Merge branch 'sched/rt' into sched/core, to pick up -rt changes
[linux-2.6-block.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52
53 #include "internal.h"
54
55 #include <asm/irq_regs.h>
56
57 typedef int (*remote_function_f)(void *);
58
59 struct remote_function_call {
60         struct task_struct      *p;
61         remote_function_f       func;
62         void                    *info;
63         int                     ret;
64 };
65
66 static void remote_function(void *data)
67 {
68         struct remote_function_call *tfc = data;
69         struct task_struct *p = tfc->p;
70
71         if (p) {
72                 /* -EAGAIN */
73                 if (task_cpu(p) != smp_processor_id())
74                         return;
75
76                 /*
77                  * Now that we're on right CPU with IRQs disabled, we can test
78                  * if we hit the right task without races.
79                  */
80
81                 tfc->ret = -ESRCH; /* No such (running) process */
82                 if (p != current)
83                         return;
84         }
85
86         tfc->ret = tfc->func(tfc->info);
87 }
88
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:          the task to evaluate
92  * @func:       the function to be called
93  * @info:       the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *          -ESRCH  - when the process isn't running
100  *          -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105         struct remote_function_call data = {
106                 .p      = p,
107                 .func   = func,
108                 .info   = info,
109                 .ret    = -EAGAIN,
110         };
111         int ret;
112
113         do {
114                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115                 if (!ret)
116                         ret = data.ret;
117         } while (ret == -EAGAIN);
118
119         return ret;
120 }
121
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:       the function to be called
125  * @info:       the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133         struct remote_function_call data = {
134                 .p      = NULL,
135                 .func   = func,
136                 .info   = info,
137                 .ret    = -ENXIO, /* No such CPU */
138         };
139
140         smp_call_function_single(cpu, remote_function, &data, 1);
141
142         return data.ret;
143 }
144
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152                           struct perf_event_context *ctx)
153 {
154         raw_spin_lock(&cpuctx->ctx.lock);
155         if (ctx)
156                 raw_spin_lock(&ctx->lock);
157 }
158
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160                             struct perf_event_context *ctx)
161 {
162         if (ctx)
163                 raw_spin_unlock(&ctx->lock);
164         raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166
167 #define TASK_TOMBSTONE ((void *)-1L)
168
169 static bool is_kernel_event(struct perf_event *event)
170 {
171         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194                         struct perf_event_context *, void *);
195
196 struct event_function_struct {
197         struct perf_event *event;
198         event_f func;
199         void *data;
200 };
201
202 static int event_function(void *info)
203 {
204         struct event_function_struct *efs = info;
205         struct perf_event *event = efs->event;
206         struct perf_event_context *ctx = event->ctx;
207         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208         struct perf_event_context *task_ctx = cpuctx->task_ctx;
209         int ret = 0;
210
211         lockdep_assert_irqs_disabled();
212
213         perf_ctx_lock(cpuctx, task_ctx);
214         /*
215          * Since we do the IPI call without holding ctx->lock things can have
216          * changed, double check we hit the task we set out to hit.
217          */
218         if (ctx->task) {
219                 if (ctx->task != current) {
220                         ret = -ESRCH;
221                         goto unlock;
222                 }
223
224                 /*
225                  * We only use event_function_call() on established contexts,
226                  * and event_function() is only ever called when active (or
227                  * rather, we'll have bailed in task_function_call() or the
228                  * above ctx->task != current test), therefore we must have
229                  * ctx->is_active here.
230                  */
231                 WARN_ON_ONCE(!ctx->is_active);
232                 /*
233                  * And since we have ctx->is_active, cpuctx->task_ctx must
234                  * match.
235                  */
236                 WARN_ON_ONCE(task_ctx != ctx);
237         } else {
238                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
239         }
240
241         efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243         perf_ctx_unlock(cpuctx, task_ctx);
244
245         return ret;
246 }
247
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250         struct perf_event_context *ctx = event->ctx;
251         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252         struct event_function_struct efs = {
253                 .event = event,
254                 .func = func,
255                 .data = data,
256         };
257
258         if (!event->parent) {
259                 /*
260                  * If this is a !child event, we must hold ctx::mutex to
261                  * stabilize the the event->ctx relation. See
262                  * perf_event_ctx_lock().
263                  */
264                 lockdep_assert_held(&ctx->mutex);
265         }
266
267         if (!task) {
268                 cpu_function_call(event->cpu, event_function, &efs);
269                 return;
270         }
271
272         if (task == TASK_TOMBSTONE)
273                 return;
274
275 again:
276         if (!task_function_call(task, event_function, &efs))
277                 return;
278
279         raw_spin_lock_irq(&ctx->lock);
280         /*
281          * Reload the task pointer, it might have been changed by
282          * a concurrent perf_event_context_sched_out().
283          */
284         task = ctx->task;
285         if (task == TASK_TOMBSTONE) {
286                 raw_spin_unlock_irq(&ctx->lock);
287                 return;
288         }
289         if (ctx->is_active) {
290                 raw_spin_unlock_irq(&ctx->lock);
291                 goto again;
292         }
293         func(event, NULL, ctx, data);
294         raw_spin_unlock_irq(&ctx->lock);
295 }
296
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303         struct perf_event_context *ctx = event->ctx;
304         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305         struct task_struct *task = READ_ONCE(ctx->task);
306         struct perf_event_context *task_ctx = NULL;
307
308         lockdep_assert_irqs_disabled();
309
310         if (task) {
311                 if (task == TASK_TOMBSTONE)
312                         return;
313
314                 task_ctx = ctx;
315         }
316
317         perf_ctx_lock(cpuctx, task_ctx);
318
319         task = ctx->task;
320         if (task == TASK_TOMBSTONE)
321                 goto unlock;
322
323         if (task) {
324                 /*
325                  * We must be either inactive or active and the right task,
326                  * otherwise we're screwed, since we cannot IPI to somewhere
327                  * else.
328                  */
329                 if (ctx->is_active) {
330                         if (WARN_ON_ONCE(task != current))
331                                 goto unlock;
332
333                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334                                 goto unlock;
335                 }
336         } else {
337                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338         }
339
340         func(event, cpuctx, ctx, data);
341 unlock:
342         perf_ctx_unlock(cpuctx, task_ctx);
343 }
344
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346                        PERF_FLAG_FD_OUTPUT  |\
347                        PERF_FLAG_PID_CGROUP |\
348                        PERF_FLAG_FD_CLOEXEC)
349
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354         (PERF_SAMPLE_BRANCH_KERNEL |\
355          PERF_SAMPLE_BRANCH_HV)
356
357 enum event_type_t {
358         EVENT_FLEXIBLE = 0x1,
359         EVENT_PINNED = 0x2,
360         EVENT_TIME = 0x4,
361         /* see ctx_resched() for details */
362         EVENT_CPU = 0x8,
363         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE         100000
411 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
413
414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
418
419 static int perf_sample_allowed_ns __read_mostly =
420         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421
422 static void update_perf_cpu_limits(void)
423 {
424         u64 tmp = perf_sample_period_ns;
425
426         tmp *= sysctl_perf_cpu_time_max_percent;
427         tmp = div_u64(tmp, 100);
428         if (!tmp)
429                 tmp = 1;
430
431         WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437                 void __user *buffer, size_t *lenp,
438                 loff_t *ppos)
439 {
440         int ret;
441         int perf_cpu = sysctl_perf_cpu_time_max_percent;
442         /*
443          * If throttling is disabled don't allow the write:
444          */
445         if (write && (perf_cpu == 100 || perf_cpu == 0))
446                 return -EINVAL;
447
448         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449         if (ret || !write)
450                 return ret;
451
452         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454         update_perf_cpu_limits();
455
456         return 0;
457 }
458
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462                                 void __user *buffer, size_t *lenp,
463                                 loff_t *ppos)
464 {
465         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466
467         if (ret || !write)
468                 return ret;
469
470         if (sysctl_perf_cpu_time_max_percent == 100 ||
471             sysctl_perf_cpu_time_max_percent == 0) {
472                 printk(KERN_WARNING
473                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474                 WRITE_ONCE(perf_sample_allowed_ns, 0);
475         } else {
476                 update_perf_cpu_limits();
477         }
478
479         return 0;
480 }
481
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490
491 static u64 __report_avg;
492 static u64 __report_allowed;
493
494 static void perf_duration_warn(struct irq_work *w)
495 {
496         printk_ratelimited(KERN_INFO
497                 "perf: interrupt took too long (%lld > %lld), lowering "
498                 "kernel.perf_event_max_sample_rate to %d\n",
499                 __report_avg, __report_allowed,
500                 sysctl_perf_event_sample_rate);
501 }
502
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508         u64 running_len;
509         u64 avg_len;
510         u32 max;
511
512         if (max_len == 0)
513                 return;
514
515         /* Decay the counter by 1 average sample. */
516         running_len = __this_cpu_read(running_sample_length);
517         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518         running_len += sample_len_ns;
519         __this_cpu_write(running_sample_length, running_len);
520
521         /*
522          * Note: this will be biased artifically low until we have
523          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524          * from having to maintain a count.
525          */
526         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527         if (avg_len <= max_len)
528                 return;
529
530         __report_avg = avg_len;
531         __report_allowed = max_len;
532
533         /*
534          * Compute a throttle threshold 25% below the current duration.
535          */
536         avg_len += avg_len / 4;
537         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538         if (avg_len < max)
539                 max /= (u32)avg_len;
540         else
541                 max = 1;
542
543         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544         WRITE_ONCE(max_samples_per_tick, max);
545
546         sysctl_perf_event_sample_rate = max * HZ;
547         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548
549         if (!irq_work_queue(&perf_duration_work)) {
550                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551                              "kernel.perf_event_max_sample_rate to %d\n",
552                              __report_avg, __report_allowed,
553                              sysctl_perf_event_sample_rate);
554         }
555 }
556
557 static atomic64_t perf_event_id;
558
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560                               enum event_type_t event_type);
561
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563                              enum event_type_t event_type,
564                              struct task_struct *task);
565
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568
569 void __weak perf_event_print_debug(void)        { }
570
571 extern __weak const char *perf_pmu_name(void)
572 {
573         return "pmu";
574 }
575
576 static inline u64 perf_clock(void)
577 {
578         return local_clock();
579 }
580
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583         return event->clock();
584 }
585
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611         struct perf_event *leader = event->group_leader;
612
613         if (leader->state <= PERF_EVENT_STATE_OFF)
614                 return leader->state;
615
616         return event->state;
617 }
618
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622         enum perf_event_state state = __perf_effective_state(event);
623         u64 delta = now - event->tstamp;
624
625         *enabled = event->total_time_enabled;
626         if (state >= PERF_EVENT_STATE_INACTIVE)
627                 *enabled += delta;
628
629         *running = event->total_time_running;
630         if (state >= PERF_EVENT_STATE_ACTIVE)
631                 *running += delta;
632 }
633
634 static void perf_event_update_time(struct perf_event *event)
635 {
636         u64 now = perf_event_time(event);
637
638         __perf_update_times(event, now, &event->total_time_enabled,
639                                         &event->total_time_running);
640         event->tstamp = now;
641 }
642
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645         struct perf_event *sibling;
646
647         for_each_sibling_event(sibling, leader)
648                 perf_event_update_time(sibling);
649 }
650
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654         if (event->state == state)
655                 return;
656
657         perf_event_update_time(event);
658         /*
659          * If a group leader gets enabled/disabled all its siblings
660          * are affected too.
661          */
662         if ((event->state < 0) ^ (state < 0))
663                 perf_event_update_sibling_time(event);
664
665         WRITE_ONCE(event->state, state);
666 }
667
668 #ifdef CONFIG_CGROUP_PERF
669
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673         struct perf_event_context *ctx = event->ctx;
674         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
676         /* @event doesn't care about cgroup */
677         if (!event->cgrp)
678                 return true;
679
680         /* wants specific cgroup scope but @cpuctx isn't associated with any */
681         if (!cpuctx->cgrp)
682                 return false;
683
684         /*
685          * Cgroup scoping is recursive.  An event enabled for a cgroup is
686          * also enabled for all its descendant cgroups.  If @cpuctx's
687          * cgroup is a descendant of @event's (the test covers identity
688          * case), it's a match.
689          */
690         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691                                     event->cgrp->css.cgroup);
692 }
693
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696         css_put(&event->cgrp->css);
697         event->cgrp = NULL;
698 }
699
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702         return event->cgrp != NULL;
703 }
704
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707         struct perf_cgroup_info *t;
708
709         t = per_cpu_ptr(event->cgrp->info, event->cpu);
710         return t->time;
711 }
712
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715         struct perf_cgroup_info *info;
716         u64 now;
717
718         now = perf_clock();
719
720         info = this_cpu_ptr(cgrp->info);
721
722         info->time += now - info->timestamp;
723         info->timestamp = now;
724 }
725
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728         struct perf_cgroup *cgrp = cpuctx->cgrp;
729         struct cgroup_subsys_state *css;
730
731         if (cgrp) {
732                 for (css = &cgrp->css; css; css = css->parent) {
733                         cgrp = container_of(css, struct perf_cgroup, css);
734                         __update_cgrp_time(cgrp);
735                 }
736         }
737 }
738
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741         struct perf_cgroup *cgrp;
742
743         /*
744          * ensure we access cgroup data only when needed and
745          * when we know the cgroup is pinned (css_get)
746          */
747         if (!is_cgroup_event(event))
748                 return;
749
750         cgrp = perf_cgroup_from_task(current, event->ctx);
751         /*
752          * Do not update time when cgroup is not active
753          */
754         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755                 __update_cgrp_time(event->cgrp);
756 }
757
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760                           struct perf_event_context *ctx)
761 {
762         struct perf_cgroup *cgrp;
763         struct perf_cgroup_info *info;
764         struct cgroup_subsys_state *css;
765
766         /*
767          * ctx->lock held by caller
768          * ensure we do not access cgroup data
769          * unless we have the cgroup pinned (css_get)
770          */
771         if (!task || !ctx->nr_cgroups)
772                 return;
773
774         cgrp = perf_cgroup_from_task(task, ctx);
775
776         for (css = &cgrp->css; css; css = css->parent) {
777                 cgrp = container_of(css, struct perf_cgroup, css);
778                 info = this_cpu_ptr(cgrp->info);
779                 info->timestamp = ctx->timestamp;
780         }
781 }
782
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
785 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
787
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796         struct perf_cpu_context *cpuctx;
797         struct list_head *list;
798         unsigned long flags;
799
800         /*
801          * Disable interrupts and preemption to avoid this CPU's
802          * cgrp_cpuctx_entry to change under us.
803          */
804         local_irq_save(flags);
805
806         list = this_cpu_ptr(&cgrp_cpuctx_list);
807         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809
810                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811                 perf_pmu_disable(cpuctx->ctx.pmu);
812
813                 if (mode & PERF_CGROUP_SWOUT) {
814                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815                         /*
816                          * must not be done before ctxswout due
817                          * to event_filter_match() in event_sched_out()
818                          */
819                         cpuctx->cgrp = NULL;
820                 }
821
822                 if (mode & PERF_CGROUP_SWIN) {
823                         WARN_ON_ONCE(cpuctx->cgrp);
824                         /*
825                          * set cgrp before ctxsw in to allow
826                          * event_filter_match() to not have to pass
827                          * task around
828                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
829                          * because cgorup events are only per-cpu
830                          */
831                         cpuctx->cgrp = perf_cgroup_from_task(task,
832                                                              &cpuctx->ctx);
833                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834                 }
835                 perf_pmu_enable(cpuctx->ctx.pmu);
836                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837         }
838
839         local_irq_restore(flags);
840 }
841
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843                                          struct task_struct *next)
844 {
845         struct perf_cgroup *cgrp1;
846         struct perf_cgroup *cgrp2 = NULL;
847
848         rcu_read_lock();
849         /*
850          * we come here when we know perf_cgroup_events > 0
851          * we do not need to pass the ctx here because we know
852          * we are holding the rcu lock
853          */
854         cgrp1 = perf_cgroup_from_task(task, NULL);
855         cgrp2 = perf_cgroup_from_task(next, NULL);
856
857         /*
858          * only schedule out current cgroup events if we know
859          * that we are switching to a different cgroup. Otherwise,
860          * do no touch the cgroup events.
861          */
862         if (cgrp1 != cgrp2)
863                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864
865         rcu_read_unlock();
866 }
867
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869                                         struct task_struct *task)
870 {
871         struct perf_cgroup *cgrp1;
872         struct perf_cgroup *cgrp2 = NULL;
873
874         rcu_read_lock();
875         /*
876          * we come here when we know perf_cgroup_events > 0
877          * we do not need to pass the ctx here because we know
878          * we are holding the rcu lock
879          */
880         cgrp1 = perf_cgroup_from_task(task, NULL);
881         cgrp2 = perf_cgroup_from_task(prev, NULL);
882
883         /*
884          * only need to schedule in cgroup events if we are changing
885          * cgroup during ctxsw. Cgroup events were not scheduled
886          * out of ctxsw out if that was not the case.
887          */
888         if (cgrp1 != cgrp2)
889                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890
891         rcu_read_unlock();
892 }
893
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895                                       struct perf_event_attr *attr,
896                                       struct perf_event *group_leader)
897 {
898         struct perf_cgroup *cgrp;
899         struct cgroup_subsys_state *css;
900         struct fd f = fdget(fd);
901         int ret = 0;
902
903         if (!f.file)
904                 return -EBADF;
905
906         css = css_tryget_online_from_dir(f.file->f_path.dentry,
907                                          &perf_event_cgrp_subsys);
908         if (IS_ERR(css)) {
909                 ret = PTR_ERR(css);
910                 goto out;
911         }
912
913         cgrp = container_of(css, struct perf_cgroup, css);
914         event->cgrp = cgrp;
915
916         /*
917          * all events in a group must monitor
918          * the same cgroup because a task belongs
919          * to only one perf cgroup at a time
920          */
921         if (group_leader && group_leader->cgrp != cgrp) {
922                 perf_detach_cgroup(event);
923                 ret = -EINVAL;
924         }
925 out:
926         fdput(f);
927         return ret;
928 }
929
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933         struct perf_cgroup_info *t;
934         t = per_cpu_ptr(event->cgrp->info, event->cpu);
935         event->shadow_ctx_time = now - t->timestamp;
936 }
937
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944                          struct perf_event_context *ctx, bool add)
945 {
946         struct perf_cpu_context *cpuctx;
947         struct list_head *cpuctx_entry;
948
949         if (!is_cgroup_event(event))
950                 return;
951
952         /*
953          * Because cgroup events are always per-cpu events,
954          * this will always be called from the right CPU.
955          */
956         cpuctx = __get_cpu_context(ctx);
957
958         /*
959          * Since setting cpuctx->cgrp is conditional on the current @cgrp
960          * matching the event's cgroup, we must do this for every new event,
961          * because if the first would mismatch, the second would not try again
962          * and we would leave cpuctx->cgrp unset.
963          */
964         if (add && !cpuctx->cgrp) {
965                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
967                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968                         cpuctx->cgrp = cgrp;
969         }
970
971         if (add && ctx->nr_cgroups++)
972                 return;
973         else if (!add && --ctx->nr_cgroups)
974                 return;
975
976         /* no cgroup running */
977         if (!add)
978                 cpuctx->cgrp = NULL;
979
980         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981         if (add)
982                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983         else
984                 list_del(cpuctx_entry);
985 }
986
987 #else /* !CONFIG_CGROUP_PERF */
988
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992         return true;
993 }
994
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000         return 0;
1001 }
1002
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012                                          struct task_struct *next)
1013 {
1014 }
1015
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017                                         struct task_struct *task)
1018 {
1019 }
1020
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022                                       struct perf_event_attr *attr,
1023                                       struct perf_event *group_leader)
1024 {
1025         return -EINVAL;
1026 }
1027
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030                           struct perf_event_context *ctx)
1031 {
1032 }
1033
1034 void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046         return 0;
1047 }
1048
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051                          struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054
1055 #endif
1056
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067         struct perf_cpu_context *cpuctx;
1068         bool rotations;
1069
1070         lockdep_assert_irqs_disabled();
1071
1072         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073         rotations = perf_rotate_context(cpuctx);
1074
1075         raw_spin_lock(&cpuctx->hrtimer_lock);
1076         if (rotations)
1077                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078         else
1079                 cpuctx->hrtimer_active = 0;
1080         raw_spin_unlock(&cpuctx->hrtimer_lock);
1081
1082         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087         struct hrtimer *timer = &cpuctx->hrtimer;
1088         struct pmu *pmu = cpuctx->ctx.pmu;
1089         u64 interval;
1090
1091         /* no multiplexing needed for SW PMU */
1092         if (pmu->task_ctx_nr == perf_sw_context)
1093                 return;
1094
1095         /*
1096          * check default is sane, if not set then force to
1097          * default interval (1/tick)
1098          */
1099         interval = pmu->hrtimer_interval_ms;
1100         if (interval < 1)
1101                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102
1103         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104
1105         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1107         timer->function = perf_mux_hrtimer_handler;
1108 }
1109
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112         struct hrtimer *timer = &cpuctx->hrtimer;
1113         struct pmu *pmu = cpuctx->ctx.pmu;
1114         unsigned long flags;
1115
1116         /* not for SW PMU */
1117         if (pmu->task_ctx_nr == perf_sw_context)
1118                 return 0;
1119
1120         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121         if (!cpuctx->hrtimer_active) {
1122                 cpuctx->hrtimer_active = 1;
1123                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1125         }
1126         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127
1128         return 0;
1129 }
1130
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134         if (!(*count)++)
1135                 pmu->pmu_disable(pmu);
1136 }
1137
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141         if (!--(*count))
1142                 pmu->pmu_enable(pmu);
1143 }
1144
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156
1157         lockdep_assert_irqs_disabled();
1158
1159         WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161         list_add(&ctx->active_ctx_list, head);
1162 }
1163
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166         lockdep_assert_irqs_disabled();
1167
1168         WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170         list_del_init(&ctx->active_ctx_list);
1171 }
1172
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175         refcount_inc(&ctx->refcount);
1176 }
1177
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180         struct perf_event_context *ctx;
1181
1182         ctx = container_of(head, struct perf_event_context, rcu_head);
1183         kfree(ctx->task_ctx_data);
1184         kfree(ctx);
1185 }
1186
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189         if (refcount_dec_and_test(&ctx->refcount)) {
1190                 if (ctx->parent_ctx)
1191                         put_ctx(ctx->parent_ctx);
1192                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193                         put_task_struct(ctx->task);
1194                 call_rcu(&ctx->rcu_head, free_ctx);
1195         }
1196 }
1197
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()    [ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()                   [ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()         [ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event() [ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *      task_struct::perf_event_mutex
1253  *        perf_event_context::mutex
1254  *          perf_event::child_mutex;
1255  *            perf_event_context::lock
1256  *          perf_event::mmap_mutex
1257  *          mmap_sem
1258  *            perf_addr_filters_head::lock
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *        cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267         struct perf_event_context *ctx;
1268
1269 again:
1270         rcu_read_lock();
1271         ctx = READ_ONCE(event->ctx);
1272         if (!refcount_inc_not_zero(&ctx->refcount)) {
1273                 rcu_read_unlock();
1274                 goto again;
1275         }
1276         rcu_read_unlock();
1277
1278         mutex_lock_nested(&ctx->mutex, nesting);
1279         if (event->ctx != ctx) {
1280                 mutex_unlock(&ctx->mutex);
1281                 put_ctx(ctx);
1282                 goto again;
1283         }
1284
1285         return ctx;
1286 }
1287
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291         return perf_event_ctx_lock_nested(event, 0);
1292 }
1293
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295                                   struct perf_event_context *ctx)
1296 {
1297         mutex_unlock(&ctx->mutex);
1298         put_ctx(ctx);
1299 }
1300
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311         lockdep_assert_held(&ctx->lock);
1312
1313         if (parent_ctx)
1314                 ctx->parent_ctx = NULL;
1315         ctx->generation++;
1316
1317         return parent_ctx;
1318 }
1319
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321                                 enum pid_type type)
1322 {
1323         u32 nr;
1324         /*
1325          * only top level events have the pid namespace they were created in
1326          */
1327         if (event->parent)
1328                 event = event->parent;
1329
1330         nr = __task_pid_nr_ns(p, type, event->ns);
1331         /* avoid -1 if it is idle thread or runs in another ns */
1332         if (!nr && !pid_alive(p))
1333                 nr = -1;
1334         return nr;
1335 }
1336
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344         return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353         u64 id = event->id;
1354
1355         if (event->parent)
1356                 id = event->parent->id;
1357
1358         return id;
1359 }
1360
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370         struct perf_event_context *ctx;
1371
1372 retry:
1373         /*
1374          * One of the few rules of preemptible RCU is that one cannot do
1375          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376          * part of the read side critical section was irqs-enabled -- see
1377          * rcu_read_unlock_special().
1378          *
1379          * Since ctx->lock nests under rq->lock we must ensure the entire read
1380          * side critical section has interrupts disabled.
1381          */
1382         local_irq_save(*flags);
1383         rcu_read_lock();
1384         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385         if (ctx) {
1386                 /*
1387                  * If this context is a clone of another, it might
1388                  * get swapped for another underneath us by
1389                  * perf_event_task_sched_out, though the
1390                  * rcu_read_lock() protects us from any context
1391                  * getting freed.  Lock the context and check if it
1392                  * got swapped before we could get the lock, and retry
1393                  * if so.  If we locked the right context, then it
1394                  * can't get swapped on us any more.
1395                  */
1396                 raw_spin_lock(&ctx->lock);
1397                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398                         raw_spin_unlock(&ctx->lock);
1399                         rcu_read_unlock();
1400                         local_irq_restore(*flags);
1401                         goto retry;
1402                 }
1403
1404                 if (ctx->task == TASK_TOMBSTONE ||
1405                     !refcount_inc_not_zero(&ctx->refcount)) {
1406                         raw_spin_unlock(&ctx->lock);
1407                         ctx = NULL;
1408                 } else {
1409                         WARN_ON_ONCE(ctx->task != task);
1410                 }
1411         }
1412         rcu_read_unlock();
1413         if (!ctx)
1414                 local_irq_restore(*flags);
1415         return ctx;
1416 }
1417
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426         struct perf_event_context *ctx;
1427         unsigned long flags;
1428
1429         ctx = perf_lock_task_context(task, ctxn, &flags);
1430         if (ctx) {
1431                 ++ctx->pin_count;
1432                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433         }
1434         return ctx;
1435 }
1436
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439         unsigned long flags;
1440
1441         raw_spin_lock_irqsave(&ctx->lock, flags);
1442         --ctx->pin_count;
1443         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445
1446 /*
1447  * Update the record of the current time in a context.
1448  */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451         u64 now = perf_clock();
1452
1453         ctx->time += now - ctx->timestamp;
1454         ctx->timestamp = now;
1455 }
1456
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459         struct perf_event_context *ctx = event->ctx;
1460
1461         if (is_cgroup_event(event))
1462                 return perf_cgroup_event_time(event);
1463
1464         return ctx ? ctx->time : 0;
1465 }
1466
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469         struct perf_event_context *ctx = event->ctx;
1470         enum event_type_t event_type;
1471
1472         lockdep_assert_held(&ctx->lock);
1473
1474         /*
1475          * It's 'group type', really, because if our group leader is
1476          * pinned, so are we.
1477          */
1478         if (event->group_leader != event)
1479                 event = event->group_leader;
1480
1481         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482         if (!ctx->task)
1483                 event_type |= EVENT_CPU;
1484
1485         return event_type;
1486 }
1487
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493         RB_CLEAR_NODE(&event->group_node);
1494         event->group_index = 0;
1495 }
1496
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504         if (event->attr.pinned)
1505                 return &ctx->pinned_groups;
1506         else
1507                 return &ctx->flexible_groups;
1508 }
1509
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515         groups->tree = RB_ROOT;
1516         groups->index = 0;
1517 }
1518
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528         if (left->cpu < right->cpu)
1529                 return true;
1530         if (left->cpu > right->cpu)
1531                 return false;
1532
1533         if (left->group_index < right->group_index)
1534                 return true;
1535         if (left->group_index > right->group_index)
1536                 return false;
1537
1538         return false;
1539 }
1540
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548                          struct perf_event *event)
1549 {
1550         struct perf_event *node_event;
1551         struct rb_node *parent;
1552         struct rb_node **node;
1553
1554         event->group_index = ++groups->index;
1555
1556         node = &groups->tree.rb_node;
1557         parent = *node;
1558
1559         while (*node) {
1560                 parent = *node;
1561                 node_event = container_of(*node, struct perf_event, group_node);
1562
1563                 if (perf_event_groups_less(event, node_event))
1564                         node = &parent->rb_left;
1565                 else
1566                         node = &parent->rb_right;
1567         }
1568
1569         rb_link_node(&event->group_node, parent, node);
1570         rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579         struct perf_event_groups *groups;
1580
1581         groups = get_event_groups(event, ctx);
1582         perf_event_groups_insert(groups, event);
1583 }
1584
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590                          struct perf_event *event)
1591 {
1592         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593                      RB_EMPTY_ROOT(&groups->tree));
1594
1595         rb_erase(&event->group_node, &groups->tree);
1596         init_event_group(event);
1597 }
1598
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605         struct perf_event_groups *groups;
1606
1607         groups = get_event_groups(event, ctx);
1608         perf_event_groups_delete(groups, event);
1609 }
1610
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617         struct perf_event *node_event = NULL, *match = NULL;
1618         struct rb_node *node = groups->tree.rb_node;
1619
1620         while (node) {
1621                 node_event = container_of(node, struct perf_event, group_node);
1622
1623                 if (cpu < node_event->cpu) {
1624                         node = node->rb_left;
1625                 } else if (cpu > node_event->cpu) {
1626                         node = node->rb_right;
1627                 } else {
1628                         match = node_event;
1629                         node = node->rb_left;
1630                 }
1631         }
1632
1633         return match;
1634 }
1635
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642         struct perf_event *next;
1643
1644         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645         if (next && next->cpu == event->cpu)
1646                 return next;
1647
1648         return NULL;
1649 }
1650
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)                       \
1655         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1656                                 typeof(*event), group_node); event;     \
1657                 event = rb_entry_safe(rb_next(&event->group_node),      \
1658                                 typeof(*event), group_node))
1659
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667         lockdep_assert_held(&ctx->lock);
1668
1669         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670         event->attach_state |= PERF_ATTACH_CONTEXT;
1671
1672         event->tstamp = perf_event_time(event);
1673
1674         /*
1675          * If we're a stand alone event or group leader, we go to the context
1676          * list, group events are kept attached to the group so that
1677          * perf_group_detach can, at all times, locate all siblings.
1678          */
1679         if (event->group_leader == event) {
1680                 event->group_caps = event->event_caps;
1681                 add_event_to_groups(event, ctx);
1682         }
1683
1684         list_update_cgroup_event(event, ctx, true);
1685
1686         list_add_rcu(&event->event_entry, &ctx->event_list);
1687         ctx->nr_events++;
1688         if (event->attr.inherit_stat)
1689                 ctx->nr_stat++;
1690
1691         ctx->generation++;
1692 }
1693
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700                                               PERF_EVENT_STATE_INACTIVE;
1701 }
1702
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705         int entry = sizeof(u64); /* value */
1706         int size = 0;
1707         int nr = 1;
1708
1709         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710                 size += sizeof(u64);
1711
1712         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713                 size += sizeof(u64);
1714
1715         if (event->attr.read_format & PERF_FORMAT_ID)
1716                 entry += sizeof(u64);
1717
1718         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719                 nr += nr_siblings;
1720                 size += sizeof(u64);
1721         }
1722
1723         size += entry * nr;
1724         event->read_size = size;
1725 }
1726
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729         struct perf_sample_data *data;
1730         u16 size = 0;
1731
1732         if (sample_type & PERF_SAMPLE_IP)
1733                 size += sizeof(data->ip);
1734
1735         if (sample_type & PERF_SAMPLE_ADDR)
1736                 size += sizeof(data->addr);
1737
1738         if (sample_type & PERF_SAMPLE_PERIOD)
1739                 size += sizeof(data->period);
1740
1741         if (sample_type & PERF_SAMPLE_WEIGHT)
1742                 size += sizeof(data->weight);
1743
1744         if (sample_type & PERF_SAMPLE_READ)
1745                 size += event->read_size;
1746
1747         if (sample_type & PERF_SAMPLE_DATA_SRC)
1748                 size += sizeof(data->data_src.val);
1749
1750         if (sample_type & PERF_SAMPLE_TRANSACTION)
1751                 size += sizeof(data->txn);
1752
1753         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754                 size += sizeof(data->phys_addr);
1755
1756         event->header_size = size;
1757 }
1758
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765         __perf_event_read_size(event,
1766                                event->group_leader->nr_siblings);
1767         __perf_event_header_size(event, event->attr.sample_type);
1768 }
1769
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772         struct perf_sample_data *data;
1773         u64 sample_type = event->attr.sample_type;
1774         u16 size = 0;
1775
1776         if (sample_type & PERF_SAMPLE_TID)
1777                 size += sizeof(data->tid_entry);
1778
1779         if (sample_type & PERF_SAMPLE_TIME)
1780                 size += sizeof(data->time);
1781
1782         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783                 size += sizeof(data->id);
1784
1785         if (sample_type & PERF_SAMPLE_ID)
1786                 size += sizeof(data->id);
1787
1788         if (sample_type & PERF_SAMPLE_STREAM_ID)
1789                 size += sizeof(data->stream_id);
1790
1791         if (sample_type & PERF_SAMPLE_CPU)
1792                 size += sizeof(data->cpu_entry);
1793
1794         event->id_header_size = size;
1795 }
1796
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799         /*
1800          * The values computed here will be over-written when we actually
1801          * attach the event.
1802          */
1803         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805         perf_event__id_header_size(event);
1806
1807         /*
1808          * Sum the lot; should not exceed the 64k limit we have on records.
1809          * Conservative limit to allow for callchains and other variable fields.
1810          */
1811         if (event->read_size + event->header_size +
1812             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813                 return false;
1814
1815         return true;
1816 }
1817
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820         struct perf_event *group_leader = event->group_leader, *pos;
1821
1822         lockdep_assert_held(&event->ctx->lock);
1823
1824         /*
1825          * We can have double attach due to group movement in perf_event_open.
1826          */
1827         if (event->attach_state & PERF_ATTACH_GROUP)
1828                 return;
1829
1830         event->attach_state |= PERF_ATTACH_GROUP;
1831
1832         if (group_leader == event)
1833                 return;
1834
1835         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
1837         group_leader->group_caps &= event->event_caps;
1838
1839         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840         group_leader->nr_siblings++;
1841
1842         perf_event__header_size(group_leader);
1843
1844         for_each_sibling_event(pos, group_leader)
1845                 perf_event__header_size(pos);
1846 }
1847
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855         WARN_ON_ONCE(event->ctx != ctx);
1856         lockdep_assert_held(&ctx->lock);
1857
1858         /*
1859          * We can have double detach due to exit/hot-unplug + close.
1860          */
1861         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862                 return;
1863
1864         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
1866         list_update_cgroup_event(event, ctx, false);
1867
1868         ctx->nr_events--;
1869         if (event->attr.inherit_stat)
1870                 ctx->nr_stat--;
1871
1872         list_del_rcu(&event->event_entry);
1873
1874         if (event->group_leader == event)
1875                 del_event_from_groups(event, ctx);
1876
1877         /*
1878          * If event was in error state, then keep it
1879          * that way, otherwise bogus counts will be
1880          * returned on read(). The only way to get out
1881          * of error state is by explicit re-enabling
1882          * of the event
1883          */
1884         if (event->state > PERF_EVENT_STATE_OFF)
1885                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886
1887         ctx->generation++;
1888 }
1889
1890 static void perf_group_detach(struct perf_event *event)
1891 {
1892         struct perf_event *sibling, *tmp;
1893         struct perf_event_context *ctx = event->ctx;
1894
1895         lockdep_assert_held(&ctx->lock);
1896
1897         /*
1898          * We can have double detach due to exit/hot-unplug + close.
1899          */
1900         if (!(event->attach_state & PERF_ATTACH_GROUP))
1901                 return;
1902
1903         event->attach_state &= ~PERF_ATTACH_GROUP;
1904
1905         /*
1906          * If this is a sibling, remove it from its group.
1907          */
1908         if (event->group_leader != event) {
1909                 list_del_init(&event->sibling_list);
1910                 event->group_leader->nr_siblings--;
1911                 goto out;
1912         }
1913
1914         /*
1915          * If this was a group event with sibling events then
1916          * upgrade the siblings to singleton events by adding them
1917          * to whatever list we are on.
1918          */
1919         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1920
1921                 sibling->group_leader = sibling;
1922                 list_del_init(&sibling->sibling_list);
1923
1924                 /* Inherit group flags from the previous leader */
1925                 sibling->group_caps = event->group_caps;
1926
1927                 if (!RB_EMPTY_NODE(&event->group_node)) {
1928                         add_event_to_groups(sibling, event->ctx);
1929
1930                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1931                                 struct list_head *list = sibling->attr.pinned ?
1932                                         &ctx->pinned_active : &ctx->flexible_active;
1933
1934                                 list_add_tail(&sibling->active_list, list);
1935                         }
1936                 }
1937
1938                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1939         }
1940
1941 out:
1942         perf_event__header_size(event->group_leader);
1943
1944         for_each_sibling_event(tmp, event->group_leader)
1945                 perf_event__header_size(tmp);
1946 }
1947
1948 static bool is_orphaned_event(struct perf_event *event)
1949 {
1950         return event->state == PERF_EVENT_STATE_DEAD;
1951 }
1952
1953 static inline int __pmu_filter_match(struct perf_event *event)
1954 {
1955         struct pmu *pmu = event->pmu;
1956         return pmu->filter_match ? pmu->filter_match(event) : 1;
1957 }
1958
1959 /*
1960  * Check whether we should attempt to schedule an event group based on
1961  * PMU-specific filtering. An event group can consist of HW and SW events,
1962  * potentially with a SW leader, so we must check all the filters, to
1963  * determine whether a group is schedulable:
1964  */
1965 static inline int pmu_filter_match(struct perf_event *event)
1966 {
1967         struct perf_event *sibling;
1968
1969         if (!__pmu_filter_match(event))
1970                 return 0;
1971
1972         for_each_sibling_event(sibling, event) {
1973                 if (!__pmu_filter_match(sibling))
1974                         return 0;
1975         }
1976
1977         return 1;
1978 }
1979
1980 static inline int
1981 event_filter_match(struct perf_event *event)
1982 {
1983         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1984                perf_cgroup_match(event) && pmu_filter_match(event);
1985 }
1986
1987 static void
1988 event_sched_out(struct perf_event *event,
1989                   struct perf_cpu_context *cpuctx,
1990                   struct perf_event_context *ctx)
1991 {
1992         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1993
1994         WARN_ON_ONCE(event->ctx != ctx);
1995         lockdep_assert_held(&ctx->lock);
1996
1997         if (event->state != PERF_EVENT_STATE_ACTIVE)
1998                 return;
1999
2000         /*
2001          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2002          * we can schedule events _OUT_ individually through things like
2003          * __perf_remove_from_context().
2004          */
2005         list_del_init(&event->active_list);
2006
2007         perf_pmu_disable(event->pmu);
2008
2009         event->pmu->del(event, 0);
2010         event->oncpu = -1;
2011
2012         if (READ_ONCE(event->pending_disable) >= 0) {
2013                 WRITE_ONCE(event->pending_disable, -1);
2014                 state = PERF_EVENT_STATE_OFF;
2015         }
2016         perf_event_set_state(event, state);
2017
2018         if (!is_software_event(event))
2019                 cpuctx->active_oncpu--;
2020         if (!--ctx->nr_active)
2021                 perf_event_ctx_deactivate(ctx);
2022         if (event->attr.freq && event->attr.sample_freq)
2023                 ctx->nr_freq--;
2024         if (event->attr.exclusive || !cpuctx->active_oncpu)
2025                 cpuctx->exclusive = 0;
2026
2027         perf_pmu_enable(event->pmu);
2028 }
2029
2030 static void
2031 group_sched_out(struct perf_event *group_event,
2032                 struct perf_cpu_context *cpuctx,
2033                 struct perf_event_context *ctx)
2034 {
2035         struct perf_event *event;
2036
2037         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2038                 return;
2039
2040         perf_pmu_disable(ctx->pmu);
2041
2042         event_sched_out(group_event, cpuctx, ctx);
2043
2044         /*
2045          * Schedule out siblings (if any):
2046          */
2047         for_each_sibling_event(event, group_event)
2048                 event_sched_out(event, cpuctx, ctx);
2049
2050         perf_pmu_enable(ctx->pmu);
2051
2052         if (group_event->attr.exclusive)
2053                 cpuctx->exclusive = 0;
2054 }
2055
2056 #define DETACH_GROUP    0x01UL
2057
2058 /*
2059  * Cross CPU call to remove a performance event
2060  *
2061  * We disable the event on the hardware level first. After that we
2062  * remove it from the context list.
2063  */
2064 static void
2065 __perf_remove_from_context(struct perf_event *event,
2066                            struct perf_cpu_context *cpuctx,
2067                            struct perf_event_context *ctx,
2068                            void *info)
2069 {
2070         unsigned long flags = (unsigned long)info;
2071
2072         if (ctx->is_active & EVENT_TIME) {
2073                 update_context_time(ctx);
2074                 update_cgrp_time_from_cpuctx(cpuctx);
2075         }
2076
2077         event_sched_out(event, cpuctx, ctx);
2078         if (flags & DETACH_GROUP)
2079                 perf_group_detach(event);
2080         list_del_event(event, ctx);
2081
2082         if (!ctx->nr_events && ctx->is_active) {
2083                 ctx->is_active = 0;
2084                 if (ctx->task) {
2085                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2086                         cpuctx->task_ctx = NULL;
2087                 }
2088         }
2089 }
2090
2091 /*
2092  * Remove the event from a task's (or a CPU's) list of events.
2093  *
2094  * If event->ctx is a cloned context, callers must make sure that
2095  * every task struct that event->ctx->task could possibly point to
2096  * remains valid.  This is OK when called from perf_release since
2097  * that only calls us on the top-level context, which can't be a clone.
2098  * When called from perf_event_exit_task, it's OK because the
2099  * context has been detached from its task.
2100  */
2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2102 {
2103         struct perf_event_context *ctx = event->ctx;
2104
2105         lockdep_assert_held(&ctx->mutex);
2106
2107         event_function_call(event, __perf_remove_from_context, (void *)flags);
2108
2109         /*
2110          * The above event_function_call() can NO-OP when it hits
2111          * TASK_TOMBSTONE. In that case we must already have been detached
2112          * from the context (by perf_event_exit_event()) but the grouping
2113          * might still be in-tact.
2114          */
2115         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2116         if ((flags & DETACH_GROUP) &&
2117             (event->attach_state & PERF_ATTACH_GROUP)) {
2118                 /*
2119                  * Since in that case we cannot possibly be scheduled, simply
2120                  * detach now.
2121                  */
2122                 raw_spin_lock_irq(&ctx->lock);
2123                 perf_group_detach(event);
2124                 raw_spin_unlock_irq(&ctx->lock);
2125         }
2126 }
2127
2128 /*
2129  * Cross CPU call to disable a performance event
2130  */
2131 static void __perf_event_disable(struct perf_event *event,
2132                                  struct perf_cpu_context *cpuctx,
2133                                  struct perf_event_context *ctx,
2134                                  void *info)
2135 {
2136         if (event->state < PERF_EVENT_STATE_INACTIVE)
2137                 return;
2138
2139         if (ctx->is_active & EVENT_TIME) {
2140                 update_context_time(ctx);
2141                 update_cgrp_time_from_event(event);
2142         }
2143
2144         if (event == event->group_leader)
2145                 group_sched_out(event, cpuctx, ctx);
2146         else
2147                 event_sched_out(event, cpuctx, ctx);
2148
2149         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2150 }
2151
2152 /*
2153  * Disable an event.
2154  *
2155  * If event->ctx is a cloned context, callers must make sure that
2156  * every task struct that event->ctx->task could possibly point to
2157  * remains valid.  This condition is satisifed when called through
2158  * perf_event_for_each_child or perf_event_for_each because they
2159  * hold the top-level event's child_mutex, so any descendant that
2160  * goes to exit will block in perf_event_exit_event().
2161  *
2162  * When called from perf_pending_event it's OK because event->ctx
2163  * is the current context on this CPU and preemption is disabled,
2164  * hence we can't get into perf_event_task_sched_out for this context.
2165  */
2166 static void _perf_event_disable(struct perf_event *event)
2167 {
2168         struct perf_event_context *ctx = event->ctx;
2169
2170         raw_spin_lock_irq(&ctx->lock);
2171         if (event->state <= PERF_EVENT_STATE_OFF) {
2172                 raw_spin_unlock_irq(&ctx->lock);
2173                 return;
2174         }
2175         raw_spin_unlock_irq(&ctx->lock);
2176
2177         event_function_call(event, __perf_event_disable, NULL);
2178 }
2179
2180 void perf_event_disable_local(struct perf_event *event)
2181 {
2182         event_function_local(event, __perf_event_disable, NULL);
2183 }
2184
2185 /*
2186  * Strictly speaking kernel users cannot create groups and therefore this
2187  * interface does not need the perf_event_ctx_lock() magic.
2188  */
2189 void perf_event_disable(struct perf_event *event)
2190 {
2191         struct perf_event_context *ctx;
2192
2193         ctx = perf_event_ctx_lock(event);
2194         _perf_event_disable(event);
2195         perf_event_ctx_unlock(event, ctx);
2196 }
2197 EXPORT_SYMBOL_GPL(perf_event_disable);
2198
2199 void perf_event_disable_inatomic(struct perf_event *event)
2200 {
2201         WRITE_ONCE(event->pending_disable, smp_processor_id());
2202         /* can fail, see perf_pending_event_disable() */
2203         irq_work_queue(&event->pending);
2204 }
2205
2206 static void perf_set_shadow_time(struct perf_event *event,
2207                                  struct perf_event_context *ctx)
2208 {
2209         /*
2210          * use the correct time source for the time snapshot
2211          *
2212          * We could get by without this by leveraging the
2213          * fact that to get to this function, the caller
2214          * has most likely already called update_context_time()
2215          * and update_cgrp_time_xx() and thus both timestamp
2216          * are identical (or very close). Given that tstamp is,
2217          * already adjusted for cgroup, we could say that:
2218          *    tstamp - ctx->timestamp
2219          * is equivalent to
2220          *    tstamp - cgrp->timestamp.
2221          *
2222          * Then, in perf_output_read(), the calculation would
2223          * work with no changes because:
2224          * - event is guaranteed scheduled in
2225          * - no scheduled out in between
2226          * - thus the timestamp would be the same
2227          *
2228          * But this is a bit hairy.
2229          *
2230          * So instead, we have an explicit cgroup call to remain
2231          * within the time time source all along. We believe it
2232          * is cleaner and simpler to understand.
2233          */
2234         if (is_cgroup_event(event))
2235                 perf_cgroup_set_shadow_time(event, event->tstamp);
2236         else
2237                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2238 }
2239
2240 #define MAX_INTERRUPTS (~0ULL)
2241
2242 static void perf_log_throttle(struct perf_event *event, int enable);
2243 static void perf_log_itrace_start(struct perf_event *event);
2244
2245 static int
2246 event_sched_in(struct perf_event *event,
2247                  struct perf_cpu_context *cpuctx,
2248                  struct perf_event_context *ctx)
2249 {
2250         int ret = 0;
2251
2252         lockdep_assert_held(&ctx->lock);
2253
2254         if (event->state <= PERF_EVENT_STATE_OFF)
2255                 return 0;
2256
2257         WRITE_ONCE(event->oncpu, smp_processor_id());
2258         /*
2259          * Order event::oncpu write to happen before the ACTIVE state is
2260          * visible. This allows perf_event_{stop,read}() to observe the correct
2261          * ->oncpu if it sees ACTIVE.
2262          */
2263         smp_wmb();
2264         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2265
2266         /*
2267          * Unthrottle events, since we scheduled we might have missed several
2268          * ticks already, also for a heavily scheduling task there is little
2269          * guarantee it'll get a tick in a timely manner.
2270          */
2271         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2272                 perf_log_throttle(event, 1);
2273                 event->hw.interrupts = 0;
2274         }
2275
2276         perf_pmu_disable(event->pmu);
2277
2278         perf_set_shadow_time(event, ctx);
2279
2280         perf_log_itrace_start(event);
2281
2282         if (event->pmu->add(event, PERF_EF_START)) {
2283                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2284                 event->oncpu = -1;
2285                 ret = -EAGAIN;
2286                 goto out;
2287         }
2288
2289         if (!is_software_event(event))
2290                 cpuctx->active_oncpu++;
2291         if (!ctx->nr_active++)
2292                 perf_event_ctx_activate(ctx);
2293         if (event->attr.freq && event->attr.sample_freq)
2294                 ctx->nr_freq++;
2295
2296         if (event->attr.exclusive)
2297                 cpuctx->exclusive = 1;
2298
2299 out:
2300         perf_pmu_enable(event->pmu);
2301
2302         return ret;
2303 }
2304
2305 static int
2306 group_sched_in(struct perf_event *group_event,
2307                struct perf_cpu_context *cpuctx,
2308                struct perf_event_context *ctx)
2309 {
2310         struct perf_event *event, *partial_group = NULL;
2311         struct pmu *pmu = ctx->pmu;
2312
2313         if (group_event->state == PERF_EVENT_STATE_OFF)
2314                 return 0;
2315
2316         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2317
2318         if (event_sched_in(group_event, cpuctx, ctx)) {
2319                 pmu->cancel_txn(pmu);
2320                 perf_mux_hrtimer_restart(cpuctx);
2321                 return -EAGAIN;
2322         }
2323
2324         /*
2325          * Schedule in siblings as one group (if any):
2326          */
2327         for_each_sibling_event(event, group_event) {
2328                 if (event_sched_in(event, cpuctx, ctx)) {
2329                         partial_group = event;
2330                         goto group_error;
2331                 }
2332         }
2333
2334         if (!pmu->commit_txn(pmu))
2335                 return 0;
2336
2337 group_error:
2338         /*
2339          * Groups can be scheduled in as one unit only, so undo any
2340          * partial group before returning:
2341          * The events up to the failed event are scheduled out normally.
2342          */
2343         for_each_sibling_event(event, group_event) {
2344                 if (event == partial_group)
2345                         break;
2346
2347                 event_sched_out(event, cpuctx, ctx);
2348         }
2349         event_sched_out(group_event, cpuctx, ctx);
2350
2351         pmu->cancel_txn(pmu);
2352
2353         perf_mux_hrtimer_restart(cpuctx);
2354
2355         return -EAGAIN;
2356 }
2357
2358 /*
2359  * Work out whether we can put this event group on the CPU now.
2360  */
2361 static int group_can_go_on(struct perf_event *event,
2362                            struct perf_cpu_context *cpuctx,
2363                            int can_add_hw)
2364 {
2365         /*
2366          * Groups consisting entirely of software events can always go on.
2367          */
2368         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2369                 return 1;
2370         /*
2371          * If an exclusive group is already on, no other hardware
2372          * events can go on.
2373          */
2374         if (cpuctx->exclusive)
2375                 return 0;
2376         /*
2377          * If this group is exclusive and there are already
2378          * events on the CPU, it can't go on.
2379          */
2380         if (event->attr.exclusive && cpuctx->active_oncpu)
2381                 return 0;
2382         /*
2383          * Otherwise, try to add it if all previous groups were able
2384          * to go on.
2385          */
2386         return can_add_hw;
2387 }
2388
2389 static void add_event_to_ctx(struct perf_event *event,
2390                                struct perf_event_context *ctx)
2391 {
2392         list_add_event(event, ctx);
2393         perf_group_attach(event);
2394 }
2395
2396 static void ctx_sched_out(struct perf_event_context *ctx,
2397                           struct perf_cpu_context *cpuctx,
2398                           enum event_type_t event_type);
2399 static void
2400 ctx_sched_in(struct perf_event_context *ctx,
2401              struct perf_cpu_context *cpuctx,
2402              enum event_type_t event_type,
2403              struct task_struct *task);
2404
2405 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2406                                struct perf_event_context *ctx,
2407                                enum event_type_t event_type)
2408 {
2409         if (!cpuctx->task_ctx)
2410                 return;
2411
2412         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2413                 return;
2414
2415         ctx_sched_out(ctx, cpuctx, event_type);
2416 }
2417
2418 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2419                                 struct perf_event_context *ctx,
2420                                 struct task_struct *task)
2421 {
2422         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2423         if (ctx)
2424                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2425         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2426         if (ctx)
2427                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2428 }
2429
2430 /*
2431  * We want to maintain the following priority of scheduling:
2432  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2433  *  - task pinned (EVENT_PINNED)
2434  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2435  *  - task flexible (EVENT_FLEXIBLE).
2436  *
2437  * In order to avoid unscheduling and scheduling back in everything every
2438  * time an event is added, only do it for the groups of equal priority and
2439  * below.
2440  *
2441  * This can be called after a batch operation on task events, in which case
2442  * event_type is a bit mask of the types of events involved. For CPU events,
2443  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2444  */
2445 static void ctx_resched(struct perf_cpu_context *cpuctx,
2446                         struct perf_event_context *task_ctx,
2447                         enum event_type_t event_type)
2448 {
2449         enum event_type_t ctx_event_type;
2450         bool cpu_event = !!(event_type & EVENT_CPU);
2451
2452         /*
2453          * If pinned groups are involved, flexible groups also need to be
2454          * scheduled out.
2455          */
2456         if (event_type & EVENT_PINNED)
2457                 event_type |= EVENT_FLEXIBLE;
2458
2459         ctx_event_type = event_type & EVENT_ALL;
2460
2461         perf_pmu_disable(cpuctx->ctx.pmu);
2462         if (task_ctx)
2463                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2464
2465         /*
2466          * Decide which cpu ctx groups to schedule out based on the types
2467          * of events that caused rescheduling:
2468          *  - EVENT_CPU: schedule out corresponding groups;
2469          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2470          *  - otherwise, do nothing more.
2471          */
2472         if (cpu_event)
2473                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2474         else if (ctx_event_type & EVENT_PINNED)
2475                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2476
2477         perf_event_sched_in(cpuctx, task_ctx, current);
2478         perf_pmu_enable(cpuctx->ctx.pmu);
2479 }
2480
2481 void perf_pmu_resched(struct pmu *pmu)
2482 {
2483         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2484         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2485
2486         perf_ctx_lock(cpuctx, task_ctx);
2487         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2488         perf_ctx_unlock(cpuctx, task_ctx);
2489 }
2490
2491 /*
2492  * Cross CPU call to install and enable a performance event
2493  *
2494  * Very similar to remote_function() + event_function() but cannot assume that
2495  * things like ctx->is_active and cpuctx->task_ctx are set.
2496  */
2497 static int  __perf_install_in_context(void *info)
2498 {
2499         struct perf_event *event = info;
2500         struct perf_event_context *ctx = event->ctx;
2501         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2502         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2503         bool reprogram = true;
2504         int ret = 0;
2505
2506         raw_spin_lock(&cpuctx->ctx.lock);
2507         if (ctx->task) {
2508                 raw_spin_lock(&ctx->lock);
2509                 task_ctx = ctx;
2510
2511                 reprogram = (ctx->task == current);
2512
2513                 /*
2514                  * If the task is running, it must be running on this CPU,
2515                  * otherwise we cannot reprogram things.
2516                  *
2517                  * If its not running, we don't care, ctx->lock will
2518                  * serialize against it becoming runnable.
2519                  */
2520                 if (task_curr(ctx->task) && !reprogram) {
2521                         ret = -ESRCH;
2522                         goto unlock;
2523                 }
2524
2525                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2526         } else if (task_ctx) {
2527                 raw_spin_lock(&task_ctx->lock);
2528         }
2529
2530 #ifdef CONFIG_CGROUP_PERF
2531         if (is_cgroup_event(event)) {
2532                 /*
2533                  * If the current cgroup doesn't match the event's
2534                  * cgroup, we should not try to schedule it.
2535                  */
2536                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2537                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2538                                         event->cgrp->css.cgroup);
2539         }
2540 #endif
2541
2542         if (reprogram) {
2543                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2544                 add_event_to_ctx(event, ctx);
2545                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2546         } else {
2547                 add_event_to_ctx(event, ctx);
2548         }
2549
2550 unlock:
2551         perf_ctx_unlock(cpuctx, task_ctx);
2552
2553         return ret;
2554 }
2555
2556 static bool exclusive_event_installable(struct perf_event *event,
2557                                         struct perf_event_context *ctx);
2558
2559 /*
2560  * Attach a performance event to a context.
2561  *
2562  * Very similar to event_function_call, see comment there.
2563  */
2564 static void
2565 perf_install_in_context(struct perf_event_context *ctx,
2566                         struct perf_event *event,
2567                         int cpu)
2568 {
2569         struct task_struct *task = READ_ONCE(ctx->task);
2570
2571         lockdep_assert_held(&ctx->mutex);
2572
2573         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2574
2575         if (event->cpu != -1)
2576                 event->cpu = cpu;
2577
2578         /*
2579          * Ensures that if we can observe event->ctx, both the event and ctx
2580          * will be 'complete'. See perf_iterate_sb_cpu().
2581          */
2582         smp_store_release(&event->ctx, ctx);
2583
2584         if (!task) {
2585                 cpu_function_call(cpu, __perf_install_in_context, event);
2586                 return;
2587         }
2588
2589         /*
2590          * Should not happen, we validate the ctx is still alive before calling.
2591          */
2592         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2593                 return;
2594
2595         /*
2596          * Installing events is tricky because we cannot rely on ctx->is_active
2597          * to be set in case this is the nr_events 0 -> 1 transition.
2598          *
2599          * Instead we use task_curr(), which tells us if the task is running.
2600          * However, since we use task_curr() outside of rq::lock, we can race
2601          * against the actual state. This means the result can be wrong.
2602          *
2603          * If we get a false positive, we retry, this is harmless.
2604          *
2605          * If we get a false negative, things are complicated. If we are after
2606          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2607          * value must be correct. If we're before, it doesn't matter since
2608          * perf_event_context_sched_in() will program the counter.
2609          *
2610          * However, this hinges on the remote context switch having observed
2611          * our task->perf_event_ctxp[] store, such that it will in fact take
2612          * ctx::lock in perf_event_context_sched_in().
2613          *
2614          * We do this by task_function_call(), if the IPI fails to hit the task
2615          * we know any future context switch of task must see the
2616          * perf_event_ctpx[] store.
2617          */
2618
2619         /*
2620          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2621          * task_cpu() load, such that if the IPI then does not find the task
2622          * running, a future context switch of that task must observe the
2623          * store.
2624          */
2625         smp_mb();
2626 again:
2627         if (!task_function_call(task, __perf_install_in_context, event))
2628                 return;
2629
2630         raw_spin_lock_irq(&ctx->lock);
2631         task = ctx->task;
2632         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2633                 /*
2634                  * Cannot happen because we already checked above (which also
2635                  * cannot happen), and we hold ctx->mutex, which serializes us
2636                  * against perf_event_exit_task_context().
2637                  */
2638                 raw_spin_unlock_irq(&ctx->lock);
2639                 return;
2640         }
2641         /*
2642          * If the task is not running, ctx->lock will avoid it becoming so,
2643          * thus we can safely install the event.
2644          */
2645         if (task_curr(task)) {
2646                 raw_spin_unlock_irq(&ctx->lock);
2647                 goto again;
2648         }
2649         add_event_to_ctx(event, ctx);
2650         raw_spin_unlock_irq(&ctx->lock);
2651 }
2652
2653 /*
2654  * Cross CPU call to enable a performance event
2655  */
2656 static void __perf_event_enable(struct perf_event *event,
2657                                 struct perf_cpu_context *cpuctx,
2658                                 struct perf_event_context *ctx,
2659                                 void *info)
2660 {
2661         struct perf_event *leader = event->group_leader;
2662         struct perf_event_context *task_ctx;
2663
2664         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2665             event->state <= PERF_EVENT_STATE_ERROR)
2666                 return;
2667
2668         if (ctx->is_active)
2669                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2670
2671         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2672
2673         if (!ctx->is_active)
2674                 return;
2675
2676         if (!event_filter_match(event)) {
2677                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2678                 return;
2679         }
2680
2681         /*
2682          * If the event is in a group and isn't the group leader,
2683          * then don't put it on unless the group is on.
2684          */
2685         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2686                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2687                 return;
2688         }
2689
2690         task_ctx = cpuctx->task_ctx;
2691         if (ctx->task)
2692                 WARN_ON_ONCE(task_ctx != ctx);
2693
2694         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2695 }
2696
2697 /*
2698  * Enable an event.
2699  *
2700  * If event->ctx is a cloned context, callers must make sure that
2701  * every task struct that event->ctx->task could possibly point to
2702  * remains valid.  This condition is satisfied when called through
2703  * perf_event_for_each_child or perf_event_for_each as described
2704  * for perf_event_disable.
2705  */
2706 static void _perf_event_enable(struct perf_event *event)
2707 {
2708         struct perf_event_context *ctx = event->ctx;
2709
2710         raw_spin_lock_irq(&ctx->lock);
2711         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2712             event->state <  PERF_EVENT_STATE_ERROR) {
2713                 raw_spin_unlock_irq(&ctx->lock);
2714                 return;
2715         }
2716
2717         /*
2718          * If the event is in error state, clear that first.
2719          *
2720          * That way, if we see the event in error state below, we know that it
2721          * has gone back into error state, as distinct from the task having
2722          * been scheduled away before the cross-call arrived.
2723          */
2724         if (event->state == PERF_EVENT_STATE_ERROR)
2725                 event->state = PERF_EVENT_STATE_OFF;
2726         raw_spin_unlock_irq(&ctx->lock);
2727
2728         event_function_call(event, __perf_event_enable, NULL);
2729 }
2730
2731 /*
2732  * See perf_event_disable();
2733  */
2734 void perf_event_enable(struct perf_event *event)
2735 {
2736         struct perf_event_context *ctx;
2737
2738         ctx = perf_event_ctx_lock(event);
2739         _perf_event_enable(event);
2740         perf_event_ctx_unlock(event, ctx);
2741 }
2742 EXPORT_SYMBOL_GPL(perf_event_enable);
2743
2744 struct stop_event_data {
2745         struct perf_event       *event;
2746         unsigned int            restart;
2747 };
2748
2749 static int __perf_event_stop(void *info)
2750 {
2751         struct stop_event_data *sd = info;
2752         struct perf_event *event = sd->event;
2753
2754         /* if it's already INACTIVE, do nothing */
2755         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2756                 return 0;
2757
2758         /* matches smp_wmb() in event_sched_in() */
2759         smp_rmb();
2760
2761         /*
2762          * There is a window with interrupts enabled before we get here,
2763          * so we need to check again lest we try to stop another CPU's event.
2764          */
2765         if (READ_ONCE(event->oncpu) != smp_processor_id())
2766                 return -EAGAIN;
2767
2768         event->pmu->stop(event, PERF_EF_UPDATE);
2769
2770         /*
2771          * May race with the actual stop (through perf_pmu_output_stop()),
2772          * but it is only used for events with AUX ring buffer, and such
2773          * events will refuse to restart because of rb::aux_mmap_count==0,
2774          * see comments in perf_aux_output_begin().
2775          *
2776          * Since this is happening on an event-local CPU, no trace is lost
2777          * while restarting.
2778          */
2779         if (sd->restart)
2780                 event->pmu->start(event, 0);
2781
2782         return 0;
2783 }
2784
2785 static int perf_event_stop(struct perf_event *event, int restart)
2786 {
2787         struct stop_event_data sd = {
2788                 .event          = event,
2789                 .restart        = restart,
2790         };
2791         int ret = 0;
2792
2793         do {
2794                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2795                         return 0;
2796
2797                 /* matches smp_wmb() in event_sched_in() */
2798                 smp_rmb();
2799
2800                 /*
2801                  * We only want to restart ACTIVE events, so if the event goes
2802                  * inactive here (event->oncpu==-1), there's nothing more to do;
2803                  * fall through with ret==-ENXIO.
2804                  */
2805                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2806                                         __perf_event_stop, &sd);
2807         } while (ret == -EAGAIN);
2808
2809         return ret;
2810 }
2811
2812 /*
2813  * In order to contain the amount of racy and tricky in the address filter
2814  * configuration management, it is a two part process:
2815  *
2816  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2817  *      we update the addresses of corresponding vmas in
2818  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
2819  * (p2) when an event is scheduled in (pmu::add), it calls
2820  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2821  *      if the generation has changed since the previous call.
2822  *
2823  * If (p1) happens while the event is active, we restart it to force (p2).
2824  *
2825  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2826  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2827  *     ioctl;
2828  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2829  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2830  *     for reading;
2831  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2832  *     of exec.
2833  */
2834 void perf_event_addr_filters_sync(struct perf_event *event)
2835 {
2836         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2837
2838         if (!has_addr_filter(event))
2839                 return;
2840
2841         raw_spin_lock(&ifh->lock);
2842         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2843                 event->pmu->addr_filters_sync(event);
2844                 event->hw.addr_filters_gen = event->addr_filters_gen;
2845         }
2846         raw_spin_unlock(&ifh->lock);
2847 }
2848 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2849
2850 static int _perf_event_refresh(struct perf_event *event, int refresh)
2851 {
2852         /*
2853          * not supported on inherited events
2854          */
2855         if (event->attr.inherit || !is_sampling_event(event))
2856                 return -EINVAL;
2857
2858         atomic_add(refresh, &event->event_limit);
2859         _perf_event_enable(event);
2860
2861         return 0;
2862 }
2863
2864 /*
2865  * See perf_event_disable()
2866  */
2867 int perf_event_refresh(struct perf_event *event, int refresh)
2868 {
2869         struct perf_event_context *ctx;
2870         int ret;
2871
2872         ctx = perf_event_ctx_lock(event);
2873         ret = _perf_event_refresh(event, refresh);
2874         perf_event_ctx_unlock(event, ctx);
2875
2876         return ret;
2877 }
2878 EXPORT_SYMBOL_GPL(perf_event_refresh);
2879
2880 static int perf_event_modify_breakpoint(struct perf_event *bp,
2881                                          struct perf_event_attr *attr)
2882 {
2883         int err;
2884
2885         _perf_event_disable(bp);
2886
2887         err = modify_user_hw_breakpoint_check(bp, attr, true);
2888
2889         if (!bp->attr.disabled)
2890                 _perf_event_enable(bp);
2891
2892         return err;
2893 }
2894
2895 static int perf_event_modify_attr(struct perf_event *event,
2896                                   struct perf_event_attr *attr)
2897 {
2898         if (event->attr.type != attr->type)
2899                 return -EINVAL;
2900
2901         switch (event->attr.type) {
2902         case PERF_TYPE_BREAKPOINT:
2903                 return perf_event_modify_breakpoint(event, attr);
2904         default:
2905                 /* Place holder for future additions. */
2906                 return -EOPNOTSUPP;
2907         }
2908 }
2909
2910 static void ctx_sched_out(struct perf_event_context *ctx,
2911                           struct perf_cpu_context *cpuctx,
2912                           enum event_type_t event_type)
2913 {
2914         struct perf_event *event, *tmp;
2915         int is_active = ctx->is_active;
2916
2917         lockdep_assert_held(&ctx->lock);
2918
2919         if (likely(!ctx->nr_events)) {
2920                 /*
2921                  * See __perf_remove_from_context().
2922                  */
2923                 WARN_ON_ONCE(ctx->is_active);
2924                 if (ctx->task)
2925                         WARN_ON_ONCE(cpuctx->task_ctx);
2926                 return;
2927         }
2928
2929         ctx->is_active &= ~event_type;
2930         if (!(ctx->is_active & EVENT_ALL))
2931                 ctx->is_active = 0;
2932
2933         if (ctx->task) {
2934                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2935                 if (!ctx->is_active)
2936                         cpuctx->task_ctx = NULL;
2937         }
2938
2939         /*
2940          * Always update time if it was set; not only when it changes.
2941          * Otherwise we can 'forget' to update time for any but the last
2942          * context we sched out. For example:
2943          *
2944          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2945          *   ctx_sched_out(.event_type = EVENT_PINNED)
2946          *
2947          * would only update time for the pinned events.
2948          */
2949         if (is_active & EVENT_TIME) {
2950                 /* update (and stop) ctx time */
2951                 update_context_time(ctx);
2952                 update_cgrp_time_from_cpuctx(cpuctx);
2953         }
2954
2955         is_active ^= ctx->is_active; /* changed bits */
2956
2957         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2958                 return;
2959
2960         /*
2961          * If we had been multiplexing, no rotations are necessary, now no events
2962          * are active.
2963          */
2964         ctx->rotate_necessary = 0;
2965
2966         perf_pmu_disable(ctx->pmu);
2967         if (is_active & EVENT_PINNED) {
2968                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2969                         group_sched_out(event, cpuctx, ctx);
2970         }
2971
2972         if (is_active & EVENT_FLEXIBLE) {
2973                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2974                         group_sched_out(event, cpuctx, ctx);
2975         }
2976         perf_pmu_enable(ctx->pmu);
2977 }
2978
2979 /*
2980  * Test whether two contexts are equivalent, i.e. whether they have both been
2981  * cloned from the same version of the same context.
2982  *
2983  * Equivalence is measured using a generation number in the context that is
2984  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2985  * and list_del_event().
2986  */
2987 static int context_equiv(struct perf_event_context *ctx1,
2988                          struct perf_event_context *ctx2)
2989 {
2990         lockdep_assert_held(&ctx1->lock);
2991         lockdep_assert_held(&ctx2->lock);
2992
2993         /* Pinning disables the swap optimization */
2994         if (ctx1->pin_count || ctx2->pin_count)
2995                 return 0;
2996
2997         /* If ctx1 is the parent of ctx2 */
2998         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2999                 return 1;
3000
3001         /* If ctx2 is the parent of ctx1 */
3002         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3003                 return 1;
3004
3005         /*
3006          * If ctx1 and ctx2 have the same parent; we flatten the parent
3007          * hierarchy, see perf_event_init_context().
3008          */
3009         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3010                         ctx1->parent_gen == ctx2->parent_gen)
3011                 return 1;
3012
3013         /* Unmatched */
3014         return 0;
3015 }
3016
3017 static void __perf_event_sync_stat(struct perf_event *event,
3018                                      struct perf_event *next_event)
3019 {
3020         u64 value;
3021
3022         if (!event->attr.inherit_stat)
3023                 return;
3024
3025         /*
3026          * Update the event value, we cannot use perf_event_read()
3027          * because we're in the middle of a context switch and have IRQs
3028          * disabled, which upsets smp_call_function_single(), however
3029          * we know the event must be on the current CPU, therefore we
3030          * don't need to use it.
3031          */
3032         if (event->state == PERF_EVENT_STATE_ACTIVE)
3033                 event->pmu->read(event);
3034
3035         perf_event_update_time(event);
3036
3037         /*
3038          * In order to keep per-task stats reliable we need to flip the event
3039          * values when we flip the contexts.
3040          */
3041         value = local64_read(&next_event->count);
3042         value = local64_xchg(&event->count, value);
3043         local64_set(&next_event->count, value);
3044
3045         swap(event->total_time_enabled, next_event->total_time_enabled);
3046         swap(event->total_time_running, next_event->total_time_running);
3047
3048         /*
3049          * Since we swizzled the values, update the user visible data too.
3050          */
3051         perf_event_update_userpage(event);
3052         perf_event_update_userpage(next_event);
3053 }
3054
3055 static void perf_event_sync_stat(struct perf_event_context *ctx,
3056                                    struct perf_event_context *next_ctx)
3057 {
3058         struct perf_event *event, *next_event;
3059
3060         if (!ctx->nr_stat)
3061                 return;
3062
3063         update_context_time(ctx);
3064
3065         event = list_first_entry(&ctx->event_list,
3066                                    struct perf_event, event_entry);
3067
3068         next_event = list_first_entry(&next_ctx->event_list,
3069                                         struct perf_event, event_entry);
3070
3071         while (&event->event_entry != &ctx->event_list &&
3072                &next_event->event_entry != &next_ctx->event_list) {
3073
3074                 __perf_event_sync_stat(event, next_event);
3075
3076                 event = list_next_entry(event, event_entry);
3077                 next_event = list_next_entry(next_event, event_entry);
3078         }
3079 }
3080
3081 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3082                                          struct task_struct *next)
3083 {
3084         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3085         struct perf_event_context *next_ctx;
3086         struct perf_event_context *parent, *next_parent;
3087         struct perf_cpu_context *cpuctx;
3088         int do_switch = 1;
3089
3090         if (likely(!ctx))
3091                 return;
3092
3093         cpuctx = __get_cpu_context(ctx);
3094         if (!cpuctx->task_ctx)
3095                 return;
3096
3097         rcu_read_lock();
3098         next_ctx = next->perf_event_ctxp[ctxn];
3099         if (!next_ctx)
3100                 goto unlock;
3101
3102         parent = rcu_dereference(ctx->parent_ctx);
3103         next_parent = rcu_dereference(next_ctx->parent_ctx);
3104
3105         /* If neither context have a parent context; they cannot be clones. */
3106         if (!parent && !next_parent)
3107                 goto unlock;
3108
3109         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3110                 /*
3111                  * Looks like the two contexts are clones, so we might be
3112                  * able to optimize the context switch.  We lock both
3113                  * contexts and check that they are clones under the
3114                  * lock (including re-checking that neither has been
3115                  * uncloned in the meantime).  It doesn't matter which
3116                  * order we take the locks because no other cpu could
3117                  * be trying to lock both of these tasks.
3118                  */
3119                 raw_spin_lock(&ctx->lock);
3120                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3121                 if (context_equiv(ctx, next_ctx)) {
3122                         WRITE_ONCE(ctx->task, next);
3123                         WRITE_ONCE(next_ctx->task, task);
3124
3125                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3126
3127                         /*
3128                          * RCU_INIT_POINTER here is safe because we've not
3129                          * modified the ctx and the above modification of
3130                          * ctx->task and ctx->task_ctx_data are immaterial
3131                          * since those values are always verified under
3132                          * ctx->lock which we're now holding.
3133                          */
3134                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3135                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3136
3137                         do_switch = 0;
3138
3139                         perf_event_sync_stat(ctx, next_ctx);
3140                 }
3141                 raw_spin_unlock(&next_ctx->lock);
3142                 raw_spin_unlock(&ctx->lock);
3143         }
3144 unlock:
3145         rcu_read_unlock();
3146
3147         if (do_switch) {
3148                 raw_spin_lock(&ctx->lock);
3149                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3150                 raw_spin_unlock(&ctx->lock);
3151         }
3152 }
3153
3154 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3155
3156 void perf_sched_cb_dec(struct pmu *pmu)
3157 {
3158         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3159
3160         this_cpu_dec(perf_sched_cb_usages);
3161
3162         if (!--cpuctx->sched_cb_usage)
3163                 list_del(&cpuctx->sched_cb_entry);
3164 }
3165
3166
3167 void perf_sched_cb_inc(struct pmu *pmu)
3168 {
3169         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3170
3171         if (!cpuctx->sched_cb_usage++)
3172                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3173
3174         this_cpu_inc(perf_sched_cb_usages);
3175 }
3176
3177 /*
3178  * This function provides the context switch callback to the lower code
3179  * layer. It is invoked ONLY when the context switch callback is enabled.
3180  *
3181  * This callback is relevant even to per-cpu events; for example multi event
3182  * PEBS requires this to provide PID/TID information. This requires we flush
3183  * all queued PEBS records before we context switch to a new task.
3184  */
3185 static void perf_pmu_sched_task(struct task_struct *prev,
3186                                 struct task_struct *next,
3187                                 bool sched_in)
3188 {
3189         struct perf_cpu_context *cpuctx;
3190         struct pmu *pmu;
3191
3192         if (prev == next)
3193                 return;
3194
3195         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3196                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3197
3198                 if (WARN_ON_ONCE(!pmu->sched_task))
3199                         continue;
3200
3201                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3202                 perf_pmu_disable(pmu);
3203
3204                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3205
3206                 perf_pmu_enable(pmu);
3207                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3208         }
3209 }
3210
3211 static void perf_event_switch(struct task_struct *task,
3212                               struct task_struct *next_prev, bool sched_in);
3213
3214 #define for_each_task_context_nr(ctxn)                                  \
3215         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3216
3217 /*
3218  * Called from scheduler to remove the events of the current task,
3219  * with interrupts disabled.
3220  *
3221  * We stop each event and update the event value in event->count.
3222  *
3223  * This does not protect us against NMI, but disable()
3224  * sets the disabled bit in the control field of event _before_
3225  * accessing the event control register. If a NMI hits, then it will
3226  * not restart the event.
3227  */
3228 void __perf_event_task_sched_out(struct task_struct *task,
3229                                  struct task_struct *next)
3230 {
3231         int ctxn;
3232
3233         if (__this_cpu_read(perf_sched_cb_usages))
3234                 perf_pmu_sched_task(task, next, false);
3235
3236         if (atomic_read(&nr_switch_events))
3237                 perf_event_switch(task, next, false);
3238
3239         for_each_task_context_nr(ctxn)
3240                 perf_event_context_sched_out(task, ctxn, next);
3241
3242         /*
3243          * if cgroup events exist on this CPU, then we need
3244          * to check if we have to switch out PMU state.
3245          * cgroup event are system-wide mode only
3246          */
3247         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3248                 perf_cgroup_sched_out(task, next);
3249 }
3250
3251 /*
3252  * Called with IRQs disabled
3253  */
3254 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3255                               enum event_type_t event_type)
3256 {
3257         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3258 }
3259
3260 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3261                               int (*func)(struct perf_event *, void *), void *data)
3262 {
3263         struct perf_event **evt, *evt1, *evt2;
3264         int ret;
3265
3266         evt1 = perf_event_groups_first(groups, -1);
3267         evt2 = perf_event_groups_first(groups, cpu);
3268
3269         while (evt1 || evt2) {
3270                 if (evt1 && evt2) {
3271                         if (evt1->group_index < evt2->group_index)
3272                                 evt = &evt1;
3273                         else
3274                                 evt = &evt2;
3275                 } else if (evt1) {
3276                         evt = &evt1;
3277                 } else {
3278                         evt = &evt2;
3279                 }
3280
3281                 ret = func(*evt, data);
3282                 if (ret)
3283                         return ret;
3284
3285                 *evt = perf_event_groups_next(*evt);
3286         }
3287
3288         return 0;
3289 }
3290
3291 struct sched_in_data {
3292         struct perf_event_context *ctx;
3293         struct perf_cpu_context *cpuctx;
3294         int can_add_hw;
3295 };
3296
3297 static int pinned_sched_in(struct perf_event *event, void *data)
3298 {
3299         struct sched_in_data *sid = data;
3300
3301         if (event->state <= PERF_EVENT_STATE_OFF)
3302                 return 0;
3303
3304         if (!event_filter_match(event))
3305                 return 0;
3306
3307         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3308                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3309                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3310         }
3311
3312         /*
3313          * If this pinned group hasn't been scheduled,
3314          * put it in error state.
3315          */
3316         if (event->state == PERF_EVENT_STATE_INACTIVE)
3317                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3318
3319         return 0;
3320 }
3321
3322 static int flexible_sched_in(struct perf_event *event, void *data)
3323 {
3324         struct sched_in_data *sid = data;
3325
3326         if (event->state <= PERF_EVENT_STATE_OFF)
3327                 return 0;
3328
3329         if (!event_filter_match(event))
3330                 return 0;
3331
3332         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3333                 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3334                 if (ret) {
3335                         sid->can_add_hw = 0;
3336                         sid->ctx->rotate_necessary = 1;
3337                         return 0;
3338                 }
3339                 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3340         }
3341
3342         return 0;
3343 }
3344
3345 static void
3346 ctx_pinned_sched_in(struct perf_event_context *ctx,
3347                     struct perf_cpu_context *cpuctx)
3348 {
3349         struct sched_in_data sid = {
3350                 .ctx = ctx,
3351                 .cpuctx = cpuctx,
3352                 .can_add_hw = 1,
3353         };
3354
3355         visit_groups_merge(&ctx->pinned_groups,
3356                            smp_processor_id(),
3357                            pinned_sched_in, &sid);
3358 }
3359
3360 static void
3361 ctx_flexible_sched_in(struct perf_event_context *ctx,
3362                       struct perf_cpu_context *cpuctx)
3363 {
3364         struct sched_in_data sid = {
3365                 .ctx = ctx,
3366                 .cpuctx = cpuctx,
3367                 .can_add_hw = 1,
3368         };
3369
3370         visit_groups_merge(&ctx->flexible_groups,
3371                            smp_processor_id(),
3372                            flexible_sched_in, &sid);
3373 }
3374
3375 static void
3376 ctx_sched_in(struct perf_event_context *ctx,
3377              struct perf_cpu_context *cpuctx,
3378              enum event_type_t event_type,
3379              struct task_struct *task)
3380 {
3381         int is_active = ctx->is_active;
3382         u64 now;
3383
3384         lockdep_assert_held(&ctx->lock);
3385
3386         if (likely(!ctx->nr_events))
3387                 return;
3388
3389         ctx->is_active |= (event_type | EVENT_TIME);
3390         if (ctx->task) {
3391                 if (!is_active)
3392                         cpuctx->task_ctx = ctx;
3393                 else
3394                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3395         }
3396
3397         is_active ^= ctx->is_active; /* changed bits */
3398
3399         if (is_active & EVENT_TIME) {
3400                 /* start ctx time */
3401                 now = perf_clock();
3402                 ctx->timestamp = now;
3403                 perf_cgroup_set_timestamp(task, ctx);
3404         }
3405
3406         /*
3407          * First go through the list and put on any pinned groups
3408          * in order to give them the best chance of going on.
3409          */
3410         if (is_active & EVENT_PINNED)
3411                 ctx_pinned_sched_in(ctx, cpuctx);
3412
3413         /* Then walk through the lower prio flexible groups */
3414         if (is_active & EVENT_FLEXIBLE)
3415                 ctx_flexible_sched_in(ctx, cpuctx);
3416 }
3417
3418 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3419                              enum event_type_t event_type,
3420                              struct task_struct *task)
3421 {
3422         struct perf_event_context *ctx = &cpuctx->ctx;
3423
3424         ctx_sched_in(ctx, cpuctx, event_type, task);
3425 }
3426
3427 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3428                                         struct task_struct *task)
3429 {
3430         struct perf_cpu_context *cpuctx;
3431
3432         cpuctx = __get_cpu_context(ctx);
3433         if (cpuctx->task_ctx == ctx)
3434                 return;
3435
3436         perf_ctx_lock(cpuctx, ctx);
3437         /*
3438          * We must check ctx->nr_events while holding ctx->lock, such
3439          * that we serialize against perf_install_in_context().
3440          */
3441         if (!ctx->nr_events)
3442                 goto unlock;
3443
3444         perf_pmu_disable(ctx->pmu);
3445         /*
3446          * We want to keep the following priority order:
3447          * cpu pinned (that don't need to move), task pinned,
3448          * cpu flexible, task flexible.
3449          *
3450          * However, if task's ctx is not carrying any pinned
3451          * events, no need to flip the cpuctx's events around.
3452          */
3453         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3454                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3455         perf_event_sched_in(cpuctx, ctx, task);
3456         perf_pmu_enable(ctx->pmu);
3457
3458 unlock:
3459         perf_ctx_unlock(cpuctx, ctx);
3460 }
3461
3462 /*
3463  * Called from scheduler to add the events of the current task
3464  * with interrupts disabled.
3465  *
3466  * We restore the event value and then enable it.
3467  *
3468  * This does not protect us against NMI, but enable()
3469  * sets the enabled bit in the control field of event _before_
3470  * accessing the event control register. If a NMI hits, then it will
3471  * keep the event running.
3472  */
3473 void __perf_event_task_sched_in(struct task_struct *prev,
3474                                 struct task_struct *task)
3475 {
3476         struct perf_event_context *ctx;
3477         int ctxn;
3478
3479         /*
3480          * If cgroup events exist on this CPU, then we need to check if we have
3481          * to switch in PMU state; cgroup event are system-wide mode only.
3482          *
3483          * Since cgroup events are CPU events, we must schedule these in before
3484          * we schedule in the task events.
3485          */
3486         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3487                 perf_cgroup_sched_in(prev, task);
3488
3489         for_each_task_context_nr(ctxn) {
3490                 ctx = task->perf_event_ctxp[ctxn];
3491                 if (likely(!ctx))
3492                         continue;
3493
3494                 perf_event_context_sched_in(ctx, task);
3495         }
3496
3497         if (atomic_read(&nr_switch_events))
3498                 perf_event_switch(task, prev, true);
3499
3500         if (__this_cpu_read(perf_sched_cb_usages))
3501                 perf_pmu_sched_task(prev, task, true);
3502 }
3503
3504 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3505 {
3506         u64 frequency = event->attr.sample_freq;
3507         u64 sec = NSEC_PER_SEC;
3508         u64 divisor, dividend;
3509
3510         int count_fls, nsec_fls, frequency_fls, sec_fls;
3511
3512         count_fls = fls64(count);
3513         nsec_fls = fls64(nsec);
3514         frequency_fls = fls64(frequency);
3515         sec_fls = 30;
3516
3517         /*
3518          * We got @count in @nsec, with a target of sample_freq HZ
3519          * the target period becomes:
3520          *
3521          *             @count * 10^9
3522          * period = -------------------
3523          *          @nsec * sample_freq
3524          *
3525          */
3526
3527         /*
3528          * Reduce accuracy by one bit such that @a and @b converge
3529          * to a similar magnitude.
3530          */
3531 #define REDUCE_FLS(a, b)                \
3532 do {                                    \
3533         if (a##_fls > b##_fls) {        \
3534                 a >>= 1;                \
3535                 a##_fls--;              \
3536         } else {                        \
3537                 b >>= 1;                \
3538                 b##_fls--;              \
3539         }                               \
3540 } while (0)
3541
3542         /*
3543          * Reduce accuracy until either term fits in a u64, then proceed with
3544          * the other, so that finally we can do a u64/u64 division.
3545          */
3546         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3547                 REDUCE_FLS(nsec, frequency);
3548                 REDUCE_FLS(sec, count);
3549         }
3550
3551         if (count_fls + sec_fls > 64) {
3552                 divisor = nsec * frequency;
3553
3554                 while (count_fls + sec_fls > 64) {
3555                         REDUCE_FLS(count, sec);
3556                         divisor >>= 1;
3557                 }
3558
3559                 dividend = count * sec;
3560         } else {
3561                 dividend = count * sec;
3562
3563                 while (nsec_fls + frequency_fls > 64) {
3564                         REDUCE_FLS(nsec, frequency);
3565                         dividend >>= 1;
3566                 }
3567
3568                 divisor = nsec * frequency;
3569         }
3570
3571         if (!divisor)
3572                 return dividend;
3573
3574         return div64_u64(dividend, divisor);
3575 }
3576
3577 static DEFINE_PER_CPU(int, perf_throttled_count);
3578 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3579
3580 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3581 {
3582         struct hw_perf_event *hwc = &event->hw;
3583         s64 period, sample_period;
3584         s64 delta;
3585
3586         period = perf_calculate_period(event, nsec, count);
3587
3588         delta = (s64)(period - hwc->sample_period);
3589         delta = (delta + 7) / 8; /* low pass filter */
3590
3591         sample_period = hwc->sample_period + delta;
3592
3593         if (!sample_period)
3594                 sample_period = 1;
3595
3596         hwc->sample_period = sample_period;
3597
3598         if (local64_read(&hwc->period_left) > 8*sample_period) {
3599                 if (disable)
3600                         event->pmu->stop(event, PERF_EF_UPDATE);
3601
3602                 local64_set(&hwc->period_left, 0);
3603
3604                 if (disable)
3605                         event->pmu->start(event, PERF_EF_RELOAD);
3606         }
3607 }
3608
3609 /*
3610  * combine freq adjustment with unthrottling to avoid two passes over the
3611  * events. At the same time, make sure, having freq events does not change
3612  * the rate of unthrottling as that would introduce bias.
3613  */
3614 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3615                                            int needs_unthr)
3616 {
3617         struct perf_event *event;
3618         struct hw_perf_event *hwc;
3619         u64 now, period = TICK_NSEC;
3620         s64 delta;
3621
3622         /*
3623          * only need to iterate over all events iff:
3624          * - context have events in frequency mode (needs freq adjust)
3625          * - there are events to unthrottle on this cpu
3626          */
3627         if (!(ctx->nr_freq || needs_unthr))
3628                 return;
3629
3630         raw_spin_lock(&ctx->lock);
3631         perf_pmu_disable(ctx->pmu);
3632
3633         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3634                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3635                         continue;
3636
3637                 if (!event_filter_match(event))
3638                         continue;
3639
3640                 perf_pmu_disable(event->pmu);
3641
3642                 hwc = &event->hw;
3643
3644                 if (hwc->interrupts == MAX_INTERRUPTS) {
3645                         hwc->interrupts = 0;
3646                         perf_log_throttle(event, 1);
3647                         event->pmu->start(event, 0);
3648                 }
3649
3650                 if (!event->attr.freq || !event->attr.sample_freq)
3651                         goto next;
3652
3653                 /*
3654                  * stop the event and update event->count
3655                  */
3656                 event->pmu->stop(event, PERF_EF_UPDATE);
3657
3658                 now = local64_read(&event->count);
3659                 delta = now - hwc->freq_count_stamp;
3660                 hwc->freq_count_stamp = now;
3661
3662                 /*
3663                  * restart the event
3664                  * reload only if value has changed
3665                  * we have stopped the event so tell that
3666                  * to perf_adjust_period() to avoid stopping it
3667                  * twice.
3668                  */
3669                 if (delta > 0)
3670                         perf_adjust_period(event, period, delta, false);
3671
3672                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3673         next:
3674                 perf_pmu_enable(event->pmu);
3675         }
3676
3677         perf_pmu_enable(ctx->pmu);
3678         raw_spin_unlock(&ctx->lock);
3679 }
3680
3681 /*
3682  * Move @event to the tail of the @ctx's elegible events.
3683  */
3684 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3685 {
3686         /*
3687          * Rotate the first entry last of non-pinned groups. Rotation might be
3688          * disabled by the inheritance code.
3689          */
3690         if (ctx->rotate_disable)
3691                 return;
3692
3693         perf_event_groups_delete(&ctx->flexible_groups, event);
3694         perf_event_groups_insert(&ctx->flexible_groups, event);
3695 }
3696
3697 static inline struct perf_event *
3698 ctx_first_active(struct perf_event_context *ctx)
3699 {
3700         return list_first_entry_or_null(&ctx->flexible_active,
3701                                         struct perf_event, active_list);
3702 }
3703
3704 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3705 {
3706         struct perf_event *cpu_event = NULL, *task_event = NULL;
3707         struct perf_event_context *task_ctx = NULL;
3708         int cpu_rotate, task_rotate;
3709
3710         /*
3711          * Since we run this from IRQ context, nobody can install new
3712          * events, thus the event count values are stable.
3713          */
3714
3715         cpu_rotate = cpuctx->ctx.rotate_necessary;
3716         task_ctx = cpuctx->task_ctx;
3717         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3718
3719         if (!(cpu_rotate || task_rotate))
3720                 return false;
3721
3722         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3723         perf_pmu_disable(cpuctx->ctx.pmu);
3724
3725         if (task_rotate)
3726                 task_event = ctx_first_active(task_ctx);
3727         if (cpu_rotate)
3728                 cpu_event = ctx_first_active(&cpuctx->ctx);
3729
3730         /*
3731          * As per the order given at ctx_resched() first 'pop' task flexible
3732          * and then, if needed CPU flexible.
3733          */
3734         if (task_event || (task_ctx && cpu_event))
3735                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3736         if (cpu_event)
3737                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3738
3739         if (task_event)
3740                 rotate_ctx(task_ctx, task_event);
3741         if (cpu_event)
3742                 rotate_ctx(&cpuctx->ctx, cpu_event);
3743
3744         perf_event_sched_in(cpuctx, task_ctx, current);
3745
3746         perf_pmu_enable(cpuctx->ctx.pmu);
3747         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3748
3749         return true;
3750 }
3751
3752 void perf_event_task_tick(void)
3753 {
3754         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3755         struct perf_event_context *ctx, *tmp;
3756         int throttled;
3757
3758         lockdep_assert_irqs_disabled();
3759
3760         __this_cpu_inc(perf_throttled_seq);
3761         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3762         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3763
3764         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3765                 perf_adjust_freq_unthr_context(ctx, throttled);
3766 }
3767
3768 static int event_enable_on_exec(struct perf_event *event,
3769                                 struct perf_event_context *ctx)
3770 {
3771         if (!event->attr.enable_on_exec)
3772                 return 0;
3773
3774         event->attr.enable_on_exec = 0;
3775         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3776                 return 0;
3777
3778         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3779
3780         return 1;
3781 }
3782
3783 /*
3784  * Enable all of a task's events that have been marked enable-on-exec.
3785  * This expects task == current.
3786  */
3787 static void perf_event_enable_on_exec(int ctxn)
3788 {
3789         struct perf_event_context *ctx, *clone_ctx = NULL;
3790         enum event_type_t event_type = 0;
3791         struct perf_cpu_context *cpuctx;
3792         struct perf_event *event;
3793         unsigned long flags;
3794         int enabled = 0;
3795
3796         local_irq_save(flags);
3797         ctx = current->perf_event_ctxp[ctxn];
3798         if (!ctx || !ctx->nr_events)
3799                 goto out;
3800
3801         cpuctx = __get_cpu_context(ctx);
3802         perf_ctx_lock(cpuctx, ctx);
3803         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3804         list_for_each_entry(event, &ctx->event_list, event_entry) {
3805                 enabled |= event_enable_on_exec(event, ctx);
3806                 event_type |= get_event_type(event);
3807         }
3808
3809         /*
3810          * Unclone and reschedule this context if we enabled any event.
3811          */
3812         if (enabled) {
3813                 clone_ctx = unclone_ctx(ctx);
3814                 ctx_resched(cpuctx, ctx, event_type);
3815         } else {
3816                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3817         }
3818         perf_ctx_unlock(cpuctx, ctx);
3819
3820 out:
3821         local_irq_restore(flags);
3822
3823         if (clone_ctx)
3824                 put_ctx(clone_ctx);
3825 }
3826
3827 struct perf_read_data {
3828         struct perf_event *event;
3829         bool group;
3830         int ret;
3831 };
3832
3833 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3834 {
3835         u16 local_pkg, event_pkg;
3836
3837         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3838                 int local_cpu = smp_processor_id();
3839
3840                 event_pkg = topology_physical_package_id(event_cpu);
3841                 local_pkg = topology_physical_package_id(local_cpu);
3842
3843                 if (event_pkg == local_pkg)
3844                         return local_cpu;
3845         }
3846
3847         return event_cpu;
3848 }
3849
3850 /*
3851  * Cross CPU call to read the hardware event
3852  */
3853 static void __perf_event_read(void *info)
3854 {
3855         struct perf_read_data *data = info;
3856         struct perf_event *sub, *event = data->event;
3857         struct perf_event_context *ctx = event->ctx;
3858         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3859         struct pmu *pmu = event->pmu;
3860
3861         /*
3862          * If this is a task context, we need to check whether it is
3863          * the current task context of this cpu.  If not it has been
3864          * scheduled out before the smp call arrived.  In that case
3865          * event->count would have been updated to a recent sample
3866          * when the event was scheduled out.
3867          */
3868         if (ctx->task && cpuctx->task_ctx != ctx)
3869                 return;
3870
3871         raw_spin_lock(&ctx->lock);
3872         if (ctx->is_active & EVENT_TIME) {
3873                 update_context_time(ctx);
3874                 update_cgrp_time_from_event(event);
3875         }
3876
3877         perf_event_update_time(event);
3878         if (data->group)
3879                 perf_event_update_sibling_time(event);
3880
3881         if (event->state != PERF_EVENT_STATE_ACTIVE)
3882                 goto unlock;
3883
3884         if (!data->group) {
3885                 pmu->read(event);
3886                 data->ret = 0;
3887                 goto unlock;
3888         }
3889
3890         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3891
3892         pmu->read(event);
3893
3894         for_each_sibling_event(sub, event) {
3895                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3896                         /*
3897                          * Use sibling's PMU rather than @event's since
3898                          * sibling could be on different (eg: software) PMU.
3899                          */
3900                         sub->pmu->read(sub);
3901                 }
3902         }
3903
3904         data->ret = pmu->commit_txn(pmu);
3905
3906 unlock:
3907         raw_spin_unlock(&ctx->lock);
3908 }
3909
3910 static inline u64 perf_event_count(struct perf_event *event)
3911 {
3912         return local64_read(&event->count) + atomic64_read(&event->child_count);
3913 }
3914
3915 /*
3916  * NMI-safe method to read a local event, that is an event that
3917  * is:
3918  *   - either for the current task, or for this CPU
3919  *   - does not have inherit set, for inherited task events
3920  *     will not be local and we cannot read them atomically
3921  *   - must not have a pmu::count method
3922  */
3923 int perf_event_read_local(struct perf_event *event, u64 *value,
3924                           u64 *enabled, u64 *running)
3925 {
3926         unsigned long flags;
3927         int ret = 0;
3928
3929         /*
3930          * Disabling interrupts avoids all counter scheduling (context
3931          * switches, timer based rotation and IPIs).
3932          */
3933         local_irq_save(flags);
3934
3935         /*
3936          * It must not be an event with inherit set, we cannot read
3937          * all child counters from atomic context.
3938          */
3939         if (event->attr.inherit) {
3940                 ret = -EOPNOTSUPP;
3941                 goto out;
3942         }
3943
3944         /* If this is a per-task event, it must be for current */
3945         if ((event->attach_state & PERF_ATTACH_TASK) &&
3946             event->hw.target != current) {
3947                 ret = -EINVAL;
3948                 goto out;
3949         }
3950
3951         /* If this is a per-CPU event, it must be for this CPU */
3952         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3953             event->cpu != smp_processor_id()) {
3954                 ret = -EINVAL;
3955                 goto out;
3956         }
3957
3958         /* If this is a pinned event it must be running on this CPU */
3959         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3960                 ret = -EBUSY;
3961                 goto out;
3962         }
3963
3964         /*
3965          * If the event is currently on this CPU, its either a per-task event,
3966          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3967          * oncpu == -1).
3968          */
3969         if (event->oncpu == smp_processor_id())
3970                 event->pmu->read(event);
3971
3972         *value = local64_read(&event->count);
3973         if (enabled || running) {
3974                 u64 now = event->shadow_ctx_time + perf_clock();
3975                 u64 __enabled, __running;
3976
3977                 __perf_update_times(event, now, &__enabled, &__running);
3978                 if (enabled)
3979                         *enabled = __enabled;
3980                 if (running)
3981                         *running = __running;
3982         }
3983 out:
3984         local_irq_restore(flags);
3985
3986         return ret;
3987 }
3988
3989 static int perf_event_read(struct perf_event *event, bool group)
3990 {
3991         enum perf_event_state state = READ_ONCE(event->state);
3992         int event_cpu, ret = 0;
3993
3994         /*
3995          * If event is enabled and currently active on a CPU, update the
3996          * value in the event structure:
3997          */
3998 again:
3999         if (state == PERF_EVENT_STATE_ACTIVE) {
4000                 struct perf_read_data data;
4001
4002                 /*
4003                  * Orders the ->state and ->oncpu loads such that if we see
4004                  * ACTIVE we must also see the right ->oncpu.
4005                  *
4006                  * Matches the smp_wmb() from event_sched_in().
4007                  */
4008                 smp_rmb();
4009
4010                 event_cpu = READ_ONCE(event->oncpu);
4011                 if ((unsigned)event_cpu >= nr_cpu_ids)
4012                         return 0;
4013
4014                 data = (struct perf_read_data){
4015                         .event = event,
4016                         .group = group,
4017                         .ret = 0,
4018                 };
4019
4020                 preempt_disable();
4021                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4022
4023                 /*
4024                  * Purposely ignore the smp_call_function_single() return
4025                  * value.
4026                  *
4027                  * If event_cpu isn't a valid CPU it means the event got
4028                  * scheduled out and that will have updated the event count.
4029                  *
4030                  * Therefore, either way, we'll have an up-to-date event count
4031                  * after this.
4032                  */
4033                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4034                 preempt_enable();
4035                 ret = data.ret;
4036
4037         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4038                 struct perf_event_context *ctx = event->ctx;
4039                 unsigned long flags;
4040
4041                 raw_spin_lock_irqsave(&ctx->lock, flags);
4042                 state = event->state;
4043                 if (state != PERF_EVENT_STATE_INACTIVE) {
4044                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4045                         goto again;
4046                 }
4047
4048                 /*
4049                  * May read while context is not active (e.g., thread is
4050                  * blocked), in that case we cannot update context time
4051                  */
4052                 if (ctx->is_active & EVENT_TIME) {
4053                         update_context_time(ctx);
4054                         update_cgrp_time_from_event(event);
4055                 }
4056
4057                 perf_event_update_time(event);
4058                 if (group)
4059                         perf_event_update_sibling_time(event);
4060                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4061         }
4062
4063         return ret;
4064 }
4065
4066 /*
4067  * Initialize the perf_event context in a task_struct:
4068  */
4069 static void __perf_event_init_context(struct perf_event_context *ctx)
4070 {
4071         raw_spin_lock_init(&ctx->lock);
4072         mutex_init(&ctx->mutex);
4073         INIT_LIST_HEAD(&ctx->active_ctx_list);
4074         perf_event_groups_init(&ctx->pinned_groups);
4075         perf_event_groups_init(&ctx->flexible_groups);
4076         INIT_LIST_HEAD(&ctx->event_list);
4077         INIT_LIST_HEAD(&ctx->pinned_active);
4078         INIT_LIST_HEAD(&ctx->flexible_active);
4079         refcount_set(&ctx->refcount, 1);
4080 }
4081
4082 static struct perf_event_context *
4083 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4084 {
4085         struct perf_event_context *ctx;
4086
4087         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4088         if (!ctx)
4089                 return NULL;
4090
4091         __perf_event_init_context(ctx);
4092         if (task)
4093                 ctx->task = get_task_struct(task);
4094         ctx->pmu = pmu;
4095
4096         return ctx;
4097 }
4098
4099 static struct task_struct *
4100 find_lively_task_by_vpid(pid_t vpid)
4101 {
4102         struct task_struct *task;
4103
4104         rcu_read_lock();
4105         if (!vpid)
4106                 task = current;
4107         else
4108                 task = find_task_by_vpid(vpid);
4109         if (task)
4110                 get_task_struct(task);
4111         rcu_read_unlock();
4112
4113         if (!task)
4114                 return ERR_PTR(-ESRCH);
4115
4116         return task;
4117 }
4118
4119 /*
4120  * Returns a matching context with refcount and pincount.
4121  */
4122 static struct perf_event_context *
4123 find_get_context(struct pmu *pmu, struct task_struct *task,
4124                 struct perf_event *event)
4125 {
4126         struct perf_event_context *ctx, *clone_ctx = NULL;
4127         struct perf_cpu_context *cpuctx;
4128         void *task_ctx_data = NULL;
4129         unsigned long flags;
4130         int ctxn, err;
4131         int cpu = event->cpu;
4132
4133         if (!task) {
4134                 /* Must be root to operate on a CPU event: */
4135                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4136                         return ERR_PTR(-EACCES);
4137
4138                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4139                 ctx = &cpuctx->ctx;
4140                 get_ctx(ctx);
4141                 ++ctx->pin_count;
4142
4143                 return ctx;
4144         }
4145
4146         err = -EINVAL;
4147         ctxn = pmu->task_ctx_nr;
4148         if (ctxn < 0)
4149                 goto errout;
4150
4151         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4152                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4153                 if (!task_ctx_data) {
4154                         err = -ENOMEM;
4155                         goto errout;
4156                 }
4157         }
4158
4159 retry:
4160         ctx = perf_lock_task_context(task, ctxn, &flags);
4161         if (ctx) {
4162                 clone_ctx = unclone_ctx(ctx);
4163                 ++ctx->pin_count;
4164
4165                 if (task_ctx_data && !ctx->task_ctx_data) {
4166                         ctx->task_ctx_data = task_ctx_data;
4167                         task_ctx_data = NULL;
4168                 }
4169                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4170
4171                 if (clone_ctx)
4172                         put_ctx(clone_ctx);
4173         } else {
4174                 ctx = alloc_perf_context(pmu, task);
4175                 err = -ENOMEM;
4176                 if (!ctx)
4177                         goto errout;
4178
4179                 if (task_ctx_data) {
4180                         ctx->task_ctx_data = task_ctx_data;
4181                         task_ctx_data = NULL;
4182                 }
4183
4184                 err = 0;
4185                 mutex_lock(&task->perf_event_mutex);
4186                 /*
4187                  * If it has already passed perf_event_exit_task().
4188                  * we must see PF_EXITING, it takes this mutex too.
4189                  */
4190                 if (task->flags & PF_EXITING)
4191                         err = -ESRCH;
4192                 else if (task->perf_event_ctxp[ctxn])
4193                         err = -EAGAIN;
4194                 else {
4195                         get_ctx(ctx);
4196                         ++ctx->pin_count;
4197                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4198                 }
4199                 mutex_unlock(&task->perf_event_mutex);
4200
4201                 if (unlikely(err)) {
4202                         put_ctx(ctx);
4203
4204                         if (err == -EAGAIN)
4205                                 goto retry;
4206                         goto errout;
4207                 }
4208         }
4209
4210         kfree(task_ctx_data);
4211         return ctx;
4212
4213 errout:
4214         kfree(task_ctx_data);
4215         return ERR_PTR(err);
4216 }
4217
4218 static void perf_event_free_filter(struct perf_event *event);
4219 static void perf_event_free_bpf_prog(struct perf_event *event);
4220
4221 static void free_event_rcu(struct rcu_head *head)
4222 {
4223         struct perf_event *event;
4224
4225         event = container_of(head, struct perf_event, rcu_head);
4226         if (event->ns)
4227                 put_pid_ns(event->ns);
4228         perf_event_free_filter(event);
4229         kfree(event);
4230 }
4231
4232 static void ring_buffer_attach(struct perf_event *event,
4233                                struct ring_buffer *rb);
4234
4235 static void detach_sb_event(struct perf_event *event)
4236 {
4237         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4238
4239         raw_spin_lock(&pel->lock);
4240         list_del_rcu(&event->sb_list);
4241         raw_spin_unlock(&pel->lock);
4242 }
4243
4244 static bool is_sb_event(struct perf_event *event)
4245 {
4246         struct perf_event_attr *attr = &event->attr;
4247
4248         if (event->parent)
4249                 return false;
4250
4251         if (event->attach_state & PERF_ATTACH_TASK)
4252                 return false;
4253
4254         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4255             attr->comm || attr->comm_exec ||
4256             attr->task || attr->ksymbol ||
4257             attr->context_switch ||
4258             attr->bpf_event)
4259                 return true;
4260         return false;
4261 }
4262
4263 static void unaccount_pmu_sb_event(struct perf_event *event)
4264 {
4265         if (is_sb_event(event))
4266                 detach_sb_event(event);
4267 }
4268
4269 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4270 {
4271         if (event->parent)
4272                 return;
4273
4274         if (is_cgroup_event(event))
4275                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4276 }
4277
4278 #ifdef CONFIG_NO_HZ_FULL
4279 static DEFINE_SPINLOCK(nr_freq_lock);
4280 #endif
4281
4282 static void unaccount_freq_event_nohz(void)
4283 {
4284 #ifdef CONFIG_NO_HZ_FULL
4285         spin_lock(&nr_freq_lock);
4286         if (atomic_dec_and_test(&nr_freq_events))
4287                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4288         spin_unlock(&nr_freq_lock);
4289 #endif
4290 }
4291
4292 static void unaccount_freq_event(void)
4293 {
4294         if (tick_nohz_full_enabled())
4295                 unaccount_freq_event_nohz();
4296         else
4297                 atomic_dec(&nr_freq_events);
4298 }
4299
4300 static void unaccount_event(struct perf_event *event)
4301 {
4302         bool dec = false;
4303
4304         if (event->parent)
4305                 return;
4306
4307         if (event->attach_state & PERF_ATTACH_TASK)
4308                 dec = true;
4309         if (event->attr.mmap || event->attr.mmap_data)
4310                 atomic_dec(&nr_mmap_events);
4311         if (event->attr.comm)
4312                 atomic_dec(&nr_comm_events);
4313         if (event->attr.namespaces)
4314                 atomic_dec(&nr_namespaces_events);
4315         if (event->attr.task)
4316                 atomic_dec(&nr_task_events);
4317         if (event->attr.freq)
4318                 unaccount_freq_event();
4319         if (event->attr.context_switch) {
4320                 dec = true;
4321                 atomic_dec(&nr_switch_events);
4322         }
4323         if (is_cgroup_event(event))
4324                 dec = true;
4325         if (has_branch_stack(event))
4326                 dec = true;
4327         if (event->attr.ksymbol)
4328                 atomic_dec(&nr_ksymbol_events);
4329         if (event->attr.bpf_event)
4330                 atomic_dec(&nr_bpf_events);
4331
4332         if (dec) {
4333                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4334                         schedule_delayed_work(&perf_sched_work, HZ);
4335         }
4336
4337         unaccount_event_cpu(event, event->cpu);
4338
4339         unaccount_pmu_sb_event(event);
4340 }
4341
4342 static void perf_sched_delayed(struct work_struct *work)
4343 {
4344         mutex_lock(&perf_sched_mutex);
4345         if (atomic_dec_and_test(&perf_sched_count))
4346                 static_branch_disable(&perf_sched_events);
4347         mutex_unlock(&perf_sched_mutex);
4348 }
4349
4350 /*
4351  * The following implement mutual exclusion of events on "exclusive" pmus
4352  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4353  * at a time, so we disallow creating events that might conflict, namely:
4354  *
4355  *  1) cpu-wide events in the presence of per-task events,
4356  *  2) per-task events in the presence of cpu-wide events,
4357  *  3) two matching events on the same context.
4358  *
4359  * The former two cases are handled in the allocation path (perf_event_alloc(),
4360  * _free_event()), the latter -- before the first perf_install_in_context().
4361  */
4362 static int exclusive_event_init(struct perf_event *event)
4363 {
4364         struct pmu *pmu = event->pmu;
4365
4366         if (!is_exclusive_pmu(pmu))
4367                 return 0;
4368
4369         /*
4370          * Prevent co-existence of per-task and cpu-wide events on the
4371          * same exclusive pmu.
4372          *
4373          * Negative pmu::exclusive_cnt means there are cpu-wide
4374          * events on this "exclusive" pmu, positive means there are
4375          * per-task events.
4376          *
4377          * Since this is called in perf_event_alloc() path, event::ctx
4378          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4379          * to mean "per-task event", because unlike other attach states it
4380          * never gets cleared.
4381          */
4382         if (event->attach_state & PERF_ATTACH_TASK) {
4383                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4384                         return -EBUSY;
4385         } else {
4386                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4387                         return -EBUSY;
4388         }
4389
4390         return 0;
4391 }
4392
4393 static void exclusive_event_destroy(struct perf_event *event)
4394 {
4395         struct pmu *pmu = event->pmu;
4396
4397         if (!is_exclusive_pmu(pmu))
4398                 return;
4399
4400         /* see comment in exclusive_event_init() */
4401         if (event->attach_state & PERF_ATTACH_TASK)
4402                 atomic_dec(&pmu->exclusive_cnt);
4403         else
4404                 atomic_inc(&pmu->exclusive_cnt);
4405 }
4406
4407 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4408 {
4409         if ((e1->pmu == e2->pmu) &&
4410             (e1->cpu == e2->cpu ||
4411              e1->cpu == -1 ||
4412              e2->cpu == -1))
4413                 return true;
4414         return false;
4415 }
4416
4417 static bool exclusive_event_installable(struct perf_event *event,
4418                                         struct perf_event_context *ctx)
4419 {
4420         struct perf_event *iter_event;
4421         struct pmu *pmu = event->pmu;
4422
4423         lockdep_assert_held(&ctx->mutex);
4424
4425         if (!is_exclusive_pmu(pmu))
4426                 return true;
4427
4428         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4429                 if (exclusive_event_match(iter_event, event))
4430                         return false;
4431         }
4432
4433         return true;
4434 }
4435
4436 static void perf_addr_filters_splice(struct perf_event *event,
4437                                        struct list_head *head);
4438
4439 static void _free_event(struct perf_event *event)
4440 {
4441         irq_work_sync(&event->pending);
4442
4443         unaccount_event(event);
4444
4445         if (event->rb) {
4446                 /*
4447                  * Can happen when we close an event with re-directed output.
4448                  *
4449                  * Since we have a 0 refcount, perf_mmap_close() will skip
4450                  * over us; possibly making our ring_buffer_put() the last.
4451                  */
4452                 mutex_lock(&event->mmap_mutex);
4453                 ring_buffer_attach(event, NULL);
4454                 mutex_unlock(&event->mmap_mutex);
4455         }
4456
4457         if (is_cgroup_event(event))
4458                 perf_detach_cgroup(event);
4459
4460         if (!event->parent) {
4461                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4462                         put_callchain_buffers();
4463         }
4464
4465         perf_event_free_bpf_prog(event);
4466         perf_addr_filters_splice(event, NULL);
4467         kfree(event->addr_filter_ranges);
4468
4469         if (event->destroy)
4470                 event->destroy(event);
4471
4472         /*
4473          * Must be after ->destroy(), due to uprobe_perf_close() using
4474          * hw.target.
4475          */
4476         if (event->hw.target)
4477                 put_task_struct(event->hw.target);
4478
4479         /*
4480          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4481          * all task references must be cleaned up.
4482          */
4483         if (event->ctx)
4484                 put_ctx(event->ctx);
4485
4486         exclusive_event_destroy(event);
4487         module_put(event->pmu->module);
4488
4489         call_rcu(&event->rcu_head, free_event_rcu);
4490 }
4491
4492 /*
4493  * Used to free events which have a known refcount of 1, such as in error paths
4494  * where the event isn't exposed yet and inherited events.
4495  */
4496 static void free_event(struct perf_event *event)
4497 {
4498         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4499                                 "unexpected event refcount: %ld; ptr=%p\n",
4500                                 atomic_long_read(&event->refcount), event)) {
4501                 /* leak to avoid use-after-free */
4502                 return;
4503         }
4504
4505         _free_event(event);
4506 }
4507
4508 /*
4509  * Remove user event from the owner task.
4510  */
4511 static void perf_remove_from_owner(struct perf_event *event)
4512 {
4513         struct task_struct *owner;
4514
4515         rcu_read_lock();
4516         /*
4517          * Matches the smp_store_release() in perf_event_exit_task(). If we
4518          * observe !owner it means the list deletion is complete and we can
4519          * indeed free this event, otherwise we need to serialize on
4520          * owner->perf_event_mutex.
4521          */
4522         owner = READ_ONCE(event->owner);
4523         if (owner) {
4524                 /*
4525                  * Since delayed_put_task_struct() also drops the last
4526                  * task reference we can safely take a new reference
4527                  * while holding the rcu_read_lock().
4528                  */
4529                 get_task_struct(owner);
4530         }
4531         rcu_read_unlock();
4532
4533         if (owner) {
4534                 /*
4535                  * If we're here through perf_event_exit_task() we're already
4536                  * holding ctx->mutex which would be an inversion wrt. the
4537                  * normal lock order.
4538                  *
4539                  * However we can safely take this lock because its the child
4540                  * ctx->mutex.
4541                  */
4542                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4543
4544                 /*
4545                  * We have to re-check the event->owner field, if it is cleared
4546                  * we raced with perf_event_exit_task(), acquiring the mutex
4547                  * ensured they're done, and we can proceed with freeing the
4548                  * event.
4549                  */
4550                 if (event->owner) {
4551                         list_del_init(&event->owner_entry);
4552                         smp_store_release(&event->owner, NULL);
4553                 }
4554                 mutex_unlock(&owner->perf_event_mutex);
4555                 put_task_struct(owner);
4556         }
4557 }
4558
4559 static void put_event(struct perf_event *event)
4560 {
4561         if (!atomic_long_dec_and_test(&event->refcount))
4562                 return;
4563
4564         _free_event(event);
4565 }
4566
4567 /*
4568  * Kill an event dead; while event:refcount will preserve the event
4569  * object, it will not preserve its functionality. Once the last 'user'
4570  * gives up the object, we'll destroy the thing.
4571  */
4572 int perf_event_release_kernel(struct perf_event *event)
4573 {
4574         struct perf_event_context *ctx = event->ctx;
4575         struct perf_event *child, *tmp;
4576         LIST_HEAD(free_list);
4577
4578         /*
4579          * If we got here through err_file: fput(event_file); we will not have
4580          * attached to a context yet.
4581          */
4582         if (!ctx) {
4583                 WARN_ON_ONCE(event->attach_state &
4584                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4585                 goto no_ctx;
4586         }
4587
4588         if (!is_kernel_event(event))
4589                 perf_remove_from_owner(event);
4590
4591         ctx = perf_event_ctx_lock(event);
4592         WARN_ON_ONCE(ctx->parent_ctx);
4593         perf_remove_from_context(event, DETACH_GROUP);
4594
4595         raw_spin_lock_irq(&ctx->lock);
4596         /*
4597          * Mark this event as STATE_DEAD, there is no external reference to it
4598          * anymore.
4599          *
4600          * Anybody acquiring event->child_mutex after the below loop _must_
4601          * also see this, most importantly inherit_event() which will avoid
4602          * placing more children on the list.
4603          *
4604          * Thus this guarantees that we will in fact observe and kill _ALL_
4605          * child events.
4606          */
4607         event->state = PERF_EVENT_STATE_DEAD;
4608         raw_spin_unlock_irq(&ctx->lock);
4609
4610         perf_event_ctx_unlock(event, ctx);
4611
4612 again:
4613         mutex_lock(&event->child_mutex);
4614         list_for_each_entry(child, &event->child_list, child_list) {
4615
4616                 /*
4617                  * Cannot change, child events are not migrated, see the
4618                  * comment with perf_event_ctx_lock_nested().
4619                  */
4620                 ctx = READ_ONCE(child->ctx);
4621                 /*
4622                  * Since child_mutex nests inside ctx::mutex, we must jump
4623                  * through hoops. We start by grabbing a reference on the ctx.
4624                  *
4625                  * Since the event cannot get freed while we hold the
4626                  * child_mutex, the context must also exist and have a !0
4627                  * reference count.
4628                  */
4629                 get_ctx(ctx);
4630
4631                 /*
4632                  * Now that we have a ctx ref, we can drop child_mutex, and
4633                  * acquire ctx::mutex without fear of it going away. Then we
4634                  * can re-acquire child_mutex.
4635                  */
4636                 mutex_unlock(&event->child_mutex);
4637                 mutex_lock(&ctx->mutex);
4638                 mutex_lock(&event->child_mutex);
4639
4640                 /*
4641                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4642                  * state, if child is still the first entry, it didn't get freed
4643                  * and we can continue doing so.
4644                  */
4645                 tmp = list_first_entry_or_null(&event->child_list,
4646                                                struct perf_event, child_list);
4647                 if (tmp == child) {
4648                         perf_remove_from_context(child, DETACH_GROUP);
4649                         list_move(&child->child_list, &free_list);
4650                         /*
4651                          * This matches the refcount bump in inherit_event();
4652                          * this can't be the last reference.
4653                          */
4654                         put_event(event);
4655                 }
4656
4657                 mutex_unlock(&event->child_mutex);
4658                 mutex_unlock(&ctx->mutex);
4659                 put_ctx(ctx);
4660                 goto again;
4661         }
4662         mutex_unlock(&event->child_mutex);
4663
4664         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4665                 void *var = &child->ctx->refcount;
4666
4667                 list_del(&child->child_list);
4668                 free_event(child);
4669
4670                 /*
4671                  * Wake any perf_event_free_task() waiting for this event to be
4672                  * freed.
4673                  */
4674                 smp_mb(); /* pairs with wait_var_event() */
4675                 wake_up_var(var);
4676         }
4677
4678 no_ctx:
4679         put_event(event); /* Must be the 'last' reference */
4680         return 0;
4681 }
4682 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4683
4684 /*
4685  * Called when the last reference to the file is gone.
4686  */
4687 static int perf_release(struct inode *inode, struct file *file)
4688 {
4689         perf_event_release_kernel(file->private_data);
4690         return 0;
4691 }
4692
4693 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4694 {
4695         struct perf_event *child;
4696         u64 total = 0;
4697
4698         *enabled = 0;
4699         *running = 0;
4700
4701         mutex_lock(&event->child_mutex);
4702
4703         (void)perf_event_read(event, false);
4704         total += perf_event_count(event);
4705
4706         *enabled += event->total_time_enabled +
4707                         atomic64_read(&event->child_total_time_enabled);
4708         *running += event->total_time_running +
4709                         atomic64_read(&event->child_total_time_running);
4710
4711         list_for_each_entry(child, &event->child_list, child_list) {
4712                 (void)perf_event_read(child, false);
4713                 total += perf_event_count(child);
4714                 *enabled += child->total_time_enabled;
4715                 *running += child->total_time_running;
4716         }
4717         mutex_unlock(&event->child_mutex);
4718
4719         return total;
4720 }
4721
4722 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4723 {
4724         struct perf_event_context *ctx;
4725         u64 count;
4726
4727         ctx = perf_event_ctx_lock(event);
4728         count = __perf_event_read_value(event, enabled, running);
4729         perf_event_ctx_unlock(event, ctx);
4730
4731         return count;
4732 }
4733 EXPORT_SYMBOL_GPL(perf_event_read_value);
4734
4735 static int __perf_read_group_add(struct perf_event *leader,
4736                                         u64 read_format, u64 *values)
4737 {
4738         struct perf_event_context *ctx = leader->ctx;
4739         struct perf_event *sub;
4740         unsigned long flags;
4741         int n = 1; /* skip @nr */
4742         int ret;
4743
4744         ret = perf_event_read(leader, true);
4745         if (ret)
4746                 return ret;
4747
4748         raw_spin_lock_irqsave(&ctx->lock, flags);
4749
4750         /*
4751          * Since we co-schedule groups, {enabled,running} times of siblings
4752          * will be identical to those of the leader, so we only publish one
4753          * set.
4754          */
4755         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4756                 values[n++] += leader->total_time_enabled +
4757                         atomic64_read(&leader->child_total_time_enabled);
4758         }
4759
4760         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4761                 values[n++] += leader->total_time_running +
4762                         atomic64_read(&leader->child_total_time_running);
4763         }
4764
4765         /*
4766          * Write {count,id} tuples for every sibling.
4767          */
4768         values[n++] += perf_event_count(leader);
4769         if (read_format & PERF_FORMAT_ID)
4770                 values[n++] = primary_event_id(leader);
4771
4772         for_each_sibling_event(sub, leader) {
4773                 values[n++] += perf_event_count(sub);
4774                 if (read_format & PERF_FORMAT_ID)
4775                         values[n++] = primary_event_id(sub);
4776         }
4777
4778         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4779         return 0;
4780 }
4781
4782 static int perf_read_group(struct perf_event *event,
4783                                    u64 read_format, char __user *buf)
4784 {
4785         struct perf_event *leader = event->group_leader, *child;
4786         struct perf_event_context *ctx = leader->ctx;
4787         int ret;
4788         u64 *values;
4789
4790         lockdep_assert_held(&ctx->mutex);
4791
4792         values = kzalloc(event->read_size, GFP_KERNEL);
4793         if (!values)
4794                 return -ENOMEM;
4795
4796         values[0] = 1 + leader->nr_siblings;
4797
4798         /*
4799          * By locking the child_mutex of the leader we effectively
4800          * lock the child list of all siblings.. XXX explain how.
4801          */
4802         mutex_lock(&leader->child_mutex);
4803
4804         ret = __perf_read_group_add(leader, read_format, values);
4805         if (ret)
4806                 goto unlock;
4807
4808         list_for_each_entry(child, &leader->child_list, child_list) {
4809                 ret = __perf_read_group_add(child, read_format, values);
4810                 if (ret)
4811                         goto unlock;
4812         }
4813
4814         mutex_unlock(&leader->child_mutex);
4815
4816         ret = event->read_size;
4817         if (copy_to_user(buf, values, event->read_size))
4818                 ret = -EFAULT;
4819         goto out;
4820
4821 unlock:
4822         mutex_unlock(&leader->child_mutex);
4823 out:
4824         kfree(values);
4825         return ret;
4826 }
4827
4828 static int perf_read_one(struct perf_event *event,
4829                                  u64 read_format, char __user *buf)
4830 {
4831         u64 enabled, running;
4832         u64 values[4];
4833         int n = 0;
4834
4835         values[n++] = __perf_event_read_value(event, &enabled, &running);
4836         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4837                 values[n++] = enabled;
4838         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4839                 values[n++] = running;
4840         if (read_format & PERF_FORMAT_ID)
4841                 values[n++] = primary_event_id(event);
4842
4843         if (copy_to_user(buf, values, n * sizeof(u64)))
4844                 return -EFAULT;
4845
4846         return n * sizeof(u64);
4847 }
4848
4849 static bool is_event_hup(struct perf_event *event)
4850 {
4851         bool no_children;
4852
4853         if (event->state > PERF_EVENT_STATE_EXIT)
4854                 return false;
4855
4856         mutex_lock(&event->child_mutex);
4857         no_children = list_empty(&event->child_list);
4858         mutex_unlock(&event->child_mutex);
4859         return no_children;
4860 }
4861
4862 /*
4863  * Read the performance event - simple non blocking version for now
4864  */
4865 static ssize_t
4866 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4867 {
4868         u64 read_format = event->attr.read_format;
4869         int ret;
4870
4871         /*
4872          * Return end-of-file for a read on an event that is in
4873          * error state (i.e. because it was pinned but it couldn't be
4874          * scheduled on to the CPU at some point).
4875          */
4876         if (event->state == PERF_EVENT_STATE_ERROR)
4877                 return 0;
4878
4879         if (count < event->read_size)
4880                 return -ENOSPC;
4881
4882         WARN_ON_ONCE(event->ctx->parent_ctx);
4883         if (read_format & PERF_FORMAT_GROUP)
4884                 ret = perf_read_group(event, read_format, buf);
4885         else
4886                 ret = perf_read_one(event, read_format, buf);
4887
4888         return ret;
4889 }
4890
4891 static ssize_t
4892 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4893 {
4894         struct perf_event *event = file->private_data;
4895         struct perf_event_context *ctx;
4896         int ret;
4897
4898         ctx = perf_event_ctx_lock(event);
4899         ret = __perf_read(event, buf, count);
4900         perf_event_ctx_unlock(event, ctx);
4901
4902         return ret;
4903 }
4904
4905 static __poll_t perf_poll(struct file *file, poll_table *wait)
4906 {
4907         struct perf_event *event = file->private_data;
4908         struct ring_buffer *rb;
4909         __poll_t events = EPOLLHUP;
4910
4911         poll_wait(file, &event->waitq, wait);
4912
4913         if (is_event_hup(event))
4914                 return events;
4915
4916         /*
4917          * Pin the event->rb by taking event->mmap_mutex; otherwise
4918          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4919          */
4920         mutex_lock(&event->mmap_mutex);
4921         rb = event->rb;
4922         if (rb)
4923                 events = atomic_xchg(&rb->poll, 0);
4924         mutex_unlock(&event->mmap_mutex);
4925         return events;
4926 }
4927
4928 static void _perf_event_reset(struct perf_event *event)
4929 {
4930         (void)perf_event_read(event, false);
4931         local64_set(&event->count, 0);
4932         perf_event_update_userpage(event);
4933 }
4934
4935 /*
4936  * Holding the top-level event's child_mutex means that any
4937  * descendant process that has inherited this event will block
4938  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4939  * task existence requirements of perf_event_enable/disable.
4940  */
4941 static void perf_event_for_each_child(struct perf_event *event,
4942                                         void (*func)(struct perf_event *))
4943 {
4944         struct perf_event *child;
4945
4946         WARN_ON_ONCE(event->ctx->parent_ctx);
4947
4948         mutex_lock(&event->child_mutex);
4949         func(event);
4950         list_for_each_entry(child, &event->child_list, child_list)
4951                 func(child);
4952         mutex_unlock(&event->child_mutex);
4953 }
4954
4955 static void perf_event_for_each(struct perf_event *event,
4956                                   void (*func)(struct perf_event *))
4957 {
4958         struct perf_event_context *ctx = event->ctx;
4959         struct perf_event *sibling;
4960
4961         lockdep_assert_held(&ctx->mutex);
4962
4963         event = event->group_leader;
4964
4965         perf_event_for_each_child(event, func);
4966         for_each_sibling_event(sibling, event)
4967                 perf_event_for_each_child(sibling, func);
4968 }
4969
4970 static void __perf_event_period(struct perf_event *event,
4971                                 struct perf_cpu_context *cpuctx,
4972                                 struct perf_event_context *ctx,
4973                                 void *info)
4974 {
4975         u64 value = *((u64 *)info);
4976         bool active;
4977
4978         if (event->attr.freq) {
4979                 event->attr.sample_freq = value;
4980         } else {
4981                 event->attr.sample_period = value;
4982                 event->hw.sample_period = value;
4983         }
4984
4985         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4986         if (active) {
4987                 perf_pmu_disable(ctx->pmu);
4988                 /*
4989                  * We could be throttled; unthrottle now to avoid the tick
4990                  * trying to unthrottle while we already re-started the event.
4991                  */
4992                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4993                         event->hw.interrupts = 0;
4994                         perf_log_throttle(event, 1);
4995                 }
4996                 event->pmu->stop(event, PERF_EF_UPDATE);
4997         }
4998
4999         local64_set(&event->hw.period_left, 0);
5000
5001         if (active) {
5002                 event->pmu->start(event, PERF_EF_RELOAD);
5003                 perf_pmu_enable(ctx->pmu);
5004         }
5005 }
5006
5007 static int perf_event_check_period(struct perf_event *event, u64 value)
5008 {
5009         return event->pmu->check_period(event, value);
5010 }
5011
5012 static int perf_event_period(struct perf_event *event, u64 __user *arg)
5013 {
5014         u64 value;
5015
5016         if (!is_sampling_event(event))
5017                 return -EINVAL;
5018
5019         if (copy_from_user(&value, arg, sizeof(value)))
5020                 return -EFAULT;
5021
5022         if (!value)
5023                 return -EINVAL;
5024
5025         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5026                 return -EINVAL;
5027
5028         if (perf_event_check_period(event, value))
5029                 return -EINVAL;
5030
5031         if (!event->attr.freq && (value & (1ULL << 63)))
5032                 return -EINVAL;
5033
5034         event_function_call(event, __perf_event_period, &value);
5035
5036         return 0;
5037 }
5038
5039 static const struct file_operations perf_fops;
5040
5041 static inline int perf_fget_light(int fd, struct fd *p)
5042 {
5043         struct fd f = fdget(fd);
5044         if (!f.file)
5045                 return -EBADF;
5046
5047         if (f.file->f_op != &perf_fops) {
5048                 fdput(f);
5049                 return -EBADF;
5050         }
5051         *p = f;
5052         return 0;
5053 }
5054
5055 static int perf_event_set_output(struct perf_event *event,
5056                                  struct perf_event *output_event);
5057 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5058 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5059 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5060                           struct perf_event_attr *attr);
5061
5062 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5063 {
5064         void (*func)(struct perf_event *);
5065         u32 flags = arg;
5066
5067         switch (cmd) {
5068         case PERF_EVENT_IOC_ENABLE:
5069                 func = _perf_event_enable;
5070                 break;
5071         case PERF_EVENT_IOC_DISABLE:
5072                 func = _perf_event_disable;
5073                 break;
5074         case PERF_EVENT_IOC_RESET:
5075                 func = _perf_event_reset;
5076                 break;
5077
5078         case PERF_EVENT_IOC_REFRESH:
5079                 return _perf_event_refresh(event, arg);
5080
5081         case PERF_EVENT_IOC_PERIOD:
5082                 return perf_event_period(event, (u64 __user *)arg);
5083
5084         case PERF_EVENT_IOC_ID:
5085         {
5086                 u64 id = primary_event_id(event);
5087
5088                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5089                         return -EFAULT;
5090                 return 0;
5091         }
5092
5093         case PERF_EVENT_IOC_SET_OUTPUT:
5094         {
5095                 int ret;
5096                 if (arg != -1) {
5097                         struct perf_event *output_event;
5098                         struct fd output;
5099                         ret = perf_fget_light(arg, &output);
5100                         if (ret)
5101                                 return ret;
5102                         output_event = output.file->private_data;
5103                         ret = perf_event_set_output(event, output_event);
5104                         fdput(output);
5105                 } else {
5106                         ret = perf_event_set_output(event, NULL);
5107                 }
5108                 return ret;
5109         }
5110
5111         case PERF_EVENT_IOC_SET_FILTER:
5112                 return perf_event_set_filter(event, (void __user *)arg);
5113
5114         case PERF_EVENT_IOC_SET_BPF:
5115                 return perf_event_set_bpf_prog(event, arg);
5116
5117         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5118                 struct ring_buffer *rb;
5119
5120                 rcu_read_lock();
5121                 rb = rcu_dereference(event->rb);
5122                 if (!rb || !rb->nr_pages) {
5123                         rcu_read_unlock();
5124                         return -EINVAL;
5125                 }
5126                 rb_toggle_paused(rb, !!arg);
5127                 rcu_read_unlock();
5128                 return 0;
5129         }
5130
5131         case PERF_EVENT_IOC_QUERY_BPF:
5132                 return perf_event_query_prog_array(event, (void __user *)arg);
5133
5134         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5135                 struct perf_event_attr new_attr;
5136                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5137                                          &new_attr);
5138
5139                 if (err)
5140                         return err;
5141
5142                 return perf_event_modify_attr(event,  &new_attr);
5143         }
5144         default:
5145                 return -ENOTTY;
5146         }
5147
5148         if (flags & PERF_IOC_FLAG_GROUP)
5149                 perf_event_for_each(event, func);
5150         else
5151                 perf_event_for_each_child(event, func);
5152
5153         return 0;
5154 }
5155
5156 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5157 {
5158         struct perf_event *event = file->private_data;
5159         struct perf_event_context *ctx;
5160         long ret;
5161
5162         ctx = perf_event_ctx_lock(event);
5163         ret = _perf_ioctl(event, cmd, arg);
5164         perf_event_ctx_unlock(event, ctx);
5165
5166         return ret;
5167 }
5168
5169 #ifdef CONFIG_COMPAT
5170 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5171                                 unsigned long arg)
5172 {
5173         switch (_IOC_NR(cmd)) {
5174         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5175         case _IOC_NR(PERF_EVENT_IOC_ID):
5176         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5177         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5178                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5179                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5180                         cmd &= ~IOCSIZE_MASK;
5181                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5182                 }
5183                 break;
5184         }
5185         return perf_ioctl(file, cmd, arg);
5186 }
5187 #else
5188 # define perf_compat_ioctl NULL
5189 #endif
5190
5191 int perf_event_task_enable(void)
5192 {
5193         struct perf_event_context *ctx;
5194         struct perf_event *event;
5195
5196         mutex_lock(&current->perf_event_mutex);
5197         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5198                 ctx = perf_event_ctx_lock(event);
5199                 perf_event_for_each_child(event, _perf_event_enable);
5200                 perf_event_ctx_unlock(event, ctx);
5201         }
5202         mutex_unlock(&current->perf_event_mutex);
5203
5204         return 0;
5205 }
5206
5207 int perf_event_task_disable(void)
5208 {
5209         struct perf_event_context *ctx;
5210         struct perf_event *event;
5211
5212         mutex_lock(&current->perf_event_mutex);
5213         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5214                 ctx = perf_event_ctx_lock(event);
5215                 perf_event_for_each_child(event, _perf_event_disable);
5216                 perf_event_ctx_unlock(event, ctx);
5217         }
5218         mutex_unlock(&current->perf_event_mutex);
5219
5220         return 0;
5221 }
5222
5223 static int perf_event_index(struct perf_event *event)
5224 {
5225         if (event->hw.state & PERF_HES_STOPPED)
5226                 return 0;
5227
5228         if (event->state != PERF_EVENT_STATE_ACTIVE)
5229                 return 0;
5230
5231         return event->pmu->event_idx(event);
5232 }
5233
5234 static void calc_timer_values(struct perf_event *event,
5235                                 u64 *now,
5236                                 u64 *enabled,
5237                                 u64 *running)
5238 {
5239         u64 ctx_time;
5240
5241         *now = perf_clock();
5242         ctx_time = event->shadow_ctx_time + *now;
5243         __perf_update_times(event, ctx_time, enabled, running);
5244 }
5245
5246 static void perf_event_init_userpage(struct perf_event *event)
5247 {
5248         struct perf_event_mmap_page *userpg;
5249         struct ring_buffer *rb;
5250
5251         rcu_read_lock();
5252         rb = rcu_dereference(event->rb);
5253         if (!rb)
5254                 goto unlock;
5255
5256         userpg = rb->user_page;
5257
5258         /* Allow new userspace to detect that bit 0 is deprecated */
5259         userpg->cap_bit0_is_deprecated = 1;
5260         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5261         userpg->data_offset = PAGE_SIZE;
5262         userpg->data_size = perf_data_size(rb);
5263
5264 unlock:
5265         rcu_read_unlock();
5266 }
5267
5268 void __weak arch_perf_update_userpage(
5269         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5270 {
5271 }
5272
5273 /*
5274  * Callers need to ensure there can be no nesting of this function, otherwise
5275  * the seqlock logic goes bad. We can not serialize this because the arch
5276  * code calls this from NMI context.
5277  */
5278 void perf_event_update_userpage(struct perf_event *event)
5279 {
5280         struct perf_event_mmap_page *userpg;
5281         struct ring_buffer *rb;
5282         u64 enabled, running, now;
5283
5284         rcu_read_lock();
5285         rb = rcu_dereference(event->rb);
5286         if (!rb)
5287                 goto unlock;
5288
5289         /*
5290          * compute total_time_enabled, total_time_running
5291          * based on snapshot values taken when the event
5292          * was last scheduled in.
5293          *
5294          * we cannot simply called update_context_time()
5295          * because of locking issue as we can be called in
5296          * NMI context
5297          */
5298         calc_timer_values(event, &now, &enabled, &running);
5299
5300         userpg = rb->user_page;
5301         /*
5302          * Disable preemption to guarantee consistent time stamps are stored to
5303          * the user page.
5304          */
5305         preempt_disable();
5306         ++userpg->lock;
5307         barrier();
5308         userpg->index = perf_event_index(event);
5309         userpg->offset = perf_event_count(event);
5310         if (userpg->index)
5311                 userpg->offset -= local64_read(&event->hw.prev_count);
5312
5313         userpg->time_enabled = enabled +
5314                         atomic64_read(&event->child_total_time_enabled);
5315
5316         userpg->time_running = running +
5317                         atomic64_read(&event->child_total_time_running);
5318
5319         arch_perf_update_userpage(event, userpg, now);
5320
5321         barrier();
5322         ++userpg->lock;
5323         preempt_enable();
5324 unlock:
5325         rcu_read_unlock();
5326 }
5327 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5328
5329 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5330 {
5331         struct perf_event *event = vmf->vma->vm_file->private_data;
5332         struct ring_buffer *rb;
5333         vm_fault_t ret = VM_FAULT_SIGBUS;
5334
5335         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5336                 if (vmf->pgoff == 0)
5337                         ret = 0;
5338                 return ret;
5339         }
5340
5341         rcu_read_lock();
5342         rb = rcu_dereference(event->rb);
5343         if (!rb)
5344                 goto unlock;
5345
5346         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5347                 goto unlock;
5348
5349         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5350         if (!vmf->page)
5351                 goto unlock;
5352
5353         get_page(vmf->page);
5354         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5355         vmf->page->index   = vmf->pgoff;
5356
5357         ret = 0;
5358 unlock:
5359         rcu_read_unlock();
5360
5361         return ret;
5362 }
5363
5364 static void ring_buffer_attach(struct perf_event *event,
5365                                struct ring_buffer *rb)
5366 {
5367         struct ring_buffer *old_rb = NULL;
5368         unsigned long flags;
5369
5370         if (event->rb) {
5371                 /*
5372                  * Should be impossible, we set this when removing
5373                  * event->rb_entry and wait/clear when adding event->rb_entry.
5374                  */
5375                 WARN_ON_ONCE(event->rcu_pending);
5376
5377                 old_rb = event->rb;
5378                 spin_lock_irqsave(&old_rb->event_lock, flags);
5379                 list_del_rcu(&event->rb_entry);
5380                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5381
5382                 event->rcu_batches = get_state_synchronize_rcu();
5383                 event->rcu_pending = 1;
5384         }
5385
5386         if (rb) {
5387                 if (event->rcu_pending) {
5388                         cond_synchronize_rcu(event->rcu_batches);
5389                         event->rcu_pending = 0;
5390                 }
5391
5392                 spin_lock_irqsave(&rb->event_lock, flags);
5393                 list_add_rcu(&event->rb_entry, &rb->event_list);
5394                 spin_unlock_irqrestore(&rb->event_lock, flags);
5395         }
5396
5397         /*
5398          * Avoid racing with perf_mmap_close(AUX): stop the event
5399          * before swizzling the event::rb pointer; if it's getting
5400          * unmapped, its aux_mmap_count will be 0 and it won't
5401          * restart. See the comment in __perf_pmu_output_stop().
5402          *
5403          * Data will inevitably be lost when set_output is done in
5404          * mid-air, but then again, whoever does it like this is
5405          * not in for the data anyway.
5406          */
5407         if (has_aux(event))
5408                 perf_event_stop(event, 0);
5409
5410         rcu_assign_pointer(event->rb, rb);
5411
5412         if (old_rb) {
5413                 ring_buffer_put(old_rb);
5414                 /*
5415                  * Since we detached before setting the new rb, so that we
5416                  * could attach the new rb, we could have missed a wakeup.
5417                  * Provide it now.
5418                  */
5419                 wake_up_all(&event->waitq);
5420         }
5421 }
5422
5423 static void ring_buffer_wakeup(struct perf_event *event)
5424 {
5425         struct ring_buffer *rb;
5426
5427         rcu_read_lock();
5428         rb = rcu_dereference(event->rb);
5429         if (rb) {
5430                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5431                         wake_up_all(&event->waitq);
5432         }
5433         rcu_read_unlock();
5434 }
5435
5436 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5437 {
5438         struct ring_buffer *rb;
5439
5440         rcu_read_lock();
5441         rb = rcu_dereference(event->rb);
5442         if (rb) {
5443                 if (!refcount_inc_not_zero(&rb->refcount))
5444                         rb = NULL;
5445         }
5446         rcu_read_unlock();
5447
5448         return rb;
5449 }
5450
5451 void ring_buffer_put(struct ring_buffer *rb)
5452 {
5453         if (!refcount_dec_and_test(&rb->refcount))
5454                 return;
5455
5456         WARN_ON_ONCE(!list_empty(&rb->event_list));
5457
5458         call_rcu(&rb->rcu_head, rb_free_rcu);
5459 }
5460
5461 static void perf_mmap_open(struct vm_area_struct *vma)
5462 {
5463         struct perf_event *event = vma->vm_file->private_data;
5464
5465         atomic_inc(&event->mmap_count);
5466         atomic_inc(&event->rb->mmap_count);
5467
5468         if (vma->vm_pgoff)
5469                 atomic_inc(&event->rb->aux_mmap_count);
5470
5471         if (event->pmu->event_mapped)
5472                 event->pmu->event_mapped(event, vma->vm_mm);
5473 }
5474
5475 static void perf_pmu_output_stop(struct perf_event *event);
5476
5477 /*
5478  * A buffer can be mmap()ed multiple times; either directly through the same
5479  * event, or through other events by use of perf_event_set_output().
5480  *
5481  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5482  * the buffer here, where we still have a VM context. This means we need
5483  * to detach all events redirecting to us.
5484  */
5485 static void perf_mmap_close(struct vm_area_struct *vma)
5486 {
5487         struct perf_event *event = vma->vm_file->private_data;
5488
5489         struct ring_buffer *rb = ring_buffer_get(event);
5490         struct user_struct *mmap_user = rb->mmap_user;
5491         int mmap_locked = rb->mmap_locked;
5492         unsigned long size = perf_data_size(rb);
5493
5494         if (event->pmu->event_unmapped)
5495                 event->pmu->event_unmapped(event, vma->vm_mm);
5496
5497         /*
5498          * rb->aux_mmap_count will always drop before rb->mmap_count and
5499          * event->mmap_count, so it is ok to use event->mmap_mutex to
5500          * serialize with perf_mmap here.
5501          */
5502         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5503             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5504                 /*
5505                  * Stop all AUX events that are writing to this buffer,
5506                  * so that we can free its AUX pages and corresponding PMU
5507                  * data. Note that after rb::aux_mmap_count dropped to zero,
5508                  * they won't start any more (see perf_aux_output_begin()).
5509                  */
5510                 perf_pmu_output_stop(event);
5511
5512                 /* now it's safe to free the pages */
5513                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5514                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5515
5516                 /* this has to be the last one */
5517                 rb_free_aux(rb);
5518                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5519
5520                 mutex_unlock(&event->mmap_mutex);
5521         }
5522
5523         atomic_dec(&rb->mmap_count);
5524
5525         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5526                 goto out_put;
5527
5528         ring_buffer_attach(event, NULL);
5529         mutex_unlock(&event->mmap_mutex);
5530
5531         /* If there's still other mmap()s of this buffer, we're done. */
5532         if (atomic_read(&rb->mmap_count))
5533                 goto out_put;
5534
5535         /*
5536          * No other mmap()s, detach from all other events that might redirect
5537          * into the now unreachable buffer. Somewhat complicated by the
5538          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5539          */
5540 again:
5541         rcu_read_lock();
5542         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5543                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5544                         /*
5545                          * This event is en-route to free_event() which will
5546                          * detach it and remove it from the list.
5547                          */
5548                         continue;
5549                 }
5550                 rcu_read_unlock();
5551
5552                 mutex_lock(&event->mmap_mutex);
5553                 /*
5554                  * Check we didn't race with perf_event_set_output() which can
5555                  * swizzle the rb from under us while we were waiting to
5556                  * acquire mmap_mutex.
5557                  *
5558                  * If we find a different rb; ignore this event, a next
5559                  * iteration will no longer find it on the list. We have to
5560                  * still restart the iteration to make sure we're not now
5561                  * iterating the wrong list.
5562                  */
5563                 if (event->rb == rb)
5564                         ring_buffer_attach(event, NULL);
5565
5566                 mutex_unlock(&event->mmap_mutex);
5567                 put_event(event);
5568
5569                 /*
5570                  * Restart the iteration; either we're on the wrong list or
5571                  * destroyed its integrity by doing a deletion.
5572                  */
5573                 goto again;
5574         }
5575         rcu_read_unlock();
5576
5577         /*
5578          * It could be there's still a few 0-ref events on the list; they'll
5579          * get cleaned up by free_event() -- they'll also still have their
5580          * ref on the rb and will free it whenever they are done with it.
5581          *
5582          * Aside from that, this buffer is 'fully' detached and unmapped,
5583          * undo the VM accounting.
5584          */
5585
5586         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5587         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5588         free_uid(mmap_user);
5589
5590 out_put:
5591         ring_buffer_put(rb); /* could be last */
5592 }
5593
5594 static const struct vm_operations_struct perf_mmap_vmops = {
5595         .open           = perf_mmap_open,
5596         .close          = perf_mmap_close, /* non mergeable */
5597         .fault          = perf_mmap_fault,
5598         .page_mkwrite   = perf_mmap_fault,
5599 };
5600
5601 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5602 {
5603         struct perf_event *event = file->private_data;
5604         unsigned long user_locked, user_lock_limit;
5605         struct user_struct *user = current_user();
5606         unsigned long locked, lock_limit;
5607         struct ring_buffer *rb = NULL;
5608         unsigned long vma_size;
5609         unsigned long nr_pages;
5610         long user_extra = 0, extra = 0;
5611         int ret = 0, flags = 0;
5612
5613         /*
5614          * Don't allow mmap() of inherited per-task counters. This would
5615          * create a performance issue due to all children writing to the
5616          * same rb.
5617          */
5618         if (event->cpu == -1 && event->attr.inherit)
5619                 return -EINVAL;
5620
5621         if (!(vma->vm_flags & VM_SHARED))
5622                 return -EINVAL;
5623
5624         vma_size = vma->vm_end - vma->vm_start;
5625
5626         if (vma->vm_pgoff == 0) {
5627                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5628         } else {
5629                 /*
5630                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5631                  * mapped, all subsequent mappings should have the same size
5632                  * and offset. Must be above the normal perf buffer.
5633                  */
5634                 u64 aux_offset, aux_size;
5635
5636                 if (!event->rb)
5637                         return -EINVAL;
5638
5639                 nr_pages = vma_size / PAGE_SIZE;
5640
5641                 mutex_lock(&event->mmap_mutex);
5642                 ret = -EINVAL;
5643
5644                 rb = event->rb;
5645                 if (!rb)
5646                         goto aux_unlock;
5647
5648                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5649                 aux_size = READ_ONCE(rb->user_page->aux_size);
5650
5651                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5652                         goto aux_unlock;
5653
5654                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5655                         goto aux_unlock;
5656
5657                 /* already mapped with a different offset */
5658                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5659                         goto aux_unlock;
5660
5661                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5662                         goto aux_unlock;
5663
5664                 /* already mapped with a different size */
5665                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5666                         goto aux_unlock;
5667
5668                 if (!is_power_of_2(nr_pages))
5669                         goto aux_unlock;
5670
5671                 if (!atomic_inc_not_zero(&rb->mmap_count))
5672                         goto aux_unlock;
5673
5674                 if (rb_has_aux(rb)) {
5675                         atomic_inc(&rb->aux_mmap_count);
5676                         ret = 0;
5677                         goto unlock;
5678                 }
5679
5680                 atomic_set(&rb->aux_mmap_count, 1);
5681                 user_extra = nr_pages;
5682
5683                 goto accounting;
5684         }
5685
5686         /*
5687          * If we have rb pages ensure they're a power-of-two number, so we
5688          * can do bitmasks instead of modulo.
5689          */
5690         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5691                 return -EINVAL;
5692
5693         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5694                 return -EINVAL;
5695
5696         WARN_ON_ONCE(event->ctx->parent_ctx);
5697 again:
5698         mutex_lock(&event->mmap_mutex);
5699         if (event->rb) {
5700                 if (event->rb->nr_pages != nr_pages) {
5701                         ret = -EINVAL;
5702                         goto unlock;
5703                 }
5704
5705                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5706                         /*
5707                          * Raced against perf_mmap_close() through
5708                          * perf_event_set_output(). Try again, hope for better
5709                          * luck.
5710                          */
5711                         mutex_unlock(&event->mmap_mutex);
5712                         goto again;
5713                 }
5714
5715                 goto unlock;
5716         }
5717
5718         user_extra = nr_pages + 1;
5719
5720 accounting:
5721         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5722
5723         /*
5724          * Increase the limit linearly with more CPUs:
5725          */
5726         user_lock_limit *= num_online_cpus();
5727
5728         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5729
5730         if (user_locked > user_lock_limit)
5731                 extra = user_locked - user_lock_limit;
5732
5733         lock_limit = rlimit(RLIMIT_MEMLOCK);
5734         lock_limit >>= PAGE_SHIFT;
5735         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5736
5737         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5738                 !capable(CAP_IPC_LOCK)) {
5739                 ret = -EPERM;
5740                 goto unlock;
5741         }
5742
5743         WARN_ON(!rb && event->rb);
5744
5745         if (vma->vm_flags & VM_WRITE)
5746                 flags |= RING_BUFFER_WRITABLE;
5747
5748         if (!rb) {
5749                 rb = rb_alloc(nr_pages,
5750                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5751                               event->cpu, flags);
5752
5753                 if (!rb) {
5754                         ret = -ENOMEM;
5755                         goto unlock;
5756                 }
5757
5758                 atomic_set(&rb->mmap_count, 1);
5759                 rb->mmap_user = get_current_user();
5760                 rb->mmap_locked = extra;
5761
5762                 ring_buffer_attach(event, rb);
5763
5764                 perf_event_init_userpage(event);
5765                 perf_event_update_userpage(event);
5766         } else {
5767                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5768                                    event->attr.aux_watermark, flags);
5769                 if (!ret)
5770                         rb->aux_mmap_locked = extra;
5771         }
5772
5773 unlock:
5774         if (!ret) {
5775                 atomic_long_add(user_extra, &user->locked_vm);
5776                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
5777
5778                 atomic_inc(&event->mmap_count);
5779         } else if (rb) {
5780                 atomic_dec(&rb->mmap_count);
5781         }
5782 aux_unlock:
5783         mutex_unlock(&event->mmap_mutex);
5784
5785         /*
5786          * Since pinned accounting is per vm we cannot allow fork() to copy our
5787          * vma.
5788          */
5789         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5790         vma->vm_ops = &perf_mmap_vmops;
5791
5792         if (event->pmu->event_mapped)
5793                 event->pmu->event_mapped(event, vma->vm_mm);
5794
5795         return ret;
5796 }
5797
5798 static int perf_fasync(int fd, struct file *filp, int on)
5799 {
5800         struct inode *inode = file_inode(filp);
5801         struct perf_event *event = filp->private_data;
5802         int retval;
5803
5804         inode_lock(inode);
5805         retval = fasync_helper(fd, filp, on, &event->fasync);
5806         inode_unlock(inode);
5807
5808         if (retval < 0)
5809                 return retval;
5810
5811         return 0;
5812 }
5813
5814 static const struct file_operations perf_fops = {
5815         .llseek                 = no_llseek,
5816         .release                = perf_release,
5817         .read                   = perf_read,
5818         .poll                   = perf_poll,
5819         .unlocked_ioctl         = perf_ioctl,
5820         .compat_ioctl           = perf_compat_ioctl,
5821         .mmap                   = perf_mmap,
5822         .fasync                 = perf_fasync,
5823 };
5824
5825 /*
5826  * Perf event wakeup
5827  *
5828  * If there's data, ensure we set the poll() state and publish everything
5829  * to user-space before waking everybody up.
5830  */
5831
5832 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5833 {
5834         /* only the parent has fasync state */
5835         if (event->parent)
5836                 event = event->parent;
5837         return &event->fasync;
5838 }
5839
5840 void perf_event_wakeup(struct perf_event *event)
5841 {
5842         ring_buffer_wakeup(event);
5843
5844         if (event->pending_kill) {
5845                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5846                 event->pending_kill = 0;
5847         }
5848 }
5849
5850 static void perf_pending_event_disable(struct perf_event *event)
5851 {
5852         int cpu = READ_ONCE(event->pending_disable);
5853
5854         if (cpu < 0)
5855                 return;
5856
5857         if (cpu == smp_processor_id()) {
5858                 WRITE_ONCE(event->pending_disable, -1);
5859                 perf_event_disable_local(event);
5860                 return;
5861         }
5862
5863         /*
5864          *  CPU-A                       CPU-B
5865          *
5866          *  perf_event_disable_inatomic()
5867          *    @pending_disable = CPU-A;
5868          *    irq_work_queue();
5869          *
5870          *  sched-out
5871          *    @pending_disable = -1;
5872          *
5873          *                              sched-in
5874          *                              perf_event_disable_inatomic()
5875          *                                @pending_disable = CPU-B;
5876          *                                irq_work_queue(); // FAILS
5877          *
5878          *  irq_work_run()
5879          *    perf_pending_event()
5880          *
5881          * But the event runs on CPU-B and wants disabling there.
5882          */
5883         irq_work_queue_on(&event->pending, cpu);
5884 }
5885
5886 static void perf_pending_event(struct irq_work *entry)
5887 {
5888         struct perf_event *event = container_of(entry, struct perf_event, pending);
5889         int rctx;
5890
5891         rctx = perf_swevent_get_recursion_context();
5892         /*
5893          * If we 'fail' here, that's OK, it means recursion is already disabled
5894          * and we won't recurse 'further'.
5895          */
5896
5897         perf_pending_event_disable(event);
5898
5899         if (event->pending_wakeup) {
5900                 event->pending_wakeup = 0;
5901                 perf_event_wakeup(event);
5902         }
5903
5904         if (rctx >= 0)
5905                 perf_swevent_put_recursion_context(rctx);
5906 }
5907
5908 /*
5909  * We assume there is only KVM supporting the callbacks.
5910  * Later on, we might change it to a list if there is
5911  * another virtualization implementation supporting the callbacks.
5912  */
5913 struct perf_guest_info_callbacks *perf_guest_cbs;
5914
5915 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5916 {
5917         perf_guest_cbs = cbs;
5918         return 0;
5919 }
5920 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5921
5922 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5923 {
5924         perf_guest_cbs = NULL;
5925         return 0;
5926 }
5927 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5928
5929 static void
5930 perf_output_sample_regs(struct perf_output_handle *handle,
5931                         struct pt_regs *regs, u64 mask)
5932 {
5933         int bit;
5934         DECLARE_BITMAP(_mask, 64);
5935
5936         bitmap_from_u64(_mask, mask);
5937         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5938                 u64 val;
5939
5940                 val = perf_reg_value(regs, bit);
5941                 perf_output_put(handle, val);
5942         }
5943 }
5944
5945 static void perf_sample_regs_user(struct perf_regs *regs_user,
5946                                   struct pt_regs *regs,
5947                                   struct pt_regs *regs_user_copy)
5948 {
5949         if (user_mode(regs)) {
5950                 regs_user->abi = perf_reg_abi(current);
5951                 regs_user->regs = regs;
5952         } else if (!(current->flags & PF_KTHREAD)) {
5953                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5954         } else {
5955                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5956                 regs_user->regs = NULL;
5957         }
5958 }
5959
5960 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5961                                   struct pt_regs *regs)
5962 {
5963         regs_intr->regs = regs;
5964         regs_intr->abi  = perf_reg_abi(current);
5965 }
5966
5967
5968 /*
5969  * Get remaining task size from user stack pointer.
5970  *
5971  * It'd be better to take stack vma map and limit this more
5972  * precisly, but there's no way to get it safely under interrupt,
5973  * so using TASK_SIZE as limit.
5974  */
5975 static u64 perf_ustack_task_size(struct pt_regs *regs)
5976 {
5977         unsigned long addr = perf_user_stack_pointer(regs);
5978
5979         if (!addr || addr >= TASK_SIZE)
5980                 return 0;
5981
5982         return TASK_SIZE - addr;
5983 }
5984
5985 static u16
5986 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5987                         struct pt_regs *regs)
5988 {
5989         u64 task_size;
5990
5991         /* No regs, no stack pointer, no dump. */
5992         if (!regs)
5993                 return 0;
5994
5995         /*
5996          * Check if we fit in with the requested stack size into the:
5997          * - TASK_SIZE
5998          *   If we don't, we limit the size to the TASK_SIZE.
5999          *
6000          * - remaining sample size
6001          *   If we don't, we customize the stack size to
6002          *   fit in to the remaining sample size.
6003          */
6004
6005         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6006         stack_size = min(stack_size, (u16) task_size);
6007
6008         /* Current header size plus static size and dynamic size. */
6009         header_size += 2 * sizeof(u64);
6010
6011         /* Do we fit in with the current stack dump size? */
6012         if ((u16) (header_size + stack_size) < header_size) {
6013                 /*
6014                  * If we overflow the maximum size for the sample,
6015                  * we customize the stack dump size to fit in.
6016                  */
6017                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6018                 stack_size = round_up(stack_size, sizeof(u64));
6019         }
6020
6021         return stack_size;
6022 }
6023
6024 static void
6025 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6026                           struct pt_regs *regs)
6027 {
6028         /* Case of a kernel thread, nothing to dump */
6029         if (!regs) {
6030                 u64 size = 0;
6031                 perf_output_put(handle, size);
6032         } else {
6033                 unsigned long sp;
6034                 unsigned int rem;
6035                 u64 dyn_size;
6036                 mm_segment_t fs;
6037
6038                 /*
6039                  * We dump:
6040                  * static size
6041                  *   - the size requested by user or the best one we can fit
6042                  *     in to the sample max size
6043                  * data
6044                  *   - user stack dump data
6045                  * dynamic size
6046                  *   - the actual dumped size
6047                  */
6048
6049                 /* Static size. */
6050                 perf_output_put(handle, dump_size);
6051
6052                 /* Data. */
6053                 sp = perf_user_stack_pointer(regs);
6054                 fs = get_fs();
6055                 set_fs(USER_DS);
6056                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6057                 set_fs(fs);
6058                 dyn_size = dump_size - rem;
6059
6060                 perf_output_skip(handle, rem);
6061
6062                 /* Dynamic size. */
6063                 perf_output_put(handle, dyn_size);
6064         }
6065 }
6066
6067 static void __perf_event_header__init_id(struct perf_event_header *header,
6068                                          struct perf_sample_data *data,
6069                                          struct perf_event *event)
6070 {
6071         u64 sample_type = event->attr.sample_type;
6072
6073         data->type = sample_type;
6074         header->size += event->id_header_size;
6075
6076         if (sample_type & PERF_SAMPLE_TID) {
6077                 /* namespace issues */
6078                 data->tid_entry.pid = perf_event_pid(event, current);
6079                 data->tid_entry.tid = perf_event_tid(event, current);
6080         }
6081
6082         if (sample_type & PERF_SAMPLE_TIME)
6083                 data->time = perf_event_clock(event);
6084
6085         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6086                 data->id = primary_event_id(event);
6087
6088         if (sample_type & PERF_SAMPLE_STREAM_ID)
6089                 data->stream_id = event->id;
6090
6091         if (sample_type & PERF_SAMPLE_CPU) {
6092                 data->cpu_entry.cpu      = raw_smp_processor_id();
6093                 data->cpu_entry.reserved = 0;
6094         }
6095 }
6096
6097 void perf_event_header__init_id(struct perf_event_header *header,
6098                                 struct perf_sample_data *data,
6099                                 struct perf_event *event)
6100 {
6101         if (event->attr.sample_id_all)
6102                 __perf_event_header__init_id(header, data, event);
6103 }
6104
6105 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6106                                            struct perf_sample_data *data)
6107 {
6108         u64 sample_type = data->type;
6109
6110         if (sample_type & PERF_SAMPLE_TID)
6111                 perf_output_put(handle, data->tid_entry);
6112
6113         if (sample_type & PERF_SAMPLE_TIME)
6114                 perf_output_put(handle, data->time);
6115
6116         if (sample_type & PERF_SAMPLE_ID)
6117                 perf_output_put(handle, data->id);
6118
6119         if (sample_type & PERF_SAMPLE_STREAM_ID)
6120                 perf_output_put(handle, data->stream_id);
6121
6122         if (sample_type & PERF_SAMPLE_CPU)
6123                 perf_output_put(handle, data->cpu_entry);
6124
6125         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6126                 perf_output_put(handle, data->id);
6127 }
6128
6129 void perf_event__output_id_sample(struct perf_event *event,
6130                                   struct perf_output_handle *handle,
6131                                   struct perf_sample_data *sample)
6132 {
6133         if (event->attr.sample_id_all)
6134                 __perf_event__output_id_sample(handle, sample);
6135 }
6136
6137 static void perf_output_read_one(struct perf_output_handle *handle,
6138                                  struct perf_event *event,
6139                                  u64 enabled, u64 running)
6140 {
6141         u64 read_format = event->attr.read_format;
6142         u64 values[4];
6143         int n = 0;
6144
6145         values[n++] = perf_event_count(event);
6146         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6147                 values[n++] = enabled +
6148                         atomic64_read(&event->child_total_time_enabled);
6149         }
6150         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6151                 values[n++] = running +
6152                         atomic64_read(&event->child_total_time_running);
6153         }
6154         if (read_format & PERF_FORMAT_ID)
6155                 values[n++] = primary_event_id(event);
6156
6157         __output_copy(handle, values, n * sizeof(u64));
6158 }
6159
6160 static void perf_output_read_group(struct perf_output_handle *handle,
6161                             struct perf_event *event,
6162                             u64 enabled, u64 running)
6163 {
6164         struct perf_event *leader = event->group_leader, *sub;
6165         u64 read_format = event->attr.read_format;
6166         u64 values[5];
6167         int n = 0;
6168
6169         values[n++] = 1 + leader->nr_siblings;
6170
6171         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6172                 values[n++] = enabled;
6173
6174         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6175                 values[n++] = running;
6176
6177         if ((leader != event) &&
6178             (leader->state == PERF_EVENT_STATE_ACTIVE))
6179                 leader->pmu->read(leader);
6180
6181         values[n++] = perf_event_count(leader);
6182         if (read_format & PERF_FORMAT_ID)
6183                 values[n++] = primary_event_id(leader);
6184
6185         __output_copy(handle, values, n * sizeof(u64));
6186
6187         for_each_sibling_event(sub, leader) {
6188                 n = 0;
6189
6190                 if ((sub != event) &&
6191                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6192                         sub->pmu->read(sub);
6193
6194                 values[n++] = perf_event_count(sub);
6195                 if (read_format & PERF_FORMAT_ID)
6196                         values[n++] = primary_event_id(sub);
6197
6198                 __output_copy(handle, values, n * sizeof(u64));
6199         }
6200 }
6201
6202 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6203                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6204
6205 /*
6206  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6207  *
6208  * The problem is that its both hard and excessively expensive to iterate the
6209  * child list, not to mention that its impossible to IPI the children running
6210  * on another CPU, from interrupt/NMI context.
6211  */
6212 static void perf_output_read(struct perf_output_handle *handle,
6213                              struct perf_event *event)
6214 {
6215         u64 enabled = 0, running = 0, now;
6216         u64 read_format = event->attr.read_format;
6217
6218         /*
6219          * compute total_time_enabled, total_time_running
6220          * based on snapshot values taken when the event
6221          * was last scheduled in.
6222          *
6223          * we cannot simply called update_context_time()
6224          * because of locking issue as we are called in
6225          * NMI context
6226          */
6227         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6228                 calc_timer_values(event, &now, &enabled, &running);
6229
6230         if (event->attr.read_format & PERF_FORMAT_GROUP)
6231                 perf_output_read_group(handle, event, enabled, running);
6232         else
6233                 perf_output_read_one(handle, event, enabled, running);
6234 }
6235
6236 void perf_output_sample(struct perf_output_handle *handle,
6237                         struct perf_event_header *header,
6238                         struct perf_sample_data *data,
6239                         struct perf_event *event)
6240 {
6241         u64 sample_type = data->type;
6242
6243         perf_output_put(handle, *header);
6244
6245         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6246                 perf_output_put(handle, data->id);
6247
6248         if (sample_type & PERF_SAMPLE_IP)
6249                 perf_output_put(handle, data->ip);
6250
6251         if (sample_type & PERF_SAMPLE_TID)
6252                 perf_output_put(handle, data->tid_entry);
6253
6254         if (sample_type & PERF_SAMPLE_TIME)
6255                 perf_output_put(handle, data->time);
6256
6257         if (sample_type & PERF_SAMPLE_ADDR)
6258                 perf_output_put(handle, data->addr);
6259
6260         if (sample_type & PERF_SAMPLE_ID)
6261                 perf_output_put(handle, data->id);
6262
6263         if (sample_type & PERF_SAMPLE_STREAM_ID)
6264                 perf_output_put(handle, data->stream_id);
6265
6266         if (sample_type & PERF_SAMPLE_CPU)
6267                 perf_output_put(handle, data->cpu_entry);
6268
6269         if (sample_type & PERF_SAMPLE_PERIOD)
6270                 perf_output_put(handle, data->period);
6271
6272         if (sample_type & PERF_SAMPLE_READ)
6273                 perf_output_read(handle, event);
6274
6275         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6276                 int size = 1;
6277
6278                 size += data->callchain->nr;
6279                 size *= sizeof(u64);
6280                 __output_copy(handle, data->callchain, size);
6281         }
6282
6283         if (sample_type & PERF_SAMPLE_RAW) {
6284                 struct perf_raw_record *raw = data->raw;
6285
6286                 if (raw) {
6287                         struct perf_raw_frag *frag = &raw->frag;
6288
6289                         perf_output_put(handle, raw->size);
6290                         do {
6291                                 if (frag->copy) {
6292                                         __output_custom(handle, frag->copy,
6293                                                         frag->data, frag->size);
6294                                 } else {
6295                                         __output_copy(handle, frag->data,
6296                                                       frag->size);
6297                                 }
6298                                 if (perf_raw_frag_last(frag))
6299                                         break;
6300                                 frag = frag->next;
6301                         } while (1);
6302                         if (frag->pad)
6303                                 __output_skip(handle, NULL, frag->pad);
6304                 } else {
6305                         struct {
6306                                 u32     size;
6307                                 u32     data;
6308                         } raw = {
6309                                 .size = sizeof(u32),
6310                                 .data = 0,
6311                         };
6312                         perf_output_put(handle, raw);
6313                 }
6314         }
6315
6316         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6317                 if (data->br_stack) {
6318                         size_t size;
6319
6320                         size = data->br_stack->nr
6321                              * sizeof(struct perf_branch_entry);
6322
6323                         perf_output_put(handle, data->br_stack->nr);
6324                         perf_output_copy(handle, data->br_stack->entries, size);
6325                 } else {
6326                         /*
6327                          * we always store at least the value of nr
6328                          */
6329                         u64 nr = 0;
6330                         perf_output_put(handle, nr);
6331                 }
6332         }
6333
6334         if (sample_type & PERF_SAMPLE_REGS_USER) {
6335                 u64 abi = data->regs_user.abi;
6336
6337                 /*
6338                  * If there are no regs to dump, notice it through
6339                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6340                  */
6341                 perf_output_put(handle, abi);
6342
6343                 if (abi) {
6344                         u64 mask = event->attr.sample_regs_user;
6345                         perf_output_sample_regs(handle,
6346                                                 data->regs_user.regs,
6347                                                 mask);
6348                 }
6349         }
6350
6351         if (sample_type & PERF_SAMPLE_STACK_USER) {
6352                 perf_output_sample_ustack(handle,
6353                                           data->stack_user_size,
6354                                           data->regs_user.regs);
6355         }
6356
6357         if (sample_type & PERF_SAMPLE_WEIGHT)
6358                 perf_output_put(handle, data->weight);
6359
6360         if (sample_type & PERF_SAMPLE_DATA_SRC)
6361                 perf_output_put(handle, data->data_src.val);
6362
6363         if (sample_type & PERF_SAMPLE_TRANSACTION)
6364                 perf_output_put(handle, data->txn);
6365
6366         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6367                 u64 abi = data->regs_intr.abi;
6368                 /*
6369                  * If there are no regs to dump, notice it through
6370                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6371                  */
6372                 perf_output_put(handle, abi);
6373
6374                 if (abi) {
6375                         u64 mask = event->attr.sample_regs_intr;
6376
6377                         perf_output_sample_regs(handle,
6378                                                 data->regs_intr.regs,
6379                                                 mask);
6380                 }
6381         }
6382
6383         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6384                 perf_output_put(handle, data->phys_addr);
6385
6386         if (!event->attr.watermark) {
6387                 int wakeup_events = event->attr.wakeup_events;
6388
6389                 if (wakeup_events) {
6390                         struct ring_buffer *rb = handle->rb;
6391                         int events = local_inc_return(&rb->events);
6392
6393                         if (events >= wakeup_events) {
6394                                 local_sub(wakeup_events, &rb->events);
6395                                 local_inc(&rb->wakeup);
6396                         }
6397                 }
6398         }
6399 }
6400
6401 static u64 perf_virt_to_phys(u64 virt)
6402 {
6403         u64 phys_addr = 0;
6404         struct page *p = NULL;
6405
6406         if (!virt)
6407                 return 0;
6408
6409         if (virt >= TASK_SIZE) {
6410                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6411                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6412                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6413                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6414         } else {
6415                 /*
6416                  * Walking the pages tables for user address.
6417                  * Interrupts are disabled, so it prevents any tear down
6418                  * of the page tables.
6419                  * Try IRQ-safe __get_user_pages_fast first.
6420                  * If failed, leave phys_addr as 0.
6421                  */
6422                 if ((current->mm != NULL) &&
6423                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6424                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6425
6426                 if (p)
6427                         put_page(p);
6428         }
6429
6430         return phys_addr;
6431 }
6432
6433 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6434
6435 struct perf_callchain_entry *
6436 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6437 {
6438         bool kernel = !event->attr.exclude_callchain_kernel;
6439         bool user   = !event->attr.exclude_callchain_user;
6440         /* Disallow cross-task user callchains. */
6441         bool crosstask = event->ctx->task && event->ctx->task != current;
6442         const u32 max_stack = event->attr.sample_max_stack;
6443         struct perf_callchain_entry *callchain;
6444
6445         if (!kernel && !user)
6446                 return &__empty_callchain;
6447
6448         callchain = get_perf_callchain(regs, 0, kernel, user,
6449                                        max_stack, crosstask, true);
6450         return callchain ?: &__empty_callchain;
6451 }
6452
6453 void perf_prepare_sample(struct perf_event_header *header,
6454                          struct perf_sample_data *data,
6455                          struct perf_event *event,
6456                          struct pt_regs *regs)
6457 {
6458         u64 sample_type = event->attr.sample_type;
6459
6460         header->type = PERF_RECORD_SAMPLE;
6461         header->size = sizeof(*header) + event->header_size;
6462
6463         header->misc = 0;
6464         header->misc |= perf_misc_flags(regs);
6465
6466         __perf_event_header__init_id(header, data, event);
6467
6468         if (sample_type & PERF_SAMPLE_IP)
6469                 data->ip = perf_instruction_pointer(regs);
6470
6471         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6472                 int size = 1;
6473
6474                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6475                         data->callchain = perf_callchain(event, regs);
6476
6477                 size += data->callchain->nr;
6478
6479                 header->size += size * sizeof(u64);
6480         }
6481
6482         if (sample_type & PERF_SAMPLE_RAW) {
6483                 struct perf_raw_record *raw = data->raw;
6484                 int size;
6485
6486                 if (raw) {
6487                         struct perf_raw_frag *frag = &raw->frag;
6488                         u32 sum = 0;
6489
6490                         do {
6491                                 sum += frag->size;
6492                                 if (perf_raw_frag_last(frag))
6493                                         break;
6494                                 frag = frag->next;
6495                         } while (1);
6496
6497                         size = round_up(sum + sizeof(u32), sizeof(u64));
6498                         raw->size = size - sizeof(u32);
6499                         frag->pad = raw->size - sum;
6500                 } else {
6501                         size = sizeof(u64);
6502                 }
6503
6504                 header->size += size;
6505         }
6506
6507         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6508                 int size = sizeof(u64); /* nr */
6509                 if (data->br_stack) {
6510                         size += data->br_stack->nr
6511                               * sizeof(struct perf_branch_entry);
6512                 }
6513                 header->size += size;
6514         }
6515
6516         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6517                 perf_sample_regs_user(&data->regs_user, regs,
6518                                       &data->regs_user_copy);
6519
6520         if (sample_type & PERF_SAMPLE_REGS_USER) {
6521                 /* regs dump ABI info */
6522                 int size = sizeof(u64);
6523
6524                 if (data->regs_user.regs) {
6525                         u64 mask = event->attr.sample_regs_user;
6526                         size += hweight64(mask) * sizeof(u64);
6527                 }
6528
6529                 header->size += size;
6530         }
6531
6532         if (sample_type & PERF_SAMPLE_STACK_USER) {
6533                 /*
6534                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6535                  * processed as the last one or have additional check added
6536                  * in case new sample type is added, because we could eat
6537                  * up the rest of the sample size.
6538                  */
6539                 u16 stack_size = event->attr.sample_stack_user;
6540                 u16 size = sizeof(u64);
6541
6542                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6543                                                      data->regs_user.regs);
6544
6545                 /*
6546                  * If there is something to dump, add space for the dump
6547                  * itself and for the field that tells the dynamic size,
6548                  * which is how many have been actually dumped.
6549                  */
6550                 if (stack_size)
6551                         size += sizeof(u64) + stack_size;
6552
6553                 data->stack_user_size = stack_size;
6554                 header->size += size;
6555         }
6556
6557         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6558                 /* regs dump ABI info */
6559                 int size = sizeof(u64);
6560
6561                 perf_sample_regs_intr(&data->regs_intr, regs);
6562
6563                 if (data->regs_intr.regs) {
6564                         u64 mask = event->attr.sample_regs_intr;
6565
6566                         size += hweight64(mask) * sizeof(u64);
6567                 }
6568
6569                 header->size += size;
6570         }
6571
6572         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6573                 data->phys_addr = perf_virt_to_phys(data->addr);
6574 }
6575
6576 static __always_inline int
6577 __perf_event_output(struct perf_event *event,
6578                     struct perf_sample_data *data,
6579                     struct pt_regs *regs,
6580                     int (*output_begin)(struct perf_output_handle *,
6581                                         struct perf_event *,
6582                                         unsigned int))
6583 {
6584         struct perf_output_handle handle;
6585         struct perf_event_header header;
6586         int err;
6587
6588         /* protect the callchain buffers */
6589         rcu_read_lock();
6590
6591         perf_prepare_sample(&header, data, event, regs);
6592
6593         err = output_begin(&handle, event, header.size);
6594         if (err)
6595                 goto exit;
6596
6597         perf_output_sample(&handle, &header, data, event);
6598
6599         perf_output_end(&handle);
6600
6601 exit:
6602         rcu_read_unlock();
6603         return err;
6604 }
6605
6606 void
6607 perf_event_output_forward(struct perf_event *event,
6608                          struct perf_sample_data *data,
6609                          struct pt_regs *regs)
6610 {
6611         __perf_event_output(event, data, regs, perf_output_begin_forward);
6612 }
6613
6614 void
6615 perf_event_output_backward(struct perf_event *event,
6616                            struct perf_sample_data *data,
6617                            struct pt_regs *regs)
6618 {
6619         __perf_event_output(event, data, regs, perf_output_begin_backward);
6620 }
6621
6622 int
6623 perf_event_output(struct perf_event *event,
6624                   struct perf_sample_data *data,
6625                   struct pt_regs *regs)
6626 {
6627         return __perf_event_output(event, data, regs, perf_output_begin);
6628 }
6629
6630 /*
6631  * read event_id
6632  */
6633
6634 struct perf_read_event {
6635         struct perf_event_header        header;
6636
6637         u32                             pid;
6638         u32                             tid;
6639 };
6640
6641 static void
6642 perf_event_read_event(struct perf_event *event,
6643                         struct task_struct *task)
6644 {
6645         struct perf_output_handle handle;
6646         struct perf_sample_data sample;
6647         struct perf_read_event read_event = {
6648                 .header = {
6649                         .type = PERF_RECORD_READ,
6650                         .misc = 0,
6651                         .size = sizeof(read_event) + event->read_size,
6652                 },
6653                 .pid = perf_event_pid(event, task),
6654                 .tid = perf_event_tid(event, task),
6655         };
6656         int ret;
6657
6658         perf_event_header__init_id(&read_event.header, &sample, event);
6659         ret = perf_output_begin(&handle, event, read_event.header.size);
6660         if (ret)
6661                 return;
6662
6663         perf_output_put(&handle, read_event);
6664         perf_output_read(&handle, event);
6665         perf_event__output_id_sample(event, &handle, &sample);
6666
6667         perf_output_end(&handle);
6668 }
6669
6670 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6671
6672 static void
6673 perf_iterate_ctx(struct perf_event_context *ctx,
6674                    perf_iterate_f output,
6675                    void *data, bool all)
6676 {
6677         struct perf_event *event;
6678
6679         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6680                 if (!all) {
6681                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6682                                 continue;
6683                         if (!event_filter_match(event))
6684                                 continue;
6685                 }
6686
6687                 output(event, data);
6688         }
6689 }
6690
6691 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6692 {
6693         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6694         struct perf_event *event;
6695
6696         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6697                 /*
6698                  * Skip events that are not fully formed yet; ensure that
6699                  * if we observe event->ctx, both event and ctx will be
6700                  * complete enough. See perf_install_in_context().
6701                  */
6702                 if (!smp_load_acquire(&event->ctx))
6703                         continue;
6704
6705                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6706                         continue;
6707                 if (!event_filter_match(event))
6708                         continue;
6709                 output(event, data);
6710         }
6711 }
6712
6713 /*
6714  * Iterate all events that need to receive side-band events.
6715  *
6716  * For new callers; ensure that account_pmu_sb_event() includes
6717  * your event, otherwise it might not get delivered.
6718  */
6719 static void
6720 perf_iterate_sb(perf_iterate_f output, void *data,
6721                struct perf_event_context *task_ctx)
6722 {
6723         struct perf_event_context *ctx;
6724         int ctxn;
6725
6726         rcu_read_lock();
6727         preempt_disable();
6728
6729         /*
6730          * If we have task_ctx != NULL we only notify the task context itself.
6731          * The task_ctx is set only for EXIT events before releasing task
6732          * context.
6733          */
6734         if (task_ctx) {
6735                 perf_iterate_ctx(task_ctx, output, data, false);
6736                 goto done;
6737         }
6738
6739         perf_iterate_sb_cpu(output, data);
6740
6741         for_each_task_context_nr(ctxn) {
6742                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6743                 if (ctx)
6744                         perf_iterate_ctx(ctx, output, data, false);
6745         }
6746 done:
6747         preempt_enable();
6748         rcu_read_unlock();
6749 }
6750
6751 /*
6752  * Clear all file-based filters at exec, they'll have to be
6753  * re-instated when/if these objects are mmapped again.
6754  */
6755 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6756 {
6757         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6758         struct perf_addr_filter *filter;
6759         unsigned int restart = 0, count = 0;
6760         unsigned long flags;
6761
6762         if (!has_addr_filter(event))
6763                 return;
6764
6765         raw_spin_lock_irqsave(&ifh->lock, flags);
6766         list_for_each_entry(filter, &ifh->list, entry) {
6767                 if (filter->path.dentry) {
6768                         event->addr_filter_ranges[count].start = 0;
6769                         event->addr_filter_ranges[count].size = 0;
6770                         restart++;
6771                 }
6772
6773                 count++;
6774         }
6775
6776         if (restart)
6777                 event->addr_filters_gen++;
6778         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6779
6780         if (restart)
6781                 perf_event_stop(event, 1);
6782 }
6783
6784 void perf_event_exec(void)
6785 {
6786         struct perf_event_context *ctx;
6787         int ctxn;
6788
6789         rcu_read_lock();
6790         for_each_task_context_nr(ctxn) {
6791                 ctx = current->perf_event_ctxp[ctxn];
6792                 if (!ctx)
6793                         continue;
6794
6795                 perf_event_enable_on_exec(ctxn);
6796
6797                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6798                                    true);
6799         }
6800         rcu_read_unlock();
6801 }
6802
6803 struct remote_output {
6804         struct ring_buffer      *rb;
6805         int                     err;
6806 };
6807
6808 static void __perf_event_output_stop(struct perf_event *event, void *data)
6809 {
6810         struct perf_event *parent = event->parent;
6811         struct remote_output *ro = data;
6812         struct ring_buffer *rb = ro->rb;
6813         struct stop_event_data sd = {
6814                 .event  = event,
6815         };
6816
6817         if (!has_aux(event))
6818                 return;
6819
6820         if (!parent)
6821                 parent = event;
6822
6823         /*
6824          * In case of inheritance, it will be the parent that links to the
6825          * ring-buffer, but it will be the child that's actually using it.
6826          *
6827          * We are using event::rb to determine if the event should be stopped,
6828          * however this may race with ring_buffer_attach() (through set_output),
6829          * which will make us skip the event that actually needs to be stopped.
6830          * So ring_buffer_attach() has to stop an aux event before re-assigning
6831          * its rb pointer.
6832          */
6833         if (rcu_dereference(parent->rb) == rb)
6834                 ro->err = __perf_event_stop(&sd);
6835 }
6836
6837 static int __perf_pmu_output_stop(void *info)
6838 {
6839         struct perf_event *event = info;
6840         struct pmu *pmu = event->pmu;
6841         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6842         struct remote_output ro = {
6843                 .rb     = event->rb,
6844         };
6845
6846         rcu_read_lock();
6847         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6848         if (cpuctx->task_ctx)
6849                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6850                                    &ro, false);
6851         rcu_read_unlock();
6852
6853         return ro.err;
6854 }
6855
6856 static void perf_pmu_output_stop(struct perf_event *event)
6857 {
6858         struct perf_event *iter;
6859         int err, cpu;
6860
6861 restart:
6862         rcu_read_lock();
6863         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6864                 /*
6865                  * For per-CPU events, we need to make sure that neither they
6866                  * nor their children are running; for cpu==-1 events it's
6867                  * sufficient to stop the event itself if it's active, since
6868                  * it can't have children.
6869                  */
6870                 cpu = iter->cpu;
6871                 if (cpu == -1)
6872                         cpu = READ_ONCE(iter->oncpu);
6873
6874                 if (cpu == -1)
6875                         continue;
6876
6877                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6878                 if (err == -EAGAIN) {
6879                         rcu_read_unlock();
6880                         goto restart;
6881                 }
6882         }
6883         rcu_read_unlock();
6884 }
6885
6886 /*
6887  * task tracking -- fork/exit
6888  *
6889  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6890  */
6891
6892 struct perf_task_event {
6893         struct task_struct              *task;
6894         struct perf_event_context       *task_ctx;
6895
6896         struct {
6897                 struct perf_event_header        header;
6898
6899                 u32                             pid;
6900                 u32                             ppid;
6901                 u32                             tid;
6902                 u32                             ptid;
6903                 u64                             time;
6904         } event_id;
6905 };
6906
6907 static int perf_event_task_match(struct perf_event *event)
6908 {
6909         return event->attr.comm  || event->attr.mmap ||
6910                event->attr.mmap2 || event->attr.mmap_data ||
6911                event->attr.task;
6912 }
6913
6914 static void perf_event_task_output(struct perf_event *event,
6915                                    void *data)
6916 {
6917         struct perf_task_event *task_event = data;
6918         struct perf_output_handle handle;
6919         struct perf_sample_data sample;
6920         struct task_struct *task = task_event->task;
6921         int ret, size = task_event->event_id.header.size;
6922
6923         if (!perf_event_task_match(event))
6924                 return;
6925
6926         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6927
6928         ret = perf_output_begin(&handle, event,
6929                                 task_event->event_id.header.size);
6930         if (ret)
6931                 goto out;
6932
6933         task_event->event_id.pid = perf_event_pid(event, task);
6934         task_event->event_id.ppid = perf_event_pid(event, current);
6935
6936         task_event->event_id.tid = perf_event_tid(event, task);
6937         task_event->event_id.ptid = perf_event_tid(event, current);
6938
6939         task_event->event_id.time = perf_event_clock(event);
6940
6941         perf_output_put(&handle, task_event->event_id);
6942
6943         perf_event__output_id_sample(event, &handle, &sample);
6944
6945         perf_output_end(&handle);
6946 out:
6947         task_event->event_id.header.size = size;
6948 }
6949
6950 static void perf_event_task(struct task_struct *task,
6951                               struct perf_event_context *task_ctx,
6952                               int new)
6953 {
6954         struct perf_task_event task_event;
6955
6956         if (!atomic_read(&nr_comm_events) &&
6957             !atomic_read(&nr_mmap_events) &&
6958             !atomic_read(&nr_task_events))
6959                 return;
6960
6961         task_event = (struct perf_task_event){
6962                 .task     = task,
6963                 .task_ctx = task_ctx,
6964                 .event_id    = {
6965                         .header = {
6966                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6967                                 .misc = 0,
6968                                 .size = sizeof(task_event.event_id),
6969                         },
6970                         /* .pid  */
6971                         /* .ppid */
6972                         /* .tid  */
6973                         /* .ptid */
6974                         /* .time */
6975                 },
6976         };
6977
6978         perf_iterate_sb(perf_event_task_output,
6979                        &task_event,
6980                        task_ctx);
6981 }
6982
6983 void perf_event_fork(struct task_struct *task)
6984 {
6985         perf_event_task(task, NULL, 1);
6986         perf_event_namespaces(task);
6987 }
6988
6989 /*
6990  * comm tracking
6991  */
6992
6993 struct perf_comm_event {
6994         struct task_struct      *task;
6995         char                    *comm;
6996         int                     comm_size;
6997
6998         struct {
6999                 struct perf_event_header        header;
7000
7001                 u32                             pid;
7002                 u32                             tid;
7003         } event_id;
7004 };
7005
7006 static int perf_event_comm_match(struct perf_event *event)
7007 {
7008         return event->attr.comm;
7009 }
7010
7011 static void perf_event_comm_output(struct perf_event *event,
7012                                    void *data)
7013 {
7014         struct perf_comm_event *comm_event = data;
7015         struct perf_output_handle handle;
7016         struct perf_sample_data sample;
7017         int size = comm_event->event_id.header.size;
7018         int ret;
7019
7020         if (!perf_event_comm_match(event))
7021                 return;
7022
7023         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7024         ret = perf_output_begin(&handle, event,
7025                                 comm_event->event_id.header.size);
7026
7027         if (ret)
7028                 goto out;
7029
7030         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7031         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7032
7033         perf_output_put(&handle, comm_event->event_id);
7034         __output_copy(&handle, comm_event->comm,
7035                                    comm_event->comm_size);
7036
7037         perf_event__output_id_sample(event, &handle, &sample);
7038
7039         perf_output_end(&handle);
7040 out:
7041         comm_event->event_id.header.size = size;
7042 }
7043
7044 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7045 {
7046         char comm[TASK_COMM_LEN];
7047         unsigned int size;
7048
7049         memset(comm, 0, sizeof(comm));
7050         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7051         size = ALIGN(strlen(comm)+1, sizeof(u64));
7052
7053         comm_event->comm = comm;
7054         comm_event->comm_size = size;
7055
7056         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7057
7058         perf_iterate_sb(perf_event_comm_output,
7059                        comm_event,
7060                        NULL);
7061 }
7062
7063 void perf_event_comm(struct task_struct *task, bool exec)
7064 {
7065         struct perf_comm_event comm_event;
7066
7067         if (!atomic_read(&nr_comm_events))
7068                 return;
7069
7070         comm_event = (struct perf_comm_event){
7071                 .task   = task,
7072                 /* .comm      */
7073                 /* .comm_size */
7074                 .event_id  = {
7075                         .header = {
7076                                 .type = PERF_RECORD_COMM,
7077                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7078                                 /* .size */
7079                         },
7080                         /* .pid */
7081                         /* .tid */
7082                 },
7083         };
7084
7085         perf_event_comm_event(&comm_event);
7086 }
7087
7088 /*
7089  * namespaces tracking
7090  */
7091
7092 struct perf_namespaces_event {
7093         struct task_struct              *task;
7094
7095         struct {
7096                 struct perf_event_header        header;
7097
7098                 u32                             pid;
7099                 u32                             tid;
7100                 u64                             nr_namespaces;
7101                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7102         } event_id;
7103 };
7104
7105 static int perf_event_namespaces_match(struct perf_event *event)
7106 {
7107         return event->attr.namespaces;
7108 }
7109
7110 static void perf_event_namespaces_output(struct perf_event *event,
7111                                          void *data)
7112 {
7113         struct perf_namespaces_event *namespaces_event = data;
7114         struct perf_output_handle handle;
7115         struct perf_sample_data sample;
7116         u16 header_size = namespaces_event->event_id.header.size;
7117         int ret;
7118
7119         if (!perf_event_namespaces_match(event))
7120                 return;
7121
7122         perf_event_header__init_id(&namespaces_event->event_id.header,
7123                                    &sample, event);
7124         ret = perf_output_begin(&handle, event,
7125                                 namespaces_event->event_id.header.size);
7126         if (ret)
7127                 goto out;
7128
7129         namespaces_event->event_id.pid = perf_event_pid(event,
7130                                                         namespaces_event->task);
7131         namespaces_event->event_id.tid = perf_event_tid(event,
7132                                                         namespaces_event->task);
7133
7134         perf_output_put(&handle, namespaces_event->event_id);
7135
7136         perf_event__output_id_sample(event, &handle, &sample);
7137
7138         perf_output_end(&handle);
7139 out:
7140         namespaces_event->event_id.header.size = header_size;
7141 }
7142
7143 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7144                                    struct task_struct *task,
7145                                    const struct proc_ns_operations *ns_ops)
7146 {
7147         struct path ns_path;
7148         struct inode *ns_inode;
7149         void *error;
7150
7151         error = ns_get_path(&ns_path, task, ns_ops);
7152         if (!error) {
7153                 ns_inode = ns_path.dentry->d_inode;
7154                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7155                 ns_link_info->ino = ns_inode->i_ino;
7156                 path_put(&ns_path);
7157         }
7158 }
7159
7160 void perf_event_namespaces(struct task_struct *task)
7161 {
7162         struct perf_namespaces_event namespaces_event;
7163         struct perf_ns_link_info *ns_link_info;
7164
7165         if (!atomic_read(&nr_namespaces_events))
7166                 return;
7167
7168         namespaces_event = (struct perf_namespaces_event){
7169                 .task   = task,
7170                 .event_id  = {
7171                         .header = {
7172                                 .type = PERF_RECORD_NAMESPACES,
7173                                 .misc = 0,
7174                                 .size = sizeof(namespaces_event.event_id),
7175                         },
7176                         /* .pid */
7177                         /* .tid */
7178                         .nr_namespaces = NR_NAMESPACES,
7179                         /* .link_info[NR_NAMESPACES] */
7180                 },
7181         };
7182
7183         ns_link_info = namespaces_event.event_id.link_info;
7184
7185         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7186                                task, &mntns_operations);
7187
7188 #ifdef CONFIG_USER_NS
7189         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7190                                task, &userns_operations);
7191 #endif
7192 #ifdef CONFIG_NET_NS
7193         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7194                                task, &netns_operations);
7195 #endif
7196 #ifdef CONFIG_UTS_NS
7197         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7198                                task, &utsns_operations);
7199 #endif
7200 #ifdef CONFIG_IPC_NS
7201         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7202                                task, &ipcns_operations);
7203 #endif
7204 #ifdef CONFIG_PID_NS
7205         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7206                                task, &pidns_operations);
7207 #endif
7208 #ifdef CONFIG_CGROUPS
7209         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7210                                task, &cgroupns_operations);
7211 #endif
7212
7213         perf_iterate_sb(perf_event_namespaces_output,
7214                         &namespaces_event,
7215                         NULL);
7216 }
7217
7218 /*
7219  * mmap tracking
7220  */
7221
7222 struct perf_mmap_event {
7223         struct vm_area_struct   *vma;
7224
7225         const char              *file_name;
7226         int                     file_size;
7227         int                     maj, min;
7228         u64                     ino;
7229         u64                     ino_generation;
7230         u32                     prot, flags;
7231
7232         struct {
7233                 struct perf_event_header        header;
7234
7235                 u32                             pid;
7236                 u32                             tid;
7237                 u64                             start;
7238                 u64                             len;
7239                 u64                             pgoff;
7240         } event_id;
7241 };
7242
7243 static int perf_event_mmap_match(struct perf_event *event,
7244                                  void *data)
7245 {
7246         struct perf_mmap_event *mmap_event = data;
7247         struct vm_area_struct *vma = mmap_event->vma;
7248         int executable = vma->vm_flags & VM_EXEC;
7249
7250         return (!executable && event->attr.mmap_data) ||
7251                (executable && (event->attr.mmap || event->attr.mmap2));
7252 }
7253
7254 static void perf_event_mmap_output(struct perf_event *event,
7255                                    void *data)
7256 {
7257         struct perf_mmap_event *mmap_event = data;
7258         struct perf_output_handle handle;
7259         struct perf_sample_data sample;
7260         int size = mmap_event->event_id.header.size;
7261         u32 type = mmap_event->event_id.header.type;
7262         int ret;
7263
7264         if (!perf_event_mmap_match(event, data))
7265                 return;
7266
7267         if (event->attr.mmap2) {
7268                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7269                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7270                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7271                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7272                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7273                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7274                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7275         }
7276
7277         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7278         ret = perf_output_begin(&handle, event,
7279                                 mmap_event->event_id.header.size);
7280         if (ret)
7281                 goto out;
7282
7283         mmap_event->event_id.pid = perf_event_pid(event, current);
7284         mmap_event->event_id.tid = perf_event_tid(event, current);
7285
7286         perf_output_put(&handle, mmap_event->event_id);
7287
7288         if (event->attr.mmap2) {
7289                 perf_output_put(&handle, mmap_event->maj);
7290                 perf_output_put(&handle, mmap_event->min);
7291                 perf_output_put(&handle, mmap_event->ino);
7292                 perf_output_put(&handle, mmap_event->ino_generation);
7293                 perf_output_put(&handle, mmap_event->prot);
7294                 perf_output_put(&handle, mmap_event->flags);
7295         }
7296
7297         __output_copy(&handle, mmap_event->file_name,
7298                                    mmap_event->file_size);
7299
7300         perf_event__output_id_sample(event, &handle, &sample);
7301
7302         perf_output_end(&handle);
7303 out:
7304         mmap_event->event_id.header.size = size;
7305         mmap_event->event_id.header.type = type;
7306 }
7307
7308 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7309 {
7310         struct vm_area_struct *vma = mmap_event->vma;
7311         struct file *file = vma->vm_file;
7312         int maj = 0, min = 0;
7313         u64 ino = 0, gen = 0;
7314         u32 prot = 0, flags = 0;
7315         unsigned int size;
7316         char tmp[16];
7317         char *buf = NULL;
7318         char *name;
7319
7320         if (vma->vm_flags & VM_READ)
7321                 prot |= PROT_READ;
7322         if (vma->vm_flags & VM_WRITE)
7323                 prot |= PROT_WRITE;
7324         if (vma->vm_flags & VM_EXEC)
7325                 prot |= PROT_EXEC;
7326
7327         if (vma->vm_flags & VM_MAYSHARE)
7328                 flags = MAP_SHARED;
7329         else
7330                 flags = MAP_PRIVATE;
7331
7332         if (vma->vm_flags & VM_DENYWRITE)
7333                 flags |= MAP_DENYWRITE;
7334         if (vma->vm_flags & VM_MAYEXEC)
7335                 flags |= MAP_EXECUTABLE;
7336         if (vma->vm_flags & VM_LOCKED)
7337                 flags |= MAP_LOCKED;
7338         if (vma->vm_flags & VM_HUGETLB)
7339                 flags |= MAP_HUGETLB;
7340
7341         if (file) {
7342                 struct inode *inode;
7343                 dev_t dev;
7344
7345                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7346                 if (!buf) {
7347                         name = "//enomem";
7348                         goto cpy_name;
7349                 }
7350                 /*
7351                  * d_path() works from the end of the rb backwards, so we
7352                  * need to add enough zero bytes after the string to handle
7353                  * the 64bit alignment we do later.
7354                  */
7355                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7356                 if (IS_ERR(name)) {
7357                         name = "//toolong";
7358                         goto cpy_name;
7359                 }
7360                 inode = file_inode(vma->vm_file);
7361                 dev = inode->i_sb->s_dev;
7362                 ino = inode->i_ino;
7363                 gen = inode->i_generation;
7364                 maj = MAJOR(dev);
7365                 min = MINOR(dev);
7366
7367                 goto got_name;
7368         } else {
7369                 if (vma->vm_ops && vma->vm_ops->name) {
7370                         name = (char *) vma->vm_ops->name(vma);
7371                         if (name)
7372                                 goto cpy_name;
7373                 }
7374
7375                 name = (char *)arch_vma_name(vma);
7376                 if (name)
7377                         goto cpy_name;
7378
7379                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7380                                 vma->vm_end >= vma->vm_mm->brk) {
7381                         name = "[heap]";
7382                         goto cpy_name;
7383                 }
7384                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7385                                 vma->vm_end >= vma->vm_mm->start_stack) {
7386                         name = "[stack]";
7387                         goto cpy_name;
7388                 }
7389
7390                 name = "//anon";
7391                 goto cpy_name;
7392         }
7393
7394 cpy_name:
7395         strlcpy(tmp, name, sizeof(tmp));
7396         name = tmp;
7397 got_name:
7398         /*
7399          * Since our buffer works in 8 byte units we need to align our string
7400          * size to a multiple of 8. However, we must guarantee the tail end is
7401          * zero'd out to avoid leaking random bits to userspace.
7402          */
7403         size = strlen(name)+1;
7404         while (!IS_ALIGNED(size, sizeof(u64)))
7405                 name[size++] = '\0';
7406
7407         mmap_event->file_name = name;
7408         mmap_event->file_size = size;
7409         mmap_event->maj = maj;
7410         mmap_event->min = min;
7411         mmap_event->ino = ino;
7412         mmap_event->ino_generation = gen;
7413         mmap_event->prot = prot;
7414         mmap_event->flags = flags;
7415
7416         if (!(vma->vm_flags & VM_EXEC))
7417                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7418
7419         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7420
7421         perf_iterate_sb(perf_event_mmap_output,
7422                        mmap_event,
7423                        NULL);
7424
7425         kfree(buf);
7426 }
7427
7428 /*
7429  * Check whether inode and address range match filter criteria.
7430  */
7431 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7432                                      struct file *file, unsigned long offset,
7433                                      unsigned long size)
7434 {
7435         /* d_inode(NULL) won't be equal to any mapped user-space file */
7436         if (!filter->path.dentry)
7437                 return false;
7438
7439         if (d_inode(filter->path.dentry) != file_inode(file))
7440                 return false;
7441
7442         if (filter->offset > offset + size)
7443                 return false;
7444
7445         if (filter->offset + filter->size < offset)
7446                 return false;
7447
7448         return true;
7449 }
7450
7451 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7452                                         struct vm_area_struct *vma,
7453                                         struct perf_addr_filter_range *fr)
7454 {
7455         unsigned long vma_size = vma->vm_end - vma->vm_start;
7456         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7457         struct file *file = vma->vm_file;
7458
7459         if (!perf_addr_filter_match(filter, file, off, vma_size))
7460                 return false;
7461
7462         if (filter->offset < off) {
7463                 fr->start = vma->vm_start;
7464                 fr->size = min(vma_size, filter->size - (off - filter->offset));
7465         } else {
7466                 fr->start = vma->vm_start + filter->offset - off;
7467                 fr->size = min(vma->vm_end - fr->start, filter->size);
7468         }
7469
7470         return true;
7471 }
7472
7473 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7474 {
7475         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7476         struct vm_area_struct *vma = data;
7477         struct perf_addr_filter *filter;
7478         unsigned int restart = 0, count = 0;
7479         unsigned long flags;
7480
7481         if (!has_addr_filter(event))
7482                 return;
7483
7484         if (!vma->vm_file)
7485                 return;
7486
7487         raw_spin_lock_irqsave(&ifh->lock, flags);
7488         list_for_each_entry(filter, &ifh->list, entry) {
7489                 if (perf_addr_filter_vma_adjust(filter, vma,
7490                                                 &event->addr_filter_ranges[count]))
7491                         restart++;
7492
7493                 count++;
7494         }
7495
7496         if (restart)
7497                 event->addr_filters_gen++;
7498         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7499
7500         if (restart)
7501                 perf_event_stop(event, 1);
7502 }
7503
7504 /*
7505  * Adjust all task's events' filters to the new vma
7506  */
7507 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7508 {
7509         struct perf_event_context *ctx;
7510         int ctxn;
7511
7512         /*
7513          * Data tracing isn't supported yet and as such there is no need
7514          * to keep track of anything that isn't related to executable code:
7515          */
7516         if (!(vma->vm_flags & VM_EXEC))
7517                 return;
7518
7519         rcu_read_lock();
7520         for_each_task_context_nr(ctxn) {
7521                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7522                 if (!ctx)
7523                         continue;
7524
7525                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7526         }
7527         rcu_read_unlock();
7528 }
7529
7530 void perf_event_mmap(struct vm_area_struct *vma)
7531 {
7532         struct perf_mmap_event mmap_event;
7533
7534         if (!atomic_read(&nr_mmap_events))
7535                 return;
7536
7537         mmap_event = (struct perf_mmap_event){
7538                 .vma    = vma,
7539                 /* .file_name */
7540                 /* .file_size */
7541                 .event_id  = {
7542                         .header = {
7543                                 .type = PERF_RECORD_MMAP,
7544                                 .misc = PERF_RECORD_MISC_USER,
7545                                 /* .size */
7546                         },
7547                         /* .pid */
7548                         /* .tid */
7549                         .start  = vma->vm_start,
7550                         .len    = vma->vm_end - vma->vm_start,
7551                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7552                 },
7553                 /* .maj (attr_mmap2 only) */
7554                 /* .min (attr_mmap2 only) */
7555                 /* .ino (attr_mmap2 only) */
7556                 /* .ino_generation (attr_mmap2 only) */
7557                 /* .prot (attr_mmap2 only) */
7558                 /* .flags (attr_mmap2 only) */
7559         };
7560
7561         perf_addr_filters_adjust(vma);
7562         perf_event_mmap_event(&mmap_event);
7563 }
7564
7565 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7566                           unsigned long size, u64 flags)
7567 {
7568         struct perf_output_handle handle;
7569         struct perf_sample_data sample;
7570         struct perf_aux_event {
7571                 struct perf_event_header        header;
7572                 u64                             offset;
7573                 u64                             size;
7574                 u64                             flags;
7575         } rec = {
7576                 .header = {
7577                         .type = PERF_RECORD_AUX,
7578                         .misc = 0,
7579                         .size = sizeof(rec),
7580                 },
7581                 .offset         = head,
7582                 .size           = size,
7583                 .flags          = flags,
7584         };
7585         int ret;
7586
7587         perf_event_header__init_id(&rec.header, &sample, event);
7588         ret = perf_output_begin(&handle, event, rec.header.size);
7589
7590         if (ret)
7591                 return;
7592
7593         perf_output_put(&handle, rec);
7594         perf_event__output_id_sample(event, &handle, &sample);
7595
7596         perf_output_end(&handle);
7597 }
7598
7599 /*
7600  * Lost/dropped samples logging
7601  */
7602 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7603 {
7604         struct perf_output_handle handle;
7605         struct perf_sample_data sample;
7606         int ret;
7607
7608         struct {
7609                 struct perf_event_header        header;
7610                 u64                             lost;
7611         } lost_samples_event = {
7612                 .header = {
7613                         .type = PERF_RECORD_LOST_SAMPLES,
7614                         .misc = 0,
7615                         .size = sizeof(lost_samples_event),
7616                 },
7617                 .lost           = lost,
7618         };
7619
7620         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7621
7622         ret = perf_output_begin(&handle, event,
7623                                 lost_samples_event.header.size);
7624         if (ret)
7625                 return;
7626
7627         perf_output_put(&handle, lost_samples_event);
7628         perf_event__output_id_sample(event, &handle, &sample);
7629         perf_output_end(&handle);
7630 }
7631
7632 /*
7633  * context_switch tracking
7634  */
7635
7636 struct perf_switch_event {
7637         struct task_struct      *task;
7638         struct task_struct      *next_prev;
7639
7640         struct {
7641                 struct perf_event_header        header;
7642                 u32                             next_prev_pid;
7643                 u32                             next_prev_tid;
7644         } event_id;
7645 };
7646
7647 static int perf_event_switch_match(struct perf_event *event)
7648 {
7649         return event->attr.context_switch;
7650 }
7651
7652 static void perf_event_switch_output(struct perf_event *event, void *data)
7653 {
7654         struct perf_switch_event *se = data;
7655         struct perf_output_handle handle;
7656         struct perf_sample_data sample;
7657         int ret;
7658
7659         if (!perf_event_switch_match(event))
7660                 return;
7661
7662         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7663         if (event->ctx->task) {
7664                 se->event_id.header.type = PERF_RECORD_SWITCH;
7665                 se->event_id.header.size = sizeof(se->event_id.header);
7666         } else {
7667                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7668                 se->event_id.header.size = sizeof(se->event_id);
7669                 se->event_id.next_prev_pid =
7670                                         perf_event_pid(event, se->next_prev);
7671                 se->event_id.next_prev_tid =
7672                                         perf_event_tid(event, se->next_prev);
7673         }
7674
7675         perf_event_header__init_id(&se->event_id.header, &sample, event);
7676
7677         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7678         if (ret)
7679                 return;
7680
7681         if (event->ctx->task)
7682                 perf_output_put(&handle, se->event_id.header);
7683         else
7684                 perf_output_put(&handle, se->event_id);
7685
7686         perf_event__output_id_sample(event, &handle, &sample);
7687
7688         perf_output_end(&handle);
7689 }
7690
7691 static void perf_event_switch(struct task_struct *task,
7692                               struct task_struct *next_prev, bool sched_in)
7693 {
7694         struct perf_switch_event switch_event;
7695
7696         /* N.B. caller checks nr_switch_events != 0 */
7697
7698         switch_event = (struct perf_switch_event){
7699                 .task           = task,
7700                 .next_prev      = next_prev,
7701                 .event_id       = {
7702                         .header = {
7703                                 /* .type */
7704                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7705                                 /* .size */
7706                         },
7707                         /* .next_prev_pid */
7708                         /* .next_prev_tid */
7709                 },
7710         };
7711
7712         if (!sched_in && task->state == TASK_RUNNING)
7713                 switch_event.event_id.header.misc |=
7714                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7715
7716         perf_iterate_sb(perf_event_switch_output,
7717                        &switch_event,
7718                        NULL);
7719 }
7720
7721 /*
7722  * IRQ throttle logging
7723  */
7724
7725 static void perf_log_throttle(struct perf_event *event, int enable)
7726 {
7727         struct perf_output_handle handle;
7728         struct perf_sample_data sample;
7729         int ret;
7730
7731         struct {
7732                 struct perf_event_header        header;
7733                 u64                             time;
7734                 u64                             id;
7735                 u64                             stream_id;
7736         } throttle_event = {
7737                 .header = {
7738                         .type = PERF_RECORD_THROTTLE,
7739                         .misc = 0,
7740                         .size = sizeof(throttle_event),
7741                 },
7742                 .time           = perf_event_clock(event),
7743                 .id             = primary_event_id(event),
7744                 .stream_id      = event->id,
7745         };
7746
7747         if (enable)
7748                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7749
7750         perf_event_header__init_id(&throttle_event.header, &sample, event);
7751
7752         ret = perf_output_begin(&handle, event,
7753                                 throttle_event.header.size);
7754         if (ret)
7755                 return;
7756
7757         perf_output_put(&handle, throttle_event);
7758         perf_event__output_id_sample(event, &handle, &sample);
7759         perf_output_end(&handle);
7760 }
7761
7762 /*
7763  * ksymbol register/unregister tracking
7764  */
7765
7766 struct perf_ksymbol_event {
7767         const char      *name;
7768         int             name_len;
7769         struct {
7770                 struct perf_event_header        header;
7771                 u64                             addr;
7772                 u32                             len;
7773                 u16                             ksym_type;
7774                 u16                             flags;
7775         } event_id;
7776 };
7777
7778 static int perf_event_ksymbol_match(struct perf_event *event)
7779 {
7780         return event->attr.ksymbol;
7781 }
7782
7783 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7784 {
7785         struct perf_ksymbol_event *ksymbol_event = data;
7786         struct perf_output_handle handle;
7787         struct perf_sample_data sample;
7788         int ret;
7789
7790         if (!perf_event_ksymbol_match(event))
7791                 return;
7792
7793         perf_event_header__init_id(&ksymbol_event->event_id.header,
7794                                    &sample, event);
7795         ret = perf_output_begin(&handle, event,
7796                                 ksymbol_event->event_id.header.size);
7797         if (ret)
7798                 return;
7799
7800         perf_output_put(&handle, ksymbol_event->event_id);
7801         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7802         perf_event__output_id_sample(event, &handle, &sample);
7803
7804         perf_output_end(&handle);
7805 }
7806
7807 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7808                         const char *sym)
7809 {
7810         struct perf_ksymbol_event ksymbol_event;
7811         char name[KSYM_NAME_LEN];
7812         u16 flags = 0;
7813         int name_len;
7814
7815         if (!atomic_read(&nr_ksymbol_events))
7816                 return;
7817
7818         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7819             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7820                 goto err;
7821
7822         strlcpy(name, sym, KSYM_NAME_LEN);
7823         name_len = strlen(name) + 1;
7824         while (!IS_ALIGNED(name_len, sizeof(u64)))
7825                 name[name_len++] = '\0';
7826         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7827
7828         if (unregister)
7829                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7830
7831         ksymbol_event = (struct perf_ksymbol_event){
7832                 .name = name,
7833                 .name_len = name_len,
7834                 .event_id = {
7835                         .header = {
7836                                 .type = PERF_RECORD_KSYMBOL,
7837                                 .size = sizeof(ksymbol_event.event_id) +
7838                                         name_len,
7839                         },
7840                         .addr = addr,
7841                         .len = len,
7842                         .ksym_type = ksym_type,
7843                         .flags = flags,
7844                 },
7845         };
7846
7847         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7848         return;
7849 err:
7850         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7851 }
7852
7853 /*
7854  * bpf program load/unload tracking
7855  */
7856
7857 struct perf_bpf_event {
7858         struct bpf_prog *prog;
7859         struct {
7860                 struct perf_event_header        header;
7861                 u16                             type;
7862                 u16                             flags;
7863                 u32                             id;
7864                 u8                              tag[BPF_TAG_SIZE];
7865         } event_id;
7866 };
7867
7868 static int perf_event_bpf_match(struct perf_event *event)
7869 {
7870         return event->attr.bpf_event;
7871 }
7872
7873 static void perf_event_bpf_output(struct perf_event *event, void *data)
7874 {
7875         struct perf_bpf_event *bpf_event = data;
7876         struct perf_output_handle handle;
7877         struct perf_sample_data sample;
7878         int ret;
7879
7880         if (!perf_event_bpf_match(event))
7881                 return;
7882
7883         perf_event_header__init_id(&bpf_event->event_id.header,
7884                                    &sample, event);
7885         ret = perf_output_begin(&handle, event,
7886                                 bpf_event->event_id.header.size);
7887         if (ret)
7888                 return;
7889
7890         perf_output_put(&handle, bpf_event->event_id);
7891         perf_event__output_id_sample(event, &handle, &sample);
7892
7893         perf_output_end(&handle);
7894 }
7895
7896 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7897                                          enum perf_bpf_event_type type)
7898 {
7899         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7900         char sym[KSYM_NAME_LEN];
7901         int i;
7902
7903         if (prog->aux->func_cnt == 0) {
7904                 bpf_get_prog_name(prog, sym);
7905                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7906                                    (u64)(unsigned long)prog->bpf_func,
7907                                    prog->jited_len, unregister, sym);
7908         } else {
7909                 for (i = 0; i < prog->aux->func_cnt; i++) {
7910                         struct bpf_prog *subprog = prog->aux->func[i];
7911
7912                         bpf_get_prog_name(subprog, sym);
7913                         perf_event_ksymbol(
7914                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
7915                                 (u64)(unsigned long)subprog->bpf_func,
7916                                 subprog->jited_len, unregister, sym);
7917                 }
7918         }
7919 }
7920
7921 void perf_event_bpf_event(struct bpf_prog *prog,
7922                           enum perf_bpf_event_type type,
7923                           u16 flags)
7924 {
7925         struct perf_bpf_event bpf_event;
7926
7927         if (type <= PERF_BPF_EVENT_UNKNOWN ||
7928             type >= PERF_BPF_EVENT_MAX)
7929                 return;
7930
7931         switch (type) {
7932         case PERF_BPF_EVENT_PROG_LOAD:
7933         case PERF_BPF_EVENT_PROG_UNLOAD:
7934                 if (atomic_read(&nr_ksymbol_events))
7935                         perf_event_bpf_emit_ksymbols(prog, type);
7936                 break;
7937         default:
7938                 break;
7939         }
7940
7941         if (!atomic_read(&nr_bpf_events))
7942                 return;
7943
7944         bpf_event = (struct perf_bpf_event){
7945                 .prog = prog,
7946                 .event_id = {
7947                         .header = {
7948                                 .type = PERF_RECORD_BPF_EVENT,
7949                                 .size = sizeof(bpf_event.event_id),
7950                         },
7951                         .type = type,
7952                         .flags = flags,
7953                         .id = prog->aux->id,
7954                 },
7955         };
7956
7957         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
7958
7959         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
7960         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
7961 }
7962
7963 void perf_event_itrace_started(struct perf_event *event)
7964 {
7965         event->attach_state |= PERF_ATTACH_ITRACE;
7966 }
7967
7968 static void perf_log_itrace_start(struct perf_event *event)
7969 {
7970         struct perf_output_handle handle;
7971         struct perf_sample_data sample;
7972         struct perf_aux_event {
7973                 struct perf_event_header        header;
7974                 u32                             pid;
7975                 u32                             tid;
7976         } rec;
7977         int ret;
7978
7979         if (event->parent)
7980                 event = event->parent;
7981
7982         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7983             event->attach_state & PERF_ATTACH_ITRACE)
7984                 return;
7985
7986         rec.header.type = PERF_RECORD_ITRACE_START;
7987         rec.header.misc = 0;
7988         rec.header.size = sizeof(rec);
7989         rec.pid = perf_event_pid(event, current);
7990         rec.tid = perf_event_tid(event, current);
7991
7992         perf_event_header__init_id(&rec.header, &sample, event);
7993         ret = perf_output_begin(&handle, event, rec.header.size);
7994
7995         if (ret)
7996                 return;
7997
7998         perf_output_put(&handle, rec);
7999         perf_event__output_id_sample(event, &handle, &sample);
8000
8001         perf_output_end(&handle);
8002 }
8003
8004 static int
8005 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8006 {
8007         struct hw_perf_event *hwc = &event->hw;
8008         int ret = 0;
8009         u64 seq;
8010
8011         seq = __this_cpu_read(perf_throttled_seq);
8012         if (seq != hwc->interrupts_seq) {
8013                 hwc->interrupts_seq = seq;
8014                 hwc->interrupts = 1;
8015         } else {
8016                 hwc->interrupts++;
8017                 if (unlikely(throttle
8018                              && hwc->interrupts >= max_samples_per_tick)) {
8019                         __this_cpu_inc(perf_throttled_count);
8020                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8021                         hwc->interrupts = MAX_INTERRUPTS;
8022                         perf_log_throttle(event, 0);
8023                         ret = 1;
8024                 }
8025         }
8026
8027         if (event->attr.freq) {
8028                 u64 now = perf_clock();
8029                 s64 delta = now - hwc->freq_time_stamp;
8030
8031                 hwc->freq_time_stamp = now;
8032
8033                 if (delta > 0 && delta < 2*TICK_NSEC)
8034                         perf_adjust_period(event, delta, hwc->last_period, true);
8035         }
8036
8037         return ret;
8038 }
8039
8040 int perf_event_account_interrupt(struct perf_event *event)
8041 {
8042         return __perf_event_account_interrupt(event, 1);
8043 }
8044
8045 /*
8046  * Generic event overflow handling, sampling.
8047  */
8048
8049 static int __perf_event_overflow(struct perf_event *event,
8050                                    int throttle, struct perf_sample_data *data,
8051                                    struct pt_regs *regs)
8052 {
8053         int events = atomic_read(&event->event_limit);
8054         int ret = 0;
8055
8056         /*
8057          * Non-sampling counters might still use the PMI to fold short
8058          * hardware counters, ignore those.
8059          */
8060         if (unlikely(!is_sampling_event(event)))
8061                 return 0;
8062
8063         ret = __perf_event_account_interrupt(event, throttle);
8064
8065         /*
8066          * XXX event_limit might not quite work as expected on inherited
8067          * events
8068          */
8069
8070         event->pending_kill = POLL_IN;
8071         if (events && atomic_dec_and_test(&event->event_limit)) {
8072                 ret = 1;
8073                 event->pending_kill = POLL_HUP;
8074
8075                 perf_event_disable_inatomic(event);
8076         }
8077
8078         READ_ONCE(event->overflow_handler)(event, data, regs);
8079
8080         if (*perf_event_fasync(event) && event->pending_kill) {
8081                 event->pending_wakeup = 1;
8082                 irq_work_queue(&event->pending);
8083         }
8084
8085         return ret;
8086 }
8087
8088 int perf_event_overflow(struct perf_event *event,
8089                           struct perf_sample_data *data,
8090                           struct pt_regs *regs)
8091 {
8092         return __perf_event_overflow(event, 1, data, regs);
8093 }
8094
8095 /*
8096  * Generic software event infrastructure
8097  */
8098
8099 struct swevent_htable {
8100         struct swevent_hlist            *swevent_hlist;
8101         struct mutex                    hlist_mutex;
8102         int                             hlist_refcount;
8103
8104         /* Recursion avoidance in each contexts */
8105         int                             recursion[PERF_NR_CONTEXTS];
8106 };
8107
8108 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8109
8110 /*
8111  * We directly increment event->count and keep a second value in
8112  * event->hw.period_left to count intervals. This period event
8113  * is kept in the range [-sample_period, 0] so that we can use the
8114  * sign as trigger.
8115  */
8116
8117 u64 perf_swevent_set_period(struct perf_event *event)
8118 {
8119         struct hw_perf_event *hwc = &event->hw;
8120         u64 period = hwc->last_period;
8121         u64 nr, offset;
8122         s64 old, val;
8123
8124         hwc->last_period = hwc->sample_period;
8125
8126 again:
8127         old = val = local64_read(&hwc->period_left);
8128         if (val < 0)
8129                 return 0;
8130
8131         nr = div64_u64(period + val, period);
8132         offset = nr * period;
8133         val -= offset;
8134         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8135                 goto again;
8136
8137         return nr;
8138 }
8139
8140 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8141                                     struct perf_sample_data *data,
8142                                     struct pt_regs *regs)
8143 {
8144         struct hw_perf_event *hwc = &event->hw;
8145         int throttle = 0;
8146
8147         if (!overflow)
8148                 overflow = perf_swevent_set_period(event);
8149
8150         if (hwc->interrupts == MAX_INTERRUPTS)
8151                 return;
8152
8153         for (; overflow; overflow--) {
8154                 if (__perf_event_overflow(event, throttle,
8155                                             data, regs)) {
8156                         /*
8157                          * We inhibit the overflow from happening when
8158                          * hwc->interrupts == MAX_INTERRUPTS.
8159                          */
8160                         break;
8161                 }
8162                 throttle = 1;
8163         }
8164 }
8165
8166 static void perf_swevent_event(struct perf_event *event, u64 nr,
8167                                struct perf_sample_data *data,
8168                                struct pt_regs *regs)
8169 {
8170         struct hw_perf_event *hwc = &event->hw;
8171
8172         local64_add(nr, &event->count);
8173
8174         if (!regs)
8175                 return;
8176
8177         if (!is_sampling_event(event))
8178                 return;
8179
8180         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8181                 data->period = nr;
8182                 return perf_swevent_overflow(event, 1, data, regs);
8183         } else
8184                 data->period = event->hw.last_period;
8185
8186         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8187                 return perf_swevent_overflow(event, 1, data, regs);
8188
8189         if (local64_add_negative(nr, &hwc->period_left))
8190                 return;
8191
8192         perf_swevent_overflow(event, 0, data, regs);
8193 }
8194
8195 static int perf_exclude_event(struct perf_event *event,
8196                               struct pt_regs *regs)
8197 {
8198         if (event->hw.state & PERF_HES_STOPPED)
8199                 return 1;
8200
8201         if (regs) {
8202                 if (event->attr.exclude_user && user_mode(regs))
8203                         return 1;
8204
8205                 if (event->attr.exclude_kernel && !user_mode(regs))
8206                         return 1;
8207         }
8208
8209         return 0;
8210 }
8211
8212 static int perf_swevent_match(struct perf_event *event,
8213                                 enum perf_type_id type,
8214                                 u32 event_id,
8215                                 struct perf_sample_data *data,
8216                                 struct pt_regs *regs)
8217 {
8218         if (event->attr.type != type)
8219                 return 0;
8220
8221         if (event->attr.config != event_id)
8222                 return 0;
8223
8224         if (perf_exclude_event(event, regs))
8225                 return 0;
8226
8227         return 1;
8228 }
8229
8230 static inline u64 swevent_hash(u64 type, u32 event_id)
8231 {
8232         u64 val = event_id | (type << 32);
8233
8234         return hash_64(val, SWEVENT_HLIST_BITS);
8235 }
8236
8237 static inline struct hlist_head *
8238 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8239 {
8240         u64 hash = swevent_hash(type, event_id);
8241
8242         return &hlist->heads[hash];
8243 }
8244
8245 /* For the read side: events when they trigger */
8246 static inline struct hlist_head *
8247 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8248 {
8249         struct swevent_hlist *hlist;
8250
8251         hlist = rcu_dereference(swhash->swevent_hlist);
8252         if (!hlist)
8253                 return NULL;
8254
8255         return __find_swevent_head(hlist, type, event_id);
8256 }
8257
8258 /* For the event head insertion and removal in the hlist */
8259 static inline struct hlist_head *
8260 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8261 {
8262         struct swevent_hlist *hlist;
8263         u32 event_id = event->attr.config;
8264         u64 type = event->attr.type;
8265
8266         /*
8267          * Event scheduling is always serialized against hlist allocation
8268          * and release. Which makes the protected version suitable here.
8269          * The context lock guarantees that.
8270          */
8271         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8272                                           lockdep_is_held(&event->ctx->lock));
8273         if (!hlist)
8274                 return NULL;
8275
8276         return __find_swevent_head(hlist, type, event_id);
8277 }
8278
8279 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8280                                     u64 nr,
8281                                     struct perf_sample_data *data,
8282                                     struct pt_regs *regs)
8283 {
8284         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8285         struct perf_event *event;
8286         struct hlist_head *head;
8287
8288         rcu_read_lock();
8289         head = find_swevent_head_rcu(swhash, type, event_id);
8290         if (!head)
8291                 goto end;
8292
8293         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8294                 if (perf_swevent_match(event, type, event_id, data, regs))
8295                         perf_swevent_event(event, nr, data, regs);
8296         }
8297 end:
8298         rcu_read_unlock();
8299 }
8300
8301 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8302
8303 int perf_swevent_get_recursion_context(void)
8304 {
8305         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8306
8307         return get_recursion_context(swhash->recursion);
8308 }
8309 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8310
8311 void perf_swevent_put_recursion_context(int rctx)
8312 {
8313         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8314
8315         put_recursion_context(swhash->recursion, rctx);
8316 }
8317
8318 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8319 {
8320         struct perf_sample_data data;
8321
8322         if (WARN_ON_ONCE(!regs))
8323                 return;
8324
8325         perf_sample_data_init(&data, addr, 0);
8326         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8327 }
8328
8329 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8330 {
8331         int rctx;
8332
8333         preempt_disable_notrace();
8334         rctx = perf_swevent_get_recursion_context();
8335         if (unlikely(rctx < 0))
8336                 goto fail;
8337
8338         ___perf_sw_event(event_id, nr, regs, addr);
8339
8340         perf_swevent_put_recursion_context(rctx);
8341 fail:
8342         preempt_enable_notrace();
8343 }
8344
8345 static void perf_swevent_read(struct perf_event *event)
8346 {
8347 }
8348
8349 static int perf_swevent_add(struct perf_event *event, int flags)
8350 {
8351         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8352         struct hw_perf_event *hwc = &event->hw;
8353         struct hlist_head *head;
8354
8355         if (is_sampling_event(event)) {
8356                 hwc->last_period = hwc->sample_period;
8357                 perf_swevent_set_period(event);
8358         }
8359
8360         hwc->state = !(flags & PERF_EF_START);
8361
8362         head = find_swevent_head(swhash, event);
8363         if (WARN_ON_ONCE(!head))
8364                 return -EINVAL;
8365
8366         hlist_add_head_rcu(&event->hlist_entry, head);
8367         perf_event_update_userpage(event);
8368
8369         return 0;
8370 }
8371
8372 static void perf_swevent_del(struct perf_event *event, int flags)
8373 {
8374         hlist_del_rcu(&event->hlist_entry);
8375 }
8376
8377 static void perf_swevent_start(struct perf_event *event, int flags)
8378 {
8379         event->hw.state = 0;
8380 }
8381
8382 static void perf_swevent_stop(struct perf_event *event, int flags)
8383 {
8384         event->hw.state = PERF_HES_STOPPED;
8385 }
8386
8387 /* Deref the hlist from the update side */
8388 static inline struct swevent_hlist *
8389 swevent_hlist_deref(struct swevent_htable *swhash)
8390 {
8391         return rcu_dereference_protected(swhash->swevent_hlist,
8392                                          lockdep_is_held(&swhash->hlist_mutex));
8393 }
8394
8395 static void swevent_hlist_release(struct swevent_htable *swhash)
8396 {
8397         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8398
8399         if (!hlist)
8400                 return;
8401
8402         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8403         kfree_rcu(hlist, rcu_head);
8404 }
8405
8406 static void swevent_hlist_put_cpu(int cpu)
8407 {
8408         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8409
8410         mutex_lock(&swhash->hlist_mutex);
8411
8412         if (!--swhash->hlist_refcount)
8413                 swevent_hlist_release(swhash);
8414
8415         mutex_unlock(&swhash->hlist_mutex);
8416 }
8417
8418 static void swevent_hlist_put(void)
8419 {
8420         int cpu;
8421
8422         for_each_possible_cpu(cpu)
8423                 swevent_hlist_put_cpu(cpu);
8424 }
8425
8426 static int swevent_hlist_get_cpu(int cpu)
8427 {
8428         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8429         int err = 0;
8430
8431         mutex_lock(&swhash->hlist_mutex);
8432         if (!swevent_hlist_deref(swhash) &&
8433             cpumask_test_cpu(cpu, perf_online_mask)) {
8434                 struct swevent_hlist *hlist;
8435
8436                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8437                 if (!hlist) {
8438                         err = -ENOMEM;
8439                         goto exit;
8440                 }
8441                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8442         }
8443         swhash->hlist_refcount++;
8444 exit:
8445         mutex_unlock(&swhash->hlist_mutex);
8446
8447         return err;
8448 }
8449
8450 static int swevent_hlist_get(void)
8451 {
8452         int err, cpu, failed_cpu;
8453
8454         mutex_lock(&pmus_lock);
8455         for_each_possible_cpu(cpu) {
8456                 err = swevent_hlist_get_cpu(cpu);
8457                 if (err) {
8458                         failed_cpu = cpu;
8459                         goto fail;
8460                 }
8461         }
8462         mutex_unlock(&pmus_lock);
8463         return 0;
8464 fail:
8465         for_each_possible_cpu(cpu) {
8466                 if (cpu == failed_cpu)
8467                         break;
8468                 swevent_hlist_put_cpu(cpu);
8469         }
8470         mutex_unlock(&pmus_lock);
8471         return err;
8472 }
8473
8474 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8475
8476 static void sw_perf_event_destroy(struct perf_event *event)
8477 {
8478         u64 event_id = event->attr.config;
8479
8480         WARN_ON(event->parent);
8481
8482         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8483         swevent_hlist_put();
8484 }
8485
8486 static int perf_swevent_init(struct perf_event *event)
8487 {
8488         u64 event_id = event->attr.config;
8489
8490         if (event->attr.type != PERF_TYPE_SOFTWARE)
8491                 return -ENOENT;
8492
8493         /*
8494          * no branch sampling for software events
8495          */
8496         if (has_branch_stack(event))
8497                 return -EOPNOTSUPP;
8498
8499         switch (event_id) {
8500         case PERF_COUNT_SW_CPU_CLOCK:
8501         case PERF_COUNT_SW_TASK_CLOCK:
8502                 return -ENOENT;
8503
8504         default:
8505                 break;
8506         }
8507
8508         if (event_id >= PERF_COUNT_SW_MAX)
8509                 return -ENOENT;
8510
8511         if (!event->parent) {
8512                 int err;
8513
8514                 err = swevent_hlist_get();
8515                 if (err)
8516                         return err;
8517
8518                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8519                 event->destroy = sw_perf_event_destroy;
8520         }
8521
8522         return 0;
8523 }
8524
8525 static struct pmu perf_swevent = {
8526         .task_ctx_nr    = perf_sw_context,
8527
8528         .capabilities   = PERF_PMU_CAP_NO_NMI,
8529
8530         .event_init     = perf_swevent_init,
8531         .add            = perf_swevent_add,
8532         .del            = perf_swevent_del,
8533         .start          = perf_swevent_start,
8534         .stop           = perf_swevent_stop,
8535         .read           = perf_swevent_read,
8536 };
8537
8538 #ifdef CONFIG_EVENT_TRACING
8539
8540 static int perf_tp_filter_match(struct perf_event *event,
8541                                 struct perf_sample_data *data)
8542 {
8543         void *record = data->raw->frag.data;
8544
8545         /* only top level events have filters set */
8546         if (event->parent)
8547                 event = event->parent;
8548
8549         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8550                 return 1;
8551         return 0;
8552 }
8553
8554 static int perf_tp_event_match(struct perf_event *event,
8555                                 struct perf_sample_data *data,
8556                                 struct pt_regs *regs)
8557 {
8558         if (event->hw.state & PERF_HES_STOPPED)
8559                 return 0;
8560         /*
8561          * If exclude_kernel, only trace user-space tracepoints (uprobes)
8562          */
8563         if (event->attr.exclude_kernel && !user_mode(regs))
8564                 return 0;
8565
8566         if (!perf_tp_filter_match(event, data))
8567                 return 0;
8568
8569         return 1;
8570 }
8571
8572 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8573                                struct trace_event_call *call, u64 count,
8574                                struct pt_regs *regs, struct hlist_head *head,
8575                                struct task_struct *task)
8576 {
8577         if (bpf_prog_array_valid(call)) {
8578                 *(struct pt_regs **)raw_data = regs;
8579                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8580                         perf_swevent_put_recursion_context(rctx);
8581                         return;
8582                 }
8583         }
8584         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8585                       rctx, task);
8586 }
8587 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8588
8589 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8590                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8591                    struct task_struct *task)
8592 {
8593         struct perf_sample_data data;
8594         struct perf_event *event;
8595
8596         struct perf_raw_record raw = {
8597                 .frag = {
8598                         .size = entry_size,
8599                         .data = record,
8600                 },
8601         };
8602
8603         perf_sample_data_init(&data, 0, 0);
8604         data.raw = &raw;
8605
8606         perf_trace_buf_update(record, event_type);
8607
8608         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8609                 if (perf_tp_event_match(event, &data, regs))
8610                         perf_swevent_event(event, count, &data, regs);
8611         }
8612
8613         /*
8614          * If we got specified a target task, also iterate its context and
8615          * deliver this event there too.
8616          */
8617         if (task && task != current) {
8618                 struct perf_event_context *ctx;
8619                 struct trace_entry *entry = record;
8620
8621                 rcu_read_lock();
8622                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8623                 if (!ctx)
8624                         goto unlock;
8625
8626                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8627                         if (event->cpu != smp_processor_id())
8628                                 continue;
8629                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8630                                 continue;
8631                         if (event->attr.config != entry->type)
8632                                 continue;
8633                         if (perf_tp_event_match(event, &data, regs))
8634                                 perf_swevent_event(event, count, &data, regs);
8635                 }
8636 unlock:
8637                 rcu_read_unlock();
8638         }
8639
8640         perf_swevent_put_recursion_context(rctx);
8641 }
8642 EXPORT_SYMBOL_GPL(perf_tp_event);
8643
8644 static void tp_perf_event_destroy(struct perf_event *event)
8645 {
8646         perf_trace_destroy(event);
8647 }
8648
8649 static int perf_tp_event_init(struct perf_event *event)
8650 {
8651         int err;
8652
8653         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8654                 return -ENOENT;
8655
8656         /*
8657          * no branch sampling for tracepoint events
8658          */
8659         if (has_branch_stack(event))
8660                 return -EOPNOTSUPP;
8661
8662         err = perf_trace_init(event);
8663         if (err)
8664                 return err;
8665
8666         event->destroy = tp_perf_event_destroy;
8667
8668         return 0;
8669 }
8670
8671 static struct pmu perf_tracepoint = {
8672         .task_ctx_nr    = perf_sw_context,
8673
8674         .event_init     = perf_tp_event_init,
8675         .add            = perf_trace_add,
8676         .del            = perf_trace_del,
8677         .start          = perf_swevent_start,
8678         .stop           = perf_swevent_stop,
8679         .read           = perf_swevent_read,
8680 };
8681
8682 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8683 /*
8684  * Flags in config, used by dynamic PMU kprobe and uprobe
8685  * The flags should match following PMU_FORMAT_ATTR().
8686  *
8687  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8688  *                               if not set, create kprobe/uprobe
8689  *
8690  * The following values specify a reference counter (or semaphore in the
8691  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8692  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8693  *
8694  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
8695  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
8696  */
8697 enum perf_probe_config {
8698         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8699         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8700         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8701 };
8702
8703 PMU_FORMAT_ATTR(retprobe, "config:0");
8704 #endif
8705
8706 #ifdef CONFIG_KPROBE_EVENTS
8707 static struct attribute *kprobe_attrs[] = {
8708         &format_attr_retprobe.attr,
8709         NULL,
8710 };
8711
8712 static struct attribute_group kprobe_format_group = {
8713         .name = "format",
8714         .attrs = kprobe_attrs,
8715 };
8716
8717 static const struct attribute_group *kprobe_attr_groups[] = {
8718         &kprobe_format_group,
8719         NULL,
8720 };
8721
8722 static int perf_kprobe_event_init(struct perf_event *event);
8723 static struct pmu perf_kprobe = {
8724         .task_ctx_nr    = perf_sw_context,
8725         .event_init     = perf_kprobe_event_init,
8726         .add            = perf_trace_add,
8727         .del            = perf_trace_del,
8728         .start          = perf_swevent_start,
8729         .stop           = perf_swevent_stop,
8730         .read           = perf_swevent_read,
8731         .attr_groups    = kprobe_attr_groups,
8732 };
8733
8734 static int perf_kprobe_event_init(struct perf_event *event)
8735 {
8736         int err;
8737         bool is_retprobe;
8738
8739         if (event->attr.type != perf_kprobe.type)
8740                 return -ENOENT;
8741
8742         if (!capable(CAP_SYS_ADMIN))
8743                 return -EACCES;
8744
8745         /*
8746          * no branch sampling for probe events
8747          */
8748         if (has_branch_stack(event))
8749                 return -EOPNOTSUPP;
8750
8751         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8752         err = perf_kprobe_init(event, is_retprobe);
8753         if (err)
8754                 return err;
8755
8756         event->destroy = perf_kprobe_destroy;
8757
8758         return 0;
8759 }
8760 #endif /* CONFIG_KPROBE_EVENTS */
8761
8762 #ifdef CONFIG_UPROBE_EVENTS
8763 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8764
8765 static struct attribute *uprobe_attrs[] = {
8766         &format_attr_retprobe.attr,
8767         &format_attr_ref_ctr_offset.attr,
8768         NULL,
8769 };
8770
8771 static struct attribute_group uprobe_format_group = {
8772         .name = "format",
8773         .attrs = uprobe_attrs,
8774 };
8775
8776 static const struct attribute_group *uprobe_attr_groups[] = {
8777         &uprobe_format_group,
8778         NULL,
8779 };
8780
8781 static int perf_uprobe_event_init(struct perf_event *event);
8782 static struct pmu perf_uprobe = {
8783         .task_ctx_nr    = perf_sw_context,
8784         .event_init     = perf_uprobe_event_init,
8785         .add            = perf_trace_add,
8786         .del            = perf_trace_del,
8787         .start          = perf_swevent_start,
8788         .stop           = perf_swevent_stop,
8789         .read           = perf_swevent_read,
8790         .attr_groups    = uprobe_attr_groups,
8791 };
8792
8793 static int perf_uprobe_event_init(struct perf_event *event)
8794 {
8795         int err;
8796         unsigned long ref_ctr_offset;
8797         bool is_retprobe;
8798
8799         if (event->attr.type != perf_uprobe.type)
8800                 return -ENOENT;
8801
8802         if (!capable(CAP_SYS_ADMIN))
8803                 return -EACCES;
8804
8805         /*
8806          * no branch sampling for probe events
8807          */
8808         if (has_branch_stack(event))
8809                 return -EOPNOTSUPP;
8810
8811         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8812         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8813         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8814         if (err)
8815                 return err;
8816
8817         event->destroy = perf_uprobe_destroy;
8818
8819         return 0;
8820 }
8821 #endif /* CONFIG_UPROBE_EVENTS */
8822
8823 static inline void perf_tp_register(void)
8824 {
8825         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8826 #ifdef CONFIG_KPROBE_EVENTS
8827         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8828 #endif
8829 #ifdef CONFIG_UPROBE_EVENTS
8830         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8831 #endif
8832 }
8833
8834 static void perf_event_free_filter(struct perf_event *event)
8835 {
8836         ftrace_profile_free_filter(event);
8837 }
8838
8839 #ifdef CONFIG_BPF_SYSCALL
8840 static void bpf_overflow_handler(struct perf_event *event,
8841                                  struct perf_sample_data *data,
8842                                  struct pt_regs *regs)
8843 {
8844         struct bpf_perf_event_data_kern ctx = {
8845                 .data = data,
8846                 .event = event,
8847         };
8848         int ret = 0;
8849
8850         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8851         preempt_disable();
8852         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8853                 goto out;
8854         rcu_read_lock();
8855         ret = BPF_PROG_RUN(event->prog, &ctx);
8856         rcu_read_unlock();
8857 out:
8858         __this_cpu_dec(bpf_prog_active);
8859         preempt_enable();
8860         if (!ret)
8861                 return;
8862
8863         event->orig_overflow_handler(event, data, regs);
8864 }
8865
8866 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8867 {
8868         struct bpf_prog *prog;
8869
8870         if (event->overflow_handler_context)
8871                 /* hw breakpoint or kernel counter */
8872                 return -EINVAL;
8873
8874         if (event->prog)
8875                 return -EEXIST;
8876
8877         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8878         if (IS_ERR(prog))
8879                 return PTR_ERR(prog);
8880
8881         event->prog = prog;
8882         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8883         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8884         return 0;
8885 }
8886
8887 static void perf_event_free_bpf_handler(struct perf_event *event)
8888 {
8889         struct bpf_prog *prog = event->prog;
8890
8891         if (!prog)
8892                 return;
8893
8894         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8895         event->prog = NULL;
8896         bpf_prog_put(prog);
8897 }
8898 #else
8899 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8900 {
8901         return -EOPNOTSUPP;
8902 }
8903 static void perf_event_free_bpf_handler(struct perf_event *event)
8904 {
8905 }
8906 #endif
8907
8908 /*
8909  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8910  * with perf_event_open()
8911  */
8912 static inline bool perf_event_is_tracing(struct perf_event *event)
8913 {
8914         if (event->pmu == &perf_tracepoint)
8915                 return true;
8916 #ifdef CONFIG_KPROBE_EVENTS
8917         if (event->pmu == &perf_kprobe)
8918                 return true;
8919 #endif
8920 #ifdef CONFIG_UPROBE_EVENTS
8921         if (event->pmu == &perf_uprobe)
8922                 return true;
8923 #endif
8924         return false;
8925 }
8926
8927 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8928 {
8929         bool is_kprobe, is_tracepoint, is_syscall_tp;
8930         struct bpf_prog *prog;
8931         int ret;
8932
8933         if (!perf_event_is_tracing(event))
8934                 return perf_event_set_bpf_handler(event, prog_fd);
8935
8936         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8937         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8938         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8939         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8940                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8941                 return -EINVAL;
8942
8943         prog = bpf_prog_get(prog_fd);
8944         if (IS_ERR(prog))
8945                 return PTR_ERR(prog);
8946
8947         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8948             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8949             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8950                 /* valid fd, but invalid bpf program type */
8951                 bpf_prog_put(prog);
8952                 return -EINVAL;
8953         }
8954
8955         /* Kprobe override only works for kprobes, not uprobes. */
8956         if (prog->kprobe_override &&
8957             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8958                 bpf_prog_put(prog);
8959                 return -EINVAL;
8960         }
8961
8962         if (is_tracepoint || is_syscall_tp) {
8963                 int off = trace_event_get_offsets(event->tp_event);
8964
8965                 if (prog->aux->max_ctx_offset > off) {
8966                         bpf_prog_put(prog);
8967                         return -EACCES;
8968                 }
8969         }
8970
8971         ret = perf_event_attach_bpf_prog(event, prog);
8972         if (ret)
8973                 bpf_prog_put(prog);
8974         return ret;
8975 }
8976
8977 static void perf_event_free_bpf_prog(struct perf_event *event)
8978 {
8979         if (!perf_event_is_tracing(event)) {
8980                 perf_event_free_bpf_handler(event);
8981                 return;
8982         }
8983         perf_event_detach_bpf_prog(event);
8984 }
8985
8986 #else
8987
8988 static inline void perf_tp_register(void)
8989 {
8990 }
8991
8992 static void perf_event_free_filter(struct perf_event *event)
8993 {
8994 }
8995
8996 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8997 {
8998         return -ENOENT;
8999 }
9000
9001 static void perf_event_free_bpf_prog(struct perf_event *event)
9002 {
9003 }
9004 #endif /* CONFIG_EVENT_TRACING */
9005
9006 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9007 void perf_bp_event(struct perf_event *bp, void *data)
9008 {
9009         struct perf_sample_data sample;
9010         struct pt_regs *regs = data;
9011
9012         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9013
9014         if (!bp->hw.state && !perf_exclude_event(bp, regs))
9015                 perf_swevent_event(bp, 1, &sample, regs);
9016 }
9017 #endif
9018
9019 /*
9020  * Allocate a new address filter
9021  */
9022 static struct perf_addr_filter *
9023 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9024 {
9025         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9026         struct perf_addr_filter *filter;
9027
9028         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9029         if (!filter)
9030                 return NULL;
9031
9032         INIT_LIST_HEAD(&filter->entry);
9033         list_add_tail(&filter->entry, filters);
9034
9035         return filter;
9036 }
9037
9038 static void free_filters_list(struct list_head *filters)
9039 {
9040         struct perf_addr_filter *filter, *iter;
9041
9042         list_for_each_entry_safe(filter, iter, filters, entry) {
9043                 path_put(&filter->path);
9044                 list_del(&filter->entry);
9045                 kfree(filter);
9046         }
9047 }
9048
9049 /*
9050  * Free existing address filters and optionally install new ones
9051  */
9052 static void perf_addr_filters_splice(struct perf_event *event,
9053                                      struct list_head *head)
9054 {
9055         unsigned long flags;
9056         LIST_HEAD(list);
9057
9058         if (!has_addr_filter(event))
9059                 return;
9060
9061         /* don't bother with children, they don't have their own filters */
9062         if (event->parent)
9063                 return;
9064
9065         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9066
9067         list_splice_init(&event->addr_filters.list, &list);
9068         if (head)
9069                 list_splice(head, &event->addr_filters.list);
9070
9071         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9072
9073         free_filters_list(&list);
9074 }
9075
9076 /*
9077  * Scan through mm's vmas and see if one of them matches the
9078  * @filter; if so, adjust filter's address range.
9079  * Called with mm::mmap_sem down for reading.
9080  */
9081 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9082                                    struct mm_struct *mm,
9083                                    struct perf_addr_filter_range *fr)
9084 {
9085         struct vm_area_struct *vma;
9086
9087         for (vma = mm->mmap; vma; vma = vma->vm_next) {
9088                 if (!vma->vm_file)
9089                         continue;
9090
9091                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9092                         return;
9093         }
9094 }
9095
9096 /*
9097  * Update event's address range filters based on the
9098  * task's existing mappings, if any.
9099  */
9100 static void perf_event_addr_filters_apply(struct perf_event *event)
9101 {
9102         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9103         struct task_struct *task = READ_ONCE(event->ctx->task);
9104         struct perf_addr_filter *filter;
9105         struct mm_struct *mm = NULL;
9106         unsigned int count = 0;
9107         unsigned long flags;
9108
9109         /*
9110          * We may observe TASK_TOMBSTONE, which means that the event tear-down
9111          * will stop on the parent's child_mutex that our caller is also holding
9112          */
9113         if (task == TASK_TOMBSTONE)
9114                 return;
9115
9116         if (ifh->nr_file_filters) {
9117                 mm = get_task_mm(event->ctx->task);
9118                 if (!mm)
9119                         goto restart;
9120
9121                 down_read(&mm->mmap_sem);
9122         }
9123
9124         raw_spin_lock_irqsave(&ifh->lock, flags);
9125         list_for_each_entry(filter, &ifh->list, entry) {
9126                 if (filter->path.dentry) {
9127                         /*
9128                          * Adjust base offset if the filter is associated to a
9129                          * binary that needs to be mapped:
9130                          */
9131                         event->addr_filter_ranges[count].start = 0;
9132                         event->addr_filter_ranges[count].size = 0;
9133
9134                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9135                 } else {
9136                         event->addr_filter_ranges[count].start = filter->offset;
9137                         event->addr_filter_ranges[count].size  = filter->size;
9138                 }
9139
9140                 count++;
9141         }
9142
9143         event->addr_filters_gen++;
9144         raw_spin_unlock_irqrestore(&ifh->lock, flags);
9145
9146         if (ifh->nr_file_filters) {
9147                 up_read(&mm->mmap_sem);
9148
9149                 mmput(mm);
9150         }
9151
9152 restart:
9153         perf_event_stop(event, 1);
9154 }
9155
9156 /*
9157  * Address range filtering: limiting the data to certain
9158  * instruction address ranges. Filters are ioctl()ed to us from
9159  * userspace as ascii strings.
9160  *
9161  * Filter string format:
9162  *
9163  * ACTION RANGE_SPEC
9164  * where ACTION is one of the
9165  *  * "filter": limit the trace to this region
9166  *  * "start": start tracing from this address
9167  *  * "stop": stop tracing at this address/region;
9168  * RANGE_SPEC is
9169  *  * for kernel addresses: <start address>[/<size>]
9170  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9171  *
9172  * if <size> is not specified or is zero, the range is treated as a single
9173  * address; not valid for ACTION=="filter".
9174  */
9175 enum {
9176         IF_ACT_NONE = -1,
9177         IF_ACT_FILTER,
9178         IF_ACT_START,
9179         IF_ACT_STOP,
9180         IF_SRC_FILE,
9181         IF_SRC_KERNEL,
9182         IF_SRC_FILEADDR,
9183         IF_SRC_KERNELADDR,
9184 };
9185
9186 enum {
9187         IF_STATE_ACTION = 0,
9188         IF_STATE_SOURCE,
9189         IF_STATE_END,
9190 };
9191
9192 static const match_table_t if_tokens = {
9193         { IF_ACT_FILTER,        "filter" },
9194         { IF_ACT_START,         "start" },
9195         { IF_ACT_STOP,          "stop" },
9196         { IF_SRC_FILE,          "%u/%u@%s" },
9197         { IF_SRC_KERNEL,        "%u/%u" },
9198         { IF_SRC_FILEADDR,      "%u@%s" },
9199         { IF_SRC_KERNELADDR,    "%u" },
9200         { IF_ACT_NONE,          NULL },
9201 };
9202
9203 /*
9204  * Address filter string parser
9205  */
9206 static int
9207 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9208                              struct list_head *filters)
9209 {
9210         struct perf_addr_filter *filter = NULL;
9211         char *start, *orig, *filename = NULL;
9212         substring_t args[MAX_OPT_ARGS];
9213         int state = IF_STATE_ACTION, token;
9214         unsigned int kernel = 0;
9215         int ret = -EINVAL;
9216
9217         orig = fstr = kstrdup(fstr, GFP_KERNEL);
9218         if (!fstr)
9219                 return -ENOMEM;
9220
9221         while ((start = strsep(&fstr, " ,\n")) != NULL) {
9222                 static const enum perf_addr_filter_action_t actions[] = {
9223                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9224                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
9225                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
9226                 };
9227                 ret = -EINVAL;
9228
9229                 if (!*start)
9230                         continue;
9231
9232                 /* filter definition begins */
9233                 if (state == IF_STATE_ACTION) {
9234                         filter = perf_addr_filter_new(event, filters);
9235                         if (!filter)
9236                                 goto fail;
9237                 }
9238
9239                 token = match_token(start, if_tokens, args);
9240                 switch (token) {
9241                 case IF_ACT_FILTER:
9242                 case IF_ACT_START:
9243                 case IF_ACT_STOP:
9244                         if (state != IF_STATE_ACTION)
9245                                 goto fail;
9246
9247                         filter->action = actions[token];
9248                         state = IF_STATE_SOURCE;
9249                         break;
9250
9251                 case IF_SRC_KERNELADDR:
9252                 case IF_SRC_KERNEL:
9253                         kernel = 1;
9254                         /* fall through */
9255
9256                 case IF_SRC_FILEADDR:
9257                 case IF_SRC_FILE:
9258                         if (state != IF_STATE_SOURCE)
9259                                 goto fail;
9260
9261                         *args[0].to = 0;
9262                         ret = kstrtoul(args[0].from, 0, &filter->offset);
9263                         if (ret)
9264                                 goto fail;
9265
9266                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9267                                 *args[1].to = 0;
9268                                 ret = kstrtoul(args[1].from, 0, &filter->size);
9269                                 if (ret)
9270                                         goto fail;
9271                         }
9272
9273                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9274                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9275
9276                                 filename = match_strdup(&args[fpos]);
9277                                 if (!filename) {
9278                                         ret = -ENOMEM;
9279                                         goto fail;
9280                                 }
9281                         }
9282
9283                         state = IF_STATE_END;
9284                         break;
9285
9286                 default:
9287                         goto fail;
9288                 }
9289
9290                 /*
9291                  * Filter definition is fully parsed, validate and install it.
9292                  * Make sure that it doesn't contradict itself or the event's
9293                  * attribute.
9294                  */
9295                 if (state == IF_STATE_END) {
9296                         ret = -EINVAL;
9297                         if (kernel && event->attr.exclude_kernel)
9298                                 goto fail;
9299
9300                         /*
9301                          * ACTION "filter" must have a non-zero length region
9302                          * specified.
9303                          */
9304                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9305                             !filter->size)
9306                                 goto fail;
9307
9308                         if (!kernel) {
9309                                 if (!filename)
9310                                         goto fail;
9311
9312                                 /*
9313                                  * For now, we only support file-based filters
9314                                  * in per-task events; doing so for CPU-wide
9315                                  * events requires additional context switching
9316                                  * trickery, since same object code will be
9317                                  * mapped at different virtual addresses in
9318                                  * different processes.
9319                                  */
9320                                 ret = -EOPNOTSUPP;
9321                                 if (!event->ctx->task)
9322                                         goto fail_free_name;
9323
9324                                 /* look up the path and grab its inode */
9325                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9326                                                 &filter->path);
9327                                 if (ret)
9328                                         goto fail_free_name;
9329
9330                                 kfree(filename);
9331                                 filename = NULL;
9332
9333                                 ret = -EINVAL;
9334                                 if (!filter->path.dentry ||
9335                                     !S_ISREG(d_inode(filter->path.dentry)
9336                                              ->i_mode))
9337                                         goto fail;
9338
9339                                 event->addr_filters.nr_file_filters++;
9340                         }
9341
9342                         /* ready to consume more filters */
9343                         state = IF_STATE_ACTION;
9344                         filter = NULL;
9345                 }
9346         }
9347
9348         if (state != IF_STATE_ACTION)
9349                 goto fail;
9350
9351         kfree(orig);
9352
9353         return 0;
9354
9355 fail_free_name:
9356         kfree(filename);
9357 fail:
9358         free_filters_list(filters);
9359         kfree(orig);
9360
9361         return ret;
9362 }
9363
9364 static int
9365 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9366 {
9367         LIST_HEAD(filters);
9368         int ret;
9369
9370         /*
9371          * Since this is called in perf_ioctl() path, we're already holding
9372          * ctx::mutex.
9373          */
9374         lockdep_assert_held(&event->ctx->mutex);
9375
9376         if (WARN_ON_ONCE(event->parent))
9377                 return -EINVAL;
9378
9379         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9380         if (ret)
9381                 goto fail_clear_files;
9382
9383         ret = event->pmu->addr_filters_validate(&filters);
9384         if (ret)
9385                 goto fail_free_filters;
9386
9387         /* remove existing filters, if any */
9388         perf_addr_filters_splice(event, &filters);
9389
9390         /* install new filters */
9391         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9392
9393         return ret;
9394
9395 fail_free_filters:
9396         free_filters_list(&filters);
9397
9398 fail_clear_files:
9399         event->addr_filters.nr_file_filters = 0;
9400
9401         return ret;
9402 }
9403
9404 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9405 {
9406         int ret = -EINVAL;
9407         char *filter_str;
9408
9409         filter_str = strndup_user(arg, PAGE_SIZE);
9410         if (IS_ERR(filter_str))
9411                 return PTR_ERR(filter_str);
9412
9413 #ifdef CONFIG_EVENT_TRACING
9414         if (perf_event_is_tracing(event)) {
9415                 struct perf_event_context *ctx = event->ctx;
9416
9417                 /*
9418                  * Beware, here be dragons!!
9419                  *
9420                  * the tracepoint muck will deadlock against ctx->mutex, but
9421                  * the tracepoint stuff does not actually need it. So
9422                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9423                  * already have a reference on ctx.
9424                  *
9425                  * This can result in event getting moved to a different ctx,
9426                  * but that does not affect the tracepoint state.
9427                  */
9428                 mutex_unlock(&ctx->mutex);
9429                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9430                 mutex_lock(&ctx->mutex);
9431         } else
9432 #endif
9433         if (has_addr_filter(event))
9434                 ret = perf_event_set_addr_filter(event, filter_str);
9435
9436         kfree(filter_str);
9437         return ret;
9438 }
9439
9440 /*
9441  * hrtimer based swevent callback
9442  */
9443
9444 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9445 {
9446         enum hrtimer_restart ret = HRTIMER_RESTART;
9447         struct perf_sample_data data;
9448         struct pt_regs *regs;
9449         struct perf_event *event;
9450         u64 period;
9451
9452         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9453
9454         if (event->state != PERF_EVENT_STATE_ACTIVE)
9455                 return HRTIMER_NORESTART;
9456
9457         event->pmu->read(event);
9458
9459         perf_sample_data_init(&data, 0, event->hw.last_period);
9460         regs = get_irq_regs();
9461
9462         if (regs && !perf_exclude_event(event, regs)) {
9463                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9464                         if (__perf_event_overflow(event, 1, &data, regs))
9465                                 ret = HRTIMER_NORESTART;
9466         }
9467
9468         period = max_t(u64, 10000, event->hw.sample_period);
9469         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9470
9471         return ret;
9472 }
9473
9474 static void perf_swevent_start_hrtimer(struct perf_event *event)
9475 {
9476         struct hw_perf_event *hwc = &event->hw;
9477         s64 period;
9478
9479         if (!is_sampling_event(event))
9480                 return;
9481
9482         period = local64_read(&hwc->period_left);
9483         if (period) {
9484                 if (period < 0)
9485                         period = 10000;
9486
9487                 local64_set(&hwc->period_left, 0);
9488         } else {
9489                 period = max_t(u64, 10000, hwc->sample_period);
9490         }
9491         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9492                       HRTIMER_MODE_REL_PINNED);
9493 }
9494
9495 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9496 {
9497         struct hw_perf_event *hwc = &event->hw;
9498
9499         if (is_sampling_event(event)) {
9500                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9501                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9502
9503                 hrtimer_cancel(&hwc->hrtimer);
9504         }
9505 }
9506
9507 static void perf_swevent_init_hrtimer(struct perf_event *event)
9508 {
9509         struct hw_perf_event *hwc = &event->hw;
9510
9511         if (!is_sampling_event(event))
9512                 return;
9513
9514         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9515         hwc->hrtimer.function = perf_swevent_hrtimer;
9516
9517         /*
9518          * Since hrtimers have a fixed rate, we can do a static freq->period
9519          * mapping and avoid the whole period adjust feedback stuff.
9520          */
9521         if (event->attr.freq) {
9522                 long freq = event->attr.sample_freq;
9523
9524                 event->attr.sample_period = NSEC_PER_SEC / freq;
9525                 hwc->sample_period = event->attr.sample_period;
9526                 local64_set(&hwc->period_left, hwc->sample_period);
9527                 hwc->last_period = hwc->sample_period;
9528                 event->attr.freq = 0;
9529         }
9530 }
9531
9532 /*
9533  * Software event: cpu wall time clock
9534  */
9535
9536 static void cpu_clock_event_update(struct perf_event *event)
9537 {
9538         s64 prev;
9539         u64 now;
9540
9541         now = local_clock();
9542         prev = local64_xchg(&event->hw.prev_count, now);
9543         local64_add(now - prev, &event->count);
9544 }
9545
9546 static void cpu_clock_event_start(struct perf_event *event, int flags)
9547 {
9548         local64_set(&event->hw.prev_count, local_clock());
9549         perf_swevent_start_hrtimer(event);
9550 }
9551
9552 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9553 {
9554         perf_swevent_cancel_hrtimer(event);
9555         cpu_clock_event_update(event);
9556 }
9557
9558 static int cpu_clock_event_add(struct perf_event *event, int flags)
9559 {
9560         if (flags & PERF_EF_START)
9561                 cpu_clock_event_start(event, flags);
9562         perf_event_update_userpage(event);
9563
9564         return 0;
9565 }
9566
9567 static void cpu_clock_event_del(struct perf_event *event, int flags)
9568 {
9569         cpu_clock_event_stop(event, flags);
9570 }
9571
9572 static void cpu_clock_event_read(struct perf_event *event)
9573 {
9574         cpu_clock_event_update(event);
9575 }
9576
9577 static int cpu_clock_event_init(struct perf_event *event)
9578 {
9579         if (event->attr.type != PERF_TYPE_SOFTWARE)
9580                 return -ENOENT;
9581
9582         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9583                 return -ENOENT;
9584
9585         /*
9586          * no branch sampling for software events
9587          */
9588         if (has_branch_stack(event))
9589                 return -EOPNOTSUPP;
9590
9591         perf_swevent_init_hrtimer(event);
9592
9593         return 0;
9594 }
9595
9596 static struct pmu perf_cpu_clock = {
9597         .task_ctx_nr    = perf_sw_context,
9598
9599         .capabilities   = PERF_PMU_CAP_NO_NMI,
9600
9601         .event_init     = cpu_clock_event_init,
9602         .add            = cpu_clock_event_add,
9603         .del            = cpu_clock_event_del,
9604         .start          = cpu_clock_event_start,
9605         .stop           = cpu_clock_event_stop,
9606         .read           = cpu_clock_event_read,
9607 };
9608
9609 /*
9610  * Software event: task time clock
9611  */
9612
9613 static void task_clock_event_update(struct perf_event *event, u64 now)
9614 {
9615         u64 prev;
9616         s64 delta;
9617
9618         prev = local64_xchg(&event->hw.prev_count, now);
9619         delta = now - prev;
9620         local64_add(delta, &event->count);
9621 }
9622
9623 static void task_clock_event_start(struct perf_event *event, int flags)
9624 {
9625         local64_set(&event->hw.prev_count, event->ctx->time);
9626         perf_swevent_start_hrtimer(event);
9627 }
9628
9629 static void task_clock_event_stop(struct perf_event *event, int flags)
9630 {
9631         perf_swevent_cancel_hrtimer(event);
9632         task_clock_event_update(event, event->ctx->time);
9633 }
9634
9635 static int task_clock_event_add(struct perf_event *event, int flags)
9636 {
9637         if (flags & PERF_EF_START)
9638                 task_clock_event_start(event, flags);
9639         perf_event_update_userpage(event);
9640
9641         return 0;
9642 }
9643
9644 static void task_clock_event_del(struct perf_event *event, int flags)
9645 {
9646         task_clock_event_stop(event, PERF_EF_UPDATE);
9647 }
9648
9649 static void task_clock_event_read(struct perf_event *event)
9650 {
9651         u64 now = perf_clock();
9652         u64 delta = now - event->ctx->timestamp;
9653         u64 time = event->ctx->time + delta;
9654
9655         task_clock_event_update(event, time);
9656 }
9657
9658 static int task_clock_event_init(struct perf_event *event)
9659 {
9660         if (event->attr.type != PERF_TYPE_SOFTWARE)
9661                 return -ENOENT;
9662
9663         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9664                 return -ENOENT;
9665
9666         /*
9667          * no branch sampling for software events
9668          */
9669         if (has_branch_stack(event))
9670                 return -EOPNOTSUPP;
9671
9672         perf_swevent_init_hrtimer(event);
9673
9674         return 0;
9675 }
9676
9677 static struct pmu perf_task_clock = {
9678         .task_ctx_nr    = perf_sw_context,
9679
9680         .capabilities   = PERF_PMU_CAP_NO_NMI,
9681
9682         .event_init     = task_clock_event_init,
9683         .add            = task_clock_event_add,
9684         .del            = task_clock_event_del,
9685         .start          = task_clock_event_start,
9686         .stop           = task_clock_event_stop,
9687         .read           = task_clock_event_read,
9688 };
9689
9690 static void perf_pmu_nop_void(struct pmu *pmu)
9691 {
9692 }
9693
9694 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9695 {
9696 }
9697
9698 static int perf_pmu_nop_int(struct pmu *pmu)
9699 {
9700         return 0;
9701 }
9702
9703 static int perf_event_nop_int(struct perf_event *event, u64 value)
9704 {
9705         return 0;
9706 }
9707
9708 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9709
9710 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9711 {
9712         __this_cpu_write(nop_txn_flags, flags);
9713
9714         if (flags & ~PERF_PMU_TXN_ADD)
9715                 return;
9716
9717         perf_pmu_disable(pmu);
9718 }
9719
9720 static int perf_pmu_commit_txn(struct pmu *pmu)
9721 {
9722         unsigned int flags = __this_cpu_read(nop_txn_flags);
9723
9724         __this_cpu_write(nop_txn_flags, 0);
9725
9726         if (flags & ~PERF_PMU_TXN_ADD)
9727                 return 0;
9728
9729         perf_pmu_enable(pmu);
9730         return 0;
9731 }
9732
9733 static void perf_pmu_cancel_txn(struct pmu *pmu)
9734 {
9735         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9736
9737         __this_cpu_write(nop_txn_flags, 0);
9738
9739         if (flags & ~PERF_PMU_TXN_ADD)
9740                 return;
9741
9742         perf_pmu_enable(pmu);
9743 }
9744
9745 static int perf_event_idx_default(struct perf_event *event)
9746 {
9747         return 0;
9748 }
9749
9750 /*
9751  * Ensures all contexts with the same task_ctx_nr have the same
9752  * pmu_cpu_context too.
9753  */
9754 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9755 {
9756         struct pmu *pmu;
9757
9758         if (ctxn < 0)
9759                 return NULL;
9760
9761         list_for_each_entry(pmu, &pmus, entry) {
9762                 if (pmu->task_ctx_nr == ctxn)
9763                         return pmu->pmu_cpu_context;
9764         }
9765
9766         return NULL;
9767 }
9768
9769 static void free_pmu_context(struct pmu *pmu)
9770 {
9771         /*
9772          * Static contexts such as perf_sw_context have a global lifetime
9773          * and may be shared between different PMUs. Avoid freeing them
9774          * when a single PMU is going away.
9775          */
9776         if (pmu->task_ctx_nr > perf_invalid_context)
9777                 return;
9778
9779         free_percpu(pmu->pmu_cpu_context);
9780 }
9781
9782 /*
9783  * Let userspace know that this PMU supports address range filtering:
9784  */
9785 static ssize_t nr_addr_filters_show(struct device *dev,
9786                                     struct device_attribute *attr,
9787                                     char *page)
9788 {
9789         struct pmu *pmu = dev_get_drvdata(dev);
9790
9791         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9792 }
9793 DEVICE_ATTR_RO(nr_addr_filters);
9794
9795 static struct idr pmu_idr;
9796
9797 static ssize_t
9798 type_show(struct device *dev, struct device_attribute *attr, char *page)
9799 {
9800         struct pmu *pmu = dev_get_drvdata(dev);
9801
9802         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9803 }
9804 static DEVICE_ATTR_RO(type);
9805
9806 static ssize_t
9807 perf_event_mux_interval_ms_show(struct device *dev,
9808                                 struct device_attribute *attr,
9809                                 char *page)
9810 {
9811         struct pmu *pmu = dev_get_drvdata(dev);
9812
9813         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9814 }
9815
9816 static DEFINE_MUTEX(mux_interval_mutex);
9817
9818 static ssize_t
9819 perf_event_mux_interval_ms_store(struct device *dev,
9820                                  struct device_attribute *attr,
9821                                  const char *buf, size_t count)
9822 {
9823         struct pmu *pmu = dev_get_drvdata(dev);
9824         int timer, cpu, ret;
9825
9826         ret = kstrtoint(buf, 0, &timer);
9827         if (ret)
9828                 return ret;
9829
9830         if (timer < 1)
9831                 return -EINVAL;
9832
9833         /* same value, noting to do */
9834         if (timer == pmu->hrtimer_interval_ms)
9835                 return count;
9836
9837         mutex_lock(&mux_interval_mutex);
9838         pmu->hrtimer_interval_ms = timer;
9839
9840         /* update all cpuctx for this PMU */
9841         cpus_read_lock();
9842         for_each_online_cpu(cpu) {
9843                 struct perf_cpu_context *cpuctx;
9844                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9845                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9846
9847                 cpu_function_call(cpu,
9848                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9849         }
9850         cpus_read_unlock();
9851         mutex_unlock(&mux_interval_mutex);
9852
9853         return count;
9854 }
9855 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9856
9857 static struct attribute *pmu_dev_attrs[] = {
9858         &dev_attr_type.attr,
9859         &dev_attr_perf_event_mux_interval_ms.attr,
9860         NULL,
9861 };
9862 ATTRIBUTE_GROUPS(pmu_dev);
9863
9864 static int pmu_bus_running;
9865 static struct bus_type pmu_bus = {
9866         .name           = "event_source",
9867         .dev_groups     = pmu_dev_groups,
9868 };
9869
9870 static void pmu_dev_release(struct device *dev)
9871 {
9872         kfree(dev);
9873 }
9874
9875 static int pmu_dev_alloc(struct pmu *pmu)
9876 {
9877         int ret = -ENOMEM;
9878
9879         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9880         if (!pmu->dev)
9881                 goto out;
9882
9883         pmu->dev->groups = pmu->attr_groups;
9884         device_initialize(pmu->dev);
9885         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9886         if (ret)
9887                 goto free_dev;
9888
9889         dev_set_drvdata(pmu->dev, pmu);
9890         pmu->dev->bus = &pmu_bus;
9891         pmu->dev->release = pmu_dev_release;
9892         ret = device_add(pmu->dev);
9893         if (ret)
9894                 goto free_dev;
9895
9896         /* For PMUs with address filters, throw in an extra attribute: */
9897         if (pmu->nr_addr_filters)
9898                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9899
9900         if (ret)
9901                 goto del_dev;
9902
9903         if (pmu->attr_update)
9904                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
9905
9906         if (ret)
9907                 goto del_dev;
9908
9909 out:
9910         return ret;
9911
9912 del_dev:
9913         device_del(pmu->dev);
9914
9915 free_dev:
9916         put_device(pmu->dev);
9917         goto out;
9918 }
9919
9920 static struct lock_class_key cpuctx_mutex;
9921 static struct lock_class_key cpuctx_lock;
9922
9923 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9924 {
9925         int cpu, ret;
9926
9927         mutex_lock(&pmus_lock);
9928         ret = -ENOMEM;
9929         pmu->pmu_disable_count = alloc_percpu(int);
9930         if (!pmu->pmu_disable_count)
9931                 goto unlock;
9932
9933         pmu->type = -1;
9934         if (!name)
9935                 goto skip_type;
9936         pmu->name = name;
9937
9938         if (type < 0) {
9939                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9940                 if (type < 0) {
9941                         ret = type;
9942                         goto free_pdc;
9943                 }
9944         }
9945         pmu->type = type;
9946
9947         if (pmu_bus_running) {
9948                 ret = pmu_dev_alloc(pmu);
9949                 if (ret)
9950                         goto free_idr;
9951         }
9952
9953 skip_type:
9954         if (pmu->task_ctx_nr == perf_hw_context) {
9955                 static int hw_context_taken = 0;
9956
9957                 /*
9958                  * Other than systems with heterogeneous CPUs, it never makes
9959                  * sense for two PMUs to share perf_hw_context. PMUs which are
9960                  * uncore must use perf_invalid_context.
9961                  */
9962                 if (WARN_ON_ONCE(hw_context_taken &&
9963                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9964                         pmu->task_ctx_nr = perf_invalid_context;
9965
9966                 hw_context_taken = 1;
9967         }
9968
9969         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9970         if (pmu->pmu_cpu_context)
9971                 goto got_cpu_context;
9972
9973         ret = -ENOMEM;
9974         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9975         if (!pmu->pmu_cpu_context)
9976                 goto free_dev;
9977
9978         for_each_possible_cpu(cpu) {
9979                 struct perf_cpu_context *cpuctx;
9980
9981                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9982                 __perf_event_init_context(&cpuctx->ctx);
9983                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9984                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9985                 cpuctx->ctx.pmu = pmu;
9986                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9987
9988                 __perf_mux_hrtimer_init(cpuctx, cpu);
9989         }
9990
9991 got_cpu_context:
9992         if (!pmu->start_txn) {
9993                 if (pmu->pmu_enable) {
9994                         /*
9995                          * If we have pmu_enable/pmu_disable calls, install
9996                          * transaction stubs that use that to try and batch
9997                          * hardware accesses.
9998                          */
9999                         pmu->start_txn  = perf_pmu_start_txn;
10000                         pmu->commit_txn = perf_pmu_commit_txn;
10001                         pmu->cancel_txn = perf_pmu_cancel_txn;
10002                 } else {
10003                         pmu->start_txn  = perf_pmu_nop_txn;
10004                         pmu->commit_txn = perf_pmu_nop_int;
10005                         pmu->cancel_txn = perf_pmu_nop_void;
10006                 }
10007         }
10008
10009         if (!pmu->pmu_enable) {
10010                 pmu->pmu_enable  = perf_pmu_nop_void;
10011                 pmu->pmu_disable = perf_pmu_nop_void;
10012         }
10013
10014         if (!pmu->check_period)
10015                 pmu->check_period = perf_event_nop_int;
10016
10017         if (!pmu->event_idx)
10018                 pmu->event_idx = perf_event_idx_default;
10019
10020         list_add_rcu(&pmu->entry, &pmus);
10021         atomic_set(&pmu->exclusive_cnt, 0);
10022         ret = 0;
10023 unlock:
10024         mutex_unlock(&pmus_lock);
10025
10026         return ret;
10027
10028 free_dev:
10029         device_del(pmu->dev);
10030         put_device(pmu->dev);
10031
10032 free_idr:
10033         if (pmu->type >= PERF_TYPE_MAX)
10034                 idr_remove(&pmu_idr, pmu->type);
10035
10036 free_pdc:
10037         free_percpu(pmu->pmu_disable_count);
10038         goto unlock;
10039 }
10040 EXPORT_SYMBOL_GPL(perf_pmu_register);
10041
10042 void perf_pmu_unregister(struct pmu *pmu)
10043 {
10044         mutex_lock(&pmus_lock);
10045         list_del_rcu(&pmu->entry);
10046
10047         /*
10048          * We dereference the pmu list under both SRCU and regular RCU, so
10049          * synchronize against both of those.
10050          */
10051         synchronize_srcu(&pmus_srcu);
10052         synchronize_rcu();
10053
10054         free_percpu(pmu->pmu_disable_count);
10055         if (pmu->type >= PERF_TYPE_MAX)
10056                 idr_remove(&pmu_idr, pmu->type);
10057         if (pmu_bus_running) {
10058                 if (pmu->nr_addr_filters)
10059                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10060                 device_del(pmu->dev);
10061                 put_device(pmu->dev);
10062         }
10063         free_pmu_context(pmu);
10064         mutex_unlock(&pmus_lock);
10065 }
10066 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10067
10068 static inline bool has_extended_regs(struct perf_event *event)
10069 {
10070         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10071                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10072 }
10073
10074 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10075 {
10076         struct perf_event_context *ctx = NULL;
10077         int ret;
10078
10079         if (!try_module_get(pmu->module))
10080                 return -ENODEV;
10081
10082         /*
10083          * A number of pmu->event_init() methods iterate the sibling_list to,
10084          * for example, validate if the group fits on the PMU. Therefore,
10085          * if this is a sibling event, acquire the ctx->mutex to protect
10086          * the sibling_list.
10087          */
10088         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10089                 /*
10090                  * This ctx->mutex can nest when we're called through
10091                  * inheritance. See the perf_event_ctx_lock_nested() comment.
10092                  */
10093                 ctx = perf_event_ctx_lock_nested(event->group_leader,
10094                                                  SINGLE_DEPTH_NESTING);
10095                 BUG_ON(!ctx);
10096         }
10097
10098         event->pmu = pmu;
10099         ret = pmu->event_init(event);
10100
10101         if (ctx)
10102                 perf_event_ctx_unlock(event->group_leader, ctx);
10103
10104         if (!ret) {
10105                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10106                     has_extended_regs(event))
10107                         ret = -EOPNOTSUPP;
10108
10109                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10110                     event_has_any_exclude_flag(event))
10111                         ret = -EINVAL;
10112
10113                 if (ret && event->destroy)
10114                         event->destroy(event);
10115         }
10116
10117         if (ret)
10118                 module_put(pmu->module);
10119
10120         return ret;
10121 }
10122
10123 static struct pmu *perf_init_event(struct perf_event *event)
10124 {
10125         struct pmu *pmu;
10126         int idx;
10127         int ret;
10128
10129         idx = srcu_read_lock(&pmus_srcu);
10130
10131         /* Try parent's PMU first: */
10132         if (event->parent && event->parent->pmu) {
10133                 pmu = event->parent->pmu;
10134                 ret = perf_try_init_event(pmu, event);
10135                 if (!ret)
10136                         goto unlock;
10137         }
10138
10139         rcu_read_lock();
10140         pmu = idr_find(&pmu_idr, event->attr.type);
10141         rcu_read_unlock();
10142         if (pmu) {
10143                 ret = perf_try_init_event(pmu, event);
10144                 if (ret)
10145                         pmu = ERR_PTR(ret);
10146                 goto unlock;
10147         }
10148
10149         list_for_each_entry_rcu(pmu, &pmus, entry) {
10150                 ret = perf_try_init_event(pmu, event);
10151                 if (!ret)
10152                         goto unlock;
10153
10154                 if (ret != -ENOENT) {
10155                         pmu = ERR_PTR(ret);
10156                         goto unlock;
10157                 }
10158         }
10159         pmu = ERR_PTR(-ENOENT);
10160 unlock:
10161         srcu_read_unlock(&pmus_srcu, idx);
10162
10163         return pmu;
10164 }
10165
10166 static void attach_sb_event(struct perf_event *event)
10167 {
10168         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10169
10170         raw_spin_lock(&pel->lock);
10171         list_add_rcu(&event->sb_list, &pel->list);
10172         raw_spin_unlock(&pel->lock);
10173 }
10174
10175 /*
10176  * We keep a list of all !task (and therefore per-cpu) events
10177  * that need to receive side-band records.
10178  *
10179  * This avoids having to scan all the various PMU per-cpu contexts
10180  * looking for them.
10181  */
10182 static void account_pmu_sb_event(struct perf_event *event)
10183 {
10184         if (is_sb_event(event))
10185                 attach_sb_event(event);
10186 }
10187
10188 static void account_event_cpu(struct perf_event *event, int cpu)
10189 {
10190         if (event->parent)
10191                 return;
10192
10193         if (is_cgroup_event(event))
10194                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10195 }
10196
10197 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10198 static void account_freq_event_nohz(void)
10199 {
10200 #ifdef CONFIG_NO_HZ_FULL
10201         /* Lock so we don't race with concurrent unaccount */
10202         spin_lock(&nr_freq_lock);
10203         if (atomic_inc_return(&nr_freq_events) == 1)
10204                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10205         spin_unlock(&nr_freq_lock);
10206 #endif
10207 }
10208
10209 static void account_freq_event(void)
10210 {
10211         if (tick_nohz_full_enabled())
10212                 account_freq_event_nohz();
10213         else
10214                 atomic_inc(&nr_freq_events);
10215 }
10216
10217
10218 static void account_event(struct perf_event *event)
10219 {
10220         bool inc = false;
10221
10222         if (event->parent)
10223                 return;
10224
10225         if (event->attach_state & PERF_ATTACH_TASK)
10226                 inc = true;
10227         if (event->attr.mmap || event->attr.mmap_data)
10228                 atomic_inc(&nr_mmap_events);
10229         if (event->attr.comm)
10230                 atomic_inc(&nr_comm_events);
10231         if (event->attr.namespaces)
10232                 atomic_inc(&nr_namespaces_events);
10233         if (event->attr.task)
10234                 atomic_inc(&nr_task_events);
10235         if (event->attr.freq)
10236                 account_freq_event();
10237         if (event->attr.context_switch) {
10238                 atomic_inc(&nr_switch_events);
10239                 inc = true;
10240         }
10241         if (has_branch_stack(event))
10242                 inc = true;
10243         if (is_cgroup_event(event))
10244                 inc = true;
10245         if (event->attr.ksymbol)
10246                 atomic_inc(&nr_ksymbol_events);
10247         if (event->attr.bpf_event)
10248                 atomic_inc(&nr_bpf_events);
10249
10250         if (inc) {
10251                 /*
10252                  * We need the mutex here because static_branch_enable()
10253                  * must complete *before* the perf_sched_count increment
10254                  * becomes visible.
10255                  */
10256                 if (atomic_inc_not_zero(&perf_sched_count))
10257                         goto enabled;
10258
10259                 mutex_lock(&perf_sched_mutex);
10260                 if (!atomic_read(&perf_sched_count)) {
10261                         static_branch_enable(&perf_sched_events);
10262                         /*
10263                          * Guarantee that all CPUs observe they key change and
10264                          * call the perf scheduling hooks before proceeding to
10265                          * install events that need them.
10266                          */
10267                         synchronize_rcu();
10268                 }
10269                 /*
10270                  * Now that we have waited for the sync_sched(), allow further
10271                  * increments to by-pass the mutex.
10272                  */
10273                 atomic_inc(&perf_sched_count);
10274                 mutex_unlock(&perf_sched_mutex);
10275         }
10276 enabled:
10277
10278         account_event_cpu(event, event->cpu);
10279
10280         account_pmu_sb_event(event);
10281 }
10282
10283 /*
10284  * Allocate and initialize an event structure
10285  */
10286 static struct perf_event *
10287 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10288                  struct task_struct *task,
10289                  struct perf_event *group_leader,
10290                  struct perf_event *parent_event,
10291                  perf_overflow_handler_t overflow_handler,
10292                  void *context, int cgroup_fd)
10293 {
10294         struct pmu *pmu;
10295         struct perf_event *event;
10296         struct hw_perf_event *hwc;
10297         long err = -EINVAL;
10298
10299         if ((unsigned)cpu >= nr_cpu_ids) {
10300                 if (!task || cpu != -1)
10301                         return ERR_PTR(-EINVAL);
10302         }
10303
10304         event = kzalloc(sizeof(*event), GFP_KERNEL);
10305         if (!event)
10306                 return ERR_PTR(-ENOMEM);
10307
10308         /*
10309          * Single events are their own group leaders, with an
10310          * empty sibling list:
10311          */
10312         if (!group_leader)
10313                 group_leader = event;
10314
10315         mutex_init(&event->child_mutex);
10316         INIT_LIST_HEAD(&event->child_list);
10317
10318         INIT_LIST_HEAD(&event->event_entry);
10319         INIT_LIST_HEAD(&event->sibling_list);
10320         INIT_LIST_HEAD(&event->active_list);
10321         init_event_group(event);
10322         INIT_LIST_HEAD(&event->rb_entry);
10323         INIT_LIST_HEAD(&event->active_entry);
10324         INIT_LIST_HEAD(&event->addr_filters.list);
10325         INIT_HLIST_NODE(&event->hlist_entry);
10326
10327
10328         init_waitqueue_head(&event->waitq);
10329         event->pending_disable = -1;
10330         init_irq_work(&event->pending, perf_pending_event);
10331
10332         mutex_init(&event->mmap_mutex);
10333         raw_spin_lock_init(&event->addr_filters.lock);
10334
10335         atomic_long_set(&event->refcount, 1);
10336         event->cpu              = cpu;
10337         event->attr             = *attr;
10338         event->group_leader     = group_leader;
10339         event->pmu              = NULL;
10340         event->oncpu            = -1;
10341
10342         event->parent           = parent_event;
10343
10344         event->ns               = get_pid_ns(task_active_pid_ns(current));
10345         event->id               = atomic64_inc_return(&perf_event_id);
10346
10347         event->state            = PERF_EVENT_STATE_INACTIVE;
10348
10349         if (task) {
10350                 event->attach_state = PERF_ATTACH_TASK;
10351                 /*
10352                  * XXX pmu::event_init needs to know what task to account to
10353                  * and we cannot use the ctx information because we need the
10354                  * pmu before we get a ctx.
10355                  */
10356                 event->hw.target = get_task_struct(task);
10357         }
10358
10359         event->clock = &local_clock;
10360         if (parent_event)
10361                 event->clock = parent_event->clock;
10362
10363         if (!overflow_handler && parent_event) {
10364                 overflow_handler = parent_event->overflow_handler;
10365                 context = parent_event->overflow_handler_context;
10366 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10367                 if (overflow_handler == bpf_overflow_handler) {
10368                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10369
10370                         if (IS_ERR(prog)) {
10371                                 err = PTR_ERR(prog);
10372                                 goto err_ns;
10373                         }
10374                         event->prog = prog;
10375                         event->orig_overflow_handler =
10376                                 parent_event->orig_overflow_handler;
10377                 }
10378 #endif
10379         }
10380
10381         if (overflow_handler) {
10382                 event->overflow_handler = overflow_handler;
10383                 event->overflow_handler_context = context;
10384         } else if (is_write_backward(event)){
10385                 event->overflow_handler = perf_event_output_backward;
10386                 event->overflow_handler_context = NULL;
10387         } else {
10388                 event->overflow_handler = perf_event_output_forward;
10389                 event->overflow_handler_context = NULL;
10390         }
10391
10392         perf_event__state_init(event);
10393
10394         pmu = NULL;
10395
10396         hwc = &event->hw;
10397         hwc->sample_period = attr->sample_period;
10398         if (attr->freq && attr->sample_freq)
10399                 hwc->sample_period = 1;
10400         hwc->last_period = hwc->sample_period;
10401
10402         local64_set(&hwc->period_left, hwc->sample_period);
10403
10404         /*
10405          * We currently do not support PERF_SAMPLE_READ on inherited events.
10406          * See perf_output_read().
10407          */
10408         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10409                 goto err_ns;
10410
10411         if (!has_branch_stack(event))
10412                 event->attr.branch_sample_type = 0;
10413
10414         if (cgroup_fd != -1) {
10415                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10416                 if (err)
10417                         goto err_ns;
10418         }
10419
10420         pmu = perf_init_event(event);
10421         if (IS_ERR(pmu)) {
10422                 err = PTR_ERR(pmu);
10423                 goto err_ns;
10424         }
10425
10426         err = exclusive_event_init(event);
10427         if (err)
10428                 goto err_pmu;
10429
10430         if (has_addr_filter(event)) {
10431                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10432                                                     sizeof(struct perf_addr_filter_range),
10433                                                     GFP_KERNEL);
10434                 if (!event->addr_filter_ranges) {
10435                         err = -ENOMEM;
10436                         goto err_per_task;
10437                 }
10438
10439                 /*
10440                  * Clone the parent's vma offsets: they are valid until exec()
10441                  * even if the mm is not shared with the parent.
10442                  */
10443                 if (event->parent) {
10444                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10445
10446                         raw_spin_lock_irq(&ifh->lock);
10447                         memcpy(event->addr_filter_ranges,
10448                                event->parent->addr_filter_ranges,
10449                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10450                         raw_spin_unlock_irq(&ifh->lock);
10451                 }
10452
10453                 /* force hw sync on the address filters */
10454                 event->addr_filters_gen = 1;
10455         }
10456
10457         if (!event->parent) {
10458                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10459                         err = get_callchain_buffers(attr->sample_max_stack);
10460                         if (err)
10461                                 goto err_addr_filters;
10462                 }
10463         }
10464
10465         /* symmetric to unaccount_event() in _free_event() */
10466         account_event(event);
10467
10468         return event;
10469
10470 err_addr_filters:
10471         kfree(event->addr_filter_ranges);
10472
10473 err_per_task:
10474         exclusive_event_destroy(event);
10475
10476 err_pmu:
10477         if (event->destroy)
10478                 event->destroy(event);
10479         module_put(pmu->module);
10480 err_ns:
10481         if (is_cgroup_event(event))
10482                 perf_detach_cgroup(event);
10483         if (event->ns)
10484                 put_pid_ns(event->ns);
10485         if (event->hw.target)
10486                 put_task_struct(event->hw.target);
10487         kfree(event);
10488
10489         return ERR_PTR(err);
10490 }
10491
10492 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10493                           struct perf_event_attr *attr)
10494 {
10495         u32 size;
10496         int ret;
10497
10498         if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10499                 return -EFAULT;
10500
10501         /*
10502          * zero the full structure, so that a short copy will be nice.
10503          */
10504         memset(attr, 0, sizeof(*attr));
10505
10506         ret = get_user(size, &uattr->size);
10507         if (ret)
10508                 return ret;
10509
10510         if (size > PAGE_SIZE)   /* silly large */
10511                 goto err_size;
10512
10513         if (!size)              /* abi compat */
10514                 size = PERF_ATTR_SIZE_VER0;
10515
10516         if (size < PERF_ATTR_SIZE_VER0)
10517                 goto err_size;
10518
10519         /*
10520          * If we're handed a bigger struct than we know of,
10521          * ensure all the unknown bits are 0 - i.e. new
10522          * user-space does not rely on any kernel feature
10523          * extensions we dont know about yet.
10524          */
10525         if (size > sizeof(*attr)) {
10526                 unsigned char __user *addr;
10527                 unsigned char __user *end;
10528                 unsigned char val;
10529
10530                 addr = (void __user *)uattr + sizeof(*attr);
10531                 end  = (void __user *)uattr + size;
10532
10533                 for (; addr < end; addr++) {
10534                         ret = get_user(val, addr);
10535                         if (ret)
10536                                 return ret;
10537                         if (val)
10538                                 goto err_size;
10539                 }
10540                 size = sizeof(*attr);
10541         }
10542
10543         ret = copy_from_user(attr, uattr, size);
10544         if (ret)
10545                 return -EFAULT;
10546
10547         attr->size = size;
10548
10549         if (attr->__reserved_1)
10550                 return -EINVAL;
10551
10552         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10553                 return -EINVAL;
10554
10555         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10556                 return -EINVAL;
10557
10558         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10559                 u64 mask = attr->branch_sample_type;
10560
10561                 /* only using defined bits */
10562                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10563                         return -EINVAL;
10564
10565                 /* at least one branch bit must be set */
10566                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10567                         return -EINVAL;
10568
10569                 /* propagate priv level, when not set for branch */
10570                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10571
10572                         /* exclude_kernel checked on syscall entry */
10573                         if (!attr->exclude_kernel)
10574                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10575
10576                         if (!attr->exclude_user)
10577                                 mask |= PERF_SAMPLE_BRANCH_USER;
10578
10579                         if (!attr->exclude_hv)
10580                                 mask |= PERF_SAMPLE_BRANCH_HV;
10581                         /*
10582                          * adjust user setting (for HW filter setup)
10583                          */
10584                         attr->branch_sample_type = mask;
10585                 }
10586                 /* privileged levels capture (kernel, hv): check permissions */
10587                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10588                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10589                         return -EACCES;
10590         }
10591
10592         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10593                 ret = perf_reg_validate(attr->sample_regs_user);
10594                 if (ret)
10595                         return ret;
10596         }
10597
10598         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10599                 if (!arch_perf_have_user_stack_dump())
10600                         return -ENOSYS;
10601
10602                 /*
10603                  * We have __u32 type for the size, but so far
10604                  * we can only use __u16 as maximum due to the
10605                  * __u16 sample size limit.
10606                  */
10607                 if (attr->sample_stack_user >= USHRT_MAX)
10608                         return -EINVAL;
10609                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10610                         return -EINVAL;
10611         }
10612
10613         if (!attr->sample_max_stack)
10614                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10615
10616         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10617                 ret = perf_reg_validate(attr->sample_regs_intr);
10618 out:
10619         return ret;
10620
10621 err_size:
10622         put_user(sizeof(*attr), &uattr->size);
10623         ret = -E2BIG;
10624         goto out;
10625 }
10626
10627 static int
10628 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10629 {
10630         struct ring_buffer *rb = NULL;
10631         int ret = -EINVAL;
10632
10633         if (!output_event)
10634                 goto set;
10635
10636         /* don't allow circular references */
10637         if (event == output_event)
10638                 goto out;
10639
10640         /*
10641          * Don't allow cross-cpu buffers
10642          */
10643         if (output_event->cpu != event->cpu)
10644                 goto out;
10645
10646         /*
10647          * If its not a per-cpu rb, it must be the same task.
10648          */
10649         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10650                 goto out;
10651
10652         /*
10653          * Mixing clocks in the same buffer is trouble you don't need.
10654          */
10655         if (output_event->clock != event->clock)
10656                 goto out;
10657
10658         /*
10659          * Either writing ring buffer from beginning or from end.
10660          * Mixing is not allowed.
10661          */
10662         if (is_write_backward(output_event) != is_write_backward(event))
10663                 goto out;
10664
10665         /*
10666          * If both events generate aux data, they must be on the same PMU
10667          */
10668         if (has_aux(event) && has_aux(output_event) &&
10669             event->pmu != output_event->pmu)
10670                 goto out;
10671
10672 set:
10673         mutex_lock(&event->mmap_mutex);
10674         /* Can't redirect output if we've got an active mmap() */
10675         if (atomic_read(&event->mmap_count))
10676                 goto unlock;
10677
10678         if (output_event) {
10679                 /* get the rb we want to redirect to */
10680                 rb = ring_buffer_get(output_event);
10681                 if (!rb)
10682                         goto unlock;
10683         }
10684
10685         ring_buffer_attach(event, rb);
10686
10687         ret = 0;
10688 unlock:
10689         mutex_unlock(&event->mmap_mutex);
10690
10691 out:
10692         return ret;
10693 }
10694
10695 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10696 {
10697         if (b < a)
10698                 swap(a, b);
10699
10700         mutex_lock(a);
10701         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10702 }
10703
10704 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10705 {
10706         bool nmi_safe = false;
10707
10708         switch (clk_id) {
10709         case CLOCK_MONOTONIC:
10710                 event->clock = &ktime_get_mono_fast_ns;
10711                 nmi_safe = true;
10712                 break;
10713
10714         case CLOCK_MONOTONIC_RAW:
10715                 event->clock = &ktime_get_raw_fast_ns;
10716                 nmi_safe = true;
10717                 break;
10718
10719         case CLOCK_REALTIME:
10720                 event->clock = &ktime_get_real_ns;
10721                 break;
10722
10723         case CLOCK_BOOTTIME:
10724                 event->clock = &ktime_get_boottime_ns;
10725                 break;
10726
10727         case CLOCK_TAI:
10728                 event->clock = &ktime_get_clocktai_ns;
10729                 break;
10730
10731         default:
10732                 return -EINVAL;
10733         }
10734
10735         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10736                 return -EINVAL;
10737
10738         return 0;
10739 }
10740
10741 /*
10742  * Variation on perf_event_ctx_lock_nested(), except we take two context
10743  * mutexes.
10744  */
10745 static struct perf_event_context *
10746 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10747                              struct perf_event_context *ctx)
10748 {
10749         struct perf_event_context *gctx;
10750
10751 again:
10752         rcu_read_lock();
10753         gctx = READ_ONCE(group_leader->ctx);
10754         if (!refcount_inc_not_zero(&gctx->refcount)) {
10755                 rcu_read_unlock();
10756                 goto again;
10757         }
10758         rcu_read_unlock();
10759
10760         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10761
10762         if (group_leader->ctx != gctx) {
10763                 mutex_unlock(&ctx->mutex);
10764                 mutex_unlock(&gctx->mutex);
10765                 put_ctx(gctx);
10766                 goto again;
10767         }
10768
10769         return gctx;
10770 }
10771
10772 /**
10773  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10774  *
10775  * @attr_uptr:  event_id type attributes for monitoring/sampling
10776  * @pid:                target pid
10777  * @cpu:                target cpu
10778  * @group_fd:           group leader event fd
10779  */
10780 SYSCALL_DEFINE5(perf_event_open,
10781                 struct perf_event_attr __user *, attr_uptr,
10782                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10783 {
10784         struct perf_event *group_leader = NULL, *output_event = NULL;
10785         struct perf_event *event, *sibling;
10786         struct perf_event_attr attr;
10787         struct perf_event_context *ctx, *uninitialized_var(gctx);
10788         struct file *event_file = NULL;
10789         struct fd group = {NULL, 0};
10790         struct task_struct *task = NULL;
10791         struct pmu *pmu;
10792         int event_fd;
10793         int move_group = 0;
10794         int err;
10795         int f_flags = O_RDWR;
10796         int cgroup_fd = -1;
10797
10798         /* for future expandability... */
10799         if (flags & ~PERF_FLAG_ALL)
10800                 return -EINVAL;
10801
10802         err = perf_copy_attr(attr_uptr, &attr);
10803         if (err)
10804                 return err;
10805
10806         if (!attr.exclude_kernel) {
10807                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10808                         return -EACCES;
10809         }
10810
10811         if (attr.namespaces) {
10812                 if (!capable(CAP_SYS_ADMIN))
10813                         return -EACCES;
10814         }
10815
10816         if (attr.freq) {
10817                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10818                         return -EINVAL;
10819         } else {
10820                 if (attr.sample_period & (1ULL << 63))
10821                         return -EINVAL;
10822         }
10823
10824         /* Only privileged users can get physical addresses */
10825         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10826             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10827                 return -EACCES;
10828
10829         /*
10830          * In cgroup mode, the pid argument is used to pass the fd
10831          * opened to the cgroup directory in cgroupfs. The cpu argument
10832          * designates the cpu on which to monitor threads from that
10833          * cgroup.
10834          */
10835         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10836                 return -EINVAL;
10837
10838         if (flags & PERF_FLAG_FD_CLOEXEC)
10839                 f_flags |= O_CLOEXEC;
10840
10841         event_fd = get_unused_fd_flags(f_flags);
10842         if (event_fd < 0)
10843                 return event_fd;
10844
10845         if (group_fd != -1) {
10846                 err = perf_fget_light(group_fd, &group);
10847                 if (err)
10848                         goto err_fd;
10849                 group_leader = group.file->private_data;
10850                 if (flags & PERF_FLAG_FD_OUTPUT)
10851                         output_event = group_leader;
10852                 if (flags & PERF_FLAG_FD_NO_GROUP)
10853                         group_leader = NULL;
10854         }
10855
10856         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10857                 task = find_lively_task_by_vpid(pid);
10858                 if (IS_ERR(task)) {
10859                         err = PTR_ERR(task);
10860                         goto err_group_fd;
10861                 }
10862         }
10863
10864         if (task && group_leader &&
10865             group_leader->attr.inherit != attr.inherit) {
10866                 err = -EINVAL;
10867                 goto err_task;
10868         }
10869
10870         if (task) {
10871                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10872                 if (err)
10873                         goto err_task;
10874
10875                 /*
10876                  * Reuse ptrace permission checks for now.
10877                  *
10878                  * We must hold cred_guard_mutex across this and any potential
10879                  * perf_install_in_context() call for this new event to
10880                  * serialize against exec() altering our credentials (and the
10881                  * perf_event_exit_task() that could imply).
10882                  */
10883                 err = -EACCES;
10884                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10885                         goto err_cred;
10886         }
10887
10888         if (flags & PERF_FLAG_PID_CGROUP)
10889                 cgroup_fd = pid;
10890
10891         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10892                                  NULL, NULL, cgroup_fd);
10893         if (IS_ERR(event)) {
10894                 err = PTR_ERR(event);
10895                 goto err_cred;
10896         }
10897
10898         if (is_sampling_event(event)) {
10899                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10900                         err = -EOPNOTSUPP;
10901                         goto err_alloc;
10902                 }
10903         }
10904
10905         /*
10906          * Special case software events and allow them to be part of
10907          * any hardware group.
10908          */
10909         pmu = event->pmu;
10910
10911         if (attr.use_clockid) {
10912                 err = perf_event_set_clock(event, attr.clockid);
10913                 if (err)
10914                         goto err_alloc;
10915         }
10916
10917         if (pmu->task_ctx_nr == perf_sw_context)
10918                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10919
10920         if (group_leader) {
10921                 if (is_software_event(event) &&
10922                     !in_software_context(group_leader)) {
10923                         /*
10924                          * If the event is a sw event, but the group_leader
10925                          * is on hw context.
10926                          *
10927                          * Allow the addition of software events to hw
10928                          * groups, this is safe because software events
10929                          * never fail to schedule.
10930                          */
10931                         pmu = group_leader->ctx->pmu;
10932                 } else if (!is_software_event(event) &&
10933                            is_software_event(group_leader) &&
10934                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10935                         /*
10936                          * In case the group is a pure software group, and we
10937                          * try to add a hardware event, move the whole group to
10938                          * the hardware context.
10939                          */
10940                         move_group = 1;
10941                 }
10942         }
10943
10944         /*
10945          * Get the target context (task or percpu):
10946          */
10947         ctx = find_get_context(pmu, task, event);
10948         if (IS_ERR(ctx)) {
10949                 err = PTR_ERR(ctx);
10950                 goto err_alloc;
10951         }
10952
10953         /*
10954          * Look up the group leader (we will attach this event to it):
10955          */
10956         if (group_leader) {
10957                 err = -EINVAL;
10958
10959                 /*
10960                  * Do not allow a recursive hierarchy (this new sibling
10961                  * becoming part of another group-sibling):
10962                  */
10963                 if (group_leader->group_leader != group_leader)
10964                         goto err_context;
10965
10966                 /* All events in a group should have the same clock */
10967                 if (group_leader->clock != event->clock)
10968                         goto err_context;
10969
10970                 /*
10971                  * Make sure we're both events for the same CPU;
10972                  * grouping events for different CPUs is broken; since
10973                  * you can never concurrently schedule them anyhow.
10974                  */
10975                 if (group_leader->cpu != event->cpu)
10976                         goto err_context;
10977
10978                 /*
10979                  * Make sure we're both on the same task, or both
10980                  * per-CPU events.
10981                  */
10982                 if (group_leader->ctx->task != ctx->task)
10983                         goto err_context;
10984
10985                 /*
10986                  * Do not allow to attach to a group in a different task
10987                  * or CPU context. If we're moving SW events, we'll fix
10988                  * this up later, so allow that.
10989                  */
10990                 if (!move_group && group_leader->ctx != ctx)
10991                         goto err_context;
10992
10993                 /*
10994                  * Only a group leader can be exclusive or pinned
10995                  */
10996                 if (attr.exclusive || attr.pinned)
10997                         goto err_context;
10998         }
10999
11000         if (output_event) {
11001                 err = perf_event_set_output(event, output_event);
11002                 if (err)
11003                         goto err_context;
11004         }
11005
11006         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11007                                         f_flags);
11008         if (IS_ERR(event_file)) {
11009                 err = PTR_ERR(event_file);
11010                 event_file = NULL;
11011                 goto err_context;
11012         }
11013
11014         if (move_group) {
11015                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11016
11017                 if (gctx->task == TASK_TOMBSTONE) {
11018                         err = -ESRCH;
11019                         goto err_locked;
11020                 }
11021
11022                 /*
11023                  * Check if we raced against another sys_perf_event_open() call
11024                  * moving the software group underneath us.
11025                  */
11026                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11027                         /*
11028                          * If someone moved the group out from under us, check
11029                          * if this new event wound up on the same ctx, if so
11030                          * its the regular !move_group case, otherwise fail.
11031                          */
11032                         if (gctx != ctx) {
11033                                 err = -EINVAL;
11034                                 goto err_locked;
11035                         } else {
11036                                 perf_event_ctx_unlock(group_leader, gctx);
11037                                 move_group = 0;
11038                         }
11039                 }
11040
11041                 /*
11042                  * Failure to create exclusive events returns -EBUSY.
11043                  */
11044                 err = -EBUSY;
11045                 if (!exclusive_event_installable(group_leader, ctx))
11046                         goto err_locked;
11047
11048                 for_each_sibling_event(sibling, group_leader) {
11049                         if (!exclusive_event_installable(sibling, ctx))
11050                                 goto err_locked;
11051                 }
11052         } else {
11053                 mutex_lock(&ctx->mutex);
11054         }
11055
11056         if (ctx->task == TASK_TOMBSTONE) {
11057                 err = -ESRCH;
11058                 goto err_locked;
11059         }
11060
11061         if (!perf_event_validate_size(event)) {
11062                 err = -E2BIG;
11063                 goto err_locked;
11064         }
11065
11066         if (!task) {
11067                 /*
11068                  * Check if the @cpu we're creating an event for is online.
11069                  *
11070                  * We use the perf_cpu_context::ctx::mutex to serialize against
11071                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11072                  */
11073                 struct perf_cpu_context *cpuctx =
11074                         container_of(ctx, struct perf_cpu_context, ctx);
11075
11076                 if (!cpuctx->online) {
11077                         err = -ENODEV;
11078                         goto err_locked;
11079                 }
11080         }
11081
11082
11083         /*
11084          * Must be under the same ctx::mutex as perf_install_in_context(),
11085          * because we need to serialize with concurrent event creation.
11086          */
11087         if (!exclusive_event_installable(event, ctx)) {
11088                 err = -EBUSY;
11089                 goto err_locked;
11090         }
11091
11092         WARN_ON_ONCE(ctx->parent_ctx);
11093
11094         /*
11095          * This is the point on no return; we cannot fail hereafter. This is
11096          * where we start modifying current state.
11097          */
11098
11099         if (move_group) {
11100                 /*
11101                  * See perf_event_ctx_lock() for comments on the details
11102                  * of swizzling perf_event::ctx.
11103                  */
11104                 perf_remove_from_context(group_leader, 0);
11105                 put_ctx(gctx);
11106
11107                 for_each_sibling_event(sibling, group_leader) {
11108                         perf_remove_from_context(sibling, 0);
11109                         put_ctx(gctx);
11110                 }
11111
11112                 /*
11113                  * Wait for everybody to stop referencing the events through
11114                  * the old lists, before installing it on new lists.
11115                  */
11116                 synchronize_rcu();
11117
11118                 /*
11119                  * Install the group siblings before the group leader.
11120                  *
11121                  * Because a group leader will try and install the entire group
11122                  * (through the sibling list, which is still in-tact), we can
11123                  * end up with siblings installed in the wrong context.
11124                  *
11125                  * By installing siblings first we NO-OP because they're not
11126                  * reachable through the group lists.
11127                  */
11128                 for_each_sibling_event(sibling, group_leader) {
11129                         perf_event__state_init(sibling);
11130                         perf_install_in_context(ctx, sibling, sibling->cpu);
11131                         get_ctx(ctx);
11132                 }
11133
11134                 /*
11135                  * Removing from the context ends up with disabled
11136                  * event. What we want here is event in the initial
11137                  * startup state, ready to be add into new context.
11138                  */
11139                 perf_event__state_init(group_leader);
11140                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11141                 get_ctx(ctx);
11142         }
11143
11144         /*
11145          * Precalculate sample_data sizes; do while holding ctx::mutex such
11146          * that we're serialized against further additions and before
11147          * perf_install_in_context() which is the point the event is active and
11148          * can use these values.
11149          */
11150         perf_event__header_size(event);
11151         perf_event__id_header_size(event);
11152
11153         event->owner = current;
11154
11155         perf_install_in_context(ctx, event, event->cpu);
11156         perf_unpin_context(ctx);
11157
11158         if (move_group)
11159                 perf_event_ctx_unlock(group_leader, gctx);
11160         mutex_unlock(&ctx->mutex);
11161
11162         if (task) {
11163                 mutex_unlock(&task->signal->cred_guard_mutex);
11164                 put_task_struct(task);
11165         }
11166
11167         mutex_lock(&current->perf_event_mutex);
11168         list_add_tail(&event->owner_entry, &current->perf_event_list);
11169         mutex_unlock(&current->perf_event_mutex);
11170
11171         /*
11172          * Drop the reference on the group_event after placing the
11173          * new event on the sibling_list. This ensures destruction
11174          * of the group leader will find the pointer to itself in
11175          * perf_group_detach().
11176          */
11177         fdput(group);
11178         fd_install(event_fd, event_file);
11179         return event_fd;
11180
11181 err_locked:
11182         if (move_group)
11183                 perf_event_ctx_unlock(group_leader, gctx);
11184         mutex_unlock(&ctx->mutex);
11185 /* err_file: */
11186         fput(event_file);
11187 err_context:
11188         perf_unpin_context(ctx);
11189         put_ctx(ctx);
11190 err_alloc:
11191         /*
11192          * If event_file is set, the fput() above will have called ->release()
11193          * and that will take care of freeing the event.
11194          */
11195         if (!event_file)
11196                 free_event(event);
11197 err_cred:
11198         if (task)
11199                 mutex_unlock(&task->signal->cred_guard_mutex);
11200 err_task:
11201         if (task)
11202                 put_task_struct(task);
11203 err_group_fd:
11204         fdput(group);
11205 err_fd:
11206         put_unused_fd(event_fd);
11207         return err;
11208 }
11209
11210 /**
11211  * perf_event_create_kernel_counter
11212  *
11213  * @attr: attributes of the counter to create
11214  * @cpu: cpu in which the counter is bound
11215  * @task: task to profile (NULL for percpu)
11216  */
11217 struct perf_event *
11218 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11219                                  struct task_struct *task,
11220                                  perf_overflow_handler_t overflow_handler,
11221                                  void *context)
11222 {
11223         struct perf_event_context *ctx;
11224         struct perf_event *event;
11225         int err;
11226
11227         /*
11228          * Get the target context (task or percpu):
11229          */
11230
11231         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11232                                  overflow_handler, context, -1);
11233         if (IS_ERR(event)) {
11234                 err = PTR_ERR(event);
11235                 goto err;
11236         }
11237
11238         /* Mark owner so we could distinguish it from user events. */
11239         event->owner = TASK_TOMBSTONE;
11240
11241         ctx = find_get_context(event->pmu, task, event);
11242         if (IS_ERR(ctx)) {
11243                 err = PTR_ERR(ctx);
11244                 goto err_free;
11245         }
11246
11247         WARN_ON_ONCE(ctx->parent_ctx);
11248         mutex_lock(&ctx->mutex);
11249         if (ctx->task == TASK_TOMBSTONE) {
11250                 err = -ESRCH;
11251                 goto err_unlock;
11252         }
11253
11254         if (!task) {
11255                 /*
11256                  * Check if the @cpu we're creating an event for is online.
11257                  *
11258                  * We use the perf_cpu_context::ctx::mutex to serialize against
11259                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11260                  */
11261                 struct perf_cpu_context *cpuctx =
11262                         container_of(ctx, struct perf_cpu_context, ctx);
11263                 if (!cpuctx->online) {
11264                         err = -ENODEV;
11265                         goto err_unlock;
11266                 }
11267         }
11268
11269         if (!exclusive_event_installable(event, ctx)) {
11270                 err = -EBUSY;
11271                 goto err_unlock;
11272         }
11273
11274         perf_install_in_context(ctx, event, event->cpu);
11275         perf_unpin_context(ctx);
11276         mutex_unlock(&ctx->mutex);
11277
11278         return event;
11279
11280 err_unlock:
11281         mutex_unlock(&ctx->mutex);
11282         perf_unpin_context(ctx);
11283         put_ctx(ctx);
11284 err_free:
11285         free_event(event);
11286 err:
11287         return ERR_PTR(err);
11288 }
11289 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11290
11291 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11292 {
11293         struct perf_event_context *src_ctx;
11294         struct perf_event_context *dst_ctx;
11295         struct perf_event *event, *tmp;
11296         LIST_HEAD(events);
11297
11298         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11299         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11300
11301         /*
11302          * See perf_event_ctx_lock() for comments on the details
11303          * of swizzling perf_event::ctx.
11304          */
11305         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11306         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11307                                  event_entry) {
11308                 perf_remove_from_context(event, 0);
11309                 unaccount_event_cpu(event, src_cpu);
11310                 put_ctx(src_ctx);
11311                 list_add(&event->migrate_entry, &events);
11312         }
11313
11314         /*
11315          * Wait for the events to quiesce before re-instating them.
11316          */
11317         synchronize_rcu();
11318
11319         /*
11320          * Re-instate events in 2 passes.
11321          *
11322          * Skip over group leaders and only install siblings on this first
11323          * pass, siblings will not get enabled without a leader, however a
11324          * leader will enable its siblings, even if those are still on the old
11325          * context.
11326          */
11327         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11328                 if (event->group_leader == event)
11329                         continue;
11330
11331                 list_del(&event->migrate_entry);
11332                 if (event->state >= PERF_EVENT_STATE_OFF)
11333                         event->state = PERF_EVENT_STATE_INACTIVE;
11334                 account_event_cpu(event, dst_cpu);
11335                 perf_install_in_context(dst_ctx, event, dst_cpu);
11336                 get_ctx(dst_ctx);
11337         }
11338
11339         /*
11340          * Once all the siblings are setup properly, install the group leaders
11341          * to make it go.
11342          */
11343         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11344                 list_del(&event->migrate_entry);
11345                 if (event->state >= PERF_EVENT_STATE_OFF)
11346                         event->state = PERF_EVENT_STATE_INACTIVE;
11347                 account_event_cpu(event, dst_cpu);
11348                 perf_install_in_context(dst_ctx, event, dst_cpu);
11349                 get_ctx(dst_ctx);
11350         }
11351         mutex_unlock(&dst_ctx->mutex);
11352         mutex_unlock(&src_ctx->mutex);
11353 }
11354 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11355
11356 static void sync_child_event(struct perf_event *child_event,
11357                                struct task_struct *child)
11358 {
11359         struct perf_event *parent_event = child_event->parent;
11360         u64 child_val;
11361
11362         if (child_event->attr.inherit_stat)
11363                 perf_event_read_event(child_event, child);
11364
11365         child_val = perf_event_count(child_event);
11366
11367         /*
11368          * Add back the child's count to the parent's count:
11369          */
11370         atomic64_add(child_val, &parent_event->child_count);
11371         atomic64_add(child_event->total_time_enabled,
11372                      &parent_event->child_total_time_enabled);
11373         atomic64_add(child_event->total_time_running,
11374                      &parent_event->child_total_time_running);
11375 }
11376
11377 static void
11378 perf_event_exit_event(struct perf_event *child_event,
11379                       struct perf_event_context *child_ctx,
11380                       struct task_struct *child)
11381 {
11382         struct perf_event *parent_event = child_event->parent;
11383
11384         /*
11385          * Do not destroy the 'original' grouping; because of the context
11386          * switch optimization the original events could've ended up in a
11387          * random child task.
11388          *
11389          * If we were to destroy the original group, all group related
11390          * operations would cease to function properly after this random
11391          * child dies.
11392          *
11393          * Do destroy all inherited groups, we don't care about those
11394          * and being thorough is better.
11395          */
11396         raw_spin_lock_irq(&child_ctx->lock);
11397         WARN_ON_ONCE(child_ctx->is_active);
11398
11399         if (parent_event)
11400                 perf_group_detach(child_event);
11401         list_del_event(child_event, child_ctx);
11402         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11403         raw_spin_unlock_irq(&child_ctx->lock);
11404
11405         /*
11406          * Parent events are governed by their filedesc, retain them.
11407          */
11408         if (!parent_event) {
11409                 perf_event_wakeup(child_event);
11410                 return;
11411         }
11412         /*
11413          * Child events can be cleaned up.
11414          */
11415
11416         sync_child_event(child_event, child);
11417
11418         /*
11419          * Remove this event from the parent's list
11420          */
11421         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11422         mutex_lock(&parent_event->child_mutex);
11423         list_del_init(&child_event->child_list);
11424         mutex_unlock(&parent_event->child_mutex);
11425
11426         /*
11427          * Kick perf_poll() for is_event_hup().
11428          */
11429         perf_event_wakeup(parent_event);
11430         free_event(child_event);
11431         put_event(parent_event);
11432 }
11433
11434 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11435 {
11436         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11437         struct perf_event *child_event, *next;
11438
11439         WARN_ON_ONCE(child != current);
11440
11441         child_ctx = perf_pin_task_context(child, ctxn);
11442         if (!child_ctx)
11443                 return;
11444
11445         /*
11446          * In order to reduce the amount of tricky in ctx tear-down, we hold
11447          * ctx::mutex over the entire thing. This serializes against almost
11448          * everything that wants to access the ctx.
11449          *
11450          * The exception is sys_perf_event_open() /
11451          * perf_event_create_kernel_count() which does find_get_context()
11452          * without ctx::mutex (it cannot because of the move_group double mutex
11453          * lock thing). See the comments in perf_install_in_context().
11454          */
11455         mutex_lock(&child_ctx->mutex);
11456
11457         /*
11458          * In a single ctx::lock section, de-schedule the events and detach the
11459          * context from the task such that we cannot ever get it scheduled back
11460          * in.
11461          */
11462         raw_spin_lock_irq(&child_ctx->lock);
11463         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11464
11465         /*
11466          * Now that the context is inactive, destroy the task <-> ctx relation
11467          * and mark the context dead.
11468          */
11469         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11470         put_ctx(child_ctx); /* cannot be last */
11471         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11472         put_task_struct(current); /* cannot be last */
11473
11474         clone_ctx = unclone_ctx(child_ctx);
11475         raw_spin_unlock_irq(&child_ctx->lock);
11476
11477         if (clone_ctx)
11478                 put_ctx(clone_ctx);
11479
11480         /*
11481          * Report the task dead after unscheduling the events so that we
11482          * won't get any samples after PERF_RECORD_EXIT. We can however still
11483          * get a few PERF_RECORD_READ events.
11484          */
11485         perf_event_task(child, child_ctx, 0);
11486
11487         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11488                 perf_event_exit_event(child_event, child_ctx, child);
11489
11490         mutex_unlock(&child_ctx->mutex);
11491
11492         put_ctx(child_ctx);
11493 }
11494
11495 /*
11496  * When a child task exits, feed back event values to parent events.
11497  *
11498  * Can be called with cred_guard_mutex held when called from
11499  * install_exec_creds().
11500  */
11501 void perf_event_exit_task(struct task_struct *child)
11502 {
11503         struct perf_event *event, *tmp;
11504         int ctxn;
11505
11506         mutex_lock(&child->perf_event_mutex);
11507         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11508                                  owner_entry) {
11509                 list_del_init(&event->owner_entry);
11510
11511                 /*
11512                  * Ensure the list deletion is visible before we clear
11513                  * the owner, closes a race against perf_release() where
11514                  * we need to serialize on the owner->perf_event_mutex.
11515                  */
11516                 smp_store_release(&event->owner, NULL);
11517         }
11518         mutex_unlock(&child->perf_event_mutex);
11519
11520         for_each_task_context_nr(ctxn)
11521                 perf_event_exit_task_context(child, ctxn);
11522
11523         /*
11524          * The perf_event_exit_task_context calls perf_event_task
11525          * with child's task_ctx, which generates EXIT events for
11526          * child contexts and sets child->perf_event_ctxp[] to NULL.
11527          * At this point we need to send EXIT events to cpu contexts.
11528          */
11529         perf_event_task(child, NULL, 0);
11530 }
11531
11532 static void perf_free_event(struct perf_event *event,
11533                             struct perf_event_context *ctx)
11534 {
11535         struct perf_event *parent = event->parent;
11536
11537         if (WARN_ON_ONCE(!parent))
11538                 return;
11539
11540         mutex_lock(&parent->child_mutex);
11541         list_del_init(&event->child_list);
11542         mutex_unlock(&parent->child_mutex);
11543
11544         put_event(parent);
11545
11546         raw_spin_lock_irq(&ctx->lock);
11547         perf_group_detach(event);
11548         list_del_event(event, ctx);
11549         raw_spin_unlock_irq(&ctx->lock);
11550         free_event(event);
11551 }
11552
11553 /*
11554  * Free a context as created by inheritance by perf_event_init_task() below,
11555  * used by fork() in case of fail.
11556  *
11557  * Even though the task has never lived, the context and events have been
11558  * exposed through the child_list, so we must take care tearing it all down.
11559  */
11560 void perf_event_free_task(struct task_struct *task)
11561 {
11562         struct perf_event_context *ctx;
11563         struct perf_event *event, *tmp;
11564         int ctxn;
11565
11566         for_each_task_context_nr(ctxn) {
11567                 ctx = task->perf_event_ctxp[ctxn];
11568                 if (!ctx)
11569                         continue;
11570
11571                 mutex_lock(&ctx->mutex);
11572                 raw_spin_lock_irq(&ctx->lock);
11573                 /*
11574                  * Destroy the task <-> ctx relation and mark the context dead.
11575                  *
11576                  * This is important because even though the task hasn't been
11577                  * exposed yet the context has been (through child_list).
11578                  */
11579                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11580                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11581                 put_task_struct(task); /* cannot be last */
11582                 raw_spin_unlock_irq(&ctx->lock);
11583
11584                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11585                         perf_free_event(event, ctx);
11586
11587                 mutex_unlock(&ctx->mutex);
11588
11589                 /*
11590                  * perf_event_release_kernel() could've stolen some of our
11591                  * child events and still have them on its free_list. In that
11592                  * case we must wait for these events to have been freed (in
11593                  * particular all their references to this task must've been
11594                  * dropped).
11595                  *
11596                  * Without this copy_process() will unconditionally free this
11597                  * task (irrespective of its reference count) and
11598                  * _free_event()'s put_task_struct(event->hw.target) will be a
11599                  * use-after-free.
11600                  *
11601                  * Wait for all events to drop their context reference.
11602                  */
11603                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11604                 put_ctx(ctx); /* must be last */
11605         }
11606 }
11607
11608 void perf_event_delayed_put(struct task_struct *task)
11609 {
11610         int ctxn;
11611
11612         for_each_task_context_nr(ctxn)
11613                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11614 }
11615
11616 struct file *perf_event_get(unsigned int fd)
11617 {
11618         struct file *file = fget(fd);
11619         if (!file)
11620                 return ERR_PTR(-EBADF);
11621
11622         if (file->f_op != &perf_fops) {
11623                 fput(file);
11624                 return ERR_PTR(-EBADF);
11625         }
11626
11627         return file;
11628 }
11629
11630 const struct perf_event *perf_get_event(struct file *file)
11631 {
11632         if (file->f_op != &perf_fops)
11633                 return ERR_PTR(-EINVAL);
11634
11635         return file->private_data;
11636 }
11637
11638 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11639 {
11640         if (!event)
11641                 return ERR_PTR(-EINVAL);
11642
11643         return &event->attr;
11644 }
11645
11646 /*
11647  * Inherit an event from parent task to child task.
11648  *
11649  * Returns:
11650  *  - valid pointer on success
11651  *  - NULL for orphaned events
11652  *  - IS_ERR() on error
11653  */
11654 static struct perf_event *
11655 inherit_event(struct perf_event *parent_event,
11656               struct task_struct *parent,
11657               struct perf_event_context *parent_ctx,
11658               struct task_struct *child,
11659               struct perf_event *group_leader,
11660               struct perf_event_context *child_ctx)
11661 {
11662         enum perf_event_state parent_state = parent_event->state;
11663         struct perf_event *child_event;
11664         unsigned long flags;
11665
11666         /*
11667          * Instead of creating recursive hierarchies of events,
11668          * we link inherited events back to the original parent,
11669          * which has a filp for sure, which we use as the reference
11670          * count:
11671          */
11672         if (parent_event->parent)
11673                 parent_event = parent_event->parent;
11674
11675         child_event = perf_event_alloc(&parent_event->attr,
11676                                            parent_event->cpu,
11677                                            child,
11678                                            group_leader, parent_event,
11679                                            NULL, NULL, -1);
11680         if (IS_ERR(child_event))
11681                 return child_event;
11682
11683
11684         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11685             !child_ctx->task_ctx_data) {
11686                 struct pmu *pmu = child_event->pmu;
11687
11688                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11689                                                    GFP_KERNEL);
11690                 if (!child_ctx->task_ctx_data) {
11691                         free_event(child_event);
11692                         return NULL;
11693                 }
11694         }
11695
11696         /*
11697          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11698          * must be under the same lock in order to serialize against
11699          * perf_event_release_kernel(), such that either we must observe
11700          * is_orphaned_event() or they will observe us on the child_list.
11701          */
11702         mutex_lock(&parent_event->child_mutex);
11703         if (is_orphaned_event(parent_event) ||
11704             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11705                 mutex_unlock(&parent_event->child_mutex);
11706                 /* task_ctx_data is freed with child_ctx */
11707                 free_event(child_event);
11708                 return NULL;
11709         }
11710
11711         get_ctx(child_ctx);
11712
11713         /*
11714          * Make the child state follow the state of the parent event,
11715          * not its attr.disabled bit.  We hold the parent's mutex,
11716          * so we won't race with perf_event_{en, dis}able_family.
11717          */
11718         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11719                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11720         else
11721                 child_event->state = PERF_EVENT_STATE_OFF;
11722
11723         if (parent_event->attr.freq) {
11724                 u64 sample_period = parent_event->hw.sample_period;
11725                 struct hw_perf_event *hwc = &child_event->hw;
11726
11727                 hwc->sample_period = sample_period;
11728                 hwc->last_period   = sample_period;
11729
11730                 local64_set(&hwc->period_left, sample_period);
11731         }
11732
11733         child_event->ctx = child_ctx;
11734         child_event->overflow_handler = parent_event->overflow_handler;
11735         child_event->overflow_handler_context
11736                 = parent_event->overflow_handler_context;
11737
11738         /*
11739          * Precalculate sample_data sizes
11740          */
11741         perf_event__header_size(child_event);
11742         perf_event__id_header_size(child_event);
11743
11744         /*
11745          * Link it up in the child's context:
11746          */
11747         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11748         add_event_to_ctx(child_event, child_ctx);
11749         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11750
11751         /*
11752          * Link this into the parent event's child list
11753          */
11754         list_add_tail(&child_event->child_list, &parent_event->child_list);
11755         mutex_unlock(&parent_event->child_mutex);
11756
11757         return child_event;
11758 }
11759
11760 /*
11761  * Inherits an event group.
11762  *
11763  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11764  * This matches with perf_event_release_kernel() removing all child events.
11765  *
11766  * Returns:
11767  *  - 0 on success
11768  *  - <0 on error
11769  */
11770 static int inherit_group(struct perf_event *parent_event,
11771               struct task_struct *parent,
11772               struct perf_event_context *parent_ctx,
11773               struct task_struct *child,
11774               struct perf_event_context *child_ctx)
11775 {
11776         struct perf_event *leader;
11777         struct perf_event *sub;
11778         struct perf_event *child_ctr;
11779
11780         leader = inherit_event(parent_event, parent, parent_ctx,
11781                                  child, NULL, child_ctx);
11782         if (IS_ERR(leader))
11783                 return PTR_ERR(leader);
11784         /*
11785          * @leader can be NULL here because of is_orphaned_event(). In this
11786          * case inherit_event() will create individual events, similar to what
11787          * perf_group_detach() would do anyway.
11788          */
11789         for_each_sibling_event(sub, parent_event) {
11790                 child_ctr = inherit_event(sub, parent, parent_ctx,
11791                                             child, leader, child_ctx);
11792                 if (IS_ERR(child_ctr))
11793                         return PTR_ERR(child_ctr);
11794         }
11795         return 0;
11796 }
11797
11798 /*
11799  * Creates the child task context and tries to inherit the event-group.
11800  *
11801  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11802  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11803  * consistent with perf_event_release_kernel() removing all child events.
11804  *
11805  * Returns:
11806  *  - 0 on success
11807  *  - <0 on error
11808  */
11809 static int
11810 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11811                    struct perf_event_context *parent_ctx,
11812                    struct task_struct *child, int ctxn,
11813                    int *inherited_all)
11814 {
11815         int ret;
11816         struct perf_event_context *child_ctx;
11817
11818         if (!event->attr.inherit) {
11819                 *inherited_all = 0;
11820                 return 0;
11821         }
11822
11823         child_ctx = child->perf_event_ctxp[ctxn];
11824         if (!child_ctx) {
11825                 /*
11826                  * This is executed from the parent task context, so
11827                  * inherit events that have been marked for cloning.
11828                  * First allocate and initialize a context for the
11829                  * child.
11830                  */
11831                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11832                 if (!child_ctx)
11833                         return -ENOMEM;
11834
11835                 child->perf_event_ctxp[ctxn] = child_ctx;
11836         }
11837
11838         ret = inherit_group(event, parent, parent_ctx,
11839                             child, child_ctx);
11840
11841         if (ret)
11842                 *inherited_all = 0;
11843
11844         return ret;
11845 }
11846
11847 /*
11848  * Initialize the perf_event context in task_struct
11849  */
11850 static int perf_event_init_context(struct task_struct *child, int ctxn)
11851 {
11852         struct perf_event_context *child_ctx, *parent_ctx;
11853         struct perf_event_context *cloned_ctx;
11854         struct perf_event *event;
11855         struct task_struct *parent = current;
11856         int inherited_all = 1;
11857         unsigned long flags;
11858         int ret = 0;
11859
11860         if (likely(!parent->perf_event_ctxp[ctxn]))
11861                 return 0;
11862
11863         /*
11864          * If the parent's context is a clone, pin it so it won't get
11865          * swapped under us.
11866          */
11867         parent_ctx = perf_pin_task_context(parent, ctxn);
11868         if (!parent_ctx)
11869                 return 0;
11870
11871         /*
11872          * No need to check if parent_ctx != NULL here; since we saw
11873          * it non-NULL earlier, the only reason for it to become NULL
11874          * is if we exit, and since we're currently in the middle of
11875          * a fork we can't be exiting at the same time.
11876          */
11877
11878         /*
11879          * Lock the parent list. No need to lock the child - not PID
11880          * hashed yet and not running, so nobody can access it.
11881          */
11882         mutex_lock(&parent_ctx->mutex);
11883
11884         /*
11885          * We dont have to disable NMIs - we are only looking at
11886          * the list, not manipulating it:
11887          */
11888         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11889                 ret = inherit_task_group(event, parent, parent_ctx,
11890                                          child, ctxn, &inherited_all);
11891                 if (ret)
11892                         goto out_unlock;
11893         }
11894
11895         /*
11896          * We can't hold ctx->lock when iterating the ->flexible_group list due
11897          * to allocations, but we need to prevent rotation because
11898          * rotate_ctx() will change the list from interrupt context.
11899          */
11900         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11901         parent_ctx->rotate_disable = 1;
11902         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11903
11904         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11905                 ret = inherit_task_group(event, parent, parent_ctx,
11906                                          child, ctxn, &inherited_all);
11907                 if (ret)
11908                         goto out_unlock;
11909         }
11910
11911         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11912         parent_ctx->rotate_disable = 0;
11913
11914         child_ctx = child->perf_event_ctxp[ctxn];
11915
11916         if (child_ctx && inherited_all) {
11917                 /*
11918                  * Mark the child context as a clone of the parent
11919                  * context, or of whatever the parent is a clone of.
11920                  *
11921                  * Note that if the parent is a clone, the holding of
11922                  * parent_ctx->lock avoids it from being uncloned.
11923                  */
11924                 cloned_ctx = parent_ctx->parent_ctx;
11925                 if (cloned_ctx) {
11926                         child_ctx->parent_ctx = cloned_ctx;
11927                         child_ctx->parent_gen = parent_ctx->parent_gen;
11928                 } else {
11929                         child_ctx->parent_ctx = parent_ctx;
11930                         child_ctx->parent_gen = parent_ctx->generation;
11931                 }
11932                 get_ctx(child_ctx->parent_ctx);
11933         }
11934
11935         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11936 out_unlock:
11937         mutex_unlock(&parent_ctx->mutex);
11938
11939         perf_unpin_context(parent_ctx);
11940         put_ctx(parent_ctx);
11941
11942         return ret;
11943 }
11944
11945 /*
11946  * Initialize the perf_event context in task_struct
11947  */
11948 int perf_event_init_task(struct task_struct *child)
11949 {
11950         int ctxn, ret;
11951
11952         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11953         mutex_init(&child->perf_event_mutex);
11954         INIT_LIST_HEAD(&child->perf_event_list);
11955
11956         for_each_task_context_nr(ctxn) {
11957                 ret = perf_event_init_context(child, ctxn);
11958                 if (ret) {
11959                         perf_event_free_task(child);
11960                         return ret;
11961                 }
11962         }
11963
11964         return 0;
11965 }
11966
11967 static void __init perf_event_init_all_cpus(void)
11968 {
11969         struct swevent_htable *swhash;
11970         int cpu;
11971
11972         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11973
11974         for_each_possible_cpu(cpu) {
11975                 swhash = &per_cpu(swevent_htable, cpu);
11976                 mutex_init(&swhash->hlist_mutex);
11977                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11978
11979                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11980                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11981
11982 #ifdef CONFIG_CGROUP_PERF
11983                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11984 #endif
11985                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11986         }
11987 }
11988
11989 static void perf_swevent_init_cpu(unsigned int cpu)
11990 {
11991         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11992
11993         mutex_lock(&swhash->hlist_mutex);
11994         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11995                 struct swevent_hlist *hlist;
11996
11997                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11998                 WARN_ON(!hlist);
11999                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12000         }
12001         mutex_unlock(&swhash->hlist_mutex);
12002 }
12003
12004 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12005 static void __perf_event_exit_context(void *__info)
12006 {
12007         struct perf_event_context *ctx = __info;
12008         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12009         struct perf_event *event;
12010
12011         raw_spin_lock(&ctx->lock);
12012         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12013         list_for_each_entry(event, &ctx->event_list, event_entry)
12014                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12015         raw_spin_unlock(&ctx->lock);
12016 }
12017
12018 static void perf_event_exit_cpu_context(int cpu)
12019 {
12020         struct perf_cpu_context *cpuctx;
12021         struct perf_event_context *ctx;
12022         struct pmu *pmu;
12023
12024         mutex_lock(&pmus_lock);
12025         list_for_each_entry(pmu, &pmus, entry) {
12026                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12027                 ctx = &cpuctx->ctx;
12028
12029                 mutex_lock(&ctx->mutex);
12030                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12031                 cpuctx->online = 0;
12032                 mutex_unlock(&ctx->mutex);
12033         }
12034         cpumask_clear_cpu(cpu, perf_online_mask);
12035         mutex_unlock(&pmus_lock);
12036 }
12037 #else
12038
12039 static void perf_event_exit_cpu_context(int cpu) { }
12040
12041 #endif
12042
12043 int perf_event_init_cpu(unsigned int cpu)
12044 {
12045         struct perf_cpu_context *cpuctx;
12046         struct perf_event_context *ctx;
12047         struct pmu *pmu;
12048
12049         perf_swevent_init_cpu(cpu);
12050
12051         mutex_lock(&pmus_lock);
12052         cpumask_set_cpu(cpu, perf_online_mask);
12053         list_for_each_entry(pmu, &pmus, entry) {
12054                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12055                 ctx = &cpuctx->ctx;
12056
12057                 mutex_lock(&ctx->mutex);
12058                 cpuctx->online = 1;
12059                 mutex_unlock(&ctx->mutex);
12060         }
12061         mutex_unlock(&pmus_lock);
12062
12063         return 0;
12064 }
12065
12066 int perf_event_exit_cpu(unsigned int cpu)
12067 {
12068         perf_event_exit_cpu_context(cpu);
12069         return 0;
12070 }
12071
12072 static int
12073 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12074 {
12075         int cpu;
12076
12077         for_each_online_cpu(cpu)
12078                 perf_event_exit_cpu(cpu);
12079
12080         return NOTIFY_OK;
12081 }
12082
12083 /*
12084  * Run the perf reboot notifier at the very last possible moment so that
12085  * the generic watchdog code runs as long as possible.
12086  */
12087 static struct notifier_block perf_reboot_notifier = {
12088         .notifier_call = perf_reboot,
12089         .priority = INT_MIN,
12090 };
12091
12092 void __init perf_event_init(void)
12093 {
12094         int ret;
12095
12096         idr_init(&pmu_idr);
12097
12098         perf_event_init_all_cpus();
12099         init_srcu_struct(&pmus_srcu);
12100         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12101         perf_pmu_register(&perf_cpu_clock, NULL, -1);
12102         perf_pmu_register(&perf_task_clock, NULL, -1);
12103         perf_tp_register();
12104         perf_event_init_cpu(smp_processor_id());
12105         register_reboot_notifier(&perf_reboot_notifier);
12106
12107         ret = init_hw_breakpoint();
12108         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12109
12110         /*
12111          * Build time assertion that we keep the data_head at the intended
12112          * location.  IOW, validation we got the __reserved[] size right.
12113          */
12114         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12115                      != 1024);
12116 }
12117
12118 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12119                               char *page)
12120 {
12121         struct perf_pmu_events_attr *pmu_attr =
12122                 container_of(attr, struct perf_pmu_events_attr, attr);
12123
12124         if (pmu_attr->event_str)
12125                 return sprintf(page, "%s\n", pmu_attr->event_str);
12126
12127         return 0;
12128 }
12129 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12130
12131 static int __init perf_event_sysfs_init(void)
12132 {
12133         struct pmu *pmu;
12134         int ret;
12135
12136         mutex_lock(&pmus_lock);
12137
12138         ret = bus_register(&pmu_bus);
12139         if (ret)
12140                 goto unlock;
12141
12142         list_for_each_entry(pmu, &pmus, entry) {
12143                 if (!pmu->name || pmu->type < 0)
12144                         continue;
12145
12146                 ret = pmu_dev_alloc(pmu);
12147                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12148         }
12149         pmu_bus_running = 1;
12150         ret = 0;
12151
12152 unlock:
12153         mutex_unlock(&pmus_lock);
12154
12155         return ret;
12156 }
12157 device_initcall(perf_event_sysfs_init);
12158
12159 #ifdef CONFIG_CGROUP_PERF
12160 static struct cgroup_subsys_state *
12161 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12162 {
12163         struct perf_cgroup *jc;
12164
12165         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12166         if (!jc)
12167                 return ERR_PTR(-ENOMEM);
12168
12169         jc->info = alloc_percpu(struct perf_cgroup_info);
12170         if (!jc->info) {
12171                 kfree(jc);
12172                 return ERR_PTR(-ENOMEM);
12173         }
12174
12175         return &jc->css;
12176 }
12177
12178 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12179 {
12180         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12181
12182         free_percpu(jc->info);
12183         kfree(jc);
12184 }
12185
12186 static int __perf_cgroup_move(void *info)
12187 {
12188         struct task_struct *task = info;
12189         rcu_read_lock();
12190         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12191         rcu_read_unlock();
12192         return 0;
12193 }
12194
12195 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12196 {
12197         struct task_struct *task;
12198         struct cgroup_subsys_state *css;
12199
12200         cgroup_taskset_for_each(task, css, tset)
12201                 task_function_call(task, __perf_cgroup_move, task);
12202 }
12203
12204 struct cgroup_subsys perf_event_cgrp_subsys = {
12205         .css_alloc      = perf_cgroup_css_alloc,
12206         .css_free       = perf_cgroup_css_free,
12207         .attach         = perf_cgroup_attach,
12208         /*
12209          * Implicitly enable on dfl hierarchy so that perf events can
12210          * always be filtered by cgroup2 path as long as perf_event
12211          * controller is not mounted on a legacy hierarchy.
12212          */
12213         .implicit_on_dfl = true,
12214         .threaded       = true,
12215 };
12216 #endif /* CONFIG_CGROUP_PERF */