         perf_pmu_enable(ctx->pmu);
3062 }
3063
3064 /*
3065  * Test whether two contexts are equivalent, i.e. whether they have both been
3066  * cloned from the same version of the same context.
3067  *
3068  * Equivalence is measured using a generation number in the context that is
3069  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3070  * and list_del_event().
3071  */
3072 static int context_equiv(struct perf_event_context *ctx1,
3073                          struct perf_event_context *ctx2)
3074 {
3075         lockdep_assert_held(&ctx1->lock);
3076         lockdep_assert_held(&ctx2->lock);
3077
3078         /* Pinning disables the swap optimization */
3079         if (ctx1->pin_count || ctx2->pin_count)
3080                 return 0;
3081
3082         /* If ctx1 is the parent of ctx2 */
3083         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3084                 return 1;
3085
3086         /* If ctx2 is the parent of ctx1 */
3087         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3088                 return 1;
3089
3090         /*
3091          * If ctx1 and ctx2 have the same parent; we flatten the parent
3092          * hierarchy, see perf_event_init_context().
3093          */
3094         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3095                         ctx1->parent_gen == ctx2->parent_gen)
3096                 return 1;
3097
3098         /* Unmatched */
3099         return 0;
3100 }
3101
3102 static void __perf_event_sync_stat(struct perf_event *event,
3103                                      struct perf_event *next_event)
3104 {
3105         u64 value;
3106
3107         if (!event->attr.inherit_stat)
3108                 return;
3109
3110         /*
3111          * Update the event value, we cannot use perf_event_read()
3112          * because we're in the middle of a context switch and have IRQs
3113          * disabled, which upsets smp_call_function_single(), however
3114          * we know the event must be on the current CPU, therefore we
3115          * don't need to use it.
3116          */
3117         if (event->state == PERF_EVENT_STATE_ACTIVE)
3118                 event->pmu->read(event);
3119
3120         perf_event_update_time(event);
3121
3122         /*
3123          * In order to keep per-task stats reliable we need to flip the event
3124          * values when we flip the contexts.
3125          */
3126         value = local64_read(&next_event->count);
3127         value = local64_xchg(&event->count, value);
3128         local64_set(&next_event->count, value);
3129
3130         swap(event->total_time_enabled, next_event->total_time_enabled);
3131         swap(event->total_time_running, next_event->total_time_running);
3132
3133         /*
3134          * Since we swizzled the values, update the user visible data too.
3135          */
3136         perf_event_update_userpage(event);
3137         perf_event_update_userpage(next_event);
3138 }
3139
3140 static void perf_event_sync_stat(struct perf_event_context *ctx,
3141                                    struct perf_event_context *next_ctx)
3142 {
3143         struct perf_event *event, *next_event;
3144
3145         if (!ctx->nr_stat)
3146                 return;
3147
3148         update_context_time(ctx);
3149
3150         event = list_first_entry(&ctx->event_list,
3151                                    struct perf_event, event_entry);
3152
3153         next_event = list_first_entry(&next_ctx->event_list,
3154                                         struct perf_event, event_entry);
3155
3156         while (&event->event_entry != &ctx->event_list &&
3157                &next_event->event_entry != &next_ctx->event_list) {
3158
3159                 __perf_event_sync_stat(event, next_event);
3160
3161                 event = list_next_entry(event, event_entry);
3162                 next_event = list_next_entry(next_event, event_entry);
3163         }
3164 }
3165
3166 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3167                                          struct task_struct *next)
3168 {
3169         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3170         struct perf_event_context *next_ctx;
3171         struct perf_event_context *parent, *next_parent;
3172         struct perf_cpu_context *cpuctx;
3173         int do_switch = 1;
3174
3175         if (likely(!ctx))
3176                 return;
3177
3178         cpuctx = __get_cpu_context(ctx);
3179         if (!cpuctx->task_ctx)
3180                 return;
3181
3182         rcu_read_lock();
3183         next_ctx = next->perf_event_ctxp[ctxn];
3184         if (!next_ctx)
3185                 goto unlock;
3186
3187         parent = rcu_dereference(ctx->parent_ctx);
3188         next_parent = rcu_dereference(next_ctx->parent_ctx);
3189
3190         /* If neither context have a parent context; they cannot be clones. */
3191         if (!parent && !next_parent)
3192                 goto unlock;
3193
3194         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3195                 /*
3196                  * Looks like the two contexts are clones, so we might be
3197                  * able to optimize the context switch.  We lock both
3198                  * contexts and check that they are clones under the
3199                  * lock (including re-checking that neither has been
3200                  * uncloned in the meantime).  It doesn't matter which
3201                  * order we take the locks because no other cpu could
3202                  * be trying to lock both of these tasks.
3203                  */
3204                 raw_spin_lock(&ctx->lock);
3205                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3206                 if (context_equiv(ctx, next_ctx)) {
3207                         WRITE_ONCE(ctx->task, next);
3208                         WRITE_ONCE(next_ctx->task, task);
3209
3210                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3211
3212                         /*
3213                          * RCU_INIT_POINTER here is safe because we've not
3214                          * modified the ctx and the above modification of
3215                          * ctx->task and ctx->task_ctx_data are immaterial
3216                          * since those values are always verified under
3217                          * ctx->lock which we're now holding.
3218                          */
3219                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3220                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3221
3222                         do_switch = 0;
3223
3224                         perf_event_sync_stat(ctx, next_ctx);
3225                 }
3226                 raw_spin_unlock(&next_ctx->lock);
3227                 raw_spin_unlock(&ctx->lock);
3228         }
3229 unlock:
3230         rcu_read_unlock();
3231
3232         if (do_switch) {
3233                 raw_spin_lock(&ctx->lock);
3234                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3235                 raw_spin_unlock(&ctx->lock);
3236         }
3237 }
3238
3239 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3240
3241 void perf_sched_cb_dec(struct pmu *pmu)
3242 {
3243         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3244
3245         this_cpu_dec(perf_sched_cb_usages);
3246
3247         if (!--cpuctx->sched_cb_usage)
3248                 list_del(&cpuctx->sched_cb_entry);
3249 }
3250
3251
3252 void perf_sched_cb_inc(struct pmu *pmu)
3253 {
3254         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3255
3256         if (!cpuctx->sched_cb_usage++)
3257                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3258
3259         this_cpu_inc(perf_sched_cb_usages);
3260 }
3261
3262 /*
3263  * This function provides the context switch callback to the lower code
3264  * layer. It is invoked ONLY when the context switch callback is enabled.
3265  *
3266  * This callback is relevant even to per-cpu events; for example multi event
3267  * PEBS requires this to provide PID/TID information. This requires we flush
3268  * all queued PEBS records before we context switch to a new task.
3269  */
3270 static void perf_pmu_sched_task(struct task_struct *prev,
3271                                 struct task_struct *next,
3272                                 bool sched_in)
3273 {
3274         struct perf_cpu_context *cpuctx;
3275         struct pmu *pmu;
3276
3277         if (prev == next)
3278                 return;
3279
3280         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3281                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3282
3283                 if (WARN_ON_ONCE(!pmu->sched_task))
3284                         continue;
3285
3286                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3287                 perf_pmu_disable(pmu);
3288
3289                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3290
3291                 perf_pmu_enable(pmu);
3292                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3293         }
3294 }
3295
3296 static void perf_event_switch(struct task_struct *task,
3297                               struct task_struct *next_prev, bool sched_in);
3298
3299 #define for_each_task_context_nr(ctxn)                                  \
3300         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3301
3302 /*
3303  * Called from scheduler to remove the events of the current task,
3304  * with interrupts disabled.
3305  *
3306  * We stop each event and update the event value in event->count.
3307  *
3308  * This does not protect us against NMI, but disable()
3309  * sets the disabled bit in the control field of event _before_
3310  * accessing the event control register. If a NMI hits, then it will
3311  * not restart the event.
3312  */
3313 void __perf_event_task_sched_out(struct task_struct *task,
3314                                  struct task_struct *next)
3315 {
3316         int ctxn;
3317
3318         if (__this_cpu_read(perf_sched_cb_usages))
3319                 perf_pmu_sched_task(task, next, false);
3320
3321         if (atomic_read(&nr_switch_events))
3322                 perf_event_switch(task, next, false);
3323
3324         for_each_task_context_nr(ctxn)
3325                 perf_event_context_sched_out(task, ctxn, next);
3326
3327         /*
3328          * if cgroup events exist on this CPU, then we need
3329          * to check if we have to switch out PMU state.
3330          * cgroup event are system-wide mode only
3331          */
3332         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3333                 perf_cgroup_sched_out(task, next);
3334 }
3335
3336 /*
3337  * Called with IRQs disabled
3338  */
3339 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3340                               enum event_type_t event_type)
3341 {
3342         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3343 }
3344
3345 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3346                               int (*func)(struct perf_event *, void *), void *data)
3347 {
3348         struct perf_event **evt, *evt1, *evt2;
3349         int ret;
3350
3351         evt1 = perf_event_groups_first(groups, -1);
3352         evt2 = perf_event_groups_first(groups, cpu);
3353
3354         while (evt1 || evt2) {
3355                 if (evt1 && evt2) {
3356                         if (evt1->group_index < evt2->group_index)
3357                                 evt = &evt1;
3358                         else
3359                                 evt = &evt2;
3360                 } else if (evt1) {
3361                         evt = &evt1;
3362                 } else {
3363                         evt = &evt2;
3364                 }
3365
3366                 ret = func(*evt, data);
3367                 if (ret)
3368                         return ret;
3369
3370                 *evt = perf_event_groups_next(*evt);
3371         }
3372
3373         return 0;
3374 }
3375
3376 struct sched_in_data {
3377         struct perf_event_context *ctx;
3378         struct perf_cpu_context *cpuctx;
3379         int can_add_hw;
3380 };
3381
3382 static int pinned_sched_in(struct perf_event *event, void *data)
3383 {
3384         struct sched_in_data *sid = data;
3385
3386         if (event->state <= PERF_EVENT_STATE_OFF)
3387                 return 0;
3388
3389         if (!event_filter_match(event))
3390                 return 0;
3391
3392         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3393                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3394                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3395         }
3396
3397         /*
3398          * If this pinned group hasn't been scheduled,
3399          * put it in error state.
3400          */
3401         if (event->state == PERF_EVENT_STATE_INACTIVE)
3402                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3403
3404         return 0;
3405 }
3406
3407 static int flexible_sched_in(struct perf_event *event, void *data)
3408 {
3409         struct sched_in_data *sid = data;
3410
3411         if (event->state <= PERF_EVENT_STATE_OFF)
3412                 return 0;
3413
3414         if (!event_filter_match(event))
3415                 return 0;
3416
3417         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3418                 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3419                 if (ret) {
3420                         sid->can_add_hw = 0;
3421                         sid->ctx->rotate_necessary = 1;
3422                         return 0;
3423                 }
3424                 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3425         }
3426
3427         return 0;
3428 }
3429
3430 static void
3431 ctx_pinned_sched_in(struct perf_event_context *ctx,
3432                     struct perf_cpu_context *cpuctx)
3433 {
3434         struct sched_in_data sid = {
3435                 .ctx = ctx,
3436                 .cpuctx = cpuctx,
3437                 .can_add_hw = 1,
3438         };
3439
3440         visit_groups_merge(&ctx->pinned_groups,
3441                            smp_processor_id(),
3442                            pinned_sched_in, &sid);
3443 }
3444
3445 static void
3446 ctx_flexible_sched_in(struct perf_event_context *ctx,
3447                       struct perf_cpu_context *cpuctx)
3448 {
3449         struct sched_in_data sid = {
3450                 .ctx = ctx,
3451                 .cpuctx = cpuctx,
3452                 .can_add_hw = 1,
3453         };
3454
3455         visit_groups_merge(&ctx->flexible_groups,
3456                            smp_processor_id(),
3457                            flexible_sched_in, &sid);
3458 }
3459
3460 static void
3461 ctx_sched_in(struct perf_event_context *ctx,
3462              struct perf_cpu_context *cpuctx,
3463              enum event_type_t event_type,
3464              struct task_struct *task)
3465 {
3466         int is_active = ctx->is_active;
3467         u64 now;
3468
3469         lockdep_assert_held(&ctx->lock);
3470
3471         if (likely(!ctx->nr_events))
3472                 return;
3473
3474         ctx->is_active |= (event_type | EVENT_TIME);
3475         if (ctx->task) {
3476                 if (!is_active)
3477                         cpuctx->task_ctx = ctx;
3478                 else
3479                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3480         }
3481
3482         is_active ^= ctx->is_active; /* changed bits */
3483
3484         if (is_active & EVENT_TIME) {
3485                 /* start ctx time */
3486                 now = perf_clock();
3487                 ctx->timestamp = now;
3488                 perf_cgroup_set_timestamp(task, ctx);
3489         }
3490
3491         /*
3492          * First go through the list and put on any pinned groups
3493          * in order to give them the best chance of going on.
3494          */
3495         if (is_active & EVENT_PINNED)
3496                 ctx_pinned_sched_in(ctx, cpuctx);
3497
3498         /* Then walk through the lower prio flexible groups */
3499         if (is_active & EVENT_FLEXIBLE)
3500                 ctx_flexible_sched_in(ctx, cpuctx);
3501 }
3502
3503 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3504                              enum event_type_t event_type,
3505                              struct task_struct *task)
3506 {
3507         struct perf_event_context *ctx = &cpuctx->ctx;
3508
3509         ctx_sched_in(ctx, cpuctx, event_type, task);
3510 }
3511
3512 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3513                                         struct task_struct *task)
3514 {
3515         struct perf_cpu_context *cpuctx;
3516
3517         cpuctx = __get_cpu_context(ctx);
3518         if (cpuctx->task_ctx == ctx)
3519                 return;
3520
3521         perf_ctx_lock(cpuctx, ctx);
3522         /*
3523          * We must check ctx->nr_events while holding ctx->lock, such
3524          * that we serialize against perf_install_in_context().
3525          */
3526         if (!ctx->nr_events)
3527                 goto unlock;
3528
3529         perf_pmu_disable(ctx->pmu);
3530         /*
3531          * We want to keep the following priority order:
3532          * cpu pinned (that don't need to move), task pinned,
3533          * cpu flexible, task flexible.
3534          *
3535          * However, if task's ctx is not carrying any pinned
3536          * events, no need to flip the cpuctx's events around.
3537          */
3538         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3539                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3540         perf_event_sched_in(cpuctx, ctx, task);
3541         perf_pmu_enable(ctx->pmu);
3542
3543 unlock:
3544         perf_ctx_unlock(cpuctx, ctx);
3545 }
3546
3547 /*
3548  * Called from scheduler to add the events of the current task
3549  * with interrupts disabled.
3550  *
3551  * We restore the event value and then enable it.
3552  *
3553  * This does not protect us against NMI, but enable()
3554  * sets the enabled bit in the control field of event _before_
3555  * accessing the event control register. If a NMI hits, then it will
3556  * keep the event running.
3557  */
3558 void __perf_event_task_sched_in(struct task_struct *prev,
3559                                 struct task_struct *task)
3560 {
3561         struct perf_event_context *ctx;
3562         int ctxn;
3563
3564         /*
3565          * If cgroup events exist on this CPU, then we need to check if we have
3566          * to switch in PMU state; cgroup event are system-wide mode only.
3567          *
3568          * Since cgroup events are CPU events, we must schedule these in before
3569          * we schedule in the task events.
3570          */
3571         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3572                 perf_cgroup_sched_in(prev, task);
3573
3574         for_each_task_context_nr(ctxn) {
3575                 ctx = task->perf_event_ctxp[ctxn];
3576                 if (likely(!ctx))
3577                         continue;
3578
3579                 perf_event_context_sched_in(ctx, task);
3580         }
3581
3582         if (atomic_read(&nr_switch_events))
3583                 perf_event_switch(task, prev, true);
3584
3585         if (__this_cpu_read(perf_sched_cb_usages))
3586                 perf_pmu_sched_task(prev, task, true);
3587 }
3588
3589 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3590 {
3591         u64 frequency = event->attr.sample_freq;
3592         u64 sec = NSEC_PER_SEC;
3593         u64 divisor, dividend;
3594
3595         int count_fls, nsec_fls, frequency_fls, sec_fls;
3596
3597         count_fls = fls64(count);
3598         nsec_fls = fls64(nsec);
3599         frequency_fls = fls64(frequency);
3600         sec_fls = 30;
3601
3602         /*
3603          * We got @count in @nsec, with a target of sample_freq HZ
3604          * the target period becomes:
3605          *
3606          *             @count * 10^9
3607          * period = -------------------
3608          *          @nsec * sample_freq
3609          *
3610          */
3611
3612         /*
3613          * Reduce accuracy by one bit such that @a and @b converge
3614          * to a similar magnitude.
3615          */
3616 #define REDUCE_FLS(a, b)                \
3617 do {                                    \
3618         if (a##_fls > b##_fls) {        \
3619                 a >>= 1;                \
3620                 a##_fls--;              \
3621         } else {                        \
3622                 b >>= 1;                \
3623                 b##_fls--;              \
3624         }                               \
3625 } while (0)
3626
3627         /*
3628          * Reduce accuracy until either term fits in a u64, then proceed with
3629          * the other, so that finally we can do a u64/u64 division.
3630          */
3631         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3632                 REDUCE_FLS(nsec, frequency);
3633                 REDUCE_FLS(sec, count);
3634         }
3635
3636         if (count_fls + sec_fls > 64) {
3637                 divisor = nsec * frequency;
3638
3639                 while (count_fls + sec_fls > 64) {
3640                         REDUCE_FLS(count, sec);
3641                         divisor >>= 1;
3642                 }
3643
3644                 dividend = count * sec;
3645         } else {
3646                 dividend = count * sec;
3647
3648                 while (nsec_fls + frequency_fls > 64) {
3649                         REDUCE_FLS(nsec, frequency);
3650                         dividend >>= 1;
3651                 }
3652
3653                 divisor = nsec * frequency;
3654         }
3655
3656         if (!divisor)
3657                 return dividend;
3658
3659         return div64_u64(dividend, divisor);
3660 }
3661
3662 static DEFINE_PER_CPU(int, perf_throttled_count);
3663 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3664
3665 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3666 {
3667         struct hw_perf_event *hwc = &event->hw;
3668         s64 period, sample_period;
3669         s64 delta;
3670
3671         period = perf_calculate_period(event, nsec, count);
3672
3673         delta = (s64)(period - hwc->sample_period);
3674         delta = (delta + 7) / 8; /* low pass filter */
3675
3676         sample_period = hwc->sample_period + delta;
3677
3678         if (!sample_period)
3679                 sample_period = 1;
3680
3681         hwc->sample_period = sample_period;
3682
3683         if (local64_read(&hwc->period_left) > 8*sample_period) {
3684                 if (disable)
3685                         event->pmu->stop(event, PERF_EF_UPDATE);
3686
3687                 local64_set(&hwc->period_left, 0);
3688
3689                 if (disable)
3690                         event->pmu->start(event, PERF_EF_RELOAD);
3691         }
3692 }
3693
3694 /*
3695  * combine freq adjustment with unthrottling to avoid two passes over the
3696  * events. At the same time, make sure, having freq events does not change
3697  * the rate of unthrottling as that would introduce bias.
3698  */
3699 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3700                                            int needs_unthr)
3701 {
3702         struct perf_event *event;
3703         struct hw_perf_event *hwc;
3704         u64 now, period = TICK_NSEC;
3705         s64 delta;
3706
3707         /*
3708          * only need to iterate over all events iff:
3709          * - context have events in frequency mode (needs freq adjust)
3710          * - there are events to unthrottle on this cpu
3711          */
3712         if (!(ctx->nr_freq || needs_unthr))
3713                 return;
3714
3715         raw_spin_lock(&ctx->lock);
3716         perf_pmu_disable(ctx->pmu);
3717
3718         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3719                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3720                         continue;
3721
3722                 if (!event_filter_match(event))
3723                         continue;
3724
3725                 perf_pmu_disable(event->pmu);
3726
3727                 hwc = &event->hw;
3728
3729                 if (hwc->interrupts == MAX_INTERRUPTS) {
3730                         hwc->interrupts = 0;
3731                         perf_log_throttle(event, 1);
3732                         event->pmu->start(event, 0);
3733                 }
3734
3735                 if (!event->attr.freq || !event->attr.sample_freq)
3736                         goto next;
3737
3738                 /*
3739                  * stop the event and update event->count
3740                  */
3741                 event->pmu->stop(event, PERF_EF_UPDATE);
3742
3743                 now = local64_read(&event->count);
3744                 delta = now - hwc->freq_count_stamp;
3745                 hwc->freq_count_stamp = now;
3746
3747                 /*
3748                  * restart the event
3749                  * reload only if value has changed
3750                  * we have stopped the event so tell that
3751                  * to perf_adjust_period() to avoid stopping it
3752                  * twice.
3753                  */
3754                 if (delta > 0)
3755                         perf_adjust_period(event, period, delta, false);
3756
3757                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3758         next:
3759                 perf_pmu_enable(event->pmu);
3760         }
3761
3762         perf_pmu_enable(ctx->pmu);
3763         raw_spin_unlock(&ctx->lock);
3764 }
3765
3766 /*
3767  * Move @event to the tail of the @ctx's elegible events.
3768  */
3769 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3770 {
3771         /*
3772          * Rotate the first entry last of non-pinned groups. Rotation might be
3773          * disabled by the inheritance code.
3774          */
3775         if (ctx->rotate_disable)
3776                 return;
3777
3778         perf_event_groups_delete(&ctx->flexible_groups, event);
3779         perf_event_groups_insert(&ctx->flexible_groups, event);
3780 }
3781
3782 static inline struct perf_event *
3783 ctx_first_active(struct perf_event_context *ctx)
3784 {
3785         return list_first_entry_or_null(&ctx->flexible_active,
3786                                         struct perf_event, active_list);
3787 }
3788
3789 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3790 {
3791         struct perf_event *cpu_event = NULL, *task_event = NULL;
3792         struct perf_event_context *task_ctx = NULL;
3793         int cpu_rotate, task_rotate;
3794
3795         /*
3796          * Since we run this from IRQ context, nobody can install new
3797          * events, thus the event count values are stable.
3798          */
3799
3800         cpu_rotate = cpuctx->ctx.rotate_necessary;
3801         task_ctx = cpuctx->task_ctx;
3802         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3803
3804         if (!(cpu_rotate || task_rotate))
3805                 return false;
3806
3807         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3808         perf_pmu_disable(cpuctx->ctx.pmu);
3809
3810         if (task_rotate)
3811                 task_event = ctx_first_active(task_ctx);
3812         if (cpu_rotate)
3813                 cpu_event = ctx_first_active(&cpuctx->ctx);
3814
3815         /*
3816          * As per the order given at ctx_resched() first 'pop' task flexible
3817          * and then, if needed CPU flexible.
3818          */
3819         if (task_event || (task_ctx && cpu_event))
3820                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3821         if (cpu_event)
3822                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3823
3824         if (task_event)
3825                 rotate_ctx(task_ctx, task_event);
3826         if (cpu_event)
3827                 rotate_ctx(&cpuctx->ctx, cpu_event);
3828
3829         perf_event_sched_in(cpuctx, task_ctx, current);
3830
3831         perf_pmu_enable(cpuctx->ctx.pmu);
3832         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3833
3834         return true;
3835 }
3836
3837 void perf_event_task_tick(void)
3838 {
3839         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3840         struct perf_event_context *ctx, *tmp;
3841         int throttled;
3842
3843         lockdep_assert_irqs_disabled();
3844
3845         __this_cpu_inc(perf_throttled_seq);
3846         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3847         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3848
3849         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3850                 perf_adjust_freq_unthr_context(ctx, throttled);
3851 }
3852
3853 static int event_enable_on_exec(struct perf_event *event,
3854                                 struct perf_event_context *ctx)
3855 {
3856         if (!event->attr.enable_on_exec)
3857                 return 0;
3858
3859         event->attr.enable_on_exec = 0;
3860         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3861                 return 0;
3862
3863         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3864
3865         return 1;
3866 }
3867
3868 /*
3869  * Enable all of a task's events that have been marked enable-on-exec.
3870  * This expects task == current.
3871  */
3872 static void perf_event_enable_on_exec(int ctxn)
3873 {
3874         struct perf_event_context *ctx, *clone_ctx = NULL;
3875         enum event_type_t event_type = 0;
3876         struct perf_cpu_context *cpuctx;
3877         struct perf_event *event;
3878         unsigned long flags;
3879         int enabled = 0;
3880
3881         local_irq_save(flags);
3882         ctx = current->perf_event_ctxp[ctxn];
3883         if (!ctx || !ctx->nr_events)
3884                 goto out;
3885
3886         cpuctx = __get_cpu_context(ctx);
3887         perf_ctx_lock(cpuctx, ctx);
3888         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3889         list_for_each_entry(event, &ctx->event_list, event_entry) {
3890                 enabled |= event_enable_on_exec(event, ctx);
3891                 event_type |= get_event_type(event);
3892         }
3893
3894         /*
3895          * Unclone and reschedule this context if we enabled any event.
3896          */
3897         if (enabled) {
3898                 clone_ctx = unclone_ctx(ctx);
3899                 ctx_resched(cpuctx, ctx, event_type);
3900         } else {
3901                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3902         }
3903         perf_ctx_unlock(cpuctx, ctx);
3904
3905 out:
3906         local_irq_restore(flags);
3907
3908         if (clone_ctx)
3909                 put_ctx(clone_ctx);
3910 }
3911
3912 struct perf_read_data {
3913         struct perf_event *event;
3914         bool group;
3915         int ret;
3916 };
3917
3918 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3919 {
3920         u16 local_pkg, event_pkg;
3921
3922         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3923                 int local_cpu = smp_processor_id();
3924
3925                 event_pkg = topology_physical_package_id(event_cpu);
3926                 local_pkg = topology_physical_package_id(local_cpu);
3927
3928                 if (event_pkg == local_pkg)
3929                         return local_cpu;
3930         }
3931
3932         return event_cpu;
3933 }
3934
3935 /*
3936  * Cross CPU call to read the hardware event
3937  */
3938 static void __perf_event_read(void *info)
3939 {
3940         struct perf_read_data *data = info;
3941         struct perf_event *sub, *event = data->event;
3942         struct perf_event_context *ctx = event->ctx;
3943         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3944         struct pmu *pmu = event->pmu;
3945
3946         /*
3947          * If this is a task context, we need to check whether it is
3948          * the current task context of this cpu.  If not it has been
3949          * scheduled out before the smp call arrived.  In that case
3950          * event->count would have been updated to a recent sample
3951          * when the event was scheduled out.
3952          */
3953         if (ctx->task && cpuctx->task_ctx != ctx)
3954                 return;
3955
3956         raw_spin_lock(&ctx->lock);
3957         if (ctx->is_active & EVENT_TIME) {
3958                 update_context_time(ctx);
3959                 update_cgrp_time_from_event(event);
3960         }
3961
3962         perf_event_update_time(event);
3963         if (data->group)
3964                 perf_event_update_sibling_time(event);
3965
3966         if (event->state != PERF_EVENT_STATE_ACTIVE)
3967                 goto unlock;
3968
3969         if (!data->group) {
3970                 pmu->read(event);
3971                 data->ret = 0;
3972                 goto unlock;
3973         }
3974
3975         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3976
3977         pmu->read(event);
3978
3979         for_each_sibling_event(sub, event) {
3980                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3981                         /*
3982                          * Use sibling's PMU rather than @event's since
3983                          * sibling could be on different (eg: software) PMU.
3984                          */
3985                         sub->pmu->read(sub);
3986                 }
3987         }
3988
3989         data->ret = pmu->commit_txn(pmu);
3990
3991 unlock:
3992         raw_spin_unlock(&ctx->lock);
3993 }
3994
3995 static inline u64 perf_event_count(struct perf_event *event)
3996 {
3997         return local64_read(&event->count) + atomic64_read(&event->child_count);
3998 }
3999
4000 /*
4001  * NMI-safe method to read a local event, that is an event that
4002  * is:
4003  *   - either for the current task, or for this CPU
4004  *   - does not have inherit set, for inherited task events
4005  *     will not be local and we cannot read them atomically
4006  *   - must not have a pmu::count method
4007  */
4008 int perf_event_read_local(struct perf_event *event, u64 *value,
4009                           u64 *enabled, u64 *running)
4010 {
4011         unsigned long flags;
4012         int ret = 0;
4013
4014         /*
4015          * Disabling interrupts avoids all counter scheduling (context
4016          * switches, timer based rotation and IPIs).
4017          */
4018         local_irq_save(flags);
4019
4020         /*
4021          * It must not be an event with inherit set, we cannot read
4022          * all child counters from atomic context.
4023          */
4024         if (event->attr.inherit) {
4025                 ret = -EOPNOTSUPP;
4026                 goto out;
4027         }
4028
4029         /* If this is a per-task event, it must be for current */
4030         if ((event->attach_state & PERF_ATTACH_TASK) &&
4031             event->hw.target != current) {
4032                 ret = -EINVAL;
4033                 goto out;
4034         }
4035
4036         /* If this is a per-CPU event, it must be for this CPU */
4037         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4038             event->cpu != smp_processor_id()) {
4039                 ret = -EINVAL;
4040                 goto out;
4041         }
4042
4043         /* If this is a pinned event it must be running on this CPU */
4044         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4045                 ret = -EBUSY;
4046                 goto out;
4047         }
4048
4049         /*
4050          * If the event is currently on this CPU, its either a per-task event,
4051          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4052          * oncpu == -1).
4053          */
4054         if (event->oncpu == smp_processor_id())
4055                 event->pmu->read(event);
4056
4057         *value = local64_read(&event->count);
4058         if (enabled || running) {
4059                 u64 now = event->shadow_ctx_time + perf_clock();
4060                 u64 __enabled, __running;
4061
4062                 __perf_update_times(event, now, &__enabled, &__running);
4063                 if (enabled)
4064                         *enabled = __enabled;
4065                 if (running)
4066                         *running = __running;
4067         }
4068 out:
4069         local_irq_restore(flags);
4070
4071         return ret;
4072 }
4073
4074 static int perf_event_read(struct perf_event *event, bool group)
4075 {
4076         enum perf_event_state state = READ_ONCE(event->state);
4077         int event_cpu, ret = 0;
4078
4079         /*
4080          * If event is enabled and currently active on a CPU, update the
4081          * value in the event structure:
4082          */
4083 again:
4084         if (state == PERF_EVENT_STATE_ACTIVE) {
4085                 struct perf_read_data data;
4086
4087                 /*
4088                  * Orders the ->state and ->oncpu loads such that if we see
4089                  * ACTIVE we must also see the right ->oncpu.
4090                  *
4091                  * Matches the smp_wmb() from event_sched_in().
4092                  */
4093                 smp_rmb();
4094
4095                 event_cpu = READ_ONCE(event->oncpu);
4096                 if ((unsigned)event_cpu >= nr_cpu_ids)
4097                         return 0;
4098
4099                 data = (struct perf_read_data){
4100                         .event = event,
4101                         .group = group,
4102                         .ret = 0,
4103                 };
4104
4105                 preempt_disable();
4106                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4107
4108                 /*
4109                  * Purposely ignore the smp_call_function_single() return
4110                  * value.
4111                  *
4112                  * If event_cpu isn't a valid CPU it means the event got
4113                  * scheduled out and that will have updated the event count.
4114                  *
4115                  * Therefore, either way, we'll have an up-to-date event count
4116                  * after this.
4117                  */
4118                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4119                 preempt_enable();
4120                 ret = data.ret;
4121
4122         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4123                 struct perf_event_context *ctx = event->ctx;
4124                 unsigned long flags;
4125
4126                 raw_spin_lock_irqsave(&ctx->lock, flags);
4127                 state = event->state;
4128                 if (state != PERF_EVENT_STATE_INACTIVE) {
4129                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4130                         goto again;
4131                 }
4132
4133                 /*
4134                  * May read while context is not active (e.g., thread is
4135                  * blocked), in that case we cannot update context time
4136                  */
4137                 if (ctx->is_active & EVENT_TIME) {
4138                         update_context_time(ctx);
4139                         update_cgrp_time_from_event(event);
4140                 }
4141
4142                 perf_event_update_time(event);
4143                 if (group)
4144                         perf_event_update_sibling_time(event);
4145                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4146         }
4147
4148         return ret;
4149 }
4150
4151 /*
4152  * Initialize the perf_event context in a task_struct:
4153  */
4154 static void __perf_event_init_context(struct perf_event_context *ctx)
4155 {
4156         raw_spin_lock_init(&ctx->lock);
4157         mutex_init(&ctx->mutex);
4158         INIT_LIST_HEAD(&ctx->active_ctx_list);
4159         perf_event_groups_init(&ctx->pinned_groups);
4160         perf_event_groups_init(&ctx->flexible_groups);
4161         INIT_LIST_HEAD(&ctx->event_list);
4162         INIT_LIST_HEAD(&ctx->pinned_active);
4163         INIT_LIST_HEAD(&ctx->flexible_active);
4164         refcount_set(&ctx->refcount, 1);
4165 }
4166
4167 static struct perf_event_context *
4168 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4169 {
4170         struct perf_event_context *ctx;
4171
4172         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4173         if (!ctx)
4174                 return NULL;
4175
4176         __perf_event_init_context(ctx);
4177         if (task)
4178                 ctx->task = get_task_struct(task);
4179         ctx->pmu = pmu;
4180
4181         return ctx;
4182 }
4183
4184 static struct task_struct *
4185 find_lively_task_by_vpid(pid_t vpid)
4186 {
4187         struct task_struct *task;
4188
4189         rcu_read_lock();
4190         if (!vpid)
4191                 task = current;
4192         else
4193                 task = find_task_by_vpid(vpid);
4194         if (task)
4195                 get_task_struct(task);
4196         rcu_read_unlock();
4197
4198         if (!task)
4199                 return ERR_PTR(-ESRCH);
4200
4201         return task;
4202 }
4203
4204 /*
4205  * Returns a matching context with refcount and pincount.
4206  */
4207 static struct perf_event_context *
4208 find_get_context(struct pmu *pmu, struct task_struct *task,
4209                 struct perf_event *event)
4210 {
4211         struct perf_event_context *ctx, *clone_ctx = NULL;
4212         struct perf_cpu_context *cpuctx;
4213         void *task_ctx_data = NULL;
4214         unsigned long flags;
4215         int ctxn, err;
4216         int cpu = event->cpu;
4217
4218         if (!task) {
4219                 /* Must be root to operate on a CPU event: */
4220                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4221                         return ERR_PTR(-EACCES);
4222
4223                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4224                 ctx = &cpuctx->ctx;
4225                 get_ctx(ctx);
4226                 ++ctx->pin_count;
4227
4228                 return ctx;
4229         }
4230
4231         err = -EINVAL;
4232         ctxn = pmu->task_ctx_nr;
4233         if (ctxn < 0)
4234                 goto errout;
4235
4236         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4237                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4238                 if (!task_ctx_data) {
4239                         err = -ENOMEM;
4240                         goto errout;
4241                 }
4242         }
4243
4244 retry:
4245         ctx = perf_lock_task_context(task, ctxn, &flags);
4246         if (ctx) {
4247                 clone_ctx = unclone_ctx(ctx);
4248                 ++ctx->pin_count;
4249
4250                 if (task_ctx_data && !ctx->task_ctx_data) {
4251                         ctx->task_ctx_data = task_ctx_data;
4252                         task_ctx_data = NULL;
4253                 }
4254                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4255
4256                 if (clone_ctx)
4257                         put_ctx(clone_ctx);
4258         } else {
4259                 ctx = alloc_perf_context(pmu, task);
4260                 err = -ENOMEM;
4261                 if (!ctx)
4262                         goto errout;
4263
4264                 if (task_ctx_data) {
4265                         ctx->task_ctx_data = task_ctx_data;
4266                         task_ctx_data = NULL;
4267                 }
4268
4269                 err = 0;
4270                 mutex_lock(&task->perf_event_mutex);
4271                 /*
4272                  * If it has already passed perf_event_exit_task().
4273                  * we must see PF_EXITING, it takes this mutex too.
4274                  */
4275                 if (task->flags & PF_EXITING)
4276                         err = -ESRCH;
4277                 else if (task->perf_event_ctxp[ctxn])
4278                         err = -EAGAIN;
4279                 else {
4280                         get_ctx(ctx);
4281                         ++ctx->pin_count;
4282                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4283                 }
4284                 mutex_unlock(&task->perf_event_mutex);
4285
4286                 if (unlikely(err)) {
4287                         put_ctx(ctx);
4288
4289                         if (err == -EAGAIN)
4290                                 goto retry;
4291                         goto errout;
4292                 }
4293         }
4294
4295         kfree(task_ctx_data);
4296         return ctx;
4297
4298 errout:
4299         kfree(task_ctx_data);
4300         return ERR_PTR(err);
4301 }
4302
4303 static void perf_event_free_filter(struct perf_event *event);
4304 static void perf_event_free_bpf_prog(struct perf_event *event);
4305
4306 static void free_event_rcu(struct rcu_head *head)
4307 {
4308         struct perf_event *event;
4309
4310         event = container_of(head, struct perf_event, rcu_head);
4311         if (event->ns)
4312                 put_pid_ns(event->ns);
4313         perf_event_free_filter(event);
4314         kfree(event);
4315 }
4316
4317 static void ring_buffer_attach(struct perf_event *event,
4318                                struct ring_buffer *rb);
4319
4320 static void detach_sb_event(struct perf_event *event)
4321 {
4322         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4323
4324         raw_spin_lock(&pel->lock);
4325         list_del_rcu(&event->sb_list);
4326         raw_spin_unlock(&pel->lock);
4327 }
4328
4329 static bool is_sb_event(struct perf_event *event)
4330 {
4331         struct perf_event_attr *attr = &event->attr;
4332
4333         if (event->parent)
4334                 return false;
4335
4336         if (event->attach_state & PERF_ATTACH_TASK)
4337                 return false;
4338
4339         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4340             attr->comm || attr->comm_exec ||
4341             attr->task || attr->ksymbol ||
4342             attr->context_switch ||
4343             attr->bpf_event)
4344                 return true;
4345         return false;
4346 }
4347
4348 static void unaccount_pmu_sb_event(struct perf_event *event)
4349 {
4350         if (is_sb_event(event))
4351                 detach_sb_event(event);
4352 }
4353
4354 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4355 {
4356         if (event->parent)
4357                 return;
4358
4359         if (is_cgroup_event(event))
4360                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4361 }
4362
4363 #ifdef CONFIG_NO_HZ_FULL
4364 static DEFINE_SPINLOCK(nr_freq_lock);
4365 #endif
4366
4367 static void unaccount_freq_event_nohz(void)
4368 {
4369 #ifdef CONFIG_NO_HZ_FULL
4370         spin_lock(&nr_freq_lock);
4371         if (atomic_dec_and_test(&nr_freq_events))
4372                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4373         spin_unlock(&nr_freq_lock);
4374 #endif
4375 }
4376
4377 static void unaccount_freq_event(void)
4378 {
4379         if (tick_nohz_full_enabled())
4380                 unaccount_freq_event_nohz();
4381         else
4382                 atomic_dec(&nr_freq_events);
4383 }
4384
4385 static void unaccount_event(struct perf_event *event)
4386 {
4387         bool dec = false;
4388
4389         if (event->parent)
4390                 return;
4391
4392         if (event->attach_state & PERF_ATTACH_TASK)
4393                 dec = true;
4394         if (event->attr.mmap || event->attr.mmap_data)
4395                 atomic_dec(&nr_mmap_events);
4396         if (event->attr.comm)
4397                 atomic_dec(&nr_comm_events);
4398         if (event->attr.namespaces)
4399                 atomic_dec(&nr_namespaces_events);
4400         if (event->attr.task)
4401                 atomic_dec(&nr_task_events);
4402         if (event->attr.freq)
4403                 unaccount_freq_event();
4404         if (event->attr.context_switch) {
4405                 dec = true;
4406                 atomic_dec(&nr_switch_events);
4407         }
4408         if (is_cgroup_event(event))
4409                 dec = true;
4410         if (has_branch_stack(event))
4411                 dec = true;
4412         if (event->attr.ksymbol)
4413                 atomic_dec(&nr_ksymbol_events);
4414         if (event->attr.bpf_event)
4415                 atomic_dec(&nr_bpf_events);
4416
4417         if (dec) {
4418                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4419                         schedule_delayed_work(&perf_sched_work, HZ);
4420         }
4421
4422         unaccount_event_cpu(event, event->cpu);
4423
4424         unaccount_pmu_sb_event(event);
4425 }
4426
4427 static void perf_sched_delayed(struct work_struct *work)
4428 {
4429         mutex_lock(&perf_sched_mutex);
4430         if (atomic_dec_and_test(&perf_sched_count))
4431                 static_branch_disable(&perf_sched_events);
4432         mutex_unlock(&perf_sched_mutex);
4433 }
4434
4435 /*
4436  * The following implement mutual exclusion of events on "exclusive" pmus
4437  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4438  * at a time, so we disallow creating events that might conflict, namely:
4439  *
4440  *  1) cpu-wide events in the presence of per-task events,
4441  *  2) per-task events in the presence of cpu-wide events,
4442  *  3) two matching events on the same context.
4443  *
4444  * The former two cases are handled in the allocation path (perf_event_alloc(),
4445  * _free_event()), the latter -- before the first perf_install_in_context().
4446  */
4447 static int exclusive_event_init(struct perf_event *event)
4448 {
4449         struct pmu *pmu = event->pmu;
4450
4451         if (!is_exclusive_pmu(pmu))
4452                 return 0;
4453
4454         /*
4455          * Prevent co-existence of per-task and cpu-wide events on the
4456          * same exclusive pmu.
4457          *
4458          * Negative pmu::exclusive_cnt means there are cpu-wide
4459          * events on this "exclusive" pmu, positive means there are
4460          * per-task events.
4461          *
4462          * Since this is called in perf_event_alloc() path, event::ctx
4463          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4464          * to mean "per-task event", because unlike other attach states it
4465          * never gets cleared.
4466          */
4467         if (event->attach_state & PERF_ATTACH_TASK) {
4468                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4469                         return -EBUSY;
4470         } else {
4471                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4472                         return -EBUSY;
4473         }
4474
4475         return 0;
4476 }
4477
4478 static void exclusive_event_destroy(struct perf_event *event)
4479 {
4480         struct pmu *pmu = event->pmu;
4481
4482         if (!is_exclusive_pmu(pmu))
4483                 return;
4484
4485         /* see comment in exclusive_event_init() */
4486         if (event->attach_state & PERF_ATTACH_TASK)
4487                 atomic_dec(&pmu->exclusive_cnt);
4488         else
4489                 atomic_inc(&pmu->exclusive_cnt);
4490 }
4491
4492 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4493 {
4494         if ((e1->pmu == e2->pmu) &&
4495             (e1->cpu == e2->cpu ||
4496              e1->cpu == -1 ||
4497              e2->cpu == -1))
4498                 return true;
4499         return false;
4500 }
4501
4502 static bool exclusive_event_installable(struct perf_event *event,
4503                                         struct perf_event_context *ctx)
4504 {
4505         struct perf_event *iter_event;
4506         struct pmu *pmu = event->pmu;
4507
4508         lockdep_assert_held(&ctx->mutex);
4509
4510         if (!is_exclusive_pmu(pmu))
4511                 return true;
4512
4513         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4514                 if (exclusive_event_match(iter_event, event))
4515                         return false;
4516         }
4517
4518         return true;
4519 }
4520
4521 static void perf_addr_filters_splice(struct perf_event *event,
4522                                        struct list_head *head);
4523
4524 static void _free_event(struct perf_event *event)
4525 {
4526         irq_work_sync(&event->pending);
4527
4528         unaccount_event(event);
4529
4530         if (event->rb) {
4531                 /*
4532                  * Can happen when we close an event with re-directed output.
4533                  *
4534                  * Since we have a 0 refcount, perf_mmap_close() will skip
4535                  * over us; possibly making our ring_buffer_put() the last.
4536                  */
4537                 mutex_lock(&event->mmap_mutex);
4538                 ring_buffer_attach(event, NULL);
4539                 mutex_unlock(&event->mmap_mutex);
4540         }
4541
4542         if (is_cgroup_event(event))
4543                 perf_detach_cgroup(event);
4544
4545         if (!event->parent) {
4546                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4547                         put_callchain_buffers();
4548         }
4549
4550         perf_event_free_bpf_prog(event);
4551         perf_addr_filters_splice(event, NULL);
4552         kfree(event->addr_filter_ranges);
4553
4554         if (event->destroy)
4555                 event->destroy(event);
4556
4557         /*
4558          * Must be after ->destroy(), due to uprobe_perf_close() using
4559          * hw.target.
4560          */
4561         if (event->hw.target)
4562                 put_task_struct(event->hw.target);
4563
4564         /*
4565          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4566          * all task references must be cleaned up.
4567          */
4568         if (event->ctx)
4569                 put_ctx(event->ctx);
4570
4571         exclusive_event_destroy(event);
4572         module_put(event->pmu->module);
4573
4574         call_rcu(&event->rcu_head, free_event_rcu);
4575 }
4576
4577 /*
4578  * Used to free events which have a known refcount of 1, such as in error paths
4579  * where the event isn't exposed yet and inherited events.
4580  */
4581 static void free_event(struct perf_event *event)
4582 {
4583         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4584                                 "unexpected event refcount: %ld; ptr=%p\n",
4585                                 atomic_long_read(&event->refcount), event)) {
4586                 /* leak to avoid use-after-free */
4587                 return;
4588         }
4589
4590         _free_event(event);
4591 }
4592
4593 /*
4594  * Remove user event from the owner task.
4595  */
4596 static void perf_remove_from_owner(struct perf_event *event)
4597 {
4598         struct task_struct *owner;
4599
4600         rcu_read_lock();
4601         /*
4602          * Matches the smp_store_release() in perf_event_exit_task(). If we
4603          * observe !owner it means the list deletion is complete and we can
4604          * indeed free this event, otherwise we need to serialize on
4605          * owner->perf_event_mutex.
4606          */
4607         owner = READ_ONCE(event->owner);
4608         if (owner) {
4609                 /*
4610                  * Since delayed_put_task_struct() also drops the last
4611                  * task reference we can safely take a new reference
4612                  * while holding the rcu_read_lock().
4613                  */
4614                 get_task_struct(owner);
4615         }
4616         rcu_read_unlock();
4617
4618         if (owner) {
4619                 /*
4620                  * If we're here through perf_event_exit_task() we're already
4621                  * holding ctx->mutex which would be an inversion wrt. the
4622                  * normal lock order.
4623                  *
4624                  * However we can safely take this lock because its the child
4625                  * ctx->mutex.
4626                  */
4627                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4628
4629                 /*
4630                  * We have to re-check the event->owner field, if it is cleared
4631                  * we raced with perf_event_exit_task(), acquiring the mutex
4632                  * ensured they're done, and we can proceed with freeing the
4633                  * event.
4634                  */
4635                 if (event->owner) {
4636                         list_del_init(&event->owner_entry);
4637                         smp_store_release(&event->owner, NULL);
4638                 }
4639                 mutex_unlock(&owner->perf_event_mutex);
4640                 put_task_struct(owner);
4641         }
4642 }
4643
4644 static void put_event(struct perf_event *event)
4645 {
4646         if (!atomic_long_dec_and_test(&event->refcount))
4647                 return;
4648
4649         _free_event(event);
4650 }
4651
4652 /*
4653  * Kill an event dead; while event:refcount will preserve the event
4654  * object, it will not preserve its functionality. Once the last 'user'
4655  * gives up the object, we'll destroy the thing.
4656  */
4657 int perf_event_release_kernel(struct perf_event *event)
4658 {
4659         struct perf_event_context *ctx = event->ctx;
4660         struct perf_event *child, *tmp;
4661         LIST_HEAD(free_list);
4662
4663         /*
4664          * If we got here through err_file: fput(event_file); we will not have
4665          * attached to a context yet.
4666          */
4667         if (!ctx) {
4668                 WARN_ON_ONCE(event->attach_state &
4669                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4670                 goto no_ctx;
4671         }
4672
4673         if (!is_kernel_event(event))
4674                 perf_remove_from_owner(event);
4675
4676         ctx = perf_event_ctx_lock(event);
4677         WARN_ON_ONCE(ctx->parent_ctx);
4678         perf_remove_from_context(event, DETACH_GROUP);
4679
4680         raw_spin_lock_irq(&ctx->lock);
4681         /*
4682          * Mark this event as STATE_DEAD, there is no external reference to it
4683          * anymore.
4684          *
4685          * Anybody acquiring event->child_mutex after the below loop _must_
4686          * also see this, most importantly inherit_event() which will avoid
4687          * placing more children on the list.
4688          *
4689          * Thus this guarantees that we will in fact observe and kill _ALL_
4690          * child events.
4691          */
4692         event->state = PERF_EVENT_STATE_DEAD;
4693         raw_spin_unlock_irq(&ctx->lock);
4694
4695         perf_event_ctx_unlock(event, ctx);
4696
4697 again:
4698         mutex_lock(&event->child_mutex);
4699         list_for_each_entry(child, &event->child_list, child_list) {
4700
4701                 /*
4702                  * Cannot change, child events are not migrated, see the
4703                  * comment with perf_event_ctx_lock_nested().
4704                  */
4705                 ctx = READ_ONCE(child->ctx);
4706                 /*
4707                  * Since child_mutex nests inside ctx::mutex, we must jump
4708                  * through hoops. We start by grabbing a reference on the ctx.
4709                  *
4710                  * Since the event cannot get freed while we hold the
4711                  * child_mutex, the context must also exist and have a !0
4712                  * reference count.
4713                  */
4714                 get_ctx(ctx);
4715
4716                 /*
4717                  * Now that we have a ctx ref, we can drop child_mutex, and
4718                  * acquire ctx::mutex without fear of it going away. Then we
4719                  * can re-acquire child_mutex.
4720                  */
4721                 mutex_unlock(&event->child_mutex);
4722                 mutex_lock(&ctx->mutex);
4723                 mutex_lock(&event->child_mutex);
4724
4725                 /*
4726                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4727                  * state, if child is still the first entry, it didn't get freed
4728                  * and we can continue doing so.
4729                  */
4730                 tmp = list_first_entry_or_null(&event->child_list,
4731                                                struct perf_event, child_list);
4732                 if (tmp == child) {
4733                         perf_remove_from_context(child, DETACH_GROUP);
4734                         list_move(&child->child_list, &free_list);
4735                         /*
4736                          * This matches the refcount bump in inherit_event();
4737                          * this can't be the last reference.
4738                          */
4739                         put_event(event);
4740                 }
4741
4742                 mutex_unlock(&event->child_mutex);
4743                 mutex_unlock(&ctx->mutex);
4744                 put_ctx(ctx);
4745                 goto again;
4746         }
4747         mutex_unlock(&event->child_mutex);
4748
4749         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4750                 void *var = &child->ctx->refcount;
4751
4752                 list_del(&child->child_list);
4753                 free_event(child);
4754
4755                 /*
4756                  * Wake any perf_event_free_task() waiting for this event to be
4757                  * freed.
4758                  */
4759                 smp_mb(); /* pairs with wait_var_event() */
4760                 wake_up_var(var);
4761         }
4762
4763 no_ctx:
4764         put_event(event); /* Must be the 'last' reference */
4765         return 0;
4766 }
4767 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4768
4769 /*
4770  * Called when the last reference to the file is gone.
4771  */
4772 static int perf_release(struct inode *inode, struct file *file)
4773 {
4774         perf_event_release_kernel(file->private_data);
4775         return 0;
4776 }
4777
4778 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4779 {
4780         struct perf_event *child;
4781         u64 total = 0;
4782
4783         *enabled = 0;
4784         *running = 0;
4785
4786         mutex_lock(&event->child_mutex);
4787
4788         (void)perf_event_read(event, false);
4789         total += perf_event_count(event);
4790
4791         *enabled += event->total_time_enabled +
4792                         atomic64_read(&event->child_total_time_enabled);
4793         *running += event->total_time_running +
4794                         atomic64_read(&event->child_total_time_running);
4795
4796         list_for_each_entry(child, &event->child_list, child_list) {
4797                 (void)perf_event_read(child, false);
4798                 total += perf_event_count(child);
4799                 *enabled += child->total_time_enabled;
4800                 *running += child->total_time_running;
4801         }
4802         mutex_unlock(&event->child_mutex);
4803
4804         return total;
4805 }
4806
4807 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4808 {
4809         struct perf_event_context *ctx;
4810         u64 count;
4811
4812         ctx = perf_event_ctx_lock(event);
4813         count = __perf_event_read_value(event, enabled, running);
4814         perf_event_ctx_unlock(event, ctx);
4815
4816         return count;
4817 }
4818 EXPORT_SYMBOL_GPL(perf_event_read_value);
4819
4820 static int __perf_read_group_add(struct perf_event *leader,
4821                                         u64 read_format, u64 *values)
4822 {
4823         struct perf_event_context *ctx = leader->ctx;
4824         struct perf_event *sub;
4825         unsigned long flags;
4826         int n = 1; /* skip @nr */
4827         int ret;
4828
4829         ret = perf_event_read(leader, true);
4830         if (ret)
4831                 return ret;
4832
4833         raw_spin_lock_irqsave(&ctx->lock, flags);
4834
4835         /*
4836          * Since we co-schedule groups, {enabled,running} times of siblings
4837          * will be identical to those of the leader, so we only publish one
4838          * set.
4839          */
4840         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4841                 values[n++] += leader->total_time_enabled +
4842                         atomic64_read(&leader->child_total_time_enabled);
4843         }
4844
4845         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4846                 values[n++] += leader->total_time_running +
4847                         atomic64_read(&leader->child_total_time_running);
4848         }
4849
4850         /*
4851          * Write {count,id} tuples for every sibling.
4852          */
4853         values[n++] += perf_event_count(leader);
4854         if (read_format & PERF_FORMAT_ID)
4855                 values[n++] = primary_event_id(leader);
4856
4857         for_each_sibling_event(sub, leader) {
4858                 values[n++] += perf_event_count(sub);
4859                 if (read_format & PERF_FORMAT_ID)
4860                         values[n++] = primary_event_id(sub);
4861         }
4862
4863         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4864         return 0;
4865 }
4866
4867 static int perf_read_group(struct perf_event *event,
4868                                    u64 read_format, char __user *buf)
4869 {
4870         struct perf_event *leader = event->group_leader, *child;
4871         struct perf_event_context *ctx = leader->ctx;
4872         int ret;
4873         u64 *values;
4874
4875         lockdep_assert_held(&ctx->mutex);
4876
4877         values = kzalloc(event->read_size, GFP_KERNEL);
4878         if (!values)
4879                 return -ENOMEM;
4880
4881         values[0] = 1 + leader->nr_siblings;
4882
4883         /*
4884          * By locking the child_mutex of the leader we effectively
4885          * lock the child list of all siblings.. XXX explain how.
4886          */
4887         mutex_lock(&leader->child_mutex);
4888
4889         ret = __perf_read_group_add(leader, read_format, values);
4890         if (ret)
4891                 goto unlock;
4892
4893         list_for_each_entry(child, &leader->child_list, child_list) {
4894                 ret = __perf_read_group_add(child, read_format, values);
4895                 if (ret)
4896                         goto unlock;
4897         }
4898
4899         mutex_unlock(&leader->child_mutex);
4900
4901         ret = event->read_size;
4902         if (copy_to_user(buf, values, event->read_size))
4903                 ret = -EFAULT;
4904         goto out;
4905
4906 unlock:
4907         mutex_unlock(&leader->child_mutex);
4908 out:
4909         kfree(values);
4910         return ret;
4911 }
4912
4913 static int perf_read_one(struct perf_event *event,
4914                                  u64 read_format, char __user *buf)
4915 {
4916         u64 enabled, running;
4917         u64 values[4];
4918         int n = 0;
4919
4920         values[n++] = __perf_event_read_value(event, &enabled, &running);
4921         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4922                 values[n++] = enabled;
4923         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4924                 values[n++] = running;
4925         if (read_format & PERF_FORMAT_ID)
4926                 values[n++] = primary_event_id(event);
4927
4928         if (copy_to_user(buf, values, n * sizeof(u64)))
4929                 return -EFAULT;
4930
4931         return n * sizeof(u64);
4932 }
4933
4934 static bool is_event_hup(struct perf_event *event)
4935 {
4936         bool no_children;
4937
4938         if (event->state > PERF_EVENT_STATE_EXIT)
4939                 return false;
4940
4941         mutex_lock(&event->child_mutex);
4942         no_children = list_empty(&event->child_list);
4943         mutex_unlock(&event->child_mutex);
4944         return no_children;
4945 }
4946
4947 /*
4948  * Read the performance event - simple non blocking version for now
4949  */
4950 static ssize_t
4951 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4952 {
4953         u64 read_format = event->attr.read_format;
4954         int ret;
4955
4956         /*
4957          * Return end-of-file for a read on an event that is in
4958          * error state (i.e. because it was pinned but it couldn't be
4959          * scheduled on to the CPU at some point).
4960          */
4961         if (event->state == PERF_EVENT_STATE_ERROR)
4962                 return 0;
4963
4964         if (count < event->read_size)
4965                 return -ENOSPC;
4966
4967         WARN_ON_ONCE(event->ctx->parent_ctx);
4968         if (read_format & PERF_FORMAT_GROUP)
4969                 ret = perf_read_group(event, read_format, buf);
4970         else
4971                 ret = perf_read_one(event, read_format, buf);
4972
4973         return ret;
4974 }
4975
4976 static ssize_t
4977 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4978 {
4979         struct perf_event *event = file->private_data;
4980         struct perf_event_context *ctx;
4981         int ret;
4982
4983         ctx = perf_event_ctx_lock(event);
4984         ret = __perf_read(event, buf, count);
4985         perf_event_ctx_unlock(event, ctx);
4986
4987         return ret;
4988 }
4989
4990 static __poll_t perf_poll(struct file *file, poll_table *wait)
4991 {
4992         struct perf_event *event = file->private_data;
4993         struct ring_buffer *rb;
4994         __poll_t events = EPOLLHUP;
4995
4996         poll_wait(file, &event->waitq, wait);
4997
4998         if (is_event_hup(event))
4999                 return events;
5000
5001         /*
5002          * Pin the event->rb by taking event->mmap_mutex; otherwise
5003          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5004          */
5005         mutex_lock(&event->mmap_mutex);
5006         rb = event->rb;
5007         if (rb)
5008                 events = atomic_xchg(&rb->poll, 0);
5009         mutex_unlock(&event->mmap_mutex);
5010         return events;
5011 }
5012
5013 static void _perf_event_reset(struct perf_event *event)
5014 {
5015         (void)perf_event_read(event, false);
5016         local64_set(&event->count, 0);
5017         perf_event_update_userpage(event);
5018 }
5019
5020 /*
5021  * Holding the top-level event's child_mutex means that any
5022  * descendant process that has inherited this event will block
5023  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5024  * task existence requirements of perf_event_enable/disable.
5025  */
5026 static void perf_event_for_each_child(struct perf_event *event,
5027                                         void (*func)(struct perf_event *))
5028 {
5029         struct perf_event *child;
5030
5031         WARN_ON_ONCE(event->ctx->parent_ctx);
5032
5033         mutex_lock(&event->child_mutex);
5034         func(event);
5035         list_for_each_entry(child, &event->child_list, child_list)
5036                 func(child);
5037         mutex_unlock(&event->child_mutex);
5038 }
5039
5040 static void perf_event_for_each(struct perf_event *event,
5041                                   void (*func)(struct perf_event *))
5042 {
5043         struct perf_event_context *ctx = event->ctx;
5044         struct perf_event *sibling;
5045
5046         lockdep_assert_held(&ctx->mutex);
5047
5048         event = event->group_leader;
5049
5050         perf_event_for_each_child(event, func);
5051         for_each_sibling_event(sibling, event)
5052                 perf_event_for_each_child(sibling, func);
5053 }
5054
5055 static void __perf_event_period(struct perf_event *event,
5056                                 struct perf_cpu_context *cpuctx,
5057                                 struct perf_event_context *ctx,
5058                                 void *info)
5059 {
5060         u64 value = *((u64 *)info);
5061         bool active;
5062
5063         if (event->attr.freq) {
5064                 event->attr.sample_freq = value;
5065         } else {
5066                 event->attr.sample_period = value;
5067                 event->hw.sample_period = value;
5068         }
5069
5070         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5071         if (active) {
5072                 perf_pmu_disable(ctx->pmu);
5073                 /*
5074                  * We could be throttled; unthrottle now to avoid the tick
5075                  * trying to unthrottle while we already re-started the event.
5076                  */
5077                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5078                         event->hw.interrupts = 0;
5079                         perf_log_throttle(event, 1);
5080                 }
5081                 event->pmu->stop(event, PERF_EF_UPDATE);
5082         }
5083
5084         local64_set(&event->hw.period_left, 0);
5085
5086         if (active) {
5087                 event->pmu->start(event, PERF_EF_RELOAD);
5088                 perf_pmu_enable(ctx->pmu);
5089         }
5090 }
5091
5092 static int perf_event_check_period(struct perf_event *event, u64 value)
5093 {
5094         return event->pmu->check_period(event, value);
5095 }
5096
5097 static int perf_event_period(struct perf_event *event, u64 __user *arg)
5098 {
5099         u64 value;
5100
5101         if (!is_sampling_event(event))
5102                 return -EINVAL;
5103
5104         if (copy_from_user(&value, arg, sizeof(value)))
5105                 return -EFAULT;
5106
5107         if (!value)
5108                 return -EINVAL;
5109
5110         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5111                 return -EINVAL;
5112
5113         if (perf_event_check_period(event, value))
5114                 return -EINVAL;
5115
5116         if (!event->attr.freq && (value & (1ULL << 63)))
5117                 return -EINVAL;
5118
5119         event_function_call(event, __perf_event_period, &value);
5120
5121         return 0;
5122 }
5123
5124 static const struct file_operations perf_fops;
5125
5126 static inline int perf_fget_light(int fd, struct fd *p)
5127 {
5128         struct fd f = fdget(fd);
5129         if (!f.file)
5130                 return -EBADF;
5131
5132         if (f.file->f_op != &perf_fops) {
5133                 fdput(f);
5134                 return -EBADF;
5135         }
5136         *p = f;
5137         return 0;
5138 }
5139
5140 static int perf_event_set_output(struct perf_event *event,
5141                                  struct perf_event *output_event);
5142 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5143 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5144 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5145                           struct perf_event_attr *attr);
5146
5147 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5148 {
5149         void (*func)(struct perf_event *);
5150         u32 flags = arg;
5151
5152         switch (cmd) {
5153         case PERF_EVENT_IOC_ENABLE:
5154                 func = _perf_event_enable;
5155                 break;
5156         case PERF_EVENT_IOC_DISABLE:
5157                 func = _perf_event_disable;
5158                 break;
5159         case PERF_EVENT_IOC_RESET:
5160                 func = _perf_event_reset;
5161                 break;
5162
5163         case PERF_EVENT_IOC_REFRESH:
5164                 return _perf_event_refresh(event, arg);
5165
5166         case PERF_EVENT_IOC_PERIOD:
5167                 return perf_event_period(event, (u64 __user *)arg);
5168
5169         case PERF_EVENT_IOC_ID:
5170         {
5171                 u64 id = primary_event_id(event);
5172
5173                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5174                         return -EFAULT;
5175                 return 0;
5176         }
5177
5178         case PERF_EVENT_IOC_SET_OUTPUT:
5179         {
5180                 int ret;
5181                 if (arg != -1) {
5182                         struct perf_event *output_event;
5183                         struct fd output;
5184                         ret = perf_fget_light(arg, &output);
5185                         if (ret)
5186                                 return ret;
5187                         output_event = output.file->private_data;
5188                         ret = perf_event_set_output(event, output_event);
5189                         fdput(output);
5190                 } else {
5191                         ret = perf_event_set_output(event, NULL);
5192                 }
5193                 return ret;
5194         }
5195
5196         case PERF_EVENT_IOC_SET_FILTER:
5197                 return perf_event_set_filter(event, (void __user *)arg);
5198
5199         case PERF_EVENT_IOC_SET_BPF:
5200                 return perf_event_set_bpf_prog(event, arg);
5201
5202         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5203                 struct ring_buffer *rb;
5204
5205                 rcu_read_lock();
5206                 rb = rcu_dereference(event->rb);
5207                 if (!rb || !rb->nr_pages) {
5208                         rcu_read_unlock();
5209                         return -EINVAL;
5210                 }
5211                 rb_toggle_paused(rb, !!arg);
5212                 rcu_read_unlock();
5213                 return 0;
5214         }
5215
5216         case PERF_EVENT_IOC_QUERY_BPF:
5217                 return perf_event_query_prog_array(event, (void __user *)arg);
5218
5219         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5220                 struct perf_event_attr new_attr;
5221                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5222                                          &new_attr);
5223
5224                 if (err)
5225                         return err;
5226
5227                 return perf_event_modify_attr(event,  &new_attr);
5228         }
5229         default:
5230                 return -ENOTTY;
5231         }
5232
5233         if (flags & PERF_IOC_FLAG_GROUP)
5234                 perf_event_for_each(event, func);
5235         else
5236                 perf_event_for_each_child(event, func);
5237
5238         return 0;
5239 }
5240
5241 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5242 {
5243         struct perf_event *event = file->private_data;
5244         struct perf_event_context *ctx;
5245         long ret;
5246
5247         ctx = perf_event_ctx_lock(event);
5248         ret = _perf_ioctl(event, cmd, arg);
5249         perf_event_ctx_unlock(event, ctx);
5250
5251         return ret;
5252 }
5253
5254 #ifdef CONFIG_COMPAT
5255 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5256                                 unsigned long arg)
5257 {
5258         switch (_IOC_NR(cmd)) {
5259         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5260         case _IOC_NR(PERF_EVENT_IOC_ID):
5261         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5262         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5263                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5264                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5265                         cmd &= ~IOCSIZE_MASK;
5266                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5267                 }
5268                 break;
5269         }
5270         return perf_ioctl(file, cmd, arg);
5271 }
5272 #else
5273 # define perf_compat_ioctl NULL
5274 #endif
5275
5276 int perf_event_task_enable(void)
5277 {
5278         struct perf_event_context *ctx;
5279         struct perf_event *event;
5280
5281         mutex_lock(&current->perf_event_mutex);
5282         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5283                 ctx = perf_event_ctx_lock(event);
5284                 perf_event_for_each_child(event, _perf_event_enable);
5285                 perf_event_ctx_unlock(event, ctx);
5286         }
5287         mutex_unlock(&current->perf_event_mutex);
5288
5289         return 0;
5290 }
5291
5292 int perf_event_task_disable(void)
5293 {
5294         struct perf_event_context *ctx;
5295         struct perf_event *event;
5296
5297         mutex_lock(&current->perf_event_mutex);
5298         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5299                 ctx = perf_event_ctx_lock(event);
5300                 perf_event_for_each_child(event, _perf_event_disable);
5301                 perf_event_ctx_unlock(event, ctx);
5302         }
5303         mutex_unlock(&current->perf_event_mutex);
5304
5305         return 0;
5306 }
5307
5308 static int perf_event_index(struct perf_event *event)
5309 {
5310         if (event->hw.state & PERF_HES_STOPPED)
5311                 return 0;
5312
5313         if (event->state != PERF_EVENT_STATE_ACTIVE)
5314                 return 0;
5315
5316         return event->pmu->event_idx(event);
5317 }
5318
5319 static void calc_timer_values(struct perf_event *event,
5320                                 u64 *now,
5321                                 u64 *enabled,
5322                                 u64 *running)
5323 {
5324         u64 ctx_time;
5325
5326         *now = perf_clock();
5327         ctx_time = event->shadow_ctx_time + *now;
5328         __perf_update_times(event, ctx_time, enabled, running);
5329 }
5330
5331 static void perf_event_init_userpage(struct perf_event *event)
5332 {
5333         struct perf_event_mmap_page *userpg;
5334         struct ring_buffer *rb;
5335
5336         rcu_read_lock();
5337         rb = rcu_dereference(event->rb);
5338         if (!rb)
5339                 goto unlock;
5340
5341         userpg = rb->user_page;
5342
5343         /* Allow new userspace to detect that bit 0 is deprecated */
5344         userpg->cap_bit0_is_deprecated = 1;
5345         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5346         userpg->data_offset = PAGE_SIZE;
5347         userpg->data_size = perf_data_size(rb);
5348
5349 unlock:
5350         rcu_read_unlock();
5351 }
5352
5353 void __weak arch_perf_update_userpage(
5354         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5355 {
5356 }
5357
5358 /*
5359  * Callers need to ensure there can be no nesting of this function, otherwise
5360  * the seqlock logic goes bad. We can not serialize this because the arch
5361  * code calls this from NMI context.
5362  */
5363 void perf_event_update_userpage(struct perf_event *event)
5364 {
5365         struct perf_event_mmap_page *userpg;
5366         struct ring_buffer *rb;
5367         u64 enabled, running, now;
5368
5369         rcu_read_lock();
5370         rb = rcu_dereference(event->rb);
5371         if (!rb)
5372                 goto unlock;
5373
5374         /*
5375          * compute total_time_enabled, total_time_running
5376          * based on snapshot values taken when the event
5377          * was last scheduled in.
5378          *
5379          * we cannot simply called update_context_time()
5380          * because of locking issue as we can be called in
5381          * NMI context
5382          */
5383         calc_timer_values(event, &now, &enabled, &running);
5384
5385         userpg = rb->user_page;
5386         /*
5387          * Disable preemption to guarantee consistent time stamps are stored to
5388          * the user page.
5389          */
5390         preempt_disable();
5391         ++userpg->lock;
5392         barrier();
5393         userpg->index = perf_event_index(event);
5394         userpg->offset = perf_event_count(event);
5395         if (userpg->index)
5396                 userpg->offset -= local64_read(&event->hw.prev_count);
5397
5398         userpg->time_enabled = enabled +
5399                         atomic64_read(&event->child_total_time_enabled);
5400
5401         userpg->time_running = running +
5402                         atomic64_read(&event->child_total_time_running);
5403
5404         arch_perf_update_userpage(event, userpg, now);
5405
5406         barrier();
5407         ++userpg->lock;
5408         preempt_enable();
5409 unlock:
5410         rcu_read_unlock();
5411 }
5412 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5413
5414 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5415 {
5416         struct perf_event *event = vmf->vma->vm_file->private_data;
5417         struct ring_buffer *rb;
5418         vm_fault_t ret = VM_FAULT_SIGBUS;
5419
5420         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5421                 if (vmf->pgoff == 0)
5422                         ret = 0;
5423                 return ret;
5424         }
5425
5426         rcu_read_lock();
5427         rb = rcu_dereference(event->rb);
5428         if (!rb)
5429                 goto unlock;
5430
5431         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5432                 goto unlock;
5433
5434         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5435         if (!vmf->page)
5436                 goto unlock;
5437
5438         get_page(vmf->page);
5439         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5440         vmf->page->index   = vmf->pgoff;
5441
5442         ret = 0;
5443 unlock:
5444         rcu_read_unlock();
5445
5446         return ret;
5447 }
5448
5449 static void ring_buffer_attach(struct perf_event *event,
5450                                struct ring_buffer *rb)
5451 {
5452         struct ring_buffer *old_rb = NULL;
5453         unsigned long flags;
5454
5455         if (event->rb) {
5456                 /*
5457                  * Should be impossible, we set this when removing
5458                  * event->rb_entry and wait/clear when adding event->rb_entry.
5459                  */
5460                 WARN_ON_ONCE(event->rcu_pending);
5461
5462                 old_rb = event->rb;
5463                 spin_lock_irqsave(&old_rb->event_lock, flags);
5464                 list_del_rcu(&event->rb_entry);
5465                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5466
5467                 event->rcu_batches = get_state_synchronize_rcu();
5468                 event->rcu_pending = 1;
5469         }
5470
5471         if (rb) {
5472                 if (event->rcu_pending) {
5473                         cond_synchronize_rcu(event->rcu_batches);
5474                         event->rcu_pending = 0;
5475                 }
5476
5477                 spin_lock_irqsave(&rb->event_lock, flags);
5478                 list_add_rcu(&event->rb_entry, &rb->event_list);
5479                 spin_unlock_irqrestore(&rb->event_lock, flags);
5480         }
5481
5482         /*
5483          * Avoid racing with perf_mmap_close(AUX): stop the event
5484          * before swizzling the event::rb pointer; if it's getting
5485          * unmapped, its aux_mmap_count will be 0 and it won't
5486          * restart. See the comment in __perf_pmu_output_stop().
5487          *
5488          * Data will inevitably be lost when set_output is done in
5489          * mid-air, but then again, whoever does it like this is
5490          * not in for the data anyway.
5491          */
5492         if (has_aux(event))
5493                 perf_event_stop(event, 0);
5494
5495         rcu_assign_pointer(event->rb, rb);
5496
5497         if (old_rb) {
5498                 ring_buffer_put(old_rb);
5499                 /*
5500                  * Since we detached before setting the new rb, so that we
5501                  * could attach the new rb, we could have missed a wakeup.
5502                  * Provide it now.
5503                  */
5504                 wake_up_all(&event->waitq);
5505         }
5506 }
5507
5508 static void ring_buffer_wakeup(struct perf_event *event)
5509 {
5510         struct ring_buffer *rb;
5511
5512         rcu_read_lock();
5513         rb = rcu_dereference(event->rb);
5514         if (rb) {
5515                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5516                         wake_up_all(&event->waitq);
5517         }
5518         rcu_read_unlock();
5519 }
5520
5521 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5522 {
5523         struct ring_buffer *rb;
5524
5525         rcu_read_lock();
5526         rb = rcu_dereference(event->rb);
5527         if (rb) {
5528                 if (!refcount_inc_not_zero(&rb->refcount))
5529                         rb = NULL;
5530         }
5531         rcu_read_unlock();
5532
5533         return rb;
5534 }
5535
5536 void ring_buffer_put(struct ring_buffer *rb)
5537 {
5538         if (!refcount_dec_and_test(&rb->refcount))
5539                 return;
5540
5541         WARN_ON_ONCE(!list_empty(&rb->event_list));
5542
5543         call_rcu(&rb->rcu_head, rb_free_rcu);
5544 }
5545
5546 static void perf_mmap_open(struct vm_area_struct *vma)
5547 {
5548         struct perf_event *event = vma->vm_file->private_data;
5549
5550         atomic_inc(&event->mmap_count);
5551         atomic_inc(&event->rb->mmap_count);
5552
5553         if (vma->vm_pgoff)
5554                 atomic_inc(&event->rb->aux_mmap_count);
5555
5556         if (event->pmu->event_mapped)
5557                 event->pmu->event_mapped(event, vma->vm_mm);
5558 }
5559
5560 static void perf_pmu_output_stop(struct perf_event *event);
5561
5562 /*
5563  * A buffer can be mmap()ed multiple times; either directly through the same
5564  * event, or through other events by use of perf_event_set_output().
5565  *
5566  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5567  * the buffer here, where we still have a VM context. This means we need
5568  * to detach all events redirecting to us.
5569  */
5570 static void perf_mmap_close(struct vm_area_struct *vma)
5571 {
5572         struct perf_event *event = vma->vm_file->private_data;
5573
5574         struct ring_buffer *rb = ring_buffer_get(event);
5575         struct user_struct *mmap_user = rb->mmap_user;
5576         int mmap_locked = rb->mmap_locked;
5577         unsigned long size = perf_data_size(rb);
5578
5579         if (event->pmu->event_unmapped)
5580                 event->pmu->event_unmapped(event, vma->vm_mm);
5581
5582         /*
5583          * rb->aux_mmap_count will always drop before rb->mmap_count and
5584          * event->mmap_count, so it is ok to use event->mmap_mutex to
5585          * serialize with perf_mmap here.
5586          */
5587         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5588             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5589                 /*
5590                  * Stop all AUX events that are writing to this buffer,
5591                  * so that we can free its AUX pages and corresponding PMU
5592                  * data. Note that after rb::aux_mmap_count dropped to zero,
5593                  * they won't start any more (see perf_aux_output_begin()).
5594                  */
5595                 perf_pmu_output_stop(event);
5596
5597                 /* now it's safe to free the pages */
5598                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5599                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5600
5601                 /* this has to be the last one */
5602                 rb_free_aux(rb);
5603                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5604
5605                 mutex_unlock(&event->mmap_mutex);
5606         }
5607
5608         atomic_dec(&rb->mmap_count);
5609
5610         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5611                 goto out_put;
5612
5613         ring_buffer_attach(event, NULL);
5614         mutex_unlock(&event->mmap_mutex);
5615
5616         /* If there's still other mmap()s of this buffer, we're done. */
5617         if (atomic_read(&rb->mmap_count))
5618                 goto out_put;
5619
5620         /*
5621          * No other mmap()s, detach from all other events that might redirect
5622          * into the now unreachable buffer. Somewhat complicated by the
5623          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5624          */
5625 again:
5626         rcu_read_lock();
5627         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5628                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5629                         /*
5630                          * This event is en-route to free_event() which will
5631                          * detach it and remove it from the list.
5632                          */
5633                         continue;
5634                 }
5635                 rcu_read_unlock();
5636
5637                 mutex_lock(&event->mmap_mutex);
5638                 /*
5639                  * Check we didn't race with perf_event_set_output() which can
5640                  * swizzle the rb from under us while we were waiting to
5641                  * acquire mmap_mutex.
5642                  *
5643                  * If we find a different rb; ignore this event, a next
5644                  * iteration will no longer find it on the list. We have to
5645                  * still restart the iteration to make sure we're not now
5646                  * iterating the wrong list.
5647                  */
5648                 if (event->rb == rb)
5649                         ring_buffer_attach(event, NULL);
5650
5651                 mutex_unlock(&event->mmap_mutex);
5652                 put_event(event);
5653
5654                 /*
5655                  * Restart the iteration; either we're on the wrong list or
5656                  * destroyed its integrity by doing a deletion.
5657                  */
5658                 goto again;
5659         }
5660         rcu_read_unlock();
5661
5662         /*
5663          * It could be there's still a few 0-ref events on the list; they'll
5664          * get cleaned up by free_event() -- they'll also still have their
5665          * ref on the rb and will free it whenever they are done with it.
5666          *
5667          * Aside from that, this buffer is 'fully' detached and unmapped,
5668          * undo the VM accounting.
5669          */
5670
5671         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5672         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5673         free_uid(mmap_user);
5674
5675 out_put:
5676         ring_buffer_put(rb); /* could be last */
5677 }
5678
5679 static const struct vm_operations_struct perf_mmap_vmops = {
5680         .open           = perf_mmap_open,
5681         .close          = perf_mmap_close, /* non mergeable */
5682         .fault          = perf_mmap_fault,
5683         .page_mkwrite   = perf_mmap_fault,
5684 };
5685
5686 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5687 {
5688         struct perf_event *event = file->private_data;
5689         unsigned long user_locked, user_lock_limit;
5690         struct user_struct *user = current_user();
5691         unsigned long locked, lock_limit;
5692         struct ring_buffer *rb = NULL;
5693         unsigned long vma_size;
5694         unsigned long nr_pages;
5695         long user_extra = 0, extra = 0;
5696         int ret = 0, flags = 0;
5697
5698         /*
5699          * Don't allow mmap() of inherited per-task counters. This would
5700          * create a performance issue due to all children writing to the
5701          * same rb.
5702          */
5703         if (event->cpu == -1 && event->attr.inherit)
5704                 return -EINVAL;
5705
5706         if (!(vma->vm_flags & VM_SHARED))
5707                 return -EINVAL;
5708
5709         vma_size = vma->vm_end - vma->vm_start;
5710
5711         if (vma->vm_pgoff == 0) {
5712                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5713         } else {
5714                 /*
5715                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5716                  * mapped, all subsequent mappings should have the same size
5717                  * and offset. Must be above the normal perf buffer.
5718                  */
5719                 u64 aux_offset, aux_size;
5720
5721                 if (!event->rb)
5722                         return -EINVAL;
5723
5724                 nr_pages = vma_size / PAGE_SIZE;
5725
5726                 mutex_lock(&event->mmap_mutex);
5727                 ret = -EINVAL;
5728
5729                 rb = event->rb;
5730                 if (!rb)
5731                         goto aux_unlock;
5732
5733                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5734                 aux_size = READ_ONCE(rb->user_page->aux_size);
5735
5736                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5737                         goto aux_unlock;
5738
5739                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5740                         goto aux_unlock;
5741
5742                 /* already mapped with a different offset */
5743                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5744                         goto aux_unlock;
5745
5746                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5747                         goto aux_unlock;
5748
5749                 /* already mapped with a different size */
5750                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5751                         goto aux_unlock;
5752
5753                 if (!is_power_of_2(nr_pages))
5754                         goto aux_unlock;
5755
5756                 if (!atomic_inc_not_zero(&rb->mmap_count))
5757                         goto aux_unlock;
5758
5759                 if (rb_has_aux(rb)) {
5760                         atomic_inc(&rb->aux_mmap_count);
5761                         ret = 0;
5762                         goto unlock;
5763                 }
5764
5765                 atomic_set(&rb->aux_mmap_count, 1);
5766                 user_extra = nr_pages;
5767
5768                 goto accounting;
5769         }
5770
5771         /*
5772          * If we have rb pages ensure they're a power-of-two number, so we
5773          * can do bitmasks instead of modulo.
5774          */
5775         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5776                 return -EINVAL;
5777
5778         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5779                 return -EINVAL;
5780
5781         WARN_ON_ONCE(event->ctx->parent_ctx);
5782 again:
5783         mutex_lock(&event->mmap_mutex);
5784         if (event->rb) {
5785                 if (event->rb->nr_pages != nr_pages) {
5786                         ret = -EINVAL;
5787                         goto unlock;
5788                 }
5789
5790                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5791                         /*
5792                          * Raced against perf_mmap_close() through
5793                          * perf_event_set_output(). Try again, hope for better
5794                          * luck.
5795                          */
5796                         mutex_unlock(&event->mmap_mutex);
5797                         goto again;
5798                 }
5799
5800                 goto unlock;
5801         }
5802
5803         user_extra = nr_pages + 1;
5804
5805 accounting:
5806         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5807
5808         /*
5809          * Increase the limit linearly with more CPUs:
5810          */
5811         user_lock_limit *= num_online_cpus();
5812
5813         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5814
5815         if (user_locked > user_lock_limit)
5816                 extra = user_locked - user_lock_limit;
5817
5818         lock_limit = rlimit(RLIMIT_MEMLOCK);
5819         lock_limit >>= PAGE_SHIFT;
5820         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5821
5822         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5823                 !capable(CAP_IPC_LOCK)) {
5824                 ret = -EPERM;
5825                 goto unlock;
5826         }
5827
5828         WARN_ON(!rb && event->rb);
5829
5830         if (vma->vm_flags & VM_WRITE)
5831                 flags |= RING_BUFFER_WRITABLE;
5832
5833         if (!rb) {
5834                 rb = rb_alloc(nr_pages,
5835                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5836                               event->cpu, flags);
5837
5838                 if (!rb) {
5839                         ret = -ENOMEM;
5840                         goto unlock;
5841                 }
5842
5843                 atomic_set(&rb->mmap_count, 1);
5844                 rb->mmap_user = get_current_user();
5845                 rb->mmap_locked = extra;
5846
5847                 ring_buffer_attach(event, rb);
5848
5849                 perf_event_init_userpage(event);
5850                 perf_event_update_userpage(event);
5851         } else {
5852                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5853                                    event->attr.aux_watermark, flags);
5854                 if (!ret)
5855                         rb->aux_mmap_locked = extra;
5856         }
5857
5858 unlock:
5859         if (!ret) {
5860                 atomic_long_add(user_extra, &user->locked_vm);
5861                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
5862
5863                 atomic_inc(&event->mmap_count);
5864         } else if (rb) {
5865                 atomic_dec(&rb->mmap_count);
5866         }
5867 aux_unlock:
5868         mutex_unlock(&event->mmap_mutex);
5869
5870         /*
5871          * Since pinned accounting is per vm we cannot allow fork() to copy our
5872          * vma.
5873          */
5874         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5875         vma->vm_ops = &perf_mmap_vmops;
5876
5877         if (event->pmu->event_mapped)
5878                 event->pmu->event_mapped(event, vma->vm_mm);
5879
5880         return ret;
5881 }
5882
5883 static int perf_fasync(int fd, struct file *filp, int on)
5884 {
5885         struct inode *inode = file_inode(filp);
5886         struct perf_event *event = filp->private_data;
5887         int retval;
5888
5889         inode_lock(inode);
5890         retval = fasync_helper(fd, filp, on, &event->fasync);
5891         inode_unlock(inode);
5892
5893         if (retval < 0)
5894                 return retval;
5895
5896         return 0;
5897 }
5898
5899 static const struct file_operations perf_fops = {
5900         .llseek                 = no_llseek,
5901         .release                = perf_release,
5902         .read                   = perf_read,
5903         .poll                   = perf_poll,
5904         .unlocked_ioctl         = perf_ioctl,
5905         .compat_ioctl           = perf_compat_ioctl,
5906         .mmap                   = perf_mmap,
5907         .fasync                 = perf_fasync,
5908 };
5909
5910 /*
5911  * Perf event wakeup
5912  *
5913  * If there's data, ensure we set the poll() state and publish everything
5914  * to user-space before waking everybody up.
5915  */
5916
5917 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5918 {
5919         /* only the parent has fasync state */
5920         if (event->parent)
5921                 event = event->parent;
5922         return &event->fasync;
5923 }
5924
5925 void perf_event_wakeup(struct perf_event *event)
5926 {
5927         ring_buffer_wakeup(event);
5928
5929         if (event->pending_kill) {
5930                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5931                 event->pending_kill = 0;
5932         }
5933 }
5934
5935 static void perf_pending_event_disable(struct perf_event *event)
5936 {
5937         int cpu = READ_ONCE(event->pending_disable);
5938
5939         if (cpu < 0)
5940                 return;
5941
5942         if (cpu == smp_processor_id()) {
5943                 WRITE_ONCE(event->pending_disable, -1);
5944                 perf_event_disable_local(event);
5945                 return;
5946         }
5947
5948         /*
5949          *  CPU-A                       CPU-B
5950          *
5951          *  perf_event_disable_inatomic()
5952          *    @pending_disable = CPU-A;
5953          *    irq_work_queue();
5954          *
5955          *  sched-out
5956          *    @pending_disable = -1;
5957          *
5958          *                              sched-in
5959          *                              perf_event_disable_inatomic()
5960          *                                @pending_disable = CPU-B;
5961          *                                irq_work_queue(); // FAILS
5962          *
5963          *  irq_work_run()
5964          *    perf_pending_event()
5965          *
5966          * But the event runs on CPU-B and wants disabling there.
5967          */
5968         irq_work_queue_on(&event->pending, cpu);
5969 }
5970
5971 static void perf_pending_event(struct irq_work *entry)
5972 {
5973         struct perf_event *event = container_of(entry, struct perf_event, pending);
5974         int rctx;
5975
5976         rctx = perf_swevent_get_recursion_context();
5977         /*
5978          * If we 'fail' here, that's OK, it means recursion is already disabled
5979          * and we won't recurse 'further'.
5980          */
5981
5982         perf_pending_event_disable(event);
5983
5984         if (event->pending_wakeup) {
5985                 event->pending_wakeup = 0;
5986                 perf_event_wakeup(event);
5987         }
5988
5989         if (rctx >= 0)
5990                 perf_swevent_put_recursion_context(rctx);
5991 }
5992
5993 /*
5994  * We assume there is only KVM supporting the callbacks.
5995  * Later on, we might change it to a list if there is
5996  * another virtualization implementation supporting the callbacks.
5997  */
5998 struct perf_guest_info_callbacks *perf_guest_cbs;
5999
6000 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6001 {
6002         perf_guest_cbs = cbs;
6003         return 0;
6004 }
6005 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6006
6007 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6008 {
6009         perf_guest_cbs = NULL;
6010         return 0;
6011 }
6012 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6013
6014 static void
6015 perf_output_sample_regs(struct perf_output_handle *handle,
6016                         struct pt_regs *regs, u64 mask)
6017 {
6018         int bit;
6019         DECLARE_BITMAP(_mask, 64);
6020
6021         bitmap_from_u64(_mask, mask);
6022         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6023                 u64 val;
6024
6025                 val = perf_reg_value(regs, bit);
6026                 perf_output_put(handle, val);
6027         }
6028 }
6029
6030 static void perf_sample_regs_user(struct perf_regs *regs_user,
6031                                   struct pt_regs *regs,
6032                                   struct pt_regs *regs_user_copy)
6033 {
6034         if (user_mode(regs)) {
6035                 regs_user->abi = perf_reg_abi(current);
6036                 regs_user->regs = regs;
6037         } else if (!(current->flags & PF_KTHREAD)) {
6038                 perf_get_regs_user(regs_user, regs, regs_user_copy);
6039         } else {
6040                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6041                 regs_user->regs = NULL;
6042         }
6043 }
6044
6045 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6046                                   struct pt_regs *regs)
6047 {
6048         regs_intr->regs = regs;
6049         regs_intr->abi  = perf_reg_abi(current);
6050 }
6051
6052
6053 /*
6054  * Get remaining task size from user stack pointer.
6055  *
6056  * It'd be better to take stack vma map and limit this more
6057  * precisly, but there's no way to get it safely under interrupt,
6058  * so using TASK_SIZE as limit.
6059  */
6060 static u64 perf_ustack_task_size(struct pt_regs *regs)
6061 {
6062         unsigned long addr = perf_user_stack_pointer(regs);
6063
6064         if (!addr || addr >= TASK_SIZE)
6065                 return 0;
6066
6067         return TASK_SIZE - addr;
6068 }
6069
6070 static u16
6071 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6072                         struct pt_regs *regs)
6073 {
6074         u64 task_size;
6075
6076         /* No regs, no stack pointer, no dump. */
6077         if (!regs)
6078                 return 0;
6079
6080         /*
6081          * Check if we fit in with the requested stack size into the:
6082          * - TASK_SIZE
6083          *   If we don't, we limit the size to the TASK_SIZE.
6084          *
6085          * - remaining sample size
6086          *   If we don't, we customize the stack size to
6087          *   fit in to the remaining sample size.
6088          */
6089
6090         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6091         stack_size = min(stack_size, (u16) task_size);
6092
6093         /* Current header size plus static size and dynamic size. */
6094         header_size += 2 * sizeof(u64);
6095
6096         /* Do we fit in with the current stack dump size? */
6097         if ((u16) (header_size + stack_size) < header_size) {
6098                 /*
6099                  * If we overflow the maximum size for the sample,
6100                  * we customize the stack dump size to fit in.
6101                  */
6102                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6103                 stack_size = round_up(stack_size, sizeof(u64));
6104         }
6105
6106         return stack_size;
6107 }
6108
6109 static void
6110 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6111                           struct pt_regs *regs)
6112 {
6113         /* Case of a kernel thread, nothing to dump */
6114         if (!regs) {
6115                 u64 size = 0;
6116                 perf_output_put(handle, size);
6117         } else {
6118                 unsigned long sp;
6119                 unsigned int rem;
6120                 u64 dyn_size;
6121                 mm_segment_t fs;
6122
6123                 /*
6124                  * We dump:
6125                  * static size
6126                  *   - the size requested by user or the best one we can fit
6127                  *     in to the sample max size
6128                  * data
6129                  *   - user stack dump data
6130                  * dynamic size
6131                  *   - the actual dumped size
6132                  */
6133
6134                 /* Static size. */
6135                 perf_output_put(handle, dump_size);
6136
6137                 /* Data. */
6138                 sp = perf_user_stack_pointer(regs);
6139                 fs = get_fs();
6140                 set_fs(USER_DS);
6141                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6142                 set_fs(fs);
6143                 dyn_size = dump_size - rem;
6144
6145                 perf_output_skip(handle, rem);
6146
6147                 /* Dynamic size. */
6148                 perf_output_put(handle, dyn_size);
6149         }
6150 }
6151
6152 static void __perf_event_header__init_id(struct perf_event_header *header,
6153                                          struct perf_sample_data *data,
6154                                          struct perf_event *event)
6155 {
6156         u64 sample_type = event->attr.sample_type;
6157
6158         data->type = sample_type;
6159         header->size += event->id_header_size;
6160
6161         if (sample_type & PERF_SAMPLE_TID) {
6162                 /* namespace issues */
6163                 data->tid_entry.pid = perf_event_pid(event, current);
6164                 data->tid_entry.tid = perf_event_tid(event, current);
6165         }
6166
6167         if (sample_type & PERF_SAMPLE_TIME)
6168                 data->time = perf_event_clock(event);
6169
6170         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6171                 data->id = primary_event_id(event);
6172
6173         if (sample_type & PERF_SAMPLE_STREAM_ID)
6174                 data->stream_id = event->id;
6175
6176         if (sample_type & PERF_SAMPLE_CPU) {
6177                 data->cpu_entry.cpu      = raw_smp_processor_id();
6178                 data->cpu_entry.reserved = 0;
6179         }
6180 }
6181
6182 void perf_event_header__init_id(struct perf_event_header *header,
6183                                 struct perf_sample_data *data,
6184                                 struct perf_event *event)
6185 {
6186         if (event->attr.sample_id_all)
6187                 __perf_event_header__init_id(header, data, event);
6188 }
6189
6190 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6191                                            struct perf_sample_data *data)
6192 {
6193         u64 sample_type = data->type;
6194
6195         if (sample_type & PERF_SAMPLE_TID)
6196                 perf_output_put(handle, data->tid_entry);
6197
6198         if (sample_type & PERF_SAMPLE_TIME)
6199                 perf_output_put(handle, data->time);
6200
6201         if (sample_type & PERF_SAMPLE_ID)
6202                 perf_output_put(handle, data->id);
6203
6204         if (sample_type & PERF_SAMPLE_STREAM_ID)
6205                 perf_output_put(handle, data->stream_id);
6206
6207         if (sample_type & PERF_SAMPLE_CPU)
6208                 perf_output_put(handle, data->cpu_entry);
6209
6210         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6211                 perf_output_put(handle, data->id);
6212 }
6213
6214 void perf_event__output_id_sample(struct perf_event *event,
6215                                   struct perf_output_handle *handle,
6216                                   struct perf_sample_data *sample)
6217 {
6218         if (event->attr.sample_id_all)
6219                 __perf_event__output_id_sample(handle, sample);
6220 }
6221
6222 static void perf_output_read_one(struct perf_output_handle *handle,
6223                                  struct perf_event *event,
6224                                  u64 enabled, u64 running)
6225 {
6226         u64 read_format = event->attr.read_format;
6227         u64 values[4];
6228         int n = 0;
6229
6230         values[n++] = perf_event_count(event);
6231         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6232                 values[n++] = enabled +
6233                         atomic64_read(&event->child_total_time_enabled);
6234         }
6235         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6236                 values[n++] = running +
6237                         atomic64_read(&event->child_total_time_running);
6238         }
6239         if (read_format & PERF_FORMAT_ID)
6240                 values[n++] = primary_event_id(event);
6241
6242         __output_copy(handle, values, n * sizeof(u64));
6243 }
6244
6245 static void perf_output_read_group(struct perf_output_handle *handle,
6246                             struct perf_event *event,
6247                             u64 enabled, u64 running)
6248 {
6249         struct perf_event *leader = event->group_leader, *sub;
6250         u64 read_format = event->attr.read_format;
6251         u64 values[5];
6252         int n = 0;
6253
6254         values[n++] = 1 + leader->nr_siblings;
6255
6256         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6257                 values[n++] = enabled;
6258
6259         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6260                 values[n++] = running;
6261
6262         if ((leader != event) &&
6263             (leader->state == PERF_EVENT_STATE_ACTIVE))
6264                 leader->pmu->read(leader);
6265
6266         values[n++] = perf_event_count(leader);
6267         if (read_format & PERF_FORMAT_ID)
6268                 values[n++] = primary_event_id(leader);
6269
6270         __output_copy(handle, values, n * sizeof(u64));
6271
6272         for_each_sibling_event(sub, leader) {
6273                 n = 0;
6274
6275                 if ((sub != event) &&
6276                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6277                         sub->pmu->read(sub);
6278
6279                 values[n++] = perf_event_count(sub);
6280                 if (read_format & PERF_FORMAT_ID)
6281                         values[n++] = primary_event_id(sub);
6282
6283                 __output_copy(handle, values, n * sizeof(u64));
6284         }
6285 }
6286
6287 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6288                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6289
6290 /*
6291  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6292  *
6293  * The problem is that its both hard and excessively expensive to iterate the
6294  * child list, not to mention that its impossible to IPI the children running
6295  * on another CPU, from interrupt/NMI context.
6296  */
6297 static void perf_output_read(struct perf_output_handle *handle,
6298                              struct perf_event *event)
6299 {
6300         u64 enabled = 0, running = 0, now;
6301         u64 read_format = event->attr.read_format;
6302
6303         /*
6304          * compute total_time_enabled, total_time_running
6305          * based on snapshot values taken when the event
6306          * was last scheduled in.
6307          *
6308          * we cannot simply called update_context_time()
6309          * because of locking issue as we are called in
6310          * NMI context
6311          */
6312         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6313                 calc_timer_values(event, &now, &enabled, &running);
6314
6315         if (event->attr.read_format & PERF_FORMAT_GROUP)
6316                 perf_output_read_group(handle, event, enabled, running);
6317         else
6318                 perf_output_read_one(handle, event, enabled, running);
6319 }
6320
6321 void perf_output_sample(struct perf_output_handle *handle,
6322                         struct perf_event_header *header,
6323                         struct perf_sample_data *data,
6324                         struct perf_event *event)
6325 {
6326         u64 sample_type = data->type;
6327
6328         perf_output_put(handle, *header);
6329
6330         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6331                 perf_output_put(handle, data->id);
6332
6333         if (sample_type & PERF_SAMPLE_IP)
6334                 perf_output_put(handle, data->ip);
6335
6336         if (sample_type & PERF_SAMPLE_TID)
6337                 perf_output_put(handle, data->tid_entry);
6338
6339         if (sample_type & PERF_SAMPLE_TIME)
6340                 perf_output_put(handle, data->time);
6341
6342         if (sample_type & PERF_SAMPLE_ADDR)
6343                 perf_output_put(handle, data->addr);
6344
6345         if (sample_type & PERF_SAMPLE_ID)
6346                 perf_output_put(handle, data->id);
6347
6348         if (sample_type & PERF_SAMPLE_STREAM_ID)
6349                 perf_output_put(handle, data->stream_id);
6350
6351         if (sample_type & PERF_SAMPLE_CPU)
6352                 perf_output_put(handle, data->cpu_entry);
6353
6354         if (sample_type & PERF_SAMPLE_PERIOD)
6355                 perf_output_put(handle, data->period);
6356
6357         if (sample_type & PERF_SAMPLE_READ)
6358                 perf_output_read(handle, event);
6359
6360         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6361                 int size = 1;
6362
6363                 size += data->callchain->nr;
6364                 size *= sizeof(u64);
6365                 __output_copy(handle, data->callchain, size);
6366         }
6367
6368         if (sample_type & PERF_SAMPLE_RAW) {
6369                 struct perf_raw_record *raw = data->raw;
6370
6371                 if (raw) {
6372                         struct perf_raw_frag *frag = &raw->frag;
6373
6374                         perf_output_put(handle, raw->size);
6375                         do {
6376                                 if (frag->copy) {
6377                                         __output_custom(handle, frag->copy,
6378                                                         frag->data, frag->size);
6379                                 } else {
6380                                         __output_copy(handle, frag->data,
6381                                                       frag->size);
6382                                 }
6383                                 if (perf_raw_frag_last(frag))
6384                                         break;
6385                                 frag = frag->next;
6386                         } while (1);
6387                         if (frag->pad)
6388                                 __output_skip(handle, NULL, frag->pad);
6389                 } else {
6390                         struct {
6391                                 u32     size;
6392                                 u32     data;
6393                         } raw = {
6394                                 .size = sizeof(u32),
6395                                 .data = 0,
6396                         };
6397                         perf_output_put(handle, raw);
6398                 }
6399         }
6400
6401         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6402                 if (data->br_stack) {
6403                         size_t size;
6404
6405                         size = data->br_stack->nr
6406                              * sizeof(struct perf_branch_entry);
6407
6408                         perf_output_put(handle, data->br_stack->nr);
6409                         perf_output_copy(handle, data->br_stack->entries, size);
6410                 } else {
6411                         /*
6412                          * we always store at least the value of nr
6413                          */
6414                         u64 nr = 0;
6415                         perf_output_put(handle, nr);
6416                 }
6417         }
6418
6419         if (sample_type & PERF_SAMPLE_REGS_USER) {
6420                 u64 abi = data->regs_user.abi;
6421
6422                 /*
6423                  * If there are no regs to dump, notice it through
6424                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6425                  */
6426                 perf_output_put(handle, abi);
6427
6428                 if (abi) {
6429                         u64 mask = event->attr.sample_regs_user;
6430                         perf_output_sample_regs(handle,
6431                                                 data->regs_user.regs,
6432                                                 mask);
6433                 }
6434         }
6435
6436         if (sample_type & PERF_SAMPLE_STACK_USER) {
6437                 perf_output_sample_ustack(handle,
6438                                           data->stack_user_size,
6439                                           data->regs_user.regs);
6440         }
6441
6442         if (sample_type & PERF_SAMPLE_WEIGHT)
6443                 perf_output_put(handle, data->weight);
6444
6445         if (sample_type & PERF_SAMPLE_DATA_SRC)
6446                 perf_output_put(handle, data->data_src.val);
6447
6448         if (sample_type & PERF_SAMPLE_TRANSACTION)
6449                 perf_output_put(handle, data->txn);
6450
6451         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6452                 u64 abi = data->regs_intr.abi;
6453                 /*
6454                  * If there are no regs to dump, notice it through
6455                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6456                  */
6457                 perf_output_put(handle, abi);
6458
6459                 if (abi) {
6460                         u64 mask = event->attr.sample_regs_intr;
6461
6462                         perf_output_sample_regs(handle,
6463                                                 data->regs_intr.regs,
6464                                                 mask);
6465                 }
6466         }
6467
6468         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6469                 perf_output_put(handle, data->phys_addr);
6470
6471         if (!event->attr.watermark) {
6472                 int wakeup_events = event->attr.wakeup_events;
6473
6474                 if (wakeup_events) {
6475                         struct ring_buffer *rb = handle->rb;
6476                         int events = local_inc_return(&rb->events);
6477
6478                         if (events >= wakeup_events) {
6479                                 local_sub(wakeup_events, &rb->events);
6480                                 local_inc(&rb->wakeup);
6481                         }
6482                 }
6483         }
6484 }
6485
6486 static u64 perf_virt_to_phys(u64 virt)
6487 {
6488         u64 phys_addr = 0;
6489         struct page *p = NULL;
6490
6491         if (!virt)
6492                 return 0;
6493
6494         if (virt >= TASK_SIZE) {
6495                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6496                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6497                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6498                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6499         } else {
6500                 /*
6501                  * Walking the pages tables for user address.
6502                  * Interrupts are disabled, so it prevents any tear down
6503                  * of the page tables.
6504                  * Try IRQ-safe __get_user_pages_fast first.
6505                  * If failed, leave phys_addr as 0.
6506                  */
6507                 if ((current->mm != NULL) &&
6508                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6509                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6510
6511                 if (p)
6512                         put_page(p);
6513         }
6514
6515         return phys_addr;
6516 }
6517
6518 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6519
6520 struct perf_callchain_entry *
6521 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6522 {
6523         bool kernel = !event->attr.exclude_callchain_kernel;
6524         bool user   = !event->attr.exclude_callchain_user;
6525         /* Disallow cross-task user callchains. */
6526         bool crosstask = event->ctx->task && event->ctx->task != current;
6527         const u32 max_stack = event->attr.sample_max_stack;
6528         struct perf_callchain_entry *callchain;
6529
6530         if (!kernel && !user)
6531                 return &__empty_callchain;
6532
6533         callchain = get_perf_callchain(regs, 0, kernel, user,
6534                                        max_stack, crosstask, true);
6535         return callchain ?: &__empty_callchain;
6536 }
6537
6538 void perf_prepare_sample(struct perf_event_header *header,
6539                          struct perf_sample_data *data,
6540                          struct perf_event *event,
6541                          struct pt_regs *regs)
6542 {
6543         u64 sample_type = event->attr.sample_type;
6544
6545         header->type = PERF_RECORD_SAMPLE;
6546         header->size = sizeof(*header) + event->header_size;
6547
6548         header->misc = 0;
6549         header->misc |= perf_misc_flags(regs);
6550
6551         __perf_event_header__init_id(header, data, event);
6552
6553         if (sample_type & PERF_SAMPLE_IP)
6554                 data->ip = perf_instruction_pointer(regs);
6555
6556         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6557                 int size = 1;
6558
6559                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6560                         data->callchain = perf_callchain(event, regs);
6561
6562                 size += data->callchain->nr;
6563
6564                 header->size += size * sizeof(u64);
6565         }
6566
6567         if (sample_type & PERF_SAMPLE_RAW) {
6568                 struct perf_raw_record *raw = data->raw;
6569                 int size;
6570
6571                 if (raw) {
6572                         struct perf_raw_frag *frag = &raw->frag;
6573                         u32 sum = 0;
6574
6575                         do {
6576                                 sum += frag->size;
6577                                 if (perf_raw_frag_last(frag))
6578                                         break;
6579                                 frag = frag->next;
6580                         } while (1);
6581
6582                         size = round_up(sum + sizeof(u32), sizeof(u64));
6583                         raw->size = size - sizeof(u32);
6584                         frag->pad = raw->size - sum;
6585                 } else {
6586                         size = sizeof(u64);
6587                 }
6588
6589                 header->size += size;
6590         }
6591
6592         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6593                 int size = sizeof(u64); /* nr */
6594                 if (data->br_stack) {
6595                         size += data->br_stack->nr
6596                               * sizeof(struct perf_branch_entry);
6597                 }
6598                 header->size += size;
6599         }
6600
6601         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6602                 perf_sample_regs_user(&data->regs_user, regs,
6603                                       &data->regs_user_copy);
6604
6605         if (sample_type & PERF_SAMPLE_REGS_USER) {
6606                 /* regs dump ABI info */
6607                 int size = sizeof(u64);
6608
6609                 if (data->regs_user.regs) {
6610                         u64 mask = event->attr.sample_regs_user;
6611                         size += hweight64(mask) * sizeof(u64);
6612                 }
6613
6614                 header->size += size;
6615         }
6616
6617         if (sample_type & PERF_SAMPLE_STACK_USER) {
6618                 /*
6619                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6620                  * processed as the last one or have additional check added
6621                  * in case new sample type is added, because we could eat
6622                  * up the rest of the sample size.
6623                  */
6624                 u16 stack_size = event->attr.sample_stack_user;
6625                 u16 size = sizeof(u64);
6626
6627                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6628                                                      data->regs_user.regs);
6629
6630                 /*
6631                  * If there is something to dump, add space for the dump
6632                  * itself and for the field that tells the dynamic size,
6633                  * which is how many have been actually dumped.
6634                  */
6635                 if (stack_size)
6636                         size += sizeof(u64) + stack_size;
6637
6638                 data->stack_user_size = stack_size;
6639                 header->size += size;
6640         }
6641
6642         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6643                 /* regs dump ABI info */
6644                 int size = sizeof(u64);
6645
6646                 perf_sample_regs_intr(&data->regs_intr, regs);
6647
6648                 if (data->regs_intr.regs) {
6649                         u64 mask = event->attr.sample_regs_intr;
6650
6651                         size += hweight64(mask) * sizeof(u64);
6652                 }
6653
6654                 header->size += size;
6655         }
6656
6657         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6658                 data->phys_addr = perf_virt_to_phys(data->addr);
6659 }
6660
6661 static __always_inline int
6662 __perf_event_output(struct perf_event *event,
6663                     struct perf_sample_data *data,
6664                     struct pt_regs *regs,
6665                     int (*output_begin)(struct perf_output_handle *,
6666                                         struct perf_event *,
6667                                         unsigned int))
6668 {
6669         struct perf_output_handle handle;
6670         struct perf_event_header header;
6671         int err;
6672
6673         /* protect the callchain buffers */
6674         rcu_read_lock();
6675
6676         perf_prepare_sample(&header, data, event, regs);
6677
6678         err = output_begin(&handle, event, header.size);
6679         if (err)
6680                 goto exit;
6681
6682         perf_output_sample(&handle, &header, data, event);
6683
6684         perf_output_end(&handle);
6685
6686 exit:
6687         rcu_read_unlock();
6688         return err;
6689 }
6690
6691 void
6692 perf_event_output_forward(struct perf_event *event,
6693                          struct perf_sample_data *data,
6694                          struct pt_regs *regs)
6695 {
6696         __perf_event_output(event, data, regs, perf_output_begin_forward);
6697 }
6698
6699 void
6700 perf_event_output_backward(struct perf_event *event,
6701                            struct perf_sample_data *data,
6702                            struct pt_regs *regs)
6703 {
6704         __perf_event_output(event, data, regs, perf_output_begin_backward);
6705 }
6706
6707 int
6708 perf_event_output(struct perf_event *event,
6709                   struct perf_sample_data *data,
6710                   struct pt_regs *regs)
6711 {
6712         return __perf_event_output(event, data, regs, perf_output_begin);
6713 }
6714
6715 /*
6716  * read event_id
6717  */
6718
6719 struct perf_read_event {
6720         struct perf_event_header        header;
6721
6722         u32                             pid;
6723         u32                             tid;
6724 };
6725
6726 static void
6727 perf_event_read_event(struct perf_event *event,
6728                         struct task_struct *task)
6729 {
6730         struct perf_output_handle handle;
6731         struct perf_sample_data sample;
6732         struct perf_read_event read_event = {
6733                 .header = {
6734                         .type = PERF_RECORD_READ,
6735                         .misc = 0,
6736                         .size = sizeof(read_event) + event->read_size,
6737                 },
6738                 .pid = perf_event_pid(event, task),
6739                 .tid = perf_event_tid(event, task),
6740         };
6741         int ret;
6742
6743         perf_event_header__init_id(&read_event.header, &sample, event);
6744         ret = perf_output_begin(&handle, event, read_event.header.size);
6745         if (ret)
6746                 return;
6747
6748         perf_output_put(&handle, read_event);
6749         perf_output_read(&handle, event);
6750         perf_event__output_id_sample(event, &handle, &sample);
6751
6752         perf_output_end(&handle);
6753 }
6754
6755 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6756
6757 static void
6758 perf_iterate_ctx(struct perf_event_context *ctx,
6759                    perf_iterate_f output,
6760                    void *data, bool all)
6761 {
6762         struct perf_event *event;
6763
6764         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6765                 if (!all) {
6766                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6767                                 continue;
6768                         if (!event_filter_match(event))
6769                                 continue;
6770                 }
6771
6772                 output(event, data);
6773         }
6774 }
6775
6776 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6777 {
6778         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6779         struct perf_event *event;
6780
6781         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6782                 /*
6783                  * Skip events that are not fully formed yet; ensure that
6784                  * if we observe event->ctx, both event and ctx will be
6785                  * complete enough. See perf_install_in_context().
6786                  */
6787                 if (!smp_load_acquire(&event->ctx))
6788                         continue;
6789
6790                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6791                         continue;
6792                 if (!event_filter_match(event))
6793                         continue;
6794                 output(event, data);
6795         }
6796 }
6797
6798 /*
6799  * Iterate all events that need to receive side-band events.
6800  *
6801  * For new callers; ensure that account_pmu_sb_event() includes
6802  * your event, otherwise it might not get delivered.
6803  */
6804 static void
6805 perf_iterate_sb(perf_iterate_f output, void *data,
6806                struct perf_event_context *task_ctx)
6807 {
6808         struct perf_event_context *ctx;
6809         int ctxn;
6810
6811         rcu_read_lock();
6812         preempt_disable();
6813
6814         /*
6815          * If we have task_ctx != NULL we only notify the task context itself.
6816          * The task_ctx is set only for EXIT events before releasing task
6817          * context.
6818          */
6819         if (task_ctx) {
6820                 perf_iterate_ctx(task_ctx, output, data, false);
6821                 goto done;
6822         }
6823
6824         perf_iterate_sb_cpu(output, data);
6825
6826         for_each_task_context_nr(ctxn) {
6827                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6828                 if (ctx)
6829                         perf_iterate_ctx(ctx, output, data, false);
6830         }
6831 done:
6832         preempt_enable();
6833         rcu_read_unlock();
6834 }
6835
6836 /*
6837  * Clear all file-based filters at exec, they'll have to be
6838  * re-instated when/if these objects are mmapped again.
6839  */
6840 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6841 {
6842         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6843         struct perf_addr_filter *filter;
6844         unsigned int restart = 0, count = 0;
6845         unsigned long flags;
6846
6847         if (!has_addr_filter(event))
6848                 return;
6849
6850         raw_spin_lock_irqsave(&ifh->lock, flags);
6851         list_for_each_entry(filter, &ifh->list, entry) {
6852                 if (filter->path.dentry) {
6853                         event->addr_filter_ranges[count].start = 0;
6854                         event->addr_filter_ranges[count].size = 0;
6855                         restart++;
6856                 }
6857
6858                 count++;
6859         }
6860
6861         if (restart)
6862                 event->addr_filters_gen++;
6863         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6864
6865         if (restart)
6866                 perf_event_stop(event, 1);
6867 }
6868
6869 void perf_event_exec(void)
6870 {
6871         struct perf_event_context *ctx;
6872         int ctxn;
6873
6874         rcu_read_lock();
6875         for_each_task_context_nr(ctxn) {
6876                 ctx = current->perf_event_ctxp[ctxn];
6877                 if (!ctx)
6878                         continue;
6879
6880                 perf_event_enable_on_exec(ctxn);
6881
6882                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6883                                    true);
6884         }
6885         rcu_read_unlock();
6886 }
6887
6888 struct remote_output {
6889         struct ring_buffer      *rb;
6890         int                     err;
6891 };
6892
6893 static void __perf_event_output_stop(struct perf_event *event, void *data)
6894 {
6895         struct perf_event *parent = event->parent;
6896         struct remote_output *ro = data;
6897         struct ring_buffer *rb = ro->rb;
6898         struct stop_event_data sd = {
6899                 .event  = event,
6900         };
6901
6902         if (!has_aux(event))
6903                 return;
6904
6905         if (!parent)
6906                 parent = event;
6907
6908         /*
6909          * In case of inheritance, it will be the parent that links to the
6910          * ring-buffer, but it will be the child that's actually using it.
6911          *
6912          * We are using event::rb to determine if the event should be stopped,
6913          * however this may race with ring_buffer_attach() (through set_output),
6914          * which will make us skip the event that actually needs to be stopped.
6915          * So ring_buffer_attach() has to stop an aux event before re-assigning
6916          * its rb pointer.
6917          */
6918         if (rcu_dereference(parent->rb) == rb)
6919                 ro->err = __perf_event_stop(&sd);
6920 }
6921
6922 static int __perf_pmu_output_stop(void *info)
6923 {
6924         struct perf_event *event = info;
6925         struct pmu *pmu = event->pmu;
6926         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6927         struct remote_output ro = {
6928                 .rb     = event->rb,
6929         };
6930
6931         rcu_read_lock();
6932         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6933         if (cpuctx->task_ctx)
6934                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6935                                    &ro, false);
6936         rcu_read_unlock();
6937
6938         return ro.err;
6939 }
6940
6941 static void perf_pmu_output_stop(struct perf_event *event)
6942 {
6943         struct perf_event *iter;
6944         int err, cpu;
6945
6946 restart:
6947         rcu_read_lock();
6948         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6949                 /*
6950                  * For per-CPU events, we need to make sure that neither they
6951                  * nor their children are running; for cpu==-1 events it's
6952                  * sufficient to stop the event itself if it's active, since
6953                  * it can't have children.
6954                  */
6955                 cpu = iter->cpu;
6956                 if (cpu == -1)
6957                         cpu = READ_ONCE(iter->oncpu);
6958
6959                 if (cpu == -1)
6960                         continue;
6961
6962                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6963                 if (err == -EAGAIN) {
6964                         rcu_read_unlock();
6965                         goto restart;
6966                 }
6967         }
6968         rcu_read_unlock();
6969 }
6970
6971 /*
6972  * task tracking -- fork/exit
6973  *
6974  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6975  */
6976
6977 struct perf_task_event {
6978         struct task_struct              *task;
6979         struct perf_event_context       *task_ctx;
6980
6981         struct {
6982                 struct perf_event_header        header;
6983
6984                 u32                             pid;
6985                 u32                             ppid;
6986                 u32                             tid;
6987                 u32                             ptid;
6988                 u64                             time;
6989         } event_id;
6990 };
6991
6992 static int perf_event_task_match(struct perf_event *event)
6993 {
6994         return event->attr.comm  || event->attr.mmap ||
6995                event->attr.mmap2 || event->attr.mmap_data ||
6996                event->attr.task;
6997 }
6998
6999 static void perf_event_task_output(struct perf_event *event,
7000                                    void *data)
7001 {
7002         struct perf_task_event *task_event = data;
7003         struct perf_output_handle handle;
7004         struct perf_sample_data sample;
7005         struct task_struct *task = task_event->task;
7006         int ret, size = task_event->event_id.header.size;
7007
7008         if (!perf_event_task_match(event))
7009                 return;
7010
7011         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7012
7013         ret = perf_output_begin(&handle, event,
7014                                 task_event->event_id.header.size);
7015         if (ret)
7016                 goto out;
7017
7018         task_event->event_id.pid = perf_event_pid(event, task);
7019         task_event->event_id.ppid = perf_event_pid(event, current);
7020
7021         task_event->event_id.tid = perf_event_tid(event, task);
7022         task_event->event_id.ptid = perf_event_tid(event, current);
7023
7024         task_event->event_id.time = perf_event_clock(event);
7025
7026         perf_output_put(&handle, task_event->event_id);
7027
7028         perf_event__output_id_sample(event, &handle, &sample);
7029
7030         perf_output_end(&handle);
7031 out:
7032         task_event->event_id.header.size = size;
7033 }
7034
7035 static void perf_event_task(struct task_struct *task,
7036                               struct perf_event_context *task_ctx,
7037                               int new)
7038 {
7039         struct perf_task_event task_event;
7040
7041         if (!atomic_read(&nr_comm_events) &&
7042             !atomic_read(&nr_mmap_events) &&
7043             !atomic_read(&nr_task_events))
7044                 return;
7045
7046         task_event = (struct perf_task_event){
7047                 .task     = task,
7048                 .task_ctx = task_ctx,
7049                 .event_id    = {
7050                         .header = {
7051                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7052                                 .misc = 0,
7053                                 .size = sizeof(task_event.event_id),
7054                         },
7055                         /* .pid  */
7056                         /* .ppid */
7057                         /* .tid  */
7058                         /* .ptid */
7059                         /* .time */
7060                 },
7061         };
7062
7063         perf_iterate_sb(perf_event_task_output,
7064                        &task_event,
7065                        task_ctx);
7066 }
7067
7068 void perf_event_fork(struct task_struct *task)
7069 {
7070         perf_event_task(task, NULL, 1);
7071         perf_event_namespaces(task);
7072 }
7073
7074 /*
7075  * comm tracking
7076  */
7077
7078 struct perf_comm_event {
7079         struct task_struct      *task;
7080         char                    *comm;
7081         int                     comm_size;
7082
7083         struct {
7084                 struct perf_event_header        header;
7085
7086                 u32                             pid;
7087                 u32                             tid;
7088         } event_id;
7089 };
7090
7091 static int perf_event_comm_match(struct perf_event *event)
7092 {
7093         return event->attr.comm;
7094 }
7095
7096 static void perf_event_comm_output(struct perf_event *event,
7097                                    void *data)
7098 {
7099         struct perf_comm_event *comm_event = data;
7100         struct perf_output_handle handle;
7101         struct perf_sample_data sample;
7102         int size = comm_event->event_id.header.size;
7103         int ret;
7104
7105         if (!perf_event_comm_match(event))
7106                 return;
7107
7108         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7109         ret = perf_output_begin(&handle, event,
7110                                 comm_event->event_id.header.size);
7111
7112         if (ret)
7113                 goto out;
7114
7115         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7116         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7117
7118         perf_output_put(&handle, comm_event->event_id);
7119         __output_copy(&handle, comm_event->comm,
7120                                    comm_event->comm_size);
7121
7122         perf_event__output_id_sample(event, &handle, &sample);
7123
7124         perf_output_end(&handle);
7125 out:
7126         comm_event->event_id.header.size = size;
7127 }
7128
7129 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7130 {
7131         char comm[TASK_COMM_LEN];
7132         unsigned int size;
7133
7134         memset(comm, 0, sizeof(comm));
7135         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7136         size = ALIGN(strlen(comm)+1, sizeof(u64));
7137
7138         comm_event->comm = comm;
7139         comm_event->comm_size = size;
7140
7141         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7142
7143         perf_iterate_sb(perf_event_comm_output,
7144                        comm_event,
7145                        NULL);
7146 }
7147
7148 void perf_event_comm(struct task_struct *task, bool exec)
7149 {
7150         struct perf_comm_event comm_event;
7151
7152         if (!atomic_read(&nr_comm_events))
7153                 return;
7154
7155         comm_event = (struct perf_comm_event){
7156                 .task   = task,
7157                 /* .comm      */
7158                 /* .comm_size */
7159                 .event_id  = {
7160                         .header = {
7161                                 .type = PERF_RECORD_COMM,
7162                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7163                                 /* .size */
7164                         },
7165                         /* .pid */
7166                         /* .tid */
7167                 },
7168         };
7169
7170         perf_event_comm_event(&comm_event);
7171 }
7172
7173 /*
7174  * namespaces tracking
7175  */
7176
7177 struct perf_namespaces_event {
7178         struct task_struct              *task;
7179
7180         struct {
7181                 struct perf_event_header        header;
7182
7183                 u32                             pid;
7184                 u32                             tid;
7185                 u64                             nr_namespaces;
7186                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7187         } event_id;
7188 };
7189
7190 static int perf_event_namespaces_match(struct perf_event *event)
7191 {
7192         return event->attr.namespaces;
7193 }
7194
7195 static void perf_event_namespaces_output(struct perf_event *event,
7196                                          void *data)
7197 {
7198         struct perf_namespaces_event *namespaces_event = data;
7199         struct perf_output_handle handle;
7200         struct perf_sample_data sample;
7201         u16 header_size = namespaces_event->event_id.header.size;
7202         int ret;
7203
7204         if (!perf_event_namespaces_match(event))
7205                 return;
7206
7207         perf_event_header__init_id(&namespaces_event->event_id.header,
7208                                    &sample, event);
7209         ret = perf_output_begin(&handle, event,
7210                                 namespaces_event->event_id.header.size);
7211         if (ret)
7212                 goto out;
7213
7214         namespaces_event->event_id.pid = perf_event_pid(event,
7215                                                         namespaces_event->task);
7216         namespaces_event->event_id.tid = perf_event_tid(event,
7217                                                         namespaces_event->task);
7218
7219         perf_output_put(&handle, namespaces_event->event_id);
7220
7221         perf_event__output_id_sample(event, &handle, &sample);
7222
7223         perf_output_end(&handle);
7224 out:
7225         namespaces_event->event_id.header.size = header_size;
7226 }
7227
7228 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7229                                    struct task_struct *task,
7230                                    const struct proc_ns_operations *ns_ops)
7231 {
7232         struct path ns_path;
7233         struct inode *ns_inode;
7234         void *error;
7235
7236         error = ns_get_path(&ns_path, task, ns_ops);
7237         if (!error) {
7238                 ns_inode = ns_path.dentry->d_inode;
7239                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7240                 ns_link_info->ino = ns_inode->i_ino;
7241                 path_put(&ns_path);
7242         }
7243 }
7244
7245 void perf_event_namespaces(struct task_struct *task)
7246 {
7247         struct perf_namespaces_event namespaces_event;
7248         struct perf_ns_link_info *ns_link_info;
7249
7250         if (!atomic_read(&nr_namespaces_events))
7251                 return;
7252
7253         namespaces_event = (struct perf_namespaces_event){
7254                 .task   = task,
7255                 .event_id  = {
7256                         .header = {
7257                                 .type = PERF_RECORD_NAMESPACES,
7258                                 .misc = 0,
7259                                 .size = sizeof(namespaces_event.event_id),
7260                         },
7261                         /* .pid */
7262                         /* .tid */
7263                         .nr_namespaces = NR_NAMESPACES,
7264                         /* .link_info[NR_NAMESPACES] */
7265                 },
7266         };
7267
7268         ns_link_info = namespaces_event.event_id.link_info;
7269
7270         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7271                                task, &mntns_operations);
7272
7273 #ifdef CONFIG_USER_NS
7274         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7275                                task, &userns_operations);
7276 #endif
7277 #ifdef CONFIG_NET_NS
7278         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7279                                task, &netns_operations);
7280 #endif
7281 #ifdef CONFIG_UTS_NS
7282         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7283                                task, &utsns_operations);
7284 #endif
7285 #ifdef CONFIG_IPC_NS
7286         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7287                                task, &ipcns_operations);
7288 #endif
7289 #ifdef CONFIG_PID_NS
7290         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7291                                task, &pidns_operations);
7292 #endif
7293 #ifdef CONFIG_CGROUPS
7294         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7295                                task, &cgroupns_operations);
7296 #endif
7297
7298         perf_iterate_sb(perf_event_namespaces_output,
7299                         &namespaces_event,
7300                         NULL);
7301 }
7302
7303 /*
7304  * mmap tracking
7305  */
7306
7307 struct perf_mmap_event {
7308         struct vm_area_struct   *vma;
7309
7310         const char              *file_name;
7311         int                     file_size;
7312         int                     maj, min;
7313         u64                     ino;
7314         u64                     ino_generation;
7315         u32                     prot, flags;
7316
7317         struct {
7318                 struct perf_event_header        header;
7319
7320                 u32                             pid;
7321                 u32                             tid;
7322                 u64                             start;
7323                 u64                             len;
7324                 u64                             pgoff;
7325         } event_id;
7326 };
7327
7328 static int perf_event_mmap_match(struct perf_event *event,
7329                                  void *data)
7330 {
7331         struct perf_mmap_event *mmap_event = data;
7332         struct vm_area_struct *vma = mmap_event->vma;
7333         int executable = vma->vm_flags & VM_EXEC;
7334
7335         return (!executable && event->attr.mmap_data) ||
7336                (executable && (event->attr.mmap || event->attr.mmap2));
7337 }
7338
7339 static void perf_event_mmap_output(struct perf_event *event,
7340                                    void *data)
7341 {
7342         struct perf_mmap_event *mmap_event = data;
7343         struct perf_output_handle handle;
7344         struct perf_sample_data sample;
7345         int size = mmap_event->event_id.header.size;
7346         u32 type = mmap_event->event_id.header.type;
7347         int ret;
7348
7349         if (!perf_event_mmap_match(event, data))
7350                 return;
7351
7352         if (event->attr.mmap2) {
7353                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7354                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7355                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7356                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7357                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7358                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7359                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7360         }
7361
7362         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7363         ret = perf_output_begin(&handle, event,
7364                                 mmap_event->event_id.header.size);
7365         if (ret)
7366                 goto out;
7367
7368         mmap_event->event_id.pid = perf_event_pid(event, current);
7369         mmap_event->event_id.tid = perf_event_tid(event, current);
7370
7371         perf_output_put(&handle, mmap_event->event_id);
7372
7373         if (event->attr.mmap2) {
7374                 perf_output_put(&handle, mmap_event->maj);
7375                 perf_output_put(&handle, mmap_event->min);
7376                 perf_output_put(&handle, mmap_event->ino);
7377                 perf_output_put(&handle, mmap_event->ino_generation);
7378                 perf_output_put(&handle, mmap_event->prot);
7379                 perf_output_put(&handle, mmap_event->flags);
7380         }
7381
7382         __output_copy(&handle, mmap_event->file_name,
7383                                    mmap_event->file_size);
7384
7385         perf_event__output_id_sample(event, &handle, &sample);
7386
7387         perf_output_end(&handle);
7388 out:
7389         mmap_event->event_id.header.size = size;
7390         mmap_event->event_id.header.type = type;
7391 }
7392
7393 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7394 {
7395         struct vm_area_struct *vma = mmap_event->vma;
7396         struct file *file = vma->vm_file;
7397         int maj = 0, min = 0;
7398         u64 ino = 0, gen = 0;
7399         u32 prot = 0, flags = 0;
7400         unsigned int size;
7401         char tmp[16];
7402         char *buf = NULL;
7403         char *name;
7404
7405         if (vma->vm_flags & VM_READ)
7406                 prot |= PROT_READ;
7407         if (vma->vm_flags & VM_WRITE)
7408                 prot |= PROT_WRITE;
7409         if (vma->vm_flags & VM_EXEC)
7410                 prot |= PROT_EXEC;
7411
7412         if (vma->vm_flags & VM_MAYSHARE)
7413                 flags = MAP_SHARED;
7414         else
7415                 flags = MAP_PRIVATE;
7416
7417         if (vma->vm_flags & VM_DENYWRITE)
7418                 flags |= MAP_DENYWRITE;
7419         if (vma->vm_flags & VM_MAYEXEC)
7420                 flags |= MAP_EXECUTABLE;
7421         if (vma->vm_flags & VM_LOCKED)
7422                 flags |= MAP_LOCKED;
7423         if (vma->vm_flags & VM_HUGETLB)
7424                 flags |= MAP_HUGETLB;
7425
7426         if (file) {
7427                 struct inode *inode;
7428                 dev_t dev;
7429
7430                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7431                 if (!buf) {
7432                         name = "//enomem";
7433                         goto cpy_name;
7434                 }
7435                 /*
7436                  * d_path() works from the end of the rb backwards, so we
7437                  * need to add enough zero bytes after the string to handle
7438                  * the 64bit alignment we do later.
7439                  */
7440                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7441                 if (IS_ERR(name)) {
7442                         name = "//toolong";
7443                         goto cpy_name;
7444                 }
7445                 inode = file_inode(vma->vm_file);
7446                 dev = inode->i_sb->s_dev;
7447                 ino = inode->i_ino;
7448                 gen = inode->i_generation;
7449                 maj = MAJOR(dev);
7450                 min = MINOR(dev);
7451
7452                 goto got_name;
7453         } else {
7454                 if (vma->vm_ops && vma->vm_ops->name) {
7455                         name = (char *) vma->vm_ops->name(vma);
7456                         if (name)
7457                                 goto cpy_name;
7458                 }
7459
7460                 name = (char *)arch_vma_name(vma);
7461                 if (name)
7462                         goto cpy_name;
7463
7464                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7465                                 vma->vm_end >= vma->vm_mm->brk) {
7466                         name = "[heap]";
7467                         goto cpy_name;
7468                 }
7469                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7470                                 vma->vm_end >= vma->vm_mm->start_stack) {
7471                         name = "[stack]";
7472                         goto cpy_name;
7473                 }
7474
7475                 name = "//anon";
7476                 goto cpy_name;
7477         }
7478
7479 cpy_name:
7480         strlcpy(tmp, name, sizeof(tmp));
7481         name = tmp;
7482 got_name:
7483         /*
7484          * Since our buffer works in 8 byte units we need to align our string
7485          * size to a multiple of 8. However, we must guarantee the tail end is
7486          * zero'd out to avoid leaking random bits to userspace.
7487          */
7488         size = strlen(name)+1;
7489         while (!IS_ALIGNED(size, sizeof(u64)))
7490                 name[size++] = '\0';
7491
7492         mmap_event->file_name = name;
7493         mmap_event->file_size = size;
7494         mmap_event->maj = maj;
7495         mmap_event->min = min;
7496         mmap_event->ino = ino;
7497         mmap_event->ino_generation = gen;
7498         mmap_event->prot = prot;
7499         mmap_event->flags = flags;
7500
7501         if (!(vma->vm_flags & VM_EXEC))
7502                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7503
7504         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7505
7506         perf_iterate_sb(perf_event_mmap_output,
7507                        mmap_event,
7508                        NULL);
7509
7510         kfree(buf);
7511 }
7512
7513 /*
7514  * Check whether inode and address range match filter criteria.
7515  */
7516 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7517                                      struct file *file, unsigned long offset,
7518                                      unsigned long size)
7519 {
7520         /* d_inode(NULL) won't be equal to any mapped user-space file */
7521         if (!filter->path.dentry)
7522                 return false;
7523
7524         if (d_inode(filter->path.dentry) != file_inode(file))
7525                 return false;
7526
7527         if (filter->offset > offset + size)
7528                 return false;
7529
7530         if (filter->offset + filter->size < offset)
7531                 return false;
7532
7533         return true;
7534 }
7535
7536 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7537                                         struct vm_area_struct *vma,
7538                                         struct perf_addr_filter_range *fr)
7539 {
7540         unsigned long vma_size = vma->vm_end - vma->vm_start;
7541         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7542         struct file *file = vma->vm_file;
7543
7544         if (!perf_addr_filter_match(filter, file, off, vma_size))
7545                 return false;
7546
7547         if (filter->offset < off) {
7548                 fr->start = vma->vm_start;
7549                 fr->size = min(vma_size, filter->size - (off - filter->offset));
7550         } else {
7551                 fr->start = vma->vm_start + filter->offset - off;
7552                 fr->size = min(vma->vm_end - fr->start, filter->size);
7553         }
7554
7555         return true;
7556 }
7557
7558 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7559 {
7560         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7561         struct vm_area_struct *vma = data;
7562         struct perf_addr_filter *filter;
7563         unsigned int restart = 0, count = 0;
7564         unsigned long flags;
7565
7566         if (!has_addr_filter(event))
7567                 return;
7568
7569         if (!vma->vm_file)
7570                 return;
7571
7572         raw_spin_lock_irqsave(&ifh->lock, flags);
7573         list_for_each_entry(filter, &ifh->list, entry) {
7574                 if (perf_addr_filter_vma_adjust(filter, vma,
7575                                                 &event->addr_filter_ranges[count]))
7576                         restart++;
7577
7578                 count++;
7579         }
7580
7581         if (restart)
7582                 event->addr_filters_gen++;
7583         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7584
7585         if (restart)
7586                 perf_event_stop(event, 1);
7587 }
7588
7589 /*
7590  * Adjust all task's events' filters to the new vma
7591  */
7592 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7593 {
7594         struct perf_event_context *ctx;
7595         int ctxn;
7596
7597         /*
7598          * Data tracing isn't supported yet and as such there is no need
7599          * to keep track of anything that isn't related to executable code:
7600          */
7601         if (!(vma->vm_flags & VM_EXEC))
7602                 return;
7603
7604         rcu_read_lock();
7605         for_each_task_context_nr(ctxn) {
7606                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7607                 if (!ctx)
7608                         continue;
7609
7610                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7611         }
7612         rcu_read_unlock();
7613 }
7614
7615 void perf_event_mmap(struct vm_area_struct *vma)
7616 {
7617         struct perf_mmap_event mmap_event;
7618
7619         if (!atomic_read(&nr_mmap_events))
7620                 return;
7621
7622         mmap_event = (struct perf_mmap_event){
7623                 .vma    = vma,
7624                 /* .file_name */
7625                 /* .file_size */
7626                 .event_id  = {
7627                         .header = {
7628                                 .type = PERF_RECORD_MMAP,
7629                                 .misc = PERF_RECORD_MISC_USER,
7630                                 /* .size */
7631                         },
7632                         /* .pid */
7633                         /* .tid */
7634                         .start  = vma->vm_start,
7635                         .len    = vma->vm_end - vma->vm_start,
7636                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7637                 },
7638                 /* .maj (attr_mmap2 only) */
7639                 /* .min (attr_mmap2 only) */
7640                 /* .ino (attr_mmap2 only) */
7641                 /* .ino_generation (attr_mmap2 only) */
7642                 /* .prot (attr_mmap2 only) */
7643                 /* .flags (attr_mmap2 only) */
7644         };
7645
7646         perf_addr_filters_adjust(vma);
7647         perf_event_mmap_event(&mmap_event);
7648 }
7649
7650 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7651                           unsigned long size, u64 flags)
7652 {
7653         struct perf_output_handle handle;
7654         struct perf_sample_data sample;
7655         struct perf_aux_event {
7656                 struct perf_event_header        header;
7657                 u64                             offset;
7658                 u64                             size;
7659                 u64                             flags;
7660         } rec = {
7661                 .header = {
7662                         .type = PERF_RECORD_AUX,
7663                         .misc = 0,
7664                         .size = sizeof(rec),
7665                 },
7666                 .offset         = head,
7667                 .size           = size,
7668                 .flags          = flags,
7669         };
7670         int ret;
7671
7672         perf_event_header__init_id(&rec.header, &sample, event);
7673         ret = perf_output_begin(&handle, event, rec.header.size);
7674
7675         if (ret)
7676                 return;
7677
7678         perf_output_put(&handle, rec);
7679         perf_event__output_id_sample(event, &handle, &sample);
7680
7681         perf_output_end(&handle);
7682 }
7683
7684 /*
7685  * Lost/dropped samples logging
7686  */
7687 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7688 {
7689         struct perf_output_handle handle;
7690         struct perf_sample_data sample;
7691         int ret;
7692
7693         struct {
7694                 struct perf_event_header        header;
7695                 u64                             lost;
7696         } lost_samples_event = {
7697                 .header = {
7698                         .type = PERF_RECORD_LOST_SAMPLES,
7699                         .misc = 0,
7700                         .size = sizeof(lost_samples_event),
7701                 },
7702                 .lost           = lost,
7703         };
7704
7705         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7706
7707         ret = perf_output_begin(&handle, event,
7708                                 lost_samples_event.header.size);
7709         if (ret)
7710                 return;
7711
7712         perf_output_put(&handle, lost_samples_event);
7713         perf_event__output_id_sample(event, &handle, &sample);
7714         perf_output_end(&handle);
7715 }
7716
7717 /*
7718  * context_switch tracking
7719  */
7720
7721 struct perf_switch_event {
7722         struct task_struct      *task;
7723         struct task_struct      *next_prev;
7724
7725         struct {
7726                 struct perf_event_header        header;
7727                 u32                             next_prev_pid;
7728                 u32                             next_prev_tid;
7729         } event_id;
7730 };
7731
7732 static int perf_event_switch_match(struct perf_event *event)
7733 {
7734         return event->attr.context_switch;
7735 }
7736
7737 static void perf_event_switch_output(struct perf_event *event, void *data)
7738 {
7739         struct perf_switch_event *se = data;
7740         struct perf_output_handle handle;
7741         struct perf_sample_data sample;
7742         int ret;
7743
7744         if (!perf_event_switch_match(event))
7745                 return;
7746
7747         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7748         if (event->ctx->task) {
7749                 se->event_id.header.type = PERF_RECORD_SWITCH;
7750                 se->event_id.header.size = sizeof(se->event_id.header);
7751         } else {
7752                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7753                 se->event_id.header.size = sizeof(se->event_id);
7754                 se->event_id.next_prev_pid =
7755                                         perf_event_pid(event, se->next_prev);
7756                 se->event_id.next_prev_tid =
7757                                         perf_event_tid(event, se->next_prev);
7758         }
7759
7760         perf_event_header__init_id(&se->event_id.header, &sample, event);
7761
7762         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7763         if (ret)
7764                 return;
7765
7766         if (event->ctx->task)
7767                 perf_output_put(&handle, se->event_id.header);
7768         else
7769                 perf_output_put(&handle, se->event_id);
7770
7771         perf_event__output_id_sample(event, &handle, &sample);
7772
7773         perf_output_end(&handle);
7774 }
7775
7776 static void perf_event_switch(struct task_struct *task,
7777                               struct task_struct *next_prev, bool sched_in)
7778 {
7779         struct perf_switch_event switch_event;
7780
7781         /* N.B. caller checks nr_switch_events != 0 */
7782
7783         switch_event = (struct perf_switch_event){
7784                 .task           = task,
7785                 .next_prev      = next_prev,
7786                 .event_id       = {
7787                         .header = {
7788                                 /* .type */
7789                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7790                                 /* .size */
7791                         },
7792                         /* .next_prev_pid */
7793                         /* .next_prev_tid */
7794                 },
7795         };
7796
7797         if (!sched_in && task->state == TASK_RUNNING)
7798                 switch_event.event_id.header.misc |=
7799                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7800
7801         perf_iterate_sb(perf_event_switch_output,
7802                        &switch_event,
7803                        NULL);
7804 }
7805
7806 /*
7807  * IRQ throttle logging
7808  */
7809
7810 static void perf_log_throttle(struct perf_event *event, int enable)
7811 {
7812         struct perf_output_handle handle;
7813         struct perf_sample_data sample;
7814         int ret;
7815
7816         struct {
7817                 struct perf_event_header        header;
7818                 u64                             time;
7819                 u64                             id;
7820                 u64                             stream_id;
7821         } throttle_event = {
7822                 .header = {
7823                         .type = PERF_RECORD_THROTTLE,
7824                         .misc = 0,
7825                         .size = sizeof(throttle_event),
7826                 },
7827                 .time           = perf_event_clock(event),
7828                 .id             = primary_event_id(event),
7829                 .stream_id      = event->id,
7830         };
7831
7832         if (enable)
7833                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7834
7835         perf_event_header__init_id(&throttle_event.header, &sample, event);
7836
7837         ret = perf_output_begin(&handle, event,
7838                                 throttle_event.header.size);
7839         if (ret)
7840                 return;
7841
7842         perf_output_put(&handle, throttle_event);
7843         perf_event__output_id_sample(event, &handle, &sample);
7844         perf_output_end(&handle);
7845 }
7846
7847 /*
7848  * ksymbol register/unregister tracking
7849  */
7850
7851 struct perf_ksymbol_event {
7852         const char      *name;
7853         int             name_len;
7854         struct {
7855                 struct perf_event_header        header;
7856                 u64                             addr;
7857                 u32                             len;
7858                 u16                             ksym_type;
7859                 u16                             flags;
7860         } event_id;
7861 };
7862
7863 static int perf_event_ksymbol_match(struct perf_event *event)
7864 {
7865         return event->attr.ksymbol;
7866 }
7867
7868 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7869 {
7870         struct perf_ksymbol_event *ksymbol_event = data;
7871         struct perf_output_handle handle;
7872         struct perf_sample_data sample;
7873         int ret;
7874
7875         if (!perf_event_ksymbol_match(event))
7876                 return;
7877
7878         perf_event_header__init_id(&ksymbol_event->event_id.header,
7879                                    &sample, event);
7880         ret = perf_output_begin(&handle, event,
7881                                 ksymbol_event->event_id.header.size);
7882         if (ret)
7883                 return;
7884
7885         perf_output_put(&handle, ksymbol_event->event_id);
7886         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7887         perf_event__output_id_sample(event, &handle, &sample);
7888
7889         perf_output_end(&handle);
7890 }
7891
7892 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7893                         const char *sym)
7894 {
7895         struct perf_ksymbol_event ksymbol_event;
7896         char name[KSYM_NAME_LEN];
7897         u16 flags = 0;
7898         int name_len;
7899
7900         if (!atomic_read(&nr_ksymbol_events))
7901                 return;
7902
7903         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7904             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7905                 goto err;
7906
7907         strlcpy(name, sym, KSYM_NAME_LEN);
7908         name_len = strlen(name) + 1;
7909         while (!IS_ALIGNED(name_len, sizeof(u64)))
7910                 name[name_len++] = '\0';
7911         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7912
7913         if (unregister)
7914                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7915
7916         ksymbol_event = (struct perf_ksymbol_event){
7917                 .name = name,
7918                 .name_len = name_len,
7919                 .event_id = {
7920                         .header = {
7921                                 .type = PERF_RECORD_KSYMBOL,
7922                                 .size = sizeof(ksymbol_event.event_id) +
7923                                         name_len,
7924                         },
7925                         .addr = addr,
7926                         .len = len,
7927                         .ksym_type = ksym_type,
7928                         .flags = flags,
7929                 },
7930         };
7931
7932         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7933         return;
7934 err:
7935         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7936 }
7937
7938 /*
7939  * bpf program load/unload tracking
7940  */
7941
7942 struct perf_bpf_event {
7943         struct bpf_prog *prog;
7944         struct {
7945                 struct perf_event_header        header;
7946                 u16                             type;
7947                 u16                             flags;
7948                 u32                             id;
7949                 u8                              tag[BPF_TAG_SIZE];
7950         } event_id;
7951 };
7952
7953 static int perf_event_bpf_match(struct perf_event *event)
7954 {
7955         return event->attr.bpf_event;
7956 }
7957
7958 static void perf_event_bpf_output(struct perf_event *event, void *data)
7959 {
7960         struct perf_bpf_event *bpf_event = data;
7961         struct perf_output_handle handle;
7962         struct perf_sample_data sample;
7963         int ret;
7964
7965         if (!perf_event_bpf_match(event))
7966                 return;
7967
7968         perf_event_header__init_id(&bpf_event->event_id.header,
7969                                    &sample, event);
7970         ret = perf_output_begin(&handle, event,
7971                                 bpf_event->event_id.header.size);
7972         if (ret)
7973                 return;
7974
7975         perf_output_put(&handle, bpf_event->event_id);
7976         perf_event__output_id_sample(event, &handle, &sample);
7977
7978         perf_output_end(&handle);
7979 }
7980
7981 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7982                                          enum perf_bpf_event_type type)
7983 {
7984         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7985         char sym[KSYM_NAME_LEN];
7986         int i;
7987
7988         if (prog->aux->func_cnt == 0) {
7989                 bpf_get_prog_name(prog, sym);
7990                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7991                                    (u64)(unsigned long)prog->bpf_func,
7992                                    prog->jited_len, unregister, sym);
7993         } else {
7994                 for (i = 0; i < prog->aux->func_cnt; i++) {
7995                         struct bpf_prog *subprog = prog->aux->func[i];
7996
7997                         bpf_get_prog_name(subprog, sym);
7998                         perf_event_ksymbol(
7999                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8000                                 (u64)(unsigned long)subprog->bpf_func,
8001                                 subprog->jited_len, unregister, sym);
8002                 }
8003         }
8004 }
8005
8006 void perf_event_bpf_event(struct bpf_prog *prog,
8007                           enum perf_bpf_event_type type,
8008                           u16 flags)
8009 {
8010         struct perf_bpf_event bpf_event;
8011
8012         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8013             type >= PERF_BPF_EVENT_MAX)
8014                 return;
8015
8016         switch (type) {
8017         case PERF_BPF_EVENT_PROG_LOAD:
8018         case PERF_BPF_EVENT_PROG_UNLOAD:
8019                 if (atomic_read(&nr_ksymbol_events))
8020                         perf_event_bpf_emit_ksymbols(prog, type);
8021                 break;
8022         default:
8023                 break;
8024         }
8025
8026         if (!atomic_read(&nr_bpf_events))
8027                 return;
8028
8029         bpf_event = (struct perf_bpf_event){
8030                 .prog = prog,
8031                 .event_id = {
8032                         .header = {
8033                                 .type = PERF_RECORD_BPF_EVENT,
8034                                 .size = sizeof(bpf_event.event_id),
8035                         },
8036                         .type = type,
8037                         .flags = flags,
8038                         .id = prog->aux->id,
8039                 },
8040         };
8041
8042         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8043
8044         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8045         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8046 }
8047
8048 void perf_event_itrace_started(struct perf_event *event)
8049 {
8050         event->attach_state |= PERF_ATTACH_ITRACE;
8051 }
8052
8053 static void perf_log_itrace_start(struct perf_event *event)
8054 {
8055         struct perf_output_handle handle;
8056         struct perf_sample_data sample;
8057         struct perf_aux_event {
8058                 struct perf_event_header        header;
8059                 u32                             pid;
8060                 u32                             tid;
8061         } rec;
8062         int ret;
8063
8064         if (event->parent)
8065                 event = event->parent;
8066
8067         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8068             event->attach_state & PERF_ATTACH_ITRACE)
8069                 return;
8070
8071         rec.header.type = PERF_RECORD_ITRACE_START;
8072         rec.header.misc = 0;
8073         rec.header.size = sizeof(rec);
8074         rec.pid = perf_event_pid(event, current);
8075         rec.tid = perf_event_tid(event, current);
8076
8077         perf_event_header__init_id(&rec.header, &sample, event);
8078         ret = perf_output_begin(&handle, event, rec.header.size);
8079
8080         if (ret)
8081                 return;
8082
8083         perf_output_put(&handle, rec);
8084         perf_event__output_id_sample(event, &handle, &sample);
8085
8086         perf_output_end(&handle);
8087 }
8088
8089 static int
8090 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8091 {
8092         struct hw_perf_event *hwc = &event->hw;
8093         int ret = 0;
8094         u64 seq;
8095
8096         seq = __this_cpu_read(perf_throttled_seq);
8097         if (seq != hwc->interrupts_seq) {
8098                 hwc->interrupts_seq = seq;
8099                 hwc->interrupts = 1;
8100         } else {
8101                 hwc->interrupts++;
8102                 if (unlikely(throttle
8103                              && hwc->interrupts >= max_samples_per_tick)) {
8104                         __this_cpu_inc(perf_throttled_count);
8105                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8106                         hwc->interrupts = MAX_INTERRUPTS;
8107                         perf_log_throttle(event, 0);
8108                         ret = 1;
8109                 }
8110         }
8111
8112         if (event->attr.freq) {
8113                 u64 now = perf_clock();
8114                 s64 delta = now - hwc->freq_time_stamp;
8115
8116                 hwc->freq_time_stamp = now;
8117
8118                 if (delta > 0 && delta < 2*TICK_NSEC)
8119                         perf_adjust_period(event, delta, hwc->last_period, true);
8120         }
8121
8122         return ret;
8123 }
8124
8125 int perf_event_account_interrupt(struct perf_event *event)
8126 {
8127         return __perf_event_account_interrupt(event, 1);
8128 }
8129
8130 /*
8131  * Generic event overflow handling, sampling.
8132  */
8133
8134 static int __perf_event_overflow(struct perf_event *event,
8135                                    int throttle, struct perf_sample_data *data,
8136                                    struct pt_regs *regs)
8137 {
8138         int events = atomic_read(&event->event_limit);
8139         int ret = 0;
8140
8141         /*
8142          * Non-sampling counters might still use the PMI to fold short
8143          * hardware counters, ignore those.
8144          */
8145         if (unlikely(!is_sampling_event(event)))
8146                 return 0;
8147
8148         ret = __perf_event_account_interrupt(event, throttle);
8149
8150         /*
8151          * XXX event_limit might not quite work as expected on inherited
8152          * events
8153          */
8154
8155         event->pending_kill = POLL_IN;
8156         if (events && atomic_dec_and_test(&event->event_limit)) {
8157                 ret = 1;
8158                 event->pending_kill = POLL_HUP;
8159
8160                 perf_event_disable_inatomic(event);
8161         }
8162
8163         READ_ONCE(event->overflow_handler)(event, data, regs);
8164
8165         if (*perf_event_fasync(event) && event->pending_kill) {
8166                 event->pending_wakeup = 1;
8167                 irq_work_queue(&event->pending);
8168         }
8169
8170         return ret;
8171 }
8172
8173 int perf_event_overflow(struct perf_event *event,
8174                           struct perf_sample_data *data,
8175                           struct pt_regs *regs)
8176 {
8177         return __perf_event_overflow(event, 1, data, regs);
8178 }
8179
8180 /*
8181  * Generic software event infrastructure
8182  */
8183
8184 struct swevent_htable {
8185         struct swevent_hlist            *swevent_hlist;
8186         struct mutex                    hlist_mutex;
8187         int                             hlist_refcount;
8188
8189         /* Recursion avoidance in each contexts */
8190         int                             recursion[PERF_NR_CONTEXTS];
8191 };
8192
8193 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8194
8195 /*
8196  * We directly increment event->count and keep a second value in
8197  * event->hw.period_left to count intervals. This period event
8198  * is kept in the range [-sample_period, 0] so that we can use the
8199  * sign as trigger.
8200  */
8201
8202 u64 perf_swevent_set_period(struct perf_event *event)
8203 {
8204         struct hw_perf_event *hwc = &event->hw;
8205         u64 period = hwc->last_period;
8206         u64 nr, offset;
8207         s64 old, val;
8208
8209         hwc->last_period = hwc->sample_period;
8210
8211 again:
8212         old = val = local64_read(&hwc->period_left);
8213         if (val < 0)
8214                 return 0;
8215
8216         nr = div64_u64(period + val, period);
8217         offset = nr * period;
8218         val -= offset;
8219         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8220                 goto again;
8221
8222         return nr;
8223 }
8224
8225 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8226                                     struct perf_sample_data *data,
8227                                     struct pt_regs *regs)
8228 {
8229         struct hw_perf_event *hwc = &event->hw;
8230         int throttle = 0;
8231
8232         if (!overflow)
8233                 overflow = perf_swevent_set_period(event);
8234
8235         if (hwc->interrupts == MAX_INTERRUPTS)
8236                 return;
8237
8238         for (; overflow; overflow--) {
8239                 if (__perf_event_overflow(event, throttle,
8240                                             data, regs)) {
8241                         /*
8242                          * We inhibit the overflow from happening when
8243                          * hwc->interrupts == MAX_INTERRUPTS.
8244                          */
8245                         break;
8246                 }
8247                 throttle = 1;
8248         }
8249 }
8250
8251 static void perf_swevent_event(struct perf_event *event, u64 nr,
8252                                struct perf_sample_data *data,
8253                                struct pt_regs *regs)
8254 {
8255         struct hw_perf_event *hwc = &event->hw;
8256
8257         local64_add(nr, &event->count);
8258
8259         if (!regs)
8260                 return;
8261
8262         if (!is_sampling_event(event))
8263                 return;
8264
8265         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8266                 data->period = nr;
8267                 return perf_swevent_overflow(event, 1, data, regs);
8268         } else
8269                 data->period = event->hw.last_period;
8270
8271         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8272                 return perf_swevent_overflow(event, 1, data, regs);
8273
8274         if (local64_add_negative(nr, &hwc->period_left))
8275                 return;
8276
8277         perf_swevent_overflow(event, 0, data, regs);
8278 }
8279
8280 static int perf_exclude_event(struct perf_event *event,
8281                               struct pt_regs *regs)
8282 {
8283         if (event->hw.state & PERF_HES_STOPPED)
8284                 return 1;
8285
8286         if (regs) {
8287                 if (event->attr.exclude_user && user_mode(regs))
8288                         return 1;
8289
8290                 if (event->attr.exclude_kernel && !user_mode(regs))
8291                         return 1;
8292         }
8293
8294         return 0;
8295 }
8296
8297 static int perf_swevent_match(struct perf_event *event,
8298                                 enum perf_type_id type,
8299                                 u32 event_id,
8300                                 struct perf_sample_data *data,
8301                                 struct pt_regs *regs)
8302 {
8303         if (event->attr.type != type)
8304                 return 0;
8305
8306         if (event->attr.config != event_id)
8307                 return 0;
8308
8309         if (perf_exclude_event(event, regs))
8310                 return 0;
8311
8312         return 1;
8313 }
8314
8315 static inline u64 swevent_hash(u64 type, u32 event_id)
8316 {
8317         u64 val = event_id | (type << 32);
8318
8319         return hash_64(val, SWEVENT_HLIST_BITS);
8320 }
8321
8322 static inline struct hlist_head *
8323 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8324 {
8325         u64 hash = swevent_hash(type, event_id);
8326
8327         return &hlist->heads[hash];
8328 }
8329
8330 /* For the read side: events when they trigger */
8331 static inline struct hlist_head *
8332 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8333 {
8334         struct swevent_hlist *hlist;
8335
8336         hlist = rcu_dereference(swhash->swevent_hlist);
8337         if (!hlist)
8338                 return NULL;
8339
8340         return __find_swevent_head(hlist, type, event_id);
8341 }
8342
8343 /* For the event head insertion and removal in the hlist */
8344 static inline struct hlist_head *
8345 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8346 {
8347         struct swevent_hlist *hlist;
8348         u32 event_id = event->attr.config;
8349         u64 type = event->attr.type;
8350
8351         /*
8352          * Event scheduling is always serialized against hlist allocation
8353          * and release. Which makes the protected version suitable here.
8354          * The context lock guarantees that.
8355          */
8356         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8357                                           lockdep_is_held(&event->ctx->lock));
8358         if (!hlist)
8359                 return NULL;
8360
8361         return __find_swevent_head(hlist, type, event_id);
8362 }
8363
8364 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8365                                     u64 nr,
8366                                     struct perf_sample_data *data,
8367                                     struct pt_regs *regs)
8368 {
8369         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8370         struct perf_event *event;
8371         struct hlist_head *head;
8372
8373         rcu_read_lock();
8374         head = find_swevent_head_rcu(swhash, type, event_id);
8375         if (!head)
8376                 goto end;
8377
8378         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8379                 if (perf_swevent_match(event, type, event_id, data, regs))
8380                         perf_swevent_event(event, nr, data, regs);
8381         }
8382 end:
8383         rcu_read_unlock();
8384 }
8385
8386 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8387
8388 int perf_swevent_get_recursion_context(void)
8389 {
8390         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8391
8392         return get_recursion_context(swhash->recursion);
8393 }
8394 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8395
8396 void perf_swevent_put_recursion_context(int rctx)
8397 {
8398         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8399
8400         put_recursion_context(swhash->recursion, rctx);
8401 }
8402
8403 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8404 {
8405         struct perf_sample_data data;
8406
8407         if (WARN_ON_ONCE(!regs))
8408                 return;
8409
8410         perf_sample_data_init(&data, addr, 0);
8411         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8412 }
8413
8414 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8415 {
8416         int rctx;
8417
8418         preempt_disable_notrace();
8419         rctx = perf_swevent_get_recursion_context();
8420         if (unlikely(rctx < 0))
8421                 goto fail;
8422
8423         ___perf_sw_event(event_id, nr, regs, addr);
8424
8425         perf_swevent_put_recursion_context(rctx);
8426 fail:
8427         preempt_enable_notrace();
8428 }
8429
8430 static void perf_swevent_read(struct perf_event *event)
8431 {
8432 }
8433
8434 static int perf_swevent_add(struct perf_event *event, int flags)
8435 {
8436         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8437         struct hw_perf_event *hwc = &event->hw;
8438         struct hlist_head *head;
8439
8440         if (is_sampling_event(event)) {
8441                 hwc->last_period = hwc->sample_period;
8442                 perf_swevent_set_period(event);
8443         }
8444
8445         hwc->state = !(flags & PERF_EF_START);
8446
8447         head = find_swevent_head(swhash, event);
8448         if (WARN_ON_ONCE(!head))
8449                 return -EINVAL;
8450
8451         hlist_add_head_rcu(&event->hlist_entry, head);
8452         perf_event_update_userpage(event);
8453
8454         return 0;
8455 }
8456
8457 static void perf_swevent_del(struct perf_event *event, int flags)
8458 {
8459         hlist_del_rcu(&event->hlist_entry);
8460 }
8461
8462 static void perf_swevent_start(struct perf_event *event, int flags)
8463 {
8464         event->hw.state = 0;
8465 }
8466
8467 static void perf_swevent_stop(struct perf_event *event, int flags)
8468 {
8469         event->hw.state = PERF_HES_STOPPED;
8470 }
8471
8472 /* Deref the hlist from the update side */
8473 static inline struct swevent_hlist *
8474 swevent_hlist_deref(struct swevent_htable *swhash)
8475 {
8476         return rcu_dereference_protected(swhash->swevent_hlist,
8477                                          lockdep_is_held(&swhash->hlist_mutex));
8478 }
8479
8480 static void swevent_hlist_release(struct swevent_htable *swhash)
8481 {
8482         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8483
8484         if (!hlist)
8485                 return;
8486
8487         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8488         kfree_rcu(hlist, rcu_head);
8489 }
8490
8491 static void swevent_hlist_put_cpu(int cpu)
8492 {
8493         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8494
8495         mutex_lock(&swhash->hlist_mutex);
8496
8497         if (!--swhash->hlist_refcount)
8498                 swevent_hlist_release(swhash);
8499
8500         mutex_unlock(&swhash->hlist_mutex);
8501 }
8502
8503 static void swevent_hlist_put(void)
8504 {
8505         int cpu;
8506
8507         for_each_possible_cpu(cpu)
8508                 swevent_hlist_put_cpu(cpu);
8509 }
8510
8511 static int swevent_hlist_get_cpu(int cpu)
8512 {
8513         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8514         int err = 0;
8515
8516         mutex_lock(&swhash->hlist_mutex);
8517         if (!swevent_hlist_deref(swhash) &&
8518             cpumask_test_cpu(cpu, perf_online_mask)) {
8519                 struct swevent_hlist *hlist;
8520
8521                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8522                 if (!hlist) {
8523                         err = -ENOMEM;
8524                         goto exit;
8525                 }
8526                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8527         }
8528         swhash->hlist_refcount++;
8529 exit:
8530         mutex_unlock(&swhash->hlist_mutex);
8531
8532         return err;
8533 }
8534
8535 static int swevent_hlist_get(void)
8536 {
8537         int err, cpu, failed_cpu;
8538
8539         mutex_lock(&pmus_lock);
8540         for_each_possible_cpu(cpu) {
8541                 err = swevent_hlist_get_cpu(cpu);
8542                 if (err) {
8543                         failed_cpu = cpu;
8544                         goto fail;
8545                 }
8546         }
8547         mutex_unlock(&pmus_lock);
8548         return 0;
8549 fail:
8550         for_each_possible_cpu(cpu) {
8551                 if (cpu == failed_cpu)
8552                         break;
8553                 swevent_hlist_put_cpu(cpu);
8554         }
8555         mutex_unlock(&pmus_lock);
8556         return err;
8557 }
8558
8559 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8560
8561 static void sw_perf_event_destroy(struct perf_event *event)
8562 {
8563         u64 event_id = event->attr.config;
8564
8565         WARN_ON(event->parent);
8566
8567         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8568         swevent_hlist_put();
8569 }
8570
8571 static int perf_swevent_init(struct perf_event *event)
8572 {
8573         u64 event_id = event->attr.config;
8574
8575         if (event->attr.type != PERF_TYPE_SOFTWARE)
8576                 return -ENOENT;
8577
8578         /*
8579          * no branch sampling for software events
8580          */
8581         if (has_branch_stack(event))
8582                 return -EOPNOTSUPP;
8583
8584         switch (event_id) {
8585         case PERF_COUNT_SW_CPU_CLOCK:
8586         case PERF_COUNT_SW_TASK_CLOCK:
8587                 return -ENOENT;
8588
8589         default:
8590                 break;
8591         }
8592
8593         if (event_id >= PERF_COUNT_SW_MAX)
8594                 return -ENOENT;
8595
8596         if (!event->parent) {
8597                 int err;
8598
8599                 err = swevent_hlist_get();
8600                 if (err)
8601                         return err;
8602
8603                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8604                 event->destroy = sw_perf_event_destroy;
8605         }
8606
8607         return 0;
8608 }
8609
8610 static struct pmu perf_swevent = {
8611         .task_ctx_nr    = perf_sw_context,
8612
8613         .capabilities   = PERF_PMU_CAP_NO_NMI,
8614
8615         .event_init     = perf_swevent_init,
8616         .add            = perf_swevent_add,
8617         .del            = perf_swevent_del,
8618         .start          = perf_swevent_start,
8619         .stop           = perf_swevent_stop,
8620         .read           = perf_swevent_read,
8621 };
8622
8623 #ifdef CONFIG_EVENT_TRACING
8624
8625 static int perf_tp_filter_match(struct perf_event *event,
8626                                 struct perf_sample_data *data)
8627 {
8628         void *record = data->raw->frag.data;
8629
8630         /* only top level events have filters set */
8631         if (event->parent)
8632                 event = event->parent;
8633
8634         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8635                 return 1;
8636         return 0;
8637 }
8638
8639 static int perf_tp_event_match(struct perf_event *event,
8640                                 struct perf_sample_data *data,
8641                                 struct pt_regs *regs)
8642 {
8643         if (event->hw.state & PERF_HES_STOPPED)
8644                 return 0;
8645         /*
8646          * If exclude_kernel, only trace user-space tracepoints (uprobes)
8647          */
8648         if (event->attr.exclude_kernel && !user_mode(regs))
8649                 return 0;
8650
8651         if (!perf_tp_filter_match(event, data))
8652                 return 0;
8653
8654         return 1;
8655 }
8656
8657 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8658                                struct trace_event_call *call, u64 count,
8659                                struct pt_regs *regs, struct hlist_head *head,
8660                                struct task_struct *task)
8661 {
8662         if (bpf_prog_array_valid(call)) {
8663                 *(struct pt_regs **)raw_data = regs;
8664                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8665                         perf_swevent_put_recursion_context(rctx);
8666                         return;
8667                 }
8668         }
8669         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8670                       rctx, task);
8671 }
8672 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8673
8674 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8675                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8676                    struct task_struct *task)
8677 {
8678         struct perf_sample_data data;
8679         struct perf_event *event;
8680
8681         struct perf_raw_record raw = {
8682                 .frag = {
8683                         .size = entry_size,
8684                         .data = record,
8685                 },
8686         };
8687
8688         perf_sample_data_init(&data, 0, 0);
8689         data.raw = &raw;
8690
8691         perf_trace_buf_update(record, event_type);
8692
8693         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8694                 if (perf_tp_event_match(event, &data, regs))
8695                         perf_swevent_event(event, count, &data, regs);
8696         }
8697
8698         /*
8699          * If we got specified a target task, also iterate its context and
8700          * deliver this event there too.
8701          */
8702         if (task && task != current) {
8703                 struct perf_event_context *ctx;
8704                 struct trace_entry *entry = record;
8705
8706                 rcu_read_lock();
8707                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8708                 if (!ctx)
8709                         goto unlock;
8710
8711                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8712                         if (event->cpu != smp_processor_id())
8713                                 continue;
8714                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8715                                 continue;
8716                         if (event->attr.config != entry->type)
8717                                 continue;
8718                         if (perf_tp_event_match(event, &data, regs))
8719                                 perf_swevent_event(event, count, &data, regs);
8720                 }
8721 unlock:
8722                 rcu_read_unlock();
8723         }
8724
8725         perf_swevent_put_recursion_context(rctx);
8726 }
8727 EXPORT_SYMBOL_GPL(perf_tp_event);
8728
8729 static void tp_perf_event_destroy(struct perf_event *event)
8730 {
8731         perf_trace_destroy(event);
8732 }
8733
8734 static int perf_tp_event_init(struct perf_event *event)
8735 {
8736         int err;
8737
8738         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8739                 return -ENOENT;
8740
8741         /*
8742          * no branch sampling for tracepoint events
8743          */
8744         if (has_branch_stack(event))
8745                 return -EOPNOTSUPP;
8746
8747         err = perf_trace_init(event);
8748         if (err)
8749                 return err;
8750
8751         event->destroy = tp_perf_event_destroy;
8752
8753         return 0;
8754 }
8755
8756 static struct pmu perf_tracepoint = {
8757         .task_ctx_nr    = perf_sw_context,
8758
8759         .event_init     = perf_tp_event_init,
8760         .add            = perf_trace_add,
8761         .del            = perf_trace_del,
8762         .start          = perf_swevent_start,
8763         .stop           = perf_swevent_stop,
8764         .read           = perf_swevent_read,
8765 };
8766
8767 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8768 /*
8769  * Flags in config, used by dynamic PMU kprobe and uprobe
8770  * The flags should match following PMU_FORMAT_ATTR().
8771  *
8772  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8773  *                               if not set, create kprobe/uprobe
8774  *
8775  * The following values specify a reference counter (or semaphore in the
8776  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8777  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8778  *
8779  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
8780  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
8781  */
8782 enum perf_probe_config {
8783         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8784         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8785         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8786 };
8787
8788 PMU_FORMAT_ATTR(retprobe, "config:0");
8789 #endif
8790
8791 #ifdef CONFIG_KPROBE_EVENTS
8792 static struct attribute *kprobe_attrs[] = {
8793         &format_attr_retprobe.attr,
8794         NULL,
8795 };
8796
8797 static struct attribute_group kprobe_format_group = {
8798         .name = "format",
8799         .attrs = kprobe_attrs,
8800 };
8801
8802 static const struct attribute_group *kprobe_attr_groups[] = {
8803         &kprobe_format_group,
8804         NULL,
8805 };
8806
8807 static int perf_kprobe_event_init(struct perf_event *event);
8808 static struct pmu perf_kprobe = {
8809         .task_ctx_nr    = perf_sw_context,
8810         .event_init     = perf_kprobe_event_init,
8811         .add            = perf_trace_add,
8812         .del            = perf_trace_del,
8813         .start          = perf_swevent_start,
8814         .stop           = perf_swevent_stop,
8815         .read           = perf_swevent_read,
8816         .attr_groups    = kprobe_attr_groups,
8817 };
8818
8819 static int perf_kprobe_event_init(struct perf_event *event)
8820 {
8821         int err;
8822         bool is_retprobe;
8823
8824         if (event->attr.type != perf_kprobe.type)
8825                 return -ENOENT;
8826
8827         if (!capable(CAP_SYS_ADMIN))
8828                 return -EACCES;
8829
8830         /*
8831          * no branch sampling for probe events
8832          */
8833         if (has_branch_stack(event))
8834                 return -EOPNOTSUPP;
8835
8836         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8837         err = perf_kprobe_init(event, is_retprobe);
8838         if (err)
8839                 return err;
8840
8841         event->destroy = perf_kprobe_destroy;
8842
8843         return 0;
8844 }
8845 #endif /* CONFIG_KPROBE_EVENTS */
8846
8847 #ifdef CONFIG_UPROBE_EVENTS
8848 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8849
8850 static struct attribute *uprobe_attrs[] = {
8851         &format_attr_retprobe.attr,
8852         &format_attr_ref_ctr_offset.attr,
8853         NULL,
8854 };
8855
8856 static struct attribute_group uprobe_format_group = {
8857         .name = "format",
8858         .attrs = uprobe_attrs,
8859 };
8860
8861 static const struct attribute_group *uprobe_attr_groups[] = {
8862         &uprobe_format_group,
8863         NULL,
8864 };
8865
8866 static int perf_uprobe_event_init(struct perf_event *event);
8867 static struct pmu perf_uprobe = {
8868         .task_ctx_nr    = perf_sw_context,
8869         .event_init     = perf_uprobe_event_init,
8870         .add            = perf_trace_add,
8871         .del            = perf_trace_del,
8872         .start          = perf_swevent_start,
8873         .stop           = perf_swevent_stop,
8874         .read           = perf_swevent_read,
8875         .attr_groups    = uprobe_attr_groups,
8876 };
8877
8878 static int perf_uprobe_event_init(struct perf_event *event)
8879 {
8880         int err;
8881         unsigned long ref_ctr_offset;
8882         bool is_retprobe;
8883
8884         if (event->attr.type != perf_uprobe.type)
8885                 return -ENOENT;
8886
8887         if (!capable(CAP_SYS_ADMIN))
8888                 return -EACCES;
8889
8890         /*
8891          * no branch sampling for probe events
8892          */
8893         if (has_branch_stack(event))
8894                 return -EOPNOTSUPP;
8895
8896         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8897         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8898         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8899         if (err)
8900                 return err;
8901
8902         event->destroy = perf_uprobe_destroy;
8903
8904         return 0;
8905 }
8906 #endif /* CONFIG_UPROBE_EVENTS */
8907
8908 static inline void perf_tp_register(void)
8909 {
8910         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8911 #ifdef CONFIG_KPROBE_EVENTS
8912         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8913 #endif
8914 #ifdef CONFIG_UPROBE_EVENTS
8915         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8916 #endif
8917 }
8918
8919 static void perf_event_free_filter(struct perf_event *event)
8920 {
8921         ftrace_profile_free_filter(event);
8922 }
8923
8924 #ifdef CONFIG_BPF_SYSCALL
8925 static void bpf_overflow_handler(struct perf_event *event,
8926                                  struct perf_sample_data *data,
8927                                  struct pt_regs *regs)
8928 {
8929         struct bpf_perf_event_data_kern ctx = {
8930                 .data = data,
8931                 .event = event,
8932         };
8933         int ret = 0;
8934
8935         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8936         preempt_disable();
8937         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8938                 goto out;
8939         rcu_read_lock();
8940         ret = BPF_PROG_RUN(event->prog, &ctx);
8941         rcu_read_unlock();
8942 out:
8943         __this_cpu_dec(bpf_prog_active);
8944         preempt_enable();
8945         if (!ret)
8946                 return;
8947
8948         event->orig_overflow_handler(event, data, regs);
8949 }
8950
8951 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8952 {
8953         struct bpf_prog *prog;
8954
8955         if (event->overflow_handler_context)
8956                 /* hw breakpoint or kernel counter */
8957                 return -EINVAL;
8958
8959         if (event->prog)
8960                 return -EEXIST;
8961
8962         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8963         if (IS_ERR(prog))
8964                 return PTR_ERR(prog);
8965
8966         event->prog = prog;
8967         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8968         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8969         return 0;
8970 }
8971
8972 static void perf_event_free_bpf_handler(struct perf_event *event)
8973 {
8974         struct bpf_prog *prog = event->prog;
8975
8976         if (!prog)
8977                 return;
8978
8979         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8980         event->prog = NULL;
8981         bpf_prog_put(prog);
8982 }
8983 #else
8984 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8985 {
8986         return -EOPNOTSUPP;
8987 }
8988 static void perf_event_free_bpf_handler(struct perf_event *event)
8989 {
8990 }
8991 #endif
8992
8993 /*
8994  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8995  * with perf_event_open()
8996  */
8997 static inline bool perf_event_is_tracing(struct perf_event *event)
8998 {
8999         if (event->pmu == &perf_tracepoint)
9000                 return true;
9001 #ifdef CONFIG_KPROBE_EVENTS
9002         if (event->pmu == &perf_kprobe)
9003                 return true;
9004 #endif
9005 #ifdef CONFIG_UPROBE_EVENTS
9006         if (event->pmu == &perf_uprobe)
9007                 return true;
9008 #endif
9009         return false;
9010 }
9011
9012 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9013 {
9014         bool is_kprobe, is_tracepoint, is_syscall_tp;
9015         struct bpf_prog *prog;
9016         int ret;
9017
9018         if (!perf_event_is_tracing(event))
9019                 return perf_event_set_bpf_handler(event, prog_fd);
9020
9021         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9022         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9023         is_syscall_tp = is_syscall_trace_event(event->tp_event);
9024         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9025                 /* bpf programs can only be attached to u/kprobe or tracepoint */
9026                 return -EINVAL;
9027
9028         prog = bpf_prog_get(prog_fd);
9029         if (IS_ERR(prog))
9030                 return PTR_ERR(prog);
9031
9032         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9033             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9034             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9035                 /* valid fd, but invalid bpf program type */
9036                 bpf_prog_put(prog);
9037                 return -EINVAL;
9038         }
9039
9040         /* Kprobe override only works for kprobes, not uprobes. */
9041         if (prog->kprobe_override &&
9042             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9043                 bpf_prog_put(prog);
9044                 return -EINVAL;
9045         }
9046
9047         if (is_tracepoint || is_syscall_tp) {
9048                 int off = trace_event_get_offsets(event->tp_event);
9049
9050                 if (prog->aux->max_ctx_offset > off) {
9051                         bpf_prog_put(prog);
9052                         return -EACCES;
9053                 }
9054         }
9055
9056         ret = perf_event_attach_bpf_prog(event, prog);
9057         if (ret)
9058                 bpf_prog_put(prog);
9059         return ret;
9060 }
9061
9062 static void perf_event_free_bpf_prog(struct perf_event *event)
9063 {
9064         if (!perf_event_is_tracing(event)) {
9065                 perf_event_free_bpf_handler(event);
9066                 return;
9067         }
9068         perf_event_detach_bpf_prog(event);
9069 }
9070
9071 #else
9072
9073 static inline void perf_tp_register(void)
9074 {
9075 }
9076
9077 static void perf_event_free_filter(struct perf_event *event)
9078 {
9079 }
9080
9081 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9082 {
9083         return -ENOENT;
9084 }
9085
9086 static void perf_event_free_bpf_prog(struct perf_event *event)
9087 {
9088 }
9089 #endif /* CONFIG_EVENT_TRACING */
9090
9091 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9092 void perf_bp_event(struct perf_event *bp, void *data)
9093 {
9094         struct perf_sample_data sample;
9095         struct pt_regs *regs = data;
9096
9097         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9098
9099         if (!bp->hw.state && !perf_exclude_event(bp, regs))
9100                 perf_swevent_event(bp, 1, &sample, regs);
9101 }
9102 #endif
9103
9104 /*
9105  * Allocate a new address filter
9106  */
9107 static struct perf_addr_filter *
9108 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9109 {
9110         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9111         struct perf_addr_filter *filter;
9112
9113         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9114         if (!filter)
9115                 return NULL;
9116
9117         INIT_LIST_HEAD(&filter->entry);
9118         list_add_tail(&filter->entry, filters);
9119
9120         return filter;
9121 }
9122
9123 static void free_filters_list(struct list_head *filters)
9124 {
9125         struct perf_addr_filter *filter, *iter;
9126
9127         list_for_each_entry_safe(filter, iter, filters, entry) {
9128                 path_put(&filter->path);
9129                 list_del(&filter->entry);
9130                 kfree(filter);
9131         }
9132 }
9133
9134 /*
9135  * Free existing address filters and optionally install new ones
9136  */
9137 static void perf_addr_filters_splice(struct perf_event *event,
9138                                      struct list_head *head)
9139 {
9140         unsigned long flags;
9141         LIST_HEAD(list);
9142
9143         if (!has_addr_filter(event))
9144                 return;
9145
9146         /* don't bother with children, they don't have their own filters */
9147         if (event->parent)
9148                 return;
9149
9150         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9151
9152         list_splice_init(&event->addr_filters.list, &list);
9153         if (head)
9154                 list_splice(head, &event->addr_filters.list);
9155
9156         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9157
9158         free_filters_list(&list);
9159 }
9160
9161 /*
9162  * Scan through mm's vmas and see if one of them matches the
9163  * @filter; if so, adjust filter's address range.
9164  * Called with mm::mmap_sem down for reading.
9165  */
9166 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9167                                    struct mm_struct *mm,
9168                                    struct perf_addr_filter_range *fr)
9169 {
9170         struct vm_area_struct *vma;
9171
9172         for (vma = mm->mmap; vma; vma = vma->vm_next) {
9173                 if (!vma->vm_file)
9174                         continue;
9175
9176                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9177                         return;
9178         }
9179 }
9180
9181 /*
9182  * Update event's address range filters based on the
9183  * task's existing mappings, if any.
9184  */
9185 static void perf_event_addr_filters_apply(struct perf_event *event)
9186 {
9187         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9188         struct task_struct *task = READ_ONCE(event->ctx->task);
9189         struct perf_addr_filter *filter;
9190         struct mm_struct *mm = NULL;
9191         unsigned int count = 0;
9192         unsigned long flags;
9193
9194         /*
9195          * We may observe TASK_TOMBSTONE, which means that the event tear-down
9196          * will stop on the parent's child_mutex that our caller is also holding
9197          */
9198         if (task == TASK_TOMBSTONE)
9199                 return;
9200
9201         if (ifh->nr_file_filters) {
9202                 mm = get_task_mm(event->ctx->task);
9203                 if (!mm)
9204                         goto restart;
9205
9206                 down_read(&mm->mmap_sem);
9207         }
9208
9209         raw_spin_lock_irqsave(&ifh->lock, flags);
9210         list_for_each_entry(filter, &ifh->list, entry) {
9211                 if (filter->path.dentry) {
9212                         /*
9213                          * Adjust base offset if the filter is associated to a
9214                          * binary that needs to be mapped:
9215                          */
9216                         event->addr_filter_ranges[count].start = 0;
9217                         event->addr_filter_ranges[count].size = 0;
9218
9219                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9220                 } else {
9221                         event->addr_filter_ranges[count].start = filter->offset;
9222                         event->addr_filter_ranges[count].size  = filter->size;
9223                 }
9224
9225                 count++;
9226         }
9227
9228         event->addr_filters_gen++;
9229         raw_spin_unlock_irqrestore(&ifh->lock, flags);
9230
9231         if (ifh->nr_file_filters) {
9232                 up_read(&mm->mmap_sem);
9233
9234                 mmput(mm);
9235         }
9236
9237 restart:
9238         perf_event_stop(event, 1);
9239 }
9240
9241 /*
9242  * Address range filtering: limiting the data to certain
9243  * instruction address ranges. Filters are ioctl()ed to us from
9244  * userspace as ascii strings.
9245  *
9246  * Filter string format:
9247  *
9248  * ACTION RANGE_SPEC
9249  * where ACTION is one of the
9250  *  * "filter": limit the trace to this region
9251  *  * "start": start tracing from this address
9252  *  * "stop": stop tracing at this address/region;
9253  * RANGE_SPEC is
9254  *  * for kernel addresses: <start address>[/<size>]
9255  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9256  *
9257  * if <size> is not specified or is zero, the range is treated as a single
9258  * address; not valid for ACTION=="filter".
9259  */
9260 enum {
9261         IF_ACT_NONE = -1,
9262         IF_ACT_FILTER,
9263         IF_ACT_START,
9264         IF_ACT_STOP,
9265         IF_SRC_FILE,
9266         IF_SRC_KERNEL,
9267         IF_SRC_FILEADDR,
9268         IF_SRC_KERNELADDR,
9269 };
9270
9271 enum {
9272         IF_STATE_ACTION = 0,
9273         IF_STATE_SOURCE,
9274         IF_STATE_END,
9275 };
9276
9277 static const match_table_t if_tokens = {
9278         { IF_ACT_FILTER,        "filter" },
9279         { IF_ACT_START,         "start" },
9280         { IF_ACT_STOP,          "stop" },
9281         { IF_SRC_FILE,          "%u/%u@%s" },
9282         { IF_SRC_KERNEL,        "%u/%u" },
9283         { IF_SRC_FILEADDR,      "%u@%s" },
9284         { IF_SRC_KERNELADDR,    "%u" },
9285         { IF_ACT_NONE,          NULL },
9286 };
9287
9288 /*
9289  * Address filter string parser
9290  */
9291 static int
9292 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9293                              struct list_head *filters)
9294 {
9295         struct perf_addr_filter *filter = NULL;
9296         char *start, *orig, *filename = NULL;
9297         substring_t args[MAX_OPT_ARGS];
9298         int state = IF_STATE_ACTION, token;
9299         unsigned int kernel = 0;
9300         int ret = -EINVAL;
9301
9302         orig = fstr = kstrdup(fstr, GFP_KERNEL);
9303         if (!fstr)
9304                 return -ENOMEM;
9305
9306         while ((start = strsep(&fstr, " ,\n")) != NULL) {
9307                 static const enum perf_addr_filter_action_t actions[] = {
9308                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9309                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
9310                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
9311                 };
9312                 ret = -EINVAL;
9313
9314                 if (!*start)
9315                         continue;
9316
9317                 /* filter definition begins */
9318                 if (state == IF_STATE_ACTION) {
9319                         filter = perf_addr_filter_new(event, filters);
9320                         if (!filter)
9321                                 goto fail;
9322                 }
9323
9324                 token = match_token(start, if_tokens, args);
9325                 switch (token) {
9326                 case IF_ACT_FILTER:
9327                 case IF_ACT_START:
9328                 case IF_ACT_STOP:
9329                         if (state != IF_STATE_ACTION)
9330                                 goto fail;
9331
9332                         filter->action = actions[token];
9333                         state = IF_STATE_SOURCE;
9334                         break;
9335
9336                 case IF_SRC_KERNELADDR:
9337                 case IF_SRC_KERNEL:
9338                         kernel = 1;
9339                         /* fall through */
9340
9341                 case IF_SRC_FILEADDR:
9342                 case IF_SRC_FILE:
9343                         if (state != IF_STATE_SOURCE)
9344                                 goto fail;
9345
9346                         *args[0].to = 0;
9347                         ret = kstrtoul(args[0].from, 0, &filter->offset);
9348                         if (ret)
9349                                 goto fail;
9350
9351                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9352                                 *args[1].to = 0;
9353                                 ret = kstrtoul(args[1].from, 0, &filter->size);
9354                                 if (ret)
9355                                         goto fail;
9356                         }
9357
9358                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9359                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9360
9361                                 filename = match_strdup(&args[fpos]);
9362                                 if (!filename) {
9363                                         ret = -ENOMEM;
9364                                         goto fail;
9365                                 }
9366                         }
9367
9368                         state = IF_STATE_END;
9369                         break;
9370
9371                 default:
9372                         goto fail;
9373                 }
9374
9375                 /*
9376                  * Filter definition is fully parsed, validate and install it.
9377                  * Make sure that it doesn't contradict itself or the event's
9378                  * attribute.
9379                  */
9380                 if (state == IF_STATE_END) {
9381                         ret = -EINVAL;
9382                         if (kernel && event->attr.exclude_kernel)
9383                                 goto fail;
9384
9385                         /*
9386                          * ACTION "filter" must have a non-zero length region
9387                          * specified.
9388                          */
9389                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9390                             !filter->size)
9391                                 goto fail;
9392
9393                         if (!kernel) {
9394                                 if (!filename)
9395                                         goto fail;
9396
9397                                 /*
9398                                  * For now, we only support file-based filters
9399                                  * in per-task events; doing so for CPU-wide
9400                                  * events requires additional context switching
9401                                  * trickery, since same object code will be
9402                                  * mapped at different virtual addresses in
9403                                  * different processes.
9404                                  */
9405                                 ret = -EOPNOTSUPP;
9406                                 if (!event->ctx->task)
9407                                         goto fail_free_name;
9408
9409                                 /* look up the path and grab its inode */
9410                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9411                                                 &filter->path);
9412                                 if (ret)
9413                                         goto fail_free_name;
9414
9415                                 kfree(filename);
9416                                 filename = NULL;
9417
9418                                 ret = -EINVAL;
9419                                 if (!filter->path.dentry ||
9420                                     !S_ISREG(d_inode(filter->path.dentry)
9421                                              ->i_mode))
9422                                         goto fail;
9423
9424                                 event->addr_filters.nr_file_filters++;
9425                         }
9426
9427                         /* ready to consume more filters */
9428                         state = IF_STATE_ACTION;
9429                         filter = NULL;
9430                 }
9431         }
9432
9433         if (state != IF_STATE_ACTION)
9434                 goto fail;
9435
9436         kfree(orig);
9437
9438         return 0;
9439
9440 fail_free_name:
9441         kfree(filename);
9442 fail:
9443         free_filters_list(filters);
9444         kfree(orig);
9445
9446         return ret;
9447 }
9448
9449 static int
9450 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9451 {
9452         LIST_HEAD(filters);
9453         int ret;
9454
9455         /*
9456          * Since this is called in perf_ioctl() path, we're already holding
9457          * ctx::mutex.
9458          */
9459         lockdep_assert_held(&event->ctx->mutex);
9460
9461         if (WARN_ON_ONCE(event->parent))
9462                 return -EINVAL;
9463
9464         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9465         if (ret)
9466                 goto fail_clear_files;
9467
9468         ret = event->pmu->addr_filters_validate(&filters);
9469         if (ret)
9470                 goto fail_free_filters;
9471
9472         /* remove existing filters, if any */
9473         perf_addr_filters_splice(event, &filters);
9474
9475         /* install new filters */
9476         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9477
9478         return ret;
9479
9480 fail_free_filters:
9481         free_filters_list(&filters);
9482
9483 fail_clear_files:
9484         event->addr_filters.nr_file_filters = 0;
9485
9486         return ret;
9487 }
9488
9489 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9490 {
9491         int ret = -EINVAL;
9492         char *filter_str;
9493
9494         filter_str = strndup_user(arg, PAGE_SIZE);
9495         if (IS_ERR(filter_str))
9496                 return PTR_ERR(filter_str);
9497
9498 #ifdef CONFIG_EVENT_TRACING
9499         if (perf_event_is_tracing(event)) {
9500                 struct perf_event_context *ctx = event->ctx;
9501
9502                 /*
9503                  * Beware, here be dragons!!
9504                  *
9505                  * the tracepoint muck will deadlock against ctx->mutex, but
9506                  * the tracepoint stuff does not actually need it. So
9507                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9508                  * already have a reference on ctx.
9509                  *
9510                  * This can result in event getting moved to a different ctx,
9511                  * but that does not affect the tracepoint state.
9512                  */
9513                 mutex_unlock(&ctx->mutex);
9514                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9515                 mutex_lock(&ctx->mutex);
9516         } else
9517 #endif
9518         if (has_addr_filter(event))
9519                 ret = perf_event_set_addr_filter(event, filter_str);
9520
9521         kfree(filter_str);
9522         return ret;
9523 }
9524
9525 /*
9526  * hrtimer based swevent callback
9527  */
9528
9529 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9530 {
9531         enum hrtimer_restart ret = HRTIMER_RESTART;
9532         struct perf_sample_data data;
9533         struct pt_regs *regs;
9534         struct perf_event *event;
9535         u64 period;
9536
9537         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9538
9539         if (event->state != PERF_EVENT_STATE_ACTIVE)
9540                 return HRTIMER_NORESTART;
9541
9542         event->pmu->read(event);
9543
9544         perf_sample_data_init(&data, 0, event->hw.last_period);
9545         regs = get_irq_regs();
9546
9547         if (regs && !perf_exclude_event(event, regs)) {
9548                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9549                         if (__perf_event_overflow(event, 1, &data, regs))
9550                                 ret = HRTIMER_NORESTART;
9551         }
9552
9553         period = max_t(u64, 10000, event->hw.sample_period);
9554         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9555
9556         return ret;
9557 }
9558
9559 static void perf_swevent_start_hrtimer(struct perf_event *event)
9560 {
9561         struct hw_perf_event *hwc = &event->hw;
9562         s64 period;
9563
9564         if (!is_sampling_event(event))
9565                 return;
9566
9567         period = local64_read(&hwc->period_left);
9568         if (period) {
9569                 if (period < 0)
9570                         period = 10000;
9571
9572                 local64_set(&hwc->period_left, 0);
9573         } else {
9574                 period = max_t(u64, 10000, hwc->sample_period);
9575         }
9576         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9577                       HRTIMER_MODE_REL_PINNED_HARD);
9578 }
9579
9580 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9581 {
9582         struct hw_perf_event *hwc = &event->hw;
9583
9584         if (is_sampling_event(event)) {
9585                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9586                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9587
9588                 hrtimer_cancel(&hwc->hrtimer);
9589         }
9590 }
9591
9592 static void perf_swevent_init_hrtimer(struct perf_event *event)
9593 {
9594         struct hw_perf_event *hwc = &event->hw;
9595
9596         if (!is_sampling_event(event))
9597                 return;
9598
9599         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
9600         hwc->hrtimer.function = perf_swevent_hrtimer;
9601
9602         /*
9603          * Since hrtimers have a fixed rate, we can do a static freq->period
9604          * mapping and avoid the whole period adjust feedback stuff.
9605          */
9606         if (event->attr.freq) {
9607                 long freq = event->attr.sample_freq;
9608
9609                 event->attr.sample_period = NSEC_PER_SEC / freq;
9610                 hwc->sample_period = event->attr.sample_period;
9611                 local64_set(&hwc->period_left, hwc->sample_period);
9612                 hwc->last_period = hwc->sample_period;
9613                 event->attr.freq = 0;
9614         }
9615 }
9616
9617 /*
9618  * Software event: cpu wall time clock
9619  */
9620
9621 static void cpu_clock_event_update(struct perf_event *event)
9622 {
9623         s64 prev;
9624         u64 now;
9625
9626         now = local_clock();
9627         prev = local64_xchg(&event->hw.prev_count, now);
9628         local64_add(now - prev, &event->count);
9629 }
9630
9631 static void cpu_clock_event_start(struct perf_event *event, int flags)
9632 {
9633         local64_set(&event->hw.prev_count, local_clock());
9634         perf_swevent_start_hrtimer(event);
9635 }
9636
9637 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9638 {
9639         perf_swevent_cancel_hrtimer(event);
9640         cpu_clock_event_update(event);
9641 }
9642
9643 static int cpu_clock_event_add(struct perf_event *event, int flags)
9644 {
9645         if (flags & PERF_EF_START)
9646                 cpu_clock_event_start(event, flags);
9647         perf_event_update_userpage(event);
9648
9649         return 0;
9650 }
9651
9652 static void cpu_clock_event_del(struct perf_event *event, int flags)
9653 {
9654         cpu_clock_event_stop(event, flags);
9655 }
9656
9657 static void cpu_clock_event_read(struct perf_event *event)
9658 {
9659         cpu_clock_event_update(event);
9660 }
9661
9662 static int cpu_clock_event_init(struct perf_event *event)
9663 {
9664         if (event->attr.type != PERF_TYPE_SOFTWARE)
9665                 return -ENOENT;
9666
9667         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9668                 return -ENOENT;
9669
9670         /*
9671          * no branch sampling for software events
9672          */
9673         if (has_branch_stack(event))
9674                 return -EOPNOTSUPP;
9675
9676         perf_swevent_init_hrtimer(event);
9677
9678         return 0;
9679 }
9680
9681 static struct pmu perf_cpu_clock = {
9682         .task_ctx_nr    = perf_sw_context,
9683
9684         .capabilities   = PERF_PMU_CAP_NO_NMI,
9685
9686         .event_init     = cpu_clock_event_init,
9687         .add            = cpu_clock_event_add,
9688         .del            = cpu_clock_event_del,
9689         .start          = cpu_clock_event_start,
9690         .stop           = cpu_clock_event_stop,
9691         .read           = cpu_clock_event_read,
9692 };
9693
9694 /*
9695  * Software event: task time clock
9696  */
9697
9698 static void task_clock_event_update(struct perf_event *event, u64 now)
9699 {
9700         u64 prev;
9701         s64 delta;
9702
9703         prev = local64_xchg(&event->hw.prev_count, now);
9704         delta = now - prev;
9705         local64_add(delta, &event->count);
9706 }
9707
9708 static void task_clock_event_start(struct perf_event *event, int flags)
9709 {
9710         local64_set(&event->hw.prev_count, event->ctx->time);
9711         perf_swevent_start_hrtimer(event);
9712 }
9713
9714 static void task_clock_event_stop(struct perf_event *event, int flags)
9715 {
9716         perf_swevent_cancel_hrtimer(event);
9717         task_clock_event_update(event, event->ctx->time);
9718 }
9719
9720 static int task_clock_event_add(struct perf_event *event, int flags)
9721 {
9722         if (flags & PERF_EF_START)
9723                 task_clock_event_start(event, flags);
9724         perf_event_update_userpage(event);
9725
9726         return 0;
9727 }
9728
9729 static void task_clock_event_del(struct perf_event *event, int flags)
9730 {
9731         task_clock_event_stop(event, PERF_EF_UPDATE);
9732 }
9733
9734 static void task_clock_event_read(struct perf_event *event)
9735 {
9736         u64 now = perf_clock();
9737         u64 delta = now - event->ctx->timestamp;
9738         u64 time = event->ctx->time + delta;
9739
9740         task_clock_event_update(event, time);
9741 }
9742
9743 static int task_clock_event_init(struct perf_event *event)
9744 {
9745         if (event->attr.type != PERF_TYPE_SOFTWARE)
9746                 return -ENOENT;
9747
9748         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9749                 return -ENOENT;
9750
9751         /*
9752          * no branch sampling for software events
9753          */
9754         if (has_branch_stack(event))
9755                 return -EOPNOTSUPP;
9756
9757         perf_swevent_init_hrtimer(event);
9758
9759         return 0;
9760 }
9761
9762 static struct pmu perf_task_clock = {
9763         .task_ctx_nr    = perf_sw_context,
9764
9765         .capabilities   = PERF_PMU_CAP_NO_NMI,
9766
9767         .event_init     = task_clock_event_init,
9768         .add            = task_clock_event_add,
9769         .del            = task_clock_event_del,
9770         .start          = task_clock_event_start,
9771         .stop           = task_clock_event_stop,
9772         .read           = task_clock_event_read,
9773 };
9774
9775 static void perf_pmu_nop_void(struct pmu *pmu)
9776 {
9777 }
9778
9779 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9780 {
9781 }
9782
9783 static int perf_pmu_nop_int(struct pmu *pmu)
9784 {
9785         return 0;
9786 }
9787
9788 static int perf_event_nop_int(struct perf_event *event, u64 value)
9789 {
9790         return 0;
9791 }
9792
9793 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9794
9795 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9796 {
9797         __this_cpu_write(nop_txn_flags, flags);
9798
9799         if (flags & ~PERF_PMU_TXN_ADD)
9800                 return;
9801
9802         perf_pmu_disable(pmu);
9803 }
9804
9805 static int perf_pmu_commit_txn(struct pmu *pmu)
9806 {
9807         unsigned int flags = __this_cpu_read(nop_txn_flags);
9808
9809         __this_cpu_write(nop_txn_flags, 0);
9810
9811         if (flags & ~PERF_PMU_TXN_ADD)
9812                 return 0;
9813
9814         perf_pmu_enable(pmu);
9815         return 0;
9816 }
9817
9818 static void perf_pmu_cancel_txn(struct pmu *pmu)
9819 {
9820         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9821
9822         __this_cpu_write(nop_txn_flags, 0);
9823
9824         if (flags & ~PERF_PMU_TXN_ADD)
9825                 return;
9826
9827         perf_pmu_enable(pmu);
9828 }
9829
9830 static int perf_event_idx_default(struct perf_event *event)
9831 {
9832         return 0;
9833 }
9834
9835 /*
9836  * Ensures all contexts with the same task_ctx_nr have the same
9837  * pmu_cpu_context too.
9838  */
9839 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9840 {
9841         struct pmu *pmu;
9842
9843         if (ctxn < 0)
9844                 return NULL;
9845
9846         list_for_each_entry(pmu, &pmus, entry) {
9847                 if (pmu->task_ctx_nr == ctxn)
9848                         return pmu->pmu_cpu_context;
9849         }
9850
9851         return NULL;
9852 }
9853
9854 static void free_pmu_context(struct pmu *pmu)
9855 {
9856         /*
9857          * Static contexts such as perf_sw_context have a global lifetime
9858          * and may be shared between different PMUs. Avoid freeing them
9859          * when a single PMU is going away.
9860          */
9861         if (pmu->task_ctx_nr > perf_invalid_context)
9862                 return;
9863
9864         free_percpu(pmu->pmu_cpu_context);
9865 }
9866
9867 /*
9868  * Let userspace know that this PMU supports address range filtering:
9869  */
9870 static ssize_t nr_addr_filters_show(struct device *dev,
9871                                     struct device_attribute *attr,
9872                                     char *page)
9873 {
9874         struct pmu *pmu = dev_get_drvdata(dev);
9875
9876         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9877 }
9878 DEVICE_ATTR_RO(nr_addr_filters);
9879
9880 static struct idr pmu_idr;
9881
9882 static ssize_t
9883 type_show(struct device *dev, struct device_attribute *attr, char *page)
9884 {
9885         struct pmu *pmu = dev_get_drvdata(dev);
9886
9887         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9888 }
9889 static DEVICE_ATTR_RO(type);
9890
9891 static ssize_t
9892 perf_event_mux_interval_ms_show(struct device *dev,
9893                                 struct device_attribute *attr,
9894                                 char *page)
9895 {
9896         struct pmu *pmu = dev_get_drvdata(dev);
9897
9898         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9899 }
9900
9901 static DEFINE_MUTEX(mux_interval_mutex);
9902
9903 static ssize_t
9904 perf_event_mux_interval_ms_store(struct device *dev,
9905                                  struct device_attribute *attr,
9906                                  const char *buf, size_t count)
9907 {
9908         struct pmu *pmu = dev_get_drvdata(dev);
9909         int timer, cpu, ret;
9910
9911         ret = kstrtoint(buf, 0, &timer);
9912         if (ret)
9913                 return ret;
9914
9915         if (timer < 1)
9916                 return -EINVAL;
9917
9918         /* same value, noting to do */
9919         if (timer == pmu->hrtimer_interval_ms)
9920                 return count;
9921
9922         mutex_lock(&mux_interval_mutex);
9923         pmu->hrtimer_interval_ms = timer;
9924
9925         /* update all cpuctx for this PMU */
9926         cpus_read_lock();
9927         for_each_online_cpu(cpu) {
9928                 struct perf_cpu_context *cpuctx;
9929                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9930                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9931
9932                 cpu_function_call(cpu,
9933                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9934         }
9935         cpus_read_unlock();
9936         mutex_unlock(&mux_interval_mutex);
9937
9938         return count;
9939 }
9940 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9941
9942 static struct attribute *pmu_dev_attrs[] = {
9943         &dev_attr_type.attr,
9944         &dev_attr_perf_event_mux_interval_ms.attr,
9945         NULL,
9946 };
9947 ATTRIBUTE_GROUPS(pmu_dev);
9948
9949 static int pmu_bus_running;
9950 static struct bus_type pmu_bus = {
9951         .name           = "event_source",
9952         .dev_groups     = pmu_dev_groups,
9953 };
9954
9955 static void pmu_dev_release(struct device *dev)
9956 {
9957         kfree(dev);
9958 }
9959
9960 static int pmu_dev_alloc(struct pmu *pmu)
9961 {
9962         int ret = -ENOMEM;
9963
9964         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9965         if (!pmu->dev)
9966                 goto out;
9967
9968         pmu->dev->groups = pmu->attr_groups;
9969         device_initialize(pmu->dev);
9970         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9971         if (ret)
9972                 goto free_dev;
9973
9974         dev_set_drvdata(pmu->dev, pmu);
9975         pmu->dev->bus = &pmu_bus;
9976         pmu->dev->release = pmu_dev_release;
9977         ret = device_add(pmu->dev);
9978         if (ret)
9979                 goto free_dev;
9980
9981         /* For PMUs with address filters, throw in an extra attribute: */
9982         if (pmu->nr_addr_filters)
9983                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9984
9985         if (ret)
9986                 goto del_dev;
9987
9988         if (pmu->attr_update)
9989                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
9990
9991         if (ret)
9992                 goto del_dev;
9993
9994 out:
9995         return ret;
9996
9997 del_dev:
9998         device_del(pmu->dev);
9999
10000 free_dev:
10001         put_device(pmu->dev);
10002         goto out;
10003 }
10004
10005 static struct lock_class_key cpuctx_mutex;
10006 static struct lock_class_key cpuctx_lock;
10007
10008 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10009 {
10010         int cpu, ret;
10011
10012         mutex_lock(&pmus_lock);
10013         ret = -ENOMEM;
10014         pmu->pmu_disable_count = alloc_percpu(int);
10015         if (!pmu->pmu_disable_count)
10016                 goto unlock;
10017
10018         pmu->type = -1;
10019         if (!name)
10020                 goto skip_type;
10021         pmu->name = name;
10022
10023         if (type < 0) {
10024                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
10025                 if (type < 0) {
10026                         ret = type;
10027                         goto free_pdc;
10028                 }
10029         }
10030         pmu->type = type;
10031
10032         if (pmu_bus_running) {
10033                 ret = pmu_dev_alloc(pmu);
10034                 if (ret)
10035                         goto free_idr;
10036         }
10037
10038 skip_type:
10039         if (pmu->task_ctx_nr == perf_hw_context) {
10040                 static int hw_context_taken = 0;
10041
10042                 /*
10043                  * Other than systems with heterogeneous CPUs, it never makes
10044                  * sense for two PMUs to share perf_hw_context. PMUs which are
10045                  * uncore must use perf_invalid_context.
10046                  */
10047                 if (WARN_ON_ONCE(hw_context_taken &&
10048                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10049                         pmu->task_ctx_nr = perf_invalid_context;
10050
10051                 hw_context_taken = 1;
10052         }
10053
10054         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10055         if (pmu->pmu_cpu_context)
10056                 goto got_cpu_context;
10057
10058         ret = -ENOMEM;
10059         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10060         if (!pmu->pmu_cpu_context)
10061                 goto free_dev;
10062
10063         for_each_possible_cpu(cpu) {
10064                 struct perf_cpu_context *cpuctx;
10065
10066                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10067                 __perf_event_init_context(&cpuctx->ctx);
10068                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10069                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10070                 cpuctx->ctx.pmu = pmu;
10071                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10072
10073                 __perf_mux_hrtimer_init(cpuctx, cpu);
10074         }
10075
10076 got_cpu_context:
10077         if (!pmu->start_txn) {
10078                 if (pmu->pmu_enable) {
10079                         /*
10080                          * If we have pmu_enable/pmu_disable calls, install
10081                          * transaction stubs that use that to try and batch
10082                          * hardware accesses.
10083                          */
10084                         pmu->start_txn  = perf_pmu_start_txn;
10085                         pmu->commit_txn = perf_pmu_commit_txn;
10086                         pmu->cancel_txn = perf_pmu_cancel_txn;
10087                 } else {
10088                         pmu->start_txn  = perf_pmu_nop_txn;
10089                         pmu->commit_txn = perf_pmu_nop_int;
10090                         pmu->cancel_txn = perf_pmu_nop_void;
10091                 }
10092         }
10093
10094         if (!pmu->pmu_enable) {
10095                 pmu->pmu_enable  = perf_pmu_nop_void;
10096                 pmu->pmu_disable = perf_pmu_nop_void;
10097         }
10098
10099         if (!pmu->check_period)
10100                 pmu->check_period = perf_event_nop_int;
10101
10102         if (!pmu->event_idx)
10103                 pmu->event_idx = perf_event_idx_default;
10104
10105         list_add_rcu(&pmu->entry, &pmus);
10106         atomic_set(&pmu->exclusive_cnt, 0);
10107         ret = 0;
10108 unlock:
10109         mutex_unlock(&pmus_lock);
10110
10111         return ret;
10112
10113 free_dev:
10114         device_del(pmu->dev);
10115         put_device(pmu->dev);
10116
10117 free_idr:
10118         if (pmu->type >= PERF_TYPE_MAX)
10119                 idr_remove(&pmu_idr, pmu->type);
10120
10121 free_pdc:
10122         free_percpu(pmu->pmu_disable_count);
10123         goto unlock;
10124 }
10125 EXPORT_SYMBOL_GPL(perf_pmu_register);
10126
10127 void perf_pmu_unregister(struct pmu *pmu)
10128 {
10129         mutex_lock(&pmus_lock);
10130         list_del_rcu(&pmu->entry);
10131
10132         /*
10133          * We dereference the pmu list under both SRCU and regular RCU, so
10134          * synchronize against both of those.
10135          */
10136         synchronize_srcu(&pmus_srcu);
10137         synchronize_rcu();
10138
10139         free_percpu(pmu->pmu_disable_count);
10140         if (pmu->type >= PERF_TYPE_MAX)
10141                 idr_remove(&pmu_idr, pmu->type);
10142         if (pmu_bus_running) {
10143                 if (pmu->nr_addr_filters)
10144                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10145                 device_del(pmu->dev);
10146                 put_device(pmu->dev);
10147         }
10148         free_pmu_context(pmu);
10149         mutex_unlock(&pmus_lock);
10150 }
10151 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10152
10153 static inline bool has_extended_regs(struct perf_event *event)
10154 {
10155         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10156                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10157 }
10158
10159 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10160 {
10161         struct perf_event_context *ctx = NULL;
10162         int ret;
10163
10164         if (!try_module_get(pmu->module))
10165                 return -ENODEV;
10166
10167         /*
10168          * A number of pmu->event_init() methods iterate the sibling_list to,
10169          * for example, validate if the group fits on the PMU. Therefore,
10170          * if this is a sibling event, acquire the ctx->mutex to protect
10171          * the sibling_list.
10172          */
10173         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10174                 /*
10175                  * This ctx->mutex can nest when we're called through
10176                  * inheritance. See the perf_event_ctx_lock_nested() comment.
10177                  */
10178                 ctx = perf_event_ctx_lock_nested(event->group_leader,
10179                                                  SINGLE_DEPTH_NESTING);
10180                 BUG_ON(!ctx);
10181         }
10182
10183         event->pmu = pmu;
10184         ret = pmu->event_init(event);
10185
10186         if (ctx)
10187                 perf_event_ctx_unlock(event->group_leader, ctx);
10188
10189         if (!ret) {
10190                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10191                     has_extended_regs(event))
10192                         ret = -EOPNOTSUPP;
10193
10194                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10195                     event_has_any_exclude_flag(event))
10196                         ret = -EINVAL;
10197
10198                 if (ret && event->destroy)
10199                         event->destroy(event);
10200         }
10201
10202         if (ret)
10203                 module_put(pmu->module);
10204
10205         return ret;
10206 }
10207
10208 static struct pmu *perf_init_event(struct perf_event *event)
10209 {
10210         struct pmu *pmu;
10211         int idx;
10212         int ret;
10213
10214         idx = srcu_read_lock(&pmus_srcu);
10215
10216         /* Try parent's PMU first: */
10217         if (event->parent && event->parent->pmu) {
10218                 pmu = event->parent->pmu;
10219                 ret = perf_try_init_event(pmu, event);
10220                 if (!ret)
10221                         goto unlock;
10222         }
10223
10224         rcu_read_lock();
10225         pmu = idr_find(&pmu_idr, event->attr.type);
10226         rcu_read_unlock();
10227         if (pmu) {
10228                 ret = perf_try_init_event(pmu, event);
10229                 if (ret)
10230                         pmu = ERR_PTR(ret);
10231                 goto unlock;
10232         }
10233
10234         list_for_each_entry_rcu(pmu, &pmus, entry) {
10235                 ret = perf_try_init_event(pmu, event);
10236                 if (!ret)
10237                         goto unlock;
10238
10239                 if (ret != -ENOENT) {
10240                         pmu = ERR_PTR(ret);
10241                         goto unlock;
10242                 }
10243         }
10244         pmu = ERR_PTR(-ENOENT);
10245 unlock:
10246         srcu_read_unlock(&pmus_srcu, idx);
10247
10248         return pmu;
10249 }
10250
10251 static void attach_sb_event(struct perf_event *event)
10252 {
10253         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10254
10255         raw_spin_lock(&pel->lock);
10256         list_add_rcu(&event->sb_list, &pel->list);
10257         raw_spin_unlock(&pel->lock);
10258 }
10259
10260 /*
10261  * We keep a list of all !task (and therefore per-cpu) events
10262  * that need to receive side-band records.
10263  *
10264  * This avoids having to scan all the various PMU per-cpu contexts
10265  * looking for them.
10266  */
10267 static void account_pmu_sb_event(struct perf_event *event)
10268 {
10269         if (is_sb_event(event))
10270                 attach_sb_event(event);
10271 }
10272
10273 static void account_event_cpu(struct perf_event *event, int cpu)
10274 {
10275         if (event->parent)
10276                 return;
10277
10278         if (is_cgroup_event(event))
10279                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10280 }
10281
10282 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10283 static void account_freq_event_nohz(void)
10284 {
10285 #ifdef CONFIG_NO_HZ_FULL
10286         /* Lock so we don't race with concurrent unaccount */
10287         spin_lock(&nr_freq_lock);
10288         if (atomic_inc_return(&nr_freq_events) == 1)
10289                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10290         spin_unlock(&nr_freq_lock);
10291 #endif
10292 }
10293
10294 static void account_freq_event(void)
10295 {
10296         if (tick_nohz_full_enabled())
10297                 account_freq_event_nohz();
10298         else
10299                 atomic_inc(&nr_freq_events);
10300 }
10301
10302
10303 static void account_event(struct perf_event *event)
10304 {
10305         bool inc = false;
10306
10307         if (event->parent)
10308                 return;
10309
10310         if (event->attach_state & PERF_ATTACH_TASK)
10311                 inc = true;
10312         if (event->attr.mmap || event->attr.mmap_data)
10313                 atomic_inc(&nr_mmap_events);
10314         if (event->attr.comm)
10315                 atomic_inc(&nr_comm_events);
10316         if (event->attr.namespaces)
10317                 atomic_inc(&nr_namespaces_events);
10318         if (event->attr.task)
10319                 atomic_inc(&nr_task_events);
10320         if (event->attr.freq)
10321                 account_freq_event();
10322         if (event->attr.context_switch) {
10323                 atomic_inc(&nr_switch_events);
10324                 inc = true;
10325         }
10326         if (has_branch_stack(event))
10327                 inc = true;
10328         if (is_cgroup_event(event))
10329                 inc = true;
10330         if (event->attr.ksymbol)
10331                 atomic_inc(&nr_ksymbol_events);
10332         if (event->attr.bpf_event)
10333                 atomic_inc(&nr_bpf_events);
10334
10335         if (inc) {
10336                 /*
10337                  * We need the mutex here because static_branch_enable()
10338                  * must complete *before* the perf_sched_count increment
10339                  * becomes visible.
10340                  */
10341                 if (atomic_inc_not_zero(&perf_sched_count))
10342                         goto enabled;
10343
10344                 mutex_lock(&perf_sched_mutex);
10345                 if (!atomic_read(&perf_sched_count)) {
10346                         static_branch_enable(&perf_sched_events);
10347                         /*
10348                          * Guarantee that all CPUs observe they key change and
10349                          * call the perf scheduling hooks before proceeding to
10350                          * install events that need them.
10351                          */
10352                         synchronize_rcu();
10353                 }
10354                 /*
10355                  * Now that we have waited for the sync_sched(), allow further
10356                  * increments to by-pass the mutex.
10357                  */
10358                 atomic_inc(&perf_sched_count);
10359                 mutex_unlock(&perf_sched_mutex);
10360         }
10361 enabled:
10362
10363         account_event_cpu(event, event->cpu);
10364
10365         account_pmu_sb_event(event);
10366 }
10367
10368 /*
10369  * Allocate and initialize an event structure
10370  */
10371 static struct perf_event *
10372 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10373                  struct task_struct *task,
10374                  struct perf_event *group_leader,
10375                  struct perf_event *parent_event,
10376                  perf_overflow_handler_t overflow_handler,
10377                  void *context, int cgroup_fd)
10378 {
10379         struct pmu *pmu;
10380         struct perf_event *event;
10381         struct hw_perf_event *hwc;
10382         long err = -EINVAL;
10383
10384         if ((unsigned)cpu >= nr_cpu_ids) {
10385                 if (!task || cpu != -1)
10386                         return ERR_PTR(-EINVAL);
10387         }
10388
10389         event = kzalloc(sizeof(*event), GFP_KERNEL);
10390         if (!event)
10391                 return ERR_PTR(-ENOMEM);
10392
10393         /*
10394          * Single events are their own group leaders, with an
10395          * empty sibling list:
10396          */
10397         if (!group_leader)
10398                 group_leader = event;
10399
10400         mutex_init(&event->child_mutex);
10401         INIT_LIST_HEAD(&event->child_list);
10402
10403         INIT_LIST_HEAD(&event->event_entry);
10404         INIT_LIST_HEAD(&event->sibling_list);
10405         INIT_LIST_HEAD(&event->active_list);
10406         init_event_group(event);
10407         INIT_LIST_HEAD(&event->rb_entry);
10408         INIT_LIST_HEAD(&event->active_entry);
10409         INIT_LIST_HEAD(&event->addr_filters.list);
10410         INIT_HLIST_NODE(&event->hlist_entry);
10411
10412
10413         init_waitqueue_head(&event->waitq);
10414         event->pending_disable = -1;
10415         init_irq_work(&event->pending, perf_pending_event);
10416
10417         mutex_init(&event->mmap_mutex);
10418         raw_spin_lock_init(&event->addr_filters.lock);
10419
10420         atomic_long_set(&event->refcount, 1);
10421         event->cpu              = cpu;
10422         event->attr             = *attr;
10423         event->group_leader     = group_leader;
10424         event->pmu              = NULL;
10425         event->oncpu            = -1;
10426
10427         event->parent           = parent_event;
10428
10429         event->ns               = get_pid_ns(task_active_pid_ns(current));
10430         event->id               = atomic64_inc_return(&perf_event_id);
10431
10432         event->state            = PERF_EVENT_STATE_INACTIVE;
10433
10434         if (task) {
10435                 event->attach_state = PERF_ATTACH_TASK;
10436                 /*
10437                  * XXX pmu::event_init needs to know what task to account to
10438                  * and we cannot use the ctx information because we need the
10439                  * pmu before we get a ctx.
10440                  */
10441                 event->hw.target = get_task_struct(task);
10442         }
10443
10444         event->clock = &local_clock;
10445         if (parent_event)
10446                 event->clock = parent_event->clock;
10447
10448         if (!overflow_handler && parent_event) {
10449                 overflow_handler = parent_event->overflow_handler;
10450                 context = parent_event->overflow_handler_context;
10451 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10452                 if (overflow_handler == bpf_overflow_handler) {
10453                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10454
10455                         if (IS_ERR(prog)) {
10456                                 err = PTR_ERR(prog);
10457                                 goto err_ns;
10458                         }
10459                         event->prog = prog;
10460                         event->orig_overflow_handler =
10461                                 parent_event->orig_overflow_handler;
10462                 }
10463 #endif
10464         }
10465
10466         if (overflow_handler) {
10467                 event->overflow_handler = overflow_handler;
10468                 event->overflow_handler_context = context;
10469         } else if (is_write_backward(event)){
10470                 event->overflow_handler = perf_event_output_backward;
10471                 event->overflow_handler_context = NULL;
10472         } else {
10473                 event->overflow_handler = perf_event_output_forward;
10474                 event->overflow_handler_context = NULL;
10475         }
10476
10477         perf_event__state_init(event);
10478
10479         pmu = NULL;
10480
10481         hwc = &event->hw;
10482         hwc->sample_period = attr->sample_period;
10483         if (attr->freq && attr->sample_freq)
10484                 hwc->sample_period = 1;
10485         hwc->last_period = hwc->sample_period;
10486
10487         local64_set(&hwc->period_left, hwc->sample_period);
10488
10489         /*
10490          * We currently do not support PERF_SAMPLE_READ on inherited events.
10491          * See perf_output_read().
10492          */
10493         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10494                 goto err_ns;
10495
10496         if (!has_branch_stack(event))
10497                 event->attr.branch_sample_type = 0;
10498
10499         if (cgroup_fd != -1) {
10500                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10501                 if (err)
10502                         goto err_ns;
10503         }
10504
10505         pmu = perf_init_event(event);
10506         if (IS_ERR(pmu)) {
10507                 err = PTR_ERR(pmu);
10508                 goto err_ns;
10509         }
10510
10511         if (event->attr.aux_output &&
10512             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10513                 err = -EOPNOTSUPP;
10514                 goto err_pmu;
10515         }
10516
10517         err = exclusive_event_init(event);
10518         if (err)
10519                 goto err_pmu;
10520
10521         if (has_addr_filter(event)) {
10522                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10523                                                     sizeof(struct perf_addr_filter_range),
10524                                                     GFP_KERNEL);
10525                 if (!event->addr_filter_ranges) {
10526                         err = -ENOMEM;
10527                         goto err_per_task;
10528                 }
10529
10530                 /*
10531                  * Clone the parent's vma offsets: they are valid until exec()
10532                  * even if the mm is not shared with the parent.
10533                  */
10534                 if (event->parent) {
10535                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10536
10537                         raw_spin_lock_irq(&ifh->lock);
10538                         memcpy(event->addr_filter_ranges,
10539                                event->parent->addr_filter_ranges,
10540                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10541                         raw_spin_unlock_irq(&ifh->lock);
10542                 }
10543
10544                 /* force hw sync on the address filters */
10545                 event->addr_filters_gen = 1;
10546         }
10547
10548         if (!event->parent) {
10549                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10550                         err = get_callchain_buffers(attr->sample_max_stack);
10551                         if (err)
10552                                 goto err_addr_filters;
10553                 }
10554         }
10555
10556         /* symmetric to unaccount_event() in _free_event() */
10557         account_event(event);
10558
10559         return event;
10560
10561 err_addr_filters:
10562         kfree(event->addr_filter_ranges);
10563
10564 err_per_task:
10565         exclusive_event_destroy(event);
10566
10567 err_pmu:
10568         if (event->destroy)
10569                 event->destroy(event);
10570         module_put(pmu->module);
10571 err_ns:
10572         if (is_cgroup_event(event))
10573                 perf_detach_cgroup(event);
10574         if (event->ns)
10575                 put_pid_ns(event->ns);
10576         if (event->hw.target)
10577                 put_task_struct(event->hw.target);
10578         kfree(event);
10579
10580         return ERR_PTR(err);
10581 }
10582
10583 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10584                           struct perf_event_attr *attr)
10585 {
10586         u32 size;
10587         int ret;
10588
10589         if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10590                 return -EFAULT;
10591
10592         /*
10593          * zero the full structure, so that a short copy will be nice.
10594          */
10595         memset(attr, 0, sizeof(*attr));
10596
10597         ret = get_user(size, &uattr->size);
10598         if (ret)
10599                 return ret;
10600
10601         if (size > PAGE_SIZE)   /* silly large */
10602                 goto err_size;
10603
10604         if (!size)              /* abi compat */
10605                 size = PERF_ATTR_SIZE_VER0;
10606
10607         if (size < PERF_ATTR_SIZE_VER0)
10608                 goto err_size;
10609
10610         /*
10611          * If we're handed a bigger struct than we know of,
10612          * ensure all the unknown bits are 0 - i.e. new
10613          * user-space does not rely on any kernel feature
10614          * extensions we dont know about yet.
10615          */
10616         if (size > sizeof(*attr)) {
10617                 unsigned char __user *addr;
10618                 unsigned char __user *end;
10619                 unsigned char val;
10620
10621                 addr = (void __user *)uattr + sizeof(*attr);
10622                 end  = (void __user *)uattr + size;
10623
10624                 for (; addr < end; addr++) {
10625                         ret = get_user(val, addr);
10626                         if (ret)
10627                                 return ret;
10628                         if (val)
10629                                 goto err_size;
10630                 }
10631                 size = sizeof(*attr);
10632         }
10633
10634         ret = copy_from_user(attr, uattr, size);
10635         if (ret)
10636                 return -EFAULT;
10637
10638         attr->size = size;
10639
10640         if (attr->__reserved_1)
10641                 return -EINVAL;
10642
10643         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10644                 return -EINVAL;
10645
10646         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10647                 return -EINVAL;
10648
10649         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10650                 u64 mask = attr->branch_sample_type;
10651
10652                 /* only using defined bits */
10653                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10654                         return -EINVAL;
10655
10656                 /* at least one branch bit must be set */
10657                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10658                         return -EINVAL;
10659
10660                 /* propagate priv level, when not set for branch */
10661                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10662
10663                         /* exclude_kernel checked on syscall entry */
10664                         if (!attr->exclude_kernel)
10665                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10666
10667                         if (!attr->exclude_user)
10668                                 mask |= PERF_SAMPLE_BRANCH_USER;
10669
10670                         if (!attr->exclude_hv)
10671                                 mask |= PERF_SAMPLE_BRANCH_HV;
10672                         /*
10673                          * adjust user setting (for HW filter setup)
10674                          */
10675                         attr->branch_sample_type = mask;
10676                 }
10677                 /* privileged levels capture (kernel, hv): check permissions */
10678                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10679                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10680                         return -EACCES;
10681         }
10682
10683         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10684                 ret = perf_reg_validate(attr->sample_regs_user);
10685                 if (ret)
10686                         return ret;
10687         }
10688
10689         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10690                 if (!arch_perf_have_user_stack_dump())
10691                         return -ENOSYS;
10692
10693                 /*
10694                  * We have __u32 type for the size, but so far
10695                  * we can only use __u16 as maximum due to the
10696                  * __u16 sample size limit.
10697                  */
10698                 if (attr->sample_stack_user >= USHRT_MAX)
10699                         return -EINVAL;
10700                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10701                         return -EINVAL;
10702         }
10703
10704         if (!attr->sample_max_stack)
10705                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10706
10707         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10708                 ret = perf_reg_validate(attr->sample_regs_intr);
10709 out:
10710         return ret;
10711
10712 err_size:
10713         put_user(sizeof(*attr), &uattr->size);
10714         ret = -E2BIG;
10715         goto out;
10716 }
10717
10718 static int
10719 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10720 {
10721         struct ring_buffer *rb = NULL;
10722         int ret = -EINVAL;
10723
10724         if (!output_event)
10725                 goto set;
10726
10727         /* don't allow circular references */
10728         if (event == output_event)
10729                 goto out;
10730
10731         /*
10732          * Don't allow cross-cpu buffers
10733          */
10734         if (output_event->cpu != event->cpu)
10735                 goto out;
10736
10737         /*
10738          * If its not a per-cpu rb, it must be the same task.
10739          */
10740         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10741                 goto out;
10742
10743         /*
10744          * Mixing clocks in the same buffer is trouble you don't need.
10745          */
10746         if (output_event->clock != event->clock)
10747                 goto out;
10748
10749         /*
10750          * Either writing ring buffer from beginning or from end.
10751          * Mixing is not allowed.
10752          */
10753         if (is_write_backward(output_event) != is_write_backward(event))
10754                 goto out;
10755
10756         /*
10757          * If both events generate aux data, they must be on the same PMU
10758          */
10759         if (has_aux(event) && has_aux(output_event) &&
10760             event->pmu != output_event->pmu)
10761                 goto out;
10762
10763 set:
10764         mutex_lock(&event->mmap_mutex);
10765         /* Can't redirect output if we've got an active mmap() */
10766         if (atomic_read(&event->mmap_count))
10767                 goto unlock;
10768
10769         if (output_event) {
10770                 /* get the rb we want to redirect to */
10771                 rb = ring_buffer_get(output_event);
10772                 if (!rb)
10773                         goto unlock;
10774         }
10775
10776         ring_buffer_attach(event, rb);
10777
10778         ret = 0;
10779 unlock:
10780         mutex_unlock(&event->mmap_mutex);
10781
10782 out:
10783         return ret;
10784 }
10785
10786 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10787 {
10788         if (b < a)
10789                 swap(a, b);
10790
10791         mutex_lock(a);
10792         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10793 }
10794
10795 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10796 {
10797         bool nmi_safe = false;
10798
10799         switch (clk_id) {
10800         case CLOCK_MONOTONIC:
10801                 event->clock = &ktime_get_mono_fast_ns;
10802                 nmi_safe = true;
10803                 break;
10804
10805         case CLOCK_MONOTONIC_RAW:
10806                 event->clock = &ktime_get_raw_fast_ns;
10807                 nmi_safe = true;
10808                 break;
10809
10810         case CLOCK_REALTIME:
10811                 event->clock = &ktime_get_real_ns;
10812                 break;
10813
10814         case CLOCK_BOOTTIME:
10815                 event->clock = &ktime_get_boottime_ns;
10816                 break;
10817
10818         case CLOCK_TAI:
10819                 event->clock = &ktime_get_clocktai_ns;
10820                 break;
10821
10822         default:
10823                 return -EINVAL;
10824         }
10825
10826         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10827                 return -EINVAL;
10828
10829         return 0;
10830 }
10831
10832 /*
10833  * Variation on perf_event_ctx_lock_nested(), except we take two context
10834  * mutexes.
10835  */
10836 static struct perf_event_context *
10837 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10838                              struct perf_event_context *ctx)
10839 {
10840         struct perf_event_context *gctx;
10841
10842 again:
10843         rcu_read_lock();
10844         gctx = READ_ONCE(group_leader->ctx);
10845         if (!refcount_inc_not_zero(&gctx->refcount)) {
10846                 rcu_read_unlock();
10847                 goto again;
10848         }
10849         rcu_read_unlock();
10850
10851         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10852
10853         if (group_leader->ctx != gctx) {
10854                 mutex_unlock(&ctx->mutex);
10855                 mutex_unlock(&gctx->mutex);
10856                 put_ctx(gctx);
10857                 goto again;
10858         }
10859
10860         return gctx;
10861 }
10862
10863 /**
10864  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10865  *
10866  * @attr_uptr:  event_id type attributes for monitoring/sampling
10867  * @pid:                target pid
10868  * @cpu:                target cpu
10869  * @group_fd:           group leader event fd
10870  */
10871 SYSCALL_DEFINE5(perf_event_open,
10872                 struct perf_event_attr __user *, attr_uptr,
10873                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10874 {
10875         struct perf_event *group_leader = NULL, *output_event = NULL;
10876         struct perf_event *event, *sibling;
10877         struct perf_event_attr attr;
10878         struct perf_event_context *ctx, *uninitialized_var(gctx);
10879         struct file *event_file = NULL;
10880         struct fd group = {NULL, 0};
10881         struct task_struct *task = NULL;
10882         struct pmu *pmu;
10883         int event_fd;
10884         int move_group = 0;
10885         int err;
10886         int f_flags = O_RDWR;
10887         int cgroup_fd = -1;
10888
10889         /* for future expandability... */
10890         if (flags & ~PERF_FLAG_ALL)
10891                 return -EINVAL;
10892
10893         err = perf_copy_attr(attr_uptr, &attr);
10894         if (err)
10895                 return err;
10896
10897         if (!attr.exclude_kernel) {
10898                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10899                         return -EACCES;
10900         }
10901
10902         if (attr.namespaces) {
10903                 if (!capable(CAP_SYS_ADMIN))
10904                         return -EACCES;
10905         }
10906
10907         if (attr.freq) {
10908                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10909                         return -EINVAL;
10910         } else {
10911                 if (attr.sample_period & (1ULL << 63))
10912                         return -EINVAL;
10913         }
10914
10915         /* Only privileged users can get physical addresses */
10916         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10917             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10918                 return -EACCES;
10919
10920         /*
10921          * In cgroup mode, the pid argument is used to pass the fd
10922          * opened to the cgroup directory in cgroupfs. The cpu argument
10923          * designates the cpu on which to monitor threads from that
10924          * cgroup.
10925          */
10926         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10927                 return -EINVAL;
10928
10929         if (flags & PERF_FLAG_FD_CLOEXEC)
10930                 f_flags |= O_CLOEXEC;
10931
10932         event_fd = get_unused_fd_flags(f_flags);
10933         if (event_fd < 0)
10934                 return event_fd;
10935
10936         if (group_fd != -1) {
10937                 err = perf_fget_light(group_fd, &group);
10938                 if (err)
10939                         goto err_fd;
10940                 group_leader = group.file->private_data;
10941                 if (flags & PERF_FLAG_FD_OUTPUT)
10942                         output_event = group_leader;
10943                 if (flags & PERF_FLAG_FD_NO_GROUP)
10944                         group_leader = NULL;
10945         }
10946
10947         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10948                 task = find_lively_task_by_vpid(pid);
10949                 if (IS_ERR(task)) {
10950                         err = PTR_ERR(task);
10951                         goto err_group_fd;
10952                 }
10953         }
10954
10955         if (task && group_leader &&
10956             group_leader->attr.inherit != attr.inherit) {
10957                 err = -EINVAL;
10958                 goto err_task;
10959         }
10960
10961         if (task) {
10962                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10963                 if (err)
10964                         goto err_task;
10965
10966                 /*
10967                  * Reuse ptrace permission checks for now.
10968                  *
10969                  * We must hold cred_guard_mutex across this and any potential
10970                  * perf_install_in_context() call for this new event to
10971                  * serialize against exec() altering our credentials (and the
10972                  * perf_event_exit_task() that could imply).
10973                  */
10974                 err = -EACCES;
10975                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10976                         goto err_cred;
10977         }
10978
10979         if (flags & PERF_FLAG_PID_CGROUP)
10980                 cgroup_fd = pid;
10981
10982         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10983                                  NULL, NULL, cgroup_fd);
10984         if (IS_ERR(event)) {
10985                 err = PTR_ERR(event);
10986                 goto err_cred;
10987         }
10988
10989         if (is_sampling_event(event)) {
10990                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10991                         err = -EOPNOTSUPP;
10992                         goto err_alloc;
10993                 }
10994         }
10995
10996         /*
10997          * Special case software events and allow them to be part of
10998          * any hardware group.
10999          */
11000         pmu = event->pmu;
11001
11002         if (attr.use_clockid) {
11003                 err = perf_event_set_clock(event, attr.clockid);
11004                 if (err)
11005                         goto err_alloc;
11006         }
11007
11008         if (pmu->task_ctx_nr == perf_sw_context)
11009                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11010
11011         if (group_leader) {
11012                 if (is_software_event(event) &&
11013                     !in_software_context(group_leader)) {
11014                         /*
11015                          * If the event is a sw event, but the group_leader
11016                          * is on hw context.
11017                          *
11018                          * Allow the addition of software events to hw
11019                          * groups, this is safe because software events
11020                          * never fail to schedule.
11021                          */
11022                         pmu = group_leader->ctx->pmu;
11023                 } else if (!is_software_event(event) &&
11024                            is_software_event(group_leader) &&
11025                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11026                         /*
11027                          * In case the group is a pure software group, and we
11028                          * try to add a hardware event, move the whole group to
11029                          * the hardware context.
11030                          */
11031                         move_group = 1;
11032                 }
11033         }
11034
11035         /*
11036          * Get the target context (task or percpu):
11037          */
11038         ctx = find_get_context(pmu, task, event);
11039         if (IS_ERR(ctx)) {
11040                 err = PTR_ERR(ctx);
11041                 goto err_alloc;
11042         }
11043
11044         /*
11045          * Look up the group leader (we will attach this event to it):
11046          */
11047         if (group_leader) {
11048                 err = -EINVAL;
11049
11050                 /*
11051                  * Do not allow a recursive hierarchy (this new sibling
11052                  * becoming part of another group-sibling):
11053                  */
11054                 if (group_leader->group_leader != group_leader)
11055                         goto err_context;
11056
11057                 /* All events in a group should have the same clock */
11058                 if (group_leader->clock != event->clock)
11059                         goto err_context;
11060
11061                 /*
11062                  * Make sure we're both events for the same CPU;
11063                  * grouping events for different CPUs is broken; since
11064                  * you can never concurrently schedule them anyhow.
11065                  */
11066                 if (group_leader->cpu != event->cpu)
11067                         goto err_context;
11068
11069                 /*
11070                  * Make sure we're both on the same task, or both
11071                  * per-CPU events.
11072                  */
11073                 if (group_leader->ctx->task != ctx->task)
11074                         goto err_context;
11075
11076                 /*
11077                  * Do not allow to attach to a group in a different task
11078                  * or CPU context. If we're moving SW events, we'll fix
11079                  * this up later, so allow that.
11080                  */
11081                 if (!move_group && group_leader->ctx != ctx)
11082                         goto err_context;
11083
11084                 /*
11085                  * Only a group leader can be exclusive or pinned
11086                  */
11087                 if (attr.exclusive || attr.pinned)
11088                         goto err_context;
11089         }
11090
11091         if (output_event) {
11092                 err = perf_event_set_output(event, output_event);
11093                 if (err)
11094                         goto err_context;
11095         }
11096
11097         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11098                                         f_flags);
11099         if (IS_ERR(event_file)) {
11100                 err = PTR_ERR(event_file);
11101                 event_file = NULL;
11102                 goto err_context;
11103         }
11104
11105         if (move_group) {
11106                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11107
11108                 if (gctx->task == TASK_TOMBSTONE) {
11109                         err = -ESRCH;
11110                         goto err_locked;
11111                 }
11112
11113                 /*
11114                  * Check if we raced against another sys_perf_event_open() call
11115                  * moving the software group underneath us.
11116                  */
11117                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11118                         /*
11119                          * If someone moved the group out from under us, check
11120                          * if this new event wound up on the same ctx, if so
11121                          * its the regular !move_group case, otherwise fail.
11122                          */
11123                         if (gctx != ctx) {
11124                                 err = -EINVAL;
11125                                 goto err_locked;
11126                         } else {
11127                                 perf_event_ctx_unlock(group_leader, gctx);
11128                                 move_group = 0;
11129                         }
11130                 }
11131
11132                 /*
11133                  * Failure to create exclusive events returns -EBUSY.
11134                  */
11135                 err = -EBUSY;
11136                 if (!exclusive_event_installable(group_leader, ctx))
11137                         goto err_locked;
11138
11139                 for_each_sibling_event(sibling, group_leader) {
11140                         if (!exclusive_event_installable(sibling, ctx))
11141                                 goto err_locked;
11142                 }
11143         } else {
11144                 mutex_lock(&ctx->mutex);
11145         }
11146
11147         if (ctx->task == TASK_TOMBSTONE) {
11148                 err = -ESRCH;
11149                 goto err_locked;
11150         }
11151
11152         if (!perf_event_validate_size(event)) {
11153                 err = -E2BIG;
11154                 goto err_locked;
11155         }
11156
11157         if (!task) {
11158                 /*
11159                  * Check if the @cpu we're creating an event for is online.
11160                  *
11161                  * We use the perf_cpu_context::ctx::mutex to serialize against
11162                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11163                  */
11164                 struct perf_cpu_context *cpuctx =
11165                         container_of(ctx, struct perf_cpu_context, ctx);
11166
11167                 if (!cpuctx->online) {
11168                         err = -ENODEV;
11169                         goto err_locked;
11170                 }
11171         }
11172
11173         if (event->attr.aux_output && !perf_get_aux_event(event, group_leader))
11174                 goto err_locked;
11175
11176         /*
11177          * Must be under the same ctx::mutex as perf_install_in_context(),
11178          * because we need to serialize with concurrent event creation.
11179          */
11180         if (!exclusive_event_installable(event, ctx)) {
11181                 err = -EBUSY;
11182                 goto err_locked;
11183         }
11184
11185         WARN_ON_ONCE(ctx->parent_ctx);
11186
11187         /*
11188          * This is the point on no return; we cannot fail hereafter. This is
11189          * where we start modifying current state.
11190          */
11191
11192         if (move_group) {
11193                 /*
11194                  * See perf_event_ctx_lock() for comments on the details
11195                  * of swizzling perf_event::ctx.
11196                  */
11197                 perf_remove_from_context(group_leader, 0);
11198                 put_ctx(gctx);
11199
11200                 for_each_sibling_event(sibling, group_leader) {
11201                         perf_remove_from_context(sibling, 0);
11202                         put_ctx(gctx);
11203                 }
11204
11205                 /*
11206                  * Wait for everybody to stop referencing the events through
11207                  * the old lists, before installing it on new lists.
11208                  */
11209                 synchronize_rcu();
11210
11211                 /*
11212                  * Install the group siblings before the group leader.
11213                  *
11214                  * Because a group leader will try and install the entire group
11215                  * (through the sibling list, which is still in-tact), we can
11216                  * end up with siblings installed in the wrong context.
11217                  *
11218                  * By installing siblings first we NO-OP because they're not
11219                  * reachable through the group lists.
11220                  */
11221                 for_each_sibling_event(sibling, group_leader) {
11222                         perf_event__state_init(sibling);
11223                         perf_install_in_context(ctx, sibling, sibling->cpu);
11224                         get_ctx(ctx);
11225                 }
11226
11227                 /*
11228                  * Removing from the context ends up with disabled
11229                  * event. What we want here is event in the initial
11230                  * startup state, ready to be add into new context.
11231                  */
11232                 perf_event__state_init(group_leader);
11233                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11234                 get_ctx(ctx);
11235         }
11236
11237         /*
11238          * Precalculate sample_data sizes; do while holding ctx::mutex such
11239          * that we're serialized against further additions and before
11240          * perf_install_in_context() which is the point the event is active and
11241          * can use these values.
11242          */
11243         perf_event__header_size(event);
11244         perf_event__id_header_size(event);
11245
11246         event->owner = current;
11247
11248         perf_install_in_context(ctx, event, event->cpu);
11249         perf_unpin_context(ctx);
11250
11251         if (move_group)
11252                 perf_event_ctx_unlock(group_leader, gctx);
11253         mutex_unlock(&ctx->mutex);
11254
11255         if (task) {
11256                 mutex_unlock(&task->signal->cred_guard_mutex);
11257                 put_task_struct(task);
11258         }
11259
11260         mutex_lock(&current->perf_event_mutex);
11261         list_add_tail(&event->owner_entry, &current->perf_event_list);
11262         mutex_unlock(&current->perf_event_mutex);
11263
11264         /*
11265          * Drop the reference on the group_event after placing the
11266          * new event on the sibling_list. This ensures destruction
11267          * of the group leader will find the pointer to itself in
11268          * perf_group_detach().
11269          */
11270         fdput(group);
11271         fd_install(event_fd, event_file);
11272         return event_fd;
11273
11274 err_locked:
11275         if (move_group)
11276                 perf_event_ctx_unlock(group_leader, gctx);
11277         mutex_unlock(&ctx->mutex);
11278 /* err_file: */
11279         fput(event_file);
11280 err_context:
11281         perf_unpin_context(ctx);
11282         put_ctx(ctx);
11283 err_alloc:
11284         /*
11285          * If event_file is set, the fput() above will have called ->release()
11286          * and that will take care of freeing the event.
11287          */
11288         if (!event_file)
11289                 free_event(event);
11290 err_cred:
11291         if (task)
11292                 mutex_unlock(&task->signal->cred_guard_mutex);
11293 err_task:
11294         if (task)
11295                 put_task_struct(task);
11296 err_group_fd:
11297         fdput(group);
11298 err_fd:
11299         put_unused_fd(event_fd);
11300         return err;
11301 }
11302
11303 /**
11304  * perf_event_create_kernel_counter
11305  *
11306  * @attr: attributes of the counter to create
11307  * @cpu: cpu in which the counter is bound
11308  * @task: task to profile (NULL for percpu)
11309  */
11310 struct perf_event *
11311 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11312                                  struct task_struct *task,
11313                                  perf_overflow_handler_t overflow_handler,
11314                                  void *context)
11315 {
11316         struct perf_event_context *ctx;
11317         struct perf_event *event;
11318         int err;
11319
11320         /*
11321          * Get the target context (task or percpu):
11322          */
11323
11324         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11325                                  overflow_handler, context, -1);
11326         if (IS_ERR(event)) {
11327                 err = PTR_ERR(event);
11328                 goto err;
11329         }
11330
11331         /* Mark owner so we could distinguish it from user events. */
11332         event->owner = TASK_TOMBSTONE;
11333
11334         ctx = find_get_context(event->pmu, task, event);
11335         if (IS_ERR(ctx)) {
11336                 err = PTR_ERR(ctx);
11337                 goto err_free;
11338         }
11339
11340         WARN_ON_ONCE(ctx->parent_ctx);
11341         mutex_lock(&ctx->mutex);
11342         if (ctx->task == TASK_TOMBSTONE) {
11343                 err = -ESRCH;
11344                 goto err_unlock;
11345         }
11346
11347         if (!task) {
11348                 /*
11349                  * Check if the @cpu we're creating an event for is online.
11350                  *
11351                  * We use the perf_cpu_context::ctx::mutex to serialize against
11352                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11353                  */
11354                 struct perf_cpu_context *cpuctx =
11355                         container_of(ctx, struct perf_cpu_context, ctx);
11356                 if (!cpuctx->online) {
11357                         err = -ENODEV;
11358                         goto err_unlock;
11359                 }
11360         }
11361
11362         if (!exclusive_event_installable(event, ctx)) {
11363                 err = -EBUSY;
11364                 goto err_unlock;
11365         }
11366
11367         perf_install_in_context(ctx, event, event->cpu);
11368         perf_unpin_context(ctx);
11369         mutex_unlock(&ctx->mutex);
11370
11371         return event;
11372
11373 err_unlock:
11374         mutex_unlock(&ctx->mutex);
11375         perf_unpin_context(ctx);
11376         put_ctx(ctx);
11377 err_free:
11378         free_event(event);
11379 err:
11380         return ERR_PTR(err);
11381 }
11382 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11383
11384 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11385 {
11386         struct perf_event_context *src_ctx;
11387         struct perf_event_context *dst_ctx;
11388         struct perf_event *event, *tmp;
11389         LIST_HEAD(events);
11390
11391         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11392         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11393
11394         /*
11395          * See perf_event_ctx_lock() for comments on the details
11396          * of swizzling perf_event::ctx.
11397          */
11398         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11399         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11400                                  event_entry) {
11401                 perf_remove_from_context(event, 0);
11402                 unaccount_event_cpu(event, src_cpu);
11403                 put_ctx(src_ctx);
11404                 list_add(&event->migrate_entry, &events);
11405         }
11406
11407         /*
11408          * Wait for the events to quiesce before re-instating them.
11409          */
11410         synchronize_rcu();
11411
11412         /*
11413          * Re-instate events in 2 passes.
11414          *
11415          * Skip over group leaders and only install siblings on this first
11416          * pass, siblings will not get enabled without a leader, however a
11417          * leader will enable its siblings, even if those are still on the old
11418          * context.
11419          */
11420         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11421                 if (event->group_leader == event)
11422                         continue;
11423
11424                 list_del(&event->migrate_entry);
11425                 if (event->state >= PERF_EVENT_STATE_OFF)
11426                         event->state = PERF_EVENT_STATE_INACTIVE;
11427                 account_event_cpu(event, dst_cpu);
11428                 perf_install_in_context(dst_ctx, event, dst_cpu);
11429                 get_ctx(dst_ctx);
11430         }
11431
11432         /*
11433          * Once all the siblings are setup properly, install the group leaders
11434          * to make it go.
11435          */
11436         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11437                 list_del(&event->migrate_entry);
11438                 if (event->state >= PERF_EVENT_STATE_OFF)
11439                         event->state = PERF_EVENT_STATE_INACTIVE;
11440                 account_event_cpu(event, dst_cpu);
11441                 perf_install_in_context(dst_ctx, event, dst_cpu);
11442                 get_ctx(dst_ctx);
11443         }
11444         mutex_unlock(&dst_ctx->mutex);
11445         mutex_unlock(&src_ctx->mutex);
11446 }
11447 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11448
11449 static void sync_child_event(struct perf_event *child_event,
11450                                struct task_struct *child)
11451 {
11452         struct perf_event *parent_event = child_event->parent;
11453         u64 child_val;
11454
11455         if (child_event->attr.inherit_stat)
11456                 perf_event_read_event(child_event, child);
11457
11458         child_val = perf_event_count(child_event);
11459
11460         /*
11461          * Add back the child's count to the parent's count:
11462          */
11463         atomic64_add(child_val, &parent_event->child_count);
11464         atomic64_add(child_event->total_time_enabled,
11465                      &parent_event->child_total_time_enabled);
11466         atomic64_add(child_event->total_time_running,
11467                      &parent_event->child_total_time_running);
11468 }
11469
11470 static void
11471 perf_event_exit_event(struct perf_event *child_event,
11472                       struct perf_event_context *child_ctx,
11473                       struct task_struct *child)
11474 {
11475         struct perf_event *parent_event = child_event->parent;
11476
11477         /*
11478          * Do not destroy the 'original' grouping; because of the context
11479          * switch optimization the original events could've ended up in a
11480          * random child task.
11481          *
11482          * If we were to destroy the original group, all group related
11483          * operations would cease to function properly after this random
11484          * child dies.
11485          *
11486          * Do destroy all inherited groups, we don't care about those
11487          * and being thorough is better.
11488          */
11489         raw_spin_lock_irq(&child_ctx->lock);
11490         WARN_ON_ONCE(child_ctx->is_active);
11491
11492         if (parent_event)
11493                 perf_group_detach(child_event);
11494         list_del_event(child_event, child_ctx);
11495         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11496         raw_spin_unlock_irq(&child_ctx->lock);
11497
11498         /*
11499          * Parent events are governed by their filedesc, retain them.
11500          */
11501         if (!parent_event) {
11502                 perf_event_wakeup(child_event);
11503                 return;
11504         }
11505         /*
11506          * Child events can be cleaned up.
11507          */
11508
11509         sync_child_event(child_event, child);
11510
11511         /*
11512          * Remove this event from the parent's list
11513          */
11514         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11515         mutex_lock(&parent_event->child_mutex);
11516         list_del_init(&child_event->child_list);
11517         mutex_unlock(&parent_event->child_mutex);
11518
11519         /*
11520          * Kick perf_poll() for is_event_hup().
11521          */
11522         perf_event_wakeup(parent_event);
11523         free_event(child_event);
11524         put_event(parent_event);
11525 }
11526
11527 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11528 {
11529         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11530         struct perf_event *child_event, *next;
11531
11532         WARN_ON_ONCE(child != current);
11533
11534         child_ctx = perf_pin_task_context(child, ctxn);
11535         if (!child_ctx)
11536                 return;
11537
11538         /*
11539          * In order to reduce the amount of tricky in ctx tear-down, we hold
11540          * ctx::mutex over the entire thing. This serializes against almost
11541          * everything that wants to access the ctx.
11542          *
11543          * The exception is sys_perf_event_open() /
11544          * perf_event_create_kernel_count() which does find_get_context()
11545          * without ctx::mutex (it cannot because of the move_group double mutex
11546          * lock thing). See the comments in perf_install_in_context().
11547          */
11548         mutex_lock(&child_ctx->mutex);
11549
11550         /*
11551          * In a single ctx::lock section, de-schedule the events and detach the
11552          * context from the task such that we cannot ever get it scheduled back
11553          * in.
11554          */
11555         raw_spin_lock_irq(&child_ctx->lock);
11556         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11557
11558         /*
11559          * Now that the context is inactive, destroy the task <-> ctx relation
11560          * and mark the context dead.
11561          */
11562         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11563         put_ctx(child_ctx); /* cannot be last */
11564         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11565         put_task_struct(current); /* cannot be last */
11566
11567         clone_ctx = unclone_ctx(child_ctx);
11568         raw_spin_unlock_irq(&child_ctx->lock);
11569
11570         if (clone_ctx)
11571                 put_ctx(clone_ctx);
11572
11573         /*
11574          * Report the task dead after unscheduling the events so that we
11575          * won't get any samples after PERF_RECORD_EXIT. We can however still
11576          * get a few PERF_RECORD_READ events.
11577          */
11578         perf_event_task(child, child_ctx, 0);
11579
11580         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11581                 perf_event_exit_event(child_event, child_ctx, child);
11582
11583         mutex_unlock(&child_ctx->mutex);
11584
11585         put_ctx(child_ctx);
11586 }
11587
11588 /*
11589  * When a child task exits, feed back event values to parent events.
11590  *
11591  * Can be called with cred_guard_mutex held when called from
11592  * install_exec_creds().
11593  */
11594 void perf_event_exit_task(struct task_struct *child)
11595 {
11596         struct perf_event *event, *tmp;
11597         int ctxn;
11598
11599         mutex_lock(&child->perf_event_mutex);
11600         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11601                                  owner_entry) {
11602                 list_del_init(&event->owner_entry);
11603
11604                 /*
11605                  * Ensure the list deletion is visible before we clear
11606                  * the owner, closes a race against perf_release() where
11607                  * we need to serialize on the owner->perf_event_mutex.
11608                  */
11609                 smp_store_release(&event->owner, NULL);
11610         }
11611         mutex_unlock(&child->perf_event_mutex);
11612
11613         for_each_task_context_nr(ctxn)
11614                 perf_event_exit_task_context(child, ctxn);
11615
11616         /*
11617          * The perf_event_exit_task_context calls perf_event_task
11618          * with child's task_ctx, which generates EXIT events for
11619          * child contexts and sets child->perf_event_ctxp[] to NULL.
11620          * At this point we need to send EXIT events to cpu contexts.
11621          */
11622         perf_event_task(child, NULL, 0);
11623 }
11624
11625 static void perf_free_event(struct perf_event *event,
11626                             struct perf_event_context *ctx)
11627 {
11628         struct perf_event *parent = event->parent;
11629
11630         if (WARN_ON_ONCE(!parent))
11631                 return;
11632
11633         mutex_lock(&parent->child_mutex);
11634         list_del_init(&event->child_list);
11635         mutex_unlock(&parent->child_mutex);
11636
11637         put_event(parent);
11638
11639         raw_spin_lock_irq(&ctx->lock);
11640         perf_group_detach(event);
11641         list_del_event(event, ctx);
11642         raw_spin_unlock_irq(&ctx->lock);
11643         free_event(event);
11644 }
11645
11646 /*
11647  * Free a context as created by inheritance by perf_event_init_task() below,
11648  * used by fork() in case of fail.
11649  *
11650  * Even though the task has never lived, the context and events have been
11651  * exposed through the child_list, so we must take care tearing it all down.
11652  */
11653 void perf_event_free_task(struct task_struct *task)
11654 {
11655         struct perf_event_context *ctx;
11656         struct perf_event *event, *tmp;
11657         int ctxn;
11658
11659         for_each_task_context_nr(ctxn) {
11660                 ctx = task->perf_event_ctxp[ctxn];
11661                 if (!ctx)
11662                         continue;
11663
11664                 mutex_lock(&ctx->mutex);
11665                 raw_spin_lock_irq(&ctx->lock);
11666                 /*
11667                  * Destroy the task <-> ctx relation and mark the context dead.
11668                  *
11669                  * This is important because even though the task hasn't been
11670                  * exposed yet the context has been (through child_list).
11671                  */
11672                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11673                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11674                 put_task_struct(task); /* cannot be last */
11675                 raw_spin_unlock_irq(&ctx->lock);
11676
11677                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11678                         perf_free_event(event, ctx);
11679
11680                 mutex_unlock(&ctx->mutex);
11681
11682                 /*
11683                  * perf_event_release_kernel() could've stolen some of our
11684                  * child events and still have them on its free_list. In that
11685                  * case we must wait for these events to have been freed (in
11686                  * particular all their references to this task must've been
11687                  * dropped).
11688                  *
11689                  * Without this copy_process() will unconditionally free this
11690                  * task (irrespective of its reference count) and
11691                  * _free_event()'s put_task_struct(event->hw.target) will be a
11692                  * use-after-free.
11693                  *
11694                  * Wait for all events to drop their context reference.
11695                  */
11696                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11697                 put_ctx(ctx); /* must be last */
11698         }
11699 }
11700
11701 void perf_event_delayed_put(struct task_struct *task)
11702 {
11703         int ctxn;
11704
11705         for_each_task_context_nr(ctxn)
11706                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11707 }
11708
11709 struct file *perf_event_get(unsigned int fd)
11710 {
11711         struct file *file = fget(fd);
11712         if (!file)
11713                 return ERR_PTR(-EBADF);
11714
11715         if (file->f_op != &perf_fops) {
11716                 fput(file);
11717                 return ERR_PTR(-EBADF);
11718         }
11719
11720         return file;
11721 }
11722
11723 const struct perf_event *perf_get_event(struct file *file)
11724 {
11725         if (file->f_op != &perf_fops)
11726                 return ERR_PTR(-EINVAL);
11727
11728         return file->private_data;
11729 }
11730
11731 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11732 {
11733         if (!event)
11734                 return ERR_PTR(-EINVAL);
11735
11736         return &event->attr;
11737 }
11738
11739 /*
11740  * Inherit an event from parent task to child task.
11741  *
11742  * Returns:
11743  *  - valid pointer on success
11744  *  - NULL for orphaned events
11745  *  - IS_ERR() on error
11746  */
11747 static struct perf_event *
11748 inherit_event(struct perf_event *parent_event,
11749               struct task_struct *parent,
11750               struct perf_event_context *parent_ctx,
11751               struct task_struct *child,
11752               struct perf_event *group_leader,
11753               struct perf_event_context *child_ctx)
11754 {
11755         enum perf_event_state parent_state = parent_event->state;
11756         struct perf_event *child_event;
11757         unsigned long flags;
11758
11759         /*
11760          * Instead of creating recursive hierarchies of events,
11761          * we link inherited events back to the original parent,
11762          * which has a filp for sure, which we use as the reference
11763          * count:
11764          */
11765         if (parent_event->parent)
11766                 parent_event = parent_event->parent;
11767
11768         child_event = perf_event_alloc(&parent_event->attr,
11769                                            parent_event->cpu,
11770                                            child,
11771                                            group_leader, parent_event,
11772                                            NULL, NULL, -1);
11773         if (IS_ERR(child_event))
11774                 return child_event;
11775
11776
11777         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11778             !child_ctx->task_ctx_data) {
11779                 struct pmu *pmu = child_event->pmu;
11780
11781                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11782                                                    GFP_KERNEL);
11783                 if (!child_ctx->task_ctx_data) {
11784                         free_event(child_event);
11785                         return NULL;
11786                 }
11787         }
11788
11789         /*
11790          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11791          * must be under the same lock in order to serialize against
11792          * perf_event_release_kernel(), such that either we must observe
11793          * is_orphaned_event() or they will observe us on the child_list.
11794          */
11795         mutex_lock(&parent_event->child_mutex);
11796         if (is_orphaned_event(parent_event) ||
11797             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11798                 mutex_unlock(&parent_event->child_mutex);
11799                 /* task_ctx_data is freed with child_ctx */
11800                 free_event(child_event);
11801                 return NULL;
11802         }
11803
11804         get_ctx(child_ctx);
11805
11806         /*
11807          * Make the child state follow the state of the parent event,
11808          * not its attr.disabled bit.  We hold the parent's mutex,
11809          * so we won't race with perf_event_{en, dis}able_family.
11810          */
11811         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11812                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11813         else
11814                 child_event->state = PERF_EVENT_STATE_OFF;
11815
11816         if (parent_event->attr.freq) {
11817                 u64 sample_period = parent_event->hw.sample_period;
11818                 struct hw_perf_event *hwc = &child_event->hw;
11819
11820                 hwc->sample_period = sample_period;
11821                 hwc->last_period   = sample_period;
11822
11823                 local64_set(&hwc->period_left, sample_period);
11824         }
11825
11826         child_event->ctx = child_ctx;
11827         child_event->overflow_handler = parent_event->overflow_handler;
11828         child_event->overflow_handler_context
11829                 = parent_event->overflow_handler_context;
11830
11831         /*
11832          * Precalculate sample_data sizes
11833          */
11834         perf_event__header_size(child_event);
11835         perf_event__id_header_size(child_event);
11836
11837         /*
11838          * Link it up in the child's context:
11839          */
11840         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11841         add_event_to_ctx(child_event, child_ctx);
11842         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11843
11844         /*
11845          * Link this into the parent event's child list
11846          */
11847         list_add_tail(&child_event->child_list, &parent_event->child_list);
11848         mutex_unlock(&parent_event->child_mutex);
11849
11850         return child_event;
11851 }
11852
11853 /*
11854  * Inherits an event group.
11855  *
11856  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11857  * This matches with perf_event_release_kernel() removing all child events.
11858  *
11859  * Returns:
11860  *  - 0 on success
11861  *  - <0 on error
11862  */
11863 static int inherit_group(struct perf_event *parent_event,
11864               struct task_struct *parent,
11865               struct perf_event_context *parent_ctx,
11866               struct task_struct *child,
11867               struct perf_event_context *child_ctx)
11868 {
11869         struct perf_event *leader;
11870         struct perf_event *sub;
11871         struct perf_event *child_ctr;
11872
11873         leader = inherit_event(parent_event, parent, parent_ctx,
11874                                  child, NULL, child_ctx);
11875         if (IS_ERR(leader))
11876                 return PTR_ERR(leader);
11877         /*
11878          * @leader can be NULL here because of is_orphaned_event(). In this
11879          * case inherit_event() will create individual events, similar to what
11880          * perf_group_detach() would do anyway.
11881          */
11882         for_each_sibling_event(sub, parent_event) {
11883                 child_ctr = inherit_event(sub, parent, parent_ctx,
11884                                             child, leader, child_ctx);
11885                 if (IS_ERR(child_ctr))
11886                         return PTR_ERR(child_ctr);
11887         }
11888         return 0;
11889 }
11890
11891 /*
11892  * Creates the child task context and tries to inherit the event-group.
11893  *
11894  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11895  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11896  * consistent with perf_event_release_kernel() removing all child events.
11897  *
11898  * Returns:
11899  *  - 0 on success
11900  *  - <0 on error
11901  */
11902 static int
11903 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11904                    struct perf_event_context *parent_ctx,
11905                    struct task_struct *child, int ctxn,
11906                    int *inherited_all)
11907 {
11908         int ret;
11909         struct perf_event_context *child_ctx;
11910
11911         if (!event->attr.inherit) {
11912                 *inherited_all = 0;
11913                 return 0;
11914         }
11915
11916         child_ctx = child->perf_event_ctxp[ctxn];
11917         if (!child_ctx) {
11918                 /*
11919                  * This is executed from the parent task context, so
11920                  * inherit events that have been marked for cloning.
11921                  * First allocate and initialize a context for the
11922                  * child.
11923                  */
11924                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11925                 if (!child_ctx)
11926                         return -ENOMEM;
11927
11928                 child->perf_event_ctxp[ctxn] = child_ctx;
11929         }
11930
11931         ret = inherit_group(event, parent, parent_ctx,
11932                             child, child_ctx);
11933
11934         if (ret)
11935                 *inherited_all = 0;
11936
11937         return ret;
11938 }
11939
11940 /*
11941  * Initialize the perf_event context in task_struct
11942  */
11943 static int perf_event_init_context(struct task_struct *child, int ctxn)
11944 {
11945         struct perf_event_context *child_ctx, *parent_ctx;
11946         struct perf_event_context *cloned_ctx;
11947         struct perf_event *event;
11948         struct task_struct *parent = current;
11949         int inherited_all = 1;
11950         unsigned long flags;
11951         int ret = 0;
11952
11953         if (likely(!parent->perf_event_ctxp[ctxn]))
11954                 return 0;
11955
11956         /*
11957          * If the parent's context is a clone, pin it so it won't get
11958          * swapped under us.
11959          */
11960         parent_ctx = perf_pin_task_context(parent, ctxn);
11961         if (!parent_ctx)
11962                 return 0;
11963
11964         /*
11965          * No need to check if parent_ctx != NULL here; since we saw
11966          * it non-NULL earlier, the only reason for it to become NULL
11967          * is if we exit, and since we're currently in the middle of
11968          * a fork we can't be exiting at the same time.
11969          */
11970
11971         /*
11972          * Lock the parent list. No need to lock the child - not PID
11973          * hashed yet and not running, so nobody can access it.
11974          */
11975         mutex_lock(&parent_ctx->mutex);
11976
11977         /*
11978          * We dont have to disable NMIs - we are only looking at
11979          * the list, not manipulating it:
11980          */
11981         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11982                 ret = inherit_task_group(event, parent, parent_ctx,
11983                                          child, ctxn, &inherited_all);
11984                 if (ret)
11985                         goto out_unlock;
11986         }
11987
11988         /*
11989          * We can't hold ctx->lock when iterating the ->flexible_group list due
11990          * to allocations, but we need to prevent rotation because
11991          * rotate_ctx() will change the list from interrupt context.
11992          */
11993         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11994         parent_ctx->rotate_disable = 1;
11995         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11996
11997         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11998                 ret = inherit_task_group(event, parent, parent_ctx,
11999                                          child, ctxn, &inherited_all);
12000                 if (ret)
12001                         goto out_unlock;
12002         }
12003
12004         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12005         parent_ctx->rotate_disable = 0;
12006
12007         child_ctx = child->perf_event_ctxp[ctxn];
12008
12009         if (child_ctx && inherited_all) {
12010                 /*
12011                  * Mark the child context as a clone of the parent
12012                  * context, or of whatever the parent is a clone of.
12013                  *
12014                  * Note that if the parent is a clone, the holding of
12015                  * parent_ctx->lock avoids it from being uncloned.
12016                  */
12017                 cloned_ctx = parent_ctx->parent_ctx;
12018                 if (cloned_ctx) {
12019                         child_ctx->parent_ctx = cloned_ctx;
12020                         child_ctx->parent_gen = parent_ctx->parent_gen;
12021                 } else {
12022                         child_ctx->parent_ctx = parent_ctx;
12023                         child_ctx->parent_gen = parent_ctx->generation;
12024                 }
12025                 get_ctx(child_ctx->parent_ctx);
12026         }
12027
12028         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12029 out_unlock:
12030         mutex_unlock(&parent_ctx->mutex);
12031
12032         perf_unpin_context(parent_ctx);
12033         put_ctx(parent_ctx);
12034
12035         return ret;
12036 }
12037
12038 /*
12039  * Initialize the perf_event context in task_struct
12040  */
12041 int perf_event_init_task(struct task_struct *child)
12042 {
12043         int ctxn, ret;
12044
12045         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12046         mutex_init(&child->perf_event_mutex);
12047         INIT_LIST_HEAD(&child->perf_event_list);
12048
12049         for_each_task_context_nr(ctxn) {
12050                 ret = perf_event_init_context(child, ctxn);
12051                 if (ret) {
12052                         perf_event_free_task(child);
12053                         return ret;
12054                 }
12055         }
12056
12057         return 0;
12058 }
12059
12060 static void __init perf_event_init_all_cpus(void)
12061 {
12062         struct swevent_htable *swhash;
12063         int cpu;
12064
12065         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12066
12067         for_each_possible_cpu(cpu) {
12068                 swhash = &per_cpu(swevent_htable, cpu);
12069                 mutex_init(&swhash->hlist_mutex);
12070                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12071
12072                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12073                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12074
12075 #ifdef CONFIG_CGROUP_PERF
12076                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12077 #endif
12078                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12079         }
12080 }
12081
12082 static void perf_swevent_init_cpu(unsigned int cpu)
12083 {
12084         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12085
12086         mutex_lock(&swhash->hlist_mutex);
12087         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12088                 struct swevent_hlist *hlist;
12089
12090                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12091                 WARN_ON(!hlist);
12092                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12093         }
12094         mutex_unlock(&swhash->hlist_mutex);
12095 }
12096
12097 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12098 static void __perf_event_exit_context(void *__info)
12099 {
12100         struct perf_event_context *ctx = __info;
12101         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12102         struct perf_event *event;
12103
12104         raw_spin_lock(&ctx->lock);
12105         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12106         list_for_each_entry(event, &ctx->event_list, event_entry)
12107                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12108         raw_spin_unlock(&ctx->lock);
12109 }
12110
12111 static void perf_event_exit_cpu_context(int cpu)
12112 {
12113         struct perf_cpu_context *cpuctx;
12114         struct perf_event_context *ctx;
12115         struct pmu *pmu;
12116
12117         mutex_lock(&pmus_lock);
12118         list_for_each_entry(pmu, &pmus, entry) {
12119                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12120                 ctx = &cpuctx->ctx;
12121
12122                 mutex_lock(&ctx->mutex);
12123                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12124                 cpuctx->online = 0;
12125                 mutex_unlock(&ctx->mutex);
12126         }
12127         cpumask_clear_cpu(cpu, perf_online_mask);
12128         mutex_unlock(&pmus_lock);
12129 }
12130 #else
12131
12132 static void perf_event_exit_cpu_context(int cpu) { }
12133
12134 #endif
12135
12136 int perf_event_init_cpu(unsigned int cpu)
12137 {
12138         struct perf_cpu_context *cpuctx;
12139         struct perf_event_context *ctx;
12140         struct pmu *pmu;
12141
12142         perf_swevent_init_cpu(cpu);
12143
12144         mutex_lock(&pmus_lock);
12145         cpumask_set_cpu(cpu, perf_online_mask);
12146         list_for_each_entry(pmu, &pmus, entry) {
12147                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12148                 ctx = &cpuctx->ctx;
12149
12150                 mutex_lock(&ctx->mutex);
12151                 cpuctx->online = 1;
12152                 mutex_unlock(&ctx->mutex);
12153         }
12154         mutex_unlock(&pmus_lock);
12155
12156         return 0;
12157 }
12158
12159 int perf_event_exit_cpu(unsigned int cpu)
12160 {
12161         perf_event_exit_cpu_context(cpu);
12162         return 0;
12163 }
12164
12165 static int
12166 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12167 {
12168         int cpu;
12169
12170         for_each_online_cpu(cpu)
12171                 perf_event_exit_cpu(cpu);
12172
12173         return NOTIFY_OK;
12174 }
12175
12176 /*
12177  * Run the perf reboot notifier at the very last possible moment so that
12178  * the generic watchdog code runs as long as possible.
12179  */
12180 static struct notifier_block perf_reboot_notifier = {
12181         .notifier_call = perf_reboot,
12182         .priority = INT_MIN,
12183 };
12184
12185 void __init perf_event_init(void)
12186 {
12187         int ret;
12188
12189         idr_init(&pmu_idr);
12190
12191         perf_event_init_all_cpus();
12192         init_srcu_struct(&pmus_srcu);
12193         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12194         perf_pmu_register(&perf_cpu_clock, NULL, -1);
12195         perf_pmu_register(&perf_task_clock, NULL, -1);
12196         perf_tp_register();
12197         perf_event_init_cpu(smp_processor_id());
12198         register_reboot_notifier(&perf_reboot_notifier);
12199
12200         ret = init_hw_breakpoint();
12201         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12202
12203         /*
12204          * Build time assertion that we keep the data_head at the intended
12205          * location.  IOW, validation we got the __reserved[] size right.
12206          */
12207         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12208                      != 1024);
12209 }
12210
12211 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12212                               char *page)
12213 {
12214         struct perf_pmu_events_attr *pmu_attr =
12215                 container_of(attr, struct perf_pmu_events_attr, attr);
12216
12217         if (pmu_attr->event_str)
12218                 return sprintf(page, "%s\n", pmu_attr->event_str);
12219
12220         return 0;
12221 }
12222 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12223
12224 static int __init perf_event_sysfs_init(void)
12225 {
12226         struct pmu *pmu;
12227         int ret;
12228
12229         mutex_lock(&pmus_lock);
12230
12231         ret = bus_register(&pmu_bus);
12232         if (ret)
12233                 goto unlock;
12234
12235         list_for_each_entry(pmu, &pmus, entry) {
12236                 if (!pmu->name || pmu->type < 0)
12237                         continue;
12238
12239                 ret = pmu_dev_alloc(pmu);
12240                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12241         }
12242         pmu_bus_running = 1;
12243         ret = 0;
12244
12245 unlock:
12246         mutex_unlock(&pmus_lock);
12247
12248         return ret;
12249 }
12250 device_initcall(perf_event_sysfs_init);
12251
12252 #ifdef CONFIG_CGROUP_PERF
12253 static struct cgroup_subsys_state *
12254 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12255 {
12256         struct perf_cgroup *jc;
12257
12258         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12259         if (!jc)
12260                 return ERR_PTR(-ENOMEM);
12261
12262         jc->info = alloc_percpu(struct perf_cgroup_info);
12263         if (!jc->info) {
12264                 kfree(jc);
12265                 return ERR_PTR(-ENOMEM);
12266         }
12267
12268         return &jc->css;
12269 }
12270
12271 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12272 {
12273         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12274
12275         free_percpu(jc->info);
12276         kfree(jc);
12277 }
12278
12279 static int __perf_cgroup_move(void *info)
12280 {
12281         struct task_struct *task = info;
12282         rcu_read_lock();
12283         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12284         rcu_read_unlock();
12285         return 0;
12286 }
12287
12288 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12289 {
12290         struct task_struct *task;
12291         struct cgroup_subsys_state *css;
12292
12293         cgroup_taskset_for_each(task, css, tset)
12294                 task_function_call(task, __perf_cgroup_move, task);
12295 }
12296
12297 struct cgroup_subsys perf_event_cgrp_subsys = {
12298         .css_alloc      = perf_cgroup_css_alloc,
12299         .css_free       = perf_cgroup_css_free,
12300         .attach         = perf_cgroup_attach,
12301         /*
12302          * Implicitly enable on dfl hierarchy so that perf events can
12303          * always be filtered by cgroup2 path as long as perf_event
12304          * controller is not mounted on a legacy hierarchy.
12305          */
12306         .implicit_on_dfl = true,
12307         .threaded       = true,
12308 };
12309 #endif /* CONFIG_CGROUP_PERF */