Merge tag 'x86_mm_for_6.2_v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux-block.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58
59 #include "internal.h"
60
61 #include <asm/irq_regs.h>
62
63 typedef int (*remote_function_f)(void *);
64
65 struct remote_function_call {
66         struct task_struct      *p;
67         remote_function_f       func;
68         void                    *info;
69         int                     ret;
70 };
71
72 static void remote_function(void *data)
73 {
74         struct remote_function_call *tfc = data;
75         struct task_struct *p = tfc->p;
76
77         if (p) {
78                 /* -EAGAIN */
79                 if (task_cpu(p) != smp_processor_id())
80                         return;
81
82                 /*
83                  * Now that we're on right CPU with IRQs disabled, we can test
84                  * if we hit the right task without races.
85                  */
86
87                 tfc->ret = -ESRCH; /* No such (running) process */
88                 if (p != current)
89                         return;
90         }
91
92         tfc->ret = tfc->func(tfc->info);
93 }
94
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:          the task to evaluate
98  * @func:       the function to be called
99  * @info:       the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111         struct remote_function_call data = {
112                 .p      = p,
113                 .func   = func,
114                 .info   = info,
115                 .ret    = -EAGAIN,
116         };
117         int ret;
118
119         for (;;) {
120                 ret = smp_call_function_single(task_cpu(p), remote_function,
121                                                &data, 1);
122                 if (!ret)
123                         ret = data.ret;
124
125                 if (ret != -EAGAIN)
126                         break;
127
128                 cond_resched();
129         }
130
131         return ret;
132 }
133
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:        target cpu to queue this function
137  * @func:       the function to be called
138  * @info:       the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146         struct remote_function_call data = {
147                 .p      = NULL,
148                 .func   = func,
149                 .info   = info,
150                 .ret    = -ENXIO, /* No such CPU */
151         };
152
153         smp_call_function_single(cpu, remote_function, &data, 1);
154
155         return data.ret;
156 }
157
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159                           struct perf_event_context *ctx)
160 {
161         raw_spin_lock(&cpuctx->ctx.lock);
162         if (ctx)
163                 raw_spin_lock(&ctx->lock);
164 }
165
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167                             struct perf_event_context *ctx)
168 {
169         if (ctx)
170                 raw_spin_unlock(&ctx->lock);
171         raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
176 static bool is_kernel_event(struct perf_event *event)
177 {
178         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185         lockdep_assert_irqs_disabled();
186         return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209                         struct perf_event_context *, void *);
210
211 struct event_function_struct {
212         struct perf_event *event;
213         event_f func;
214         void *data;
215 };
216
217 static int event_function(void *info)
218 {
219         struct event_function_struct *efs = info;
220         struct perf_event *event = efs->event;
221         struct perf_event_context *ctx = event->ctx;
222         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223         struct perf_event_context *task_ctx = cpuctx->task_ctx;
224         int ret = 0;
225
226         lockdep_assert_irqs_disabled();
227
228         perf_ctx_lock(cpuctx, task_ctx);
229         /*
230          * Since we do the IPI call without holding ctx->lock things can have
231          * changed, double check we hit the task we set out to hit.
232          */
233         if (ctx->task) {
234                 if (ctx->task != current) {
235                         ret = -ESRCH;
236                         goto unlock;
237                 }
238
239                 /*
240                  * We only use event_function_call() on established contexts,
241                  * and event_function() is only ever called when active (or
242                  * rather, we'll have bailed in task_function_call() or the
243                  * above ctx->task != current test), therefore we must have
244                  * ctx->is_active here.
245                  */
246                 WARN_ON_ONCE(!ctx->is_active);
247                 /*
248                  * And since we have ctx->is_active, cpuctx->task_ctx must
249                  * match.
250                  */
251                 WARN_ON_ONCE(task_ctx != ctx);
252         } else {
253                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
254         }
255
256         efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258         perf_ctx_unlock(cpuctx, task_ctx);
259
260         return ret;
261 }
262
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265         struct perf_event_context *ctx = event->ctx;
266         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267         struct event_function_struct efs = {
268                 .event = event,
269                 .func = func,
270                 .data = data,
271         };
272
273         if (!event->parent) {
274                 /*
275                  * If this is a !child event, we must hold ctx::mutex to
276                  * stabilize the event->ctx relation. See
277                  * perf_event_ctx_lock().
278                  */
279                 lockdep_assert_held(&ctx->mutex);
280         }
281
282         if (!task) {
283                 cpu_function_call(event->cpu, event_function, &efs);
284                 return;
285         }
286
287         if (task == TASK_TOMBSTONE)
288                 return;
289
290 again:
291         if (!task_function_call(task, event_function, &efs))
292                 return;
293
294         raw_spin_lock_irq(&ctx->lock);
295         /*
296          * Reload the task pointer, it might have been changed by
297          * a concurrent perf_event_context_sched_out().
298          */
299         task = ctx->task;
300         if (task == TASK_TOMBSTONE) {
301                 raw_spin_unlock_irq(&ctx->lock);
302                 return;
303         }
304         if (ctx->is_active) {
305                 raw_spin_unlock_irq(&ctx->lock);
306                 goto again;
307         }
308         func(event, NULL, ctx, data);
309         raw_spin_unlock_irq(&ctx->lock);
310 }
311
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318         struct perf_event_context *ctx = event->ctx;
319         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320         struct task_struct *task = READ_ONCE(ctx->task);
321         struct perf_event_context *task_ctx = NULL;
322
323         lockdep_assert_irqs_disabled();
324
325         if (task) {
326                 if (task == TASK_TOMBSTONE)
327                         return;
328
329                 task_ctx = ctx;
330         }
331
332         perf_ctx_lock(cpuctx, task_ctx);
333
334         task = ctx->task;
335         if (task == TASK_TOMBSTONE)
336                 goto unlock;
337
338         if (task) {
339                 /*
340                  * We must be either inactive or active and the right task,
341                  * otherwise we're screwed, since we cannot IPI to somewhere
342                  * else.
343                  */
344                 if (ctx->is_active) {
345                         if (WARN_ON_ONCE(task != current))
346                                 goto unlock;
347
348                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349                                 goto unlock;
350                 }
351         } else {
352                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
353         }
354
355         func(event, cpuctx, ctx, data);
356 unlock:
357         perf_ctx_unlock(cpuctx, task_ctx);
358 }
359
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361                        PERF_FLAG_FD_OUTPUT  |\
362                        PERF_FLAG_PID_CGROUP |\
363                        PERF_FLAG_FD_CLOEXEC)
364
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369         (PERF_SAMPLE_BRANCH_KERNEL |\
370          PERF_SAMPLE_BRANCH_HV)
371
372 enum event_type_t {
373         EVENT_FLEXIBLE = 0x1,
374         EVENT_PINNED = 0x2,
375         EVENT_TIME = 0x4,
376         /* see ctx_resched() for details */
377         EVENT_CPU = 0x8,
378         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
379 };
380
381 /*
382  * perf_sched_events : >0 events exist
383  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
384  */
385
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391
392 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
393 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
394
395 static atomic_t nr_mmap_events __read_mostly;
396 static atomic_t nr_comm_events __read_mostly;
397 static atomic_t nr_namespaces_events __read_mostly;
398 static atomic_t nr_task_events __read_mostly;
399 static atomic_t nr_freq_events __read_mostly;
400 static atomic_t nr_switch_events __read_mostly;
401 static atomic_t nr_ksymbol_events __read_mostly;
402 static atomic_t nr_bpf_events __read_mostly;
403 static atomic_t nr_cgroup_events __read_mostly;
404 static atomic_t nr_text_poke_events __read_mostly;
405 static atomic_t nr_build_id_events __read_mostly;
406
407 static LIST_HEAD(pmus);
408 static DEFINE_MUTEX(pmus_lock);
409 static struct srcu_struct pmus_srcu;
410 static cpumask_var_t perf_online_mask;
411 static struct kmem_cache *perf_event_cache;
412
413 /*
414  * perf event paranoia level:
415  *  -1 - not paranoid at all
416  *   0 - disallow raw tracepoint access for unpriv
417  *   1 - disallow cpu events for unpriv
418  *   2 - disallow kernel profiling for unpriv
419  */
420 int sysctl_perf_event_paranoid __read_mostly = 2;
421
422 /* Minimum for 512 kiB + 1 user control page */
423 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
424
425 /*
426  * max perf event sample rate
427  */
428 #define DEFAULT_MAX_SAMPLE_RATE         100000
429 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
430 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
431
432 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
433
434 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
435 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
436
437 static int perf_sample_allowed_ns __read_mostly =
438         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
439
440 static void update_perf_cpu_limits(void)
441 {
442         u64 tmp = perf_sample_period_ns;
443
444         tmp *= sysctl_perf_cpu_time_max_percent;
445         tmp = div_u64(tmp, 100);
446         if (!tmp)
447                 tmp = 1;
448
449         WRITE_ONCE(perf_sample_allowed_ns, tmp);
450 }
451
452 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
453
454 int perf_proc_update_handler(struct ctl_table *table, int write,
455                 void *buffer, size_t *lenp, loff_t *ppos)
456 {
457         int ret;
458         int perf_cpu = sysctl_perf_cpu_time_max_percent;
459         /*
460          * If throttling is disabled don't allow the write:
461          */
462         if (write && (perf_cpu == 100 || perf_cpu == 0))
463                 return -EINVAL;
464
465         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466         if (ret || !write)
467                 return ret;
468
469         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
470         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
471         update_perf_cpu_limits();
472
473         return 0;
474 }
475
476 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
477
478 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
479                 void *buffer, size_t *lenp, loff_t *ppos)
480 {
481         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
482
483         if (ret || !write)
484                 return ret;
485
486         if (sysctl_perf_cpu_time_max_percent == 100 ||
487             sysctl_perf_cpu_time_max_percent == 0) {
488                 printk(KERN_WARNING
489                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
490                 WRITE_ONCE(perf_sample_allowed_ns, 0);
491         } else {
492                 update_perf_cpu_limits();
493         }
494
495         return 0;
496 }
497
498 /*
499  * perf samples are done in some very critical code paths (NMIs).
500  * If they take too much CPU time, the system can lock up and not
501  * get any real work done.  This will drop the sample rate when
502  * we detect that events are taking too long.
503  */
504 #define NR_ACCUMULATED_SAMPLES 128
505 static DEFINE_PER_CPU(u64, running_sample_length);
506
507 static u64 __report_avg;
508 static u64 __report_allowed;
509
510 static void perf_duration_warn(struct irq_work *w)
511 {
512         printk_ratelimited(KERN_INFO
513                 "perf: interrupt took too long (%lld > %lld), lowering "
514                 "kernel.perf_event_max_sample_rate to %d\n",
515                 __report_avg, __report_allowed,
516                 sysctl_perf_event_sample_rate);
517 }
518
519 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
520
521 void perf_sample_event_took(u64 sample_len_ns)
522 {
523         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
524         u64 running_len;
525         u64 avg_len;
526         u32 max;
527
528         if (max_len == 0)
529                 return;
530
531         /* Decay the counter by 1 average sample. */
532         running_len = __this_cpu_read(running_sample_length);
533         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
534         running_len += sample_len_ns;
535         __this_cpu_write(running_sample_length, running_len);
536
537         /*
538          * Note: this will be biased artifically low until we have
539          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
540          * from having to maintain a count.
541          */
542         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
543         if (avg_len <= max_len)
544                 return;
545
546         __report_avg = avg_len;
547         __report_allowed = max_len;
548
549         /*
550          * Compute a throttle threshold 25% below the current duration.
551          */
552         avg_len += avg_len / 4;
553         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
554         if (avg_len < max)
555                 max /= (u32)avg_len;
556         else
557                 max = 1;
558
559         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
560         WRITE_ONCE(max_samples_per_tick, max);
561
562         sysctl_perf_event_sample_rate = max * HZ;
563         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
564
565         if (!irq_work_queue(&perf_duration_work)) {
566                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
567                              "kernel.perf_event_max_sample_rate to %d\n",
568                              __report_avg, __report_allowed,
569                              sysctl_perf_event_sample_rate);
570         }
571 }
572
573 static atomic64_t perf_event_id;
574
575 static void update_context_time(struct perf_event_context *ctx);
576 static u64 perf_event_time(struct perf_event *event);
577
578 void __weak perf_event_print_debug(void)        { }
579
580 static inline u64 perf_clock(void)
581 {
582         return local_clock();
583 }
584
585 static inline u64 perf_event_clock(struct perf_event *event)
586 {
587         return event->clock();
588 }
589
590 /*
591  * State based event timekeeping...
592  *
593  * The basic idea is to use event->state to determine which (if any) time
594  * fields to increment with the current delta. This means we only need to
595  * update timestamps when we change state or when they are explicitly requested
596  * (read).
597  *
598  * Event groups make things a little more complicated, but not terribly so. The
599  * rules for a group are that if the group leader is OFF the entire group is
600  * OFF, irrespecive of what the group member states are. This results in
601  * __perf_effective_state().
602  *
603  * A futher ramification is that when a group leader flips between OFF and
604  * !OFF, we need to update all group member times.
605  *
606  *
607  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
608  * need to make sure the relevant context time is updated before we try and
609  * update our timestamps.
610  */
611
612 static __always_inline enum perf_event_state
613 __perf_effective_state(struct perf_event *event)
614 {
615         struct perf_event *leader = event->group_leader;
616
617         if (leader->state <= PERF_EVENT_STATE_OFF)
618                 return leader->state;
619
620         return event->state;
621 }
622
623 static __always_inline void
624 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
625 {
626         enum perf_event_state state = __perf_effective_state(event);
627         u64 delta = now - event->tstamp;
628
629         *enabled = event->total_time_enabled;
630         if (state >= PERF_EVENT_STATE_INACTIVE)
631                 *enabled += delta;
632
633         *running = event->total_time_running;
634         if (state >= PERF_EVENT_STATE_ACTIVE)
635                 *running += delta;
636 }
637
638 static void perf_event_update_time(struct perf_event *event)
639 {
640         u64 now = perf_event_time(event);
641
642         __perf_update_times(event, now, &event->total_time_enabled,
643                                         &event->total_time_running);
644         event->tstamp = now;
645 }
646
647 static void perf_event_update_sibling_time(struct perf_event *leader)
648 {
649         struct perf_event *sibling;
650
651         for_each_sibling_event(sibling, leader)
652                 perf_event_update_time(sibling);
653 }
654
655 static void
656 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
657 {
658         if (event->state == state)
659                 return;
660
661         perf_event_update_time(event);
662         /*
663          * If a group leader gets enabled/disabled all its siblings
664          * are affected too.
665          */
666         if ((event->state < 0) ^ (state < 0))
667                 perf_event_update_sibling_time(event);
668
669         WRITE_ONCE(event->state, state);
670 }
671
672 /*
673  * UP store-release, load-acquire
674  */
675
676 #define __store_release(ptr, val)                                       \
677 do {                                                                    \
678         barrier();                                                      \
679         WRITE_ONCE(*(ptr), (val));                                      \
680 } while (0)
681
682 #define __load_acquire(ptr)                                             \
683 ({                                                                      \
684         __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));        \
685         barrier();                                                      \
686         ___p;                                                           \
687 })
688
689 static void perf_ctx_disable(struct perf_event_context *ctx)
690 {
691         struct perf_event_pmu_context *pmu_ctx;
692
693         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry)
694                 perf_pmu_disable(pmu_ctx->pmu);
695 }
696
697 static void perf_ctx_enable(struct perf_event_context *ctx)
698 {
699         struct perf_event_pmu_context *pmu_ctx;
700
701         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry)
702                 perf_pmu_enable(pmu_ctx->pmu);
703 }
704
705 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
706 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
707
708 #ifdef CONFIG_CGROUP_PERF
709
710 static inline bool
711 perf_cgroup_match(struct perf_event *event)
712 {
713         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
714
715         /* @event doesn't care about cgroup */
716         if (!event->cgrp)
717                 return true;
718
719         /* wants specific cgroup scope but @cpuctx isn't associated with any */
720         if (!cpuctx->cgrp)
721                 return false;
722
723         /*
724          * Cgroup scoping is recursive.  An event enabled for a cgroup is
725          * also enabled for all its descendant cgroups.  If @cpuctx's
726          * cgroup is a descendant of @event's (the test covers identity
727          * case), it's a match.
728          */
729         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
730                                     event->cgrp->css.cgroup);
731 }
732
733 static inline void perf_detach_cgroup(struct perf_event *event)
734 {
735         css_put(&event->cgrp->css);
736         event->cgrp = NULL;
737 }
738
739 static inline int is_cgroup_event(struct perf_event *event)
740 {
741         return event->cgrp != NULL;
742 }
743
744 static inline u64 perf_cgroup_event_time(struct perf_event *event)
745 {
746         struct perf_cgroup_info *t;
747
748         t = per_cpu_ptr(event->cgrp->info, event->cpu);
749         return t->time;
750 }
751
752 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
753 {
754         struct perf_cgroup_info *t;
755
756         t = per_cpu_ptr(event->cgrp->info, event->cpu);
757         if (!__load_acquire(&t->active))
758                 return t->time;
759         now += READ_ONCE(t->timeoffset);
760         return now;
761 }
762
763 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
764 {
765         if (adv)
766                 info->time += now - info->timestamp;
767         info->timestamp = now;
768         /*
769          * see update_context_time()
770          */
771         WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
772 }
773
774 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
775 {
776         struct perf_cgroup *cgrp = cpuctx->cgrp;
777         struct cgroup_subsys_state *css;
778         struct perf_cgroup_info *info;
779
780         if (cgrp) {
781                 u64 now = perf_clock();
782
783                 for (css = &cgrp->css; css; css = css->parent) {
784                         cgrp = container_of(css, struct perf_cgroup, css);
785                         info = this_cpu_ptr(cgrp->info);
786
787                         __update_cgrp_time(info, now, true);
788                         if (final)
789                                 __store_release(&info->active, 0);
790                 }
791         }
792 }
793
794 static inline void update_cgrp_time_from_event(struct perf_event *event)
795 {
796         struct perf_cgroup_info *info;
797
798         /*
799          * ensure we access cgroup data only when needed and
800          * when we know the cgroup is pinned (css_get)
801          */
802         if (!is_cgroup_event(event))
803                 return;
804
805         info = this_cpu_ptr(event->cgrp->info);
806         /*
807          * Do not update time when cgroup is not active
808          */
809         if (info->active)
810                 __update_cgrp_time(info, perf_clock(), true);
811 }
812
813 static inline void
814 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
815 {
816         struct perf_event_context *ctx = &cpuctx->ctx;
817         struct perf_cgroup *cgrp = cpuctx->cgrp;
818         struct perf_cgroup_info *info;
819         struct cgroup_subsys_state *css;
820
821         /*
822          * ctx->lock held by caller
823          * ensure we do not access cgroup data
824          * unless we have the cgroup pinned (css_get)
825          */
826         if (!cgrp)
827                 return;
828
829         WARN_ON_ONCE(!ctx->nr_cgroups);
830
831         for (css = &cgrp->css; css; css = css->parent) {
832                 cgrp = container_of(css, struct perf_cgroup, css);
833                 info = this_cpu_ptr(cgrp->info);
834                 __update_cgrp_time(info, ctx->timestamp, false);
835                 __store_release(&info->active, 1);
836         }
837 }
838
839 /*
840  * reschedule events based on the cgroup constraint of task.
841  */
842 static void perf_cgroup_switch(struct task_struct *task)
843 {
844         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
845         struct perf_cgroup *cgrp;
846
847         cgrp = perf_cgroup_from_task(task, NULL);
848
849         WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
850         if (READ_ONCE(cpuctx->cgrp) == cgrp)
851                 return;
852
853         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
854         perf_ctx_disable(&cpuctx->ctx);
855
856         ctx_sched_out(&cpuctx->ctx, EVENT_ALL);
857         /*
858          * must not be done before ctxswout due
859          * to update_cgrp_time_from_cpuctx() in
860          * ctx_sched_out()
861          */
862         cpuctx->cgrp = cgrp;
863         /*
864          * set cgrp before ctxsw in to allow
865          * perf_cgroup_set_timestamp() in ctx_sched_in()
866          * to not have to pass task around
867          */
868         ctx_sched_in(&cpuctx->ctx, EVENT_ALL);
869
870         perf_ctx_enable(&cpuctx->ctx);
871         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
872 }
873
874 static int perf_cgroup_ensure_storage(struct perf_event *event,
875                                 struct cgroup_subsys_state *css)
876 {
877         struct perf_cpu_context *cpuctx;
878         struct perf_event **storage;
879         int cpu, heap_size, ret = 0;
880
881         /*
882          * Allow storage to have sufficent space for an iterator for each
883          * possibly nested cgroup plus an iterator for events with no cgroup.
884          */
885         for (heap_size = 1; css; css = css->parent)
886                 heap_size++;
887
888         for_each_possible_cpu(cpu) {
889                 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
890                 if (heap_size <= cpuctx->heap_size)
891                         continue;
892
893                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
894                                        GFP_KERNEL, cpu_to_node(cpu));
895                 if (!storage) {
896                         ret = -ENOMEM;
897                         break;
898                 }
899
900                 raw_spin_lock_irq(&cpuctx->ctx.lock);
901                 if (cpuctx->heap_size < heap_size) {
902                         swap(cpuctx->heap, storage);
903                         if (storage == cpuctx->heap_default)
904                                 storage = NULL;
905                         cpuctx->heap_size = heap_size;
906                 }
907                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
908
909                 kfree(storage);
910         }
911
912         return ret;
913 }
914
915 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
916                                       struct perf_event_attr *attr,
917                                       struct perf_event *group_leader)
918 {
919         struct perf_cgroup *cgrp;
920         struct cgroup_subsys_state *css;
921         struct fd f = fdget(fd);
922         int ret = 0;
923
924         if (!f.file)
925                 return -EBADF;
926
927         css = css_tryget_online_from_dir(f.file->f_path.dentry,
928                                          &perf_event_cgrp_subsys);
929         if (IS_ERR(css)) {
930                 ret = PTR_ERR(css);
931                 goto out;
932         }
933
934         ret = perf_cgroup_ensure_storage(event, css);
935         if (ret)
936                 goto out;
937
938         cgrp = container_of(css, struct perf_cgroup, css);
939         event->cgrp = cgrp;
940
941         /*
942          * all events in a group must monitor
943          * the same cgroup because a task belongs
944          * to only one perf cgroup at a time
945          */
946         if (group_leader && group_leader->cgrp != cgrp) {
947                 perf_detach_cgroup(event);
948                 ret = -EINVAL;
949         }
950 out:
951         fdput(f);
952         return ret;
953 }
954
955 static inline void
956 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
957 {
958         struct perf_cpu_context *cpuctx;
959
960         if (!is_cgroup_event(event))
961                 return;
962
963         /*
964          * Because cgroup events are always per-cpu events,
965          * @ctx == &cpuctx->ctx.
966          */
967         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
968
969         if (ctx->nr_cgroups++)
970                 return;
971
972         cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
973 }
974
975 static inline void
976 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
977 {
978         struct perf_cpu_context *cpuctx;
979
980         if (!is_cgroup_event(event))
981                 return;
982
983         /*
984          * Because cgroup events are always per-cpu events,
985          * @ctx == &cpuctx->ctx.
986          */
987         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
988
989         if (--ctx->nr_cgroups)
990                 return;
991
992         cpuctx->cgrp = NULL;
993 }
994
995 #else /* !CONFIG_CGROUP_PERF */
996
997 static inline bool
998 perf_cgroup_match(struct perf_event *event)
999 {
1000         return true;
1001 }
1002
1003 static inline void perf_detach_cgroup(struct perf_event *event)
1004 {}
1005
1006 static inline int is_cgroup_event(struct perf_event *event)
1007 {
1008         return 0;
1009 }
1010
1011 static inline void update_cgrp_time_from_event(struct perf_event *event)
1012 {
1013 }
1014
1015 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1016                                                 bool final)
1017 {
1018 }
1019
1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021                                       struct perf_event_attr *attr,
1022                                       struct perf_event *group_leader)
1023 {
1024         return -EINVAL;
1025 }
1026
1027 static inline void
1028 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1029 {
1030 }
1031
1032 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1033 {
1034         return 0;
1035 }
1036
1037 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1038 {
1039         return 0;
1040 }
1041
1042 static inline void
1043 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1044 {
1045 }
1046
1047 static inline void
1048 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1049 {
1050 }
1051
1052 static void perf_cgroup_switch(struct task_struct *task)
1053 {
1054 }
1055 #endif
1056
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067         struct perf_cpu_pmu_context *cpc;
1068         bool rotations;
1069
1070         lockdep_assert_irqs_disabled();
1071
1072         cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1073         rotations = perf_rotate_context(cpc);
1074
1075         raw_spin_lock(&cpc->hrtimer_lock);
1076         if (rotations)
1077                 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1078         else
1079                 cpc->hrtimer_active = 0;
1080         raw_spin_unlock(&cpc->hrtimer_lock);
1081
1082         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1086 {
1087         struct hrtimer *timer = &cpc->hrtimer;
1088         struct pmu *pmu = cpc->epc.pmu;
1089         u64 interval;
1090
1091         /*
1092          * check default is sane, if not set then force to
1093          * default interval (1/tick)
1094          */
1095         interval = pmu->hrtimer_interval_ms;
1096         if (interval < 1)
1097                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1098
1099         cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1100
1101         raw_spin_lock_init(&cpc->hrtimer_lock);
1102         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1103         timer->function = perf_mux_hrtimer_handler;
1104 }
1105
1106 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1107 {
1108         struct hrtimer *timer = &cpc->hrtimer;
1109         unsigned long flags;
1110
1111         raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1112         if (!cpc->hrtimer_active) {
1113                 cpc->hrtimer_active = 1;
1114                 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1115                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1116         }
1117         raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1118
1119         return 0;
1120 }
1121
1122 static int perf_mux_hrtimer_restart_ipi(void *arg)
1123 {
1124         return perf_mux_hrtimer_restart(arg);
1125 }
1126
1127 void perf_pmu_disable(struct pmu *pmu)
1128 {
1129         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1130         if (!(*count)++)
1131                 pmu->pmu_disable(pmu);
1132 }
1133
1134 void perf_pmu_enable(struct pmu *pmu)
1135 {
1136         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1137         if (!--(*count))
1138                 pmu->pmu_enable(pmu);
1139 }
1140
1141 static void perf_assert_pmu_disabled(struct pmu *pmu)
1142 {
1143         WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1144 }
1145
1146 static void get_ctx(struct perf_event_context *ctx)
1147 {
1148         refcount_inc(&ctx->refcount);
1149 }
1150
1151 static void *alloc_task_ctx_data(struct pmu *pmu)
1152 {
1153         if (pmu->task_ctx_cache)
1154                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1155
1156         return NULL;
1157 }
1158
1159 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1160 {
1161         if (pmu->task_ctx_cache && task_ctx_data)
1162                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1163 }
1164
1165 static void free_ctx(struct rcu_head *head)
1166 {
1167         struct perf_event_context *ctx;
1168
1169         ctx = container_of(head, struct perf_event_context, rcu_head);
1170         kfree(ctx);
1171 }
1172
1173 static void put_ctx(struct perf_event_context *ctx)
1174 {
1175         if (refcount_dec_and_test(&ctx->refcount)) {
1176                 if (ctx->parent_ctx)
1177                         put_ctx(ctx->parent_ctx);
1178                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1179                         put_task_struct(ctx->task);
1180                 call_rcu(&ctx->rcu_head, free_ctx);
1181         }
1182 }
1183
1184 /*
1185  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1186  * perf_pmu_migrate_context() we need some magic.
1187  *
1188  * Those places that change perf_event::ctx will hold both
1189  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1190  *
1191  * Lock ordering is by mutex address. There are two other sites where
1192  * perf_event_context::mutex nests and those are:
1193  *
1194  *  - perf_event_exit_task_context()    [ child , 0 ]
1195  *      perf_event_exit_event()
1196  *        put_event()                   [ parent, 1 ]
1197  *
1198  *  - perf_event_init_context()         [ parent, 0 ]
1199  *      inherit_task_group()
1200  *        inherit_group()
1201  *          inherit_event()
1202  *            perf_event_alloc()
1203  *              perf_init_event()
1204  *                perf_try_init_event() [ child , 1 ]
1205  *
1206  * While it appears there is an obvious deadlock here -- the parent and child
1207  * nesting levels are inverted between the two. This is in fact safe because
1208  * life-time rules separate them. That is an exiting task cannot fork, and a
1209  * spawning task cannot (yet) exit.
1210  *
1211  * But remember that these are parent<->child context relations, and
1212  * migration does not affect children, therefore these two orderings should not
1213  * interact.
1214  *
1215  * The change in perf_event::ctx does not affect children (as claimed above)
1216  * because the sys_perf_event_open() case will install a new event and break
1217  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1218  * concerned with cpuctx and that doesn't have children.
1219  *
1220  * The places that change perf_event::ctx will issue:
1221  *
1222  *   perf_remove_from_context();
1223  *   synchronize_rcu();
1224  *   perf_install_in_context();
1225  *
1226  * to affect the change. The remove_from_context() + synchronize_rcu() should
1227  * quiesce the event, after which we can install it in the new location. This
1228  * means that only external vectors (perf_fops, prctl) can perturb the event
1229  * while in transit. Therefore all such accessors should also acquire
1230  * perf_event_context::mutex to serialize against this.
1231  *
1232  * However; because event->ctx can change while we're waiting to acquire
1233  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1234  * function.
1235  *
1236  * Lock order:
1237  *    exec_update_lock
1238  *      task_struct::perf_event_mutex
1239  *        perf_event_context::mutex
1240  *          perf_event::child_mutex;
1241  *            perf_event_context::lock
1242  *          perf_event::mmap_mutex
1243  *          mmap_lock
1244  *            perf_addr_filters_head::lock
1245  *
1246  *    cpu_hotplug_lock
1247  *      pmus_lock
1248  *        cpuctx->mutex / perf_event_context::mutex
1249  */
1250 static struct perf_event_context *
1251 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1252 {
1253         struct perf_event_context *ctx;
1254
1255 again:
1256         rcu_read_lock();
1257         ctx = READ_ONCE(event->ctx);
1258         if (!refcount_inc_not_zero(&ctx->refcount)) {
1259                 rcu_read_unlock();
1260                 goto again;
1261         }
1262         rcu_read_unlock();
1263
1264         mutex_lock_nested(&ctx->mutex, nesting);
1265         if (event->ctx != ctx) {
1266                 mutex_unlock(&ctx->mutex);
1267                 put_ctx(ctx);
1268                 goto again;
1269         }
1270
1271         return ctx;
1272 }
1273
1274 static inline struct perf_event_context *
1275 perf_event_ctx_lock(struct perf_event *event)
1276 {
1277         return perf_event_ctx_lock_nested(event, 0);
1278 }
1279
1280 static void perf_event_ctx_unlock(struct perf_event *event,
1281                                   struct perf_event_context *ctx)
1282 {
1283         mutex_unlock(&ctx->mutex);
1284         put_ctx(ctx);
1285 }
1286
1287 /*
1288  * This must be done under the ctx->lock, such as to serialize against
1289  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1290  * calling scheduler related locks and ctx->lock nests inside those.
1291  */
1292 static __must_check struct perf_event_context *
1293 unclone_ctx(struct perf_event_context *ctx)
1294 {
1295         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1296
1297         lockdep_assert_held(&ctx->lock);
1298
1299         if (parent_ctx)
1300                 ctx->parent_ctx = NULL;
1301         ctx->generation++;
1302
1303         return parent_ctx;
1304 }
1305
1306 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1307                                 enum pid_type type)
1308 {
1309         u32 nr;
1310         /*
1311          * only top level events have the pid namespace they were created in
1312          */
1313         if (event->parent)
1314                 event = event->parent;
1315
1316         nr = __task_pid_nr_ns(p, type, event->ns);
1317         /* avoid -1 if it is idle thread or runs in another ns */
1318         if (!nr && !pid_alive(p))
1319                 nr = -1;
1320         return nr;
1321 }
1322
1323 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1324 {
1325         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1326 }
1327
1328 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1329 {
1330         return perf_event_pid_type(event, p, PIDTYPE_PID);
1331 }
1332
1333 /*
1334  * If we inherit events we want to return the parent event id
1335  * to userspace.
1336  */
1337 static u64 primary_event_id(struct perf_event *event)
1338 {
1339         u64 id = event->id;
1340
1341         if (event->parent)
1342                 id = event->parent->id;
1343
1344         return id;
1345 }
1346
1347 /*
1348  * Get the perf_event_context for a task and lock it.
1349  *
1350  * This has to cope with the fact that until it is locked,
1351  * the context could get moved to another task.
1352  */
1353 static struct perf_event_context *
1354 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1355 {
1356         struct perf_event_context *ctx;
1357
1358 retry:
1359         /*
1360          * One of the few rules of preemptible RCU is that one cannot do
1361          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1362          * part of the read side critical section was irqs-enabled -- see
1363          * rcu_read_unlock_special().
1364          *
1365          * Since ctx->lock nests under rq->lock we must ensure the entire read
1366          * side critical section has interrupts disabled.
1367          */
1368         local_irq_save(*flags);
1369         rcu_read_lock();
1370         ctx = rcu_dereference(task->perf_event_ctxp);
1371         if (ctx) {
1372                 /*
1373                  * If this context is a clone of another, it might
1374                  * get swapped for another underneath us by
1375                  * perf_event_task_sched_out, though the
1376                  * rcu_read_lock() protects us from any context
1377                  * getting freed.  Lock the context and check if it
1378                  * got swapped before we could get the lock, and retry
1379                  * if so.  If we locked the right context, then it
1380                  * can't get swapped on us any more.
1381                  */
1382                 raw_spin_lock(&ctx->lock);
1383                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1384                         raw_spin_unlock(&ctx->lock);
1385                         rcu_read_unlock();
1386                         local_irq_restore(*flags);
1387                         goto retry;
1388                 }
1389
1390                 if (ctx->task == TASK_TOMBSTONE ||
1391                     !refcount_inc_not_zero(&ctx->refcount)) {
1392                         raw_spin_unlock(&ctx->lock);
1393                         ctx = NULL;
1394                 } else {
1395                         WARN_ON_ONCE(ctx->task != task);
1396                 }
1397         }
1398         rcu_read_unlock();
1399         if (!ctx)
1400                 local_irq_restore(*flags);
1401         return ctx;
1402 }
1403
1404 /*
1405  * Get the context for a task and increment its pin_count so it
1406  * can't get swapped to another task.  This also increments its
1407  * reference count so that the context can't get freed.
1408  */
1409 static struct perf_event_context *
1410 perf_pin_task_context(struct task_struct *task)
1411 {
1412         struct perf_event_context *ctx;
1413         unsigned long flags;
1414
1415         ctx = perf_lock_task_context(task, &flags);
1416         if (ctx) {
1417                 ++ctx->pin_count;
1418                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1419         }
1420         return ctx;
1421 }
1422
1423 static void perf_unpin_context(struct perf_event_context *ctx)
1424 {
1425         unsigned long flags;
1426
1427         raw_spin_lock_irqsave(&ctx->lock, flags);
1428         --ctx->pin_count;
1429         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1430 }
1431
1432 /*
1433  * Update the record of the current time in a context.
1434  */
1435 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1436 {
1437         u64 now = perf_clock();
1438
1439         lockdep_assert_held(&ctx->lock);
1440
1441         if (adv)
1442                 ctx->time += now - ctx->timestamp;
1443         ctx->timestamp = now;
1444
1445         /*
1446          * The above: time' = time + (now - timestamp), can be re-arranged
1447          * into: time` = now + (time - timestamp), which gives a single value
1448          * offset to compute future time without locks on.
1449          *
1450          * See perf_event_time_now(), which can be used from NMI context where
1451          * it's (obviously) not possible to acquire ctx->lock in order to read
1452          * both the above values in a consistent manner.
1453          */
1454         WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1455 }
1456
1457 static void update_context_time(struct perf_event_context *ctx)
1458 {
1459         __update_context_time(ctx, true);
1460 }
1461
1462 static u64 perf_event_time(struct perf_event *event)
1463 {
1464         struct perf_event_context *ctx = event->ctx;
1465
1466         if (unlikely(!ctx))
1467                 return 0;
1468
1469         if (is_cgroup_event(event))
1470                 return perf_cgroup_event_time(event);
1471
1472         return ctx->time;
1473 }
1474
1475 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1476 {
1477         struct perf_event_context *ctx = event->ctx;
1478
1479         if (unlikely(!ctx))
1480                 return 0;
1481
1482         if (is_cgroup_event(event))
1483                 return perf_cgroup_event_time_now(event, now);
1484
1485         if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1486                 return ctx->time;
1487
1488         now += READ_ONCE(ctx->timeoffset);
1489         return now;
1490 }
1491
1492 static enum event_type_t get_event_type(struct perf_event *event)
1493 {
1494         struct perf_event_context *ctx = event->ctx;
1495         enum event_type_t event_type;
1496
1497         lockdep_assert_held(&ctx->lock);
1498
1499         /*
1500          * It's 'group type', really, because if our group leader is
1501          * pinned, so are we.
1502          */
1503         if (event->group_leader != event)
1504                 event = event->group_leader;
1505
1506         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1507         if (!ctx->task)
1508                 event_type |= EVENT_CPU;
1509
1510         return event_type;
1511 }
1512
1513 /*
1514  * Helper function to initialize event group nodes.
1515  */
1516 static void init_event_group(struct perf_event *event)
1517 {
1518         RB_CLEAR_NODE(&event->group_node);
1519         event->group_index = 0;
1520 }
1521
1522 /*
1523  * Extract pinned or flexible groups from the context
1524  * based on event attrs bits.
1525  */
1526 static struct perf_event_groups *
1527 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1528 {
1529         if (event->attr.pinned)
1530                 return &ctx->pinned_groups;
1531         else
1532                 return &ctx->flexible_groups;
1533 }
1534
1535 /*
1536  * Helper function to initializes perf_event_group trees.
1537  */
1538 static void perf_event_groups_init(struct perf_event_groups *groups)
1539 {
1540         groups->tree = RB_ROOT;
1541         groups->index = 0;
1542 }
1543
1544 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1545 {
1546         struct cgroup *cgroup = NULL;
1547
1548 #ifdef CONFIG_CGROUP_PERF
1549         if (event->cgrp)
1550                 cgroup = event->cgrp->css.cgroup;
1551 #endif
1552
1553         return cgroup;
1554 }
1555
1556 /*
1557  * Compare function for event groups;
1558  *
1559  * Implements complex key that first sorts by CPU and then by virtual index
1560  * which provides ordering when rotating groups for the same CPU.
1561  */
1562 static __always_inline int
1563 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1564                       const struct cgroup *left_cgroup, const u64 left_group_index,
1565                       const struct perf_event *right)
1566 {
1567         if (left_cpu < right->cpu)
1568                 return -1;
1569         if (left_cpu > right->cpu)
1570                 return 1;
1571
1572         if (left_pmu) {
1573                 if (left_pmu < right->pmu_ctx->pmu)
1574                         return -1;
1575                 if (left_pmu > right->pmu_ctx->pmu)
1576                         return 1;
1577         }
1578
1579 #ifdef CONFIG_CGROUP_PERF
1580         {
1581                 const struct cgroup *right_cgroup = event_cgroup(right);
1582
1583                 if (left_cgroup != right_cgroup) {
1584                         if (!left_cgroup) {
1585                                 /*
1586                                  * Left has no cgroup but right does, no
1587                                  * cgroups come first.
1588                                  */
1589                                 return -1;
1590                         }
1591                         if (!right_cgroup) {
1592                                 /*
1593                                  * Right has no cgroup but left does, no
1594                                  * cgroups come first.
1595                                  */
1596                                 return 1;
1597                         }
1598                         /* Two dissimilar cgroups, order by id. */
1599                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1600                                 return -1;
1601
1602                         return 1;
1603                 }
1604         }
1605 #endif
1606
1607         if (left_group_index < right->group_index)
1608                 return -1;
1609         if (left_group_index > right->group_index)
1610                 return 1;
1611
1612         return 0;
1613 }
1614
1615 #define __node_2_pe(node) \
1616         rb_entry((node), struct perf_event, group_node)
1617
1618 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1619 {
1620         struct perf_event *e = __node_2_pe(a);
1621         return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1622                                      e->group_index, __node_2_pe(b)) < 0;
1623 }
1624
1625 struct __group_key {
1626         int cpu;
1627         struct pmu *pmu;
1628         struct cgroup *cgroup;
1629 };
1630
1631 static inline int __group_cmp(const void *key, const struct rb_node *node)
1632 {
1633         const struct __group_key *a = key;
1634         const struct perf_event *b = __node_2_pe(node);
1635
1636         /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1637         return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1638 }
1639
1640 static inline int
1641 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1642 {
1643         const struct __group_key *a = key;
1644         const struct perf_event *b = __node_2_pe(node);
1645
1646         /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1647         return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1648                                      b->group_index, b);
1649 }
1650
1651 /*
1652  * Insert @event into @groups' tree; using
1653  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1654  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1655  */
1656 static void
1657 perf_event_groups_insert(struct perf_event_groups *groups,
1658                          struct perf_event *event)
1659 {
1660         event->group_index = ++groups->index;
1661
1662         rb_add(&event->group_node, &groups->tree, __group_less);
1663 }
1664
1665 /*
1666  * Helper function to insert event into the pinned or flexible groups.
1667  */
1668 static void
1669 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1670 {
1671         struct perf_event_groups *groups;
1672
1673         groups = get_event_groups(event, ctx);
1674         perf_event_groups_insert(groups, event);
1675 }
1676
1677 /*
1678  * Delete a group from a tree.
1679  */
1680 static void
1681 perf_event_groups_delete(struct perf_event_groups *groups,
1682                          struct perf_event *event)
1683 {
1684         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1685                      RB_EMPTY_ROOT(&groups->tree));
1686
1687         rb_erase(&event->group_node, &groups->tree);
1688         init_event_group(event);
1689 }
1690
1691 /*
1692  * Helper function to delete event from its groups.
1693  */
1694 static void
1695 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1696 {
1697         struct perf_event_groups *groups;
1698
1699         groups = get_event_groups(event, ctx);
1700         perf_event_groups_delete(groups, event);
1701 }
1702
1703 /*
1704  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1705  */
1706 static struct perf_event *
1707 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1708                         struct pmu *pmu, struct cgroup *cgrp)
1709 {
1710         struct __group_key key = {
1711                 .cpu = cpu,
1712                 .pmu = pmu,
1713                 .cgroup = cgrp,
1714         };
1715         struct rb_node *node;
1716
1717         node = rb_find_first(&key, &groups->tree, __group_cmp);
1718         if (node)
1719                 return __node_2_pe(node);
1720
1721         return NULL;
1722 }
1723
1724 static struct perf_event *
1725 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1726 {
1727         struct __group_key key = {
1728                 .cpu = event->cpu,
1729                 .pmu = pmu,
1730                 .cgroup = event_cgroup(event),
1731         };
1732         struct rb_node *next;
1733
1734         next = rb_next_match(&key, &event->group_node, __group_cmp);
1735         if (next)
1736                 return __node_2_pe(next);
1737
1738         return NULL;
1739 }
1740
1741 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)          \
1742         for (event = perf_event_groups_first(groups, cpu, pmu, NULL);   \
1743              event; event = perf_event_groups_next(event, pmu))
1744
1745 /*
1746  * Iterate through the whole groups tree.
1747  */
1748 #define perf_event_groups_for_each(event, groups)                       \
1749         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1750                                 typeof(*event), group_node); event;     \
1751                 event = rb_entry_safe(rb_next(&event->group_node),      \
1752                                 typeof(*event), group_node))
1753
1754 /*
1755  * Add an event from the lists for its context.
1756  * Must be called with ctx->mutex and ctx->lock held.
1757  */
1758 static void
1759 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1760 {
1761         lockdep_assert_held(&ctx->lock);
1762
1763         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1764         event->attach_state |= PERF_ATTACH_CONTEXT;
1765
1766         event->tstamp = perf_event_time(event);
1767
1768         /*
1769          * If we're a stand alone event or group leader, we go to the context
1770          * list, group events are kept attached to the group so that
1771          * perf_group_detach can, at all times, locate all siblings.
1772          */
1773         if (event->group_leader == event) {
1774                 event->group_caps = event->event_caps;
1775                 add_event_to_groups(event, ctx);
1776         }
1777
1778         list_add_rcu(&event->event_entry, &ctx->event_list);
1779         ctx->nr_events++;
1780         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1781                 ctx->nr_user++;
1782         if (event->attr.inherit_stat)
1783                 ctx->nr_stat++;
1784
1785         if (event->state > PERF_EVENT_STATE_OFF)
1786                 perf_cgroup_event_enable(event, ctx);
1787
1788         ctx->generation++;
1789         event->pmu_ctx->nr_events++;
1790 }
1791
1792 /*
1793  * Initialize event state based on the perf_event_attr::disabled.
1794  */
1795 static inline void perf_event__state_init(struct perf_event *event)
1796 {
1797         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1798                                               PERF_EVENT_STATE_INACTIVE;
1799 }
1800
1801 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1802 {
1803         int entry = sizeof(u64); /* value */
1804         int size = 0;
1805         int nr = 1;
1806
1807         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1808                 size += sizeof(u64);
1809
1810         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1811                 size += sizeof(u64);
1812
1813         if (event->attr.read_format & PERF_FORMAT_ID)
1814                 entry += sizeof(u64);
1815
1816         if (event->attr.read_format & PERF_FORMAT_LOST)
1817                 entry += sizeof(u64);
1818
1819         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1820                 nr += nr_siblings;
1821                 size += sizeof(u64);
1822         }
1823
1824         size += entry * nr;
1825         event->read_size = size;
1826 }
1827
1828 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1829 {
1830         struct perf_sample_data *data;
1831         u16 size = 0;
1832
1833         if (sample_type & PERF_SAMPLE_IP)
1834                 size += sizeof(data->ip);
1835
1836         if (sample_type & PERF_SAMPLE_ADDR)
1837                 size += sizeof(data->addr);
1838
1839         if (sample_type & PERF_SAMPLE_PERIOD)
1840                 size += sizeof(data->period);
1841
1842         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1843                 size += sizeof(data->weight.full);
1844
1845         if (sample_type & PERF_SAMPLE_READ)
1846                 size += event->read_size;
1847
1848         if (sample_type & PERF_SAMPLE_DATA_SRC)
1849                 size += sizeof(data->data_src.val);
1850
1851         if (sample_type & PERF_SAMPLE_TRANSACTION)
1852                 size += sizeof(data->txn);
1853
1854         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1855                 size += sizeof(data->phys_addr);
1856
1857         if (sample_type & PERF_SAMPLE_CGROUP)
1858                 size += sizeof(data->cgroup);
1859
1860         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1861                 size += sizeof(data->data_page_size);
1862
1863         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1864                 size += sizeof(data->code_page_size);
1865
1866         event->header_size = size;
1867 }
1868
1869 /*
1870  * Called at perf_event creation and when events are attached/detached from a
1871  * group.
1872  */
1873 static void perf_event__header_size(struct perf_event *event)
1874 {
1875         __perf_event_read_size(event,
1876                                event->group_leader->nr_siblings);
1877         __perf_event_header_size(event, event->attr.sample_type);
1878 }
1879
1880 static void perf_event__id_header_size(struct perf_event *event)
1881 {
1882         struct perf_sample_data *data;
1883         u64 sample_type = event->attr.sample_type;
1884         u16 size = 0;
1885
1886         if (sample_type & PERF_SAMPLE_TID)
1887                 size += sizeof(data->tid_entry);
1888
1889         if (sample_type & PERF_SAMPLE_TIME)
1890                 size += sizeof(data->time);
1891
1892         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1893                 size += sizeof(data->id);
1894
1895         if (sample_type & PERF_SAMPLE_ID)
1896                 size += sizeof(data->id);
1897
1898         if (sample_type & PERF_SAMPLE_STREAM_ID)
1899                 size += sizeof(data->stream_id);
1900
1901         if (sample_type & PERF_SAMPLE_CPU)
1902                 size += sizeof(data->cpu_entry);
1903
1904         event->id_header_size = size;
1905 }
1906
1907 static bool perf_event_validate_size(struct perf_event *event)
1908 {
1909         /*
1910          * The values computed here will be over-written when we actually
1911          * attach the event.
1912          */
1913         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1914         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1915         perf_event__id_header_size(event);
1916
1917         /*
1918          * Sum the lot; should not exceed the 64k limit we have on records.
1919          * Conservative limit to allow for callchains and other variable fields.
1920          */
1921         if (event->read_size + event->header_size +
1922             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1923                 return false;
1924
1925         return true;
1926 }
1927
1928 static void perf_group_attach(struct perf_event *event)
1929 {
1930         struct perf_event *group_leader = event->group_leader, *pos;
1931
1932         lockdep_assert_held(&event->ctx->lock);
1933
1934         /*
1935          * We can have double attach due to group movement (move_group) in
1936          * perf_event_open().
1937          */
1938         if (event->attach_state & PERF_ATTACH_GROUP)
1939                 return;
1940
1941         event->attach_state |= PERF_ATTACH_GROUP;
1942
1943         if (group_leader == event)
1944                 return;
1945
1946         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1947
1948         group_leader->group_caps &= event->event_caps;
1949
1950         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1951         group_leader->nr_siblings++;
1952
1953         perf_event__header_size(group_leader);
1954
1955         for_each_sibling_event(pos, group_leader)
1956                 perf_event__header_size(pos);
1957 }
1958
1959 /*
1960  * Remove an event from the lists for its context.
1961  * Must be called with ctx->mutex and ctx->lock held.
1962  */
1963 static void
1964 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1965 {
1966         WARN_ON_ONCE(event->ctx != ctx);
1967         lockdep_assert_held(&ctx->lock);
1968
1969         /*
1970          * We can have double detach due to exit/hot-unplug + close.
1971          */
1972         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1973                 return;
1974
1975         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1976
1977         ctx->nr_events--;
1978         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1979                 ctx->nr_user--;
1980         if (event->attr.inherit_stat)
1981                 ctx->nr_stat--;
1982
1983         list_del_rcu(&event->event_entry);
1984
1985         if (event->group_leader == event)
1986                 del_event_from_groups(event, ctx);
1987
1988         /*
1989          * If event was in error state, then keep it
1990          * that way, otherwise bogus counts will be
1991          * returned on read(). The only way to get out
1992          * of error state is by explicit re-enabling
1993          * of the event
1994          */
1995         if (event->state > PERF_EVENT_STATE_OFF) {
1996                 perf_cgroup_event_disable(event, ctx);
1997                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1998         }
1999
2000         ctx->generation++;
2001         event->pmu_ctx->nr_events--;
2002 }
2003
2004 static int
2005 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2006 {
2007         if (!has_aux(aux_event))
2008                 return 0;
2009
2010         if (!event->pmu->aux_output_match)
2011                 return 0;
2012
2013         return event->pmu->aux_output_match(aux_event);
2014 }
2015
2016 static void put_event(struct perf_event *event);
2017 static void event_sched_out(struct perf_event *event,
2018                             struct perf_event_context *ctx);
2019
2020 static void perf_put_aux_event(struct perf_event *event)
2021 {
2022         struct perf_event_context *ctx = event->ctx;
2023         struct perf_event *iter;
2024
2025         /*
2026          * If event uses aux_event tear down the link
2027          */
2028         if (event->aux_event) {
2029                 iter = event->aux_event;
2030                 event->aux_event = NULL;
2031                 put_event(iter);
2032                 return;
2033         }
2034
2035         /*
2036          * If the event is an aux_event, tear down all links to
2037          * it from other events.
2038          */
2039         for_each_sibling_event(iter, event->group_leader) {
2040                 if (iter->aux_event != event)
2041                         continue;
2042
2043                 iter->aux_event = NULL;
2044                 put_event(event);
2045
2046                 /*
2047                  * If it's ACTIVE, schedule it out and put it into ERROR
2048                  * state so that we don't try to schedule it again. Note
2049                  * that perf_event_enable() will clear the ERROR status.
2050                  */
2051                 event_sched_out(iter, ctx);
2052                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2053         }
2054 }
2055
2056 static bool perf_need_aux_event(struct perf_event *event)
2057 {
2058         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2059 }
2060
2061 static int perf_get_aux_event(struct perf_event *event,
2062                               struct perf_event *group_leader)
2063 {
2064         /*
2065          * Our group leader must be an aux event if we want to be
2066          * an aux_output. This way, the aux event will precede its
2067          * aux_output events in the group, and therefore will always
2068          * schedule first.
2069          */
2070         if (!group_leader)
2071                 return 0;
2072
2073         /*
2074          * aux_output and aux_sample_size are mutually exclusive.
2075          */
2076         if (event->attr.aux_output && event->attr.aux_sample_size)
2077                 return 0;
2078
2079         if (event->attr.aux_output &&
2080             !perf_aux_output_match(event, group_leader))
2081                 return 0;
2082
2083         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2084                 return 0;
2085
2086         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2087                 return 0;
2088
2089         /*
2090          * Link aux_outputs to their aux event; this is undone in
2091          * perf_group_detach() by perf_put_aux_event(). When the
2092          * group in torn down, the aux_output events loose their
2093          * link to the aux_event and can't schedule any more.
2094          */
2095         event->aux_event = group_leader;
2096
2097         return 1;
2098 }
2099
2100 static inline struct list_head *get_event_list(struct perf_event *event)
2101 {
2102         return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2103                                     &event->pmu_ctx->flexible_active;
2104 }
2105
2106 /*
2107  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2108  * cannot exist on their own, schedule them out and move them into the ERROR
2109  * state. Also see _perf_event_enable(), it will not be able to recover
2110  * this ERROR state.
2111  */
2112 static inline void perf_remove_sibling_event(struct perf_event *event)
2113 {
2114         event_sched_out(event, event->ctx);
2115         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2116 }
2117
2118 static void perf_group_detach(struct perf_event *event)
2119 {
2120         struct perf_event *leader = event->group_leader;
2121         struct perf_event *sibling, *tmp;
2122         struct perf_event_context *ctx = event->ctx;
2123
2124         lockdep_assert_held(&ctx->lock);
2125
2126         /*
2127          * We can have double detach due to exit/hot-unplug + close.
2128          */
2129         if (!(event->attach_state & PERF_ATTACH_GROUP))
2130                 return;
2131
2132         event->attach_state &= ~PERF_ATTACH_GROUP;
2133
2134         perf_put_aux_event(event);
2135
2136         /*
2137          * If this is a sibling, remove it from its group.
2138          */
2139         if (leader != event) {
2140                 list_del_init(&event->sibling_list);
2141                 event->group_leader->nr_siblings--;
2142                 goto out;
2143         }
2144
2145         /*
2146          * If this was a group event with sibling events then
2147          * upgrade the siblings to singleton events by adding them
2148          * to whatever list we are on.
2149          */
2150         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2151
2152                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2153                         perf_remove_sibling_event(sibling);
2154
2155                 sibling->group_leader = sibling;
2156                 list_del_init(&sibling->sibling_list);
2157
2158                 /* Inherit group flags from the previous leader */
2159                 sibling->group_caps = event->group_caps;
2160
2161                 if (!RB_EMPTY_NODE(&event->group_node)) {
2162                         add_event_to_groups(sibling, event->ctx);
2163
2164                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2165                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2166                 }
2167
2168                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2169         }
2170
2171 out:
2172         for_each_sibling_event(tmp, leader)
2173                 perf_event__header_size(tmp);
2174
2175         perf_event__header_size(leader);
2176 }
2177
2178 static void sync_child_event(struct perf_event *child_event);
2179
2180 static void perf_child_detach(struct perf_event *event)
2181 {
2182         struct perf_event *parent_event = event->parent;
2183
2184         if (!(event->attach_state & PERF_ATTACH_CHILD))
2185                 return;
2186
2187         event->attach_state &= ~PERF_ATTACH_CHILD;
2188
2189         if (WARN_ON_ONCE(!parent_event))
2190                 return;
2191
2192         lockdep_assert_held(&parent_event->child_mutex);
2193
2194         sync_child_event(event);
2195         list_del_init(&event->child_list);
2196 }
2197
2198 static bool is_orphaned_event(struct perf_event *event)
2199 {
2200         return event->state == PERF_EVENT_STATE_DEAD;
2201 }
2202
2203 static inline int
2204 event_filter_match(struct perf_event *event)
2205 {
2206         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2207                perf_cgroup_match(event);
2208 }
2209
2210 static void
2211 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2212 {
2213         struct perf_event_pmu_context *epc = event->pmu_ctx;
2214         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2215         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2216
2217         // XXX cpc serialization, probably per-cpu IRQ disabled
2218
2219         WARN_ON_ONCE(event->ctx != ctx);
2220         lockdep_assert_held(&ctx->lock);
2221
2222         if (event->state != PERF_EVENT_STATE_ACTIVE)
2223                 return;
2224
2225         /*
2226          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2227          * we can schedule events _OUT_ individually through things like
2228          * __perf_remove_from_context().
2229          */
2230         list_del_init(&event->active_list);
2231
2232         perf_pmu_disable(event->pmu);
2233
2234         event->pmu->del(event, 0);
2235         event->oncpu = -1;
2236
2237         if (event->pending_disable) {
2238                 event->pending_disable = 0;
2239                 perf_cgroup_event_disable(event, ctx);
2240                 state = PERF_EVENT_STATE_OFF;
2241         }
2242
2243         if (event->pending_sigtrap) {
2244                 bool dec = true;
2245
2246                 event->pending_sigtrap = 0;
2247                 if (state != PERF_EVENT_STATE_OFF &&
2248                     !event->pending_work) {
2249                         event->pending_work = 1;
2250                         dec = false;
2251                         WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2252                         task_work_add(current, &event->pending_task, TWA_RESUME);
2253                 }
2254                 if (dec)
2255                         local_dec(&event->ctx->nr_pending);
2256         }
2257
2258         perf_event_set_state(event, state);
2259
2260         if (!is_software_event(event))
2261                 cpc->active_oncpu--;
2262         if (event->attr.freq && event->attr.sample_freq)
2263                 ctx->nr_freq--;
2264         if (event->attr.exclusive || !cpc->active_oncpu)
2265                 cpc->exclusive = 0;
2266
2267         perf_pmu_enable(event->pmu);
2268 }
2269
2270 static void
2271 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2272 {
2273         struct perf_event *event;
2274
2275         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2276                 return;
2277
2278         perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2279
2280         event_sched_out(group_event, ctx);
2281
2282         /*
2283          * Schedule out siblings (if any):
2284          */
2285         for_each_sibling_event(event, group_event)
2286                 event_sched_out(event, ctx);
2287 }
2288
2289 #define DETACH_GROUP    0x01UL
2290 #define DETACH_CHILD    0x02UL
2291 #define DETACH_DEAD     0x04UL
2292
2293 /*
2294  * Cross CPU call to remove a performance event
2295  *
2296  * We disable the event on the hardware level first. After that we
2297  * remove it from the context list.
2298  */
2299 static void
2300 __perf_remove_from_context(struct perf_event *event,
2301                            struct perf_cpu_context *cpuctx,
2302                            struct perf_event_context *ctx,
2303                            void *info)
2304 {
2305         struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2306         unsigned long flags = (unsigned long)info;
2307
2308         if (ctx->is_active & EVENT_TIME) {
2309                 update_context_time(ctx);
2310                 update_cgrp_time_from_cpuctx(cpuctx, false);
2311         }
2312
2313         /*
2314          * Ensure event_sched_out() switches to OFF, at the very least
2315          * this avoids raising perf_pending_task() at this time.
2316          */
2317         if (flags & DETACH_DEAD)
2318                 event->pending_disable = 1;
2319         event_sched_out(event, ctx);
2320         if (flags & DETACH_GROUP)
2321                 perf_group_detach(event);
2322         if (flags & DETACH_CHILD)
2323                 perf_child_detach(event);
2324         list_del_event(event, ctx);
2325         if (flags & DETACH_DEAD)
2326                 event->state = PERF_EVENT_STATE_DEAD;
2327
2328         if (!pmu_ctx->nr_events) {
2329                 pmu_ctx->rotate_necessary = 0;
2330
2331                 if (ctx->task && ctx->is_active) {
2332                         struct perf_cpu_pmu_context *cpc;
2333
2334                         cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2335                         WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2336                         cpc->task_epc = NULL;
2337                 }
2338         }
2339
2340         if (!ctx->nr_events && ctx->is_active) {
2341                 if (ctx == &cpuctx->ctx)
2342                         update_cgrp_time_from_cpuctx(cpuctx, true);
2343
2344                 ctx->is_active = 0;
2345                 if (ctx->task) {
2346                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2347                         cpuctx->task_ctx = NULL;
2348                 }
2349         }
2350 }
2351
2352 /*
2353  * Remove the event from a task's (or a CPU's) list of events.
2354  *
2355  * If event->ctx is a cloned context, callers must make sure that
2356  * every task struct that event->ctx->task could possibly point to
2357  * remains valid.  This is OK when called from perf_release since
2358  * that only calls us on the top-level context, which can't be a clone.
2359  * When called from perf_event_exit_task, it's OK because the
2360  * context has been detached from its task.
2361  */
2362 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2363 {
2364         struct perf_event_context *ctx = event->ctx;
2365
2366         lockdep_assert_held(&ctx->mutex);
2367
2368         /*
2369          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2370          * to work in the face of TASK_TOMBSTONE, unlike every other
2371          * event_function_call() user.
2372          */
2373         raw_spin_lock_irq(&ctx->lock);
2374         if (!ctx->is_active) {
2375                 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2376                                            ctx, (void *)flags);
2377                 raw_spin_unlock_irq(&ctx->lock);
2378                 return;
2379         }
2380         raw_spin_unlock_irq(&ctx->lock);
2381
2382         event_function_call(event, __perf_remove_from_context, (void *)flags);
2383 }
2384
2385 /*
2386  * Cross CPU call to disable a performance event
2387  */
2388 static void __perf_event_disable(struct perf_event *event,
2389                                  struct perf_cpu_context *cpuctx,
2390                                  struct perf_event_context *ctx,
2391                                  void *info)
2392 {
2393         if (event->state < PERF_EVENT_STATE_INACTIVE)
2394                 return;
2395
2396         if (ctx->is_active & EVENT_TIME) {
2397                 update_context_time(ctx);
2398                 update_cgrp_time_from_event(event);
2399         }
2400
2401         perf_pmu_disable(event->pmu_ctx->pmu);
2402
2403         if (event == event->group_leader)
2404                 group_sched_out(event, ctx);
2405         else
2406                 event_sched_out(event, ctx);
2407
2408         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2409         perf_cgroup_event_disable(event, ctx);
2410
2411         perf_pmu_enable(event->pmu_ctx->pmu);
2412 }
2413
2414 /*
2415  * Disable an event.
2416  *
2417  * If event->ctx is a cloned context, callers must make sure that
2418  * every task struct that event->ctx->task could possibly point to
2419  * remains valid.  This condition is satisfied when called through
2420  * perf_event_for_each_child or perf_event_for_each because they
2421  * hold the top-level event's child_mutex, so any descendant that
2422  * goes to exit will block in perf_event_exit_event().
2423  *
2424  * When called from perf_pending_irq it's OK because event->ctx
2425  * is the current context on this CPU and preemption is disabled,
2426  * hence we can't get into perf_event_task_sched_out for this context.
2427  */
2428 static void _perf_event_disable(struct perf_event *event)
2429 {
2430         struct perf_event_context *ctx = event->ctx;
2431
2432         raw_spin_lock_irq(&ctx->lock);
2433         if (event->state <= PERF_EVENT_STATE_OFF) {
2434                 raw_spin_unlock_irq(&ctx->lock);
2435                 return;
2436         }
2437         raw_spin_unlock_irq(&ctx->lock);
2438
2439         event_function_call(event, __perf_event_disable, NULL);
2440 }
2441
2442 void perf_event_disable_local(struct perf_event *event)
2443 {
2444         event_function_local(event, __perf_event_disable, NULL);
2445 }
2446
2447 /*
2448  * Strictly speaking kernel users cannot create groups and therefore this
2449  * interface does not need the perf_event_ctx_lock() magic.
2450  */
2451 void perf_event_disable(struct perf_event *event)
2452 {
2453         struct perf_event_context *ctx;
2454
2455         ctx = perf_event_ctx_lock(event);
2456         _perf_event_disable(event);
2457         perf_event_ctx_unlock(event, ctx);
2458 }
2459 EXPORT_SYMBOL_GPL(perf_event_disable);
2460
2461 void perf_event_disable_inatomic(struct perf_event *event)
2462 {
2463         event->pending_disable = 1;
2464         irq_work_queue(&event->pending_irq);
2465 }
2466
2467 #define MAX_INTERRUPTS (~0ULL)
2468
2469 static void perf_log_throttle(struct perf_event *event, int enable);
2470 static void perf_log_itrace_start(struct perf_event *event);
2471
2472 static int
2473 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2474 {
2475         struct perf_event_pmu_context *epc = event->pmu_ctx;
2476         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2477         int ret = 0;
2478
2479         WARN_ON_ONCE(event->ctx != ctx);
2480
2481         lockdep_assert_held(&ctx->lock);
2482
2483         if (event->state <= PERF_EVENT_STATE_OFF)
2484                 return 0;
2485
2486         WRITE_ONCE(event->oncpu, smp_processor_id());
2487         /*
2488          * Order event::oncpu write to happen before the ACTIVE state is
2489          * visible. This allows perf_event_{stop,read}() to observe the correct
2490          * ->oncpu if it sees ACTIVE.
2491          */
2492         smp_wmb();
2493         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2494
2495         /*
2496          * Unthrottle events, since we scheduled we might have missed several
2497          * ticks already, also for a heavily scheduling task there is little
2498          * guarantee it'll get a tick in a timely manner.
2499          */
2500         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2501                 perf_log_throttle(event, 1);
2502                 event->hw.interrupts = 0;
2503         }
2504
2505         perf_pmu_disable(event->pmu);
2506
2507         perf_log_itrace_start(event);
2508
2509         if (event->pmu->add(event, PERF_EF_START)) {
2510                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2511                 event->oncpu = -1;
2512                 ret = -EAGAIN;
2513                 goto out;
2514         }
2515
2516         if (!is_software_event(event))
2517                 cpc->active_oncpu++;
2518         if (event->attr.freq && event->attr.sample_freq)
2519                 ctx->nr_freq++;
2520
2521         if (event->attr.exclusive)
2522                 cpc->exclusive = 1;
2523
2524 out:
2525         perf_pmu_enable(event->pmu);
2526
2527         return ret;
2528 }
2529
2530 static int
2531 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2532 {
2533         struct perf_event *event, *partial_group = NULL;
2534         struct pmu *pmu = group_event->pmu_ctx->pmu;
2535
2536         if (group_event->state == PERF_EVENT_STATE_OFF)
2537                 return 0;
2538
2539         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2540
2541         if (event_sched_in(group_event, ctx))
2542                 goto error;
2543
2544         /*
2545          * Schedule in siblings as one group (if any):
2546          */
2547         for_each_sibling_event(event, group_event) {
2548                 if (event_sched_in(event, ctx)) {
2549                         partial_group = event;
2550                         goto group_error;
2551                 }
2552         }
2553
2554         if (!pmu->commit_txn(pmu))
2555                 return 0;
2556
2557 group_error:
2558         /*
2559          * Groups can be scheduled in as one unit only, so undo any
2560          * partial group before returning:
2561          * The events up to the failed event are scheduled out normally.
2562          */
2563         for_each_sibling_event(event, group_event) {
2564                 if (event == partial_group)
2565                         break;
2566
2567                 event_sched_out(event, ctx);
2568         }
2569         event_sched_out(group_event, ctx);
2570
2571 error:
2572         pmu->cancel_txn(pmu);
2573         return -EAGAIN;
2574 }
2575
2576 /*
2577  * Work out whether we can put this event group on the CPU now.
2578  */
2579 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2580 {
2581         struct perf_event_pmu_context *epc = event->pmu_ctx;
2582         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2583
2584         /*
2585          * Groups consisting entirely of software events can always go on.
2586          */
2587         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2588                 return 1;
2589         /*
2590          * If an exclusive group is already on, no other hardware
2591          * events can go on.
2592          */
2593         if (cpc->exclusive)
2594                 return 0;
2595         /*
2596          * If this group is exclusive and there are already
2597          * events on the CPU, it can't go on.
2598          */
2599         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2600                 return 0;
2601         /*
2602          * Otherwise, try to add it if all previous groups were able
2603          * to go on.
2604          */
2605         return can_add_hw;
2606 }
2607
2608 static void add_event_to_ctx(struct perf_event *event,
2609                                struct perf_event_context *ctx)
2610 {
2611         list_add_event(event, ctx);
2612         perf_group_attach(event);
2613 }
2614
2615 static void task_ctx_sched_out(struct perf_event_context *ctx,
2616                                 enum event_type_t event_type)
2617 {
2618         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2619
2620         if (!cpuctx->task_ctx)
2621                 return;
2622
2623         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2624                 return;
2625
2626         ctx_sched_out(ctx, event_type);
2627 }
2628
2629 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2630                                 struct perf_event_context *ctx)
2631 {
2632         ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2633         if (ctx)
2634                  ctx_sched_in(ctx, EVENT_PINNED);
2635         ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2636         if (ctx)
2637                  ctx_sched_in(ctx, EVENT_FLEXIBLE);
2638 }
2639
2640 /*
2641  * We want to maintain the following priority of scheduling:
2642  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2643  *  - task pinned (EVENT_PINNED)
2644  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2645  *  - task flexible (EVENT_FLEXIBLE).
2646  *
2647  * In order to avoid unscheduling and scheduling back in everything every
2648  * time an event is added, only do it for the groups of equal priority and
2649  * below.
2650  *
2651  * This can be called after a batch operation on task events, in which case
2652  * event_type is a bit mask of the types of events involved. For CPU events,
2653  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2654  */
2655 /*
2656  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2657  * event to the context or enabling existing event in the context. We can
2658  * probably optimize it by rescheduling only affected pmu_ctx.
2659  */
2660 static void ctx_resched(struct perf_cpu_context *cpuctx,
2661                         struct perf_event_context *task_ctx,
2662                         enum event_type_t event_type)
2663 {
2664         bool cpu_event = !!(event_type & EVENT_CPU);
2665
2666         /*
2667          * If pinned groups are involved, flexible groups also need to be
2668          * scheduled out.
2669          */
2670         if (event_type & EVENT_PINNED)
2671                 event_type |= EVENT_FLEXIBLE;
2672
2673         event_type &= EVENT_ALL;
2674
2675         perf_ctx_disable(&cpuctx->ctx);
2676         if (task_ctx) {
2677                 perf_ctx_disable(task_ctx);
2678                 task_ctx_sched_out(task_ctx, event_type);
2679         }
2680
2681         /*
2682          * Decide which cpu ctx groups to schedule out based on the types
2683          * of events that caused rescheduling:
2684          *  - EVENT_CPU: schedule out corresponding groups;
2685          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2686          *  - otherwise, do nothing more.
2687          */
2688         if (cpu_event)
2689                 ctx_sched_out(&cpuctx->ctx, event_type);
2690         else if (event_type & EVENT_PINNED)
2691                 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2692
2693         perf_event_sched_in(cpuctx, task_ctx);
2694
2695         perf_ctx_enable(&cpuctx->ctx);
2696         if (task_ctx)
2697                 perf_ctx_enable(task_ctx);
2698 }
2699
2700 void perf_pmu_resched(struct pmu *pmu)
2701 {
2702         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2703         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2704
2705         perf_ctx_lock(cpuctx, task_ctx);
2706         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2707         perf_ctx_unlock(cpuctx, task_ctx);
2708 }
2709
2710 /*
2711  * Cross CPU call to install and enable a performance event
2712  *
2713  * Very similar to remote_function() + event_function() but cannot assume that
2714  * things like ctx->is_active and cpuctx->task_ctx are set.
2715  */
2716 static int  __perf_install_in_context(void *info)
2717 {
2718         struct perf_event *event = info;
2719         struct perf_event_context *ctx = event->ctx;
2720         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2721         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2722         bool reprogram = true;
2723         int ret = 0;
2724
2725         raw_spin_lock(&cpuctx->ctx.lock);
2726         if (ctx->task) {
2727                 raw_spin_lock(&ctx->lock);
2728                 task_ctx = ctx;
2729
2730                 reprogram = (ctx->task == current);
2731
2732                 /*
2733                  * If the task is running, it must be running on this CPU,
2734                  * otherwise we cannot reprogram things.
2735                  *
2736                  * If its not running, we don't care, ctx->lock will
2737                  * serialize against it becoming runnable.
2738                  */
2739                 if (task_curr(ctx->task) && !reprogram) {
2740                         ret = -ESRCH;
2741                         goto unlock;
2742                 }
2743
2744                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2745         } else if (task_ctx) {
2746                 raw_spin_lock(&task_ctx->lock);
2747         }
2748
2749 #ifdef CONFIG_CGROUP_PERF
2750         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2751                 /*
2752                  * If the current cgroup doesn't match the event's
2753                  * cgroup, we should not try to schedule it.
2754                  */
2755                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2756                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2757                                         event->cgrp->css.cgroup);
2758         }
2759 #endif
2760
2761         if (reprogram) {
2762                 ctx_sched_out(ctx, EVENT_TIME);
2763                 add_event_to_ctx(event, ctx);
2764                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2765         } else {
2766                 add_event_to_ctx(event, ctx);
2767         }
2768
2769 unlock:
2770         perf_ctx_unlock(cpuctx, task_ctx);
2771
2772         return ret;
2773 }
2774
2775 static bool exclusive_event_installable(struct perf_event *event,
2776                                         struct perf_event_context *ctx);
2777
2778 /*
2779  * Attach a performance event to a context.
2780  *
2781  * Very similar to event_function_call, see comment there.
2782  */
2783 static void
2784 perf_install_in_context(struct perf_event_context *ctx,
2785                         struct perf_event *event,
2786                         int cpu)
2787 {
2788         struct task_struct *task = READ_ONCE(ctx->task);
2789
2790         lockdep_assert_held(&ctx->mutex);
2791
2792         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2793
2794         if (event->cpu != -1)
2795                 WARN_ON_ONCE(event->cpu != cpu);
2796
2797         /*
2798          * Ensures that if we can observe event->ctx, both the event and ctx
2799          * will be 'complete'. See perf_iterate_sb_cpu().
2800          */
2801         smp_store_release(&event->ctx, ctx);
2802
2803         /*
2804          * perf_event_attr::disabled events will not run and can be initialized
2805          * without IPI. Except when this is the first event for the context, in
2806          * that case we need the magic of the IPI to set ctx->is_active.
2807          *
2808          * The IOC_ENABLE that is sure to follow the creation of a disabled
2809          * event will issue the IPI and reprogram the hardware.
2810          */
2811         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2812             ctx->nr_events && !is_cgroup_event(event)) {
2813                 raw_spin_lock_irq(&ctx->lock);
2814                 if (ctx->task == TASK_TOMBSTONE) {
2815                         raw_spin_unlock_irq(&ctx->lock);
2816                         return;
2817                 }
2818                 add_event_to_ctx(event, ctx);
2819                 raw_spin_unlock_irq(&ctx->lock);
2820                 return;
2821         }
2822
2823         if (!task) {
2824                 cpu_function_call(cpu, __perf_install_in_context, event);
2825                 return;
2826         }
2827
2828         /*
2829          * Should not happen, we validate the ctx is still alive before calling.
2830          */
2831         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2832                 return;
2833
2834         /*
2835          * Installing events is tricky because we cannot rely on ctx->is_active
2836          * to be set in case this is the nr_events 0 -> 1 transition.
2837          *
2838          * Instead we use task_curr(), which tells us if the task is running.
2839          * However, since we use task_curr() outside of rq::lock, we can race
2840          * against the actual state. This means the result can be wrong.
2841          *
2842          * If we get a false positive, we retry, this is harmless.
2843          *
2844          * If we get a false negative, things are complicated. If we are after
2845          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2846          * value must be correct. If we're before, it doesn't matter since
2847          * perf_event_context_sched_in() will program the counter.
2848          *
2849          * However, this hinges on the remote context switch having observed
2850          * our task->perf_event_ctxp[] store, such that it will in fact take
2851          * ctx::lock in perf_event_context_sched_in().
2852          *
2853          * We do this by task_function_call(), if the IPI fails to hit the task
2854          * we know any future context switch of task must see the
2855          * perf_event_ctpx[] store.
2856          */
2857
2858         /*
2859          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2860          * task_cpu() load, such that if the IPI then does not find the task
2861          * running, a future context switch of that task must observe the
2862          * store.
2863          */
2864         smp_mb();
2865 again:
2866         if (!task_function_call(task, __perf_install_in_context, event))
2867                 return;
2868
2869         raw_spin_lock_irq(&ctx->lock);
2870         task = ctx->task;
2871         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2872                 /*
2873                  * Cannot happen because we already checked above (which also
2874                  * cannot happen), and we hold ctx->mutex, which serializes us
2875                  * against perf_event_exit_task_context().
2876                  */
2877                 raw_spin_unlock_irq(&ctx->lock);
2878                 return;
2879         }
2880         /*
2881          * If the task is not running, ctx->lock will avoid it becoming so,
2882          * thus we can safely install the event.
2883          */
2884         if (task_curr(task)) {
2885                 raw_spin_unlock_irq(&ctx->lock);
2886                 goto again;
2887         }
2888         add_event_to_ctx(event, ctx);
2889         raw_spin_unlock_irq(&ctx->lock);
2890 }
2891
2892 /*
2893  * Cross CPU call to enable a performance event
2894  */
2895 static void __perf_event_enable(struct perf_event *event,
2896                                 struct perf_cpu_context *cpuctx,
2897                                 struct perf_event_context *ctx,
2898                                 void *info)
2899 {
2900         struct perf_event *leader = event->group_leader;
2901         struct perf_event_context *task_ctx;
2902
2903         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2904             event->state <= PERF_EVENT_STATE_ERROR)
2905                 return;
2906
2907         if (ctx->is_active)
2908                 ctx_sched_out(ctx, EVENT_TIME);
2909
2910         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2911         perf_cgroup_event_enable(event, ctx);
2912
2913         if (!ctx->is_active)
2914                 return;
2915
2916         if (!event_filter_match(event)) {
2917                 ctx_sched_in(ctx, EVENT_TIME);
2918                 return;
2919         }
2920
2921         /*
2922          * If the event is in a group and isn't the group leader,
2923          * then don't put it on unless the group is on.
2924          */
2925         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2926                 ctx_sched_in(ctx, EVENT_TIME);
2927                 return;
2928         }
2929
2930         task_ctx = cpuctx->task_ctx;
2931         if (ctx->task)
2932                 WARN_ON_ONCE(task_ctx != ctx);
2933
2934         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2935 }
2936
2937 /*
2938  * Enable an event.
2939  *
2940  * If event->ctx is a cloned context, callers must make sure that
2941  * every task struct that event->ctx->task could possibly point to
2942  * remains valid.  This condition is satisfied when called through
2943  * perf_event_for_each_child or perf_event_for_each as described
2944  * for perf_event_disable.
2945  */
2946 static void _perf_event_enable(struct perf_event *event)
2947 {
2948         struct perf_event_context *ctx = event->ctx;
2949
2950         raw_spin_lock_irq(&ctx->lock);
2951         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2952             event->state <  PERF_EVENT_STATE_ERROR) {
2953 out:
2954                 raw_spin_unlock_irq(&ctx->lock);
2955                 return;
2956         }
2957
2958         /*
2959          * If the event is in error state, clear that first.
2960          *
2961          * That way, if we see the event in error state below, we know that it
2962          * has gone back into error state, as distinct from the task having
2963          * been scheduled away before the cross-call arrived.
2964          */
2965         if (event->state == PERF_EVENT_STATE_ERROR) {
2966                 /*
2967                  * Detached SIBLING events cannot leave ERROR state.
2968                  */
2969                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
2970                     event->group_leader == event)
2971                         goto out;
2972
2973                 event->state = PERF_EVENT_STATE_OFF;
2974         }
2975         raw_spin_unlock_irq(&ctx->lock);
2976
2977         event_function_call(event, __perf_event_enable, NULL);
2978 }
2979
2980 /*
2981  * See perf_event_disable();
2982  */
2983 void perf_event_enable(struct perf_event *event)
2984 {
2985         struct perf_event_context *ctx;
2986
2987         ctx = perf_event_ctx_lock(event);
2988         _perf_event_enable(event);
2989         perf_event_ctx_unlock(event, ctx);
2990 }
2991 EXPORT_SYMBOL_GPL(perf_event_enable);
2992
2993 struct stop_event_data {
2994         struct perf_event       *event;
2995         unsigned int            restart;
2996 };
2997
2998 static int __perf_event_stop(void *info)
2999 {
3000         struct stop_event_data *sd = info;
3001         struct perf_event *event = sd->event;
3002
3003         /* if it's already INACTIVE, do nothing */
3004         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3005                 return 0;
3006
3007         /* matches smp_wmb() in event_sched_in() */
3008         smp_rmb();
3009
3010         /*
3011          * There is a window with interrupts enabled before we get here,
3012          * so we need to check again lest we try to stop another CPU's event.
3013          */
3014         if (READ_ONCE(event->oncpu) != smp_processor_id())
3015                 return -EAGAIN;
3016
3017         event->pmu->stop(event, PERF_EF_UPDATE);
3018
3019         /*
3020          * May race with the actual stop (through perf_pmu_output_stop()),
3021          * but it is only used for events with AUX ring buffer, and such
3022          * events will refuse to restart because of rb::aux_mmap_count==0,
3023          * see comments in perf_aux_output_begin().
3024          *
3025          * Since this is happening on an event-local CPU, no trace is lost
3026          * while restarting.
3027          */
3028         if (sd->restart)
3029                 event->pmu->start(event, 0);
3030
3031         return 0;
3032 }
3033
3034 static int perf_event_stop(struct perf_event *event, int restart)
3035 {
3036         struct stop_event_data sd = {
3037                 .event          = event,
3038                 .restart        = restart,
3039         };
3040         int ret = 0;
3041
3042         do {
3043                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3044                         return 0;
3045
3046                 /* matches smp_wmb() in event_sched_in() */
3047                 smp_rmb();
3048
3049                 /*
3050                  * We only want to restart ACTIVE events, so if the event goes
3051                  * inactive here (event->oncpu==-1), there's nothing more to do;
3052                  * fall through with ret==-ENXIO.
3053                  */
3054                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3055                                         __perf_event_stop, &sd);
3056         } while (ret == -EAGAIN);
3057
3058         return ret;
3059 }
3060
3061 /*
3062  * In order to contain the amount of racy and tricky in the address filter
3063  * configuration management, it is a two part process:
3064  *
3065  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3066  *      we update the addresses of corresponding vmas in
3067  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3068  * (p2) when an event is scheduled in (pmu::add), it calls
3069  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3070  *      if the generation has changed since the previous call.
3071  *
3072  * If (p1) happens while the event is active, we restart it to force (p2).
3073  *
3074  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3075  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3076  *     ioctl;
3077  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3078  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3079  *     for reading;
3080  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3081  *     of exec.
3082  */
3083 void perf_event_addr_filters_sync(struct perf_event *event)
3084 {
3085         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3086
3087         if (!has_addr_filter(event))
3088                 return;
3089
3090         raw_spin_lock(&ifh->lock);
3091         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3092                 event->pmu->addr_filters_sync(event);
3093                 event->hw.addr_filters_gen = event->addr_filters_gen;
3094         }
3095         raw_spin_unlock(&ifh->lock);
3096 }
3097 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3098
3099 static int _perf_event_refresh(struct perf_event *event, int refresh)
3100 {
3101         /*
3102          * not supported on inherited events
3103          */
3104         if (event->attr.inherit || !is_sampling_event(event))
3105                 return -EINVAL;
3106
3107         atomic_add(refresh, &event->event_limit);
3108         _perf_event_enable(event);
3109
3110         return 0;
3111 }
3112
3113 /*
3114  * See perf_event_disable()
3115  */
3116 int perf_event_refresh(struct perf_event *event, int refresh)
3117 {
3118         struct perf_event_context *ctx;
3119         int ret;
3120
3121         ctx = perf_event_ctx_lock(event);
3122         ret = _perf_event_refresh(event, refresh);
3123         perf_event_ctx_unlock(event, ctx);
3124
3125         return ret;
3126 }
3127 EXPORT_SYMBOL_GPL(perf_event_refresh);
3128
3129 static int perf_event_modify_breakpoint(struct perf_event *bp,
3130                                          struct perf_event_attr *attr)
3131 {
3132         int err;
3133
3134         _perf_event_disable(bp);
3135
3136         err = modify_user_hw_breakpoint_check(bp, attr, true);
3137
3138         if (!bp->attr.disabled)
3139                 _perf_event_enable(bp);
3140
3141         return err;
3142 }
3143
3144 /*
3145  * Copy event-type-independent attributes that may be modified.
3146  */
3147 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3148                                         const struct perf_event_attr *from)
3149 {
3150         to->sig_data = from->sig_data;
3151 }
3152
3153 static int perf_event_modify_attr(struct perf_event *event,
3154                                   struct perf_event_attr *attr)
3155 {
3156         int (*func)(struct perf_event *, struct perf_event_attr *);
3157         struct perf_event *child;
3158         int err;
3159
3160         if (event->attr.type != attr->type)
3161                 return -EINVAL;
3162
3163         switch (event->attr.type) {
3164         case PERF_TYPE_BREAKPOINT:
3165                 func = perf_event_modify_breakpoint;
3166                 break;
3167         default:
3168                 /* Place holder for future additions. */
3169                 return -EOPNOTSUPP;
3170         }
3171
3172         WARN_ON_ONCE(event->ctx->parent_ctx);
3173
3174         mutex_lock(&event->child_mutex);
3175         /*
3176          * Event-type-independent attributes must be copied before event-type
3177          * modification, which will validate that final attributes match the
3178          * source attributes after all relevant attributes have been copied.
3179          */
3180         perf_event_modify_copy_attr(&event->attr, attr);
3181         err = func(event, attr);
3182         if (err)
3183                 goto out;
3184         list_for_each_entry(child, &event->child_list, child_list) {
3185                 perf_event_modify_copy_attr(&child->attr, attr);
3186                 err = func(child, attr);
3187                 if (err)
3188                         goto out;
3189         }
3190 out:
3191         mutex_unlock(&event->child_mutex);
3192         return err;
3193 }
3194
3195 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3196                                 enum event_type_t event_type)
3197 {
3198         struct perf_event_context *ctx = pmu_ctx->ctx;
3199         struct perf_event *event, *tmp;
3200         struct pmu *pmu = pmu_ctx->pmu;
3201
3202         if (ctx->task && !ctx->is_active) {
3203                 struct perf_cpu_pmu_context *cpc;
3204
3205                 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3206                 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3207                 cpc->task_epc = NULL;
3208         }
3209
3210         if (!event_type)
3211                 return;
3212
3213         perf_pmu_disable(pmu);
3214         if (event_type & EVENT_PINNED) {
3215                 list_for_each_entry_safe(event, tmp,
3216                                          &pmu_ctx->pinned_active,
3217                                          active_list)
3218                         group_sched_out(event, ctx);
3219         }
3220
3221         if (event_type & EVENT_FLEXIBLE) {
3222                 list_for_each_entry_safe(event, tmp,
3223                                          &pmu_ctx->flexible_active,
3224                                          active_list)
3225                         group_sched_out(event, ctx);
3226                 /*
3227                  * Since we cleared EVENT_FLEXIBLE, also clear
3228                  * rotate_necessary, is will be reset by
3229                  * ctx_flexible_sched_in() when needed.
3230                  */
3231                 pmu_ctx->rotate_necessary = 0;
3232         }
3233         perf_pmu_enable(pmu);
3234 }
3235
3236 static void
3237 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3238 {
3239         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3240         struct perf_event_pmu_context *pmu_ctx;
3241         int is_active = ctx->is_active;
3242
3243         lockdep_assert_held(&ctx->lock);
3244
3245         if (likely(!ctx->nr_events)) {
3246                 /*
3247                  * See __perf_remove_from_context().
3248                  */
3249                 WARN_ON_ONCE(ctx->is_active);
3250                 if (ctx->task)
3251                         WARN_ON_ONCE(cpuctx->task_ctx);
3252                 return;
3253         }
3254
3255         /*
3256          * Always update time if it was set; not only when it changes.
3257          * Otherwise we can 'forget' to update time for any but the last
3258          * context we sched out. For example:
3259          *
3260          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3261          *   ctx_sched_out(.event_type = EVENT_PINNED)
3262          *
3263          * would only update time for the pinned events.
3264          */
3265         if (is_active & EVENT_TIME) {
3266                 /* update (and stop) ctx time */
3267                 update_context_time(ctx);
3268                 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3269                 /*
3270                  * CPU-release for the below ->is_active store,
3271                  * see __load_acquire() in perf_event_time_now()
3272                  */
3273                 barrier();
3274         }
3275
3276         ctx->is_active &= ~event_type;
3277         if (!(ctx->is_active & EVENT_ALL))
3278                 ctx->is_active = 0;
3279
3280         if (ctx->task) {
3281                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3282                 if (!ctx->is_active)
3283                         cpuctx->task_ctx = NULL;
3284         }
3285
3286         is_active ^= ctx->is_active; /* changed bits */
3287
3288         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry)
3289                 __pmu_ctx_sched_out(pmu_ctx, is_active);
3290 }
3291
3292 /*
3293  * Test whether two contexts are equivalent, i.e. whether they have both been
3294  * cloned from the same version of the same context.
3295  *
3296  * Equivalence is measured using a generation number in the context that is
3297  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3298  * and list_del_event().
3299  */
3300 static int context_equiv(struct perf_event_context *ctx1,
3301                          struct perf_event_context *ctx2)
3302 {
3303         lockdep_assert_held(&ctx1->lock);
3304         lockdep_assert_held(&ctx2->lock);
3305
3306         /* Pinning disables the swap optimization */
3307         if (ctx1->pin_count || ctx2->pin_count)
3308                 return 0;
3309
3310         /* If ctx1 is the parent of ctx2 */
3311         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3312                 return 1;
3313
3314         /* If ctx2 is the parent of ctx1 */
3315         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3316                 return 1;
3317
3318         /*
3319          * If ctx1 and ctx2 have the same parent; we flatten the parent
3320          * hierarchy, see perf_event_init_context().
3321          */
3322         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3323                         ctx1->parent_gen == ctx2->parent_gen)
3324                 return 1;
3325
3326         /* Unmatched */
3327         return 0;
3328 }
3329
3330 static void __perf_event_sync_stat(struct perf_event *event,
3331                                      struct perf_event *next_event)
3332 {
3333         u64 value;
3334
3335         if (!event->attr.inherit_stat)
3336                 return;
3337
3338         /*
3339          * Update the event value, we cannot use perf_event_read()
3340          * because we're in the middle of a context switch and have IRQs
3341          * disabled, which upsets smp_call_function_single(), however
3342          * we know the event must be on the current CPU, therefore we
3343          * don't need to use it.
3344          */
3345         if (event->state == PERF_EVENT_STATE_ACTIVE)
3346                 event->pmu->read(event);
3347
3348         perf_event_update_time(event);
3349
3350         /*
3351          * In order to keep per-task stats reliable we need to flip the event
3352          * values when we flip the contexts.
3353          */
3354         value = local64_read(&next_event->count);
3355         value = local64_xchg(&event->count, value);
3356         local64_set(&next_event->count, value);
3357
3358         swap(event->total_time_enabled, next_event->total_time_enabled);
3359         swap(event->total_time_running, next_event->total_time_running);
3360
3361         /*
3362          * Since we swizzled the values, update the user visible data too.
3363          */
3364         perf_event_update_userpage(event);
3365         perf_event_update_userpage(next_event);
3366 }
3367
3368 static void perf_event_sync_stat(struct perf_event_context *ctx,
3369                                    struct perf_event_context *next_ctx)
3370 {
3371         struct perf_event *event, *next_event;
3372
3373         if (!ctx->nr_stat)
3374                 return;
3375
3376         update_context_time(ctx);
3377
3378         event = list_first_entry(&ctx->event_list,
3379                                    struct perf_event, event_entry);
3380
3381         next_event = list_first_entry(&next_ctx->event_list,
3382                                         struct perf_event, event_entry);
3383
3384         while (&event->event_entry != &ctx->event_list &&
3385                &next_event->event_entry != &next_ctx->event_list) {
3386
3387                 __perf_event_sync_stat(event, next_event);
3388
3389                 event = list_next_entry(event, event_entry);
3390                 next_event = list_next_entry(next_event, event_entry);
3391         }
3392 }
3393
3394 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)    \
3395         for (pos1 = list_first_entry(head1, typeof(*pos1), member),     \
3396              pos2 = list_first_entry(head2, typeof(*pos2), member);     \
3397              !list_entry_is_head(pos1, head1, member) &&                \
3398              !list_entry_is_head(pos2, head2, member);                  \
3399              pos1 = list_next_entry(pos1, member),                      \
3400              pos2 = list_next_entry(pos2, member))
3401
3402 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3403                                           struct perf_event_context *next_ctx)
3404 {
3405         struct perf_event_pmu_context *prev_epc, *next_epc;
3406
3407         if (!prev_ctx->nr_task_data)
3408                 return;
3409
3410         double_list_for_each_entry(prev_epc, next_epc,
3411                                    &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3412                                    pmu_ctx_entry) {
3413
3414                 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3415                         continue;
3416
3417                 /*
3418                  * PMU specific parts of task perf context can require
3419                  * additional synchronization. As an example of such
3420                  * synchronization see implementation details of Intel
3421                  * LBR call stack data profiling;
3422                  */
3423                 if (prev_epc->pmu->swap_task_ctx)
3424                         prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3425                 else
3426                         swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3427         }
3428 }
3429
3430 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3431 {
3432         struct perf_event_pmu_context *pmu_ctx;
3433         struct perf_cpu_pmu_context *cpc;
3434
3435         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3436                 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3437
3438                 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3439                         pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3440         }
3441 }
3442
3443 static void
3444 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3445 {
3446         struct perf_event_context *ctx = task->perf_event_ctxp;
3447         struct perf_event_context *next_ctx;
3448         struct perf_event_context *parent, *next_parent;
3449         int do_switch = 1;
3450
3451         if (likely(!ctx))
3452                 return;
3453
3454         rcu_read_lock();
3455         next_ctx = rcu_dereference(next->perf_event_ctxp);
3456         if (!next_ctx)
3457                 goto unlock;
3458
3459         parent = rcu_dereference(ctx->parent_ctx);
3460         next_parent = rcu_dereference(next_ctx->parent_ctx);
3461
3462         /* If neither context have a parent context; they cannot be clones. */
3463         if (!parent && !next_parent)
3464                 goto unlock;
3465
3466         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3467                 /*
3468                  * Looks like the two contexts are clones, so we might be
3469                  * able to optimize the context switch.  We lock both
3470                  * contexts and check that they are clones under the
3471                  * lock (including re-checking that neither has been
3472                  * uncloned in the meantime).  It doesn't matter which
3473                  * order we take the locks because no other cpu could
3474                  * be trying to lock both of these tasks.
3475                  */
3476                 raw_spin_lock(&ctx->lock);
3477                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3478                 if (context_equiv(ctx, next_ctx)) {
3479
3480                         perf_ctx_disable(ctx);
3481
3482                         /* PMIs are disabled; ctx->nr_pending is stable. */
3483                         if (local_read(&ctx->nr_pending) ||
3484                             local_read(&next_ctx->nr_pending)) {
3485                                 /*
3486                                  * Must not swap out ctx when there's pending
3487                                  * events that rely on the ctx->task relation.
3488                                  */
3489                                 raw_spin_unlock(&next_ctx->lock);
3490                                 rcu_read_unlock();
3491                                 goto inside_switch;
3492                         }
3493
3494                         WRITE_ONCE(ctx->task, next);
3495                         WRITE_ONCE(next_ctx->task, task);
3496
3497                         perf_ctx_sched_task_cb(ctx, false);
3498                         perf_event_swap_task_ctx_data(ctx, next_ctx);
3499
3500                         perf_ctx_enable(ctx);
3501
3502                         /*
3503                          * RCU_INIT_POINTER here is safe because we've not
3504                          * modified the ctx and the above modification of
3505                          * ctx->task and ctx->task_ctx_data are immaterial
3506                          * since those values are always verified under
3507                          * ctx->lock which we're now holding.
3508                          */
3509                         RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3510                         RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3511
3512                         do_switch = 0;
3513
3514                         perf_event_sync_stat(ctx, next_ctx);
3515                 }
3516                 raw_spin_unlock(&next_ctx->lock);
3517                 raw_spin_unlock(&ctx->lock);
3518         }
3519 unlock:
3520         rcu_read_unlock();
3521
3522         if (do_switch) {
3523                 raw_spin_lock(&ctx->lock);
3524                 perf_ctx_disable(ctx);
3525
3526 inside_switch:
3527                 perf_ctx_sched_task_cb(ctx, false);
3528                 task_ctx_sched_out(ctx, EVENT_ALL);
3529
3530                 perf_ctx_enable(ctx);
3531                 raw_spin_unlock(&ctx->lock);
3532         }
3533 }
3534
3535 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3536 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3537
3538 void perf_sched_cb_dec(struct pmu *pmu)
3539 {
3540         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3541
3542         this_cpu_dec(perf_sched_cb_usages);
3543         barrier();
3544
3545         if (!--cpc->sched_cb_usage)
3546                 list_del(&cpc->sched_cb_entry);
3547 }
3548
3549
3550 void perf_sched_cb_inc(struct pmu *pmu)
3551 {
3552         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3553
3554         if (!cpc->sched_cb_usage++)
3555                 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3556
3557         barrier();
3558         this_cpu_inc(perf_sched_cb_usages);
3559 }
3560
3561 /*
3562  * This function provides the context switch callback to the lower code
3563  * layer. It is invoked ONLY when the context switch callback is enabled.
3564  *
3565  * This callback is relevant even to per-cpu events; for example multi event
3566  * PEBS requires this to provide PID/TID information. This requires we flush
3567  * all queued PEBS records before we context switch to a new task.
3568  */
3569 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3570 {
3571         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3572         struct pmu *pmu;
3573
3574         pmu = cpc->epc.pmu;
3575
3576         /* software PMUs will not have sched_task */
3577         if (WARN_ON_ONCE(!pmu->sched_task))
3578                 return;
3579
3580         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3581         perf_pmu_disable(pmu);
3582
3583         pmu->sched_task(cpc->task_epc, sched_in);
3584
3585         perf_pmu_enable(pmu);
3586         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3587 }
3588
3589 static void perf_pmu_sched_task(struct task_struct *prev,
3590                                 struct task_struct *next,
3591                                 bool sched_in)
3592 {
3593         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3594         struct perf_cpu_pmu_context *cpc;
3595
3596         /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3597         if (prev == next || cpuctx->task_ctx)
3598                 return;
3599
3600         list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3601                 __perf_pmu_sched_task(cpc, sched_in);
3602 }
3603
3604 static void perf_event_switch(struct task_struct *task,
3605                               struct task_struct *next_prev, bool sched_in);
3606
3607 /*
3608  * Called from scheduler to remove the events of the current task,
3609  * with interrupts disabled.
3610  *
3611  * We stop each event and update the event value in event->count.
3612  *
3613  * This does not protect us against NMI, but disable()
3614  * sets the disabled bit in the control field of event _before_
3615  * accessing the event control register. If a NMI hits, then it will
3616  * not restart the event.
3617  */
3618 void __perf_event_task_sched_out(struct task_struct *task,
3619                                  struct task_struct *next)
3620 {
3621         if (__this_cpu_read(perf_sched_cb_usages))
3622                 perf_pmu_sched_task(task, next, false);
3623
3624         if (atomic_read(&nr_switch_events))
3625                 perf_event_switch(task, next, false);
3626
3627         perf_event_context_sched_out(task, next);
3628
3629         /*
3630          * if cgroup events exist on this CPU, then we need
3631          * to check if we have to switch out PMU state.
3632          * cgroup event are system-wide mode only
3633          */
3634         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3635                 perf_cgroup_switch(next);
3636 }
3637
3638 static bool perf_less_group_idx(const void *l, const void *r)
3639 {
3640         const struct perf_event *le = *(const struct perf_event **)l;
3641         const struct perf_event *re = *(const struct perf_event **)r;
3642
3643         return le->group_index < re->group_index;
3644 }
3645
3646 static void swap_ptr(void *l, void *r)
3647 {
3648         void **lp = l, **rp = r;
3649
3650         swap(*lp, *rp);
3651 }
3652
3653 static const struct min_heap_callbacks perf_min_heap = {
3654         .elem_size = sizeof(struct perf_event *),
3655         .less = perf_less_group_idx,
3656         .swp = swap_ptr,
3657 };
3658
3659 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3660 {
3661         struct perf_event **itrs = heap->data;
3662
3663         if (event) {
3664                 itrs[heap->nr] = event;
3665                 heap->nr++;
3666         }
3667 }
3668
3669 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3670 {
3671         struct perf_cpu_pmu_context *cpc;
3672
3673         if (!pmu_ctx->ctx->task)
3674                 return;
3675
3676         cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3677         WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3678         cpc->task_epc = pmu_ctx;
3679 }
3680
3681 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3682                                 struct perf_event_groups *groups, int cpu,
3683                                 struct pmu *pmu,
3684                                 int (*func)(struct perf_event *, void *),
3685                                 void *data)
3686 {
3687 #ifdef CONFIG_CGROUP_PERF
3688         struct cgroup_subsys_state *css = NULL;
3689 #endif
3690         struct perf_cpu_context *cpuctx = NULL;
3691         /* Space for per CPU and/or any CPU event iterators. */
3692         struct perf_event *itrs[2];
3693         struct min_heap event_heap;
3694         struct perf_event **evt;
3695         int ret;
3696
3697         if (pmu->filter && pmu->filter(pmu, cpu))
3698                 return 0;
3699
3700         if (!ctx->task) {
3701                 cpuctx = this_cpu_ptr(&perf_cpu_context);
3702                 event_heap = (struct min_heap){
3703                         .data = cpuctx->heap,
3704                         .nr = 0,
3705                         .size = cpuctx->heap_size,
3706                 };
3707
3708                 lockdep_assert_held(&cpuctx->ctx.lock);
3709
3710 #ifdef CONFIG_CGROUP_PERF
3711                 if (cpuctx->cgrp)
3712                         css = &cpuctx->cgrp->css;
3713 #endif
3714         } else {
3715                 event_heap = (struct min_heap){
3716                         .data = itrs,
3717                         .nr = 0,
3718                         .size = ARRAY_SIZE(itrs),
3719                 };
3720                 /* Events not within a CPU context may be on any CPU. */
3721                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3722         }
3723         evt = event_heap.data;
3724
3725         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3726
3727 #ifdef CONFIG_CGROUP_PERF
3728         for (; css; css = css->parent)
3729                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3730 #endif
3731
3732         if (event_heap.nr) {
3733                 __link_epc((*evt)->pmu_ctx);
3734                 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3735         }
3736
3737         min_heapify_all(&event_heap, &perf_min_heap);
3738
3739         while (event_heap.nr) {
3740                 ret = func(*evt, data);
3741                 if (ret)
3742                         return ret;
3743
3744                 *evt = perf_event_groups_next(*evt, pmu);
3745                 if (*evt)
3746                         min_heapify(&event_heap, 0, &perf_min_heap);
3747                 else
3748                         min_heap_pop(&event_heap, &perf_min_heap);
3749         }
3750
3751         return 0;
3752 }
3753
3754 /*
3755  * Because the userpage is strictly per-event (there is no concept of context,
3756  * so there cannot be a context indirection), every userpage must be updated
3757  * when context time starts :-(
3758  *
3759  * IOW, we must not miss EVENT_TIME edges.
3760  */
3761 static inline bool event_update_userpage(struct perf_event *event)
3762 {
3763         if (likely(!atomic_read(&event->mmap_count)))
3764                 return false;
3765
3766         perf_event_update_time(event);
3767         perf_event_update_userpage(event);
3768
3769         return true;
3770 }
3771
3772 static inline void group_update_userpage(struct perf_event *group_event)
3773 {
3774         struct perf_event *event;
3775
3776         if (!event_update_userpage(group_event))
3777                 return;
3778
3779         for_each_sibling_event(event, group_event)
3780                 event_update_userpage(event);
3781 }
3782
3783 static int merge_sched_in(struct perf_event *event, void *data)
3784 {
3785         struct perf_event_context *ctx = event->ctx;
3786         int *can_add_hw = data;
3787
3788         if (event->state <= PERF_EVENT_STATE_OFF)
3789                 return 0;
3790
3791         if (!event_filter_match(event))
3792                 return 0;
3793
3794         if (group_can_go_on(event, *can_add_hw)) {
3795                 if (!group_sched_in(event, ctx))
3796                         list_add_tail(&event->active_list, get_event_list(event));
3797         }
3798
3799         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3800                 *can_add_hw = 0;
3801                 if (event->attr.pinned) {
3802                         perf_cgroup_event_disable(event, ctx);
3803                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3804                 } else {
3805                         struct perf_cpu_pmu_context *cpc;
3806
3807                         event->pmu_ctx->rotate_necessary = 1;
3808                         cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3809                         perf_mux_hrtimer_restart(cpc);
3810                         group_update_userpage(event);
3811                 }
3812         }
3813
3814         return 0;
3815 }
3816
3817 static void ctx_pinned_sched_in(struct perf_event_context *ctx, struct pmu *pmu)
3818 {
3819         struct perf_event_pmu_context *pmu_ctx;
3820         int can_add_hw = 1;
3821
3822         if (pmu) {
3823                 visit_groups_merge(ctx, &ctx->pinned_groups,
3824                                    smp_processor_id(), pmu,
3825                                    merge_sched_in, &can_add_hw);
3826         } else {
3827                 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3828                         can_add_hw = 1;
3829                         visit_groups_merge(ctx, &ctx->pinned_groups,
3830                                            smp_processor_id(), pmu_ctx->pmu,
3831                                            merge_sched_in, &can_add_hw);
3832                 }
3833         }
3834 }
3835
3836 static void ctx_flexible_sched_in(struct perf_event_context *ctx, struct pmu *pmu)
3837 {
3838         struct perf_event_pmu_context *pmu_ctx;
3839         int can_add_hw = 1;
3840
3841         if (pmu) {
3842                 visit_groups_merge(ctx, &ctx->flexible_groups,
3843                                    smp_processor_id(), pmu,
3844                                    merge_sched_in, &can_add_hw);
3845         } else {
3846                 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3847                         can_add_hw = 1;
3848                         visit_groups_merge(ctx, &ctx->flexible_groups,
3849                                            smp_processor_id(), pmu_ctx->pmu,
3850                                            merge_sched_in, &can_add_hw);
3851                 }
3852         }
3853 }
3854
3855 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu)
3856 {
3857         ctx_flexible_sched_in(ctx, pmu);
3858 }
3859
3860 static void
3861 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3862 {
3863         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3864         int is_active = ctx->is_active;
3865
3866         lockdep_assert_held(&ctx->lock);
3867
3868         if (likely(!ctx->nr_events))
3869                 return;
3870
3871         if (is_active ^ EVENT_TIME) {
3872                 /* start ctx time */
3873                 __update_context_time(ctx, false);
3874                 perf_cgroup_set_timestamp(cpuctx);
3875                 /*
3876                  * CPU-release for the below ->is_active store,
3877                  * see __load_acquire() in perf_event_time_now()
3878                  */
3879                 barrier();
3880         }
3881
3882         ctx->is_active |= (event_type | EVENT_TIME);
3883         if (ctx->task) {
3884                 if (!is_active)
3885                         cpuctx->task_ctx = ctx;
3886                 else
3887                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3888         }
3889
3890         is_active ^= ctx->is_active; /* changed bits */
3891
3892         /*
3893          * First go through the list and put on any pinned groups
3894          * in order to give them the best chance of going on.
3895          */
3896         if (is_active & EVENT_PINNED)
3897                 ctx_pinned_sched_in(ctx, NULL);
3898
3899         /* Then walk through the lower prio flexible groups */
3900         if (is_active & EVENT_FLEXIBLE)
3901                 ctx_flexible_sched_in(ctx, NULL);
3902 }
3903
3904 static void perf_event_context_sched_in(struct task_struct *task)
3905 {
3906         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3907         struct perf_event_context *ctx;
3908
3909         rcu_read_lock();
3910         ctx = rcu_dereference(task->perf_event_ctxp);
3911         if (!ctx)
3912                 goto rcu_unlock;
3913
3914         if (cpuctx->task_ctx == ctx) {
3915                 perf_ctx_lock(cpuctx, ctx);
3916                 perf_ctx_disable(ctx);
3917
3918                 perf_ctx_sched_task_cb(ctx, true);
3919
3920                 perf_ctx_enable(ctx);
3921                 perf_ctx_unlock(cpuctx, ctx);
3922                 goto rcu_unlock;
3923         }
3924
3925         perf_ctx_lock(cpuctx, ctx);
3926         /*
3927          * We must check ctx->nr_events while holding ctx->lock, such
3928          * that we serialize against perf_install_in_context().
3929          */
3930         if (!ctx->nr_events)
3931                 goto unlock;
3932
3933         perf_ctx_disable(ctx);
3934         /*
3935          * We want to keep the following priority order:
3936          * cpu pinned (that don't need to move), task pinned,
3937          * cpu flexible, task flexible.
3938          *
3939          * However, if task's ctx is not carrying any pinned
3940          * events, no need to flip the cpuctx's events around.
3941          */
3942         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3943                 perf_ctx_disable(&cpuctx->ctx);
3944                 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3945         }
3946
3947         perf_event_sched_in(cpuctx, ctx);
3948
3949         perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3950
3951         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3952                 perf_ctx_enable(&cpuctx->ctx);
3953
3954         perf_ctx_enable(ctx);
3955
3956 unlock:
3957         perf_ctx_unlock(cpuctx, ctx);
3958 rcu_unlock:
3959         rcu_read_unlock();
3960 }
3961
3962 /*
3963  * Called from scheduler to add the events of the current task
3964  * with interrupts disabled.
3965  *
3966  * We restore the event value and then enable it.
3967  *
3968  * This does not protect us against NMI, but enable()
3969  * sets the enabled bit in the control field of event _before_
3970  * accessing the event control register. If a NMI hits, then it will
3971  * keep the event running.
3972  */
3973 void __perf_event_task_sched_in(struct task_struct *prev,
3974                                 struct task_struct *task)
3975 {
3976         perf_event_context_sched_in(task);
3977
3978         if (atomic_read(&nr_switch_events))
3979                 perf_event_switch(task, prev, true);
3980
3981         if (__this_cpu_read(perf_sched_cb_usages))
3982                 perf_pmu_sched_task(prev, task, true);
3983 }
3984
3985 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3986 {
3987         u64 frequency = event->attr.sample_freq;
3988         u64 sec = NSEC_PER_SEC;
3989         u64 divisor, dividend;
3990
3991         int count_fls, nsec_fls, frequency_fls, sec_fls;
3992
3993         count_fls = fls64(count);
3994         nsec_fls = fls64(nsec);
3995         frequency_fls = fls64(frequency);
3996         sec_fls = 30;
3997
3998         /*
3999          * We got @count in @nsec, with a target of sample_freq HZ
4000          * the target period becomes:
4001          *
4002          *             @count * 10^9
4003          * period = -------------------
4004          *          @nsec * sample_freq
4005          *
4006          */
4007
4008         /*
4009          * Reduce accuracy by one bit such that @a and @b converge
4010          * to a similar magnitude.
4011          */
4012 #define REDUCE_FLS(a, b)                \
4013 do {                                    \
4014         if (a##_fls > b##_fls) {        \
4015                 a >>= 1;                \
4016                 a##_fls--;              \
4017         } else {                        \
4018                 b >>= 1;                \
4019                 b##_fls--;              \
4020         }                               \
4021 } while (0)
4022
4023         /*
4024          * Reduce accuracy until either term fits in a u64, then proceed with
4025          * the other, so that finally we can do a u64/u64 division.
4026          */
4027         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4028                 REDUCE_FLS(nsec, frequency);
4029                 REDUCE_FLS(sec, count);
4030         }
4031
4032         if (count_fls + sec_fls > 64) {
4033                 divisor = nsec * frequency;
4034
4035                 while (count_fls + sec_fls > 64) {
4036                         REDUCE_FLS(count, sec);
4037                         divisor >>= 1;
4038                 }
4039
4040                 dividend = count * sec;
4041         } else {
4042                 dividend = count * sec;
4043
4044                 while (nsec_fls + frequency_fls > 64) {
4045                         REDUCE_FLS(nsec, frequency);
4046                         dividend >>= 1;
4047                 }
4048
4049                 divisor = nsec * frequency;
4050         }
4051
4052         if (!divisor)
4053                 return dividend;
4054
4055         return div64_u64(dividend, divisor);
4056 }
4057
4058 static DEFINE_PER_CPU(int, perf_throttled_count);
4059 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4060
4061 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4062 {
4063         struct hw_perf_event *hwc = &event->hw;
4064         s64 period, sample_period;
4065         s64 delta;
4066
4067         period = perf_calculate_period(event, nsec, count);
4068
4069         delta = (s64)(period - hwc->sample_period);
4070         delta = (delta + 7) / 8; /* low pass filter */
4071
4072         sample_period = hwc->sample_period + delta;
4073
4074         if (!sample_period)
4075                 sample_period = 1;
4076
4077         hwc->sample_period = sample_period;
4078
4079         if (local64_read(&hwc->period_left) > 8*sample_period) {
4080                 if (disable)
4081                         event->pmu->stop(event, PERF_EF_UPDATE);
4082
4083                 local64_set(&hwc->period_left, 0);
4084
4085                 if (disable)
4086                         event->pmu->start(event, PERF_EF_RELOAD);
4087         }
4088 }
4089
4090 /*
4091  * combine freq adjustment with unthrottling to avoid two passes over the
4092  * events. At the same time, make sure, having freq events does not change
4093  * the rate of unthrottling as that would introduce bias.
4094  */
4095 static void
4096 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4097 {
4098         struct perf_event *event;
4099         struct hw_perf_event *hwc;
4100         u64 now, period = TICK_NSEC;
4101         s64 delta;
4102
4103         /*
4104          * only need to iterate over all events iff:
4105          * - context have events in frequency mode (needs freq adjust)
4106          * - there are events to unthrottle on this cpu
4107          */
4108         if (!(ctx->nr_freq || unthrottle))
4109                 return;
4110
4111         raw_spin_lock(&ctx->lock);
4112
4113         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4114                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4115                         continue;
4116
4117                 // XXX use visit thingy to avoid the -1,cpu match
4118                 if (!event_filter_match(event))
4119                         continue;
4120
4121                 perf_pmu_disable(event->pmu);
4122
4123                 hwc = &event->hw;
4124
4125                 if (hwc->interrupts == MAX_INTERRUPTS) {
4126                         hwc->interrupts = 0;
4127                         perf_log_throttle(event, 1);
4128                         event->pmu->start(event, 0);
4129                 }
4130
4131                 if (!event->attr.freq || !event->attr.sample_freq)
4132                         goto next;
4133
4134                 /*
4135                  * stop the event and update event->count
4136                  */
4137                 event->pmu->stop(event, PERF_EF_UPDATE);
4138
4139                 now = local64_read(&event->count);
4140                 delta = now - hwc->freq_count_stamp;
4141                 hwc->freq_count_stamp = now;
4142
4143                 /*
4144                  * restart the event
4145                  * reload only if value has changed
4146                  * we have stopped the event so tell that
4147                  * to perf_adjust_period() to avoid stopping it
4148                  * twice.
4149                  */
4150                 if (delta > 0)
4151                         perf_adjust_period(event, period, delta, false);
4152
4153                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4154         next:
4155                 perf_pmu_enable(event->pmu);
4156         }
4157
4158         raw_spin_unlock(&ctx->lock);
4159 }
4160
4161 /*
4162  * Move @event to the tail of the @ctx's elegible events.
4163  */
4164 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4165 {
4166         /*
4167          * Rotate the first entry last of non-pinned groups. Rotation might be
4168          * disabled by the inheritance code.
4169          */
4170         if (ctx->rotate_disable)
4171                 return;
4172
4173         perf_event_groups_delete(&ctx->flexible_groups, event);
4174         perf_event_groups_insert(&ctx->flexible_groups, event);
4175 }
4176
4177 /* pick an event from the flexible_groups to rotate */
4178 static inline struct perf_event *
4179 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4180 {
4181         struct perf_event *event;
4182         struct rb_node *node;
4183         struct rb_root *tree;
4184         struct __group_key key = {
4185                 .pmu = pmu_ctx->pmu,
4186         };
4187
4188         /* pick the first active flexible event */
4189         event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4190                                          struct perf_event, active_list);
4191         if (event)
4192                 goto out;
4193
4194         /* if no active flexible event, pick the first event */
4195         tree = &pmu_ctx->ctx->flexible_groups.tree;
4196
4197         if (!pmu_ctx->ctx->task) {
4198                 key.cpu = smp_processor_id();
4199
4200                 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4201                 if (node)
4202                         event = __node_2_pe(node);
4203                 goto out;
4204         }
4205
4206         key.cpu = -1;
4207         node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4208         if (node) {
4209                 event = __node_2_pe(node);
4210                 goto out;
4211         }
4212
4213         key.cpu = smp_processor_id();
4214         node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4215         if (node)
4216                 event = __node_2_pe(node);
4217
4218 out:
4219         /*
4220          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4221          * finds there are unschedulable events, it will set it again.
4222          */
4223         pmu_ctx->rotate_necessary = 0;
4224
4225         return event;
4226 }
4227
4228 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4229 {
4230         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4231         struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4232         struct perf_event *cpu_event = NULL, *task_event = NULL;
4233         int cpu_rotate, task_rotate;
4234         struct pmu *pmu;
4235
4236         /*
4237          * Since we run this from IRQ context, nobody can install new
4238          * events, thus the event count values are stable.
4239          */
4240
4241         cpu_epc = &cpc->epc;
4242         pmu = cpu_epc->pmu;
4243         task_epc = cpc->task_epc;
4244
4245         cpu_rotate = cpu_epc->rotate_necessary;
4246         task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4247
4248         if (!(cpu_rotate || task_rotate))
4249                 return false;
4250
4251         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4252         perf_pmu_disable(pmu);
4253
4254         if (task_rotate)
4255                 task_event = ctx_event_to_rotate(task_epc);
4256         if (cpu_rotate)
4257                 cpu_event = ctx_event_to_rotate(cpu_epc);
4258
4259         /*
4260          * As per the order given at ctx_resched() first 'pop' task flexible
4261          * and then, if needed CPU flexible.
4262          */
4263         if (task_event || (task_epc && cpu_event)) {
4264                 update_context_time(task_epc->ctx);
4265                 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4266         }
4267
4268         if (cpu_event) {
4269                 update_context_time(&cpuctx->ctx);
4270                 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4271                 rotate_ctx(&cpuctx->ctx, cpu_event);
4272                 __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4273         }
4274
4275         if (task_event)
4276                 rotate_ctx(task_epc->ctx, task_event);
4277
4278         if (task_event || (task_epc && cpu_event))
4279                 __pmu_ctx_sched_in(task_epc->ctx, pmu);
4280
4281         perf_pmu_enable(pmu);
4282         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4283
4284         return true;
4285 }
4286
4287 void perf_event_task_tick(void)
4288 {
4289         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4290         struct perf_event_context *ctx;
4291         int throttled;
4292
4293         lockdep_assert_irqs_disabled();
4294
4295         __this_cpu_inc(perf_throttled_seq);
4296         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4297         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4298
4299         perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4300
4301         rcu_read_lock();
4302         ctx = rcu_dereference(current->perf_event_ctxp);
4303         if (ctx)
4304                 perf_adjust_freq_unthr_context(ctx, !!throttled);
4305         rcu_read_unlock();
4306 }
4307
4308 static int event_enable_on_exec(struct perf_event *event,
4309                                 struct perf_event_context *ctx)
4310 {
4311         if (!event->attr.enable_on_exec)
4312                 return 0;
4313
4314         event->attr.enable_on_exec = 0;
4315         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4316                 return 0;
4317
4318         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4319
4320         return 1;
4321 }
4322
4323 /*
4324  * Enable all of a task's events that have been marked enable-on-exec.
4325  * This expects task == current.
4326  */
4327 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4328 {
4329         struct perf_event_context *clone_ctx = NULL;
4330         enum event_type_t event_type = 0;
4331         struct perf_cpu_context *cpuctx;
4332         struct perf_event *event;
4333         unsigned long flags;
4334         int enabled = 0;
4335
4336         local_irq_save(flags);
4337         if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4338                 goto out;
4339
4340         if (!ctx->nr_events)
4341                 goto out;
4342
4343         cpuctx = this_cpu_ptr(&perf_cpu_context);
4344         perf_ctx_lock(cpuctx, ctx);
4345         ctx_sched_out(ctx, EVENT_TIME);
4346
4347         list_for_each_entry(event, &ctx->event_list, event_entry) {
4348                 enabled |= event_enable_on_exec(event, ctx);
4349                 event_type |= get_event_type(event);
4350         }
4351
4352         /*
4353          * Unclone and reschedule this context if we enabled any event.
4354          */
4355         if (enabled) {
4356                 clone_ctx = unclone_ctx(ctx);
4357                 ctx_resched(cpuctx, ctx, event_type);
4358         } else {
4359                 ctx_sched_in(ctx, EVENT_TIME);
4360         }
4361         perf_ctx_unlock(cpuctx, ctx);
4362
4363 out:
4364         local_irq_restore(flags);
4365
4366         if (clone_ctx)
4367                 put_ctx(clone_ctx);
4368 }
4369
4370 static void perf_remove_from_owner(struct perf_event *event);
4371 static void perf_event_exit_event(struct perf_event *event,
4372                                   struct perf_event_context *ctx);
4373
4374 /*
4375  * Removes all events from the current task that have been marked
4376  * remove-on-exec, and feeds their values back to parent events.
4377  */
4378 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4379 {
4380         struct perf_event_context *clone_ctx = NULL;
4381         struct perf_event *event, *next;
4382         unsigned long flags;
4383         bool modified = false;
4384
4385         mutex_lock(&ctx->mutex);
4386
4387         if (WARN_ON_ONCE(ctx->task != current))
4388                 goto unlock;
4389
4390         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4391                 if (!event->attr.remove_on_exec)
4392                         continue;
4393
4394                 if (!is_kernel_event(event))
4395                         perf_remove_from_owner(event);
4396
4397                 modified = true;
4398
4399                 perf_event_exit_event(event, ctx);
4400         }
4401
4402         raw_spin_lock_irqsave(&ctx->lock, flags);
4403         if (modified)
4404                 clone_ctx = unclone_ctx(ctx);
4405         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4406
4407 unlock:
4408         mutex_unlock(&ctx->mutex);
4409
4410         if (clone_ctx)
4411                 put_ctx(clone_ctx);
4412 }
4413
4414 struct perf_read_data {
4415         struct perf_event *event;
4416         bool group;
4417         int ret;
4418 };
4419
4420 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4421 {
4422         u16 local_pkg, event_pkg;
4423
4424         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4425                 int local_cpu = smp_processor_id();
4426
4427                 event_pkg = topology_physical_package_id(event_cpu);
4428                 local_pkg = topology_physical_package_id(local_cpu);
4429
4430                 if (event_pkg == local_pkg)
4431                         return local_cpu;
4432         }
4433
4434         return event_cpu;
4435 }
4436
4437 /*
4438  * Cross CPU call to read the hardware event
4439  */
4440 static void __perf_event_read(void *info)
4441 {
4442         struct perf_read_data *data = info;
4443         struct perf_event *sub, *event = data->event;
4444         struct perf_event_context *ctx = event->ctx;
4445         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4446         struct pmu *pmu = event->pmu;
4447
4448         /*
4449          * If this is a task context, we need to check whether it is
4450          * the current task context of this cpu.  If not it has been
4451          * scheduled out before the smp call arrived.  In that case
4452          * event->count would have been updated to a recent sample
4453          * when the event was scheduled out.
4454          */
4455         if (ctx->task && cpuctx->task_ctx != ctx)
4456                 return;
4457
4458         raw_spin_lock(&ctx->lock);
4459         if (ctx->is_active & EVENT_TIME) {
4460                 update_context_time(ctx);
4461                 update_cgrp_time_from_event(event);
4462         }
4463
4464         perf_event_update_time(event);
4465         if (data->group)
4466                 perf_event_update_sibling_time(event);
4467
4468         if (event->state != PERF_EVENT_STATE_ACTIVE)
4469                 goto unlock;
4470
4471         if (!data->group) {
4472                 pmu->read(event);
4473                 data->ret = 0;
4474                 goto unlock;
4475         }
4476
4477         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4478
4479         pmu->read(event);
4480
4481         for_each_sibling_event(sub, event) {
4482                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4483                         /*
4484                          * Use sibling's PMU rather than @event's since
4485                          * sibling could be on different (eg: software) PMU.
4486                          */
4487                         sub->pmu->read(sub);
4488                 }
4489         }
4490
4491         data->ret = pmu->commit_txn(pmu);
4492
4493 unlock:
4494         raw_spin_unlock(&ctx->lock);
4495 }
4496
4497 static inline u64 perf_event_count(struct perf_event *event)
4498 {
4499         return local64_read(&event->count) + atomic64_read(&event->child_count);
4500 }
4501
4502 static void calc_timer_values(struct perf_event *event,
4503                                 u64 *now,
4504                                 u64 *enabled,
4505                                 u64 *running)
4506 {
4507         u64 ctx_time;
4508
4509         *now = perf_clock();
4510         ctx_time = perf_event_time_now(event, *now);
4511         __perf_update_times(event, ctx_time, enabled, running);
4512 }
4513
4514 /*
4515  * NMI-safe method to read a local event, that is an event that
4516  * is:
4517  *   - either for the current task, or for this CPU
4518  *   - does not have inherit set, for inherited task events
4519  *     will not be local and we cannot read them atomically
4520  *   - must not have a pmu::count method
4521  */
4522 int perf_event_read_local(struct perf_event *event, u64 *value,
4523                           u64 *enabled, u64 *running)
4524 {
4525         unsigned long flags;
4526         int ret = 0;
4527
4528         /*
4529          * Disabling interrupts avoids all counter scheduling (context
4530          * switches, timer based rotation and IPIs).
4531          */
4532         local_irq_save(flags);
4533
4534         /*
4535          * It must not be an event with inherit set, we cannot read
4536          * all child counters from atomic context.
4537          */
4538         if (event->attr.inherit) {
4539                 ret = -EOPNOTSUPP;
4540                 goto out;
4541         }
4542
4543         /* If this is a per-task event, it must be for current */
4544         if ((event->attach_state & PERF_ATTACH_TASK) &&
4545             event->hw.target != current) {
4546                 ret = -EINVAL;
4547                 goto out;
4548         }
4549
4550         /* If this is a per-CPU event, it must be for this CPU */
4551         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4552             event->cpu != smp_processor_id()) {
4553                 ret = -EINVAL;
4554                 goto out;
4555         }
4556
4557         /* If this is a pinned event it must be running on this CPU */
4558         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4559                 ret = -EBUSY;
4560                 goto out;
4561         }
4562
4563         /*
4564          * If the event is currently on this CPU, its either a per-task event,
4565          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4566          * oncpu == -1).
4567          */
4568         if (event->oncpu == smp_processor_id())
4569                 event->pmu->read(event);
4570
4571         *value = local64_read(&event->count);
4572         if (enabled || running) {
4573                 u64 __enabled, __running, __now;
4574
4575                 calc_timer_values(event, &__now, &__enabled, &__running);
4576                 if (enabled)
4577                         *enabled = __enabled;
4578                 if (running)
4579                         *running = __running;
4580         }
4581 out:
4582         local_irq_restore(flags);
4583
4584         return ret;
4585 }
4586
4587 static int perf_event_read(struct perf_event *event, bool group)
4588 {
4589         enum perf_event_state state = READ_ONCE(event->state);
4590         int event_cpu, ret = 0;
4591
4592         /*
4593          * If event is enabled and currently active on a CPU, update the
4594          * value in the event structure:
4595          */
4596 again:
4597         if (state == PERF_EVENT_STATE_ACTIVE) {
4598                 struct perf_read_data data;
4599
4600                 /*
4601                  * Orders the ->state and ->oncpu loads such that if we see
4602                  * ACTIVE we must also see the right ->oncpu.
4603                  *
4604                  * Matches the smp_wmb() from event_sched_in().
4605                  */
4606                 smp_rmb();
4607
4608                 event_cpu = READ_ONCE(event->oncpu);
4609                 if ((unsigned)event_cpu >= nr_cpu_ids)
4610                         return 0;
4611
4612                 data = (struct perf_read_data){
4613                         .event = event,
4614                         .group = group,
4615                         .ret = 0,
4616                 };
4617
4618                 preempt_disable();
4619                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4620
4621                 /*
4622                  * Purposely ignore the smp_call_function_single() return
4623                  * value.
4624                  *
4625                  * If event_cpu isn't a valid CPU it means the event got
4626                  * scheduled out and that will have updated the event count.
4627                  *
4628                  * Therefore, either way, we'll have an up-to-date event count
4629                  * after this.
4630                  */
4631                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4632                 preempt_enable();
4633                 ret = data.ret;
4634
4635         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4636                 struct perf_event_context *ctx = event->ctx;
4637                 unsigned long flags;
4638
4639                 raw_spin_lock_irqsave(&ctx->lock, flags);
4640                 state = event->state;
4641                 if (state != PERF_EVENT_STATE_INACTIVE) {
4642                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4643                         goto again;
4644                 }
4645
4646                 /*
4647                  * May read while context is not active (e.g., thread is
4648                  * blocked), in that case we cannot update context time
4649                  */
4650                 if (ctx->is_active & EVENT_TIME) {
4651                         update_context_time(ctx);
4652                         update_cgrp_time_from_event(event);
4653                 }
4654
4655                 perf_event_update_time(event);
4656                 if (group)
4657                         perf_event_update_sibling_time(event);
4658                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4659         }
4660
4661         return ret;
4662 }
4663
4664 /*
4665  * Initialize the perf_event context in a task_struct:
4666  */
4667 static void __perf_event_init_context(struct perf_event_context *ctx)
4668 {
4669         raw_spin_lock_init(&ctx->lock);
4670         mutex_init(&ctx->mutex);
4671         INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4672         perf_event_groups_init(&ctx->pinned_groups);
4673         perf_event_groups_init(&ctx->flexible_groups);
4674         INIT_LIST_HEAD(&ctx->event_list);
4675         refcount_set(&ctx->refcount, 1);
4676 }
4677
4678 static void
4679 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4680 {
4681         epc->pmu = pmu;
4682         INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4683         INIT_LIST_HEAD(&epc->pinned_active);
4684         INIT_LIST_HEAD(&epc->flexible_active);
4685         atomic_set(&epc->refcount, 1);
4686 }
4687
4688 static struct perf_event_context *
4689 alloc_perf_context(struct task_struct *task)
4690 {
4691         struct perf_event_context *ctx;
4692
4693         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4694         if (!ctx)
4695                 return NULL;
4696
4697         __perf_event_init_context(ctx);
4698         if (task)
4699                 ctx->task = get_task_struct(task);
4700
4701         return ctx;
4702 }
4703
4704 static struct task_struct *
4705 find_lively_task_by_vpid(pid_t vpid)
4706 {
4707         struct task_struct *task;
4708
4709         rcu_read_lock();
4710         if (!vpid)
4711                 task = current;
4712         else
4713                 task = find_task_by_vpid(vpid);
4714         if (task)
4715                 get_task_struct(task);
4716         rcu_read_unlock();
4717
4718         if (!task)
4719                 return ERR_PTR(-ESRCH);
4720
4721         return task;
4722 }
4723
4724 /*
4725  * Returns a matching context with refcount and pincount.
4726  */
4727 static struct perf_event_context *
4728 find_get_context(struct task_struct *task, struct perf_event *event)
4729 {
4730         struct perf_event_context *ctx, *clone_ctx = NULL;
4731         struct perf_cpu_context *cpuctx;
4732         unsigned long flags;
4733         int err;
4734
4735         if (!task) {
4736                 /* Must be root to operate on a CPU event: */
4737                 err = perf_allow_cpu(&event->attr);
4738                 if (err)
4739                         return ERR_PTR(err);
4740
4741                 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4742                 ctx = &cpuctx->ctx;
4743                 get_ctx(ctx);
4744                 raw_spin_lock_irqsave(&ctx->lock, flags);
4745                 ++ctx->pin_count;
4746                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4747
4748                 return ctx;
4749         }
4750
4751         err = -EINVAL;
4752 retry:
4753         ctx = perf_lock_task_context(task, &flags);
4754         if (ctx) {
4755                 clone_ctx = unclone_ctx(ctx);
4756                 ++ctx->pin_count;
4757
4758                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4759
4760                 if (clone_ctx)
4761                         put_ctx(clone_ctx);
4762         } else {
4763                 ctx = alloc_perf_context(task);
4764                 err = -ENOMEM;
4765                 if (!ctx)
4766                         goto errout;
4767
4768                 err = 0;
4769                 mutex_lock(&task->perf_event_mutex);
4770                 /*
4771                  * If it has already passed perf_event_exit_task().
4772                  * we must see PF_EXITING, it takes this mutex too.
4773                  */
4774                 if (task->flags & PF_EXITING)
4775                         err = -ESRCH;
4776                 else if (task->perf_event_ctxp)
4777                         err = -EAGAIN;
4778                 else {
4779                         get_ctx(ctx);
4780                         ++ctx->pin_count;
4781                         rcu_assign_pointer(task->perf_event_ctxp, ctx);
4782                 }
4783                 mutex_unlock(&task->perf_event_mutex);
4784
4785                 if (unlikely(err)) {
4786                         put_ctx(ctx);
4787
4788                         if (err == -EAGAIN)
4789                                 goto retry;
4790                         goto errout;
4791                 }
4792         }
4793
4794         return ctx;
4795
4796 errout:
4797         return ERR_PTR(err);
4798 }
4799
4800 static struct perf_event_pmu_context *
4801 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4802                      struct perf_event *event)
4803 {
4804         struct perf_event_pmu_context *new = NULL, *epc;
4805         void *task_ctx_data = NULL;
4806
4807         if (!ctx->task) {
4808                 struct perf_cpu_pmu_context *cpc;
4809
4810                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4811                 epc = &cpc->epc;
4812
4813                 if (!epc->ctx) {
4814                         atomic_set(&epc->refcount, 1);
4815                         epc->embedded = 1;
4816                         raw_spin_lock_irq(&ctx->lock);
4817                         list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4818                         epc->ctx = ctx;
4819                         raw_spin_unlock_irq(&ctx->lock);
4820                 } else {
4821                         WARN_ON_ONCE(epc->ctx != ctx);
4822                         atomic_inc(&epc->refcount);
4823                 }
4824
4825                 return epc;
4826         }
4827
4828         new = kzalloc(sizeof(*epc), GFP_KERNEL);
4829         if (!new)
4830                 return ERR_PTR(-ENOMEM);
4831
4832         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4833                 task_ctx_data = alloc_task_ctx_data(pmu);
4834                 if (!task_ctx_data) {
4835                         kfree(new);
4836                         return ERR_PTR(-ENOMEM);
4837                 }
4838         }
4839
4840         __perf_init_event_pmu_context(new, pmu);
4841
4842         /*
4843          * XXX
4844          *
4845          * lockdep_assert_held(&ctx->mutex);
4846          *
4847          * can't because perf_event_init_task() doesn't actually hold the
4848          * child_ctx->mutex.
4849          */
4850
4851         raw_spin_lock_irq(&ctx->lock);
4852         list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4853                 if (epc->pmu == pmu) {
4854                         WARN_ON_ONCE(epc->ctx != ctx);
4855                         atomic_inc(&epc->refcount);
4856                         goto found_epc;
4857                 }
4858         }
4859
4860         epc = new;
4861         new = NULL;
4862
4863         list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4864         epc->ctx = ctx;
4865
4866 found_epc:
4867         if (task_ctx_data && !epc->task_ctx_data) {
4868                 epc->task_ctx_data = task_ctx_data;
4869                 task_ctx_data = NULL;
4870                 ctx->nr_task_data++;
4871         }
4872         raw_spin_unlock_irq(&ctx->lock);
4873
4874         free_task_ctx_data(pmu, task_ctx_data);
4875         kfree(new);
4876
4877         return epc;
4878 }
4879
4880 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4881 {
4882         WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4883 }
4884
4885 static void free_epc_rcu(struct rcu_head *head)
4886 {
4887         struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4888
4889         kfree(epc->task_ctx_data);
4890         kfree(epc);
4891 }
4892
4893 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4894 {
4895         unsigned long flags;
4896
4897         if (!atomic_dec_and_test(&epc->refcount))
4898                 return;
4899
4900         if (epc->ctx) {
4901                 struct perf_event_context *ctx = epc->ctx;
4902
4903                 /*
4904                  * XXX
4905                  *
4906                  * lockdep_assert_held(&ctx->mutex);
4907                  *
4908                  * can't because of the call-site in _free_event()/put_event()
4909                  * which isn't always called under ctx->mutex.
4910                  */
4911
4912                 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4913                 raw_spin_lock_irqsave(&ctx->lock, flags);
4914                 list_del_init(&epc->pmu_ctx_entry);
4915                 epc->ctx = NULL;
4916                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4917         }
4918
4919         WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4920         WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4921
4922         if (epc->embedded)
4923                 return;
4924
4925         call_rcu(&epc->rcu_head, free_epc_rcu);
4926 }
4927
4928 static void perf_event_free_filter(struct perf_event *event);
4929
4930 static void free_event_rcu(struct rcu_head *head)
4931 {
4932         struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4933
4934         if (event->ns)
4935                 put_pid_ns(event->ns);
4936         perf_event_free_filter(event);
4937         kmem_cache_free(perf_event_cache, event);
4938 }
4939
4940 static void ring_buffer_attach(struct perf_event *event,
4941                                struct perf_buffer *rb);
4942
4943 static void detach_sb_event(struct perf_event *event)
4944 {
4945         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4946
4947         raw_spin_lock(&pel->lock);
4948         list_del_rcu(&event->sb_list);
4949         raw_spin_unlock(&pel->lock);
4950 }
4951
4952 static bool is_sb_event(struct perf_event *event)
4953 {
4954         struct perf_event_attr *attr = &event->attr;
4955
4956         if (event->parent)
4957                 return false;
4958
4959         if (event->attach_state & PERF_ATTACH_TASK)
4960                 return false;
4961
4962         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4963             attr->comm || attr->comm_exec ||
4964             attr->task || attr->ksymbol ||
4965             attr->context_switch || attr->text_poke ||
4966             attr->bpf_event)
4967                 return true;
4968         return false;
4969 }
4970
4971 static void unaccount_pmu_sb_event(struct perf_event *event)
4972 {
4973         if (is_sb_event(event))
4974                 detach_sb_event(event);
4975 }
4976
4977 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4978 {
4979         if (event->parent)
4980                 return;
4981
4982         if (is_cgroup_event(event))
4983                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4984 }
4985
4986 #ifdef CONFIG_NO_HZ_FULL
4987 static DEFINE_SPINLOCK(nr_freq_lock);
4988 #endif
4989
4990 static void unaccount_freq_event_nohz(void)
4991 {
4992 #ifdef CONFIG_NO_HZ_FULL
4993         spin_lock(&nr_freq_lock);
4994         if (atomic_dec_and_test(&nr_freq_events))
4995                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4996         spin_unlock(&nr_freq_lock);
4997 #endif
4998 }
4999
5000 static void unaccount_freq_event(void)
5001 {
5002         if (tick_nohz_full_enabled())
5003                 unaccount_freq_event_nohz();
5004         else
5005                 atomic_dec(&nr_freq_events);
5006 }
5007
5008 static void unaccount_event(struct perf_event *event)
5009 {
5010         bool dec = false;
5011
5012         if (event->parent)
5013                 return;
5014
5015         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5016                 dec = true;
5017         if (event->attr.mmap || event->attr.mmap_data)
5018                 atomic_dec(&nr_mmap_events);
5019         if (event->attr.build_id)
5020                 atomic_dec(&nr_build_id_events);
5021         if (event->attr.comm)
5022                 atomic_dec(&nr_comm_events);
5023         if (event->attr.namespaces)
5024                 atomic_dec(&nr_namespaces_events);
5025         if (event->attr.cgroup)
5026                 atomic_dec(&nr_cgroup_events);
5027         if (event->attr.task)
5028                 atomic_dec(&nr_task_events);
5029         if (event->attr.freq)
5030                 unaccount_freq_event();
5031         if (event->attr.context_switch) {
5032                 dec = true;
5033                 atomic_dec(&nr_switch_events);
5034         }
5035         if (is_cgroup_event(event))
5036                 dec = true;
5037         if (has_branch_stack(event))
5038                 dec = true;
5039         if (event->attr.ksymbol)
5040                 atomic_dec(&nr_ksymbol_events);
5041         if (event->attr.bpf_event)
5042                 atomic_dec(&nr_bpf_events);
5043         if (event->attr.text_poke)
5044                 atomic_dec(&nr_text_poke_events);
5045
5046         if (dec) {
5047                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5048                         schedule_delayed_work(&perf_sched_work, HZ);
5049         }
5050
5051         unaccount_event_cpu(event, event->cpu);
5052
5053         unaccount_pmu_sb_event(event);
5054 }
5055
5056 static void perf_sched_delayed(struct work_struct *work)
5057 {
5058         mutex_lock(&perf_sched_mutex);
5059         if (atomic_dec_and_test(&perf_sched_count))
5060                 static_branch_disable(&perf_sched_events);
5061         mutex_unlock(&perf_sched_mutex);
5062 }
5063
5064 /*
5065  * The following implement mutual exclusion of events on "exclusive" pmus
5066  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5067  * at a time, so we disallow creating events that might conflict, namely:
5068  *
5069  *  1) cpu-wide events in the presence of per-task events,
5070  *  2) per-task events in the presence of cpu-wide events,
5071  *  3) two matching events on the same perf_event_context.
5072  *
5073  * The former two cases are handled in the allocation path (perf_event_alloc(),
5074  * _free_event()), the latter -- before the first perf_install_in_context().
5075  */
5076 static int exclusive_event_init(struct perf_event *event)
5077 {
5078         struct pmu *pmu = event->pmu;
5079
5080         if (!is_exclusive_pmu(pmu))
5081                 return 0;
5082
5083         /*
5084          * Prevent co-existence of per-task and cpu-wide events on the
5085          * same exclusive pmu.
5086          *
5087          * Negative pmu::exclusive_cnt means there are cpu-wide
5088          * events on this "exclusive" pmu, positive means there are
5089          * per-task events.
5090          *
5091          * Since this is called in perf_event_alloc() path, event::ctx
5092          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5093          * to mean "per-task event", because unlike other attach states it
5094          * never gets cleared.
5095          */
5096         if (event->attach_state & PERF_ATTACH_TASK) {
5097                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5098                         return -EBUSY;
5099         } else {
5100                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5101                         return -EBUSY;
5102         }
5103
5104         return 0;
5105 }
5106
5107 static void exclusive_event_destroy(struct perf_event *event)
5108 {
5109         struct pmu *pmu = event->pmu;
5110
5111         if (!is_exclusive_pmu(pmu))
5112                 return;
5113
5114         /* see comment in exclusive_event_init() */
5115         if (event->attach_state & PERF_ATTACH_TASK)
5116                 atomic_dec(&pmu->exclusive_cnt);
5117         else
5118                 atomic_inc(&pmu->exclusive_cnt);
5119 }
5120
5121 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5122 {
5123         if ((e1->pmu == e2->pmu) &&
5124             (e1->cpu == e2->cpu ||
5125              e1->cpu == -1 ||
5126              e2->cpu == -1))
5127                 return true;
5128         return false;
5129 }
5130
5131 static bool exclusive_event_installable(struct perf_event *event,
5132                                         struct perf_event_context *ctx)
5133 {
5134         struct perf_event *iter_event;
5135         struct pmu *pmu = event->pmu;
5136
5137         lockdep_assert_held(&ctx->mutex);
5138
5139         if (!is_exclusive_pmu(pmu))
5140                 return true;
5141
5142         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5143                 if (exclusive_event_match(iter_event, event))
5144                         return false;
5145         }
5146
5147         return true;
5148 }
5149
5150 static void perf_addr_filters_splice(struct perf_event *event,
5151                                        struct list_head *head);
5152
5153 static void _free_event(struct perf_event *event)
5154 {
5155         irq_work_sync(&event->pending_irq);
5156
5157         unaccount_event(event);
5158
5159         security_perf_event_free(event);
5160
5161         if (event->rb) {
5162                 /*
5163                  * Can happen when we close an event with re-directed output.
5164                  *
5165                  * Since we have a 0 refcount, perf_mmap_close() will skip
5166                  * over us; possibly making our ring_buffer_put() the last.
5167                  */
5168                 mutex_lock(&event->mmap_mutex);
5169                 ring_buffer_attach(event, NULL);
5170                 mutex_unlock(&event->mmap_mutex);
5171         }
5172
5173         if (is_cgroup_event(event))
5174                 perf_detach_cgroup(event);
5175
5176         if (!event->parent) {
5177                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5178                         put_callchain_buffers();
5179         }
5180
5181         perf_event_free_bpf_prog(event);
5182         perf_addr_filters_splice(event, NULL);
5183         kfree(event->addr_filter_ranges);
5184
5185         if (event->destroy)
5186                 event->destroy(event);
5187
5188         /*
5189          * Must be after ->destroy(), due to uprobe_perf_close() using
5190          * hw.target.
5191          */
5192         if (event->hw.target)
5193                 put_task_struct(event->hw.target);
5194
5195         if (event->pmu_ctx)
5196                 put_pmu_ctx(event->pmu_ctx);
5197
5198         /*
5199          * perf_event_free_task() relies on put_ctx() being 'last', in particular
5200          * all task references must be cleaned up.
5201          */
5202         if (event->ctx)
5203                 put_ctx(event->ctx);
5204
5205         exclusive_event_destroy(event);
5206         module_put(event->pmu->module);
5207
5208         call_rcu(&event->rcu_head, free_event_rcu);
5209 }
5210
5211 /*
5212  * Used to free events which have a known refcount of 1, such as in error paths
5213  * where the event isn't exposed yet and inherited events.
5214  */
5215 static void free_event(struct perf_event *event)
5216 {
5217         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5218                                 "unexpected event refcount: %ld; ptr=%p\n",
5219                                 atomic_long_read(&event->refcount), event)) {
5220                 /* leak to avoid use-after-free */
5221                 return;
5222         }
5223
5224         _free_event(event);
5225 }
5226
5227 /*
5228  * Remove user event from the owner task.
5229  */
5230 static void perf_remove_from_owner(struct perf_event *event)
5231 {
5232         struct task_struct *owner;
5233
5234         rcu_read_lock();
5235         /*
5236          * Matches the smp_store_release() in perf_event_exit_task(). If we
5237          * observe !owner it means the list deletion is complete and we can
5238          * indeed free this event, otherwise we need to serialize on
5239          * owner->perf_event_mutex.
5240          */
5241         owner = READ_ONCE(event->owner);
5242         if (owner) {
5243                 /*
5244                  * Since delayed_put_task_struct() also drops the last
5245                  * task reference we can safely take a new reference
5246                  * while holding the rcu_read_lock().
5247                  */
5248                 get_task_struct(owner);
5249         }
5250         rcu_read_unlock();
5251
5252         if (owner) {
5253                 /*
5254                  * If we're here through perf_event_exit_task() we're already
5255                  * holding ctx->mutex which would be an inversion wrt. the
5256                  * normal lock order.
5257                  *
5258                  * However we can safely take this lock because its the child
5259                  * ctx->mutex.
5260                  */
5261                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5262
5263                 /*
5264                  * We have to re-check the event->owner field, if it is cleared
5265                  * we raced with perf_event_exit_task(), acquiring the mutex
5266                  * ensured they're done, and we can proceed with freeing the
5267                  * event.
5268                  */
5269                 if (event->owner) {
5270                         list_del_init(&event->owner_entry);
5271                         smp_store_release(&event->owner, NULL);
5272                 }
5273                 mutex_unlock(&owner->perf_event_mutex);
5274                 put_task_struct(owner);
5275         }
5276 }
5277
5278 static void put_event(struct perf_event *event)
5279 {
5280         if (!atomic_long_dec_and_test(&event->refcount))
5281                 return;
5282
5283         _free_event(event);
5284 }
5285
5286 /*
5287  * Kill an event dead; while event:refcount will preserve the event
5288  * object, it will not preserve its functionality. Once the last 'user'
5289  * gives up the object, we'll destroy the thing.
5290  */
5291 int perf_event_release_kernel(struct perf_event *event)
5292 {
5293         struct perf_event_context *ctx = event->ctx;
5294         struct perf_event *child, *tmp;
5295         LIST_HEAD(free_list);
5296
5297         /*
5298          * If we got here through err_alloc: free_event(event); we will not
5299          * have attached to a context yet.
5300          */
5301         if (!ctx) {
5302                 WARN_ON_ONCE(event->attach_state &
5303                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5304                 goto no_ctx;
5305         }
5306
5307         if (!is_kernel_event(event))
5308                 perf_remove_from_owner(event);
5309
5310         ctx = perf_event_ctx_lock(event);
5311         WARN_ON_ONCE(ctx->parent_ctx);
5312
5313         /*
5314          * Mark this event as STATE_DEAD, there is no external reference to it
5315          * anymore.
5316          *
5317          * Anybody acquiring event->child_mutex after the below loop _must_
5318          * also see this, most importantly inherit_event() which will avoid
5319          * placing more children on the list.
5320          *
5321          * Thus this guarantees that we will in fact observe and kill _ALL_
5322          * child events.
5323          */
5324         perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5325
5326         perf_event_ctx_unlock(event, ctx);
5327
5328 again:
5329         mutex_lock(&event->child_mutex);
5330         list_for_each_entry(child, &event->child_list, child_list) {
5331
5332                 /*
5333                  * Cannot change, child events are not migrated, see the
5334                  * comment with perf_event_ctx_lock_nested().
5335                  */
5336                 ctx = READ_ONCE(child->ctx);
5337                 /*
5338                  * Since child_mutex nests inside ctx::mutex, we must jump
5339                  * through hoops. We start by grabbing a reference on the ctx.
5340                  *
5341                  * Since the event cannot get freed while we hold the
5342                  * child_mutex, the context must also exist and have a !0
5343                  * reference count.
5344                  */
5345                 get_ctx(ctx);
5346
5347                 /*
5348                  * Now that we have a ctx ref, we can drop child_mutex, and
5349                  * acquire ctx::mutex without fear of it going away. Then we
5350                  * can re-acquire child_mutex.
5351                  */
5352                 mutex_unlock(&event->child_mutex);
5353                 mutex_lock(&ctx->mutex);
5354                 mutex_lock(&event->child_mutex);
5355
5356                 /*
5357                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5358                  * state, if child is still the first entry, it didn't get freed
5359                  * and we can continue doing so.
5360                  */
5361                 tmp = list_first_entry_or_null(&event->child_list,
5362                                                struct perf_event, child_list);
5363                 if (tmp == child) {
5364                         perf_remove_from_context(child, DETACH_GROUP);
5365                         list_move(&child->child_list, &free_list);
5366                         /*
5367                          * This matches the refcount bump in inherit_event();
5368                          * this can't be the last reference.
5369                          */
5370                         put_event(event);
5371                 }
5372
5373                 mutex_unlock(&event->child_mutex);
5374                 mutex_unlock(&ctx->mutex);
5375                 put_ctx(ctx);
5376                 goto again;
5377         }
5378         mutex_unlock(&event->child_mutex);
5379
5380         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5381                 void *var = &child->ctx->refcount;
5382
5383                 list_del(&child->child_list);
5384                 free_event(child);
5385
5386                 /*
5387                  * Wake any perf_event_free_task() waiting for this event to be
5388                  * freed.
5389                  */
5390                 smp_mb(); /* pairs with wait_var_event() */
5391                 wake_up_var(var);
5392         }
5393
5394 no_ctx:
5395         put_event(event); /* Must be the 'last' reference */
5396         return 0;
5397 }
5398 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5399
5400 /*
5401  * Called when the last reference to the file is gone.
5402  */
5403 static int perf_release(struct inode *inode, struct file *file)
5404 {
5405         perf_event_release_kernel(file->private_data);
5406         return 0;
5407 }
5408
5409 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5410 {
5411         struct perf_event *child;
5412         u64 total = 0;
5413
5414         *enabled = 0;
5415         *running = 0;
5416
5417         mutex_lock(&event->child_mutex);
5418
5419         (void)perf_event_read(event, false);
5420         total += perf_event_count(event);
5421
5422         *enabled += event->total_time_enabled +
5423                         atomic64_read(&event->child_total_time_enabled);
5424         *running += event->total_time_running +
5425                         atomic64_read(&event->child_total_time_running);
5426
5427         list_for_each_entry(child, &event->child_list, child_list) {
5428                 (void)perf_event_read(child, false);
5429                 total += perf_event_count(child);
5430                 *enabled += child->total_time_enabled;
5431                 *running += child->total_time_running;
5432         }
5433         mutex_unlock(&event->child_mutex);
5434
5435         return total;
5436 }
5437
5438 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5439 {
5440         struct perf_event_context *ctx;
5441         u64 count;
5442
5443         ctx = perf_event_ctx_lock(event);
5444         count = __perf_event_read_value(event, enabled, running);
5445         perf_event_ctx_unlock(event, ctx);
5446
5447         return count;
5448 }
5449 EXPORT_SYMBOL_GPL(perf_event_read_value);
5450
5451 static int __perf_read_group_add(struct perf_event *leader,
5452                                         u64 read_format, u64 *values)
5453 {
5454         struct perf_event_context *ctx = leader->ctx;
5455         struct perf_event *sub;
5456         unsigned long flags;
5457         int n = 1; /* skip @nr */
5458         int ret;
5459
5460         ret = perf_event_read(leader, true);
5461         if (ret)
5462                 return ret;
5463
5464         raw_spin_lock_irqsave(&ctx->lock, flags);
5465
5466         /*
5467          * Since we co-schedule groups, {enabled,running} times of siblings
5468          * will be identical to those of the leader, so we only publish one
5469          * set.
5470          */
5471         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5472                 values[n++] += leader->total_time_enabled +
5473                         atomic64_read(&leader->child_total_time_enabled);
5474         }
5475
5476         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5477                 values[n++] += leader->total_time_running +
5478                         atomic64_read(&leader->child_total_time_running);
5479         }
5480
5481         /*
5482          * Write {count,id} tuples for every sibling.
5483          */
5484         values[n++] += perf_event_count(leader);
5485         if (read_format & PERF_FORMAT_ID)
5486                 values[n++] = primary_event_id(leader);
5487         if (read_format & PERF_FORMAT_LOST)
5488                 values[n++] = atomic64_read(&leader->lost_samples);
5489
5490         for_each_sibling_event(sub, leader) {
5491                 values[n++] += perf_event_count(sub);
5492                 if (read_format & PERF_FORMAT_ID)
5493                         values[n++] = primary_event_id(sub);
5494                 if (read_format & PERF_FORMAT_LOST)
5495                         values[n++] = atomic64_read(&sub->lost_samples);
5496         }
5497
5498         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5499         return 0;
5500 }
5501
5502 static int perf_read_group(struct perf_event *event,
5503                                    u64 read_format, char __user *buf)
5504 {
5505         struct perf_event *leader = event->group_leader, *child;
5506         struct perf_event_context *ctx = leader->ctx;
5507         int ret;
5508         u64 *values;
5509
5510         lockdep_assert_held(&ctx->mutex);
5511
5512         values = kzalloc(event->read_size, GFP_KERNEL);
5513         if (!values)
5514                 return -ENOMEM;
5515
5516         values[0] = 1 + leader->nr_siblings;
5517
5518         /*
5519          * By locking the child_mutex of the leader we effectively
5520          * lock the child list of all siblings.. XXX explain how.
5521          */
5522         mutex_lock(&leader->child_mutex);
5523
5524         ret = __perf_read_group_add(leader, read_format, values);
5525         if (ret)
5526                 goto unlock;
5527
5528         list_for_each_entry(child, &leader->child_list, child_list) {
5529                 ret = __perf_read_group_add(child, read_format, values);
5530                 if (ret)
5531                         goto unlock;
5532         }
5533
5534         mutex_unlock(&leader->child_mutex);
5535
5536         ret = event->read_size;
5537         if (copy_to_user(buf, values, event->read_size))
5538                 ret = -EFAULT;
5539         goto out;
5540
5541 unlock:
5542         mutex_unlock(&leader->child_mutex);
5543 out:
5544         kfree(values);
5545         return ret;
5546 }
5547
5548 static int perf_read_one(struct perf_event *event,
5549                                  u64 read_format, char __user *buf)
5550 {
5551         u64 enabled, running;
5552         u64 values[5];
5553         int n = 0;
5554
5555         values[n++] = __perf_event_read_value(event, &enabled, &running);
5556         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5557                 values[n++] = enabled;
5558         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5559                 values[n++] = running;
5560         if (read_format & PERF_FORMAT_ID)
5561                 values[n++] = primary_event_id(event);
5562         if (read_format & PERF_FORMAT_LOST)
5563                 values[n++] = atomic64_read(&event->lost_samples);
5564
5565         if (copy_to_user(buf, values, n * sizeof(u64)))
5566                 return -EFAULT;
5567
5568         return n * sizeof(u64);
5569 }
5570
5571 static bool is_event_hup(struct perf_event *event)
5572 {
5573         bool no_children;
5574
5575         if (event->state > PERF_EVENT_STATE_EXIT)
5576                 return false;
5577
5578         mutex_lock(&event->child_mutex);
5579         no_children = list_empty(&event->child_list);
5580         mutex_unlock(&event->child_mutex);
5581         return no_children;
5582 }
5583
5584 /*
5585  * Read the performance event - simple non blocking version for now
5586  */
5587 static ssize_t
5588 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5589 {
5590         u64 read_format = event->attr.read_format;
5591         int ret;
5592
5593         /*
5594          * Return end-of-file for a read on an event that is in
5595          * error state (i.e. because it was pinned but it couldn't be
5596          * scheduled on to the CPU at some point).
5597          */
5598         if (event->state == PERF_EVENT_STATE_ERROR)
5599                 return 0;
5600
5601         if (count < event->read_size)
5602                 return -ENOSPC;
5603
5604         WARN_ON_ONCE(event->ctx->parent_ctx);
5605         if (read_format & PERF_FORMAT_GROUP)
5606                 ret = perf_read_group(event, read_format, buf);
5607         else
5608                 ret = perf_read_one(event, read_format, buf);
5609
5610         return ret;
5611 }
5612
5613 static ssize_t
5614 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5615 {
5616         struct perf_event *event = file->private_data;
5617         struct perf_event_context *ctx;
5618         int ret;
5619
5620         ret = security_perf_event_read(event);
5621         if (ret)
5622                 return ret;
5623
5624         ctx = perf_event_ctx_lock(event);
5625         ret = __perf_read(event, buf, count);
5626         perf_event_ctx_unlock(event, ctx);
5627
5628         return ret;
5629 }
5630
5631 static __poll_t perf_poll(struct file *file, poll_table *wait)
5632 {
5633         struct perf_event *event = file->private_data;
5634         struct perf_buffer *rb;
5635         __poll_t events = EPOLLHUP;
5636
5637         poll_wait(file, &event->waitq, wait);
5638
5639         if (is_event_hup(event))
5640                 return events;
5641
5642         /*
5643          * Pin the event->rb by taking event->mmap_mutex; otherwise
5644          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5645          */
5646         mutex_lock(&event->mmap_mutex);
5647         rb = event->rb;
5648         if (rb)
5649                 events = atomic_xchg(&rb->poll, 0);
5650         mutex_unlock(&event->mmap_mutex);
5651         return events;
5652 }
5653
5654 static void _perf_event_reset(struct perf_event *event)
5655 {
5656         (void)perf_event_read(event, false);
5657         local64_set(&event->count, 0);
5658         perf_event_update_userpage(event);
5659 }
5660
5661 /* Assume it's not an event with inherit set. */
5662 u64 perf_event_pause(struct perf_event *event, bool reset)
5663 {
5664         struct perf_event_context *ctx;
5665         u64 count;
5666
5667         ctx = perf_event_ctx_lock(event);
5668         WARN_ON_ONCE(event->attr.inherit);
5669         _perf_event_disable(event);
5670         count = local64_read(&event->count);
5671         if (reset)
5672                 local64_set(&event->count, 0);
5673         perf_event_ctx_unlock(event, ctx);
5674
5675         return count;
5676 }
5677 EXPORT_SYMBOL_GPL(perf_event_pause);
5678
5679 /*
5680  * Holding the top-level event's child_mutex means that any
5681  * descendant process that has inherited this event will block
5682  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5683  * task existence requirements of perf_event_enable/disable.
5684  */
5685 static void perf_event_for_each_child(struct perf_event *event,
5686                                         void (*func)(struct perf_event *))
5687 {
5688         struct perf_event *child;
5689
5690         WARN_ON_ONCE(event->ctx->parent_ctx);
5691
5692         mutex_lock(&event->child_mutex);
5693         func(event);
5694         list_for_each_entry(child, &event->child_list, child_list)
5695                 func(child);
5696         mutex_unlock(&event->child_mutex);
5697 }
5698
5699 static void perf_event_for_each(struct perf_event *event,
5700                                   void (*func)(struct perf_event *))
5701 {
5702         struct perf_event_context *ctx = event->ctx;
5703         struct perf_event *sibling;
5704
5705         lockdep_assert_held(&ctx->mutex);
5706
5707         event = event->group_leader;
5708
5709         perf_event_for_each_child(event, func);
5710         for_each_sibling_event(sibling, event)
5711                 perf_event_for_each_child(sibling, func);
5712 }
5713
5714 static void __perf_event_period(struct perf_event *event,
5715                                 struct perf_cpu_context *cpuctx,
5716                                 struct perf_event_context *ctx,
5717                                 void *info)
5718 {
5719         u64 value = *((u64 *)info);
5720         bool active;
5721
5722         if (event->attr.freq) {
5723                 event->attr.sample_freq = value;
5724         } else {
5725                 event->attr.sample_period = value;
5726                 event->hw.sample_period = value;
5727         }
5728
5729         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5730         if (active) {
5731                 perf_pmu_disable(event->pmu);
5732                 /*
5733                  * We could be throttled; unthrottle now to avoid the tick
5734                  * trying to unthrottle while we already re-started the event.
5735                  */
5736                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5737                         event->hw.interrupts = 0;
5738                         perf_log_throttle(event, 1);
5739                 }
5740                 event->pmu->stop(event, PERF_EF_UPDATE);
5741         }
5742
5743         local64_set(&event->hw.period_left, 0);
5744
5745         if (active) {
5746                 event->pmu->start(event, PERF_EF_RELOAD);
5747                 perf_pmu_enable(event->pmu);
5748         }
5749 }
5750
5751 static int perf_event_check_period(struct perf_event *event, u64 value)
5752 {
5753         return event->pmu->check_period(event, value);
5754 }
5755
5756 static int _perf_event_period(struct perf_event *event, u64 value)
5757 {
5758         if (!is_sampling_event(event))
5759                 return -EINVAL;
5760
5761         if (!value)
5762                 return -EINVAL;
5763
5764         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5765                 return -EINVAL;
5766
5767         if (perf_event_check_period(event, value))
5768                 return -EINVAL;
5769
5770         if (!event->attr.freq && (value & (1ULL << 63)))
5771                 return -EINVAL;
5772
5773         event_function_call(event, __perf_event_period, &value);
5774
5775         return 0;
5776 }
5777
5778 int perf_event_period(struct perf_event *event, u64 value)
5779 {
5780         struct perf_event_context *ctx;
5781         int ret;
5782
5783         ctx = perf_event_ctx_lock(event);
5784         ret = _perf_event_period(event, value);
5785         perf_event_ctx_unlock(event, ctx);
5786
5787         return ret;
5788 }
5789 EXPORT_SYMBOL_GPL(perf_event_period);
5790
5791 static const struct file_operations perf_fops;
5792
5793 static inline int perf_fget_light(int fd, struct fd *p)
5794 {
5795         struct fd f = fdget(fd);
5796         if (!f.file)
5797                 return -EBADF;
5798
5799         if (f.file->f_op != &perf_fops) {
5800                 fdput(f);
5801                 return -EBADF;
5802         }
5803         *p = f;
5804         return 0;
5805 }
5806
5807 static int perf_event_set_output(struct perf_event *event,
5808                                  struct perf_event *output_event);
5809 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5810 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5811                           struct perf_event_attr *attr);
5812
5813 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5814 {
5815         void (*func)(struct perf_event *);
5816         u32 flags = arg;
5817
5818         switch (cmd) {
5819         case PERF_EVENT_IOC_ENABLE:
5820                 func = _perf_event_enable;
5821                 break;
5822         case PERF_EVENT_IOC_DISABLE:
5823                 func = _perf_event_disable;
5824                 break;
5825         case PERF_EVENT_IOC_RESET:
5826                 func = _perf_event_reset;
5827                 break;
5828
5829         case PERF_EVENT_IOC_REFRESH:
5830                 return _perf_event_refresh(event, arg);
5831
5832         case PERF_EVENT_IOC_PERIOD:
5833         {
5834                 u64 value;
5835
5836                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5837                         return -EFAULT;
5838
5839                 return _perf_event_period(event, value);
5840         }
5841         case PERF_EVENT_IOC_ID:
5842         {
5843                 u64 id = primary_event_id(event);
5844
5845                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5846                         return -EFAULT;
5847                 return 0;
5848         }
5849
5850         case PERF_EVENT_IOC_SET_OUTPUT:
5851         {
5852                 int ret;
5853                 if (arg != -1) {
5854                         struct perf_event *output_event;
5855                         struct fd output;
5856                         ret = perf_fget_light(arg, &output);
5857                         if (ret)
5858                                 return ret;
5859                         output_event = output.file->private_data;
5860                         ret = perf_event_set_output(event, output_event);
5861                         fdput(output);
5862                 } else {
5863                         ret = perf_event_set_output(event, NULL);
5864                 }
5865                 return ret;
5866         }
5867
5868         case PERF_EVENT_IOC_SET_FILTER:
5869                 return perf_event_set_filter(event, (void __user *)arg);
5870
5871         case PERF_EVENT_IOC_SET_BPF:
5872         {
5873                 struct bpf_prog *prog;
5874                 int err;
5875
5876                 prog = bpf_prog_get(arg);
5877                 if (IS_ERR(prog))
5878                         return PTR_ERR(prog);
5879
5880                 err = perf_event_set_bpf_prog(event, prog, 0);
5881                 if (err) {
5882                         bpf_prog_put(prog);
5883                         return err;
5884                 }
5885
5886                 return 0;
5887         }
5888
5889         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5890                 struct perf_buffer *rb;
5891
5892                 rcu_read_lock();
5893                 rb = rcu_dereference(event->rb);
5894                 if (!rb || !rb->nr_pages) {
5895                         rcu_read_unlock();
5896                         return -EINVAL;
5897                 }
5898                 rb_toggle_paused(rb, !!arg);
5899                 rcu_read_unlock();
5900                 return 0;
5901         }
5902
5903         case PERF_EVENT_IOC_QUERY_BPF:
5904                 return perf_event_query_prog_array(event, (void __user *)arg);
5905
5906         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5907                 struct perf_event_attr new_attr;
5908                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5909                                          &new_attr);
5910
5911                 if (err)
5912                         return err;
5913
5914                 return perf_event_modify_attr(event,  &new_attr);
5915         }
5916         default:
5917                 return -ENOTTY;
5918         }
5919
5920         if (flags & PERF_IOC_FLAG_GROUP)
5921                 perf_event_for_each(event, func);
5922         else
5923                 perf_event_for_each_child(event, func);
5924
5925         return 0;
5926 }
5927
5928 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5929 {
5930         struct perf_event *event = file->private_data;
5931         struct perf_event_context *ctx;
5932         long ret;
5933
5934         /* Treat ioctl like writes as it is likely a mutating operation. */
5935         ret = security_perf_event_write(event);
5936         if (ret)
5937                 return ret;
5938
5939         ctx = perf_event_ctx_lock(event);
5940         ret = _perf_ioctl(event, cmd, arg);
5941         perf_event_ctx_unlock(event, ctx);
5942
5943         return ret;
5944 }
5945
5946 #ifdef CONFIG_COMPAT
5947 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5948                                 unsigned long arg)
5949 {
5950         switch (_IOC_NR(cmd)) {
5951         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5952         case _IOC_NR(PERF_EVENT_IOC_ID):
5953         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5954         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5955                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5956                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5957                         cmd &= ~IOCSIZE_MASK;
5958                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5959                 }
5960                 break;
5961         }
5962         return perf_ioctl(file, cmd, arg);
5963 }
5964 #else
5965 # define perf_compat_ioctl NULL
5966 #endif
5967
5968 int perf_event_task_enable(void)
5969 {
5970         struct perf_event_context *ctx;
5971         struct perf_event *event;
5972
5973         mutex_lock(&current->perf_event_mutex);
5974         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5975                 ctx = perf_event_ctx_lock(event);
5976                 perf_event_for_each_child(event, _perf_event_enable);
5977                 perf_event_ctx_unlock(event, ctx);
5978         }
5979         mutex_unlock(&current->perf_event_mutex);
5980
5981         return 0;
5982 }
5983
5984 int perf_event_task_disable(void)
5985 {
5986         struct perf_event_context *ctx;
5987         struct perf_event *event;
5988
5989         mutex_lock(&current->perf_event_mutex);
5990         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5991                 ctx = perf_event_ctx_lock(event);
5992                 perf_event_for_each_child(event, _perf_event_disable);
5993                 perf_event_ctx_unlock(event, ctx);
5994         }
5995         mutex_unlock(&current->perf_event_mutex);
5996
5997         return 0;
5998 }
5999
6000 static int perf_event_index(struct perf_event *event)
6001 {
6002         if (event->hw.state & PERF_HES_STOPPED)
6003                 return 0;
6004
6005         if (event->state != PERF_EVENT_STATE_ACTIVE)
6006                 return 0;
6007
6008         return event->pmu->event_idx(event);
6009 }
6010
6011 static void perf_event_init_userpage(struct perf_event *event)
6012 {
6013         struct perf_event_mmap_page *userpg;
6014         struct perf_buffer *rb;
6015
6016         rcu_read_lock();
6017         rb = rcu_dereference(event->rb);
6018         if (!rb)
6019                 goto unlock;
6020
6021         userpg = rb->user_page;
6022
6023         /* Allow new userspace to detect that bit 0 is deprecated */
6024         userpg->cap_bit0_is_deprecated = 1;
6025         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6026         userpg->data_offset = PAGE_SIZE;
6027         userpg->data_size = perf_data_size(rb);
6028
6029 unlock:
6030         rcu_read_unlock();
6031 }
6032
6033 void __weak arch_perf_update_userpage(
6034         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6035 {
6036 }
6037
6038 /*
6039  * Callers need to ensure there can be no nesting of this function, otherwise
6040  * the seqlock logic goes bad. We can not serialize this because the arch
6041  * code calls this from NMI context.
6042  */
6043 void perf_event_update_userpage(struct perf_event *event)
6044 {
6045         struct perf_event_mmap_page *userpg;
6046         struct perf_buffer *rb;
6047         u64 enabled, running, now;
6048
6049         rcu_read_lock();
6050         rb = rcu_dereference(event->rb);
6051         if (!rb)
6052                 goto unlock;
6053
6054         /*
6055          * compute total_time_enabled, total_time_running
6056          * based on snapshot values taken when the event
6057          * was last scheduled in.
6058          *
6059          * we cannot simply called update_context_time()
6060          * because of locking issue as we can be called in
6061          * NMI context
6062          */
6063         calc_timer_values(event, &now, &enabled, &running);
6064
6065         userpg = rb->user_page;
6066         /*
6067          * Disable preemption to guarantee consistent time stamps are stored to
6068          * the user page.
6069          */
6070         preempt_disable();
6071         ++userpg->lock;
6072         barrier();
6073         userpg->index = perf_event_index(event);
6074         userpg->offset = perf_event_count(event);
6075         if (userpg->index)
6076                 userpg->offset -= local64_read(&event->hw.prev_count);
6077
6078         userpg->time_enabled = enabled +
6079                         atomic64_read(&event->child_total_time_enabled);
6080
6081         userpg->time_running = running +
6082                         atomic64_read(&event->child_total_time_running);
6083
6084         arch_perf_update_userpage(event, userpg, now);
6085
6086         barrier();
6087         ++userpg->lock;
6088         preempt_enable();
6089 unlock:
6090         rcu_read_unlock();
6091 }
6092 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6093
6094 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6095 {
6096         struct perf_event *event = vmf->vma->vm_file->private_data;
6097         struct perf_buffer *rb;
6098         vm_fault_t ret = VM_FAULT_SIGBUS;
6099
6100         if (vmf->flags & FAULT_FLAG_MKWRITE) {
6101                 if (vmf->pgoff == 0)
6102                         ret = 0;
6103                 return ret;
6104         }
6105
6106         rcu_read_lock();
6107         rb = rcu_dereference(event->rb);
6108         if (!rb)
6109                 goto unlock;
6110
6111         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6112                 goto unlock;
6113
6114         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6115         if (!vmf->page)
6116                 goto unlock;
6117
6118         get_page(vmf->page);
6119         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6120         vmf->page->index   = vmf->pgoff;
6121
6122         ret = 0;
6123 unlock:
6124         rcu_read_unlock();
6125
6126         return ret;
6127 }
6128
6129 static void ring_buffer_attach(struct perf_event *event,
6130                                struct perf_buffer *rb)
6131 {
6132         struct perf_buffer *old_rb = NULL;
6133         unsigned long flags;
6134
6135         WARN_ON_ONCE(event->parent);
6136
6137         if (event->rb) {
6138                 /*
6139                  * Should be impossible, we set this when removing
6140                  * event->rb_entry and wait/clear when adding event->rb_entry.
6141                  */
6142                 WARN_ON_ONCE(event->rcu_pending);
6143
6144                 old_rb = event->rb;
6145                 spin_lock_irqsave(&old_rb->event_lock, flags);
6146                 list_del_rcu(&event->rb_entry);
6147                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6148
6149                 event->rcu_batches = get_state_synchronize_rcu();
6150                 event->rcu_pending = 1;
6151         }
6152
6153         if (rb) {
6154                 if (event->rcu_pending) {
6155                         cond_synchronize_rcu(event->rcu_batches);
6156                         event->rcu_pending = 0;
6157                 }
6158
6159                 spin_lock_irqsave(&rb->event_lock, flags);
6160                 list_add_rcu(&event->rb_entry, &rb->event_list);
6161                 spin_unlock_irqrestore(&rb->event_lock, flags);
6162         }
6163
6164         /*
6165          * Avoid racing with perf_mmap_close(AUX): stop the event
6166          * before swizzling the event::rb pointer; if it's getting
6167          * unmapped, its aux_mmap_count will be 0 and it won't
6168          * restart. See the comment in __perf_pmu_output_stop().
6169          *
6170          * Data will inevitably be lost when set_output is done in
6171          * mid-air, but then again, whoever does it like this is
6172          * not in for the data anyway.
6173          */
6174         if (has_aux(event))
6175                 perf_event_stop(event, 0);
6176
6177         rcu_assign_pointer(event->rb, rb);
6178
6179         if (old_rb) {
6180                 ring_buffer_put(old_rb);
6181                 /*
6182                  * Since we detached before setting the new rb, so that we
6183                  * could attach the new rb, we could have missed a wakeup.
6184                  * Provide it now.
6185                  */
6186                 wake_up_all(&event->waitq);
6187         }
6188 }
6189
6190 static void ring_buffer_wakeup(struct perf_event *event)
6191 {
6192         struct perf_buffer *rb;
6193
6194         if (event->parent)
6195                 event = event->parent;
6196
6197         rcu_read_lock();
6198         rb = rcu_dereference(event->rb);
6199         if (rb) {
6200                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6201                         wake_up_all(&event->waitq);
6202         }
6203         rcu_read_unlock();
6204 }
6205
6206 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6207 {
6208         struct perf_buffer *rb;
6209
6210         if (event->parent)
6211                 event = event->parent;
6212
6213         rcu_read_lock();
6214         rb = rcu_dereference(event->rb);
6215         if (rb) {
6216                 if (!refcount_inc_not_zero(&rb->refcount))
6217                         rb = NULL;
6218         }
6219         rcu_read_unlock();
6220
6221         return rb;
6222 }
6223
6224 void ring_buffer_put(struct perf_buffer *rb)
6225 {
6226         if (!refcount_dec_and_test(&rb->refcount))
6227                 return;
6228
6229         WARN_ON_ONCE(!list_empty(&rb->event_list));
6230
6231         call_rcu(&rb->rcu_head, rb_free_rcu);
6232 }
6233
6234 static void perf_mmap_open(struct vm_area_struct *vma)
6235 {
6236         struct perf_event *event = vma->vm_file->private_data;
6237
6238         atomic_inc(&event->mmap_count);
6239         atomic_inc(&event->rb->mmap_count);
6240
6241         if (vma->vm_pgoff)
6242                 atomic_inc(&event->rb->aux_mmap_count);
6243
6244         if (event->pmu->event_mapped)
6245                 event->pmu->event_mapped(event, vma->vm_mm);
6246 }
6247
6248 static void perf_pmu_output_stop(struct perf_event *event);
6249
6250 /*
6251  * A buffer can be mmap()ed multiple times; either directly through the same
6252  * event, or through other events by use of perf_event_set_output().
6253  *
6254  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6255  * the buffer here, where we still have a VM context. This means we need
6256  * to detach all events redirecting to us.
6257  */
6258 static void perf_mmap_close(struct vm_area_struct *vma)
6259 {
6260         struct perf_event *event = vma->vm_file->private_data;
6261         struct perf_buffer *rb = ring_buffer_get(event);
6262         struct user_struct *mmap_user = rb->mmap_user;
6263         int mmap_locked = rb->mmap_locked;
6264         unsigned long size = perf_data_size(rb);
6265         bool detach_rest = false;
6266
6267         if (event->pmu->event_unmapped)
6268                 event->pmu->event_unmapped(event, vma->vm_mm);
6269
6270         /*
6271          * rb->aux_mmap_count will always drop before rb->mmap_count and
6272          * event->mmap_count, so it is ok to use event->mmap_mutex to
6273          * serialize with perf_mmap here.
6274          */
6275         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6276             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6277                 /*
6278                  * Stop all AUX events that are writing to this buffer,
6279                  * so that we can free its AUX pages and corresponding PMU
6280                  * data. Note that after rb::aux_mmap_count dropped to zero,
6281                  * they won't start any more (see perf_aux_output_begin()).
6282                  */
6283                 perf_pmu_output_stop(event);
6284
6285                 /* now it's safe to free the pages */
6286                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6287                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6288
6289                 /* this has to be the last one */
6290                 rb_free_aux(rb);
6291                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6292
6293                 mutex_unlock(&event->mmap_mutex);
6294         }
6295
6296         if (atomic_dec_and_test(&rb->mmap_count))
6297                 detach_rest = true;
6298
6299         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6300                 goto out_put;
6301
6302         ring_buffer_attach(event, NULL);
6303         mutex_unlock(&event->mmap_mutex);
6304
6305         /* If there's still other mmap()s of this buffer, we're done. */
6306         if (!detach_rest)
6307                 goto out_put;
6308
6309         /*
6310          * No other mmap()s, detach from all other events that might redirect
6311          * into the now unreachable buffer. Somewhat complicated by the
6312          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6313          */
6314 again:
6315         rcu_read_lock();
6316         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6317                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6318                         /*
6319                          * This event is en-route to free_event() which will
6320                          * detach it and remove it from the list.
6321                          */
6322                         continue;
6323                 }
6324                 rcu_read_unlock();
6325
6326                 mutex_lock(&event->mmap_mutex);
6327                 /*
6328                  * Check we didn't race with perf_event_set_output() which can
6329                  * swizzle the rb from under us while we were waiting to
6330                  * acquire mmap_mutex.
6331                  *
6332                  * If we find a different rb; ignore this event, a next
6333                  * iteration will no longer find it on the list. We have to
6334                  * still restart the iteration to make sure we're not now
6335                  * iterating the wrong list.
6336                  */
6337                 if (event->rb == rb)
6338                         ring_buffer_attach(event, NULL);
6339
6340                 mutex_unlock(&event->mmap_mutex);
6341                 put_event(event);
6342
6343                 /*
6344                  * Restart the iteration; either we're on the wrong list or
6345                  * destroyed its integrity by doing a deletion.
6346                  */
6347                 goto again;
6348         }
6349         rcu_read_unlock();
6350
6351         /*
6352          * It could be there's still a few 0-ref events on the list; they'll
6353          * get cleaned up by free_event() -- they'll also still have their
6354          * ref on the rb and will free it whenever they are done with it.
6355          *
6356          * Aside from that, this buffer is 'fully' detached and unmapped,
6357          * undo the VM accounting.
6358          */
6359
6360         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6361                         &mmap_user->locked_vm);
6362         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6363         free_uid(mmap_user);
6364
6365 out_put:
6366         ring_buffer_put(rb); /* could be last */
6367 }
6368
6369 static const struct vm_operations_struct perf_mmap_vmops = {
6370         .open           = perf_mmap_open,
6371         .close          = perf_mmap_close, /* non mergeable */
6372         .fault          = perf_mmap_fault,
6373         .page_mkwrite   = perf_mmap_fault,
6374 };
6375
6376 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6377 {
6378         struct perf_event *event = file->private_data;
6379         unsigned long user_locked, user_lock_limit;
6380         struct user_struct *user = current_user();
6381         struct perf_buffer *rb = NULL;
6382         unsigned long locked, lock_limit;
6383         unsigned long vma_size;
6384         unsigned long nr_pages;
6385         long user_extra = 0, extra = 0;
6386         int ret = 0, flags = 0;
6387
6388         /*
6389          * Don't allow mmap() of inherited per-task counters. This would
6390          * create a performance issue due to all children writing to the
6391          * same rb.
6392          */
6393         if (event->cpu == -1 && event->attr.inherit)
6394                 return -EINVAL;
6395
6396         if (!(vma->vm_flags & VM_SHARED))
6397                 return -EINVAL;
6398
6399         ret = security_perf_event_read(event);
6400         if (ret)
6401                 return ret;
6402
6403         vma_size = vma->vm_end - vma->vm_start;
6404
6405         if (vma->vm_pgoff == 0) {
6406                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6407         } else {
6408                 /*
6409                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6410                  * mapped, all subsequent mappings should have the same size
6411                  * and offset. Must be above the normal perf buffer.
6412                  */
6413                 u64 aux_offset, aux_size;
6414
6415                 if (!event->rb)
6416                         return -EINVAL;
6417
6418                 nr_pages = vma_size / PAGE_SIZE;
6419
6420                 mutex_lock(&event->mmap_mutex);
6421                 ret = -EINVAL;
6422
6423                 rb = event->rb;
6424                 if (!rb)
6425                         goto aux_unlock;
6426
6427                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6428                 aux_size = READ_ONCE(rb->user_page->aux_size);
6429
6430                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6431                         goto aux_unlock;
6432
6433                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6434                         goto aux_unlock;
6435
6436                 /* already mapped with a different offset */
6437                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6438                         goto aux_unlock;
6439
6440                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6441                         goto aux_unlock;
6442
6443                 /* already mapped with a different size */
6444                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6445                         goto aux_unlock;
6446
6447                 if (!is_power_of_2(nr_pages))
6448                         goto aux_unlock;
6449
6450                 if (!atomic_inc_not_zero(&rb->mmap_count))
6451                         goto aux_unlock;
6452
6453                 if (rb_has_aux(rb)) {
6454                         atomic_inc(&rb->aux_mmap_count);
6455                         ret = 0;
6456                         goto unlock;
6457                 }
6458
6459                 atomic_set(&rb->aux_mmap_count, 1);
6460                 user_extra = nr_pages;
6461
6462                 goto accounting;
6463         }
6464
6465         /*
6466          * If we have rb pages ensure they're a power-of-two number, so we
6467          * can do bitmasks instead of modulo.
6468          */
6469         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6470                 return -EINVAL;
6471
6472         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6473                 return -EINVAL;
6474
6475         WARN_ON_ONCE(event->ctx->parent_ctx);
6476 again:
6477         mutex_lock(&event->mmap_mutex);
6478         if (event->rb) {
6479                 if (data_page_nr(event->rb) != nr_pages) {
6480                         ret = -EINVAL;
6481                         goto unlock;
6482                 }
6483
6484                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6485                         /*
6486                          * Raced against perf_mmap_close(); remove the
6487                          * event and try again.
6488                          */
6489                         ring_buffer_attach(event, NULL);
6490                         mutex_unlock(&event->mmap_mutex);
6491                         goto again;
6492                 }
6493
6494                 goto unlock;
6495         }
6496
6497         user_extra = nr_pages + 1;
6498
6499 accounting:
6500         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6501
6502         /*
6503          * Increase the limit linearly with more CPUs:
6504          */
6505         user_lock_limit *= num_online_cpus();
6506
6507         user_locked = atomic_long_read(&user->locked_vm);
6508
6509         /*
6510          * sysctl_perf_event_mlock may have changed, so that
6511          *     user->locked_vm > user_lock_limit
6512          */
6513         if (user_locked > user_lock_limit)
6514                 user_locked = user_lock_limit;
6515         user_locked += user_extra;
6516
6517         if (user_locked > user_lock_limit) {
6518                 /*
6519                  * charge locked_vm until it hits user_lock_limit;
6520                  * charge the rest from pinned_vm
6521                  */
6522                 extra = user_locked - user_lock_limit;
6523                 user_extra -= extra;
6524         }
6525
6526         lock_limit = rlimit(RLIMIT_MEMLOCK);
6527         lock_limit >>= PAGE_SHIFT;
6528         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6529
6530         if ((locked > lock_limit) && perf_is_paranoid() &&
6531                 !capable(CAP_IPC_LOCK)) {
6532                 ret = -EPERM;
6533                 goto unlock;
6534         }
6535
6536         WARN_ON(!rb && event->rb);
6537
6538         if (vma->vm_flags & VM_WRITE)
6539                 flags |= RING_BUFFER_WRITABLE;
6540
6541         if (!rb) {
6542                 rb = rb_alloc(nr_pages,
6543                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6544                               event->cpu, flags);
6545
6546                 if (!rb) {
6547                         ret = -ENOMEM;
6548                         goto unlock;
6549                 }
6550
6551                 atomic_set(&rb->mmap_count, 1);
6552                 rb->mmap_user = get_current_user();
6553                 rb->mmap_locked = extra;
6554
6555                 ring_buffer_attach(event, rb);
6556
6557                 perf_event_update_time(event);
6558                 perf_event_init_userpage(event);
6559                 perf_event_update_userpage(event);
6560         } else {
6561                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6562                                    event->attr.aux_watermark, flags);
6563                 if (!ret)
6564                         rb->aux_mmap_locked = extra;
6565         }
6566
6567 unlock:
6568         if (!ret) {
6569                 atomic_long_add(user_extra, &user->locked_vm);
6570                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6571
6572                 atomic_inc(&event->mmap_count);
6573         } else if (rb) {
6574                 atomic_dec(&rb->mmap_count);
6575         }
6576 aux_unlock:
6577         mutex_unlock(&event->mmap_mutex);
6578
6579         /*
6580          * Since pinned accounting is per vm we cannot allow fork() to copy our
6581          * vma.
6582          */
6583         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6584         vma->vm_ops = &perf_mmap_vmops;
6585
6586         if (event->pmu->event_mapped)
6587                 event->pmu->event_mapped(event, vma->vm_mm);
6588
6589         return ret;
6590 }
6591
6592 static int perf_fasync(int fd, struct file *filp, int on)
6593 {
6594         struct inode *inode = file_inode(filp);
6595         struct perf_event *event = filp->private_data;
6596         int retval;
6597
6598         inode_lock(inode);
6599         retval = fasync_helper(fd, filp, on, &event->fasync);
6600         inode_unlock(inode);
6601
6602         if (retval < 0)
6603                 return retval;
6604
6605         return 0;
6606 }
6607
6608 static const struct file_operations perf_fops = {
6609         .llseek                 = no_llseek,
6610         .release                = perf_release,
6611         .read                   = perf_read,
6612         .poll                   = perf_poll,
6613         .unlocked_ioctl         = perf_ioctl,
6614         .compat_ioctl           = perf_compat_ioctl,
6615         .mmap                   = perf_mmap,
6616         .fasync                 = perf_fasync,
6617 };
6618
6619 /*
6620  * Perf event wakeup
6621  *
6622  * If there's data, ensure we set the poll() state and publish everything
6623  * to user-space before waking everybody up.
6624  */
6625
6626 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6627 {
6628         /* only the parent has fasync state */
6629         if (event->parent)
6630                 event = event->parent;
6631         return &event->fasync;
6632 }
6633
6634 void perf_event_wakeup(struct perf_event *event)
6635 {
6636         ring_buffer_wakeup(event);
6637
6638         if (event->pending_kill) {
6639                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6640                 event->pending_kill = 0;
6641         }
6642 }
6643
6644 static void perf_sigtrap(struct perf_event *event)
6645 {
6646         /*
6647          * We'd expect this to only occur if the irq_work is delayed and either
6648          * ctx->task or current has changed in the meantime. This can be the
6649          * case on architectures that do not implement arch_irq_work_raise().
6650          */
6651         if (WARN_ON_ONCE(event->ctx->task != current))
6652                 return;
6653
6654         /*
6655          * Both perf_pending_task() and perf_pending_irq() can race with the
6656          * task exiting.
6657          */
6658         if (current->flags & PF_EXITING)
6659                 return;
6660
6661         send_sig_perf((void __user *)event->pending_addr,
6662                       event->attr.type, event->attr.sig_data);
6663 }
6664
6665 /*
6666  * Deliver the pending work in-event-context or follow the context.
6667  */
6668 static void __perf_pending_irq(struct perf_event *event)
6669 {
6670         int cpu = READ_ONCE(event->oncpu);
6671
6672         /*
6673          * If the event isn't running; we done. event_sched_out() will have
6674          * taken care of things.
6675          */
6676         if (cpu < 0)
6677                 return;
6678
6679         /*
6680          * Yay, we hit home and are in the context of the event.
6681          */
6682         if (cpu == smp_processor_id()) {
6683                 if (event->pending_sigtrap) {
6684                         event->pending_sigtrap = 0;
6685                         perf_sigtrap(event);
6686                         local_dec(&event->ctx->nr_pending);
6687                 }
6688                 if (event->pending_disable) {
6689                         event->pending_disable = 0;
6690                         perf_event_disable_local(event);
6691                 }
6692                 return;
6693         }
6694
6695         /*
6696          *  CPU-A                       CPU-B
6697          *
6698          *  perf_event_disable_inatomic()
6699          *    @pending_disable = CPU-A;
6700          *    irq_work_queue();
6701          *
6702          *  sched-out
6703          *    @pending_disable = -1;
6704          *
6705          *                              sched-in
6706          *                              perf_event_disable_inatomic()
6707          *                                @pending_disable = CPU-B;
6708          *                                irq_work_queue(); // FAILS
6709          *
6710          *  irq_work_run()
6711          *    perf_pending_irq()
6712          *
6713          * But the event runs on CPU-B and wants disabling there.
6714          */
6715         irq_work_queue_on(&event->pending_irq, cpu);
6716 }
6717
6718 static void perf_pending_irq(struct irq_work *entry)
6719 {
6720         struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6721         int rctx;
6722
6723         /*
6724          * If we 'fail' here, that's OK, it means recursion is already disabled
6725          * and we won't recurse 'further'.
6726          */
6727         rctx = perf_swevent_get_recursion_context();
6728
6729         /*
6730          * The wakeup isn't bound to the context of the event -- it can happen
6731          * irrespective of where the event is.
6732          */
6733         if (event->pending_wakeup) {
6734                 event->pending_wakeup = 0;
6735                 perf_event_wakeup(event);
6736         }
6737
6738         __perf_pending_irq(event);
6739
6740         if (rctx >= 0)
6741                 perf_swevent_put_recursion_context(rctx);
6742 }
6743
6744 static void perf_pending_task(struct callback_head *head)
6745 {
6746         struct perf_event *event = container_of(head, struct perf_event, pending_task);
6747         int rctx;
6748
6749         /*
6750          * If we 'fail' here, that's OK, it means recursion is already disabled
6751          * and we won't recurse 'further'.
6752          */
6753         preempt_disable_notrace();
6754         rctx = perf_swevent_get_recursion_context();
6755
6756         if (event->pending_work) {
6757                 event->pending_work = 0;
6758                 perf_sigtrap(event);
6759                 local_dec(&event->ctx->nr_pending);
6760         }
6761
6762         if (rctx >= 0)
6763                 perf_swevent_put_recursion_context(rctx);
6764         preempt_enable_notrace();
6765
6766         put_event(event);
6767 }
6768
6769 #ifdef CONFIG_GUEST_PERF_EVENTS
6770 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6771
6772 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6773 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6774 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6775
6776 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6777 {
6778         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6779                 return;
6780
6781         rcu_assign_pointer(perf_guest_cbs, cbs);
6782         static_call_update(__perf_guest_state, cbs->state);
6783         static_call_update(__perf_guest_get_ip, cbs->get_ip);
6784
6785         /* Implementing ->handle_intel_pt_intr is optional. */
6786         if (cbs->handle_intel_pt_intr)
6787                 static_call_update(__perf_guest_handle_intel_pt_intr,
6788                                    cbs->handle_intel_pt_intr);
6789 }
6790 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6791
6792 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6793 {
6794         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6795                 return;
6796
6797         rcu_assign_pointer(perf_guest_cbs, NULL);
6798         static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6799         static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6800         static_call_update(__perf_guest_handle_intel_pt_intr,
6801                            (void *)&__static_call_return0);
6802         synchronize_rcu();
6803 }
6804 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6805 #endif
6806
6807 static void
6808 perf_output_sample_regs(struct perf_output_handle *handle,
6809                         struct pt_regs *regs, u64 mask)
6810 {
6811         int bit;
6812         DECLARE_BITMAP(_mask, 64);
6813
6814         bitmap_from_u64(_mask, mask);
6815         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6816                 u64 val;
6817
6818                 val = perf_reg_value(regs, bit);
6819                 perf_output_put(handle, val);
6820         }
6821 }
6822
6823 static void perf_sample_regs_user(struct perf_regs *regs_user,
6824                                   struct pt_regs *regs)
6825 {
6826         if (user_mode(regs)) {
6827                 regs_user->abi = perf_reg_abi(current);
6828                 regs_user->regs = regs;
6829         } else if (!(current->flags & PF_KTHREAD)) {
6830                 perf_get_regs_user(regs_user, regs);
6831         } else {
6832                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6833                 regs_user->regs = NULL;
6834         }
6835 }
6836
6837 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6838                                   struct pt_regs *regs)
6839 {
6840         regs_intr->regs = regs;
6841         regs_intr->abi  = perf_reg_abi(current);
6842 }
6843
6844
6845 /*
6846  * Get remaining task size from user stack pointer.
6847  *
6848  * It'd be better to take stack vma map and limit this more
6849  * precisely, but there's no way to get it safely under interrupt,
6850  * so using TASK_SIZE as limit.
6851  */
6852 static u64 perf_ustack_task_size(struct pt_regs *regs)
6853 {
6854         unsigned long addr = perf_user_stack_pointer(regs);
6855
6856         if (!addr || addr >= TASK_SIZE)
6857                 return 0;
6858
6859         return TASK_SIZE - addr;
6860 }
6861
6862 static u16
6863 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6864                         struct pt_regs *regs)
6865 {
6866         u64 task_size;
6867
6868         /* No regs, no stack pointer, no dump. */
6869         if (!regs)
6870                 return 0;
6871
6872         /*
6873          * Check if we fit in with the requested stack size into the:
6874          * - TASK_SIZE
6875          *   If we don't, we limit the size to the TASK_SIZE.
6876          *
6877          * - remaining sample size
6878          *   If we don't, we customize the stack size to
6879          *   fit in to the remaining sample size.
6880          */
6881
6882         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6883         stack_size = min(stack_size, (u16) task_size);
6884
6885         /* Current header size plus static size and dynamic size. */
6886         header_size += 2 * sizeof(u64);
6887
6888         /* Do we fit in with the current stack dump size? */
6889         if ((u16) (header_size + stack_size) < header_size) {
6890                 /*
6891                  * If we overflow the maximum size for the sample,
6892                  * we customize the stack dump size to fit in.
6893                  */
6894                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6895                 stack_size = round_up(stack_size, sizeof(u64));
6896         }
6897
6898         return stack_size;
6899 }
6900
6901 static void
6902 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6903                           struct pt_regs *regs)
6904 {
6905         /* Case of a kernel thread, nothing to dump */
6906         if (!regs) {
6907                 u64 size = 0;
6908                 perf_output_put(handle, size);
6909         } else {
6910                 unsigned long sp;
6911                 unsigned int rem;
6912                 u64 dyn_size;
6913
6914                 /*
6915                  * We dump:
6916                  * static size
6917                  *   - the size requested by user or the best one we can fit
6918                  *     in to the sample max size
6919                  * data
6920                  *   - user stack dump data
6921                  * dynamic size
6922                  *   - the actual dumped size
6923                  */
6924
6925                 /* Static size. */
6926                 perf_output_put(handle, dump_size);
6927
6928                 /* Data. */
6929                 sp = perf_user_stack_pointer(regs);
6930                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6931                 dyn_size = dump_size - rem;
6932
6933                 perf_output_skip(handle, rem);
6934
6935                 /* Dynamic size. */
6936                 perf_output_put(handle, dyn_size);
6937         }
6938 }
6939
6940 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6941                                           struct perf_sample_data *data,
6942                                           size_t size)
6943 {
6944         struct perf_event *sampler = event->aux_event;
6945         struct perf_buffer *rb;
6946
6947         data->aux_size = 0;
6948
6949         if (!sampler)
6950                 goto out;
6951
6952         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6953                 goto out;
6954
6955         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6956                 goto out;
6957
6958         rb = ring_buffer_get(sampler);
6959         if (!rb)
6960                 goto out;
6961
6962         /*
6963          * If this is an NMI hit inside sampling code, don't take
6964          * the sample. See also perf_aux_sample_output().
6965          */
6966         if (READ_ONCE(rb->aux_in_sampling)) {
6967                 data->aux_size = 0;
6968         } else {
6969                 size = min_t(size_t, size, perf_aux_size(rb));
6970                 data->aux_size = ALIGN(size, sizeof(u64));
6971         }
6972         ring_buffer_put(rb);
6973
6974 out:
6975         return data->aux_size;
6976 }
6977
6978 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6979                                  struct perf_event *event,
6980                                  struct perf_output_handle *handle,
6981                                  unsigned long size)
6982 {
6983         unsigned long flags;
6984         long ret;
6985
6986         /*
6987          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6988          * paths. If we start calling them in NMI context, they may race with
6989          * the IRQ ones, that is, for example, re-starting an event that's just
6990          * been stopped, which is why we're using a separate callback that
6991          * doesn't change the event state.
6992          *
6993          * IRQs need to be disabled to prevent IPIs from racing with us.
6994          */
6995         local_irq_save(flags);
6996         /*
6997          * Guard against NMI hits inside the critical section;
6998          * see also perf_prepare_sample_aux().
6999          */
7000         WRITE_ONCE(rb->aux_in_sampling, 1);
7001         barrier();
7002
7003         ret = event->pmu->snapshot_aux(event, handle, size);
7004
7005         barrier();
7006         WRITE_ONCE(rb->aux_in_sampling, 0);
7007         local_irq_restore(flags);
7008
7009         return ret;
7010 }
7011
7012 static void perf_aux_sample_output(struct perf_event *event,
7013                                    struct perf_output_handle *handle,
7014                                    struct perf_sample_data *data)
7015 {
7016         struct perf_event *sampler = event->aux_event;
7017         struct perf_buffer *rb;
7018         unsigned long pad;
7019         long size;
7020
7021         if (WARN_ON_ONCE(!sampler || !data->aux_size))
7022                 return;
7023
7024         rb = ring_buffer_get(sampler);
7025         if (!rb)
7026                 return;
7027
7028         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7029
7030         /*
7031          * An error here means that perf_output_copy() failed (returned a
7032          * non-zero surplus that it didn't copy), which in its current
7033          * enlightened implementation is not possible. If that changes, we'd
7034          * like to know.
7035          */
7036         if (WARN_ON_ONCE(size < 0))
7037                 goto out_put;
7038
7039         /*
7040          * The pad comes from ALIGN()ing data->aux_size up to u64 in
7041          * perf_prepare_sample_aux(), so should not be more than that.
7042          */
7043         pad = data->aux_size - size;
7044         if (WARN_ON_ONCE(pad >= sizeof(u64)))
7045                 pad = 8;
7046
7047         if (pad) {
7048                 u64 zero = 0;
7049                 perf_output_copy(handle, &zero, pad);
7050         }
7051
7052 out_put:
7053         ring_buffer_put(rb);
7054 }
7055
7056 static void __perf_event_header__init_id(struct perf_event_header *header,
7057                                          struct perf_sample_data *data,
7058                                          struct perf_event *event,
7059                                          u64 sample_type)
7060 {
7061         data->type = event->attr.sample_type;
7062         header->size += event->id_header_size;
7063
7064         if (sample_type & PERF_SAMPLE_TID) {
7065                 /* namespace issues */
7066                 data->tid_entry.pid = perf_event_pid(event, current);
7067                 data->tid_entry.tid = perf_event_tid(event, current);
7068         }
7069
7070         if (sample_type & PERF_SAMPLE_TIME)
7071                 data->time = perf_event_clock(event);
7072
7073         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7074                 data->id = primary_event_id(event);
7075
7076         if (sample_type & PERF_SAMPLE_STREAM_ID)
7077                 data->stream_id = event->id;
7078
7079         if (sample_type & PERF_SAMPLE_CPU) {
7080                 data->cpu_entry.cpu      = raw_smp_processor_id();
7081                 data->cpu_entry.reserved = 0;
7082         }
7083 }
7084
7085 void perf_event_header__init_id(struct perf_event_header *header,
7086                                 struct perf_sample_data *data,
7087                                 struct perf_event *event)
7088 {
7089         if (event->attr.sample_id_all)
7090                 __perf_event_header__init_id(header, data, event, event->attr.sample_type);
7091 }
7092
7093 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7094                                            struct perf_sample_data *data)
7095 {
7096         u64 sample_type = data->type;
7097
7098         if (sample_type & PERF_SAMPLE_TID)
7099                 perf_output_put(handle, data->tid_entry);
7100
7101         if (sample_type & PERF_SAMPLE_TIME)
7102                 perf_output_put(handle, data->time);
7103
7104         if (sample_type & PERF_SAMPLE_ID)
7105                 perf_output_put(handle, data->id);
7106
7107         if (sample_type & PERF_SAMPLE_STREAM_ID)
7108                 perf_output_put(handle, data->stream_id);
7109
7110         if (sample_type & PERF_SAMPLE_CPU)
7111                 perf_output_put(handle, data->cpu_entry);
7112
7113         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7114                 perf_output_put(handle, data->id);
7115 }
7116
7117 void perf_event__output_id_sample(struct perf_event *event,
7118                                   struct perf_output_handle *handle,
7119                                   struct perf_sample_data *sample)
7120 {
7121         if (event->attr.sample_id_all)
7122                 __perf_event__output_id_sample(handle, sample);
7123 }
7124
7125 static void perf_output_read_one(struct perf_output_handle *handle,
7126                                  struct perf_event *event,
7127                                  u64 enabled, u64 running)
7128 {
7129         u64 read_format = event->attr.read_format;
7130         u64 values[5];
7131         int n = 0;
7132
7133         values[n++] = perf_event_count(event);
7134         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7135                 values[n++] = enabled +
7136                         atomic64_read(&event->child_total_time_enabled);
7137         }
7138         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7139                 values[n++] = running +
7140                         atomic64_read(&event->child_total_time_running);
7141         }
7142         if (read_format & PERF_FORMAT_ID)
7143                 values[n++] = primary_event_id(event);
7144         if (read_format & PERF_FORMAT_LOST)
7145                 values[n++] = atomic64_read(&event->lost_samples);
7146
7147         __output_copy(handle, values, n * sizeof(u64));
7148 }
7149
7150 static void perf_output_read_group(struct perf_output_handle *handle,
7151                             struct perf_event *event,
7152                             u64 enabled, u64 running)
7153 {
7154         struct perf_event *leader = event->group_leader, *sub;
7155         u64 read_format = event->attr.read_format;
7156         unsigned long flags;
7157         u64 values[6];
7158         int n = 0;
7159
7160         /*
7161          * Disabling interrupts avoids all counter scheduling
7162          * (context switches, timer based rotation and IPIs).
7163          */
7164         local_irq_save(flags);
7165
7166         values[n++] = 1 + leader->nr_siblings;
7167
7168         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7169                 values[n++] = enabled;
7170
7171         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7172                 values[n++] = running;
7173
7174         if ((leader != event) &&
7175             (leader->state == PERF_EVENT_STATE_ACTIVE))
7176                 leader->pmu->read(leader);
7177
7178         values[n++] = perf_event_count(leader);
7179         if (read_format & PERF_FORMAT_ID)
7180                 values[n++] = primary_event_id(leader);
7181         if (read_format & PERF_FORMAT_LOST)
7182                 values[n++] = atomic64_read(&leader->lost_samples);
7183
7184         __output_copy(handle, values, n * sizeof(u64));
7185
7186         for_each_sibling_event(sub, leader) {
7187                 n = 0;
7188
7189                 if ((sub != event) &&
7190                     (sub->state == PERF_EVENT_STATE_ACTIVE))
7191                         sub->pmu->read(sub);
7192
7193                 values[n++] = perf_event_count(sub);
7194                 if (read_format & PERF_FORMAT_ID)
7195                         values[n++] = primary_event_id(sub);
7196                 if (read_format & PERF_FORMAT_LOST)
7197                         values[n++] = atomic64_read(&sub->lost_samples);
7198
7199                 __output_copy(handle, values, n * sizeof(u64));
7200         }
7201
7202         local_irq_restore(flags);
7203 }
7204
7205 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7206                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
7207
7208 /*
7209  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7210  *
7211  * The problem is that its both hard and excessively expensive to iterate the
7212  * child list, not to mention that its impossible to IPI the children running
7213  * on another CPU, from interrupt/NMI context.
7214  */
7215 static void perf_output_read(struct perf_output_handle *handle,
7216                              struct perf_event *event)
7217 {
7218         u64 enabled = 0, running = 0, now;
7219         u64 read_format = event->attr.read_format;
7220
7221         /*
7222          * compute total_time_enabled, total_time_running
7223          * based on snapshot values taken when the event
7224          * was last scheduled in.
7225          *
7226          * we cannot simply called update_context_time()
7227          * because of locking issue as we are called in
7228          * NMI context
7229          */
7230         if (read_format & PERF_FORMAT_TOTAL_TIMES)
7231                 calc_timer_values(event, &now, &enabled, &running);
7232
7233         if (event->attr.read_format & PERF_FORMAT_GROUP)
7234                 perf_output_read_group(handle, event, enabled, running);
7235         else
7236                 perf_output_read_one(handle, event, enabled, running);
7237 }
7238
7239 void perf_output_sample(struct perf_output_handle *handle,
7240                         struct perf_event_header *header,
7241                         struct perf_sample_data *data,
7242                         struct perf_event *event)
7243 {
7244         u64 sample_type = data->type;
7245
7246         perf_output_put(handle, *header);
7247
7248         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7249                 perf_output_put(handle, data->id);
7250
7251         if (sample_type & PERF_SAMPLE_IP)
7252                 perf_output_put(handle, data->ip);
7253
7254         if (sample_type & PERF_SAMPLE_TID)
7255                 perf_output_put(handle, data->tid_entry);
7256
7257         if (sample_type & PERF_SAMPLE_TIME)
7258                 perf_output_put(handle, data->time);
7259
7260         if (sample_type & PERF_SAMPLE_ADDR)
7261                 perf_output_put(handle, data->addr);
7262
7263         if (sample_type & PERF_SAMPLE_ID)
7264                 perf_output_put(handle, data->id);
7265
7266         if (sample_type & PERF_SAMPLE_STREAM_ID)
7267                 perf_output_put(handle, data->stream_id);
7268
7269         if (sample_type & PERF_SAMPLE_CPU)
7270                 perf_output_put(handle, data->cpu_entry);
7271
7272         if (sample_type & PERF_SAMPLE_PERIOD)
7273                 perf_output_put(handle, data->period);
7274
7275         if (sample_type & PERF_SAMPLE_READ)
7276                 perf_output_read(handle, event);
7277
7278         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7279                 int size = 1;
7280
7281                 size += data->callchain->nr;
7282                 size *= sizeof(u64);
7283                 __output_copy(handle, data->callchain, size);
7284         }
7285
7286         if (sample_type & PERF_SAMPLE_RAW) {
7287                 struct perf_raw_record *raw = data->raw;
7288
7289                 if (raw) {
7290                         struct perf_raw_frag *frag = &raw->frag;
7291
7292                         perf_output_put(handle, raw->size);
7293                         do {
7294                                 if (frag->copy) {
7295                                         __output_custom(handle, frag->copy,
7296                                                         frag->data, frag->size);
7297                                 } else {
7298                                         __output_copy(handle, frag->data,
7299                                                       frag->size);
7300                                 }
7301                                 if (perf_raw_frag_last(frag))
7302                                         break;
7303                                 frag = frag->next;
7304                         } while (1);
7305                         if (frag->pad)
7306                                 __output_skip(handle, NULL, frag->pad);
7307                 } else {
7308                         struct {
7309                                 u32     size;
7310                                 u32     data;
7311                         } raw = {
7312                                 .size = sizeof(u32),
7313                                 .data = 0,
7314                         };
7315                         perf_output_put(handle, raw);
7316                 }
7317         }
7318
7319         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7320                 if (data->sample_flags & PERF_SAMPLE_BRANCH_STACK) {
7321                         size_t size;
7322
7323                         size = data->br_stack->nr
7324                              * sizeof(struct perf_branch_entry);
7325
7326                         perf_output_put(handle, data->br_stack->nr);
7327                         if (branch_sample_hw_index(event))
7328                                 perf_output_put(handle, data->br_stack->hw_idx);
7329                         perf_output_copy(handle, data->br_stack->entries, size);
7330                 } else {
7331                         /*
7332                          * we always store at least the value of nr
7333                          */
7334                         u64 nr = 0;
7335                         perf_output_put(handle, nr);
7336                 }
7337         }
7338
7339         if (sample_type & PERF_SAMPLE_REGS_USER) {
7340                 u64 abi = data->regs_user.abi;
7341
7342                 /*
7343                  * If there are no regs to dump, notice it through
7344                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7345                  */
7346                 perf_output_put(handle, abi);
7347
7348                 if (abi) {
7349                         u64 mask = event->attr.sample_regs_user;
7350                         perf_output_sample_regs(handle,
7351                                                 data->regs_user.regs,
7352                                                 mask);
7353                 }
7354         }
7355
7356         if (sample_type & PERF_SAMPLE_STACK_USER) {
7357                 perf_output_sample_ustack(handle,
7358                                           data->stack_user_size,
7359                                           data->regs_user.regs);
7360         }
7361
7362         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7363                 perf_output_put(handle, data->weight.full);
7364
7365         if (sample_type & PERF_SAMPLE_DATA_SRC)
7366                 perf_output_put(handle, data->data_src.val);
7367
7368         if (sample_type & PERF_SAMPLE_TRANSACTION)
7369                 perf_output_put(handle, data->txn);
7370
7371         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7372                 u64 abi = data->regs_intr.abi;
7373                 /*
7374                  * If there are no regs to dump, notice it through
7375                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7376                  */
7377                 perf_output_put(handle, abi);
7378
7379                 if (abi) {
7380                         u64 mask = event->attr.sample_regs_intr;
7381
7382                         perf_output_sample_regs(handle,
7383                                                 data->regs_intr.regs,
7384                                                 mask);
7385                 }
7386         }
7387
7388         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7389                 perf_output_put(handle, data->phys_addr);
7390
7391         if (sample_type & PERF_SAMPLE_CGROUP)
7392                 perf_output_put(handle, data->cgroup);
7393
7394         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7395                 perf_output_put(handle, data->data_page_size);
7396
7397         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7398                 perf_output_put(handle, data->code_page_size);
7399
7400         if (sample_type & PERF_SAMPLE_AUX) {
7401                 perf_output_put(handle, data->aux_size);
7402
7403                 if (data->aux_size)
7404                         perf_aux_sample_output(event, handle, data);
7405         }
7406
7407         if (!event->attr.watermark) {
7408                 int wakeup_events = event->attr.wakeup_events;
7409
7410                 if (wakeup_events) {
7411                         struct perf_buffer *rb = handle->rb;
7412                         int events = local_inc_return(&rb->events);
7413
7414                         if (events >= wakeup_events) {
7415                                 local_sub(wakeup_events, &rb->events);
7416                                 local_inc(&rb->wakeup);
7417                         }
7418                 }
7419         }
7420 }
7421
7422 static u64 perf_virt_to_phys(u64 virt)
7423 {
7424         u64 phys_addr = 0;
7425
7426         if (!virt)
7427                 return 0;
7428
7429         if (virt >= TASK_SIZE) {
7430                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7431                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7432                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7433                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7434         } else {
7435                 /*
7436                  * Walking the pages tables for user address.
7437                  * Interrupts are disabled, so it prevents any tear down
7438                  * of the page tables.
7439                  * Try IRQ-safe get_user_page_fast_only first.
7440                  * If failed, leave phys_addr as 0.
7441                  */
7442                 if (current->mm != NULL) {
7443                         struct page *p;
7444
7445                         pagefault_disable();
7446                         if (get_user_page_fast_only(virt, 0, &p)) {
7447                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7448                                 put_page(p);
7449                         }
7450                         pagefault_enable();
7451                 }
7452         }
7453
7454         return phys_addr;
7455 }
7456
7457 /*
7458  * Return the pagetable size of a given virtual address.
7459  */
7460 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7461 {
7462         u64 size = 0;
7463
7464 #ifdef CONFIG_HAVE_FAST_GUP
7465         pgd_t *pgdp, pgd;
7466         p4d_t *p4dp, p4d;
7467         pud_t *pudp, pud;
7468         pmd_t *pmdp, pmd;
7469         pte_t *ptep, pte;
7470
7471         pgdp = pgd_offset(mm, addr);
7472         pgd = READ_ONCE(*pgdp);
7473         if (pgd_none(pgd))
7474                 return 0;
7475
7476         if (pgd_leaf(pgd))
7477                 return pgd_leaf_size(pgd);
7478
7479         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7480         p4d = READ_ONCE(*p4dp);
7481         if (!p4d_present(p4d))
7482                 return 0;
7483
7484         if (p4d_leaf(p4d))
7485                 return p4d_leaf_size(p4d);
7486
7487         pudp = pud_offset_lockless(p4dp, p4d, addr);
7488         pud = READ_ONCE(*pudp);
7489         if (!pud_present(pud))
7490                 return 0;
7491
7492         if (pud_leaf(pud))
7493                 return pud_leaf_size(pud);
7494
7495         pmdp = pmd_offset_lockless(pudp, pud, addr);
7496         pmd = pmdp_get_lockless(pmdp);
7497         if (!pmd_present(pmd))
7498                 return 0;
7499
7500         if (pmd_leaf(pmd))
7501                 return pmd_leaf_size(pmd);
7502
7503         ptep = pte_offset_map(&pmd, addr);
7504         pte = ptep_get_lockless(ptep);
7505         if (pte_present(pte))
7506                 size = pte_leaf_size(pte);
7507         pte_unmap(ptep);
7508 #endif /* CONFIG_HAVE_FAST_GUP */
7509
7510         return size;
7511 }
7512
7513 static u64 perf_get_page_size(unsigned long addr)
7514 {
7515         struct mm_struct *mm;
7516         unsigned long flags;
7517         u64 size;
7518
7519         if (!addr)
7520                 return 0;
7521
7522         /*
7523          * Software page-table walkers must disable IRQs,
7524          * which prevents any tear down of the page tables.
7525          */
7526         local_irq_save(flags);
7527
7528         mm = current->mm;
7529         if (!mm) {
7530                 /*
7531                  * For kernel threads and the like, use init_mm so that
7532                  * we can find kernel memory.
7533                  */
7534                 mm = &init_mm;
7535         }
7536
7537         size = perf_get_pgtable_size(mm, addr);
7538
7539         local_irq_restore(flags);
7540
7541         return size;
7542 }
7543
7544 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7545
7546 struct perf_callchain_entry *
7547 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7548 {
7549         bool kernel = !event->attr.exclude_callchain_kernel;
7550         bool user   = !event->attr.exclude_callchain_user;
7551         /* Disallow cross-task user callchains. */
7552         bool crosstask = event->ctx->task && event->ctx->task != current;
7553         const u32 max_stack = event->attr.sample_max_stack;
7554         struct perf_callchain_entry *callchain;
7555
7556         if (!kernel && !user)
7557                 return &__empty_callchain;
7558
7559         callchain = get_perf_callchain(regs, 0, kernel, user,
7560                                        max_stack, crosstask, true);
7561         return callchain ?: &__empty_callchain;
7562 }
7563
7564 void perf_prepare_sample(struct perf_event_header *header,
7565                          struct perf_sample_data *data,
7566                          struct perf_event *event,
7567                          struct pt_regs *regs)
7568 {
7569         u64 sample_type = event->attr.sample_type;
7570         u64 filtered_sample_type;
7571
7572         header->type = PERF_RECORD_SAMPLE;
7573         header->size = sizeof(*header) + event->header_size;
7574
7575         header->misc = 0;
7576         header->misc |= perf_misc_flags(regs);
7577
7578         /*
7579          * Clear the sample flags that have already been done by the
7580          * PMU driver.
7581          */
7582         filtered_sample_type = sample_type & ~data->sample_flags;
7583         __perf_event_header__init_id(header, data, event, filtered_sample_type);
7584
7585         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7586                 data->ip = perf_instruction_pointer(regs);
7587
7588         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7589                 int size = 1;
7590
7591                 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7592                         data->callchain = perf_callchain(event, regs);
7593
7594                 size += data->callchain->nr;
7595
7596                 header->size += size * sizeof(u64);
7597         }
7598
7599         if (sample_type & PERF_SAMPLE_RAW) {
7600                 struct perf_raw_record *raw = data->raw;
7601                 int size;
7602
7603                 if (raw && (data->sample_flags & PERF_SAMPLE_RAW)) {
7604                         struct perf_raw_frag *frag = &raw->frag;
7605                         u32 sum = 0;
7606
7607                         do {
7608                                 sum += frag->size;
7609                                 if (perf_raw_frag_last(frag))
7610                                         break;
7611                                 frag = frag->next;
7612                         } while (1);
7613
7614                         size = round_up(sum + sizeof(u32), sizeof(u64));
7615                         raw->size = size - sizeof(u32);
7616                         frag->pad = raw->size - sum;
7617                 } else {
7618                         size = sizeof(u64);
7619                         data->raw = NULL;
7620                 }
7621
7622                 header->size += size;
7623         }
7624
7625         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7626                 int size = sizeof(u64); /* nr */
7627                 if (data->sample_flags & PERF_SAMPLE_BRANCH_STACK) {
7628                         if (branch_sample_hw_index(event))
7629                                 size += sizeof(u64);
7630
7631                         size += data->br_stack->nr
7632                               * sizeof(struct perf_branch_entry);
7633                 }
7634                 header->size += size;
7635         }
7636
7637         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7638                 perf_sample_regs_user(&data->regs_user, regs);
7639
7640         if (sample_type & PERF_SAMPLE_REGS_USER) {
7641                 /* regs dump ABI info */
7642                 int size = sizeof(u64);
7643
7644                 if (data->regs_user.regs) {
7645                         u64 mask = event->attr.sample_regs_user;
7646                         size += hweight64(mask) * sizeof(u64);
7647                 }
7648
7649                 header->size += size;
7650         }
7651
7652         if (sample_type & PERF_SAMPLE_STACK_USER) {
7653                 /*
7654                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7655                  * processed as the last one or have additional check added
7656                  * in case new sample type is added, because we could eat
7657                  * up the rest of the sample size.
7658                  */
7659                 u16 stack_size = event->attr.sample_stack_user;
7660                 u16 size = sizeof(u64);
7661
7662                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7663                                                      data->regs_user.regs);
7664
7665                 /*
7666                  * If there is something to dump, add space for the dump
7667                  * itself and for the field that tells the dynamic size,
7668                  * which is how many have been actually dumped.
7669                  */
7670                 if (stack_size)
7671                         size += sizeof(u64) + stack_size;
7672
7673                 data->stack_user_size = stack_size;
7674                 header->size += size;
7675         }
7676
7677         if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7678                 data->weight.full = 0;
7679
7680         if (filtered_sample_type & PERF_SAMPLE_DATA_SRC)
7681                 data->data_src.val = PERF_MEM_NA;
7682
7683         if (filtered_sample_type & PERF_SAMPLE_TRANSACTION)
7684                 data->txn = 0;
7685
7686         if (sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR | PERF_SAMPLE_DATA_PAGE_SIZE)) {
7687                 if (filtered_sample_type & PERF_SAMPLE_ADDR)
7688                         data->addr = 0;
7689         }
7690
7691         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7692                 /* regs dump ABI info */
7693                 int size = sizeof(u64);
7694
7695                 perf_sample_regs_intr(&data->regs_intr, regs);
7696
7697                 if (data->regs_intr.regs) {
7698                         u64 mask = event->attr.sample_regs_intr;
7699
7700                         size += hweight64(mask) * sizeof(u64);
7701                 }
7702
7703                 header->size += size;
7704         }
7705
7706         if (sample_type & PERF_SAMPLE_PHYS_ADDR &&
7707             filtered_sample_type & PERF_SAMPLE_PHYS_ADDR)
7708                 data->phys_addr = perf_virt_to_phys(data->addr);
7709
7710 #ifdef CONFIG_CGROUP_PERF
7711         if (sample_type & PERF_SAMPLE_CGROUP) {
7712                 struct cgroup *cgrp;
7713
7714                 /* protected by RCU */
7715                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7716                 data->cgroup = cgroup_id(cgrp);
7717         }
7718 #endif
7719
7720         /*
7721          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7722          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7723          * but the value will not dump to the userspace.
7724          */
7725         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7726                 data->data_page_size = perf_get_page_size(data->addr);
7727
7728         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7729                 data->code_page_size = perf_get_page_size(data->ip);
7730
7731         if (sample_type & PERF_SAMPLE_AUX) {
7732                 u64 size;
7733
7734                 header->size += sizeof(u64); /* size */
7735
7736                 /*
7737                  * Given the 16bit nature of header::size, an AUX sample can
7738                  * easily overflow it, what with all the preceding sample bits.
7739                  * Make sure this doesn't happen by using up to U16_MAX bytes
7740                  * per sample in total (rounded down to 8 byte boundary).
7741                  */
7742                 size = min_t(size_t, U16_MAX - header->size,
7743                              event->attr.aux_sample_size);
7744                 size = rounddown(size, 8);
7745                 size = perf_prepare_sample_aux(event, data, size);
7746
7747                 WARN_ON_ONCE(size + header->size > U16_MAX);
7748                 header->size += size;
7749         }
7750         /*
7751          * If you're adding more sample types here, you likely need to do
7752          * something about the overflowing header::size, like repurpose the
7753          * lowest 3 bits of size, which should be always zero at the moment.
7754          * This raises a more important question, do we really need 512k sized
7755          * samples and why, so good argumentation is in order for whatever you
7756          * do here next.
7757          */
7758         WARN_ON_ONCE(header->size & 7);
7759 }
7760
7761 static __always_inline int
7762 __perf_event_output(struct perf_event *event,
7763                     struct perf_sample_data *data,
7764                     struct pt_regs *regs,
7765                     int (*output_begin)(struct perf_output_handle *,
7766                                         struct perf_sample_data *,
7767                                         struct perf_event *,
7768                                         unsigned int))
7769 {
7770         struct perf_output_handle handle;
7771         struct perf_event_header header;
7772         int err;
7773
7774         /* protect the callchain buffers */
7775         rcu_read_lock();
7776
7777         perf_prepare_sample(&header, data, event, regs);
7778
7779         err = output_begin(&handle, data, event, header.size);
7780         if (err)
7781                 goto exit;
7782
7783         perf_output_sample(&handle, &header, data, event);
7784
7785         perf_output_end(&handle);
7786
7787 exit:
7788         rcu_read_unlock();
7789         return err;
7790 }
7791
7792 void
7793 perf_event_output_forward(struct perf_event *event,
7794                          struct perf_sample_data *data,
7795                          struct pt_regs *regs)
7796 {
7797         __perf_event_output(event, data, regs, perf_output_begin_forward);
7798 }
7799
7800 void
7801 perf_event_output_backward(struct perf_event *event,
7802                            struct perf_sample_data *data,
7803                            struct pt_regs *regs)
7804 {
7805         __perf_event_output(event, data, regs, perf_output_begin_backward);
7806 }
7807
7808 int
7809 perf_event_output(struct perf_event *event,
7810                   struct perf_sample_data *data,
7811                   struct pt_regs *regs)
7812 {
7813         return __perf_event_output(event, data, regs, perf_output_begin);
7814 }
7815
7816 /*
7817  * read event_id
7818  */
7819
7820 struct perf_read_event {
7821         struct perf_event_header        header;
7822
7823         u32                             pid;
7824         u32                             tid;
7825 };
7826
7827 static void
7828 perf_event_read_event(struct perf_event *event,
7829                         struct task_struct *task)
7830 {
7831         struct perf_output_handle handle;
7832         struct perf_sample_data sample;
7833         struct perf_read_event read_event = {
7834                 .header = {
7835                         .type = PERF_RECORD_READ,
7836                         .misc = 0,
7837                         .size = sizeof(read_event) + event->read_size,
7838                 },
7839                 .pid = perf_event_pid(event, task),
7840                 .tid = perf_event_tid(event, task),
7841         };
7842         int ret;
7843
7844         perf_event_header__init_id(&read_event.header, &sample, event);
7845         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7846         if (ret)
7847                 return;
7848
7849         perf_output_put(&handle, read_event);
7850         perf_output_read(&handle, event);
7851         perf_event__output_id_sample(event, &handle, &sample);
7852
7853         perf_output_end(&handle);
7854 }
7855
7856 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7857
7858 static void
7859 perf_iterate_ctx(struct perf_event_context *ctx,
7860                    perf_iterate_f output,
7861                    void *data, bool all)
7862 {
7863         struct perf_event *event;
7864
7865         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7866                 if (!all) {
7867                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7868                                 continue;
7869                         if (!event_filter_match(event))
7870                                 continue;
7871                 }
7872
7873                 output(event, data);
7874         }
7875 }
7876
7877 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7878 {
7879         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7880         struct perf_event *event;
7881
7882         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7883                 /*
7884                  * Skip events that are not fully formed yet; ensure that
7885                  * if we observe event->ctx, both event and ctx will be
7886                  * complete enough. See perf_install_in_context().
7887                  */
7888                 if (!smp_load_acquire(&event->ctx))
7889                         continue;
7890
7891                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7892                         continue;
7893                 if (!event_filter_match(event))
7894                         continue;
7895                 output(event, data);
7896         }
7897 }
7898
7899 /*
7900  * Iterate all events that need to receive side-band events.
7901  *
7902  * For new callers; ensure that account_pmu_sb_event() includes
7903  * your event, otherwise it might not get delivered.
7904  */
7905 static void
7906 perf_iterate_sb(perf_iterate_f output, void *data,
7907                struct perf_event_context *task_ctx)
7908 {
7909         struct perf_event_context *ctx;
7910
7911         rcu_read_lock();
7912         preempt_disable();
7913
7914         /*
7915          * If we have task_ctx != NULL we only notify the task context itself.
7916          * The task_ctx is set only for EXIT events before releasing task
7917          * context.
7918          */
7919         if (task_ctx) {
7920                 perf_iterate_ctx(task_ctx, output, data, false);
7921                 goto done;
7922         }
7923
7924         perf_iterate_sb_cpu(output, data);
7925
7926         ctx = rcu_dereference(current->perf_event_ctxp);
7927         if (ctx)
7928                 perf_iterate_ctx(ctx, output, data, false);
7929 done:
7930         preempt_enable();
7931         rcu_read_unlock();
7932 }
7933
7934 /*
7935  * Clear all file-based filters at exec, they'll have to be
7936  * re-instated when/if these objects are mmapped again.
7937  */
7938 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7939 {
7940         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7941         struct perf_addr_filter *filter;
7942         unsigned int restart = 0, count = 0;
7943         unsigned long flags;
7944
7945         if (!has_addr_filter(event))
7946                 return;
7947
7948         raw_spin_lock_irqsave(&ifh->lock, flags);
7949         list_for_each_entry(filter, &ifh->list, entry) {
7950                 if (filter->path.dentry) {
7951                         event->addr_filter_ranges[count].start = 0;
7952                         event->addr_filter_ranges[count].size = 0;
7953                         restart++;
7954                 }
7955
7956                 count++;
7957         }
7958
7959         if (restart)
7960                 event->addr_filters_gen++;
7961         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7962
7963         if (restart)
7964                 perf_event_stop(event, 1);
7965 }
7966
7967 void perf_event_exec(void)
7968 {
7969         struct perf_event_context *ctx;
7970
7971         ctx = perf_pin_task_context(current);
7972         if (!ctx)
7973                 return;
7974
7975         perf_event_enable_on_exec(ctx);
7976         perf_event_remove_on_exec(ctx);
7977         perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
7978
7979         perf_unpin_context(ctx);
7980         put_ctx(ctx);
7981 }
7982
7983 struct remote_output {
7984         struct perf_buffer      *rb;
7985         int                     err;
7986 };
7987
7988 static void __perf_event_output_stop(struct perf_event *event, void *data)
7989 {
7990         struct perf_event *parent = event->parent;
7991         struct remote_output *ro = data;
7992         struct perf_buffer *rb = ro->rb;
7993         struct stop_event_data sd = {
7994                 .event  = event,
7995         };
7996
7997         if (!has_aux(event))
7998                 return;
7999
8000         if (!parent)
8001                 parent = event;
8002
8003         /*
8004          * In case of inheritance, it will be the parent that links to the
8005          * ring-buffer, but it will be the child that's actually using it.
8006          *
8007          * We are using event::rb to determine if the event should be stopped,
8008          * however this may race with ring_buffer_attach() (through set_output),
8009          * which will make us skip the event that actually needs to be stopped.
8010          * So ring_buffer_attach() has to stop an aux event before re-assigning
8011          * its rb pointer.
8012          */
8013         if (rcu_dereference(parent->rb) == rb)
8014                 ro->err = __perf_event_stop(&sd);
8015 }
8016
8017 static int __perf_pmu_output_stop(void *info)
8018 {
8019         struct perf_event *event = info;
8020         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8021         struct remote_output ro = {
8022                 .rb     = event->rb,
8023         };
8024
8025         rcu_read_lock();
8026         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8027         if (cpuctx->task_ctx)
8028                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8029                                    &ro, false);
8030         rcu_read_unlock();
8031
8032         return ro.err;
8033 }
8034
8035 static void perf_pmu_output_stop(struct perf_event *event)
8036 {
8037         struct perf_event *iter;
8038         int err, cpu;
8039
8040 restart:
8041         rcu_read_lock();
8042         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8043                 /*
8044                  * For per-CPU events, we need to make sure that neither they
8045                  * nor their children are running; for cpu==-1 events it's
8046                  * sufficient to stop the event itself if it's active, since
8047                  * it can't have children.
8048                  */
8049                 cpu = iter->cpu;
8050                 if (cpu == -1)
8051                         cpu = READ_ONCE(iter->oncpu);
8052
8053                 if (cpu == -1)
8054                         continue;
8055
8056                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8057                 if (err == -EAGAIN) {
8058                         rcu_read_unlock();
8059                         goto restart;
8060                 }
8061         }
8062         rcu_read_unlock();
8063 }
8064
8065 /*
8066  * task tracking -- fork/exit
8067  *
8068  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8069  */
8070
8071 struct perf_task_event {
8072         struct task_struct              *task;
8073         struct perf_event_context       *task_ctx;
8074
8075         struct {
8076                 struct perf_event_header        header;
8077
8078                 u32                             pid;
8079                 u32                             ppid;
8080                 u32                             tid;
8081                 u32                             ptid;
8082                 u64                             time;
8083         } event_id;
8084 };
8085
8086 static int perf_event_task_match(struct perf_event *event)
8087 {
8088         return event->attr.comm  || event->attr.mmap ||
8089                event->attr.mmap2 || event->attr.mmap_data ||
8090                event->attr.task;
8091 }
8092
8093 static void perf_event_task_output(struct perf_event *event,
8094                                    void *data)
8095 {
8096         struct perf_task_event *task_event = data;
8097         struct perf_output_handle handle;
8098         struct perf_sample_data sample;
8099         struct task_struct *task = task_event->task;
8100         int ret, size = task_event->event_id.header.size;
8101
8102         if (!perf_event_task_match(event))
8103                 return;
8104
8105         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8106
8107         ret = perf_output_begin(&handle, &sample, event,
8108                                 task_event->event_id.header.size);
8109         if (ret)
8110                 goto out;
8111
8112         task_event->event_id.pid = perf_event_pid(event, task);
8113         task_event->event_id.tid = perf_event_tid(event, task);
8114
8115         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8116                 task_event->event_id.ppid = perf_event_pid(event,
8117                                                         task->real_parent);
8118                 task_event->event_id.ptid = perf_event_pid(event,
8119                                                         task->real_parent);
8120         } else {  /* PERF_RECORD_FORK */
8121                 task_event->event_id.ppid = perf_event_pid(event, current);
8122                 task_event->event_id.ptid = perf_event_tid(event, current);
8123         }
8124
8125         task_event->event_id.time = perf_event_clock(event);
8126
8127         perf_output_put(&handle, task_event->event_id);
8128
8129         perf_event__output_id_sample(event, &handle, &sample);
8130
8131         perf_output_end(&handle);
8132 out:
8133         task_event->event_id.header.size = size;
8134 }
8135
8136 static void perf_event_task(struct task_struct *task,
8137                               struct perf_event_context *task_ctx,
8138                               int new)
8139 {
8140         struct perf_task_event task_event;
8141
8142         if (!atomic_read(&nr_comm_events) &&
8143             !atomic_read(&nr_mmap_events) &&
8144             !atomic_read(&nr_task_events))
8145                 return;
8146
8147         task_event = (struct perf_task_event){
8148                 .task     = task,
8149                 .task_ctx = task_ctx,
8150                 .event_id    = {
8151                         .header = {
8152                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8153                                 .misc = 0,
8154                                 .size = sizeof(task_event.event_id),
8155                         },
8156                         /* .pid  */
8157                         /* .ppid */
8158                         /* .tid  */
8159                         /* .ptid */
8160                         /* .time */
8161                 },
8162         };
8163
8164         perf_iterate_sb(perf_event_task_output,
8165                        &task_event,
8166                        task_ctx);
8167 }
8168
8169 void perf_event_fork(struct task_struct *task)
8170 {
8171         perf_event_task(task, NULL, 1);
8172         perf_event_namespaces(task);
8173 }
8174
8175 /*
8176  * comm tracking
8177  */
8178
8179 struct perf_comm_event {
8180         struct task_struct      *task;
8181         char                    *comm;
8182         int                     comm_size;
8183
8184         struct {
8185                 struct perf_event_header        header;
8186
8187                 u32                             pid;
8188                 u32                             tid;
8189         } event_id;
8190 };
8191
8192 static int perf_event_comm_match(struct perf_event *event)
8193 {
8194         return event->attr.comm;
8195 }
8196
8197 static void perf_event_comm_output(struct perf_event *event,
8198                                    void *data)
8199 {
8200         struct perf_comm_event *comm_event = data;
8201         struct perf_output_handle handle;
8202         struct perf_sample_data sample;
8203         int size = comm_event->event_id.header.size;
8204         int ret;
8205
8206         if (!perf_event_comm_match(event))
8207                 return;
8208
8209         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8210         ret = perf_output_begin(&handle, &sample, event,
8211                                 comm_event->event_id.header.size);
8212
8213         if (ret)
8214                 goto out;
8215
8216         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8217         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8218
8219         perf_output_put(&handle, comm_event->event_id);
8220         __output_copy(&handle, comm_event->comm,
8221                                    comm_event->comm_size);
8222
8223         perf_event__output_id_sample(event, &handle, &sample);
8224
8225         perf_output_end(&handle);
8226 out:
8227         comm_event->event_id.header.size = size;
8228 }
8229
8230 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8231 {
8232         char comm[TASK_COMM_LEN];
8233         unsigned int size;
8234
8235         memset(comm, 0, sizeof(comm));
8236         strlcpy(comm, comm_event->task->comm, sizeof(comm));
8237         size = ALIGN(strlen(comm)+1, sizeof(u64));
8238
8239         comm_event->comm = comm;
8240         comm_event->comm_size = size;
8241
8242         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8243
8244         perf_iterate_sb(perf_event_comm_output,
8245                        comm_event,
8246                        NULL);
8247 }
8248
8249 void perf_event_comm(struct task_struct *task, bool exec)
8250 {
8251         struct perf_comm_event comm_event;
8252
8253         if (!atomic_read(&nr_comm_events))
8254                 return;
8255
8256         comm_event = (struct perf_comm_event){
8257                 .task   = task,
8258                 /* .comm      */
8259                 /* .comm_size */
8260                 .event_id  = {
8261                         .header = {
8262                                 .type = PERF_RECORD_COMM,
8263                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8264                                 /* .size */
8265                         },
8266                         /* .pid */
8267                         /* .tid */
8268                 },
8269         };
8270
8271         perf_event_comm_event(&comm_event);
8272 }
8273
8274 /*
8275  * namespaces tracking
8276  */
8277
8278 struct perf_namespaces_event {
8279         struct task_struct              *task;
8280
8281         struct {
8282                 struct perf_event_header        header;
8283
8284                 u32                             pid;
8285                 u32                             tid;
8286                 u64                             nr_namespaces;
8287                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
8288         } event_id;
8289 };
8290
8291 static int perf_event_namespaces_match(struct perf_event *event)
8292 {
8293         return event->attr.namespaces;
8294 }
8295
8296 static void perf_event_namespaces_output(struct perf_event *event,
8297                                          void *data)
8298 {
8299         struct perf_namespaces_event *namespaces_event = data;
8300         struct perf_output_handle handle;
8301         struct perf_sample_data sample;
8302         u16 header_size = namespaces_event->event_id.header.size;
8303         int ret;
8304
8305         if (!perf_event_namespaces_match(event))
8306                 return;
8307
8308         perf_event_header__init_id(&namespaces_event->event_id.header,
8309                                    &sample, event);
8310         ret = perf_output_begin(&handle, &sample, event,
8311                                 namespaces_event->event_id.header.size);
8312         if (ret)
8313                 goto out;
8314
8315         namespaces_event->event_id.pid = perf_event_pid(event,
8316                                                         namespaces_event->task);
8317         namespaces_event->event_id.tid = perf_event_tid(event,
8318                                                         namespaces_event->task);
8319
8320         perf_output_put(&handle, namespaces_event->event_id);
8321
8322         perf_event__output_id_sample(event, &handle, &sample);
8323
8324         perf_output_end(&handle);
8325 out:
8326         namespaces_event->event_id.header.size = header_size;
8327 }
8328
8329 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8330                                    struct task_struct *task,
8331                                    const struct proc_ns_operations *ns_ops)
8332 {
8333         struct path ns_path;
8334         struct inode *ns_inode;
8335         int error;
8336
8337         error = ns_get_path(&ns_path, task, ns_ops);
8338         if (!error) {
8339                 ns_inode = ns_path.dentry->d_inode;
8340                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8341                 ns_link_info->ino = ns_inode->i_ino;
8342                 path_put(&ns_path);
8343         }
8344 }
8345
8346 void perf_event_namespaces(struct task_struct *task)
8347 {
8348         struct perf_namespaces_event namespaces_event;
8349         struct perf_ns_link_info *ns_link_info;
8350
8351         if (!atomic_read(&nr_namespaces_events))
8352                 return;
8353
8354         namespaces_event = (struct perf_namespaces_event){
8355                 .task   = task,
8356                 .event_id  = {
8357                         .header = {
8358                                 .type = PERF_RECORD_NAMESPACES,
8359                                 .misc = 0,
8360                                 .size = sizeof(namespaces_event.event_id),
8361                         },
8362                         /* .pid */
8363                         /* .tid */
8364                         .nr_namespaces = NR_NAMESPACES,
8365                         /* .link_info[NR_NAMESPACES] */
8366                 },
8367         };
8368
8369         ns_link_info = namespaces_event.event_id.link_info;
8370
8371         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8372                                task, &mntns_operations);
8373
8374 #ifdef CONFIG_USER_NS
8375         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8376                                task, &userns_operations);
8377 #endif
8378 #ifdef CONFIG_NET_NS
8379         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8380                                task, &netns_operations);
8381 #endif
8382 #ifdef CONFIG_UTS_NS
8383         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8384                                task, &utsns_operations);
8385 #endif
8386 #ifdef CONFIG_IPC_NS
8387         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8388                                task, &ipcns_operations);
8389 #endif
8390 #ifdef CONFIG_PID_NS
8391         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8392                                task, &pidns_operations);
8393 #endif
8394 #ifdef CONFIG_CGROUPS
8395         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8396                                task, &cgroupns_operations);
8397 #endif
8398
8399         perf_iterate_sb(perf_event_namespaces_output,
8400                         &namespaces_event,
8401                         NULL);
8402 }
8403
8404 /*
8405  * cgroup tracking
8406  */
8407 #ifdef CONFIG_CGROUP_PERF
8408
8409 struct perf_cgroup_event {
8410         char                            *path;
8411         int                             path_size;
8412         struct {
8413                 struct perf_event_header        header;
8414                 u64                             id;
8415                 char                            path[];
8416         } event_id;
8417 };
8418
8419 static int perf_event_cgroup_match(struct perf_event *event)
8420 {
8421         return event->attr.cgroup;
8422 }
8423
8424 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8425 {
8426         struct perf_cgroup_event *cgroup_event = data;
8427         struct perf_output_handle handle;
8428         struct perf_sample_data sample;
8429         u16 header_size = cgroup_event->event_id.header.size;
8430         int ret;
8431
8432         if (!perf_event_cgroup_match(event))
8433                 return;
8434
8435         perf_event_header__init_id(&cgroup_event->event_id.header,
8436                                    &sample, event);
8437         ret = perf_output_begin(&handle, &sample, event,
8438                                 cgroup_event->event_id.header.size);
8439         if (ret)
8440                 goto out;
8441
8442         perf_output_put(&handle, cgroup_event->event_id);
8443         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8444
8445         perf_event__output_id_sample(event, &handle, &sample);
8446
8447         perf_output_end(&handle);
8448 out:
8449         cgroup_event->event_id.header.size = header_size;
8450 }
8451
8452 static void perf_event_cgroup(struct cgroup *cgrp)
8453 {
8454         struct perf_cgroup_event cgroup_event;
8455         char path_enomem[16] = "//enomem";
8456         char *pathname;
8457         size_t size;
8458
8459         if (!atomic_read(&nr_cgroup_events))
8460                 return;
8461
8462         cgroup_event = (struct perf_cgroup_event){
8463                 .event_id  = {
8464                         .header = {
8465                                 .type = PERF_RECORD_CGROUP,
8466                                 .misc = 0,
8467                                 .size = sizeof(cgroup_event.event_id),
8468                         },
8469                         .id = cgroup_id(cgrp),
8470                 },
8471         };
8472
8473         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8474         if (pathname == NULL) {
8475                 cgroup_event.path = path_enomem;
8476         } else {
8477                 /* just to be sure to have enough space for alignment */
8478                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8479                 cgroup_event.path = pathname;
8480         }
8481
8482         /*
8483          * Since our buffer works in 8 byte units we need to align our string
8484          * size to a multiple of 8. However, we must guarantee the tail end is
8485          * zero'd out to avoid leaking random bits to userspace.
8486          */
8487         size = strlen(cgroup_event.path) + 1;
8488         while (!IS_ALIGNED(size, sizeof(u64)))
8489                 cgroup_event.path[size++] = '\0';
8490
8491         cgroup_event.event_id.header.size += size;
8492         cgroup_event.path_size = size;
8493
8494         perf_iterate_sb(perf_event_cgroup_output,
8495                         &cgroup_event,
8496                         NULL);
8497
8498         kfree(pathname);
8499 }
8500
8501 #endif
8502
8503 /*
8504  * mmap tracking
8505  */
8506
8507 struct perf_mmap_event {
8508         struct vm_area_struct   *vma;
8509
8510         const char              *file_name;
8511         int                     file_size;
8512         int                     maj, min;
8513         u64                     ino;
8514         u64                     ino_generation;
8515         u32                     prot, flags;
8516         u8                      build_id[BUILD_ID_SIZE_MAX];
8517         u32                     build_id_size;
8518
8519         struct {
8520                 struct perf_event_header        header;
8521
8522                 u32                             pid;
8523                 u32                             tid;
8524                 u64                             start;
8525                 u64                             len;
8526                 u64                             pgoff;
8527         } event_id;
8528 };
8529
8530 static int perf_event_mmap_match(struct perf_event *event,
8531                                  void *data)
8532 {
8533         struct perf_mmap_event *mmap_event = data;
8534         struct vm_area_struct *vma = mmap_event->vma;
8535         int executable = vma->vm_flags & VM_EXEC;
8536
8537         return (!executable && event->attr.mmap_data) ||
8538                (executable && (event->attr.mmap || event->attr.mmap2));
8539 }
8540
8541 static void perf_event_mmap_output(struct perf_event *event,
8542                                    void *data)
8543 {
8544         struct perf_mmap_event *mmap_event = data;
8545         struct perf_output_handle handle;
8546         struct perf_sample_data sample;
8547         int size = mmap_event->event_id.header.size;
8548         u32 type = mmap_event->event_id.header.type;
8549         bool use_build_id;
8550         int ret;
8551
8552         if (!perf_event_mmap_match(event, data))
8553                 return;
8554
8555         if (event->attr.mmap2) {
8556                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8557                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8558                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8559                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8560                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8561                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8562                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8563         }
8564
8565         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8566         ret = perf_output_begin(&handle, &sample, event,
8567                                 mmap_event->event_id.header.size);
8568         if (ret)
8569                 goto out;
8570
8571         mmap_event->event_id.pid = perf_event_pid(event, current);
8572         mmap_event->event_id.tid = perf_event_tid(event, current);
8573
8574         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8575
8576         if (event->attr.mmap2 && use_build_id)
8577                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8578
8579         perf_output_put(&handle, mmap_event->event_id);
8580
8581         if (event->attr.mmap2) {
8582                 if (use_build_id) {
8583                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8584
8585                         __output_copy(&handle, size, 4);
8586                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8587                 } else {
8588                         perf_output_put(&handle, mmap_event->maj);
8589                         perf_output_put(&handle, mmap_event->min);
8590                         perf_output_put(&handle, mmap_event->ino);
8591                         perf_output_put(&handle, mmap_event->ino_generation);
8592                 }
8593                 perf_output_put(&handle, mmap_event->prot);
8594                 perf_output_put(&handle, mmap_event->flags);
8595         }
8596
8597         __output_copy(&handle, mmap_event->file_name,
8598                                    mmap_event->file_size);
8599
8600         perf_event__output_id_sample(event, &handle, &sample);
8601
8602         perf_output_end(&handle);
8603 out:
8604         mmap_event->event_id.header.size = size;
8605         mmap_event->event_id.header.type = type;
8606 }
8607
8608 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8609 {
8610         struct vm_area_struct *vma = mmap_event->vma;
8611         struct file *file = vma->vm_file;
8612         int maj = 0, min = 0;
8613         u64 ino = 0, gen = 0;
8614         u32 prot = 0, flags = 0;
8615         unsigned int size;
8616         char tmp[16];
8617         char *buf = NULL;
8618         char *name;
8619
8620         if (vma->vm_flags & VM_READ)
8621                 prot |= PROT_READ;
8622         if (vma->vm_flags & VM_WRITE)
8623                 prot |= PROT_WRITE;
8624         if (vma->vm_flags & VM_EXEC)
8625                 prot |= PROT_EXEC;
8626
8627         if (vma->vm_flags & VM_MAYSHARE)
8628                 flags = MAP_SHARED;
8629         else
8630                 flags = MAP_PRIVATE;
8631
8632         if (vma->vm_flags & VM_LOCKED)
8633                 flags |= MAP_LOCKED;
8634         if (is_vm_hugetlb_page(vma))
8635                 flags |= MAP_HUGETLB;
8636
8637         if (file) {
8638                 struct inode *inode;
8639                 dev_t dev;
8640
8641                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8642                 if (!buf) {
8643                         name = "//enomem";
8644                         goto cpy_name;
8645                 }
8646                 /*
8647                  * d_path() works from the end of the rb backwards, so we
8648                  * need to add enough zero bytes after the string to handle
8649                  * the 64bit alignment we do later.
8650                  */
8651                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8652                 if (IS_ERR(name)) {
8653                         name = "//toolong";
8654                         goto cpy_name;
8655                 }
8656                 inode = file_inode(vma->vm_file);
8657                 dev = inode->i_sb->s_dev;
8658                 ino = inode->i_ino;
8659                 gen = inode->i_generation;
8660                 maj = MAJOR(dev);
8661                 min = MINOR(dev);
8662
8663                 goto got_name;
8664         } else {
8665                 if (vma->vm_ops && vma->vm_ops->name) {
8666                         name = (char *) vma->vm_ops->name(vma);
8667                         if (name)
8668                                 goto cpy_name;
8669                 }
8670
8671                 name = (char *)arch_vma_name(vma);
8672                 if (name)
8673                         goto cpy_name;
8674
8675                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8676                                 vma->vm_end >= vma->vm_mm->brk) {
8677                         name = "[heap]";
8678                         goto cpy_name;
8679                 }
8680                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8681                                 vma->vm_end >= vma->vm_mm->start_stack) {
8682                         name = "[stack]";
8683                         goto cpy_name;
8684                 }
8685
8686                 name = "//anon";
8687                 goto cpy_name;
8688         }
8689
8690 cpy_name:
8691         strlcpy(tmp, name, sizeof(tmp));
8692         name = tmp;
8693 got_name:
8694         /*
8695          * Since our buffer works in 8 byte units we need to align our string
8696          * size to a multiple of 8. However, we must guarantee the tail end is
8697          * zero'd out to avoid leaking random bits to userspace.
8698          */
8699         size = strlen(name)+1;
8700         while (!IS_ALIGNED(size, sizeof(u64)))
8701                 name[size++] = '\0';
8702
8703         mmap_event->file_name = name;
8704         mmap_event->file_size = size;
8705         mmap_event->maj = maj;
8706         mmap_event->min = min;
8707         mmap_event->ino = ino;
8708         mmap_event->ino_generation = gen;
8709         mmap_event->prot = prot;
8710         mmap_event->flags = flags;
8711
8712         if (!(vma->vm_flags & VM_EXEC))
8713                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8714
8715         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8716
8717         if (atomic_read(&nr_build_id_events))
8718                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8719
8720         perf_iterate_sb(perf_event_mmap_output,
8721                        mmap_event,
8722                        NULL);
8723
8724         kfree(buf);
8725 }
8726
8727 /*
8728  * Check whether inode and address range match filter criteria.
8729  */
8730 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8731                                      struct file *file, unsigned long offset,
8732                                      unsigned long size)
8733 {
8734         /* d_inode(NULL) won't be equal to any mapped user-space file */
8735         if (!filter->path.dentry)
8736                 return false;
8737
8738         if (d_inode(filter->path.dentry) != file_inode(file))
8739                 return false;
8740
8741         if (filter->offset > offset + size)
8742                 return false;
8743
8744         if (filter->offset + filter->size < offset)
8745                 return false;
8746
8747         return true;
8748 }
8749
8750 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8751                                         struct vm_area_struct *vma,
8752                                         struct perf_addr_filter_range *fr)
8753 {
8754         unsigned long vma_size = vma->vm_end - vma->vm_start;
8755         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8756         struct file *file = vma->vm_file;
8757
8758         if (!perf_addr_filter_match(filter, file, off, vma_size))
8759                 return false;
8760
8761         if (filter->offset < off) {
8762                 fr->start = vma->vm_start;
8763                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8764         } else {
8765                 fr->start = vma->vm_start + filter->offset - off;
8766                 fr->size = min(vma->vm_end - fr->start, filter->size);
8767         }
8768
8769         return true;
8770 }
8771
8772 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8773 {
8774         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8775         struct vm_area_struct *vma = data;
8776         struct perf_addr_filter *filter;
8777         unsigned int restart = 0, count = 0;
8778         unsigned long flags;
8779
8780         if (!has_addr_filter(event))
8781                 return;
8782
8783         if (!vma->vm_file)
8784                 return;
8785
8786         raw_spin_lock_irqsave(&ifh->lock, flags);
8787         list_for_each_entry(filter, &ifh->list, entry) {
8788                 if (perf_addr_filter_vma_adjust(filter, vma,
8789                                                 &event->addr_filter_ranges[count]))
8790                         restart++;
8791
8792                 count++;
8793         }
8794
8795         if (restart)
8796                 event->addr_filters_gen++;
8797         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8798
8799         if (restart)
8800                 perf_event_stop(event, 1);
8801 }
8802
8803 /*
8804  * Adjust all task's events' filters to the new vma
8805  */
8806 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8807 {
8808         struct perf_event_context *ctx;
8809
8810         /*
8811          * Data tracing isn't supported yet and as such there is no need
8812          * to keep track of anything that isn't related to executable code:
8813          */
8814         if (!(vma->vm_flags & VM_EXEC))
8815                 return;
8816
8817         rcu_read_lock();
8818         ctx = rcu_dereference(current->perf_event_ctxp);
8819         if (ctx)
8820                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8821         rcu_read_unlock();
8822 }
8823
8824 void perf_event_mmap(struct vm_area_struct *vma)
8825 {
8826         struct perf_mmap_event mmap_event;
8827
8828         if (!atomic_read(&nr_mmap_events))
8829                 return;
8830
8831         mmap_event = (struct perf_mmap_event){
8832                 .vma    = vma,
8833                 /* .file_name */
8834                 /* .file_size */
8835                 .event_id  = {
8836                         .header = {
8837                                 .type = PERF_RECORD_MMAP,
8838                                 .misc = PERF_RECORD_MISC_USER,
8839                                 /* .size */
8840                         },
8841                         /* .pid */
8842                         /* .tid */
8843                         .start  = vma->vm_start,
8844                         .len    = vma->vm_end - vma->vm_start,
8845                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8846                 },
8847                 /* .maj (attr_mmap2 only) */
8848                 /* .min (attr_mmap2 only) */
8849                 /* .ino (attr_mmap2 only) */
8850                 /* .ino_generation (attr_mmap2 only) */
8851                 /* .prot (attr_mmap2 only) */
8852                 /* .flags (attr_mmap2 only) */
8853         };
8854
8855         perf_addr_filters_adjust(vma);
8856         perf_event_mmap_event(&mmap_event);
8857 }
8858
8859 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8860                           unsigned long size, u64 flags)
8861 {
8862         struct perf_output_handle handle;
8863         struct perf_sample_data sample;
8864         struct perf_aux_event {
8865                 struct perf_event_header        header;
8866                 u64                             offset;
8867                 u64                             size;
8868                 u64                             flags;
8869         } rec = {
8870                 .header = {
8871                         .type = PERF_RECORD_AUX,
8872                         .misc = 0,
8873                         .size = sizeof(rec),
8874                 },
8875                 .offset         = head,
8876                 .size           = size,
8877                 .flags          = flags,
8878         };
8879         int ret;
8880
8881         perf_event_header__init_id(&rec.header, &sample, event);
8882         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8883
8884         if (ret)
8885                 return;
8886
8887         perf_output_put(&handle, rec);
8888         perf_event__output_id_sample(event, &handle, &sample);
8889
8890         perf_output_end(&handle);
8891 }
8892
8893 /*
8894  * Lost/dropped samples logging
8895  */
8896 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8897 {
8898         struct perf_output_handle handle;
8899         struct perf_sample_data sample;
8900         int ret;
8901
8902         struct {
8903                 struct perf_event_header        header;
8904                 u64                             lost;
8905         } lost_samples_event = {
8906                 .header = {
8907                         .type = PERF_RECORD_LOST_SAMPLES,
8908                         .misc = 0,
8909                         .size = sizeof(lost_samples_event),
8910                 },
8911                 .lost           = lost,
8912         };
8913
8914         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8915
8916         ret = perf_output_begin(&handle, &sample, event,
8917                                 lost_samples_event.header.size);
8918         if (ret)
8919                 return;
8920
8921         perf_output_put(&handle, lost_samples_event);
8922         perf_event__output_id_sample(event, &handle, &sample);
8923         perf_output_end(&handle);
8924 }
8925
8926 /*
8927  * context_switch tracking
8928  */
8929
8930 struct perf_switch_event {
8931         struct task_struct      *task;
8932         struct task_struct      *next_prev;
8933
8934         struct {
8935                 struct perf_event_header        header;
8936                 u32                             next_prev_pid;
8937                 u32                             next_prev_tid;
8938         } event_id;
8939 };
8940
8941 static int perf_event_switch_match(struct perf_event *event)
8942 {
8943         return event->attr.context_switch;
8944 }
8945
8946 static void perf_event_switch_output(struct perf_event *event, void *data)
8947 {
8948         struct perf_switch_event *se = data;
8949         struct perf_output_handle handle;
8950         struct perf_sample_data sample;
8951         int ret;
8952
8953         if (!perf_event_switch_match(event))
8954                 return;
8955
8956         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8957         if (event->ctx->task) {
8958                 se->event_id.header.type = PERF_RECORD_SWITCH;
8959                 se->event_id.header.size = sizeof(se->event_id.header);
8960         } else {
8961                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8962                 se->event_id.header.size = sizeof(se->event_id);
8963                 se->event_id.next_prev_pid =
8964                                         perf_event_pid(event, se->next_prev);
8965                 se->event_id.next_prev_tid =
8966                                         perf_event_tid(event, se->next_prev);
8967         }
8968
8969         perf_event_header__init_id(&se->event_id.header, &sample, event);
8970
8971         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8972         if (ret)
8973                 return;
8974
8975         if (event->ctx->task)
8976                 perf_output_put(&handle, se->event_id.header);
8977         else
8978                 perf_output_put(&handle, se->event_id);
8979
8980         perf_event__output_id_sample(event, &handle, &sample);
8981
8982         perf_output_end(&handle);
8983 }
8984
8985 static void perf_event_switch(struct task_struct *task,
8986                               struct task_struct *next_prev, bool sched_in)
8987 {
8988         struct perf_switch_event switch_event;
8989
8990         /* N.B. caller checks nr_switch_events != 0 */
8991
8992         switch_event = (struct perf_switch_event){
8993                 .task           = task,
8994                 .next_prev      = next_prev,
8995                 .event_id       = {
8996                         .header = {
8997                                 /* .type */
8998                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8999                                 /* .size */
9000                         },
9001                         /* .next_prev_pid */
9002                         /* .next_prev_tid */
9003                 },
9004         };
9005
9006         if (!sched_in && task->on_rq) {
9007                 switch_event.event_id.header.misc |=
9008                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9009         }
9010
9011         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9012 }
9013
9014 /*
9015  * IRQ throttle logging
9016  */
9017
9018 static void perf_log_throttle(struct perf_event *event, int enable)
9019 {
9020         struct perf_output_handle handle;
9021         struct perf_sample_data sample;
9022         int ret;
9023
9024         struct {
9025                 struct perf_event_header        header;
9026                 u64                             time;
9027                 u64                             id;
9028                 u64                             stream_id;
9029         } throttle_event = {
9030                 .header = {
9031                         .type = PERF_RECORD_THROTTLE,
9032                         .misc = 0,
9033                         .size = sizeof(throttle_event),
9034                 },
9035                 .time           = perf_event_clock(event),
9036                 .id             = primary_event_id(event),
9037                 .stream_id      = event->id,
9038         };
9039
9040         if (enable)
9041                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9042
9043         perf_event_header__init_id(&throttle_event.header, &sample, event);
9044
9045         ret = perf_output_begin(&handle, &sample, event,
9046                                 throttle_event.header.size);
9047         if (ret)
9048                 return;
9049
9050         perf_output_put(&handle, throttle_event);
9051         perf_event__output_id_sample(event, &handle, &sample);
9052         perf_output_end(&handle);
9053 }
9054
9055 /*
9056  * ksymbol register/unregister tracking
9057  */
9058
9059 struct perf_ksymbol_event {
9060         const char      *name;
9061         int             name_len;
9062         struct {
9063                 struct perf_event_header        header;
9064                 u64                             addr;
9065                 u32                             len;
9066                 u16                             ksym_type;
9067                 u16                             flags;
9068         } event_id;
9069 };
9070
9071 static int perf_event_ksymbol_match(struct perf_event *event)
9072 {
9073         return event->attr.ksymbol;
9074 }
9075
9076 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9077 {
9078         struct perf_ksymbol_event *ksymbol_event = data;
9079         struct perf_output_handle handle;
9080         struct perf_sample_data sample;
9081         int ret;
9082
9083         if (!perf_event_ksymbol_match(event))
9084                 return;
9085
9086         perf_event_header__init_id(&ksymbol_event->event_id.header,
9087                                    &sample, event);
9088         ret = perf_output_begin(&handle, &sample, event,
9089                                 ksymbol_event->event_id.header.size);
9090         if (ret)
9091                 return;
9092
9093         perf_output_put(&handle, ksymbol_event->event_id);
9094         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9095         perf_event__output_id_sample(event, &handle, &sample);
9096
9097         perf_output_end(&handle);
9098 }
9099
9100 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9101                         const char *sym)
9102 {
9103         struct perf_ksymbol_event ksymbol_event;
9104         char name[KSYM_NAME_LEN];
9105         u16 flags = 0;
9106         int name_len;
9107
9108         if (!atomic_read(&nr_ksymbol_events))
9109                 return;
9110
9111         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9112             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9113                 goto err;
9114
9115         strlcpy(name, sym, KSYM_NAME_LEN);
9116         name_len = strlen(name) + 1;
9117         while (!IS_ALIGNED(name_len, sizeof(u64)))
9118                 name[name_len++] = '\0';
9119         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9120
9121         if (unregister)
9122                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9123
9124         ksymbol_event = (struct perf_ksymbol_event){
9125                 .name = name,
9126                 .name_len = name_len,
9127                 .event_id = {
9128                         .header = {
9129                                 .type = PERF_RECORD_KSYMBOL,
9130                                 .size = sizeof(ksymbol_event.event_id) +
9131                                         name_len,
9132                         },
9133                         .addr = addr,
9134                         .len = len,
9135                         .ksym_type = ksym_type,
9136                         .flags = flags,
9137                 },
9138         };
9139
9140         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9141         return;
9142 err:
9143         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9144 }
9145
9146 /*
9147  * bpf program load/unload tracking
9148  */
9149
9150 struct perf_bpf_event {
9151         struct bpf_prog *prog;
9152         struct {
9153                 struct perf_event_header        header;
9154                 u16                             type;
9155                 u16                             flags;
9156                 u32                             id;
9157                 u8                              tag[BPF_TAG_SIZE];
9158         } event_id;
9159 };
9160
9161 static int perf_event_bpf_match(struct perf_event *event)
9162 {
9163         return event->attr.bpf_event;
9164 }
9165
9166 static void perf_event_bpf_output(struct perf_event *event, void *data)
9167 {
9168         struct perf_bpf_event *bpf_event = data;
9169         struct perf_output_handle handle;
9170         struct perf_sample_data sample;
9171         int ret;
9172
9173         if (!perf_event_bpf_match(event))
9174                 return;
9175
9176         perf_event_header__init_id(&bpf_event->event_id.header,
9177                                    &sample, event);
9178         ret = perf_output_begin(&handle, data, event,
9179                                 bpf_event->event_id.header.size);
9180         if (ret)
9181                 return;
9182
9183         perf_output_put(&handle, bpf_event->event_id);
9184         perf_event__output_id_sample(event, &handle, &sample);
9185
9186         perf_output_end(&handle);
9187 }
9188
9189 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9190                                          enum perf_bpf_event_type type)
9191 {
9192         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9193         int i;
9194
9195         if (prog->aux->func_cnt == 0) {
9196                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9197                                    (u64)(unsigned long)prog->bpf_func,
9198                                    prog->jited_len, unregister,
9199                                    prog->aux->ksym.name);
9200         } else {
9201                 for (i = 0; i < prog->aux->func_cnt; i++) {
9202                         struct bpf_prog *subprog = prog->aux->func[i];
9203
9204                         perf_event_ksymbol(
9205                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
9206                                 (u64)(unsigned long)subprog->bpf_func,
9207                                 subprog->jited_len, unregister,
9208                                 subprog->aux->ksym.name);
9209                 }
9210         }
9211 }
9212
9213 void perf_event_bpf_event(struct bpf_prog *prog,
9214                           enum perf_bpf_event_type type,
9215                           u16 flags)
9216 {
9217         struct perf_bpf_event bpf_event;
9218
9219         if (type <= PERF_BPF_EVENT_UNKNOWN ||
9220             type >= PERF_BPF_EVENT_MAX)
9221                 return;
9222
9223         switch (type) {
9224         case PERF_BPF_EVENT_PROG_LOAD:
9225         case PERF_BPF_EVENT_PROG_UNLOAD:
9226                 if (atomic_read(&nr_ksymbol_events))
9227                         perf_event_bpf_emit_ksymbols(prog, type);
9228                 break;
9229         default:
9230                 break;
9231         }
9232
9233         if (!atomic_read(&nr_bpf_events))
9234                 return;
9235
9236         bpf_event = (struct perf_bpf_event){
9237                 .prog = prog,
9238                 .event_id = {
9239                         .header = {
9240                                 .type = PERF_RECORD_BPF_EVENT,
9241                                 .size = sizeof(bpf_event.event_id),
9242                         },
9243                         .type = type,
9244                         .flags = flags,
9245                         .id = prog->aux->id,
9246                 },
9247         };
9248
9249         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9250
9251         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9252         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9253 }
9254
9255 struct perf_text_poke_event {
9256         const void              *old_bytes;
9257         const void              *new_bytes;
9258         size_t                  pad;
9259         u16                     old_len;
9260         u16                     new_len;
9261
9262         struct {
9263                 struct perf_event_header        header;
9264
9265                 u64                             addr;
9266         } event_id;
9267 };
9268
9269 static int perf_event_text_poke_match(struct perf_event *event)
9270 {
9271         return event->attr.text_poke;
9272 }
9273
9274 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9275 {
9276         struct perf_text_poke_event *text_poke_event = data;
9277         struct perf_output_handle handle;
9278         struct perf_sample_data sample;
9279         u64 padding = 0;
9280         int ret;
9281
9282         if (!perf_event_text_poke_match(event))
9283                 return;
9284
9285         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9286
9287         ret = perf_output_begin(&handle, &sample, event,
9288                                 text_poke_event->event_id.header.size);
9289         if (ret)
9290                 return;
9291
9292         perf_output_put(&handle, text_poke_event->event_id);
9293         perf_output_put(&handle, text_poke_event->old_len);
9294         perf_output_put(&handle, text_poke_event->new_len);
9295
9296         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9297         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9298
9299         if (text_poke_event->pad)
9300                 __output_copy(&handle, &padding, text_poke_event->pad);
9301
9302         perf_event__output_id_sample(event, &handle, &sample);
9303
9304         perf_output_end(&handle);
9305 }
9306
9307 void perf_event_text_poke(const void *addr, const void *old_bytes,
9308                           size_t old_len, const void *new_bytes, size_t new_len)
9309 {
9310         struct perf_text_poke_event text_poke_event;
9311         size_t tot, pad;
9312
9313         if (!atomic_read(&nr_text_poke_events))
9314                 return;
9315
9316         tot  = sizeof(text_poke_event.old_len) + old_len;
9317         tot += sizeof(text_poke_event.new_len) + new_len;
9318         pad  = ALIGN(tot, sizeof(u64)) - tot;
9319
9320         text_poke_event = (struct perf_text_poke_event){
9321                 .old_bytes    = old_bytes,
9322                 .new_bytes    = new_bytes,
9323                 .pad          = pad,
9324                 .old_len      = old_len,
9325                 .new_len      = new_len,
9326                 .event_id  = {
9327                         .header = {
9328                                 .type = PERF_RECORD_TEXT_POKE,
9329                                 .misc = PERF_RECORD_MISC_KERNEL,
9330                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9331                         },
9332                         .addr = (unsigned long)addr,
9333                 },
9334         };
9335
9336         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9337 }
9338
9339 void perf_event_itrace_started(struct perf_event *event)
9340 {
9341         event->attach_state |= PERF_ATTACH_ITRACE;
9342 }
9343
9344 static void perf_log_itrace_start(struct perf_event *event)
9345 {
9346         struct perf_output_handle handle;
9347         struct perf_sample_data sample;
9348         struct perf_aux_event {
9349                 struct perf_event_header        header;
9350                 u32                             pid;
9351                 u32                             tid;
9352         } rec;
9353         int ret;
9354
9355         if (event->parent)
9356                 event = event->parent;
9357
9358         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9359             event->attach_state & PERF_ATTACH_ITRACE)
9360                 return;
9361
9362         rec.header.type = PERF_RECORD_ITRACE_START;
9363         rec.header.misc = 0;
9364         rec.header.size = sizeof(rec);
9365         rec.pid = perf_event_pid(event, current);
9366         rec.tid = perf_event_tid(event, current);
9367
9368         perf_event_header__init_id(&rec.header, &sample, event);
9369         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9370
9371         if (ret)
9372                 return;
9373
9374         perf_output_put(&handle, rec);
9375         perf_event__output_id_sample(event, &handle, &sample);
9376
9377         perf_output_end(&handle);
9378 }
9379
9380 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9381 {
9382         struct perf_output_handle handle;
9383         struct perf_sample_data sample;
9384         struct perf_aux_event {
9385                 struct perf_event_header        header;
9386                 u64                             hw_id;
9387         } rec;
9388         int ret;
9389
9390         if (event->parent)
9391                 event = event->parent;
9392
9393         rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9394         rec.header.misc = 0;
9395         rec.header.size = sizeof(rec);
9396         rec.hw_id       = hw_id;
9397
9398         perf_event_header__init_id(&rec.header, &sample, event);
9399         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9400
9401         if (ret)
9402                 return;
9403
9404         perf_output_put(&handle, rec);
9405         perf_event__output_id_sample(event, &handle, &sample);
9406
9407         perf_output_end(&handle);
9408 }
9409
9410 static int
9411 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9412 {
9413         struct hw_perf_event *hwc = &event->hw;
9414         int ret = 0;
9415         u64 seq;
9416
9417         seq = __this_cpu_read(perf_throttled_seq);
9418         if (seq != hwc->interrupts_seq) {
9419                 hwc->interrupts_seq = seq;
9420                 hwc->interrupts = 1;
9421         } else {
9422                 hwc->interrupts++;
9423                 if (unlikely(throttle
9424                              && hwc->interrupts >= max_samples_per_tick)) {
9425                         __this_cpu_inc(perf_throttled_count);
9426                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9427                         hwc->interrupts = MAX_INTERRUPTS;
9428                         perf_log_throttle(event, 0);
9429                         ret = 1;
9430                 }
9431         }
9432
9433         if (event->attr.freq) {
9434                 u64 now = perf_clock();
9435                 s64 delta = now - hwc->freq_time_stamp;
9436
9437                 hwc->freq_time_stamp = now;
9438
9439                 if (delta > 0 && delta < 2*TICK_NSEC)
9440                         perf_adjust_period(event, delta, hwc->last_period, true);
9441         }
9442
9443         return ret;
9444 }
9445
9446 int perf_event_account_interrupt(struct perf_event *event)
9447 {
9448         return __perf_event_account_interrupt(event, 1);
9449 }
9450
9451 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9452 {
9453         /*
9454          * Due to interrupt latency (AKA "skid"), we may enter the
9455          * kernel before taking an overflow, even if the PMU is only
9456          * counting user events.
9457          */
9458         if (event->attr.exclude_kernel && !user_mode(regs))
9459                 return false;
9460
9461         return true;
9462 }
9463
9464 /*
9465  * Generic event overflow handling, sampling.
9466  */
9467
9468 static int __perf_event_overflow(struct perf_event *event,
9469                                  int throttle, struct perf_sample_data *data,
9470                                  struct pt_regs *regs)
9471 {
9472         int events = atomic_read(&event->event_limit);
9473         int ret = 0;
9474
9475         /*
9476          * Non-sampling counters might still use the PMI to fold short
9477          * hardware counters, ignore those.
9478          */
9479         if (unlikely(!is_sampling_event(event)))
9480                 return 0;
9481
9482         ret = __perf_event_account_interrupt(event, throttle);
9483
9484         /*
9485          * XXX event_limit might not quite work as expected on inherited
9486          * events
9487          */
9488
9489         event->pending_kill = POLL_IN;
9490         if (events && atomic_dec_and_test(&event->event_limit)) {
9491                 ret = 1;
9492                 event->pending_kill = POLL_HUP;
9493                 perf_event_disable_inatomic(event);
9494         }
9495
9496         if (event->attr.sigtrap) {
9497                 /*
9498                  * The desired behaviour of sigtrap vs invalid samples is a bit
9499                  * tricky; on the one hand, one should not loose the SIGTRAP if
9500                  * it is the first event, on the other hand, we should also not
9501                  * trigger the WARN or override the data address.
9502                  */
9503                 bool valid_sample = sample_is_allowed(event, regs);
9504                 unsigned int pending_id = 1;
9505
9506                 if (regs)
9507                         pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9508                 if (!event->pending_sigtrap) {
9509                         event->pending_sigtrap = pending_id;
9510                         local_inc(&event->ctx->nr_pending);
9511                 } else if (event->attr.exclude_kernel && valid_sample) {
9512                         /*
9513                          * Should not be able to return to user space without
9514                          * consuming pending_sigtrap; with exceptions:
9515                          *
9516                          *  1. Where !exclude_kernel, events can overflow again
9517                          *     in the kernel without returning to user space.
9518                          *
9519                          *  2. Events that can overflow again before the IRQ-
9520                          *     work without user space progress (e.g. hrtimer).
9521                          *     To approximate progress (with false negatives),
9522                          *     check 32-bit hash of the current IP.
9523                          */
9524                         WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9525                 }
9526
9527                 event->pending_addr = 0;
9528                 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9529                         event->pending_addr = data->addr;
9530                 irq_work_queue(&event->pending_irq);
9531         }
9532
9533         READ_ONCE(event->overflow_handler)(event, data, regs);
9534
9535         if (*perf_event_fasync(event) && event->pending_kill) {
9536                 event->pending_wakeup = 1;
9537                 irq_work_queue(&event->pending_irq);
9538         }
9539
9540         return ret;
9541 }
9542
9543 int perf_event_overflow(struct perf_event *event,
9544                         struct perf_sample_data *data,
9545                         struct pt_regs *regs)
9546 {
9547         return __perf_event_overflow(event, 1, data, regs);
9548 }
9549
9550 /*
9551  * Generic software event infrastructure
9552  */
9553
9554 struct swevent_htable {
9555         struct swevent_hlist            *swevent_hlist;
9556         struct mutex                    hlist_mutex;
9557         int                             hlist_refcount;
9558
9559         /* Recursion avoidance in each contexts */
9560         int                             recursion[PERF_NR_CONTEXTS];
9561 };
9562
9563 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9564
9565 /*
9566  * We directly increment event->count and keep a second value in
9567  * event->hw.period_left to count intervals. This period event
9568  * is kept in the range [-sample_period, 0] so that we can use the
9569  * sign as trigger.
9570  */
9571
9572 u64 perf_swevent_set_period(struct perf_event *event)
9573 {
9574         struct hw_perf_event *hwc = &event->hw;
9575         u64 period = hwc->last_period;
9576         u64 nr, offset;
9577         s64 old, val;
9578
9579         hwc->last_period = hwc->sample_period;
9580
9581 again:
9582         old = val = local64_read(&hwc->period_left);
9583         if (val < 0)
9584                 return 0;
9585
9586         nr = div64_u64(period + val, period);
9587         offset = nr * period;
9588         val -= offset;
9589         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9590                 goto again;
9591
9592         return nr;
9593 }
9594
9595 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9596                                     struct perf_sample_data *data,
9597                                     struct pt_regs *regs)
9598 {
9599         struct hw_perf_event *hwc = &event->hw;
9600         int throttle = 0;
9601
9602         if (!overflow)
9603                 overflow = perf_swevent_set_period(event);
9604
9605         if (hwc->interrupts == MAX_INTERRUPTS)
9606                 return;
9607
9608         for (; overflow; overflow--) {
9609                 if (__perf_event_overflow(event, throttle,
9610                                             data, regs)) {
9611                         /*
9612                          * We inhibit the overflow from happening when
9613                          * hwc->interrupts == MAX_INTERRUPTS.
9614                          */
9615                         break;
9616                 }
9617                 throttle = 1;
9618         }
9619 }
9620
9621 static void perf_swevent_event(struct perf_event *event, u64 nr,
9622                                struct perf_sample_data *data,
9623                                struct pt_regs *regs)
9624 {
9625         struct hw_perf_event *hwc = &event->hw;
9626
9627         local64_add(nr, &event->count);
9628
9629         if (!regs)
9630                 return;
9631
9632         if (!is_sampling_event(event))
9633                 return;
9634
9635         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9636                 data->period = nr;
9637                 return perf_swevent_overflow(event, 1, data, regs);
9638         } else
9639                 data->period = event->hw.last_period;
9640
9641         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9642                 return perf_swevent_overflow(event, 1, data, regs);
9643
9644         if (local64_add_negative(nr, &hwc->period_left))
9645                 return;
9646
9647         perf_swevent_overflow(event, 0, data, regs);
9648 }
9649
9650 static int perf_exclude_event(struct perf_event *event,
9651                               struct pt_regs *regs)
9652 {
9653         if (event->hw.state & PERF_HES_STOPPED)
9654                 return 1;
9655
9656         if (regs) {
9657                 if (event->attr.exclude_user && user_mode(regs))
9658                         return 1;
9659
9660                 if (event->attr.exclude_kernel && !user_mode(regs))
9661                         return 1;
9662         }
9663
9664         return 0;
9665 }
9666
9667 static int perf_swevent_match(struct perf_event *event,
9668                                 enum perf_type_id type,
9669                                 u32 event_id,
9670                                 struct perf_sample_data *data,
9671                                 struct pt_regs *regs)
9672 {
9673         if (event->attr.type != type)
9674                 return 0;
9675
9676         if (event->attr.config != event_id)
9677                 return 0;
9678
9679         if (perf_exclude_event(event, regs))
9680                 return 0;
9681
9682         return 1;
9683 }
9684
9685 static inline u64 swevent_hash(u64 type, u32 event_id)
9686 {
9687         u64 val = event_id | (type << 32);
9688
9689         return hash_64(val, SWEVENT_HLIST_BITS);
9690 }
9691
9692 static inline struct hlist_head *
9693 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9694 {
9695         u64 hash = swevent_hash(type, event_id);
9696
9697         return &hlist->heads[hash];
9698 }
9699
9700 /* For the read side: events when they trigger */
9701 static inline struct hlist_head *
9702 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9703 {
9704         struct swevent_hlist *hlist;
9705
9706         hlist = rcu_dereference(swhash->swevent_hlist);
9707         if (!hlist)
9708                 return NULL;
9709
9710         return __find_swevent_head(hlist, type, event_id);
9711 }
9712
9713 /* For the event head insertion and removal in the hlist */
9714 static inline struct hlist_head *
9715 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9716 {
9717         struct swevent_hlist *hlist;
9718         u32 event_id = event->attr.config;
9719         u64 type = event->attr.type;
9720
9721         /*
9722          * Event scheduling is always serialized against hlist allocation
9723          * and release. Which makes the protected version suitable here.
9724          * The context lock guarantees that.
9725          */
9726         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9727                                           lockdep_is_held(&event->ctx->lock));
9728         if (!hlist)
9729                 return NULL;
9730
9731         return __find_swevent_head(hlist, type, event_id);
9732 }
9733
9734 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9735                                     u64 nr,
9736                                     struct perf_sample_data *data,
9737                                     struct pt_regs *regs)
9738 {
9739         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9740         struct perf_event *event;
9741         struct hlist_head *head;
9742
9743         rcu_read_lock();
9744         head = find_swevent_head_rcu(swhash, type, event_id);
9745         if (!head)
9746                 goto end;
9747
9748         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9749                 if (perf_swevent_match(event, type, event_id, data, regs))
9750                         perf_swevent_event(event, nr, data, regs);
9751         }
9752 end:
9753         rcu_read_unlock();
9754 }
9755
9756 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9757
9758 int perf_swevent_get_recursion_context(void)
9759 {
9760         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9761
9762         return get_recursion_context(swhash->recursion);
9763 }
9764 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9765
9766 void perf_swevent_put_recursion_context(int rctx)
9767 {
9768         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9769
9770         put_recursion_context(swhash->recursion, rctx);
9771 }
9772
9773 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9774 {
9775         struct perf_sample_data data;
9776
9777         if (WARN_ON_ONCE(!regs))
9778                 return;
9779
9780         perf_sample_data_init(&data, addr, 0);
9781         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9782 }
9783
9784 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9785 {
9786         int rctx;
9787
9788         preempt_disable_notrace();
9789         rctx = perf_swevent_get_recursion_context();
9790         if (unlikely(rctx < 0))
9791                 goto fail;
9792
9793         ___perf_sw_event(event_id, nr, regs, addr);
9794
9795         perf_swevent_put_recursion_context(rctx);
9796 fail:
9797         preempt_enable_notrace();
9798 }
9799
9800 static void perf_swevent_read(struct perf_event *event)
9801 {
9802 }
9803
9804 static int perf_swevent_add(struct perf_event *event, int flags)
9805 {
9806         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9807         struct hw_perf_event *hwc = &event->hw;
9808         struct hlist_head *head;
9809
9810         if (is_sampling_event(event)) {
9811                 hwc->last_period = hwc->sample_period;
9812                 perf_swevent_set_period(event);
9813         }
9814
9815         hwc->state = !(flags & PERF_EF_START);
9816
9817         head = find_swevent_head(swhash, event);
9818         if (WARN_ON_ONCE(!head))
9819                 return -EINVAL;
9820
9821         hlist_add_head_rcu(&event->hlist_entry, head);
9822         perf_event_update_userpage(event);
9823
9824         return 0;
9825 }
9826
9827 static void perf_swevent_del(struct perf_event *event, int flags)
9828 {
9829         hlist_del_rcu(&event->hlist_entry);
9830 }
9831
9832 static void perf_swevent_start(struct perf_event *event, int flags)
9833 {
9834         event->hw.state = 0;
9835 }
9836
9837 static void perf_swevent_stop(struct perf_event *event, int flags)
9838 {
9839         event->hw.state = PERF_HES_STOPPED;
9840 }
9841
9842 /* Deref the hlist from the update side */
9843 static inline struct swevent_hlist *
9844 swevent_hlist_deref(struct swevent_htable *swhash)
9845 {
9846         return rcu_dereference_protected(swhash->swevent_hlist,
9847                                          lockdep_is_held(&swhash->hlist_mutex));
9848 }
9849
9850 static void swevent_hlist_release(struct swevent_htable *swhash)
9851 {
9852         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9853
9854         if (!hlist)
9855                 return;
9856
9857         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9858         kfree_rcu(hlist, rcu_head);
9859 }
9860
9861 static void swevent_hlist_put_cpu(int cpu)
9862 {
9863         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9864
9865         mutex_lock(&swhash->hlist_mutex);
9866
9867         if (!--swhash->hlist_refcount)
9868                 swevent_hlist_release(swhash);
9869
9870         mutex_unlock(&swhash->hlist_mutex);
9871 }
9872
9873 static void swevent_hlist_put(void)
9874 {
9875         int cpu;
9876
9877         for_each_possible_cpu(cpu)
9878                 swevent_hlist_put_cpu(cpu);
9879 }
9880
9881 static int swevent_hlist_get_cpu(int cpu)
9882 {
9883         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9884         int err = 0;
9885
9886         mutex_lock(&swhash->hlist_mutex);
9887         if (!swevent_hlist_deref(swhash) &&
9888             cpumask_test_cpu(cpu, perf_online_mask)) {
9889                 struct swevent_hlist *hlist;
9890
9891                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9892                 if (!hlist) {
9893                         err = -ENOMEM;
9894                         goto exit;
9895                 }
9896                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9897         }
9898         swhash->hlist_refcount++;
9899 exit:
9900         mutex_unlock(&swhash->hlist_mutex);
9901
9902         return err;
9903 }
9904
9905 static int swevent_hlist_get(void)
9906 {
9907         int err, cpu, failed_cpu;
9908
9909         mutex_lock(&pmus_lock);
9910         for_each_possible_cpu(cpu) {
9911                 err = swevent_hlist_get_cpu(cpu);
9912                 if (err) {
9913                         failed_cpu = cpu;
9914                         goto fail;
9915                 }
9916         }
9917         mutex_unlock(&pmus_lock);
9918         return 0;
9919 fail:
9920         for_each_possible_cpu(cpu) {
9921                 if (cpu == failed_cpu)
9922                         break;
9923                 swevent_hlist_put_cpu(cpu);
9924         }
9925         mutex_unlock(&pmus_lock);
9926         return err;
9927 }
9928
9929 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9930
9931 static void sw_perf_event_destroy(struct perf_event *event)
9932 {
9933         u64 event_id = event->attr.config;
9934
9935         WARN_ON(event->parent);
9936
9937         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9938         swevent_hlist_put();
9939 }
9940
9941 static int perf_swevent_init(struct perf_event *event)
9942 {
9943         u64 event_id = event->attr.config;
9944
9945         if (event->attr.type != PERF_TYPE_SOFTWARE)
9946                 return -ENOENT;
9947
9948         /*
9949          * no branch sampling for software events
9950          */
9951         if (has_branch_stack(event))
9952                 return -EOPNOTSUPP;
9953
9954         switch (event_id) {
9955         case PERF_COUNT_SW_CPU_CLOCK:
9956         case PERF_COUNT_SW_TASK_CLOCK:
9957                 return -ENOENT;
9958
9959         default:
9960                 break;
9961         }
9962
9963         if (event_id >= PERF_COUNT_SW_MAX)
9964                 return -ENOENT;
9965
9966         if (!event->parent) {
9967                 int err;
9968
9969                 err = swevent_hlist_get();
9970                 if (err)
9971                         return err;
9972
9973                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9974                 event->destroy = sw_perf_event_destroy;
9975         }
9976
9977         return 0;
9978 }
9979
9980 static struct pmu perf_swevent = {
9981         .task_ctx_nr    = perf_sw_context,
9982
9983         .capabilities   = PERF_PMU_CAP_NO_NMI,
9984
9985         .event_init     = perf_swevent_init,
9986         .add            = perf_swevent_add,
9987         .del            = perf_swevent_del,
9988         .start          = perf_swevent_start,
9989         .stop           = perf_swevent_stop,
9990         .read           = perf_swevent_read,
9991 };
9992
9993 #ifdef CONFIG_EVENT_TRACING
9994
9995 static void tp_perf_event_destroy(struct perf_event *event)
9996 {
9997         perf_trace_destroy(event);
9998 }
9999
10000 static int perf_tp_event_init(struct perf_event *event)
10001 {
10002         int err;
10003
10004         if (event->attr.type != PERF_TYPE_TRACEPOINT)
10005                 return -ENOENT;
10006
10007         /*
10008          * no branch sampling for tracepoint events
10009          */
10010         if (has_branch_stack(event))
10011                 return -EOPNOTSUPP;
10012
10013         err = perf_trace_init(event);
10014         if (err)
10015                 return err;
10016
10017         event->destroy = tp_perf_event_destroy;
10018
10019         return 0;
10020 }
10021
10022 static struct pmu perf_tracepoint = {
10023         .task_ctx_nr    = perf_sw_context,
10024
10025         .event_init     = perf_tp_event_init,
10026         .add            = perf_trace_add,
10027         .del            = perf_trace_del,
10028         .start          = perf_swevent_start,
10029         .stop           = perf_swevent_stop,
10030         .read           = perf_swevent_read,
10031 };
10032
10033 static int perf_tp_filter_match(struct perf_event *event,
10034                                 struct perf_sample_data *data)
10035 {
10036         void *record = data->raw->frag.data;
10037
10038         /* only top level events have filters set */
10039         if (event->parent)
10040                 event = event->parent;
10041
10042         if (likely(!event->filter) || filter_match_preds(event->filter, record))
10043                 return 1;
10044         return 0;
10045 }
10046
10047 static int perf_tp_event_match(struct perf_event *event,
10048                                 struct perf_sample_data *data,
10049                                 struct pt_regs *regs)
10050 {
10051         if (event->hw.state & PERF_HES_STOPPED)
10052                 return 0;
10053         /*
10054          * If exclude_kernel, only trace user-space tracepoints (uprobes)
10055          */
10056         if (event->attr.exclude_kernel && !user_mode(regs))
10057                 return 0;
10058
10059         if (!perf_tp_filter_match(event, data))
10060                 return 0;
10061
10062         return 1;
10063 }
10064
10065 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10066                                struct trace_event_call *call, u64 count,
10067                                struct pt_regs *regs, struct hlist_head *head,
10068                                struct task_struct *task)
10069 {
10070         if (bpf_prog_array_valid(call)) {
10071                 *(struct pt_regs **)raw_data = regs;
10072                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10073                         perf_swevent_put_recursion_context(rctx);
10074                         return;
10075                 }
10076         }
10077         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10078                       rctx, task);
10079 }
10080 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10081
10082 static void __perf_tp_event_target_task(u64 count, void *record,
10083                                         struct pt_regs *regs,
10084                                         struct perf_sample_data *data,
10085                                         struct perf_event *event)
10086 {
10087         struct trace_entry *entry = record;
10088
10089         if (event->attr.config != entry->type)
10090                 return;
10091         /* Cannot deliver synchronous signal to other task. */
10092         if (event->attr.sigtrap)
10093                 return;
10094         if (perf_tp_event_match(event, data, regs))
10095                 perf_swevent_event(event, count, data, regs);
10096 }
10097
10098 static void perf_tp_event_target_task(u64 count, void *record,
10099                                       struct pt_regs *regs,
10100                                       struct perf_sample_data *data,
10101                                       struct perf_event_context *ctx)
10102 {
10103         unsigned int cpu = smp_processor_id();
10104         struct pmu *pmu = &perf_tracepoint;
10105         struct perf_event *event, *sibling;
10106
10107         perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10108                 __perf_tp_event_target_task(count, record, regs, data, event);
10109                 for_each_sibling_event(sibling, event)
10110                         __perf_tp_event_target_task(count, record, regs, data, sibling);
10111         }
10112
10113         perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10114                 __perf_tp_event_target_task(count, record, regs, data, event);
10115                 for_each_sibling_event(sibling, event)
10116                         __perf_tp_event_target_task(count, record, regs, data, sibling);
10117         }
10118 }
10119
10120 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10121                    struct pt_regs *regs, struct hlist_head *head, int rctx,
10122                    struct task_struct *task)
10123 {
10124         struct perf_sample_data data;
10125         struct perf_event *event;
10126
10127         struct perf_raw_record raw = {
10128                 .frag = {
10129                         .size = entry_size,
10130                         .data = record,
10131                 },
10132         };
10133
10134         perf_sample_data_init(&data, 0, 0);
10135         data.raw = &raw;
10136         data.sample_flags |= PERF_SAMPLE_RAW;
10137
10138         perf_trace_buf_update(record, event_type);
10139
10140         hlist_for_each_entry_rcu(event, head, hlist_entry) {
10141                 if (perf_tp_event_match(event, &data, regs))
10142                         perf_swevent_event(event, count, &data, regs);
10143         }
10144
10145         /*
10146          * If we got specified a target task, also iterate its context and
10147          * deliver this event there too.
10148          */
10149         if (task && task != current) {
10150                 struct perf_event_context *ctx;
10151
10152                 rcu_read_lock();
10153                 ctx = rcu_dereference(task->perf_event_ctxp);
10154                 if (!ctx)
10155                         goto unlock;
10156
10157                 raw_spin_lock(&ctx->lock);
10158                 perf_tp_event_target_task(count, record, regs, &data, ctx);
10159                 raw_spin_unlock(&ctx->lock);
10160 unlock:
10161                 rcu_read_unlock();
10162         }
10163
10164         perf_swevent_put_recursion_context(rctx);
10165 }
10166 EXPORT_SYMBOL_GPL(perf_tp_event);
10167
10168 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10169 /*
10170  * Flags in config, used by dynamic PMU kprobe and uprobe
10171  * The flags should match following PMU_FORMAT_ATTR().
10172  *
10173  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10174  *                               if not set, create kprobe/uprobe
10175  *
10176  * The following values specify a reference counter (or semaphore in the
10177  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10178  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10179  *
10180  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
10181  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
10182  */
10183 enum perf_probe_config {
10184         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10185         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10186         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10187 };
10188
10189 PMU_FORMAT_ATTR(retprobe, "config:0");
10190 #endif
10191
10192 #ifdef CONFIG_KPROBE_EVENTS
10193 static struct attribute *kprobe_attrs[] = {
10194         &format_attr_retprobe.attr,
10195         NULL,
10196 };
10197
10198 static struct attribute_group kprobe_format_group = {
10199         .name = "format",
10200         .attrs = kprobe_attrs,
10201 };
10202
10203 static const struct attribute_group *kprobe_attr_groups[] = {
10204         &kprobe_format_group,
10205         NULL,
10206 };
10207
10208 static int perf_kprobe_event_init(struct perf_event *event);
10209 static struct pmu perf_kprobe = {
10210         .task_ctx_nr    = perf_sw_context,
10211         .event_init     = perf_kprobe_event_init,
10212         .add            = perf_trace_add,
10213         .del            = perf_trace_del,
10214         .start          = perf_swevent_start,
10215         .stop           = perf_swevent_stop,
10216         .read           = perf_swevent_read,
10217         .attr_groups    = kprobe_attr_groups,
10218 };
10219
10220 static int perf_kprobe_event_init(struct perf_event *event)
10221 {
10222         int err;
10223         bool is_retprobe;
10224
10225         if (event->attr.type != perf_kprobe.type)
10226                 return -ENOENT;
10227
10228         if (!perfmon_capable())
10229                 return -EACCES;
10230
10231         /*
10232          * no branch sampling for probe events
10233          */
10234         if (has_branch_stack(event))
10235                 return -EOPNOTSUPP;
10236
10237         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10238         err = perf_kprobe_init(event, is_retprobe);
10239         if (err)
10240                 return err;
10241
10242         event->destroy = perf_kprobe_destroy;
10243
10244         return 0;
10245 }
10246 #endif /* CONFIG_KPROBE_EVENTS */
10247
10248 #ifdef CONFIG_UPROBE_EVENTS
10249 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10250
10251 static struct attribute *uprobe_attrs[] = {
10252         &format_attr_retprobe.attr,
10253         &format_attr_ref_ctr_offset.attr,
10254         NULL,
10255 };
10256
10257 static struct attribute_group uprobe_format_group = {
10258         .name = "format",
10259         .attrs = uprobe_attrs,
10260 };
10261
10262 static const struct attribute_group *uprobe_attr_groups[] = {
10263         &uprobe_format_group,
10264         NULL,
10265 };
10266
10267 static int perf_uprobe_event_init(struct perf_event *event);
10268 static struct pmu perf_uprobe = {
10269         .task_ctx_nr    = perf_sw_context,
10270         .event_init     = perf_uprobe_event_init,
10271         .add            = perf_trace_add,
10272         .del            = perf_trace_del,
10273         .start          = perf_swevent_start,
10274         .stop           = perf_swevent_stop,
10275         .read           = perf_swevent_read,
10276         .attr_groups    = uprobe_attr_groups,
10277 };
10278
10279 static int perf_uprobe_event_init(struct perf_event *event)
10280 {
10281         int err;
10282         unsigned long ref_ctr_offset;
10283         bool is_retprobe;
10284
10285         if (event->attr.type != perf_uprobe.type)
10286                 return -ENOENT;
10287
10288         if (!perfmon_capable())
10289                 return -EACCES;
10290
10291         /*
10292          * no branch sampling for probe events
10293          */
10294         if (has_branch_stack(event))
10295                 return -EOPNOTSUPP;
10296
10297         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10298         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10299         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10300         if (err)
10301                 return err;
10302
10303         event->destroy = perf_uprobe_destroy;
10304
10305         return 0;
10306 }
10307 #endif /* CONFIG_UPROBE_EVENTS */
10308
10309 static inline void perf_tp_register(void)
10310 {
10311         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10312 #ifdef CONFIG_KPROBE_EVENTS
10313         perf_pmu_register(&perf_kprobe, "kprobe", -1);
10314 #endif
10315 #ifdef CONFIG_UPROBE_EVENTS
10316         perf_pmu_register(&perf_uprobe, "uprobe", -1);
10317 #endif
10318 }
10319
10320 static void perf_event_free_filter(struct perf_event *event)
10321 {
10322         ftrace_profile_free_filter(event);
10323 }
10324
10325 #ifdef CONFIG_BPF_SYSCALL
10326 static void bpf_overflow_handler(struct perf_event *event,
10327                                  struct perf_sample_data *data,
10328                                  struct pt_regs *regs)
10329 {
10330         struct bpf_perf_event_data_kern ctx = {
10331                 .data = data,
10332                 .event = event,
10333         };
10334         struct bpf_prog *prog;
10335         int ret = 0;
10336
10337         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10338         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10339                 goto out;
10340         rcu_read_lock();
10341         prog = READ_ONCE(event->prog);
10342         if (prog) {
10343                 if (prog->call_get_stack &&
10344                     (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) &&
10345                     !(data->sample_flags & PERF_SAMPLE_CALLCHAIN)) {
10346                         data->callchain = perf_callchain(event, regs);
10347                         data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
10348                 }
10349
10350                 ret = bpf_prog_run(prog, &ctx);
10351         }
10352         rcu_read_unlock();
10353 out:
10354         __this_cpu_dec(bpf_prog_active);
10355         if (!ret)
10356                 return;
10357
10358         event->orig_overflow_handler(event, data, regs);
10359 }
10360
10361 static int perf_event_set_bpf_handler(struct perf_event *event,
10362                                       struct bpf_prog *prog,
10363                                       u64 bpf_cookie)
10364 {
10365         if (event->overflow_handler_context)
10366                 /* hw breakpoint or kernel counter */
10367                 return -EINVAL;
10368
10369         if (event->prog)
10370                 return -EEXIST;
10371
10372         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10373                 return -EINVAL;
10374
10375         if (event->attr.precise_ip &&
10376             prog->call_get_stack &&
10377             (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10378              event->attr.exclude_callchain_kernel ||
10379              event->attr.exclude_callchain_user)) {
10380                 /*
10381                  * On perf_event with precise_ip, calling bpf_get_stack()
10382                  * may trigger unwinder warnings and occasional crashes.
10383                  * bpf_get_[stack|stackid] works around this issue by using
10384                  * callchain attached to perf_sample_data. If the
10385                  * perf_event does not full (kernel and user) callchain
10386                  * attached to perf_sample_data, do not allow attaching BPF
10387                  * program that calls bpf_get_[stack|stackid].
10388                  */
10389                 return -EPROTO;
10390         }
10391
10392         event->prog = prog;
10393         event->bpf_cookie = bpf_cookie;
10394         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10395         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10396         return 0;
10397 }
10398
10399 static void perf_event_free_bpf_handler(struct perf_event *event)
10400 {
10401         struct bpf_prog *prog = event->prog;
10402
10403         if (!prog)
10404                 return;
10405
10406         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10407         event->prog = NULL;
10408         bpf_prog_put(prog);
10409 }
10410 #else
10411 static int perf_event_set_bpf_handler(struct perf_event *event,
10412                                       struct bpf_prog *prog,
10413                                       u64 bpf_cookie)
10414 {
10415         return -EOPNOTSUPP;
10416 }
10417 static void perf_event_free_bpf_handler(struct perf_event *event)
10418 {
10419 }
10420 #endif
10421
10422 /*
10423  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10424  * with perf_event_open()
10425  */
10426 static inline bool perf_event_is_tracing(struct perf_event *event)
10427 {
10428         if (event->pmu == &perf_tracepoint)
10429                 return true;
10430 #ifdef CONFIG_KPROBE_EVENTS
10431         if (event->pmu == &perf_kprobe)
10432                 return true;
10433 #endif
10434 #ifdef CONFIG_UPROBE_EVENTS
10435         if (event->pmu == &perf_uprobe)
10436                 return true;
10437 #endif
10438         return false;
10439 }
10440
10441 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10442                             u64 bpf_cookie)
10443 {
10444         bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10445
10446         if (!perf_event_is_tracing(event))
10447                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10448
10449         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10450         is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10451         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10452         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10453         if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10454                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10455                 return -EINVAL;
10456
10457         if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10458             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10459             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10460                 return -EINVAL;
10461
10462         if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10463                 /* only uprobe programs are allowed to be sleepable */
10464                 return -EINVAL;
10465
10466         /* Kprobe override only works for kprobes, not uprobes. */
10467         if (prog->kprobe_override && !is_kprobe)
10468                 return -EINVAL;
10469
10470         if (is_tracepoint || is_syscall_tp) {
10471                 int off = trace_event_get_offsets(event->tp_event);
10472
10473                 if (prog->aux->max_ctx_offset > off)
10474                         return -EACCES;
10475         }
10476
10477         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10478 }
10479
10480 void perf_event_free_bpf_prog(struct perf_event *event)
10481 {
10482         if (!perf_event_is_tracing(event)) {
10483                 perf_event_free_bpf_handler(event);
10484                 return;
10485         }
10486         perf_event_detach_bpf_prog(event);
10487 }
10488
10489 #else
10490
10491 static inline void perf_tp_register(void)
10492 {
10493 }
10494
10495 static void perf_event_free_filter(struct perf_event *event)
10496 {
10497 }
10498
10499 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10500                             u64 bpf_cookie)
10501 {
10502         return -ENOENT;
10503 }
10504
10505 void perf_event_free_bpf_prog(struct perf_event *event)
10506 {
10507 }
10508 #endif /* CONFIG_EVENT_TRACING */
10509
10510 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10511 void perf_bp_event(struct perf_event *bp, void *data)
10512 {
10513         struct perf_sample_data sample;
10514         struct pt_regs *regs = data;
10515
10516         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10517
10518         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10519                 perf_swevent_event(bp, 1, &sample, regs);
10520 }
10521 #endif
10522
10523 /*
10524  * Allocate a new address filter
10525  */
10526 static struct perf_addr_filter *
10527 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10528 {
10529         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10530         struct perf_addr_filter *filter;
10531
10532         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10533         if (!filter)
10534                 return NULL;
10535
10536         INIT_LIST_HEAD(&filter->entry);
10537         list_add_tail(&filter->entry, filters);
10538
10539         return filter;
10540 }
10541
10542 static void free_filters_list(struct list_head *filters)
10543 {
10544         struct perf_addr_filter *filter, *iter;
10545
10546         list_for_each_entry_safe(filter, iter, filters, entry) {
10547                 path_put(&filter->path);
10548                 list_del(&filter->entry);
10549                 kfree(filter);
10550         }
10551 }
10552
10553 /*
10554  * Free existing address filters and optionally install new ones
10555  */
10556 static void perf_addr_filters_splice(struct perf_event *event,
10557                                      struct list_head *head)
10558 {
10559         unsigned long flags;
10560         LIST_HEAD(list);
10561
10562         if (!has_addr_filter(event))
10563                 return;
10564
10565         /* don't bother with children, they don't have their own filters */
10566         if (event->parent)
10567                 return;
10568
10569         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10570
10571         list_splice_init(&event->addr_filters.list, &list);
10572         if (head)
10573                 list_splice(head, &event->addr_filters.list);
10574
10575         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10576
10577         free_filters_list(&list);
10578 }
10579
10580 /*
10581  * Scan through mm's vmas and see if one of them matches the
10582  * @filter; if so, adjust filter's address range.
10583  * Called with mm::mmap_lock down for reading.
10584  */
10585 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10586                                    struct mm_struct *mm,
10587                                    struct perf_addr_filter_range *fr)
10588 {
10589         struct vm_area_struct *vma;
10590         VMA_ITERATOR(vmi, mm, 0);
10591
10592         for_each_vma(vmi, vma) {
10593                 if (!vma->vm_file)
10594                         continue;
10595
10596                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10597                         return;
10598         }
10599 }
10600
10601 /*
10602  * Update event's address range filters based on the
10603  * task's existing mappings, if any.
10604  */
10605 static void perf_event_addr_filters_apply(struct perf_event *event)
10606 {
10607         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10608         struct task_struct *task = READ_ONCE(event->ctx->task);
10609         struct perf_addr_filter *filter;
10610         struct mm_struct *mm = NULL;
10611         unsigned int count = 0;
10612         unsigned long flags;
10613
10614         /*
10615          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10616          * will stop on the parent's child_mutex that our caller is also holding
10617          */
10618         if (task == TASK_TOMBSTONE)
10619                 return;
10620
10621         if (ifh->nr_file_filters) {
10622                 mm = get_task_mm(task);
10623                 if (!mm)
10624                         goto restart;
10625
10626                 mmap_read_lock(mm);
10627         }
10628
10629         raw_spin_lock_irqsave(&ifh->lock, flags);
10630         list_for_each_entry(filter, &ifh->list, entry) {
10631                 if (filter->path.dentry) {
10632                         /*
10633                          * Adjust base offset if the filter is associated to a
10634                          * binary that needs to be mapped:
10635                          */
10636                         event->addr_filter_ranges[count].start = 0;
10637                         event->addr_filter_ranges[count].size = 0;
10638
10639                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10640                 } else {
10641                         event->addr_filter_ranges[count].start = filter->offset;
10642                         event->addr_filter_ranges[count].size  = filter->size;
10643                 }
10644
10645                 count++;
10646         }
10647
10648         event->addr_filters_gen++;
10649         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10650
10651         if (ifh->nr_file_filters) {
10652                 mmap_read_unlock(mm);
10653
10654                 mmput(mm);
10655         }
10656
10657 restart:
10658         perf_event_stop(event, 1);
10659 }
10660
10661 /*
10662  * Address range filtering: limiting the data to certain
10663  * instruction address ranges. Filters are ioctl()ed to us from
10664  * userspace as ascii strings.
10665  *
10666  * Filter string format:
10667  *
10668  * ACTION RANGE_SPEC
10669  * where ACTION is one of the
10670  *  * "filter": limit the trace to this region
10671  *  * "start": start tracing from this address
10672  *  * "stop": stop tracing at this address/region;
10673  * RANGE_SPEC is
10674  *  * for kernel addresses: <start address>[/<size>]
10675  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10676  *
10677  * if <size> is not specified or is zero, the range is treated as a single
10678  * address; not valid for ACTION=="filter".
10679  */
10680 enum {
10681         IF_ACT_NONE = -1,
10682         IF_ACT_FILTER,
10683         IF_ACT_START,
10684         IF_ACT_STOP,
10685         IF_SRC_FILE,
10686         IF_SRC_KERNEL,
10687         IF_SRC_FILEADDR,
10688         IF_SRC_KERNELADDR,
10689 };
10690
10691 enum {
10692         IF_STATE_ACTION = 0,
10693         IF_STATE_SOURCE,
10694         IF_STATE_END,
10695 };
10696
10697 static const match_table_t if_tokens = {
10698         { IF_ACT_FILTER,        "filter" },
10699         { IF_ACT_START,         "start" },
10700         { IF_ACT_STOP,          "stop" },
10701         { IF_SRC_FILE,          "%u/%u@%s" },
10702         { IF_SRC_KERNEL,        "%u/%u" },
10703         { IF_SRC_FILEADDR,      "%u@%s" },
10704         { IF_SRC_KERNELADDR,    "%u" },
10705         { IF_ACT_NONE,          NULL },
10706 };
10707
10708 /*
10709  * Address filter string parser
10710  */
10711 static int
10712 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10713                              struct list_head *filters)
10714 {
10715         struct perf_addr_filter *filter = NULL;
10716         char *start, *orig, *filename = NULL;
10717         substring_t args[MAX_OPT_ARGS];
10718         int state = IF_STATE_ACTION, token;
10719         unsigned int kernel = 0;
10720         int ret = -EINVAL;
10721
10722         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10723         if (!fstr)
10724                 return -ENOMEM;
10725
10726         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10727                 static const enum perf_addr_filter_action_t actions[] = {
10728                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10729                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10730                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10731                 };
10732                 ret = -EINVAL;
10733
10734                 if (!*start)
10735                         continue;
10736
10737                 /* filter definition begins */
10738                 if (state == IF_STATE_ACTION) {
10739                         filter = perf_addr_filter_new(event, filters);
10740                         if (!filter)
10741                                 goto fail;
10742                 }
10743
10744                 token = match_token(start, if_tokens, args);
10745                 switch (token) {
10746                 case IF_ACT_FILTER:
10747                 case IF_ACT_START:
10748                 case IF_ACT_STOP:
10749                         if (state != IF_STATE_ACTION)
10750                                 goto fail;
10751
10752                         filter->action = actions[token];
10753                         state = IF_STATE_SOURCE;
10754                         break;
10755
10756                 case IF_SRC_KERNELADDR:
10757                 case IF_SRC_KERNEL:
10758                         kernel = 1;
10759                         fallthrough;
10760
10761                 case IF_SRC_FILEADDR:
10762                 case IF_SRC_FILE:
10763                         if (state != IF_STATE_SOURCE)
10764                                 goto fail;
10765
10766                         *args[0].to = 0;
10767                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10768                         if (ret)
10769                                 goto fail;
10770
10771                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10772                                 *args[1].to = 0;
10773                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10774                                 if (ret)
10775                                         goto fail;
10776                         }
10777
10778                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10779                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10780
10781                                 kfree(filename);
10782                                 filename = match_strdup(&args[fpos]);
10783                                 if (!filename) {
10784                                         ret = -ENOMEM;
10785                                         goto fail;
10786                                 }
10787                         }
10788
10789                         state = IF_STATE_END;
10790                         break;
10791
10792                 default:
10793                         goto fail;
10794                 }
10795
10796                 /*
10797                  * Filter definition is fully parsed, validate and install it.
10798                  * Make sure that it doesn't contradict itself or the event's
10799                  * attribute.
10800                  */
10801                 if (state == IF_STATE_END) {
10802                         ret = -EINVAL;
10803
10804                         /*
10805                          * ACTION "filter" must have a non-zero length region
10806                          * specified.
10807                          */
10808                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10809                             !filter->size)
10810                                 goto fail;
10811
10812                         if (!kernel) {
10813                                 if (!filename)
10814                                         goto fail;
10815
10816                                 /*
10817                                  * For now, we only support file-based filters
10818                                  * in per-task events; doing so for CPU-wide
10819                                  * events requires additional context switching
10820                                  * trickery, since same object code will be
10821                                  * mapped at different virtual addresses in
10822                                  * different processes.
10823                                  */
10824                                 ret = -EOPNOTSUPP;
10825                                 if (!event->ctx->task)
10826                                         goto fail;
10827
10828                                 /* look up the path and grab its inode */
10829                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10830                                                 &filter->path);
10831                                 if (ret)
10832                                         goto fail;
10833
10834                                 ret = -EINVAL;
10835                                 if (!filter->path.dentry ||
10836                                     !S_ISREG(d_inode(filter->path.dentry)
10837                                              ->i_mode))
10838                                         goto fail;
10839
10840                                 event->addr_filters.nr_file_filters++;
10841                         }
10842
10843                         /* ready to consume more filters */
10844                         kfree(filename);
10845                         filename = NULL;
10846                         state = IF_STATE_ACTION;
10847                         filter = NULL;
10848                         kernel = 0;
10849                 }
10850         }
10851
10852         if (state != IF_STATE_ACTION)
10853                 goto fail;
10854
10855         kfree(filename);
10856         kfree(orig);
10857
10858         return 0;
10859
10860 fail:
10861         kfree(filename);
10862         free_filters_list(filters);
10863         kfree(orig);
10864
10865         return ret;
10866 }
10867
10868 static int
10869 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10870 {
10871         LIST_HEAD(filters);
10872         int ret;
10873
10874         /*
10875          * Since this is called in perf_ioctl() path, we're already holding
10876          * ctx::mutex.
10877          */
10878         lockdep_assert_held(&event->ctx->mutex);
10879
10880         if (WARN_ON_ONCE(event->parent))
10881                 return -EINVAL;
10882
10883         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10884         if (ret)
10885                 goto fail_clear_files;
10886
10887         ret = event->pmu->addr_filters_validate(&filters);
10888         if (ret)
10889                 goto fail_free_filters;
10890
10891         /* remove existing filters, if any */
10892         perf_addr_filters_splice(event, &filters);
10893
10894         /* install new filters */
10895         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10896
10897         return ret;
10898
10899 fail_free_filters:
10900         free_filters_list(&filters);
10901
10902 fail_clear_files:
10903         event->addr_filters.nr_file_filters = 0;
10904
10905         return ret;
10906 }
10907
10908 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10909 {
10910         int ret = -EINVAL;
10911         char *filter_str;
10912
10913         filter_str = strndup_user(arg, PAGE_SIZE);
10914         if (IS_ERR(filter_str))
10915                 return PTR_ERR(filter_str);
10916
10917 #ifdef CONFIG_EVENT_TRACING
10918         if (perf_event_is_tracing(event)) {
10919                 struct perf_event_context *ctx = event->ctx;
10920
10921                 /*
10922                  * Beware, here be dragons!!
10923                  *
10924                  * the tracepoint muck will deadlock against ctx->mutex, but
10925                  * the tracepoint stuff does not actually need it. So
10926                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10927                  * already have a reference on ctx.
10928                  *
10929                  * This can result in event getting moved to a different ctx,
10930                  * but that does not affect the tracepoint state.
10931                  */
10932                 mutex_unlock(&ctx->mutex);
10933                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10934                 mutex_lock(&ctx->mutex);
10935         } else
10936 #endif
10937         if (has_addr_filter(event))
10938                 ret = perf_event_set_addr_filter(event, filter_str);
10939
10940         kfree(filter_str);
10941         return ret;
10942 }
10943
10944 /*
10945  * hrtimer based swevent callback
10946  */
10947
10948 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10949 {
10950         enum hrtimer_restart ret = HRTIMER_RESTART;
10951         struct perf_sample_data data;
10952         struct pt_regs *regs;
10953         struct perf_event *event;
10954         u64 period;
10955
10956         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10957
10958         if (event->state != PERF_EVENT_STATE_ACTIVE)
10959                 return HRTIMER_NORESTART;
10960
10961         event->pmu->read(event);
10962
10963         perf_sample_data_init(&data, 0, event->hw.last_period);
10964         regs = get_irq_regs();
10965
10966         if (regs && !perf_exclude_event(event, regs)) {
10967                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10968                         if (__perf_event_overflow(event, 1, &data, regs))
10969                                 ret = HRTIMER_NORESTART;
10970         }
10971
10972         period = max_t(u64, 10000, event->hw.sample_period);
10973         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10974
10975         return ret;
10976 }
10977
10978 static void perf_swevent_start_hrtimer(struct perf_event *event)
10979 {
10980         struct hw_perf_event *hwc = &event->hw;
10981         s64 period;
10982
10983         if (!is_sampling_event(event))
10984                 return;
10985
10986         period = local64_read(&hwc->period_left);
10987         if (period) {
10988                 if (period < 0)
10989                         period = 10000;
10990
10991                 local64_set(&hwc->period_left, 0);
10992         } else {
10993                 period = max_t(u64, 10000, hwc->sample_period);
10994         }
10995         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10996                       HRTIMER_MODE_REL_PINNED_HARD);
10997 }
10998
10999 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11000 {
11001         struct hw_perf_event *hwc = &event->hw;
11002
11003         if (is_sampling_event(event)) {
11004                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11005                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11006
11007                 hrtimer_cancel(&hwc->hrtimer);
11008         }
11009 }
11010
11011 static void perf_swevent_init_hrtimer(struct perf_event *event)
11012 {
11013         struct hw_perf_event *hwc = &event->hw;
11014
11015         if (!is_sampling_event(event))
11016                 return;
11017
11018         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11019         hwc->hrtimer.function = perf_swevent_hrtimer;
11020
11021         /*
11022          * Since hrtimers have a fixed rate, we can do a static freq->period
11023          * mapping and avoid the whole period adjust feedback stuff.
11024          */
11025         if (event->attr.freq) {
11026                 long freq = event->attr.sample_freq;
11027
11028                 event->attr.sample_period = NSEC_PER_SEC / freq;
11029                 hwc->sample_period = event->attr.sample_period;
11030                 local64_set(&hwc->period_left, hwc->sample_period);
11031                 hwc->last_period = hwc->sample_period;
11032                 event->attr.freq = 0;
11033         }
11034 }
11035
11036 /*
11037  * Software event: cpu wall time clock
11038  */
11039
11040 static void cpu_clock_event_update(struct perf_event *event)
11041 {
11042         s64 prev;
11043         u64 now;
11044
11045         now = local_clock();
11046         prev = local64_xchg(&event->hw.prev_count, now);
11047         local64_add(now - prev, &event->count);
11048 }
11049
11050 static void cpu_clock_event_start(struct perf_event *event, int flags)
11051 {
11052         local64_set(&event->hw.prev_count, local_clock());
11053         perf_swevent_start_hrtimer(event);
11054 }
11055
11056 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11057 {
11058         perf_swevent_cancel_hrtimer(event);
11059         cpu_clock_event_update(event);
11060 }
11061
11062 static int cpu_clock_event_add(struct perf_event *event, int flags)
11063 {
11064         if (flags & PERF_EF_START)
11065                 cpu_clock_event_start(event, flags);
11066         perf_event_update_userpage(event);
11067
11068         return 0;
11069 }
11070
11071 static void cpu_clock_event_del(struct perf_event *event, int flags)
11072 {
11073         cpu_clock_event_stop(event, flags);
11074 }
11075
11076 static void cpu_clock_event_read(struct perf_event *event)
11077 {
11078         cpu_clock_event_update(event);
11079 }
11080
11081 static int cpu_clock_event_init(struct perf_event *event)
11082 {
11083         if (event->attr.type != PERF_TYPE_SOFTWARE)
11084                 return -ENOENT;
11085
11086         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11087                 return -ENOENT;
11088
11089         /*
11090          * no branch sampling for software events
11091          */
11092         if (has_branch_stack(event))
11093                 return -EOPNOTSUPP;
11094
11095         perf_swevent_init_hrtimer(event);
11096
11097         return 0;
11098 }
11099
11100 static struct pmu perf_cpu_clock = {
11101         .task_ctx_nr    = perf_sw_context,
11102
11103         .capabilities   = PERF_PMU_CAP_NO_NMI,
11104
11105         .event_init     = cpu_clock_event_init,
11106         .add            = cpu_clock_event_add,
11107         .del            = cpu_clock_event_del,
11108         .start          = cpu_clock_event_start,
11109         .stop           = cpu_clock_event_stop,
11110         .read           = cpu_clock_event_read,
11111 };
11112
11113 /*
11114  * Software event: task time clock
11115  */
11116
11117 static void task_clock_event_update(struct perf_event *event, u64 now)
11118 {
11119         u64 prev;
11120         s64 delta;
11121
11122         prev = local64_xchg(&event->hw.prev_count, now);
11123         delta = now - prev;
11124         local64_add(delta, &event->count);
11125 }
11126
11127 static void task_clock_event_start(struct perf_event *event, int flags)
11128 {
11129         local64_set(&event->hw.prev_count, event->ctx->time);
11130         perf_swevent_start_hrtimer(event);
11131 }
11132
11133 static void task_clock_event_stop(struct perf_event *event, int flags)
11134 {
11135         perf_swevent_cancel_hrtimer(event);
11136         task_clock_event_update(event, event->ctx->time);
11137 }
11138
11139 static int task_clock_event_add(struct perf_event *event, int flags)
11140 {
11141         if (flags & PERF_EF_START)
11142                 task_clock_event_start(event, flags);
11143         perf_event_update_userpage(event);
11144
11145         return 0;
11146 }
11147
11148 static void task_clock_event_del(struct perf_event *event, int flags)
11149 {
11150         task_clock_event_stop(event, PERF_EF_UPDATE);
11151 }
11152
11153 static void task_clock_event_read(struct perf_event *event)
11154 {
11155         u64 now = perf_clock();
11156         u64 delta = now - event->ctx->timestamp;
11157         u64 time = event->ctx->time + delta;
11158
11159         task_clock_event_update(event, time);
11160 }
11161
11162 static int task_clock_event_init(struct perf_event *event)
11163 {
11164         if (event->attr.type != PERF_TYPE_SOFTWARE)
11165                 return -ENOENT;
11166
11167         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11168                 return -ENOENT;
11169
11170         /*
11171          * no branch sampling for software events
11172          */
11173         if (has_branch_stack(event))
11174                 return -EOPNOTSUPP;
11175
11176         perf_swevent_init_hrtimer(event);
11177
11178         return 0;
11179 }
11180
11181 static struct pmu perf_task_clock = {
11182         .task_ctx_nr    = perf_sw_context,
11183
11184         .capabilities   = PERF_PMU_CAP_NO_NMI,
11185
11186         .event_init     = task_clock_event_init,
11187         .add            = task_clock_event_add,
11188         .del            = task_clock_event_del,
11189         .start          = task_clock_event_start,
11190         .stop           = task_clock_event_stop,
11191         .read           = task_clock_event_read,
11192 };
11193
11194 static void perf_pmu_nop_void(struct pmu *pmu)
11195 {
11196 }
11197
11198 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11199 {
11200 }
11201
11202 static int perf_pmu_nop_int(struct pmu *pmu)
11203 {
11204         return 0;
11205 }
11206
11207 static int perf_event_nop_int(struct perf_event *event, u64 value)
11208 {
11209         return 0;
11210 }
11211
11212 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11213
11214 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11215 {
11216         __this_cpu_write(nop_txn_flags, flags);
11217
11218         if (flags & ~PERF_PMU_TXN_ADD)
11219                 return;
11220
11221         perf_pmu_disable(pmu);
11222 }
11223
11224 static int perf_pmu_commit_txn(struct pmu *pmu)
11225 {
11226         unsigned int flags = __this_cpu_read(nop_txn_flags);
11227
11228         __this_cpu_write(nop_txn_flags, 0);
11229
11230         if (flags & ~PERF_PMU_TXN_ADD)
11231                 return 0;
11232
11233         perf_pmu_enable(pmu);
11234         return 0;
11235 }
11236
11237 static void perf_pmu_cancel_txn(struct pmu *pmu)
11238 {
11239         unsigned int flags =  __this_cpu_read(nop_txn_flags);
11240
11241         __this_cpu_write(nop_txn_flags, 0);
11242
11243         if (flags & ~PERF_PMU_TXN_ADD)
11244                 return;
11245
11246         perf_pmu_enable(pmu);
11247 }
11248
11249 static int perf_event_idx_default(struct perf_event *event)
11250 {
11251         return 0;
11252 }
11253
11254 static void free_pmu_context(struct pmu *pmu)
11255 {
11256         free_percpu(pmu->cpu_pmu_context);
11257 }
11258
11259 /*
11260  * Let userspace know that this PMU supports address range filtering:
11261  */
11262 static ssize_t nr_addr_filters_show(struct device *dev,
11263                                     struct device_attribute *attr,
11264                                     char *page)
11265 {
11266         struct pmu *pmu = dev_get_drvdata(dev);
11267
11268         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11269 }
11270 DEVICE_ATTR_RO(nr_addr_filters);
11271
11272 static struct idr pmu_idr;
11273
11274 static ssize_t
11275 type_show(struct device *dev, struct device_attribute *attr, char *page)
11276 {
11277         struct pmu *pmu = dev_get_drvdata(dev);
11278
11279         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11280 }
11281 static DEVICE_ATTR_RO(type);
11282
11283 static ssize_t
11284 perf_event_mux_interval_ms_show(struct device *dev,
11285                                 struct device_attribute *attr,
11286                                 char *page)
11287 {
11288         struct pmu *pmu = dev_get_drvdata(dev);
11289
11290         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11291 }
11292
11293 static DEFINE_MUTEX(mux_interval_mutex);
11294
11295 static ssize_t
11296 perf_event_mux_interval_ms_store(struct device *dev,
11297                                  struct device_attribute *attr,
11298                                  const char *buf, size_t count)
11299 {
11300         struct pmu *pmu = dev_get_drvdata(dev);
11301         int timer, cpu, ret;
11302
11303         ret = kstrtoint(buf, 0, &timer);
11304         if (ret)
11305                 return ret;
11306
11307         if (timer < 1)
11308                 return -EINVAL;
11309
11310         /* same value, noting to do */
11311         if (timer == pmu->hrtimer_interval_ms)
11312                 return count;
11313
11314         mutex_lock(&mux_interval_mutex);
11315         pmu->hrtimer_interval_ms = timer;
11316
11317         /* update all cpuctx for this PMU */
11318         cpus_read_lock();
11319         for_each_online_cpu(cpu) {
11320                 struct perf_cpu_pmu_context *cpc;
11321                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11322                 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11323
11324                 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11325         }
11326         cpus_read_unlock();
11327         mutex_unlock(&mux_interval_mutex);
11328
11329         return count;
11330 }
11331 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11332
11333 static struct attribute *pmu_dev_attrs[] = {
11334         &dev_attr_type.attr,
11335         &dev_attr_perf_event_mux_interval_ms.attr,
11336         NULL,
11337 };
11338 ATTRIBUTE_GROUPS(pmu_dev);
11339
11340 static int pmu_bus_running;
11341 static struct bus_type pmu_bus = {
11342         .name           = "event_source",
11343         .dev_groups     = pmu_dev_groups,
11344 };
11345
11346 static void pmu_dev_release(struct device *dev)
11347 {
11348         kfree(dev);
11349 }
11350
11351 static int pmu_dev_alloc(struct pmu *pmu)
11352 {
11353         int ret = -ENOMEM;
11354
11355         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11356         if (!pmu->dev)
11357                 goto out;
11358
11359         pmu->dev->groups = pmu->attr_groups;
11360         device_initialize(pmu->dev);
11361
11362         dev_set_drvdata(pmu->dev, pmu);
11363         pmu->dev->bus = &pmu_bus;
11364         pmu->dev->release = pmu_dev_release;
11365
11366         ret = dev_set_name(pmu->dev, "%s", pmu->name);
11367         if (ret)
11368                 goto free_dev;
11369
11370         ret = device_add(pmu->dev);
11371         if (ret)
11372                 goto free_dev;
11373
11374         /* For PMUs with address filters, throw in an extra attribute: */
11375         if (pmu->nr_addr_filters)
11376                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11377
11378         if (ret)
11379                 goto del_dev;
11380
11381         if (pmu->attr_update)
11382                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11383
11384         if (ret)
11385                 goto del_dev;
11386
11387 out:
11388         return ret;
11389
11390 del_dev:
11391         device_del(pmu->dev);
11392
11393 free_dev:
11394         put_device(pmu->dev);
11395         goto out;
11396 }
11397
11398 static struct lock_class_key cpuctx_mutex;
11399 static struct lock_class_key cpuctx_lock;
11400
11401 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11402 {
11403         int cpu, ret, max = PERF_TYPE_MAX;
11404
11405         mutex_lock(&pmus_lock);
11406         ret = -ENOMEM;
11407         pmu->pmu_disable_count = alloc_percpu(int);
11408         if (!pmu->pmu_disable_count)
11409                 goto unlock;
11410
11411         pmu->type = -1;
11412         if (!name)
11413                 goto skip_type;
11414         pmu->name = name;
11415
11416         if (type != PERF_TYPE_SOFTWARE) {
11417                 if (type >= 0)
11418                         max = type;
11419
11420                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11421                 if (ret < 0)
11422                         goto free_pdc;
11423
11424                 WARN_ON(type >= 0 && ret != type);
11425
11426                 type = ret;
11427         }
11428         pmu->type = type;
11429
11430         if (pmu_bus_running) {
11431                 ret = pmu_dev_alloc(pmu);
11432                 if (ret)
11433                         goto free_idr;
11434         }
11435
11436 skip_type:
11437         ret = -ENOMEM;
11438         pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11439         if (!pmu->cpu_pmu_context)
11440                 goto free_dev;
11441
11442         for_each_possible_cpu(cpu) {
11443                 struct perf_cpu_pmu_context *cpc;
11444
11445                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11446                 __perf_init_event_pmu_context(&cpc->epc, pmu);
11447                 __perf_mux_hrtimer_init(cpc, cpu);
11448         }
11449
11450         if (!pmu->start_txn) {
11451                 if (pmu->pmu_enable) {
11452                         /*
11453                          * If we have pmu_enable/pmu_disable calls, install
11454                          * transaction stubs that use that to try and batch
11455                          * hardware accesses.
11456                          */
11457                         pmu->start_txn  = perf_pmu_start_txn;
11458                         pmu->commit_txn = perf_pmu_commit_txn;
11459                         pmu->cancel_txn = perf_pmu_cancel_txn;
11460                 } else {
11461                         pmu->start_txn  = perf_pmu_nop_txn;
11462                         pmu->commit_txn = perf_pmu_nop_int;
11463                         pmu->cancel_txn = perf_pmu_nop_void;
11464                 }
11465         }
11466
11467         if (!pmu->pmu_enable) {
11468                 pmu->pmu_enable  = perf_pmu_nop_void;
11469                 pmu->pmu_disable = perf_pmu_nop_void;
11470         }
11471
11472         if (!pmu->check_period)
11473                 pmu->check_period = perf_event_nop_int;
11474
11475         if (!pmu->event_idx)
11476                 pmu->event_idx = perf_event_idx_default;
11477
11478         /*
11479          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11480          * since these cannot be in the IDR. This way the linear search
11481          * is fast, provided a valid software event is provided.
11482          */
11483         if (type == PERF_TYPE_SOFTWARE || !name)
11484                 list_add_rcu(&pmu->entry, &pmus);
11485         else
11486                 list_add_tail_rcu(&pmu->entry, &pmus);
11487
11488         atomic_set(&pmu->exclusive_cnt, 0);
11489         ret = 0;
11490 unlock:
11491         mutex_unlock(&pmus_lock);
11492
11493         return ret;
11494
11495 free_dev:
11496         device_del(pmu->dev);
11497         put_device(pmu->dev);
11498
11499 free_idr:
11500         if (pmu->type != PERF_TYPE_SOFTWARE)
11501                 idr_remove(&pmu_idr, pmu->type);
11502
11503 free_pdc:
11504         free_percpu(pmu->pmu_disable_count);
11505         goto unlock;
11506 }
11507 EXPORT_SYMBOL_GPL(perf_pmu_register);
11508
11509 void perf_pmu_unregister(struct pmu *pmu)
11510 {
11511         mutex_lock(&pmus_lock);
11512         list_del_rcu(&pmu->entry);
11513
11514         /*
11515          * We dereference the pmu list under both SRCU and regular RCU, so
11516          * synchronize against both of those.
11517          */
11518         synchronize_srcu(&pmus_srcu);
11519         synchronize_rcu();
11520
11521         free_percpu(pmu->pmu_disable_count);
11522         if (pmu->type != PERF_TYPE_SOFTWARE)
11523                 idr_remove(&pmu_idr, pmu->type);
11524         if (pmu_bus_running) {
11525                 if (pmu->nr_addr_filters)
11526                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11527                 device_del(pmu->dev);
11528                 put_device(pmu->dev);
11529         }
11530         free_pmu_context(pmu);
11531         mutex_unlock(&pmus_lock);
11532 }
11533 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11534
11535 static inline bool has_extended_regs(struct perf_event *event)
11536 {
11537         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11538                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11539 }
11540
11541 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11542 {
11543         struct perf_event_context *ctx = NULL;
11544         int ret;
11545
11546         if (!try_module_get(pmu->module))
11547                 return -ENODEV;
11548
11549         /*
11550          * A number of pmu->event_init() methods iterate the sibling_list to,
11551          * for example, validate if the group fits on the PMU. Therefore,
11552          * if this is a sibling event, acquire the ctx->mutex to protect
11553          * the sibling_list.
11554          */
11555         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11556                 /*
11557                  * This ctx->mutex can nest when we're called through
11558                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11559                  */
11560                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11561                                                  SINGLE_DEPTH_NESTING);
11562                 BUG_ON(!ctx);
11563         }
11564
11565         event->pmu = pmu;
11566         ret = pmu->event_init(event);
11567
11568         if (ctx)
11569                 perf_event_ctx_unlock(event->group_leader, ctx);
11570
11571         if (!ret) {
11572                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11573                     has_extended_regs(event))
11574                         ret = -EOPNOTSUPP;
11575
11576                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11577                     event_has_any_exclude_flag(event))
11578                         ret = -EINVAL;
11579
11580                 if (ret && event->destroy)
11581                         event->destroy(event);
11582         }
11583
11584         if (ret)
11585                 module_put(pmu->module);
11586
11587         return ret;
11588 }
11589
11590 static struct pmu *perf_init_event(struct perf_event *event)
11591 {
11592         bool extended_type = false;
11593         int idx, type, ret;
11594         struct pmu *pmu;
11595
11596         idx = srcu_read_lock(&pmus_srcu);
11597
11598         /* Try parent's PMU first: */
11599         if (event->parent && event->parent->pmu) {
11600                 pmu = event->parent->pmu;
11601                 ret = perf_try_init_event(pmu, event);
11602                 if (!ret)
11603                         goto unlock;
11604         }
11605
11606         /*
11607          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11608          * are often aliases for PERF_TYPE_RAW.
11609          */
11610         type = event->attr.type;
11611         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11612                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11613                 if (!type) {
11614                         type = PERF_TYPE_RAW;
11615                 } else {
11616                         extended_type = true;
11617                         event->attr.config &= PERF_HW_EVENT_MASK;
11618                 }
11619         }
11620
11621 again:
11622         rcu_read_lock();
11623         pmu = idr_find(&pmu_idr, type);
11624         rcu_read_unlock();
11625         if (pmu) {
11626                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11627                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11628                         goto fail;
11629
11630                 ret = perf_try_init_event(pmu, event);
11631                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11632                         type = event->attr.type;
11633                         goto again;
11634                 }
11635
11636                 if (ret)
11637                         pmu = ERR_PTR(ret);
11638
11639                 goto unlock;
11640         }
11641
11642         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11643                 ret = perf_try_init_event(pmu, event);
11644                 if (!ret)
11645                         goto unlock;
11646
11647                 if (ret != -ENOENT) {
11648                         pmu = ERR_PTR(ret);
11649                         goto unlock;
11650                 }
11651         }
11652 fail:
11653         pmu = ERR_PTR(-ENOENT);
11654 unlock:
11655         srcu_read_unlock(&pmus_srcu, idx);
11656
11657         return pmu;
11658 }
11659
11660 static void attach_sb_event(struct perf_event *event)
11661 {
11662         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11663
11664         raw_spin_lock(&pel->lock);
11665         list_add_rcu(&event->sb_list, &pel->list);
11666         raw_spin_unlock(&pel->lock);
11667 }
11668
11669 /*
11670  * We keep a list of all !task (and therefore per-cpu) events
11671  * that need to receive side-band records.
11672  *
11673  * This avoids having to scan all the various PMU per-cpu contexts
11674  * looking for them.
11675  */
11676 static void account_pmu_sb_event(struct perf_event *event)
11677 {
11678         if (is_sb_event(event))
11679                 attach_sb_event(event);
11680 }
11681
11682 static void account_event_cpu(struct perf_event *event, int cpu)
11683 {
11684         if (event->parent)
11685                 return;
11686
11687         if (is_cgroup_event(event))
11688                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11689 }
11690
11691 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11692 static void account_freq_event_nohz(void)
11693 {
11694 #ifdef CONFIG_NO_HZ_FULL
11695         /* Lock so we don't race with concurrent unaccount */
11696         spin_lock(&nr_freq_lock);
11697         if (atomic_inc_return(&nr_freq_events) == 1)
11698                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11699         spin_unlock(&nr_freq_lock);
11700 #endif
11701 }
11702
11703 static void account_freq_event(void)
11704 {
11705         if (tick_nohz_full_enabled())
11706                 account_freq_event_nohz();
11707         else
11708                 atomic_inc(&nr_freq_events);
11709 }
11710
11711
11712 static void account_event(struct perf_event *event)
11713 {
11714         bool inc = false;
11715
11716         if (event->parent)
11717                 return;
11718
11719         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11720                 inc = true;
11721         if (event->attr.mmap || event->attr.mmap_data)
11722                 atomic_inc(&nr_mmap_events);
11723         if (event->attr.build_id)
11724                 atomic_inc(&nr_build_id_events);
11725         if (event->attr.comm)
11726                 atomic_inc(&nr_comm_events);
11727         if (event->attr.namespaces)
11728                 atomic_inc(&nr_namespaces_events);
11729         if (event->attr.cgroup)
11730                 atomic_inc(&nr_cgroup_events);
11731         if (event->attr.task)
11732                 atomic_inc(&nr_task_events);
11733         if (event->attr.freq)
11734                 account_freq_event();
11735         if (event->attr.context_switch) {
11736                 atomic_inc(&nr_switch_events);
11737                 inc = true;
11738         }
11739         if (has_branch_stack(event))
11740                 inc = true;
11741         if (is_cgroup_event(event))
11742                 inc = true;
11743         if (event->attr.ksymbol)
11744                 atomic_inc(&nr_ksymbol_events);
11745         if (event->attr.bpf_event)
11746                 atomic_inc(&nr_bpf_events);
11747         if (event->attr.text_poke)
11748                 atomic_inc(&nr_text_poke_events);
11749
11750         if (inc) {
11751                 /*
11752                  * We need the mutex here because static_branch_enable()
11753                  * must complete *before* the perf_sched_count increment
11754                  * becomes visible.
11755                  */
11756                 if (atomic_inc_not_zero(&perf_sched_count))
11757                         goto enabled;
11758
11759                 mutex_lock(&perf_sched_mutex);
11760                 if (!atomic_read(&perf_sched_count)) {
11761                         static_branch_enable(&perf_sched_events);
11762                         /*
11763                          * Guarantee that all CPUs observe they key change and
11764                          * call the perf scheduling hooks before proceeding to
11765                          * install events that need them.
11766                          */
11767                         synchronize_rcu();
11768                 }
11769                 /*
11770                  * Now that we have waited for the sync_sched(), allow further
11771                  * increments to by-pass the mutex.
11772                  */
11773                 atomic_inc(&perf_sched_count);
11774                 mutex_unlock(&perf_sched_mutex);
11775         }
11776 enabled:
11777
11778         account_event_cpu(event, event->cpu);
11779
11780         account_pmu_sb_event(event);
11781 }
11782
11783 /*
11784  * Allocate and initialize an event structure
11785  */
11786 static struct perf_event *
11787 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11788                  struct task_struct *task,
11789                  struct perf_event *group_leader,
11790                  struct perf_event *parent_event,
11791                  perf_overflow_handler_t overflow_handler,
11792                  void *context, int cgroup_fd)
11793 {
11794         struct pmu *pmu;
11795         struct perf_event *event;
11796         struct hw_perf_event *hwc;
11797         long err = -EINVAL;
11798         int node;
11799
11800         if ((unsigned)cpu >= nr_cpu_ids) {
11801                 if (!task || cpu != -1)
11802                         return ERR_PTR(-EINVAL);
11803         }
11804         if (attr->sigtrap && !task) {
11805                 /* Requires a task: avoid signalling random tasks. */
11806                 return ERR_PTR(-EINVAL);
11807         }
11808
11809         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11810         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11811                                       node);
11812         if (!event)
11813                 return ERR_PTR(-ENOMEM);
11814
11815         /*
11816          * Single events are their own group leaders, with an
11817          * empty sibling list:
11818          */
11819         if (!group_leader)
11820                 group_leader = event;
11821
11822         mutex_init(&event->child_mutex);
11823         INIT_LIST_HEAD(&event->child_list);
11824
11825         INIT_LIST_HEAD(&event->event_entry);
11826         INIT_LIST_HEAD(&event->sibling_list);
11827         INIT_LIST_HEAD(&event->active_list);
11828         init_event_group(event);
11829         INIT_LIST_HEAD(&event->rb_entry);
11830         INIT_LIST_HEAD(&event->active_entry);
11831         INIT_LIST_HEAD(&event->addr_filters.list);
11832         INIT_HLIST_NODE(&event->hlist_entry);
11833
11834
11835         init_waitqueue_head(&event->waitq);
11836         init_irq_work(&event->pending_irq, perf_pending_irq);
11837         init_task_work(&event->pending_task, perf_pending_task);
11838
11839         mutex_init(&event->mmap_mutex);
11840         raw_spin_lock_init(&event->addr_filters.lock);
11841
11842         atomic_long_set(&event->refcount, 1);
11843         event->cpu              = cpu;
11844         event->attr             = *attr;
11845         event->group_leader     = group_leader;
11846         event->pmu              = NULL;
11847         event->oncpu            = -1;
11848
11849         event->parent           = parent_event;
11850
11851         event->ns               = get_pid_ns(task_active_pid_ns(current));
11852         event->id               = atomic64_inc_return(&perf_event_id);
11853
11854         event->state            = PERF_EVENT_STATE_INACTIVE;
11855
11856         if (parent_event)
11857                 event->event_caps = parent_event->event_caps;
11858
11859         if (task) {
11860                 event->attach_state = PERF_ATTACH_TASK;
11861                 /*
11862                  * XXX pmu::event_init needs to know what task to account to
11863                  * and we cannot use the ctx information because we need the
11864                  * pmu before we get a ctx.
11865                  */
11866                 event->hw.target = get_task_struct(task);
11867         }
11868
11869         event->clock = &local_clock;
11870         if (parent_event)
11871                 event->clock = parent_event->clock;
11872
11873         if (!overflow_handler && parent_event) {
11874                 overflow_handler = parent_event->overflow_handler;
11875                 context = parent_event->overflow_handler_context;
11876 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11877                 if (overflow_handler == bpf_overflow_handler) {
11878                         struct bpf_prog *prog = parent_event->prog;
11879
11880                         bpf_prog_inc(prog);
11881                         event->prog = prog;
11882                         event->orig_overflow_handler =
11883                                 parent_event->orig_overflow_handler;
11884                 }
11885 #endif
11886         }
11887
11888         if (overflow_handler) {
11889                 event->overflow_handler = overflow_handler;
11890                 event->overflow_handler_context = context;
11891         } else if (is_write_backward(event)){
11892                 event->overflow_handler = perf_event_output_backward;
11893                 event->overflow_handler_context = NULL;
11894         } else {
11895                 event->overflow_handler = perf_event_output_forward;
11896                 event->overflow_handler_context = NULL;
11897         }
11898
11899         perf_event__state_init(event);
11900
11901         pmu = NULL;
11902
11903         hwc = &event->hw;
11904         hwc->sample_period = attr->sample_period;
11905         if (attr->freq && attr->sample_freq)
11906                 hwc->sample_period = 1;
11907         hwc->last_period = hwc->sample_period;
11908
11909         local64_set(&hwc->period_left, hwc->sample_period);
11910
11911         /*
11912          * We currently do not support PERF_SAMPLE_READ on inherited events.
11913          * See perf_output_read().
11914          */
11915         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11916                 goto err_ns;
11917
11918         if (!has_branch_stack(event))
11919                 event->attr.branch_sample_type = 0;
11920
11921         pmu = perf_init_event(event);
11922         if (IS_ERR(pmu)) {
11923                 err = PTR_ERR(pmu);
11924                 goto err_ns;
11925         }
11926
11927         /*
11928          * Disallow uncore-task events. Similarly, disallow uncore-cgroup
11929          * events (they don't make sense as the cgroup will be different
11930          * on other CPUs in the uncore mask).
11931          */
11932         if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
11933                 err = -EINVAL;
11934                 goto err_pmu;
11935         }
11936
11937         if (event->attr.aux_output &&
11938             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11939                 err = -EOPNOTSUPP;
11940                 goto err_pmu;
11941         }
11942
11943         if (cgroup_fd != -1) {
11944                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11945                 if (err)
11946                         goto err_pmu;
11947         }
11948
11949         err = exclusive_event_init(event);
11950         if (err)
11951                 goto err_pmu;
11952
11953         if (has_addr_filter(event)) {
11954                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11955                                                     sizeof(struct perf_addr_filter_range),
11956                                                     GFP_KERNEL);
11957                 if (!event->addr_filter_ranges) {
11958                         err = -ENOMEM;
11959                         goto err_per_task;
11960                 }
11961
11962                 /*
11963                  * Clone the parent's vma offsets: they are valid until exec()
11964                  * even if the mm is not shared with the parent.
11965                  */
11966                 if (event->parent) {
11967                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11968
11969                         raw_spin_lock_irq(&ifh->lock);
11970                         memcpy(event->addr_filter_ranges,
11971                                event->parent->addr_filter_ranges,
11972                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11973                         raw_spin_unlock_irq(&ifh->lock);
11974                 }
11975
11976                 /* force hw sync on the address filters */
11977                 event->addr_filters_gen = 1;
11978         }
11979
11980         if (!event->parent) {
11981                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11982                         err = get_callchain_buffers(attr->sample_max_stack);
11983                         if (err)
11984                                 goto err_addr_filters;
11985                 }
11986         }
11987
11988         err = security_perf_event_alloc(event);
11989         if (err)
11990                 goto err_callchain_buffer;
11991
11992         /* symmetric to unaccount_event() in _free_event() */
11993         account_event(event);
11994
11995         return event;
11996
11997 err_callchain_buffer:
11998         if (!event->parent) {
11999                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12000                         put_callchain_buffers();
12001         }
12002 err_addr_filters:
12003         kfree(event->addr_filter_ranges);
12004
12005 err_per_task:
12006         exclusive_event_destroy(event);
12007
12008 err_pmu:
12009         if (is_cgroup_event(event))
12010                 perf_detach_cgroup(event);
12011         if (event->destroy)
12012                 event->destroy(event);
12013         module_put(pmu->module);
12014 err_ns:
12015         if (event->hw.target)
12016                 put_task_struct(event->hw.target);
12017         call_rcu(&event->rcu_head, free_event_rcu);
12018
12019         return ERR_PTR(err);
12020 }
12021
12022 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12023                           struct perf_event_attr *attr)
12024 {
12025         u32 size;
12026         int ret;
12027
12028         /* Zero the full structure, so that a short copy will be nice. */
12029         memset(attr, 0, sizeof(*attr));
12030
12031         ret = get_user(size, &uattr->size);
12032         if (ret)
12033                 return ret;
12034
12035         /* ABI compatibility quirk: */
12036         if (!size)
12037                 size = PERF_ATTR_SIZE_VER0;
12038         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12039                 goto err_size;
12040
12041         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12042         if (ret) {
12043                 if (ret == -E2BIG)
12044                         goto err_size;
12045                 return ret;
12046         }
12047
12048         attr->size = size;
12049
12050         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12051                 return -EINVAL;
12052
12053         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12054                 return -EINVAL;
12055
12056         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12057                 return -EINVAL;
12058
12059         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12060                 u64 mask = attr->branch_sample_type;
12061
12062                 /* only using defined bits */
12063                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12064                         return -EINVAL;
12065
12066                 /* at least one branch bit must be set */
12067                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12068                         return -EINVAL;
12069
12070                 /* propagate priv level, when not set for branch */
12071                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12072
12073                         /* exclude_kernel checked on syscall entry */
12074                         if (!attr->exclude_kernel)
12075                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12076
12077                         if (!attr->exclude_user)
12078                                 mask |= PERF_SAMPLE_BRANCH_USER;
12079
12080                         if (!attr->exclude_hv)
12081                                 mask |= PERF_SAMPLE_BRANCH_HV;
12082                         /*
12083                          * adjust user setting (for HW filter setup)
12084                          */
12085                         attr->branch_sample_type = mask;
12086                 }
12087                 /* privileged levels capture (kernel, hv): check permissions */
12088                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12089                         ret = perf_allow_kernel(attr);
12090                         if (ret)
12091                                 return ret;
12092                 }
12093         }
12094
12095         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12096                 ret = perf_reg_validate(attr->sample_regs_user);
12097                 if (ret)
12098                         return ret;
12099         }
12100
12101         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12102                 if (!arch_perf_have_user_stack_dump())
12103                         return -ENOSYS;
12104
12105                 /*
12106                  * We have __u32 type for the size, but so far
12107                  * we can only use __u16 as maximum due to the
12108                  * __u16 sample size limit.
12109                  */
12110                 if (attr->sample_stack_user >= USHRT_MAX)
12111                         return -EINVAL;
12112                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12113                         return -EINVAL;
12114         }
12115
12116         if (!attr->sample_max_stack)
12117                 attr->sample_max_stack = sysctl_perf_event_max_stack;
12118
12119         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12120                 ret = perf_reg_validate(attr->sample_regs_intr);
12121
12122 #ifndef CONFIG_CGROUP_PERF
12123         if (attr->sample_type & PERF_SAMPLE_CGROUP)
12124                 return -EINVAL;
12125 #endif
12126         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12127             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12128                 return -EINVAL;
12129
12130         if (!attr->inherit && attr->inherit_thread)
12131                 return -EINVAL;
12132
12133         if (attr->remove_on_exec && attr->enable_on_exec)
12134                 return -EINVAL;
12135
12136         if (attr->sigtrap && !attr->remove_on_exec)
12137                 return -EINVAL;
12138
12139 out:
12140         return ret;
12141
12142 err_size:
12143         put_user(sizeof(*attr), &uattr->size);
12144         ret = -E2BIG;
12145         goto out;
12146 }
12147
12148 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12149 {
12150         if (b < a)
12151                 swap(a, b);
12152
12153         mutex_lock(a);
12154         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12155 }
12156
12157 static int
12158 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12159 {
12160         struct perf_buffer *rb = NULL;
12161         int ret = -EINVAL;
12162
12163         if (!output_event) {
12164                 mutex_lock(&event->mmap_mutex);
12165                 goto set;
12166         }
12167
12168         /* don't allow circular references */
12169         if (event == output_event)
12170                 goto out;
12171
12172         /*
12173          * Don't allow cross-cpu buffers
12174          */
12175         if (output_event->cpu != event->cpu)
12176                 goto out;
12177
12178         /*
12179          * If its not a per-cpu rb, it must be the same task.
12180          */
12181         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
12182                 goto out;
12183
12184         /*
12185          * Mixing clocks in the same buffer is trouble you don't need.
12186          */
12187         if (output_event->clock != event->clock)
12188                 goto out;
12189
12190         /*
12191          * Either writing ring buffer from beginning or from end.
12192          * Mixing is not allowed.
12193          */
12194         if (is_write_backward(output_event) != is_write_backward(event))
12195                 goto out;
12196
12197         /*
12198          * If both events generate aux data, they must be on the same PMU
12199          */
12200         if (has_aux(event) && has_aux(output_event) &&
12201             event->pmu != output_event->pmu)
12202                 goto out;
12203
12204         /*
12205          * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12206          * output_event is already on rb->event_list, and the list iteration
12207          * restarts after every removal, it is guaranteed this new event is
12208          * observed *OR* if output_event is already removed, it's guaranteed we
12209          * observe !rb->mmap_count.
12210          */
12211         mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12212 set:
12213         /* Can't redirect output if we've got an active mmap() */
12214         if (atomic_read(&event->mmap_count))
12215                 goto unlock;
12216
12217         if (output_event) {
12218                 /* get the rb we want to redirect to */
12219                 rb = ring_buffer_get(output_event);
12220                 if (!rb)
12221                         goto unlock;
12222
12223                 /* did we race against perf_mmap_close() */
12224                 if (!atomic_read(&rb->mmap_count)) {
12225                         ring_buffer_put(rb);
12226                         goto unlock;
12227                 }
12228         }
12229
12230         ring_buffer_attach(event, rb);
12231
12232         ret = 0;
12233 unlock:
12234         mutex_unlock(&event->mmap_mutex);
12235         if (output_event)
12236                 mutex_unlock(&output_event->mmap_mutex);
12237
12238 out:
12239         return ret;
12240 }
12241
12242 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12243 {
12244         bool nmi_safe = false;
12245
12246         switch (clk_id) {
12247         case CLOCK_MONOTONIC:
12248                 event->clock = &ktime_get_mono_fast_ns;
12249                 nmi_safe = true;
12250                 break;
12251
12252         case CLOCK_MONOTONIC_RAW:
12253                 event->clock = &ktime_get_raw_fast_ns;
12254                 nmi_safe = true;
12255                 break;
12256
12257         case CLOCK_REALTIME:
12258                 event->clock = &ktime_get_real_ns;
12259                 break;
12260
12261         case CLOCK_BOOTTIME:
12262                 event->clock = &ktime_get_boottime_ns;
12263                 break;
12264
12265         case CLOCK_TAI:
12266                 event->clock = &ktime_get_clocktai_ns;
12267                 break;
12268
12269         default:
12270                 return -EINVAL;
12271         }
12272
12273         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12274                 return -EINVAL;
12275
12276         return 0;
12277 }
12278
12279 static bool
12280 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12281 {
12282         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12283         bool is_capable = perfmon_capable();
12284
12285         if (attr->sigtrap) {
12286                 /*
12287                  * perf_event_attr::sigtrap sends signals to the other task.
12288                  * Require the current task to also have CAP_KILL.
12289                  */
12290                 rcu_read_lock();
12291                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12292                 rcu_read_unlock();
12293
12294                 /*
12295                  * If the required capabilities aren't available, checks for
12296                  * ptrace permissions: upgrade to ATTACH, since sending signals
12297                  * can effectively change the target task.
12298                  */
12299                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12300         }
12301
12302         /*
12303          * Preserve ptrace permission check for backwards compatibility. The
12304          * ptrace check also includes checks that the current task and other
12305          * task have matching uids, and is therefore not done here explicitly.
12306          */
12307         return is_capable || ptrace_may_access(task, ptrace_mode);
12308 }
12309
12310 /**
12311  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12312  *
12313  * @attr_uptr:  event_id type attributes for monitoring/sampling
12314  * @pid:                target pid
12315  * @cpu:                target cpu
12316  * @group_fd:           group leader event fd
12317  * @flags:              perf event open flags
12318  */
12319 SYSCALL_DEFINE5(perf_event_open,
12320                 struct perf_event_attr __user *, attr_uptr,
12321                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12322 {
12323         struct perf_event *group_leader = NULL, *output_event = NULL;
12324         struct perf_event_pmu_context *pmu_ctx;
12325         struct perf_event *event, *sibling;
12326         struct perf_event_attr attr;
12327         struct perf_event_context *ctx;
12328         struct file *event_file = NULL;
12329         struct fd group = {NULL, 0};
12330         struct task_struct *task = NULL;
12331         struct pmu *pmu;
12332         int event_fd;
12333         int move_group = 0;
12334         int err;
12335         int f_flags = O_RDWR;
12336         int cgroup_fd = -1;
12337
12338         /* for future expandability... */
12339         if (flags & ~PERF_FLAG_ALL)
12340                 return -EINVAL;
12341
12342         /* Do we allow access to perf_event_open(2) ? */
12343         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12344         if (err)
12345                 return err;
12346
12347         err = perf_copy_attr(attr_uptr, &attr);
12348         if (err)
12349                 return err;
12350
12351         if (!attr.exclude_kernel) {
12352                 err = perf_allow_kernel(&attr);
12353                 if (err)
12354                         return err;
12355         }
12356
12357         if (attr.namespaces) {
12358                 if (!perfmon_capable())
12359                         return -EACCES;
12360         }
12361
12362         if (attr.freq) {
12363                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12364                         return -EINVAL;
12365         } else {
12366                 if (attr.sample_period & (1ULL << 63))
12367                         return -EINVAL;
12368         }
12369
12370         /* Only privileged users can get physical addresses */
12371         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12372                 err = perf_allow_kernel(&attr);
12373                 if (err)
12374                         return err;
12375         }
12376
12377         /* REGS_INTR can leak data, lockdown must prevent this */
12378         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12379                 err = security_locked_down(LOCKDOWN_PERF);
12380                 if (err)
12381                         return err;
12382         }
12383
12384         /*
12385          * In cgroup mode, the pid argument is used to pass the fd
12386          * opened to the cgroup directory in cgroupfs. The cpu argument
12387          * designates the cpu on which to monitor threads from that
12388          * cgroup.
12389          */
12390         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12391                 return -EINVAL;
12392
12393         if (flags & PERF_FLAG_FD_CLOEXEC)
12394                 f_flags |= O_CLOEXEC;
12395
12396         event_fd = get_unused_fd_flags(f_flags);
12397         if (event_fd < 0)
12398                 return event_fd;
12399
12400         if (group_fd != -1) {
12401                 err = perf_fget_light(group_fd, &group);
12402                 if (err)
12403                         goto err_fd;
12404                 group_leader = group.file->private_data;
12405                 if (flags & PERF_FLAG_FD_OUTPUT)
12406                         output_event = group_leader;
12407                 if (flags & PERF_FLAG_FD_NO_GROUP)
12408                         group_leader = NULL;
12409         }
12410
12411         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12412                 task = find_lively_task_by_vpid(pid);
12413                 if (IS_ERR(task)) {
12414                         err = PTR_ERR(task);
12415                         goto err_group_fd;
12416                 }
12417         }
12418
12419         if (task && group_leader &&
12420             group_leader->attr.inherit != attr.inherit) {
12421                 err = -EINVAL;
12422                 goto err_task;
12423         }
12424
12425         if (flags & PERF_FLAG_PID_CGROUP)
12426                 cgroup_fd = pid;
12427
12428         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12429                                  NULL, NULL, cgroup_fd);
12430         if (IS_ERR(event)) {
12431                 err = PTR_ERR(event);
12432                 goto err_task;
12433         }
12434
12435         if (is_sampling_event(event)) {
12436                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12437                         err = -EOPNOTSUPP;
12438                         goto err_alloc;
12439                 }
12440         }
12441
12442         /*
12443          * Special case software events and allow them to be part of
12444          * any hardware group.
12445          */
12446         pmu = event->pmu;
12447
12448         if (attr.use_clockid) {
12449                 err = perf_event_set_clock(event, attr.clockid);
12450                 if (err)
12451                         goto err_alloc;
12452         }
12453
12454         if (pmu->task_ctx_nr == perf_sw_context)
12455                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12456
12457         if (task) {
12458                 err = down_read_interruptible(&task->signal->exec_update_lock);
12459                 if (err)
12460                         goto err_alloc;
12461
12462                 /*
12463                  * We must hold exec_update_lock across this and any potential
12464                  * perf_install_in_context() call for this new event to
12465                  * serialize against exec() altering our credentials (and the
12466                  * perf_event_exit_task() that could imply).
12467                  */
12468                 err = -EACCES;
12469                 if (!perf_check_permission(&attr, task))
12470                         goto err_cred;
12471         }
12472
12473         /*
12474          * Get the target context (task or percpu):
12475          */
12476         ctx = find_get_context(task, event);
12477         if (IS_ERR(ctx)) {
12478                 err = PTR_ERR(ctx);
12479                 goto err_cred;
12480         }
12481
12482         mutex_lock(&ctx->mutex);
12483
12484         if (ctx->task == TASK_TOMBSTONE) {
12485                 err = -ESRCH;
12486                 goto err_locked;
12487         }
12488
12489         if (!task) {
12490                 /*
12491                  * Check if the @cpu we're creating an event for is online.
12492                  *
12493                  * We use the perf_cpu_context::ctx::mutex to serialize against
12494                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12495                  */
12496                 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12497
12498                 if (!cpuctx->online) {
12499                         err = -ENODEV;
12500                         goto err_locked;
12501                 }
12502         }
12503
12504         if (group_leader) {
12505                 err = -EINVAL;
12506
12507                 /*
12508                  * Do not allow a recursive hierarchy (this new sibling
12509                  * becoming part of another group-sibling):
12510                  */
12511                 if (group_leader->group_leader != group_leader)
12512                         goto err_locked;
12513
12514                 /* All events in a group should have the same clock */
12515                 if (group_leader->clock != event->clock)
12516                         goto err_locked;
12517
12518                 /*
12519                  * Make sure we're both events for the same CPU;
12520                  * grouping events for different CPUs is broken; since
12521                  * you can never concurrently schedule them anyhow.
12522                  */
12523                 if (group_leader->cpu != event->cpu)
12524                         goto err_locked;
12525
12526                 /*
12527                  * Make sure we're both on the same context; either task or cpu.
12528                  */
12529                 if (group_leader->ctx != ctx)
12530                         goto err_locked;
12531
12532                 /*
12533                  * Only a group leader can be exclusive or pinned
12534                  */
12535                 if (attr.exclusive || attr.pinned)
12536                         goto err_locked;
12537
12538                 if (is_software_event(event) &&
12539                     !in_software_context(group_leader)) {
12540                         /*
12541                          * If the event is a sw event, but the group_leader
12542                          * is on hw context.
12543                          *
12544                          * Allow the addition of software events to hw
12545                          * groups, this is safe because software events
12546                          * never fail to schedule.
12547                          *
12548                          * Note the comment that goes with struct
12549                          * perf_event_pmu_context.
12550                          */
12551                         pmu = group_leader->pmu_ctx->pmu;
12552                 } else if (!is_software_event(event)) {
12553                         if (is_software_event(group_leader) &&
12554                             (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12555                                 /*
12556                                  * In case the group is a pure software group, and we
12557                                  * try to add a hardware event, move the whole group to
12558                                  * the hardware context.
12559                                  */
12560                                 move_group = 1;
12561                         }
12562
12563                         /* Don't allow group of multiple hw events from different pmus */
12564                         if (!in_software_context(group_leader) &&
12565                             group_leader->pmu_ctx->pmu != pmu)
12566                                 goto err_locked;
12567                 }
12568         }
12569
12570         /*
12571          * Now that we're certain of the pmu; find the pmu_ctx.
12572          */
12573         pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12574         if (IS_ERR(pmu_ctx)) {
12575                 err = PTR_ERR(pmu_ctx);
12576                 goto err_locked;
12577         }
12578         event->pmu_ctx = pmu_ctx;
12579
12580         if (output_event) {
12581                 err = perf_event_set_output(event, output_event);
12582                 if (err)
12583                         goto err_context;
12584         }
12585
12586         if (!perf_event_validate_size(event)) {
12587                 err = -E2BIG;
12588                 goto err_context;
12589         }
12590
12591         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12592                 err = -EINVAL;
12593                 goto err_context;
12594         }
12595
12596         /*
12597          * Must be under the same ctx::mutex as perf_install_in_context(),
12598          * because we need to serialize with concurrent event creation.
12599          */
12600         if (!exclusive_event_installable(event, ctx)) {
12601                 err = -EBUSY;
12602                 goto err_context;
12603         }
12604
12605         WARN_ON_ONCE(ctx->parent_ctx);
12606
12607         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12608         if (IS_ERR(event_file)) {
12609                 err = PTR_ERR(event_file);
12610                 event_file = NULL;
12611                 goto err_context;
12612         }
12613
12614         /*
12615          * This is the point on no return; we cannot fail hereafter. This is
12616          * where we start modifying current state.
12617          */
12618
12619         if (move_group) {
12620                 perf_remove_from_context(group_leader, 0);
12621                 put_pmu_ctx(group_leader->pmu_ctx);
12622
12623                 for_each_sibling_event(sibling, group_leader) {
12624                         perf_remove_from_context(sibling, 0);
12625                         put_pmu_ctx(sibling->pmu_ctx);
12626                 }
12627
12628                 /*
12629                  * Install the group siblings before the group leader.
12630                  *
12631                  * Because a group leader will try and install the entire group
12632                  * (through the sibling list, which is still in-tact), we can
12633                  * end up with siblings installed in the wrong context.
12634                  *
12635                  * By installing siblings first we NO-OP because they're not
12636                  * reachable through the group lists.
12637                  */
12638                 for_each_sibling_event(sibling, group_leader) {
12639                         sibling->pmu_ctx = pmu_ctx;
12640                         get_pmu_ctx(pmu_ctx);
12641                         perf_event__state_init(sibling);
12642                         perf_install_in_context(ctx, sibling, sibling->cpu);
12643                 }
12644
12645                 /*
12646                  * Removing from the context ends up with disabled
12647                  * event. What we want here is event in the initial
12648                  * startup state, ready to be add into new context.
12649                  */
12650                 group_leader->pmu_ctx = pmu_ctx;
12651                 get_pmu_ctx(pmu_ctx);
12652                 perf_event__state_init(group_leader);
12653                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12654         }
12655
12656         /*
12657          * Precalculate sample_data sizes; do while holding ctx::mutex such
12658          * that we're serialized against further additions and before
12659          * perf_install_in_context() which is the point the event is active and
12660          * can use these values.
12661          */
12662         perf_event__header_size(event);
12663         perf_event__id_header_size(event);
12664
12665         event->owner = current;
12666
12667         perf_install_in_context(ctx, event, event->cpu);
12668         perf_unpin_context(ctx);
12669
12670         mutex_unlock(&ctx->mutex);
12671
12672         if (task) {
12673                 up_read(&task->signal->exec_update_lock);
12674                 put_task_struct(task);
12675         }
12676
12677         mutex_lock(&current->perf_event_mutex);
12678         list_add_tail(&event->owner_entry, &current->perf_event_list);
12679         mutex_unlock(&current->perf_event_mutex);
12680
12681         /*
12682          * Drop the reference on the group_event after placing the
12683          * new event on the sibling_list. This ensures destruction
12684          * of the group leader will find the pointer to itself in
12685          * perf_group_detach().
12686          */
12687         fdput(group);
12688         fd_install(event_fd, event_file);
12689         return event_fd;
12690
12691 err_context:
12692         /* event->pmu_ctx freed by free_event() */
12693 err_locked:
12694         mutex_unlock(&ctx->mutex);
12695         perf_unpin_context(ctx);
12696         put_ctx(ctx);
12697 err_cred:
12698         if (task)
12699                 up_read(&task->signal->exec_update_lock);
12700 err_alloc:
12701         free_event(event);
12702 err_task:
12703         if (task)
12704                 put_task_struct(task);
12705 err_group_fd:
12706         fdput(group);
12707 err_fd:
12708         put_unused_fd(event_fd);
12709         return err;
12710 }
12711
12712 /**
12713  * perf_event_create_kernel_counter
12714  *
12715  * @attr: attributes of the counter to create
12716  * @cpu: cpu in which the counter is bound
12717  * @task: task to profile (NULL for percpu)
12718  * @overflow_handler: callback to trigger when we hit the event
12719  * @context: context data could be used in overflow_handler callback
12720  */
12721 struct perf_event *
12722 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12723                                  struct task_struct *task,
12724                                  perf_overflow_handler_t overflow_handler,
12725                                  void *context)
12726 {
12727         struct perf_event_pmu_context *pmu_ctx;
12728         struct perf_event_context *ctx;
12729         struct perf_event *event;
12730         struct pmu *pmu;
12731         int err;
12732
12733         /*
12734          * Grouping is not supported for kernel events, neither is 'AUX',
12735          * make sure the caller's intentions are adjusted.
12736          */
12737         if (attr->aux_output)
12738                 return ERR_PTR(-EINVAL);
12739
12740         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12741                                  overflow_handler, context, -1);
12742         if (IS_ERR(event)) {
12743                 err = PTR_ERR(event);
12744                 goto err;
12745         }
12746
12747         /* Mark owner so we could distinguish it from user events. */
12748         event->owner = TASK_TOMBSTONE;
12749         pmu = event->pmu;
12750
12751         if (pmu->task_ctx_nr == perf_sw_context)
12752                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12753
12754         /*
12755          * Get the target context (task or percpu):
12756          */
12757         ctx = find_get_context(task, event);
12758         if (IS_ERR(ctx)) {
12759                 err = PTR_ERR(ctx);
12760                 goto err_alloc;
12761         }
12762
12763         WARN_ON_ONCE(ctx->parent_ctx);
12764         mutex_lock(&ctx->mutex);
12765         if (ctx->task == TASK_TOMBSTONE) {
12766                 err = -ESRCH;
12767                 goto err_unlock;
12768         }
12769
12770         pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12771         if (IS_ERR(pmu_ctx)) {
12772                 err = PTR_ERR(pmu_ctx);
12773                 goto err_unlock;
12774         }
12775         event->pmu_ctx = pmu_ctx;
12776
12777         if (!task) {
12778                 /*
12779                  * Check if the @cpu we're creating an event for is online.
12780                  *
12781                  * We use the perf_cpu_context::ctx::mutex to serialize against
12782                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12783                  */
12784                 struct perf_cpu_context *cpuctx =
12785                         container_of(ctx, struct perf_cpu_context, ctx);
12786                 if (!cpuctx->online) {
12787                         err = -ENODEV;
12788                         goto err_pmu_ctx;
12789                 }
12790         }
12791
12792         if (!exclusive_event_installable(event, ctx)) {
12793                 err = -EBUSY;
12794                 goto err_pmu_ctx;
12795         }
12796
12797         perf_install_in_context(ctx, event, event->cpu);
12798         perf_unpin_context(ctx);
12799         mutex_unlock(&ctx->mutex);
12800
12801         return event;
12802
12803 err_pmu_ctx:
12804         put_pmu_ctx(pmu_ctx);
12805 err_unlock:
12806         mutex_unlock(&ctx->mutex);
12807         perf_unpin_context(ctx);
12808         put_ctx(ctx);
12809 err_alloc:
12810         free_event(event);
12811 err:
12812         return ERR_PTR(err);
12813 }
12814 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12815
12816 static void __perf_pmu_remove(struct perf_event_context *ctx,
12817                               int cpu, struct pmu *pmu,
12818                               struct perf_event_groups *groups,
12819                               struct list_head *events)
12820 {
12821         struct perf_event *event, *sibling;
12822
12823         perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12824                 perf_remove_from_context(event, 0);
12825                 unaccount_event_cpu(event, cpu);
12826                 put_pmu_ctx(event->pmu_ctx);
12827                 list_add(&event->migrate_entry, events);
12828
12829                 for_each_sibling_event(sibling, event) {
12830                         perf_remove_from_context(sibling, 0);
12831                         unaccount_event_cpu(sibling, cpu);
12832                         put_pmu_ctx(sibling->pmu_ctx);
12833                         list_add(&sibling->migrate_entry, events);
12834                 }
12835         }
12836 }
12837
12838 static void __perf_pmu_install_event(struct pmu *pmu,
12839                                      struct perf_event_context *ctx,
12840                                      int cpu, struct perf_event *event)
12841 {
12842         struct perf_event_pmu_context *epc;
12843
12844         event->cpu = cpu;
12845         epc = find_get_pmu_context(pmu, ctx, event);
12846         event->pmu_ctx = epc;
12847
12848         if (event->state >= PERF_EVENT_STATE_OFF)
12849                 event->state = PERF_EVENT_STATE_INACTIVE;
12850         account_event_cpu(event, cpu);
12851         perf_install_in_context(ctx, event, cpu);
12852 }
12853
12854 static void __perf_pmu_install(struct perf_event_context *ctx,
12855                                int cpu, struct pmu *pmu, struct list_head *events)
12856 {
12857         struct perf_event *event, *tmp;
12858
12859         /*
12860          * Re-instate events in 2 passes.
12861          *
12862          * Skip over group leaders and only install siblings on this first
12863          * pass, siblings will not get enabled without a leader, however a
12864          * leader will enable its siblings, even if those are still on the old
12865          * context.
12866          */
12867         list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12868                 if (event->group_leader == event)
12869                         continue;
12870
12871                 list_del(&event->migrate_entry);
12872                 __perf_pmu_install_event(pmu, ctx, cpu, event);
12873         }
12874
12875         /*
12876          * Once all the siblings are setup properly, install the group leaders
12877          * to make it go.
12878          */
12879         list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12880                 list_del(&event->migrate_entry);
12881                 __perf_pmu_install_event(pmu, ctx, cpu, event);
12882         }
12883 }
12884
12885 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12886 {
12887         struct perf_event_context *src_ctx, *dst_ctx;
12888         LIST_HEAD(events);
12889
12890         src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
12891         dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
12892
12893         /*
12894          * See perf_event_ctx_lock() for comments on the details
12895          * of swizzling perf_event::ctx.
12896          */
12897         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12898
12899         __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
12900         __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
12901
12902         /*
12903          * Wait for the events to quiesce before re-instating them.
12904          */
12905         synchronize_rcu();
12906
12907         __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
12908
12909         mutex_unlock(&dst_ctx->mutex);
12910         mutex_unlock(&src_ctx->mutex);
12911 }
12912 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12913
12914 static void sync_child_event(struct perf_event *child_event)
12915 {
12916         struct perf_event *parent_event = child_event->parent;
12917         u64 child_val;
12918
12919         if (child_event->attr.inherit_stat) {
12920                 struct task_struct *task = child_event->ctx->task;
12921
12922                 if (task && task != TASK_TOMBSTONE)
12923                         perf_event_read_event(child_event, task);
12924         }
12925
12926         child_val = perf_event_count(child_event);
12927
12928         /*
12929          * Add back the child's count to the parent's count:
12930          */
12931         atomic64_add(child_val, &parent_event->child_count);
12932         atomic64_add(child_event->total_time_enabled,
12933                      &parent_event->child_total_time_enabled);
12934         atomic64_add(child_event->total_time_running,
12935                      &parent_event->child_total_time_running);
12936 }
12937
12938 static void
12939 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12940 {
12941         struct perf_event *parent_event = event->parent;
12942         unsigned long detach_flags = 0;
12943
12944         if (parent_event) {
12945                 /*
12946                  * Do not destroy the 'original' grouping; because of the
12947                  * context switch optimization the original events could've
12948                  * ended up in a random child task.
12949                  *
12950                  * If we were to destroy the original group, all group related
12951                  * operations would cease to function properly after this
12952                  * random child dies.
12953                  *
12954                  * Do destroy all inherited groups, we don't care about those
12955                  * and being thorough is better.
12956                  */
12957                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12958                 mutex_lock(&parent_event->child_mutex);
12959         }
12960
12961         perf_remove_from_context(event, detach_flags);
12962
12963         raw_spin_lock_irq(&ctx->lock);
12964         if (event->state > PERF_EVENT_STATE_EXIT)
12965                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12966         raw_spin_unlock_irq(&ctx->lock);
12967
12968         /*
12969          * Child events can be freed.
12970          */
12971         if (parent_event) {
12972                 mutex_unlock(&parent_event->child_mutex);
12973                 /*
12974                  * Kick perf_poll() for is_event_hup();
12975                  */
12976                 perf_event_wakeup(parent_event);
12977                 free_event(event);
12978                 put_event(parent_event);
12979                 return;
12980         }
12981
12982         /*
12983          * Parent events are governed by their filedesc, retain them.
12984          */
12985         perf_event_wakeup(event);
12986 }
12987
12988 static void perf_event_exit_task_context(struct task_struct *child)
12989 {
12990         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12991         struct perf_event *child_event, *next;
12992
12993         WARN_ON_ONCE(child != current);
12994
12995         child_ctx = perf_pin_task_context(child);
12996         if (!child_ctx)
12997                 return;
12998
12999         /*
13000          * In order to reduce the amount of tricky in ctx tear-down, we hold
13001          * ctx::mutex over the entire thing. This serializes against almost
13002          * everything that wants to access the ctx.
13003          *
13004          * The exception is sys_perf_event_open() /
13005          * perf_event_create_kernel_count() which does find_get_context()
13006          * without ctx::mutex (it cannot because of the move_group double mutex
13007          * lock thing). See the comments in perf_install_in_context().
13008          */
13009         mutex_lock(&child_ctx->mutex);
13010
13011         /*
13012          * In a single ctx::lock section, de-schedule the events and detach the
13013          * context from the task such that we cannot ever get it scheduled back
13014          * in.
13015          */
13016         raw_spin_lock_irq(&child_ctx->lock);
13017         task_ctx_sched_out(child_ctx, EVENT_ALL);
13018
13019         /*
13020          * Now that the context is inactive, destroy the task <-> ctx relation
13021          * and mark the context dead.
13022          */
13023         RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13024         put_ctx(child_ctx); /* cannot be last */
13025         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13026         put_task_struct(current); /* cannot be last */
13027
13028         clone_ctx = unclone_ctx(child_ctx);
13029         raw_spin_unlock_irq(&child_ctx->lock);
13030
13031         if (clone_ctx)
13032                 put_ctx(clone_ctx);
13033
13034         /*
13035          * Report the task dead after unscheduling the events so that we
13036          * won't get any samples after PERF_RECORD_EXIT. We can however still
13037          * get a few PERF_RECORD_READ events.
13038          */
13039         perf_event_task(child, child_ctx, 0);
13040
13041         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13042                 perf_event_exit_event(child_event, child_ctx);
13043
13044         mutex_unlock(&child_ctx->mutex);
13045
13046         put_ctx(child_ctx);
13047 }
13048
13049 /*
13050  * When a child task exits, feed back event values to parent events.
13051  *
13052  * Can be called with exec_update_lock held when called from
13053  * setup_new_exec().
13054  */
13055 void perf_event_exit_task(struct task_struct *child)
13056 {
13057         struct perf_event *event, *tmp;
13058
13059         mutex_lock(&child->perf_event_mutex);
13060         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13061                                  owner_entry) {
13062                 list_del_init(&event->owner_entry);
13063
13064                 /*
13065                  * Ensure the list deletion is visible before we clear
13066                  * the owner, closes a race against perf_release() where
13067                  * we need to serialize on the owner->perf_event_mutex.
13068                  */
13069                 smp_store_release(&event->owner, NULL);
13070         }
13071         mutex_unlock(&child->perf_event_mutex);
13072
13073         perf_event_exit_task_context(child);
13074
13075         /*
13076          * The perf_event_exit_task_context calls perf_event_task
13077          * with child's task_ctx, which generates EXIT events for
13078          * child contexts and sets child->perf_event_ctxp[] to NULL.
13079          * At this point we need to send EXIT events to cpu contexts.
13080          */
13081         perf_event_task(child, NULL, 0);
13082 }
13083
13084 static void perf_free_event(struct perf_event *event,
13085                             struct perf_event_context *ctx)
13086 {
13087         struct perf_event *parent = event->parent;
13088
13089         if (WARN_ON_ONCE(!parent))
13090                 return;
13091
13092         mutex_lock(&parent->child_mutex);
13093         list_del_init(&event->child_list);
13094         mutex_unlock(&parent->child_mutex);
13095
13096         put_event(parent);
13097
13098         raw_spin_lock_irq(&ctx->lock);
13099         perf_group_detach(event);
13100         list_del_event(event, ctx);
13101         raw_spin_unlock_irq(&ctx->lock);
13102         free_event(event);
13103 }
13104
13105 /*
13106  * Free a context as created by inheritance by perf_event_init_task() below,
13107  * used by fork() in case of fail.
13108  *
13109  * Even though the task has never lived, the context and events have been
13110  * exposed through the child_list, so we must take care tearing it all down.
13111  */
13112 void perf_event_free_task(struct task_struct *task)
13113 {
13114         struct perf_event_context *ctx;
13115         struct perf_event *event, *tmp;
13116
13117         ctx = rcu_access_pointer(task->perf_event_ctxp);
13118         if (!ctx)
13119                 return;
13120
13121         mutex_lock(&ctx->mutex);
13122         raw_spin_lock_irq(&ctx->lock);
13123         /*
13124          * Destroy the task <-> ctx relation and mark the context dead.
13125          *
13126          * This is important because even though the task hasn't been
13127          * exposed yet the context has been (through child_list).
13128          */
13129         RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13130         WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13131         put_task_struct(task); /* cannot be last */
13132         raw_spin_unlock_irq(&ctx->lock);
13133
13134
13135         list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13136                 perf_free_event(event, ctx);
13137
13138         mutex_unlock(&ctx->mutex);
13139
13140         /*
13141          * perf_event_release_kernel() could've stolen some of our
13142          * child events and still have them on its free_list. In that
13143          * case we must wait for these events to have been freed (in
13144          * particular all their references to this task must've been
13145          * dropped).
13146          *
13147          * Without this copy_process() will unconditionally free this
13148          * task (irrespective of its reference count) and
13149          * _free_event()'s put_task_struct(event->hw.target) will be a
13150          * use-after-free.
13151          *
13152          * Wait for all events to drop their context reference.
13153          */
13154         wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13155         put_ctx(ctx); /* must be last */
13156 }
13157
13158 void perf_event_delayed_put(struct task_struct *task)
13159 {
13160         WARN_ON_ONCE(task->perf_event_ctxp);
13161 }
13162
13163 struct file *perf_event_get(unsigned int fd)
13164 {
13165         struct file *file = fget(fd);
13166         if (!file)
13167                 return ERR_PTR(-EBADF);
13168
13169         if (file->f_op != &perf_fops) {
13170                 fput(file);
13171                 return ERR_PTR(-EBADF);
13172         }
13173
13174         return file;
13175 }
13176
13177 const struct perf_event *perf_get_event(struct file *file)
13178 {
13179         if (file->f_op != &perf_fops)
13180                 return ERR_PTR(-EINVAL);
13181
13182         return file->private_data;
13183 }
13184
13185 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13186 {
13187         if (!event)
13188                 return ERR_PTR(-EINVAL);
13189
13190         return &event->attr;
13191 }
13192
13193 /*
13194  * Inherit an event from parent task to child task.
13195  *
13196  * Returns:
13197  *  - valid pointer on success
13198  *  - NULL for orphaned events
13199  *  - IS_ERR() on error
13200  */
13201 static struct perf_event *
13202 inherit_event(struct perf_event *parent_event,
13203               struct task_struct *parent,
13204               struct perf_event_context *parent_ctx,
13205               struct task_struct *child,
13206               struct perf_event *group_leader,
13207               struct perf_event_context *child_ctx)
13208 {
13209         enum perf_event_state parent_state = parent_event->state;
13210         struct perf_event_pmu_context *pmu_ctx;
13211         struct perf_event *child_event;
13212         unsigned long flags;
13213
13214         /*
13215          * Instead of creating recursive hierarchies of events,
13216          * we link inherited events back to the original parent,
13217          * which has a filp for sure, which we use as the reference
13218          * count:
13219          */
13220         if (parent_event->parent)
13221                 parent_event = parent_event->parent;
13222
13223         child_event = perf_event_alloc(&parent_event->attr,
13224                                            parent_event->cpu,
13225                                            child,
13226                                            group_leader, parent_event,
13227                                            NULL, NULL, -1);
13228         if (IS_ERR(child_event))
13229                 return child_event;
13230
13231         pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13232         if (IS_ERR(pmu_ctx)) {
13233                 free_event(child_event);
13234                 return NULL;
13235         }
13236         child_event->pmu_ctx = pmu_ctx;
13237
13238         /*
13239          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13240          * must be under the same lock in order to serialize against
13241          * perf_event_release_kernel(), such that either we must observe
13242          * is_orphaned_event() or they will observe us on the child_list.
13243          */
13244         mutex_lock(&parent_event->child_mutex);
13245         if (is_orphaned_event(parent_event) ||
13246             !atomic_long_inc_not_zero(&parent_event->refcount)) {
13247                 mutex_unlock(&parent_event->child_mutex);
13248                 /* task_ctx_data is freed with child_ctx */
13249                 free_event(child_event);
13250                 return NULL;
13251         }
13252
13253         get_ctx(child_ctx);
13254
13255         /*
13256          * Make the child state follow the state of the parent event,
13257          * not its attr.disabled bit.  We hold the parent's mutex,
13258          * so we won't race with perf_event_{en, dis}able_family.
13259          */
13260         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13261                 child_event->state = PERF_EVENT_STATE_INACTIVE;
13262         else
13263                 child_event->state = PERF_EVENT_STATE_OFF;
13264
13265         if (parent_event->attr.freq) {
13266                 u64 sample_period = parent_event->hw.sample_period;
13267                 struct hw_perf_event *hwc = &child_event->hw;
13268
13269                 hwc->sample_period = sample_period;
13270                 hwc->last_period   = sample_period;
13271
13272                 local64_set(&hwc->period_left, sample_period);
13273         }
13274
13275         child_event->ctx = child_ctx;
13276         child_event->overflow_handler = parent_event->overflow_handler;
13277         child_event->overflow_handler_context
13278                 = parent_event->overflow_handler_context;
13279
13280         /*
13281          * Precalculate sample_data sizes
13282          */
13283         perf_event__header_size(child_event);
13284         perf_event__id_header_size(child_event);
13285
13286         /*
13287          * Link it up in the child's context:
13288          */
13289         raw_spin_lock_irqsave(&child_ctx->lock, flags);
13290         add_event_to_ctx(child_event, child_ctx);
13291         child_event->attach_state |= PERF_ATTACH_CHILD;
13292         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13293
13294         /*
13295          * Link this into the parent event's child list
13296          */
13297         list_add_tail(&child_event->child_list, &parent_event->child_list);
13298         mutex_unlock(&parent_event->child_mutex);
13299
13300         return child_event;
13301 }
13302
13303 /*
13304  * Inherits an event group.
13305  *
13306  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13307  * This matches with perf_event_release_kernel() removing all child events.
13308  *
13309  * Returns:
13310  *  - 0 on success
13311  *  - <0 on error
13312  */
13313 static int inherit_group(struct perf_event *parent_event,
13314               struct task_struct *parent,
13315               struct perf_event_context *parent_ctx,
13316               struct task_struct *child,
13317               struct perf_event_context *child_ctx)
13318 {
13319         struct perf_event *leader;
13320         struct perf_event *sub;
13321         struct perf_event *child_ctr;
13322
13323         leader = inherit_event(parent_event, parent, parent_ctx,
13324                                  child, NULL, child_ctx);
13325         if (IS_ERR(leader))
13326                 return PTR_ERR(leader);
13327         /*
13328          * @leader can be NULL here because of is_orphaned_event(). In this
13329          * case inherit_event() will create individual events, similar to what
13330          * perf_group_detach() would do anyway.
13331          */
13332         for_each_sibling_event(sub, parent_event) {
13333                 child_ctr = inherit_event(sub, parent, parent_ctx,
13334                                             child, leader, child_ctx);
13335                 if (IS_ERR(child_ctr))
13336                         return PTR_ERR(child_ctr);
13337
13338                 if (sub->aux_event == parent_event && child_ctr &&
13339                     !perf_get_aux_event(child_ctr, leader))
13340                         return -EINVAL;
13341         }
13342         return 0;
13343 }
13344
13345 /*
13346  * Creates the child task context and tries to inherit the event-group.
13347  *
13348  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13349  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13350  * consistent with perf_event_release_kernel() removing all child events.
13351  *
13352  * Returns:
13353  *  - 0 on success
13354  *  - <0 on error
13355  */
13356 static int
13357 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13358                    struct perf_event_context *parent_ctx,
13359                    struct task_struct *child,
13360                    u64 clone_flags, int *inherited_all)
13361 {
13362         struct perf_event_context *child_ctx;
13363         int ret;
13364
13365         if (!event->attr.inherit ||
13366             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13367             /* Do not inherit if sigtrap and signal handlers were cleared. */
13368             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13369                 *inherited_all = 0;
13370                 return 0;
13371         }
13372
13373         child_ctx = child->perf_event_ctxp;
13374         if (!child_ctx) {
13375                 /*
13376                  * This is executed from the parent task context, so
13377                  * inherit events that have been marked for cloning.
13378                  * First allocate and initialize a context for the
13379                  * child.
13380                  */
13381                 child_ctx = alloc_perf_context(child);
13382                 if (!child_ctx)
13383                         return -ENOMEM;
13384
13385                 child->perf_event_ctxp = child_ctx;
13386         }
13387
13388         ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13389         if (ret)
13390                 *inherited_all = 0;
13391
13392         return ret;
13393 }
13394
13395 /*
13396  * Initialize the perf_event context in task_struct
13397  */
13398 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13399 {
13400         struct perf_event_context *child_ctx, *parent_ctx;
13401         struct perf_event_context *cloned_ctx;
13402         struct perf_event *event;
13403         struct task_struct *parent = current;
13404         int inherited_all = 1;
13405         unsigned long flags;
13406         int ret = 0;
13407
13408         if (likely(!parent->perf_event_ctxp))
13409                 return 0;
13410
13411         /*
13412          * If the parent's context is a clone, pin it so it won't get
13413          * swapped under us.
13414          */
13415         parent_ctx = perf_pin_task_context(parent);
13416         if (!parent_ctx)
13417                 return 0;
13418
13419         /*
13420          * No need to check if parent_ctx != NULL here; since we saw
13421          * it non-NULL earlier, the only reason for it to become NULL
13422          * is if we exit, and since we're currently in the middle of
13423          * a fork we can't be exiting at the same time.
13424          */
13425
13426         /*
13427          * Lock the parent list. No need to lock the child - not PID
13428          * hashed yet and not running, so nobody can access it.
13429          */
13430         mutex_lock(&parent_ctx->mutex);
13431
13432         /*
13433          * We dont have to disable NMIs - we are only looking at
13434          * the list, not manipulating it:
13435          */
13436         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13437                 ret = inherit_task_group(event, parent, parent_ctx,
13438                                          child, clone_flags, &inherited_all);
13439                 if (ret)
13440                         goto out_unlock;
13441         }
13442
13443         /*
13444          * We can't hold ctx->lock when iterating the ->flexible_group list due
13445          * to allocations, but we need to prevent rotation because
13446          * rotate_ctx() will change the list from interrupt context.
13447          */
13448         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13449         parent_ctx->rotate_disable = 1;
13450         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13451
13452         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13453                 ret = inherit_task_group(event, parent, parent_ctx,
13454                                          child, clone_flags, &inherited_all);
13455                 if (ret)
13456                         goto out_unlock;
13457         }
13458
13459         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13460         parent_ctx->rotate_disable = 0;
13461
13462         child_ctx = child->perf_event_ctxp;
13463
13464         if (child_ctx && inherited_all) {
13465                 /*
13466                  * Mark the child context as a clone of the parent
13467                  * context, or of whatever the parent is a clone of.
13468                  *
13469                  * Note that if the parent is a clone, the holding of
13470                  * parent_ctx->lock avoids it from being uncloned.
13471                  */
13472                 cloned_ctx = parent_ctx->parent_ctx;
13473                 if (cloned_ctx) {
13474                         child_ctx->parent_ctx = cloned_ctx;
13475                         child_ctx->parent_gen = parent_ctx->parent_gen;
13476                 } else {
13477                         child_ctx->parent_ctx = parent_ctx;
13478                         child_ctx->parent_gen = parent_ctx->generation;
13479                 }
13480                 get_ctx(child_ctx->parent_ctx);
13481         }
13482
13483         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13484 out_unlock:
13485         mutex_unlock(&parent_ctx->mutex);
13486
13487         perf_unpin_context(parent_ctx);
13488         put_ctx(parent_ctx);
13489
13490         return ret;
13491 }
13492
13493 /*
13494  * Initialize the perf_event context in task_struct
13495  */
13496 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13497 {
13498         int ret;
13499
13500         child->perf_event_ctxp = NULL;
13501         mutex_init(&child->perf_event_mutex);
13502         INIT_LIST_HEAD(&child->perf_event_list);
13503
13504         ret = perf_event_init_context(child, clone_flags);
13505         if (ret) {
13506                 perf_event_free_task(child);
13507                 return ret;
13508         }
13509
13510         return 0;
13511 }
13512
13513 static void __init perf_event_init_all_cpus(void)
13514 {
13515         struct swevent_htable *swhash;
13516         struct perf_cpu_context *cpuctx;
13517         int cpu;
13518
13519         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13520
13521         for_each_possible_cpu(cpu) {
13522                 swhash = &per_cpu(swevent_htable, cpu);
13523                 mutex_init(&swhash->hlist_mutex);
13524
13525                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13526                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13527
13528                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13529
13530                 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13531                 __perf_event_init_context(&cpuctx->ctx);
13532                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13533                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13534                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13535                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13536                 cpuctx->heap = cpuctx->heap_default;
13537         }
13538 }
13539
13540 static void perf_swevent_init_cpu(unsigned int cpu)
13541 {
13542         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13543
13544         mutex_lock(&swhash->hlist_mutex);
13545         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13546                 struct swevent_hlist *hlist;
13547
13548                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13549                 WARN_ON(!hlist);
13550                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13551         }
13552         mutex_unlock(&swhash->hlist_mutex);
13553 }
13554
13555 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13556 static void __perf_event_exit_context(void *__info)
13557 {
13558         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13559         struct perf_event_context *ctx = __info;
13560         struct perf_event *event;
13561
13562         raw_spin_lock(&ctx->lock);
13563         ctx_sched_out(ctx, EVENT_TIME);
13564         list_for_each_entry(event, &ctx->event_list, event_entry)
13565                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13566         raw_spin_unlock(&ctx->lock);
13567 }
13568
13569 static void perf_event_exit_cpu_context(int cpu)
13570 {
13571         struct perf_cpu_context *cpuctx;
13572         struct perf_event_context *ctx;
13573
13574         // XXX simplify cpuctx->online
13575         mutex_lock(&pmus_lock);
13576         cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13577         ctx = &cpuctx->ctx;
13578
13579         mutex_lock(&ctx->mutex);
13580         smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13581         cpuctx->online = 0;
13582         mutex_unlock(&ctx->mutex);
13583         cpumask_clear_cpu(cpu, perf_online_mask);
13584         mutex_unlock(&pmus_lock);
13585 }
13586 #else
13587
13588 static void perf_event_exit_cpu_context(int cpu) { }
13589
13590 #endif
13591
13592 int perf_event_init_cpu(unsigned int cpu)
13593 {
13594         struct perf_cpu_context *cpuctx;
13595         struct perf_event_context *ctx;
13596
13597         perf_swevent_init_cpu(cpu);
13598
13599         mutex_lock(&pmus_lock);
13600         cpumask_set_cpu(cpu, perf_online_mask);
13601         cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13602         ctx = &cpuctx->ctx;
13603
13604         mutex_lock(&ctx->mutex);
13605         cpuctx->online = 1;
13606         mutex_unlock(&ctx->mutex);
13607         mutex_unlock(&pmus_lock);
13608
13609         return 0;
13610 }
13611
13612 int perf_event_exit_cpu(unsigned int cpu)
13613 {
13614         perf_event_exit_cpu_context(cpu);
13615         return 0;
13616 }
13617
13618 static int
13619 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13620 {
13621         int cpu;
13622
13623         for_each_online_cpu(cpu)
13624                 perf_event_exit_cpu(cpu);
13625
13626         return NOTIFY_OK;
13627 }
13628
13629 /*
13630  * Run the perf reboot notifier at the very last possible moment so that
13631  * the generic watchdog code runs as long as possible.
13632  */
13633 static struct notifier_block perf_reboot_notifier = {
13634         .notifier_call = perf_reboot,
13635         .priority = INT_MIN,
13636 };
13637
13638 void __init perf_event_init(void)
13639 {
13640         int ret;
13641
13642         idr_init(&pmu_idr);
13643
13644         perf_event_init_all_cpus();
13645         init_srcu_struct(&pmus_srcu);
13646         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13647         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13648         perf_pmu_register(&perf_task_clock, NULL, -1);
13649         perf_tp_register();
13650         perf_event_init_cpu(smp_processor_id());
13651         register_reboot_notifier(&perf_reboot_notifier);
13652
13653         ret = init_hw_breakpoint();
13654         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13655
13656         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13657
13658         /*
13659          * Build time assertion that we keep the data_head at the intended
13660          * location.  IOW, validation we got the __reserved[] size right.
13661          */
13662         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13663                      != 1024);
13664 }
13665
13666 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13667                               char *page)
13668 {
13669         struct perf_pmu_events_attr *pmu_attr =
13670                 container_of(attr, struct perf_pmu_events_attr, attr);
13671
13672         if (pmu_attr->event_str)
13673                 return sprintf(page, "%s\n", pmu_attr->event_str);
13674
13675         return 0;
13676 }
13677 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13678
13679 static int __init perf_event_sysfs_init(void)
13680 {
13681         struct pmu *pmu;
13682         int ret;
13683
13684         mutex_lock(&pmus_lock);
13685
13686         ret = bus_register(&pmu_bus);
13687         if (ret)
13688                 goto unlock;
13689
13690         list_for_each_entry(pmu, &pmus, entry) {
13691                 if (!pmu->name || pmu->type < 0)
13692                         continue;
13693
13694                 ret = pmu_dev_alloc(pmu);
13695                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13696         }
13697         pmu_bus_running = 1;
13698         ret = 0;
13699
13700 unlock:
13701         mutex_unlock(&pmus_lock);
13702
13703         return ret;
13704 }
13705 device_initcall(perf_event_sysfs_init);
13706
13707 #ifdef CONFIG_CGROUP_PERF
13708 static struct cgroup_subsys_state *
13709 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13710 {
13711         struct perf_cgroup *jc;
13712
13713         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13714         if (!jc)
13715                 return ERR_PTR(-ENOMEM);
13716
13717         jc->info = alloc_percpu(struct perf_cgroup_info);
13718         if (!jc->info) {
13719                 kfree(jc);
13720                 return ERR_PTR(-ENOMEM);
13721         }
13722
13723         return &jc->css;
13724 }
13725
13726 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13727 {
13728         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13729
13730         free_percpu(jc->info);
13731         kfree(jc);
13732 }
13733
13734 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13735 {
13736         perf_event_cgroup(css->cgroup);
13737         return 0;
13738 }
13739
13740 static int __perf_cgroup_move(void *info)
13741 {
13742         struct task_struct *task = info;
13743
13744         preempt_disable();
13745         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
13746                 perf_cgroup_switch(task);
13747         preempt_enable();
13748
13749         return 0;
13750 }
13751
13752 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13753 {
13754         struct task_struct *task;
13755         struct cgroup_subsys_state *css;
13756
13757         cgroup_taskset_for_each(task, css, tset)
13758                 task_function_call(task, __perf_cgroup_move, task);
13759 }
13760
13761 struct cgroup_subsys perf_event_cgrp_subsys = {
13762         .css_alloc      = perf_cgroup_css_alloc,
13763         .css_free       = perf_cgroup_css_free,
13764         .css_online     = perf_cgroup_css_online,
13765         .attach         = perf_cgroup_attach,
13766         /*
13767          * Implicitly enable on dfl hierarchy so that perf events can
13768          * always be filtered by cgroup2 path as long as perf_event
13769          * controller is not mounted on a legacy hierarchy.
13770          */
13771         .implicit_on_dfl = true,
13772         .threaded       = true,
13773 };
13774 #endif /* CONFIG_CGROUP_PERF */
13775
13776 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);