Merge tag 'perf-urgent-for-mingo-4.19-20180903' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-block.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         lockdep_assert_irqs_disabled();
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         lockdep_assert_irqs_disabled();
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441         if (ret || !write)
442                 return ret;
443
444         /*
445          * If throttling is disabled don't allow the write:
446          */
447         if (sysctl_perf_cpu_time_max_percent == 100 ||
448             sysctl_perf_cpu_time_max_percent == 0)
449                 return -EINVAL;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610         struct perf_event *leader = event->group_leader;
611
612         if (leader->state <= PERF_EVENT_STATE_OFF)
613                 return leader->state;
614
615         return event->state;
616 }
617
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621         enum perf_event_state state = __perf_effective_state(event);
622         u64 delta = now - event->tstamp;
623
624         *enabled = event->total_time_enabled;
625         if (state >= PERF_EVENT_STATE_INACTIVE)
626                 *enabled += delta;
627
628         *running = event->total_time_running;
629         if (state >= PERF_EVENT_STATE_ACTIVE)
630                 *running += delta;
631 }
632
633 static void perf_event_update_time(struct perf_event *event)
634 {
635         u64 now = perf_event_time(event);
636
637         __perf_update_times(event, now, &event->total_time_enabled,
638                                         &event->total_time_running);
639         event->tstamp = now;
640 }
641
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644         struct perf_event *sibling;
645
646         for_each_sibling_event(sibling, leader)
647                 perf_event_update_time(sibling);
648 }
649
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653         if (event->state == state)
654                 return;
655
656         perf_event_update_time(event);
657         /*
658          * If a group leader gets enabled/disabled all its siblings
659          * are affected too.
660          */
661         if ((event->state < 0) ^ (state < 0))
662                 perf_event_update_sibling_time(event);
663
664         WRITE_ONCE(event->state, state);
665 }
666
667 #ifdef CONFIG_CGROUP_PERF
668
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672         struct perf_event_context *ctx = event->ctx;
673         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
675         /* @event doesn't care about cgroup */
676         if (!event->cgrp)
677                 return true;
678
679         /* wants specific cgroup scope but @cpuctx isn't associated with any */
680         if (!cpuctx->cgrp)
681                 return false;
682
683         /*
684          * Cgroup scoping is recursive.  An event enabled for a cgroup is
685          * also enabled for all its descendant cgroups.  If @cpuctx's
686          * cgroup is a descendant of @event's (the test covers identity
687          * case), it's a match.
688          */
689         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690                                     event->cgrp->css.cgroup);
691 }
692
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695         css_put(&event->cgrp->css);
696         event->cgrp = NULL;
697 }
698
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701         return event->cgrp != NULL;
702 }
703
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706         struct perf_cgroup_info *t;
707
708         t = per_cpu_ptr(event->cgrp->info, event->cpu);
709         return t->time;
710 }
711
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714         struct perf_cgroup_info *info;
715         u64 now;
716
717         now = perf_clock();
718
719         info = this_cpu_ptr(cgrp->info);
720
721         info->time += now - info->timestamp;
722         info->timestamp = now;
723 }
724
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727         struct perf_cgroup *cgrp = cpuctx->cgrp;
728         struct cgroup_subsys_state *css;
729
730         if (cgrp) {
731                 for (css = &cgrp->css; css; css = css->parent) {
732                         cgrp = container_of(css, struct perf_cgroup, css);
733                         __update_cgrp_time(cgrp);
734                 }
735         }
736 }
737
738 static inline void update_cgrp_time_from_event(struct perf_event *event)
739 {
740         struct perf_cgroup *cgrp;
741
742         /*
743          * ensure we access cgroup data only when needed and
744          * when we know the cgroup is pinned (css_get)
745          */
746         if (!is_cgroup_event(event))
747                 return;
748
749         cgrp = perf_cgroup_from_task(current, event->ctx);
750         /*
751          * Do not update time when cgroup is not active
752          */
753        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
754                 __update_cgrp_time(event->cgrp);
755 }
756
757 static inline void
758 perf_cgroup_set_timestamp(struct task_struct *task,
759                           struct perf_event_context *ctx)
760 {
761         struct perf_cgroup *cgrp;
762         struct perf_cgroup_info *info;
763         struct cgroup_subsys_state *css;
764
765         /*
766          * ctx->lock held by caller
767          * ensure we do not access cgroup data
768          * unless we have the cgroup pinned (css_get)
769          */
770         if (!task || !ctx->nr_cgroups)
771                 return;
772
773         cgrp = perf_cgroup_from_task(task, ctx);
774
775         for (css = &cgrp->css; css; css = css->parent) {
776                 cgrp = container_of(css, struct perf_cgroup, css);
777                 info = this_cpu_ptr(cgrp->info);
778                 info->timestamp = ctx->timestamp;
779         }
780 }
781
782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
783
784 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
785 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
786
787 /*
788  * reschedule events based on the cgroup constraint of task.
789  *
790  * mode SWOUT : schedule out everything
791  * mode SWIN : schedule in based on cgroup for next
792  */
793 static void perf_cgroup_switch(struct task_struct *task, int mode)
794 {
795         struct perf_cpu_context *cpuctx;
796         struct list_head *list;
797         unsigned long flags;
798
799         /*
800          * Disable interrupts and preemption to avoid this CPU's
801          * cgrp_cpuctx_entry to change under us.
802          */
803         local_irq_save(flags);
804
805         list = this_cpu_ptr(&cgrp_cpuctx_list);
806         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
808
809                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810                 perf_pmu_disable(cpuctx->ctx.pmu);
811
812                 if (mode & PERF_CGROUP_SWOUT) {
813                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
814                         /*
815                          * must not be done before ctxswout due
816                          * to event_filter_match() in event_sched_out()
817                          */
818                         cpuctx->cgrp = NULL;
819                 }
820
821                 if (mode & PERF_CGROUP_SWIN) {
822                         WARN_ON_ONCE(cpuctx->cgrp);
823                         /*
824                          * set cgrp before ctxsw in to allow
825                          * event_filter_match() to not have to pass
826                          * task around
827                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
828                          * because cgorup events are only per-cpu
829                          */
830                         cpuctx->cgrp = perf_cgroup_from_task(task,
831                                                              &cpuctx->ctx);
832                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
833                 }
834                 perf_pmu_enable(cpuctx->ctx.pmu);
835                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
836         }
837
838         local_irq_restore(flags);
839 }
840
841 static inline void perf_cgroup_sched_out(struct task_struct *task,
842                                          struct task_struct *next)
843 {
844         struct perf_cgroup *cgrp1;
845         struct perf_cgroup *cgrp2 = NULL;
846
847         rcu_read_lock();
848         /*
849          * we come here when we know perf_cgroup_events > 0
850          * we do not need to pass the ctx here because we know
851          * we are holding the rcu lock
852          */
853         cgrp1 = perf_cgroup_from_task(task, NULL);
854         cgrp2 = perf_cgroup_from_task(next, NULL);
855
856         /*
857          * only schedule out current cgroup events if we know
858          * that we are switching to a different cgroup. Otherwise,
859          * do no touch the cgroup events.
860          */
861         if (cgrp1 != cgrp2)
862                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
863
864         rcu_read_unlock();
865 }
866
867 static inline void perf_cgroup_sched_in(struct task_struct *prev,
868                                         struct task_struct *task)
869 {
870         struct perf_cgroup *cgrp1;
871         struct perf_cgroup *cgrp2 = NULL;
872
873         rcu_read_lock();
874         /*
875          * we come here when we know perf_cgroup_events > 0
876          * we do not need to pass the ctx here because we know
877          * we are holding the rcu lock
878          */
879         cgrp1 = perf_cgroup_from_task(task, NULL);
880         cgrp2 = perf_cgroup_from_task(prev, NULL);
881
882         /*
883          * only need to schedule in cgroup events if we are changing
884          * cgroup during ctxsw. Cgroup events were not scheduled
885          * out of ctxsw out if that was not the case.
886          */
887         if (cgrp1 != cgrp2)
888                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
889
890         rcu_read_unlock();
891 }
892
893 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894                                       struct perf_event_attr *attr,
895                                       struct perf_event *group_leader)
896 {
897         struct perf_cgroup *cgrp;
898         struct cgroup_subsys_state *css;
899         struct fd f = fdget(fd);
900         int ret = 0;
901
902         if (!f.file)
903                 return -EBADF;
904
905         css = css_tryget_online_from_dir(f.file->f_path.dentry,
906                                          &perf_event_cgrp_subsys);
907         if (IS_ERR(css)) {
908                 ret = PTR_ERR(css);
909                 goto out;
910         }
911
912         cgrp = container_of(css, struct perf_cgroup, css);
913         event->cgrp = cgrp;
914
915         /*
916          * all events in a group must monitor
917          * the same cgroup because a task belongs
918          * to only one perf cgroup at a time
919          */
920         if (group_leader && group_leader->cgrp != cgrp) {
921                 perf_detach_cgroup(event);
922                 ret = -EINVAL;
923         }
924 out:
925         fdput(f);
926         return ret;
927 }
928
929 static inline void
930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931 {
932         struct perf_cgroup_info *t;
933         t = per_cpu_ptr(event->cgrp->info, event->cpu);
934         event->shadow_ctx_time = now - t->timestamp;
935 }
936
937 /*
938  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939  * cleared when last cgroup event is removed.
940  */
941 static inline void
942 list_update_cgroup_event(struct perf_event *event,
943                          struct perf_event_context *ctx, bool add)
944 {
945         struct perf_cpu_context *cpuctx;
946         struct list_head *cpuctx_entry;
947
948         if (!is_cgroup_event(event))
949                 return;
950
951         /*
952          * Because cgroup events are always per-cpu events,
953          * this will always be called from the right CPU.
954          */
955         cpuctx = __get_cpu_context(ctx);
956
957         /*
958          * Since setting cpuctx->cgrp is conditional on the current @cgrp
959          * matching the event's cgroup, we must do this for every new event,
960          * because if the first would mismatch, the second would not try again
961          * and we would leave cpuctx->cgrp unset.
962          */
963         if (add && !cpuctx->cgrp) {
964                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
965
966                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
967                         cpuctx->cgrp = cgrp;
968         }
969
970         if (add && ctx->nr_cgroups++)
971                 return;
972         else if (!add && --ctx->nr_cgroups)
973                 return;
974
975         /* no cgroup running */
976         if (!add)
977                 cpuctx->cgrp = NULL;
978
979         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
980         if (add)
981                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
982         else
983                 list_del(cpuctx_entry);
984 }
985
986 #else /* !CONFIG_CGROUP_PERF */
987
988 static inline bool
989 perf_cgroup_match(struct perf_event *event)
990 {
991         return true;
992 }
993
994 static inline void perf_detach_cgroup(struct perf_event *event)
995 {}
996
997 static inline int is_cgroup_event(struct perf_event *event)
998 {
999         return 0;
1000 }
1001
1002 static inline void update_cgrp_time_from_event(struct perf_event *event)
1003 {
1004 }
1005
1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1007 {
1008 }
1009
1010 static inline void perf_cgroup_sched_out(struct task_struct *task,
1011                                          struct task_struct *next)
1012 {
1013 }
1014
1015 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016                                         struct task_struct *task)
1017 {
1018 }
1019
1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021                                       struct perf_event_attr *attr,
1022                                       struct perf_event *group_leader)
1023 {
1024         return -EINVAL;
1025 }
1026
1027 static inline void
1028 perf_cgroup_set_timestamp(struct task_struct *task,
1029                           struct perf_event_context *ctx)
1030 {
1031 }
1032
1033 void
1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1035 {
1036 }
1037
1038 static inline void
1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1040 {
1041 }
1042
1043 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1044 {
1045         return 0;
1046 }
1047
1048 static inline void
1049 list_update_cgroup_event(struct perf_event *event,
1050                          struct perf_event_context *ctx, bool add)
1051 {
1052 }
1053
1054 #endif
1055
1056 /*
1057  * set default to be dependent on timer tick just
1058  * like original code
1059  */
1060 #define PERF_CPU_HRTIMER (1000 / HZ)
1061 /*
1062  * function must be called with interrupts disabled
1063  */
1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1065 {
1066         struct perf_cpu_context *cpuctx;
1067         bool rotations;
1068
1069         lockdep_assert_irqs_disabled();
1070
1071         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1072         rotations = perf_rotate_context(cpuctx);
1073
1074         raw_spin_lock(&cpuctx->hrtimer_lock);
1075         if (rotations)
1076                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1077         else
1078                 cpuctx->hrtimer_active = 0;
1079         raw_spin_unlock(&cpuctx->hrtimer_lock);
1080
1081         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1082 }
1083
1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1085 {
1086         struct hrtimer *timer = &cpuctx->hrtimer;
1087         struct pmu *pmu = cpuctx->ctx.pmu;
1088         u64 interval;
1089
1090         /* no multiplexing needed for SW PMU */
1091         if (pmu->task_ctx_nr == perf_sw_context)
1092                 return;
1093
1094         /*
1095          * check default is sane, if not set then force to
1096          * default interval (1/tick)
1097          */
1098         interval = pmu->hrtimer_interval_ms;
1099         if (interval < 1)
1100                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1101
1102         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1103
1104         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1106         timer->function = perf_mux_hrtimer_handler;
1107 }
1108
1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1110 {
1111         struct hrtimer *timer = &cpuctx->hrtimer;
1112         struct pmu *pmu = cpuctx->ctx.pmu;
1113         unsigned long flags;
1114
1115         /* not for SW PMU */
1116         if (pmu->task_ctx_nr == perf_sw_context)
1117                 return 0;
1118
1119         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120         if (!cpuctx->hrtimer_active) {
1121                 cpuctx->hrtimer_active = 1;
1122                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1124         }
1125         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1126
1127         return 0;
1128 }
1129
1130 void perf_pmu_disable(struct pmu *pmu)
1131 {
1132         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1133         if (!(*count)++)
1134                 pmu->pmu_disable(pmu);
1135 }
1136
1137 void perf_pmu_enable(struct pmu *pmu)
1138 {
1139         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1140         if (!--(*count))
1141                 pmu->pmu_enable(pmu);
1142 }
1143
1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1145
1146 /*
1147  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148  * perf_event_task_tick() are fully serialized because they're strictly cpu
1149  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150  * disabled, while perf_event_task_tick is called from IRQ context.
1151  */
1152 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1153 {
1154         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1155
1156         lockdep_assert_irqs_disabled();
1157
1158         WARN_ON(!list_empty(&ctx->active_ctx_list));
1159
1160         list_add(&ctx->active_ctx_list, head);
1161 }
1162
1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1164 {
1165         lockdep_assert_irqs_disabled();
1166
1167         WARN_ON(list_empty(&ctx->active_ctx_list));
1168
1169         list_del_init(&ctx->active_ctx_list);
1170 }
1171
1172 static void get_ctx(struct perf_event_context *ctx)
1173 {
1174         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1175 }
1176
1177 static void free_ctx(struct rcu_head *head)
1178 {
1179         struct perf_event_context *ctx;
1180
1181         ctx = container_of(head, struct perf_event_context, rcu_head);
1182         kfree(ctx->task_ctx_data);
1183         kfree(ctx);
1184 }
1185
1186 static void put_ctx(struct perf_event_context *ctx)
1187 {
1188         if (atomic_dec_and_test(&ctx->refcount)) {
1189                 if (ctx->parent_ctx)
1190                         put_ctx(ctx->parent_ctx);
1191                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1192                         put_task_struct(ctx->task);
1193                 call_rcu(&ctx->rcu_head, free_ctx);
1194         }
1195 }
1196
1197 /*
1198  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199  * perf_pmu_migrate_context() we need some magic.
1200  *
1201  * Those places that change perf_event::ctx will hold both
1202  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1203  *
1204  * Lock ordering is by mutex address. There are two other sites where
1205  * perf_event_context::mutex nests and those are:
1206  *
1207  *  - perf_event_exit_task_context()    [ child , 0 ]
1208  *      perf_event_exit_event()
1209  *        put_event()                   [ parent, 1 ]
1210  *
1211  *  - perf_event_init_context()         [ parent, 0 ]
1212  *      inherit_task_group()
1213  *        inherit_group()
1214  *          inherit_event()
1215  *            perf_event_alloc()
1216  *              perf_init_event()
1217  *                perf_try_init_event() [ child , 1 ]
1218  *
1219  * While it appears there is an obvious deadlock here -- the parent and child
1220  * nesting levels are inverted between the two. This is in fact safe because
1221  * life-time rules separate them. That is an exiting task cannot fork, and a
1222  * spawning task cannot (yet) exit.
1223  *
1224  * But remember that that these are parent<->child context relations, and
1225  * migration does not affect children, therefore these two orderings should not
1226  * interact.
1227  *
1228  * The change in perf_event::ctx does not affect children (as claimed above)
1229  * because the sys_perf_event_open() case will install a new event and break
1230  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231  * concerned with cpuctx and that doesn't have children.
1232  *
1233  * The places that change perf_event::ctx will issue:
1234  *
1235  *   perf_remove_from_context();
1236  *   synchronize_rcu();
1237  *   perf_install_in_context();
1238  *
1239  * to affect the change. The remove_from_context() + synchronize_rcu() should
1240  * quiesce the event, after which we can install it in the new location. This
1241  * means that only external vectors (perf_fops, prctl) can perturb the event
1242  * while in transit. Therefore all such accessors should also acquire
1243  * perf_event_context::mutex to serialize against this.
1244  *
1245  * However; because event->ctx can change while we're waiting to acquire
1246  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1247  * function.
1248  *
1249  * Lock order:
1250  *    cred_guard_mutex
1251  *      task_struct::perf_event_mutex
1252  *        perf_event_context::mutex
1253  *          perf_event::child_mutex;
1254  *            perf_event_context::lock
1255  *          perf_event::mmap_mutex
1256  *          mmap_sem
1257  *
1258  *    cpu_hotplug_lock
1259  *      pmus_lock
1260  *        cpuctx->mutex / perf_event_context::mutex
1261  */
1262 static struct perf_event_context *
1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1264 {
1265         struct perf_event_context *ctx;
1266
1267 again:
1268         rcu_read_lock();
1269         ctx = READ_ONCE(event->ctx);
1270         if (!atomic_inc_not_zero(&ctx->refcount)) {
1271                 rcu_read_unlock();
1272                 goto again;
1273         }
1274         rcu_read_unlock();
1275
1276         mutex_lock_nested(&ctx->mutex, nesting);
1277         if (event->ctx != ctx) {
1278                 mutex_unlock(&ctx->mutex);
1279                 put_ctx(ctx);
1280                 goto again;
1281         }
1282
1283         return ctx;
1284 }
1285
1286 static inline struct perf_event_context *
1287 perf_event_ctx_lock(struct perf_event *event)
1288 {
1289         return perf_event_ctx_lock_nested(event, 0);
1290 }
1291
1292 static void perf_event_ctx_unlock(struct perf_event *event,
1293                                   struct perf_event_context *ctx)
1294 {
1295         mutex_unlock(&ctx->mutex);
1296         put_ctx(ctx);
1297 }
1298
1299 /*
1300  * This must be done under the ctx->lock, such as to serialize against
1301  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302  * calling scheduler related locks and ctx->lock nests inside those.
1303  */
1304 static __must_check struct perf_event_context *
1305 unclone_ctx(struct perf_event_context *ctx)
1306 {
1307         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1308
1309         lockdep_assert_held(&ctx->lock);
1310
1311         if (parent_ctx)
1312                 ctx->parent_ctx = NULL;
1313         ctx->generation++;
1314
1315         return parent_ctx;
1316 }
1317
1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1319                                 enum pid_type type)
1320 {
1321         u32 nr;
1322         /*
1323          * only top level events have the pid namespace they were created in
1324          */
1325         if (event->parent)
1326                 event = event->parent;
1327
1328         nr = __task_pid_nr_ns(p, type, event->ns);
1329         /* avoid -1 if it is idle thread or runs in another ns */
1330         if (!nr && !pid_alive(p))
1331                 nr = -1;
1332         return nr;
1333 }
1334
1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1336 {
1337         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1338 }
1339
1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1341 {
1342         return perf_event_pid_type(event, p, PIDTYPE_PID);
1343 }
1344
1345 /*
1346  * If we inherit events we want to return the parent event id
1347  * to userspace.
1348  */
1349 static u64 primary_event_id(struct perf_event *event)
1350 {
1351         u64 id = event->id;
1352
1353         if (event->parent)
1354                 id = event->parent->id;
1355
1356         return id;
1357 }
1358
1359 /*
1360  * Get the perf_event_context for a task and lock it.
1361  *
1362  * This has to cope with with the fact that until it is locked,
1363  * the context could get moved to another task.
1364  */
1365 static struct perf_event_context *
1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1367 {
1368         struct perf_event_context *ctx;
1369
1370 retry:
1371         /*
1372          * One of the few rules of preemptible RCU is that one cannot do
1373          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1374          * part of the read side critical section was irqs-enabled -- see
1375          * rcu_read_unlock_special().
1376          *
1377          * Since ctx->lock nests under rq->lock we must ensure the entire read
1378          * side critical section has interrupts disabled.
1379          */
1380         local_irq_save(*flags);
1381         rcu_read_lock();
1382         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1383         if (ctx) {
1384                 /*
1385                  * If this context is a clone of another, it might
1386                  * get swapped for another underneath us by
1387                  * perf_event_task_sched_out, though the
1388                  * rcu_read_lock() protects us from any context
1389                  * getting freed.  Lock the context and check if it
1390                  * got swapped before we could get the lock, and retry
1391                  * if so.  If we locked the right context, then it
1392                  * can't get swapped on us any more.
1393                  */
1394                 raw_spin_lock(&ctx->lock);
1395                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1396                         raw_spin_unlock(&ctx->lock);
1397                         rcu_read_unlock();
1398                         local_irq_restore(*flags);
1399                         goto retry;
1400                 }
1401
1402                 if (ctx->task == TASK_TOMBSTONE ||
1403                     !atomic_inc_not_zero(&ctx->refcount)) {
1404                         raw_spin_unlock(&ctx->lock);
1405                         ctx = NULL;
1406                 } else {
1407                         WARN_ON_ONCE(ctx->task != task);
1408                 }
1409         }
1410         rcu_read_unlock();
1411         if (!ctx)
1412                 local_irq_restore(*flags);
1413         return ctx;
1414 }
1415
1416 /*
1417  * Get the context for a task and increment its pin_count so it
1418  * can't get swapped to another task.  This also increments its
1419  * reference count so that the context can't get freed.
1420  */
1421 static struct perf_event_context *
1422 perf_pin_task_context(struct task_struct *task, int ctxn)
1423 {
1424         struct perf_event_context *ctx;
1425         unsigned long flags;
1426
1427         ctx = perf_lock_task_context(task, ctxn, &flags);
1428         if (ctx) {
1429                 ++ctx->pin_count;
1430                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1431         }
1432         return ctx;
1433 }
1434
1435 static void perf_unpin_context(struct perf_event_context *ctx)
1436 {
1437         unsigned long flags;
1438
1439         raw_spin_lock_irqsave(&ctx->lock, flags);
1440         --ctx->pin_count;
1441         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1442 }
1443
1444 /*
1445  * Update the record of the current time in a context.
1446  */
1447 static void update_context_time(struct perf_event_context *ctx)
1448 {
1449         u64 now = perf_clock();
1450
1451         ctx->time += now - ctx->timestamp;
1452         ctx->timestamp = now;
1453 }
1454
1455 static u64 perf_event_time(struct perf_event *event)
1456 {
1457         struct perf_event_context *ctx = event->ctx;
1458
1459         if (is_cgroup_event(event))
1460                 return perf_cgroup_event_time(event);
1461
1462         return ctx ? ctx->time : 0;
1463 }
1464
1465 static enum event_type_t get_event_type(struct perf_event *event)
1466 {
1467         struct perf_event_context *ctx = event->ctx;
1468         enum event_type_t event_type;
1469
1470         lockdep_assert_held(&ctx->lock);
1471
1472         /*
1473          * It's 'group type', really, because if our group leader is
1474          * pinned, so are we.
1475          */
1476         if (event->group_leader != event)
1477                 event = event->group_leader;
1478
1479         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1480         if (!ctx->task)
1481                 event_type |= EVENT_CPU;
1482
1483         return event_type;
1484 }
1485
1486 /*
1487  * Helper function to initialize event group nodes.
1488  */
1489 static void init_event_group(struct perf_event *event)
1490 {
1491         RB_CLEAR_NODE(&event->group_node);
1492         event->group_index = 0;
1493 }
1494
1495 /*
1496  * Extract pinned or flexible groups from the context
1497  * based on event attrs bits.
1498  */
1499 static struct perf_event_groups *
1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1501 {
1502         if (event->attr.pinned)
1503                 return &ctx->pinned_groups;
1504         else
1505                 return &ctx->flexible_groups;
1506 }
1507
1508 /*
1509  * Helper function to initializes perf_event_group trees.
1510  */
1511 static void perf_event_groups_init(struct perf_event_groups *groups)
1512 {
1513         groups->tree = RB_ROOT;
1514         groups->index = 0;
1515 }
1516
1517 /*
1518  * Compare function for event groups;
1519  *
1520  * Implements complex key that first sorts by CPU and then by virtual index
1521  * which provides ordering when rotating groups for the same CPU.
1522  */
1523 static bool
1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1525 {
1526         if (left->cpu < right->cpu)
1527                 return true;
1528         if (left->cpu > right->cpu)
1529                 return false;
1530
1531         if (left->group_index < right->group_index)
1532                 return true;
1533         if (left->group_index > right->group_index)
1534                 return false;
1535
1536         return false;
1537 }
1538
1539 /*
1540  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541  * key (see perf_event_groups_less). This places it last inside the CPU
1542  * subtree.
1543  */
1544 static void
1545 perf_event_groups_insert(struct perf_event_groups *groups,
1546                          struct perf_event *event)
1547 {
1548         struct perf_event *node_event;
1549         struct rb_node *parent;
1550         struct rb_node **node;
1551
1552         event->group_index = ++groups->index;
1553
1554         node = &groups->tree.rb_node;
1555         parent = *node;
1556
1557         while (*node) {
1558                 parent = *node;
1559                 node_event = container_of(*node, struct perf_event, group_node);
1560
1561                 if (perf_event_groups_less(event, node_event))
1562                         node = &parent->rb_left;
1563                 else
1564                         node = &parent->rb_right;
1565         }
1566
1567         rb_link_node(&event->group_node, parent, node);
1568         rb_insert_color(&event->group_node, &groups->tree);
1569 }
1570
1571 /*
1572  * Helper function to insert event into the pinned or flexible groups.
1573  */
1574 static void
1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1576 {
1577         struct perf_event_groups *groups;
1578
1579         groups = get_event_groups(event, ctx);
1580         perf_event_groups_insert(groups, event);
1581 }
1582
1583 /*
1584  * Delete a group from a tree.
1585  */
1586 static void
1587 perf_event_groups_delete(struct perf_event_groups *groups,
1588                          struct perf_event *event)
1589 {
1590         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1591                      RB_EMPTY_ROOT(&groups->tree));
1592
1593         rb_erase(&event->group_node, &groups->tree);
1594         init_event_group(event);
1595 }
1596
1597 /*
1598  * Helper function to delete event from its groups.
1599  */
1600 static void
1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1602 {
1603         struct perf_event_groups *groups;
1604
1605         groups = get_event_groups(event, ctx);
1606         perf_event_groups_delete(groups, event);
1607 }
1608
1609 /*
1610  * Get the leftmost event in the @cpu subtree.
1611  */
1612 static struct perf_event *
1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1614 {
1615         struct perf_event *node_event = NULL, *match = NULL;
1616         struct rb_node *node = groups->tree.rb_node;
1617
1618         while (node) {
1619                 node_event = container_of(node, struct perf_event, group_node);
1620
1621                 if (cpu < node_event->cpu) {
1622                         node = node->rb_left;
1623                 } else if (cpu > node_event->cpu) {
1624                         node = node->rb_right;
1625                 } else {
1626                         match = node_event;
1627                         node = node->rb_left;
1628                 }
1629         }
1630
1631         return match;
1632 }
1633
1634 /*
1635  * Like rb_entry_next_safe() for the @cpu subtree.
1636  */
1637 static struct perf_event *
1638 perf_event_groups_next(struct perf_event *event)
1639 {
1640         struct perf_event *next;
1641
1642         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1643         if (next && next->cpu == event->cpu)
1644                 return next;
1645
1646         return NULL;
1647 }
1648
1649 /*
1650  * Iterate through the whole groups tree.
1651  */
1652 #define perf_event_groups_for_each(event, groups)                       \
1653         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1654                                 typeof(*event), group_node); event;     \
1655                 event = rb_entry_safe(rb_next(&event->group_node),      \
1656                                 typeof(*event), group_node))
1657
1658 /*
1659  * Add an event from the lists for its context.
1660  * Must be called with ctx->mutex and ctx->lock held.
1661  */
1662 static void
1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1664 {
1665         lockdep_assert_held(&ctx->lock);
1666
1667         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1668         event->attach_state |= PERF_ATTACH_CONTEXT;
1669
1670         event->tstamp = perf_event_time(event);
1671
1672         /*
1673          * If we're a stand alone event or group leader, we go to the context
1674          * list, group events are kept attached to the group so that
1675          * perf_group_detach can, at all times, locate all siblings.
1676          */
1677         if (event->group_leader == event) {
1678                 event->group_caps = event->event_caps;
1679                 add_event_to_groups(event, ctx);
1680         }
1681
1682         list_update_cgroup_event(event, ctx, true);
1683
1684         list_add_rcu(&event->event_entry, &ctx->event_list);
1685         ctx->nr_events++;
1686         if (event->attr.inherit_stat)
1687                 ctx->nr_stat++;
1688
1689         ctx->generation++;
1690 }
1691
1692 /*
1693  * Initialize event state based on the perf_event_attr::disabled.
1694  */
1695 static inline void perf_event__state_init(struct perf_event *event)
1696 {
1697         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1698                                               PERF_EVENT_STATE_INACTIVE;
1699 }
1700
1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1702 {
1703         int entry = sizeof(u64); /* value */
1704         int size = 0;
1705         int nr = 1;
1706
1707         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1708                 size += sizeof(u64);
1709
1710         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1711                 size += sizeof(u64);
1712
1713         if (event->attr.read_format & PERF_FORMAT_ID)
1714                 entry += sizeof(u64);
1715
1716         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1717                 nr += nr_siblings;
1718                 size += sizeof(u64);
1719         }
1720
1721         size += entry * nr;
1722         event->read_size = size;
1723 }
1724
1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1726 {
1727         struct perf_sample_data *data;
1728         u16 size = 0;
1729
1730         if (sample_type & PERF_SAMPLE_IP)
1731                 size += sizeof(data->ip);
1732
1733         if (sample_type & PERF_SAMPLE_ADDR)
1734                 size += sizeof(data->addr);
1735
1736         if (sample_type & PERF_SAMPLE_PERIOD)
1737                 size += sizeof(data->period);
1738
1739         if (sample_type & PERF_SAMPLE_WEIGHT)
1740                 size += sizeof(data->weight);
1741
1742         if (sample_type & PERF_SAMPLE_READ)
1743                 size += event->read_size;
1744
1745         if (sample_type & PERF_SAMPLE_DATA_SRC)
1746                 size += sizeof(data->data_src.val);
1747
1748         if (sample_type & PERF_SAMPLE_TRANSACTION)
1749                 size += sizeof(data->txn);
1750
1751         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1752                 size += sizeof(data->phys_addr);
1753
1754         event->header_size = size;
1755 }
1756
1757 /*
1758  * Called at perf_event creation and when events are attached/detached from a
1759  * group.
1760  */
1761 static void perf_event__header_size(struct perf_event *event)
1762 {
1763         __perf_event_read_size(event,
1764                                event->group_leader->nr_siblings);
1765         __perf_event_header_size(event, event->attr.sample_type);
1766 }
1767
1768 static void perf_event__id_header_size(struct perf_event *event)
1769 {
1770         struct perf_sample_data *data;
1771         u64 sample_type = event->attr.sample_type;
1772         u16 size = 0;
1773
1774         if (sample_type & PERF_SAMPLE_TID)
1775                 size += sizeof(data->tid_entry);
1776
1777         if (sample_type & PERF_SAMPLE_TIME)
1778                 size += sizeof(data->time);
1779
1780         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1781                 size += sizeof(data->id);
1782
1783         if (sample_type & PERF_SAMPLE_ID)
1784                 size += sizeof(data->id);
1785
1786         if (sample_type & PERF_SAMPLE_STREAM_ID)
1787                 size += sizeof(data->stream_id);
1788
1789         if (sample_type & PERF_SAMPLE_CPU)
1790                 size += sizeof(data->cpu_entry);
1791
1792         event->id_header_size = size;
1793 }
1794
1795 static bool perf_event_validate_size(struct perf_event *event)
1796 {
1797         /*
1798          * The values computed here will be over-written when we actually
1799          * attach the event.
1800          */
1801         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1802         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1803         perf_event__id_header_size(event);
1804
1805         /*
1806          * Sum the lot; should not exceed the 64k limit we have on records.
1807          * Conservative limit to allow for callchains and other variable fields.
1808          */
1809         if (event->read_size + event->header_size +
1810             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1811                 return false;
1812
1813         return true;
1814 }
1815
1816 static void perf_group_attach(struct perf_event *event)
1817 {
1818         struct perf_event *group_leader = event->group_leader, *pos;
1819
1820         lockdep_assert_held(&event->ctx->lock);
1821
1822         /*
1823          * We can have double attach due to group movement in perf_event_open.
1824          */
1825         if (event->attach_state & PERF_ATTACH_GROUP)
1826                 return;
1827
1828         event->attach_state |= PERF_ATTACH_GROUP;
1829
1830         if (group_leader == event)
1831                 return;
1832
1833         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1834
1835         group_leader->group_caps &= event->event_caps;
1836
1837         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1838         group_leader->nr_siblings++;
1839
1840         perf_event__header_size(group_leader);
1841
1842         for_each_sibling_event(pos, group_leader)
1843                 perf_event__header_size(pos);
1844 }
1845
1846 /*
1847  * Remove an event from the lists for its context.
1848  * Must be called with ctx->mutex and ctx->lock held.
1849  */
1850 static void
1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1852 {
1853         WARN_ON_ONCE(event->ctx != ctx);
1854         lockdep_assert_held(&ctx->lock);
1855
1856         /*
1857          * We can have double detach due to exit/hot-unplug + close.
1858          */
1859         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1860                 return;
1861
1862         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1863
1864         list_update_cgroup_event(event, ctx, false);
1865
1866         ctx->nr_events--;
1867         if (event->attr.inherit_stat)
1868                 ctx->nr_stat--;
1869
1870         list_del_rcu(&event->event_entry);
1871
1872         if (event->group_leader == event)
1873                 del_event_from_groups(event, ctx);
1874
1875         /*
1876          * If event was in error state, then keep it
1877          * that way, otherwise bogus counts will be
1878          * returned on read(). The only way to get out
1879          * of error state is by explicit re-enabling
1880          * of the event
1881          */
1882         if (event->state > PERF_EVENT_STATE_OFF)
1883                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1884
1885         ctx->generation++;
1886 }
1887
1888 static void perf_group_detach(struct perf_event *event)
1889 {
1890         struct perf_event *sibling, *tmp;
1891         struct perf_event_context *ctx = event->ctx;
1892
1893         lockdep_assert_held(&ctx->lock);
1894
1895         /*
1896          * We can have double detach due to exit/hot-unplug + close.
1897          */
1898         if (!(event->attach_state & PERF_ATTACH_GROUP))
1899                 return;
1900
1901         event->attach_state &= ~PERF_ATTACH_GROUP;
1902
1903         /*
1904          * If this is a sibling, remove it from its group.
1905          */
1906         if (event->group_leader != event) {
1907                 list_del_init(&event->sibling_list);
1908                 event->group_leader->nr_siblings--;
1909                 goto out;
1910         }
1911
1912         /*
1913          * If this was a group event with sibling events then
1914          * upgrade the siblings to singleton events by adding them
1915          * to whatever list we are on.
1916          */
1917         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1918
1919                 sibling->group_leader = sibling;
1920                 list_del_init(&sibling->sibling_list);
1921
1922                 /* Inherit group flags from the previous leader */
1923                 sibling->group_caps = event->group_caps;
1924
1925                 if (!RB_EMPTY_NODE(&event->group_node)) {
1926                         add_event_to_groups(sibling, event->ctx);
1927
1928                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1929                                 struct list_head *list = sibling->attr.pinned ?
1930                                         &ctx->pinned_active : &ctx->flexible_active;
1931
1932                                 list_add_tail(&sibling->active_list, list);
1933                         }
1934                 }
1935
1936                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1937         }
1938
1939 out:
1940         perf_event__header_size(event->group_leader);
1941
1942         for_each_sibling_event(tmp, event->group_leader)
1943                 perf_event__header_size(tmp);
1944 }
1945
1946 static bool is_orphaned_event(struct perf_event *event)
1947 {
1948         return event->state == PERF_EVENT_STATE_DEAD;
1949 }
1950
1951 static inline int __pmu_filter_match(struct perf_event *event)
1952 {
1953         struct pmu *pmu = event->pmu;
1954         return pmu->filter_match ? pmu->filter_match(event) : 1;
1955 }
1956
1957 /*
1958  * Check whether we should attempt to schedule an event group based on
1959  * PMU-specific filtering. An event group can consist of HW and SW events,
1960  * potentially with a SW leader, so we must check all the filters, to
1961  * determine whether a group is schedulable:
1962  */
1963 static inline int pmu_filter_match(struct perf_event *event)
1964 {
1965         struct perf_event *sibling;
1966
1967         if (!__pmu_filter_match(event))
1968                 return 0;
1969
1970         for_each_sibling_event(sibling, event) {
1971                 if (!__pmu_filter_match(sibling))
1972                         return 0;
1973         }
1974
1975         return 1;
1976 }
1977
1978 static inline int
1979 event_filter_match(struct perf_event *event)
1980 {
1981         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1982                perf_cgroup_match(event) && pmu_filter_match(event);
1983 }
1984
1985 static void
1986 event_sched_out(struct perf_event *event,
1987                   struct perf_cpu_context *cpuctx,
1988                   struct perf_event_context *ctx)
1989 {
1990         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1991
1992         WARN_ON_ONCE(event->ctx != ctx);
1993         lockdep_assert_held(&ctx->lock);
1994
1995         if (event->state != PERF_EVENT_STATE_ACTIVE)
1996                 return;
1997
1998         /*
1999          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000          * we can schedule events _OUT_ individually through things like
2001          * __perf_remove_from_context().
2002          */
2003         list_del_init(&event->active_list);
2004
2005         perf_pmu_disable(event->pmu);
2006
2007         event->pmu->del(event, 0);
2008         event->oncpu = -1;
2009
2010         if (event->pending_disable) {
2011                 event->pending_disable = 0;
2012                 state = PERF_EVENT_STATE_OFF;
2013         }
2014         perf_event_set_state(event, state);
2015
2016         if (!is_software_event(event))
2017                 cpuctx->active_oncpu--;
2018         if (!--ctx->nr_active)
2019                 perf_event_ctx_deactivate(ctx);
2020         if (event->attr.freq && event->attr.sample_freq)
2021                 ctx->nr_freq--;
2022         if (event->attr.exclusive || !cpuctx->active_oncpu)
2023                 cpuctx->exclusive = 0;
2024
2025         perf_pmu_enable(event->pmu);
2026 }
2027
2028 static void
2029 group_sched_out(struct perf_event *group_event,
2030                 struct perf_cpu_context *cpuctx,
2031                 struct perf_event_context *ctx)
2032 {
2033         struct perf_event *event;
2034
2035         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2036                 return;
2037
2038         perf_pmu_disable(ctx->pmu);
2039
2040         event_sched_out(group_event, cpuctx, ctx);
2041
2042         /*
2043          * Schedule out siblings (if any):
2044          */
2045         for_each_sibling_event(event, group_event)
2046                 event_sched_out(event, cpuctx, ctx);
2047
2048         perf_pmu_enable(ctx->pmu);
2049
2050         if (group_event->attr.exclusive)
2051                 cpuctx->exclusive = 0;
2052 }
2053
2054 #define DETACH_GROUP    0x01UL
2055
2056 /*
2057  * Cross CPU call to remove a performance event
2058  *
2059  * We disable the event on the hardware level first. After that we
2060  * remove it from the context list.
2061  */
2062 static void
2063 __perf_remove_from_context(struct perf_event *event,
2064                            struct perf_cpu_context *cpuctx,
2065                            struct perf_event_context *ctx,
2066                            void *info)
2067 {
2068         unsigned long flags = (unsigned long)info;
2069
2070         if (ctx->is_active & EVENT_TIME) {
2071                 update_context_time(ctx);
2072                 update_cgrp_time_from_cpuctx(cpuctx);
2073         }
2074
2075         event_sched_out(event, cpuctx, ctx);
2076         if (flags & DETACH_GROUP)
2077                 perf_group_detach(event);
2078         list_del_event(event, ctx);
2079
2080         if (!ctx->nr_events && ctx->is_active) {
2081                 ctx->is_active = 0;
2082                 if (ctx->task) {
2083                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2084                         cpuctx->task_ctx = NULL;
2085                 }
2086         }
2087 }
2088
2089 /*
2090  * Remove the event from a task's (or a CPU's) list of events.
2091  *
2092  * If event->ctx is a cloned context, callers must make sure that
2093  * every task struct that event->ctx->task could possibly point to
2094  * remains valid.  This is OK when called from perf_release since
2095  * that only calls us on the top-level context, which can't be a clone.
2096  * When called from perf_event_exit_task, it's OK because the
2097  * context has been detached from its task.
2098  */
2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2100 {
2101         struct perf_event_context *ctx = event->ctx;
2102
2103         lockdep_assert_held(&ctx->mutex);
2104
2105         event_function_call(event, __perf_remove_from_context, (void *)flags);
2106
2107         /*
2108          * The above event_function_call() can NO-OP when it hits
2109          * TASK_TOMBSTONE. In that case we must already have been detached
2110          * from the context (by perf_event_exit_event()) but the grouping
2111          * might still be in-tact.
2112          */
2113         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2114         if ((flags & DETACH_GROUP) &&
2115             (event->attach_state & PERF_ATTACH_GROUP)) {
2116                 /*
2117                  * Since in that case we cannot possibly be scheduled, simply
2118                  * detach now.
2119                  */
2120                 raw_spin_lock_irq(&ctx->lock);
2121                 perf_group_detach(event);
2122                 raw_spin_unlock_irq(&ctx->lock);
2123         }
2124 }
2125
2126 /*
2127  * Cross CPU call to disable a performance event
2128  */
2129 static void __perf_event_disable(struct perf_event *event,
2130                                  struct perf_cpu_context *cpuctx,
2131                                  struct perf_event_context *ctx,
2132                                  void *info)
2133 {
2134         if (event->state < PERF_EVENT_STATE_INACTIVE)
2135                 return;
2136
2137         if (ctx->is_active & EVENT_TIME) {
2138                 update_context_time(ctx);
2139                 update_cgrp_time_from_event(event);
2140         }
2141
2142         if (event == event->group_leader)
2143                 group_sched_out(event, cpuctx, ctx);
2144         else
2145                 event_sched_out(event, cpuctx, ctx);
2146
2147         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2148 }
2149
2150 /*
2151  * Disable an event.
2152  *
2153  * If event->ctx is a cloned context, callers must make sure that
2154  * every task struct that event->ctx->task could possibly point to
2155  * remains valid.  This condition is satisifed when called through
2156  * perf_event_for_each_child or perf_event_for_each because they
2157  * hold the top-level event's child_mutex, so any descendant that
2158  * goes to exit will block in perf_event_exit_event().
2159  *
2160  * When called from perf_pending_event it's OK because event->ctx
2161  * is the current context on this CPU and preemption is disabled,
2162  * hence we can't get into perf_event_task_sched_out for this context.
2163  */
2164 static void _perf_event_disable(struct perf_event *event)
2165 {
2166         struct perf_event_context *ctx = event->ctx;
2167
2168         raw_spin_lock_irq(&ctx->lock);
2169         if (event->state <= PERF_EVENT_STATE_OFF) {
2170                 raw_spin_unlock_irq(&ctx->lock);
2171                 return;
2172         }
2173         raw_spin_unlock_irq(&ctx->lock);
2174
2175         event_function_call(event, __perf_event_disable, NULL);
2176 }
2177
2178 void perf_event_disable_local(struct perf_event *event)
2179 {
2180         event_function_local(event, __perf_event_disable, NULL);
2181 }
2182
2183 /*
2184  * Strictly speaking kernel users cannot create groups and therefore this
2185  * interface does not need the perf_event_ctx_lock() magic.
2186  */
2187 void perf_event_disable(struct perf_event *event)
2188 {
2189         struct perf_event_context *ctx;
2190
2191         ctx = perf_event_ctx_lock(event);
2192         _perf_event_disable(event);
2193         perf_event_ctx_unlock(event, ctx);
2194 }
2195 EXPORT_SYMBOL_GPL(perf_event_disable);
2196
2197 void perf_event_disable_inatomic(struct perf_event *event)
2198 {
2199         event->pending_disable = 1;
2200         irq_work_queue(&event->pending);
2201 }
2202
2203 static void perf_set_shadow_time(struct perf_event *event,
2204                                  struct perf_event_context *ctx)
2205 {
2206         /*
2207          * use the correct time source for the time snapshot
2208          *
2209          * We could get by without this by leveraging the
2210          * fact that to get to this function, the caller
2211          * has most likely already called update_context_time()
2212          * and update_cgrp_time_xx() and thus both timestamp
2213          * are identical (or very close). Given that tstamp is,
2214          * already adjusted for cgroup, we could say that:
2215          *    tstamp - ctx->timestamp
2216          * is equivalent to
2217          *    tstamp - cgrp->timestamp.
2218          *
2219          * Then, in perf_output_read(), the calculation would
2220          * work with no changes because:
2221          * - event is guaranteed scheduled in
2222          * - no scheduled out in between
2223          * - thus the timestamp would be the same
2224          *
2225          * But this is a bit hairy.
2226          *
2227          * So instead, we have an explicit cgroup call to remain
2228          * within the time time source all along. We believe it
2229          * is cleaner and simpler to understand.
2230          */
2231         if (is_cgroup_event(event))
2232                 perf_cgroup_set_shadow_time(event, event->tstamp);
2233         else
2234                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2235 }
2236
2237 #define MAX_INTERRUPTS (~0ULL)
2238
2239 static void perf_log_throttle(struct perf_event *event, int enable);
2240 static void perf_log_itrace_start(struct perf_event *event);
2241
2242 static int
2243 event_sched_in(struct perf_event *event,
2244                  struct perf_cpu_context *cpuctx,
2245                  struct perf_event_context *ctx)
2246 {
2247         int ret = 0;
2248
2249         lockdep_assert_held(&ctx->lock);
2250
2251         if (event->state <= PERF_EVENT_STATE_OFF)
2252                 return 0;
2253
2254         WRITE_ONCE(event->oncpu, smp_processor_id());
2255         /*
2256          * Order event::oncpu write to happen before the ACTIVE state is
2257          * visible. This allows perf_event_{stop,read}() to observe the correct
2258          * ->oncpu if it sees ACTIVE.
2259          */
2260         smp_wmb();
2261         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2262
2263         /*
2264          * Unthrottle events, since we scheduled we might have missed several
2265          * ticks already, also for a heavily scheduling task there is little
2266          * guarantee it'll get a tick in a timely manner.
2267          */
2268         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2269                 perf_log_throttle(event, 1);
2270                 event->hw.interrupts = 0;
2271         }
2272
2273         perf_pmu_disable(event->pmu);
2274
2275         perf_set_shadow_time(event, ctx);
2276
2277         perf_log_itrace_start(event);
2278
2279         if (event->pmu->add(event, PERF_EF_START)) {
2280                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2281                 event->oncpu = -1;
2282                 ret = -EAGAIN;
2283                 goto out;
2284         }
2285
2286         if (!is_software_event(event))
2287                 cpuctx->active_oncpu++;
2288         if (!ctx->nr_active++)
2289                 perf_event_ctx_activate(ctx);
2290         if (event->attr.freq && event->attr.sample_freq)
2291                 ctx->nr_freq++;
2292
2293         if (event->attr.exclusive)
2294                 cpuctx->exclusive = 1;
2295
2296 out:
2297         perf_pmu_enable(event->pmu);
2298
2299         return ret;
2300 }
2301
2302 static int
2303 group_sched_in(struct perf_event *group_event,
2304                struct perf_cpu_context *cpuctx,
2305                struct perf_event_context *ctx)
2306 {
2307         struct perf_event *event, *partial_group = NULL;
2308         struct pmu *pmu = ctx->pmu;
2309
2310         if (group_event->state == PERF_EVENT_STATE_OFF)
2311                 return 0;
2312
2313         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2314
2315         if (event_sched_in(group_event, cpuctx, ctx)) {
2316                 pmu->cancel_txn(pmu);
2317                 perf_mux_hrtimer_restart(cpuctx);
2318                 return -EAGAIN;
2319         }
2320
2321         /*
2322          * Schedule in siblings as one group (if any):
2323          */
2324         for_each_sibling_event(event, group_event) {
2325                 if (event_sched_in(event, cpuctx, ctx)) {
2326                         partial_group = event;
2327                         goto group_error;
2328                 }
2329         }
2330
2331         if (!pmu->commit_txn(pmu))
2332                 return 0;
2333
2334 group_error:
2335         /*
2336          * Groups can be scheduled in as one unit only, so undo any
2337          * partial group before returning:
2338          * The events up to the failed event are scheduled out normally.
2339          */
2340         for_each_sibling_event(event, group_event) {
2341                 if (event == partial_group)
2342                         break;
2343
2344                 event_sched_out(event, cpuctx, ctx);
2345         }
2346         event_sched_out(group_event, cpuctx, ctx);
2347
2348         pmu->cancel_txn(pmu);
2349
2350         perf_mux_hrtimer_restart(cpuctx);
2351
2352         return -EAGAIN;
2353 }
2354
2355 /*
2356  * Work out whether we can put this event group on the CPU now.
2357  */
2358 static int group_can_go_on(struct perf_event *event,
2359                            struct perf_cpu_context *cpuctx,
2360                            int can_add_hw)
2361 {
2362         /*
2363          * Groups consisting entirely of software events can always go on.
2364          */
2365         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2366                 return 1;
2367         /*
2368          * If an exclusive group is already on, no other hardware
2369          * events can go on.
2370          */
2371         if (cpuctx->exclusive)
2372                 return 0;
2373         /*
2374          * If this group is exclusive and there are already
2375          * events on the CPU, it can't go on.
2376          */
2377         if (event->attr.exclusive && cpuctx->active_oncpu)
2378                 return 0;
2379         /*
2380          * Otherwise, try to add it if all previous groups were able
2381          * to go on.
2382          */
2383         return can_add_hw;
2384 }
2385
2386 static void add_event_to_ctx(struct perf_event *event,
2387                                struct perf_event_context *ctx)
2388 {
2389         list_add_event(event, ctx);
2390         perf_group_attach(event);
2391 }
2392
2393 static void ctx_sched_out(struct perf_event_context *ctx,
2394                           struct perf_cpu_context *cpuctx,
2395                           enum event_type_t event_type);
2396 static void
2397 ctx_sched_in(struct perf_event_context *ctx,
2398              struct perf_cpu_context *cpuctx,
2399              enum event_type_t event_type,
2400              struct task_struct *task);
2401
2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2403                                struct perf_event_context *ctx,
2404                                enum event_type_t event_type)
2405 {
2406         if (!cpuctx->task_ctx)
2407                 return;
2408
2409         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2410                 return;
2411
2412         ctx_sched_out(ctx, cpuctx, event_type);
2413 }
2414
2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2416                                 struct perf_event_context *ctx,
2417                                 struct task_struct *task)
2418 {
2419         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2420         if (ctx)
2421                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2422         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2423         if (ctx)
2424                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2425 }
2426
2427 /*
2428  * We want to maintain the following priority of scheduling:
2429  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2430  *  - task pinned (EVENT_PINNED)
2431  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2432  *  - task flexible (EVENT_FLEXIBLE).
2433  *
2434  * In order to avoid unscheduling and scheduling back in everything every
2435  * time an event is added, only do it for the groups of equal priority and
2436  * below.
2437  *
2438  * This can be called after a batch operation on task events, in which case
2439  * event_type is a bit mask of the types of events involved. For CPU events,
2440  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2441  */
2442 static void ctx_resched(struct perf_cpu_context *cpuctx,
2443                         struct perf_event_context *task_ctx,
2444                         enum event_type_t event_type)
2445 {
2446         enum event_type_t ctx_event_type;
2447         bool cpu_event = !!(event_type & EVENT_CPU);
2448
2449         /*
2450          * If pinned groups are involved, flexible groups also need to be
2451          * scheduled out.
2452          */
2453         if (event_type & EVENT_PINNED)
2454                 event_type |= EVENT_FLEXIBLE;
2455
2456         ctx_event_type = event_type & EVENT_ALL;
2457
2458         perf_pmu_disable(cpuctx->ctx.pmu);
2459         if (task_ctx)
2460                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2461
2462         /*
2463          * Decide which cpu ctx groups to schedule out based on the types
2464          * of events that caused rescheduling:
2465          *  - EVENT_CPU: schedule out corresponding groups;
2466          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2467          *  - otherwise, do nothing more.
2468          */
2469         if (cpu_event)
2470                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2471         else if (ctx_event_type & EVENT_PINNED)
2472                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2473
2474         perf_event_sched_in(cpuctx, task_ctx, current);
2475         perf_pmu_enable(cpuctx->ctx.pmu);
2476 }
2477
2478 /*
2479  * Cross CPU call to install and enable a performance event
2480  *
2481  * Very similar to remote_function() + event_function() but cannot assume that
2482  * things like ctx->is_active and cpuctx->task_ctx are set.
2483  */
2484 static int  __perf_install_in_context(void *info)
2485 {
2486         struct perf_event *event = info;
2487         struct perf_event_context *ctx = event->ctx;
2488         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2489         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2490         bool reprogram = true;
2491         int ret = 0;
2492
2493         raw_spin_lock(&cpuctx->ctx.lock);
2494         if (ctx->task) {
2495                 raw_spin_lock(&ctx->lock);
2496                 task_ctx = ctx;
2497
2498                 reprogram = (ctx->task == current);
2499
2500                 /*
2501                  * If the task is running, it must be running on this CPU,
2502                  * otherwise we cannot reprogram things.
2503                  *
2504                  * If its not running, we don't care, ctx->lock will
2505                  * serialize against it becoming runnable.
2506                  */
2507                 if (task_curr(ctx->task) && !reprogram) {
2508                         ret = -ESRCH;
2509                         goto unlock;
2510                 }
2511
2512                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2513         } else if (task_ctx) {
2514                 raw_spin_lock(&task_ctx->lock);
2515         }
2516
2517 #ifdef CONFIG_CGROUP_PERF
2518         if (is_cgroup_event(event)) {
2519                 /*
2520                  * If the current cgroup doesn't match the event's
2521                  * cgroup, we should not try to schedule it.
2522                  */
2523                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2524                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2525                                         event->cgrp->css.cgroup);
2526         }
2527 #endif
2528
2529         if (reprogram) {
2530                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2531                 add_event_to_ctx(event, ctx);
2532                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2533         } else {
2534                 add_event_to_ctx(event, ctx);
2535         }
2536
2537 unlock:
2538         perf_ctx_unlock(cpuctx, task_ctx);
2539
2540         return ret;
2541 }
2542
2543 /*
2544  * Attach a performance event to a context.
2545  *
2546  * Very similar to event_function_call, see comment there.
2547  */
2548 static void
2549 perf_install_in_context(struct perf_event_context *ctx,
2550                         struct perf_event *event,
2551                         int cpu)
2552 {
2553         struct task_struct *task = READ_ONCE(ctx->task);
2554
2555         lockdep_assert_held(&ctx->mutex);
2556
2557         if (event->cpu != -1)
2558                 event->cpu = cpu;
2559
2560         /*
2561          * Ensures that if we can observe event->ctx, both the event and ctx
2562          * will be 'complete'. See perf_iterate_sb_cpu().
2563          */
2564         smp_store_release(&event->ctx, ctx);
2565
2566         if (!task) {
2567                 cpu_function_call(cpu, __perf_install_in_context, event);
2568                 return;
2569         }
2570
2571         /*
2572          * Should not happen, we validate the ctx is still alive before calling.
2573          */
2574         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2575                 return;
2576
2577         /*
2578          * Installing events is tricky because we cannot rely on ctx->is_active
2579          * to be set in case this is the nr_events 0 -> 1 transition.
2580          *
2581          * Instead we use task_curr(), which tells us if the task is running.
2582          * However, since we use task_curr() outside of rq::lock, we can race
2583          * against the actual state. This means the result can be wrong.
2584          *
2585          * If we get a false positive, we retry, this is harmless.
2586          *
2587          * If we get a false negative, things are complicated. If we are after
2588          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2589          * value must be correct. If we're before, it doesn't matter since
2590          * perf_event_context_sched_in() will program the counter.
2591          *
2592          * However, this hinges on the remote context switch having observed
2593          * our task->perf_event_ctxp[] store, such that it will in fact take
2594          * ctx::lock in perf_event_context_sched_in().
2595          *
2596          * We do this by task_function_call(), if the IPI fails to hit the task
2597          * we know any future context switch of task must see the
2598          * perf_event_ctpx[] store.
2599          */
2600
2601         /*
2602          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2603          * task_cpu() load, such that if the IPI then does not find the task
2604          * running, a future context switch of that task must observe the
2605          * store.
2606          */
2607         smp_mb();
2608 again:
2609         if (!task_function_call(task, __perf_install_in_context, event))
2610                 return;
2611
2612         raw_spin_lock_irq(&ctx->lock);
2613         task = ctx->task;
2614         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2615                 /*
2616                  * Cannot happen because we already checked above (which also
2617                  * cannot happen), and we hold ctx->mutex, which serializes us
2618                  * against perf_event_exit_task_context().
2619                  */
2620                 raw_spin_unlock_irq(&ctx->lock);
2621                 return;
2622         }
2623         /*
2624          * If the task is not running, ctx->lock will avoid it becoming so,
2625          * thus we can safely install the event.
2626          */
2627         if (task_curr(task)) {
2628                 raw_spin_unlock_irq(&ctx->lock);
2629                 goto again;
2630         }
2631         add_event_to_ctx(event, ctx);
2632         raw_spin_unlock_irq(&ctx->lock);
2633 }
2634
2635 /*
2636  * Cross CPU call to enable a performance event
2637  */
2638 static void __perf_event_enable(struct perf_event *event,
2639                                 struct perf_cpu_context *cpuctx,
2640                                 struct perf_event_context *ctx,
2641                                 void *info)
2642 {
2643         struct perf_event *leader = event->group_leader;
2644         struct perf_event_context *task_ctx;
2645
2646         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2647             event->state <= PERF_EVENT_STATE_ERROR)
2648                 return;
2649
2650         if (ctx->is_active)
2651                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2652
2653         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2654
2655         if (!ctx->is_active)
2656                 return;
2657
2658         if (!event_filter_match(event)) {
2659                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2660                 return;
2661         }
2662
2663         /*
2664          * If the event is in a group and isn't the group leader,
2665          * then don't put it on unless the group is on.
2666          */
2667         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2668                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2669                 return;
2670         }
2671
2672         task_ctx = cpuctx->task_ctx;
2673         if (ctx->task)
2674                 WARN_ON_ONCE(task_ctx != ctx);
2675
2676         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2677 }
2678
2679 /*
2680  * Enable an event.
2681  *
2682  * If event->ctx is a cloned context, callers must make sure that
2683  * every task struct that event->ctx->task could possibly point to
2684  * remains valid.  This condition is satisfied when called through
2685  * perf_event_for_each_child or perf_event_for_each as described
2686  * for perf_event_disable.
2687  */
2688 static void _perf_event_enable(struct perf_event *event)
2689 {
2690         struct perf_event_context *ctx = event->ctx;
2691
2692         raw_spin_lock_irq(&ctx->lock);
2693         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2694             event->state <  PERF_EVENT_STATE_ERROR) {
2695                 raw_spin_unlock_irq(&ctx->lock);
2696                 return;
2697         }
2698
2699         /*
2700          * If the event is in error state, clear that first.
2701          *
2702          * That way, if we see the event in error state below, we know that it
2703          * has gone back into error state, as distinct from the task having
2704          * been scheduled away before the cross-call arrived.
2705          */
2706         if (event->state == PERF_EVENT_STATE_ERROR)
2707                 event->state = PERF_EVENT_STATE_OFF;
2708         raw_spin_unlock_irq(&ctx->lock);
2709
2710         event_function_call(event, __perf_event_enable, NULL);
2711 }
2712
2713 /*
2714  * See perf_event_disable();
2715  */
2716 void perf_event_enable(struct perf_event *event)
2717 {
2718         struct perf_event_context *ctx;
2719
2720         ctx = perf_event_ctx_lock(event);
2721         _perf_event_enable(event);
2722         perf_event_ctx_unlock(event, ctx);
2723 }
2724 EXPORT_SYMBOL_GPL(perf_event_enable);
2725
2726 struct stop_event_data {
2727         struct perf_event       *event;
2728         unsigned int            restart;
2729 };
2730
2731 static int __perf_event_stop(void *info)
2732 {
2733         struct stop_event_data *sd = info;
2734         struct perf_event *event = sd->event;
2735
2736         /* if it's already INACTIVE, do nothing */
2737         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2738                 return 0;
2739
2740         /* matches smp_wmb() in event_sched_in() */
2741         smp_rmb();
2742
2743         /*
2744          * There is a window with interrupts enabled before we get here,
2745          * so we need to check again lest we try to stop another CPU's event.
2746          */
2747         if (READ_ONCE(event->oncpu) != smp_processor_id())
2748                 return -EAGAIN;
2749
2750         event->pmu->stop(event, PERF_EF_UPDATE);
2751
2752         /*
2753          * May race with the actual stop (through perf_pmu_output_stop()),
2754          * but it is only used for events with AUX ring buffer, and such
2755          * events will refuse to restart because of rb::aux_mmap_count==0,
2756          * see comments in perf_aux_output_begin().
2757          *
2758          * Since this is happening on an event-local CPU, no trace is lost
2759          * while restarting.
2760          */
2761         if (sd->restart)
2762                 event->pmu->start(event, 0);
2763
2764         return 0;
2765 }
2766
2767 static int perf_event_stop(struct perf_event *event, int restart)
2768 {
2769         struct stop_event_data sd = {
2770                 .event          = event,
2771                 .restart        = restart,
2772         };
2773         int ret = 0;
2774
2775         do {
2776                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2777                         return 0;
2778
2779                 /* matches smp_wmb() in event_sched_in() */
2780                 smp_rmb();
2781
2782                 /*
2783                  * We only want to restart ACTIVE events, so if the event goes
2784                  * inactive here (event->oncpu==-1), there's nothing more to do;
2785                  * fall through with ret==-ENXIO.
2786                  */
2787                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2788                                         __perf_event_stop, &sd);
2789         } while (ret == -EAGAIN);
2790
2791         return ret;
2792 }
2793
2794 /*
2795  * In order to contain the amount of racy and tricky in the address filter
2796  * configuration management, it is a two part process:
2797  *
2798  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2799  *      we update the addresses of corresponding vmas in
2800  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2801  * (p2) when an event is scheduled in (pmu::add), it calls
2802  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2803  *      if the generation has changed since the previous call.
2804  *
2805  * If (p1) happens while the event is active, we restart it to force (p2).
2806  *
2807  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2808  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2809  *     ioctl;
2810  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2811  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2812  *     for reading;
2813  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2814  *     of exec.
2815  */
2816 void perf_event_addr_filters_sync(struct perf_event *event)
2817 {
2818         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2819
2820         if (!has_addr_filter(event))
2821                 return;
2822
2823         raw_spin_lock(&ifh->lock);
2824         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2825                 event->pmu->addr_filters_sync(event);
2826                 event->hw.addr_filters_gen = event->addr_filters_gen;
2827         }
2828         raw_spin_unlock(&ifh->lock);
2829 }
2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2831
2832 static int _perf_event_refresh(struct perf_event *event, int refresh)
2833 {
2834         /*
2835          * not supported on inherited events
2836          */
2837         if (event->attr.inherit || !is_sampling_event(event))
2838                 return -EINVAL;
2839
2840         atomic_add(refresh, &event->event_limit);
2841         _perf_event_enable(event);
2842
2843         return 0;
2844 }
2845
2846 /*
2847  * See perf_event_disable()
2848  */
2849 int perf_event_refresh(struct perf_event *event, int refresh)
2850 {
2851         struct perf_event_context *ctx;
2852         int ret;
2853
2854         ctx = perf_event_ctx_lock(event);
2855         ret = _perf_event_refresh(event, refresh);
2856         perf_event_ctx_unlock(event, ctx);
2857
2858         return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(perf_event_refresh);
2861
2862 static int perf_event_modify_breakpoint(struct perf_event *bp,
2863                                          struct perf_event_attr *attr)
2864 {
2865         int err;
2866
2867         _perf_event_disable(bp);
2868
2869         err = modify_user_hw_breakpoint_check(bp, attr, true);
2870
2871         if (!bp->attr.disabled)
2872                 _perf_event_enable(bp);
2873
2874         return err;
2875 }
2876
2877 static int perf_event_modify_attr(struct perf_event *event,
2878                                   struct perf_event_attr *attr)
2879 {
2880         if (event->attr.type != attr->type)
2881                 return -EINVAL;
2882
2883         switch (event->attr.type) {
2884         case PERF_TYPE_BREAKPOINT:
2885                 return perf_event_modify_breakpoint(event, attr);
2886         default:
2887                 /* Place holder for future additions. */
2888                 return -EOPNOTSUPP;
2889         }
2890 }
2891
2892 static void ctx_sched_out(struct perf_event_context *ctx,
2893                           struct perf_cpu_context *cpuctx,
2894                           enum event_type_t event_type)
2895 {
2896         struct perf_event *event, *tmp;
2897         int is_active = ctx->is_active;
2898
2899         lockdep_assert_held(&ctx->lock);
2900
2901         if (likely(!ctx->nr_events)) {
2902                 /*
2903                  * See __perf_remove_from_context().
2904                  */
2905                 WARN_ON_ONCE(ctx->is_active);
2906                 if (ctx->task)
2907                         WARN_ON_ONCE(cpuctx->task_ctx);
2908                 return;
2909         }
2910
2911         ctx->is_active &= ~event_type;
2912         if (!(ctx->is_active & EVENT_ALL))
2913                 ctx->is_active = 0;
2914
2915         if (ctx->task) {
2916                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2917                 if (!ctx->is_active)
2918                         cpuctx->task_ctx = NULL;
2919         }
2920
2921         /*
2922          * Always update time if it was set; not only when it changes.
2923          * Otherwise we can 'forget' to update time for any but the last
2924          * context we sched out. For example:
2925          *
2926          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2927          *   ctx_sched_out(.event_type = EVENT_PINNED)
2928          *
2929          * would only update time for the pinned events.
2930          */
2931         if (is_active & EVENT_TIME) {
2932                 /* update (and stop) ctx time */
2933                 update_context_time(ctx);
2934                 update_cgrp_time_from_cpuctx(cpuctx);
2935         }
2936
2937         is_active ^= ctx->is_active; /* changed bits */
2938
2939         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2940                 return;
2941
2942         perf_pmu_disable(ctx->pmu);
2943         if (is_active & EVENT_PINNED) {
2944                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2945                         group_sched_out(event, cpuctx, ctx);
2946         }
2947
2948         if (is_active & EVENT_FLEXIBLE) {
2949                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2950                         group_sched_out(event, cpuctx, ctx);
2951         }
2952         perf_pmu_enable(ctx->pmu);
2953 }
2954
2955 /*
2956  * Test whether two contexts are equivalent, i.e. whether they have both been
2957  * cloned from the same version of the same context.
2958  *
2959  * Equivalence is measured using a generation number in the context that is
2960  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2961  * and list_del_event().
2962  */
2963 static int context_equiv(struct perf_event_context *ctx1,
2964                          struct perf_event_context *ctx2)
2965 {
2966         lockdep_assert_held(&ctx1->lock);
2967         lockdep_assert_held(&ctx2->lock);
2968
2969         /* Pinning disables the swap optimization */
2970         if (ctx1->pin_count || ctx2->pin_count)
2971                 return 0;
2972
2973         /* If ctx1 is the parent of ctx2 */
2974         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2975                 return 1;
2976
2977         /* If ctx2 is the parent of ctx1 */
2978         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2979                 return 1;
2980
2981         /*
2982          * If ctx1 and ctx2 have the same parent; we flatten the parent
2983          * hierarchy, see perf_event_init_context().
2984          */
2985         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2986                         ctx1->parent_gen == ctx2->parent_gen)
2987                 return 1;
2988
2989         /* Unmatched */
2990         return 0;
2991 }
2992
2993 static void __perf_event_sync_stat(struct perf_event *event,
2994                                      struct perf_event *next_event)
2995 {
2996         u64 value;
2997
2998         if (!event->attr.inherit_stat)
2999                 return;
3000
3001         /*
3002          * Update the event value, we cannot use perf_event_read()
3003          * because we're in the middle of a context switch and have IRQs
3004          * disabled, which upsets smp_call_function_single(), however
3005          * we know the event must be on the current CPU, therefore we
3006          * don't need to use it.
3007          */
3008         if (event->state == PERF_EVENT_STATE_ACTIVE)
3009                 event->pmu->read(event);
3010
3011         perf_event_update_time(event);
3012
3013         /*
3014          * In order to keep per-task stats reliable we need to flip the event
3015          * values when we flip the contexts.
3016          */
3017         value = local64_read(&next_event->count);
3018         value = local64_xchg(&event->count, value);
3019         local64_set(&next_event->count, value);
3020
3021         swap(event->total_time_enabled, next_event->total_time_enabled);
3022         swap(event->total_time_running, next_event->total_time_running);
3023
3024         /*
3025          * Since we swizzled the values, update the user visible data too.
3026          */
3027         perf_event_update_userpage(event);
3028         perf_event_update_userpage(next_event);
3029 }
3030
3031 static void perf_event_sync_stat(struct perf_event_context *ctx,
3032                                    struct perf_event_context *next_ctx)
3033 {
3034         struct perf_event *event, *next_event;
3035
3036         if (!ctx->nr_stat)
3037                 return;
3038
3039         update_context_time(ctx);
3040
3041         event = list_first_entry(&ctx->event_list,
3042                                    struct perf_event, event_entry);
3043
3044         next_event = list_first_entry(&next_ctx->event_list,
3045                                         struct perf_event, event_entry);
3046
3047         while (&event->event_entry != &ctx->event_list &&
3048                &next_event->event_entry != &next_ctx->event_list) {
3049
3050                 __perf_event_sync_stat(event, next_event);
3051
3052                 event = list_next_entry(event, event_entry);
3053                 next_event = list_next_entry(next_event, event_entry);
3054         }
3055 }
3056
3057 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3058                                          struct task_struct *next)
3059 {
3060         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3061         struct perf_event_context *next_ctx;
3062         struct perf_event_context *parent, *next_parent;
3063         struct perf_cpu_context *cpuctx;
3064         int do_switch = 1;
3065
3066         if (likely(!ctx))
3067                 return;
3068
3069         cpuctx = __get_cpu_context(ctx);
3070         if (!cpuctx->task_ctx)
3071                 return;
3072
3073         rcu_read_lock();
3074         next_ctx = next->perf_event_ctxp[ctxn];
3075         if (!next_ctx)
3076                 goto unlock;
3077
3078         parent = rcu_dereference(ctx->parent_ctx);
3079         next_parent = rcu_dereference(next_ctx->parent_ctx);
3080
3081         /* If neither context have a parent context; they cannot be clones. */
3082         if (!parent && !next_parent)
3083                 goto unlock;
3084
3085         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3086                 /*
3087                  * Looks like the two contexts are clones, so we might be
3088                  * able to optimize the context switch.  We lock both
3089                  * contexts and check that they are clones under the
3090                  * lock (including re-checking that neither has been
3091                  * uncloned in the meantime).  It doesn't matter which
3092                  * order we take the locks because no other cpu could
3093                  * be trying to lock both of these tasks.
3094                  */
3095                 raw_spin_lock(&ctx->lock);
3096                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3097                 if (context_equiv(ctx, next_ctx)) {
3098                         WRITE_ONCE(ctx->task, next);
3099                         WRITE_ONCE(next_ctx->task, task);
3100
3101                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3102
3103                         /*
3104                          * RCU_INIT_POINTER here is safe because we've not
3105                          * modified the ctx and the above modification of
3106                          * ctx->task and ctx->task_ctx_data are immaterial
3107                          * since those values are always verified under
3108                          * ctx->lock which we're now holding.
3109                          */
3110                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3111                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3112
3113                         do_switch = 0;
3114
3115                         perf_event_sync_stat(ctx, next_ctx);
3116                 }
3117                 raw_spin_unlock(&next_ctx->lock);
3118                 raw_spin_unlock(&ctx->lock);
3119         }
3120 unlock:
3121         rcu_read_unlock();
3122
3123         if (do_switch) {
3124                 raw_spin_lock(&ctx->lock);
3125                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3126                 raw_spin_unlock(&ctx->lock);
3127         }
3128 }
3129
3130 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3131
3132 void perf_sched_cb_dec(struct pmu *pmu)
3133 {
3134         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3135
3136         this_cpu_dec(perf_sched_cb_usages);
3137
3138         if (!--cpuctx->sched_cb_usage)
3139                 list_del(&cpuctx->sched_cb_entry);
3140 }
3141
3142
3143 void perf_sched_cb_inc(struct pmu *pmu)
3144 {
3145         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3146
3147         if (!cpuctx->sched_cb_usage++)
3148                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3149
3150         this_cpu_inc(perf_sched_cb_usages);
3151 }
3152
3153 /*
3154  * This function provides the context switch callback to the lower code
3155  * layer. It is invoked ONLY when the context switch callback is enabled.
3156  *
3157  * This callback is relevant even to per-cpu events; for example multi event
3158  * PEBS requires this to provide PID/TID information. This requires we flush
3159  * all queued PEBS records before we context switch to a new task.
3160  */
3161 static void perf_pmu_sched_task(struct task_struct *prev,
3162                                 struct task_struct *next,
3163                                 bool sched_in)
3164 {
3165         struct perf_cpu_context *cpuctx;
3166         struct pmu *pmu;
3167
3168         if (prev == next)
3169                 return;
3170
3171         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3172                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3173
3174                 if (WARN_ON_ONCE(!pmu->sched_task))
3175                         continue;
3176
3177                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3178                 perf_pmu_disable(pmu);
3179
3180                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3181
3182                 perf_pmu_enable(pmu);
3183                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3184         }
3185 }
3186
3187 static void perf_event_switch(struct task_struct *task,
3188                               struct task_struct *next_prev, bool sched_in);
3189
3190 #define for_each_task_context_nr(ctxn)                                  \
3191         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3192
3193 /*
3194  * Called from scheduler to remove the events of the current task,
3195  * with interrupts disabled.
3196  *
3197  * We stop each event and update the event value in event->count.
3198  *
3199  * This does not protect us against NMI, but disable()
3200  * sets the disabled bit in the control field of event _before_
3201  * accessing the event control register. If a NMI hits, then it will
3202  * not restart the event.
3203  */
3204 void __perf_event_task_sched_out(struct task_struct *task,
3205                                  struct task_struct *next)
3206 {
3207         int ctxn;
3208
3209         if (__this_cpu_read(perf_sched_cb_usages))
3210                 perf_pmu_sched_task(task, next, false);
3211
3212         if (atomic_read(&nr_switch_events))
3213                 perf_event_switch(task, next, false);
3214
3215         for_each_task_context_nr(ctxn)
3216                 perf_event_context_sched_out(task, ctxn, next);
3217
3218         /*
3219          * if cgroup events exist on this CPU, then we need
3220          * to check if we have to switch out PMU state.
3221          * cgroup event are system-wide mode only
3222          */
3223         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3224                 perf_cgroup_sched_out(task, next);
3225 }
3226
3227 /*
3228  * Called with IRQs disabled
3229  */
3230 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3231                               enum event_type_t event_type)
3232 {
3233         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3234 }
3235
3236 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3237                               int (*func)(struct perf_event *, void *), void *data)
3238 {
3239         struct perf_event **evt, *evt1, *evt2;
3240         int ret;
3241
3242         evt1 = perf_event_groups_first(groups, -1);
3243         evt2 = perf_event_groups_first(groups, cpu);
3244
3245         while (evt1 || evt2) {
3246                 if (evt1 && evt2) {
3247                         if (evt1->group_index < evt2->group_index)
3248                                 evt = &evt1;
3249                         else
3250                                 evt = &evt2;
3251                 } else if (evt1) {
3252                         evt = &evt1;
3253                 } else {
3254                         evt = &evt2;
3255                 }
3256
3257                 ret = func(*evt, data);
3258                 if (ret)
3259                         return ret;
3260
3261                 *evt = perf_event_groups_next(*evt);
3262         }
3263
3264         return 0;
3265 }
3266
3267 struct sched_in_data {
3268         struct perf_event_context *ctx;
3269         struct perf_cpu_context *cpuctx;
3270         int can_add_hw;
3271 };
3272
3273 static int pinned_sched_in(struct perf_event *event, void *data)
3274 {
3275         struct sched_in_data *sid = data;
3276
3277         if (event->state <= PERF_EVENT_STATE_OFF)
3278                 return 0;
3279
3280         if (!event_filter_match(event))
3281                 return 0;
3282
3283         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3284                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3285                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3286         }
3287
3288         /*
3289          * If this pinned group hasn't been scheduled,
3290          * put it in error state.
3291          */
3292         if (event->state == PERF_EVENT_STATE_INACTIVE)
3293                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3294
3295         return 0;
3296 }
3297
3298 static int flexible_sched_in(struct perf_event *event, void *data)
3299 {
3300         struct sched_in_data *sid = data;
3301
3302         if (event->state <= PERF_EVENT_STATE_OFF)
3303                 return 0;
3304
3305         if (!event_filter_match(event))
3306                 return 0;
3307
3308         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3309                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3310                         list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3311                 else
3312                         sid->can_add_hw = 0;
3313         }
3314
3315         return 0;
3316 }
3317
3318 static void
3319 ctx_pinned_sched_in(struct perf_event_context *ctx,
3320                     struct perf_cpu_context *cpuctx)
3321 {
3322         struct sched_in_data sid = {
3323                 .ctx = ctx,
3324                 .cpuctx = cpuctx,
3325                 .can_add_hw = 1,
3326         };
3327
3328         visit_groups_merge(&ctx->pinned_groups,
3329                            smp_processor_id(),
3330                            pinned_sched_in, &sid);
3331 }
3332
3333 static void
3334 ctx_flexible_sched_in(struct perf_event_context *ctx,
3335                       struct perf_cpu_context *cpuctx)
3336 {
3337         struct sched_in_data sid = {
3338                 .ctx = ctx,
3339                 .cpuctx = cpuctx,
3340                 .can_add_hw = 1,
3341         };
3342
3343         visit_groups_merge(&ctx->flexible_groups,
3344                            smp_processor_id(),
3345                            flexible_sched_in, &sid);
3346 }
3347
3348 static void
3349 ctx_sched_in(struct perf_event_context *ctx,
3350              struct perf_cpu_context *cpuctx,
3351              enum event_type_t event_type,
3352              struct task_struct *task)
3353 {
3354         int is_active = ctx->is_active;
3355         u64 now;
3356
3357         lockdep_assert_held(&ctx->lock);
3358
3359         if (likely(!ctx->nr_events))
3360                 return;
3361
3362         ctx->is_active |= (event_type | EVENT_TIME);
3363         if (ctx->task) {
3364                 if (!is_active)
3365                         cpuctx->task_ctx = ctx;
3366                 else
3367                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3368         }
3369
3370         is_active ^= ctx->is_active; /* changed bits */
3371
3372         if (is_active & EVENT_TIME) {
3373                 /* start ctx time */
3374                 now = perf_clock();
3375                 ctx->timestamp = now;
3376                 perf_cgroup_set_timestamp(task, ctx);
3377         }
3378
3379         /*
3380          * First go through the list and put on any pinned groups
3381          * in order to give them the best chance of going on.
3382          */
3383         if (is_active & EVENT_PINNED)
3384                 ctx_pinned_sched_in(ctx, cpuctx);
3385
3386         /* Then walk through the lower prio flexible groups */
3387         if (is_active & EVENT_FLEXIBLE)
3388                 ctx_flexible_sched_in(ctx, cpuctx);
3389 }
3390
3391 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3392                              enum event_type_t event_type,
3393                              struct task_struct *task)
3394 {
3395         struct perf_event_context *ctx = &cpuctx->ctx;
3396
3397         ctx_sched_in(ctx, cpuctx, event_type, task);
3398 }
3399
3400 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3401                                         struct task_struct *task)
3402 {
3403         struct perf_cpu_context *cpuctx;
3404
3405         cpuctx = __get_cpu_context(ctx);
3406         if (cpuctx->task_ctx == ctx)
3407                 return;
3408
3409         perf_ctx_lock(cpuctx, ctx);
3410         /*
3411          * We must check ctx->nr_events while holding ctx->lock, such
3412          * that we serialize against perf_install_in_context().
3413          */
3414         if (!ctx->nr_events)
3415                 goto unlock;
3416
3417         perf_pmu_disable(ctx->pmu);
3418         /*
3419          * We want to keep the following priority order:
3420          * cpu pinned (that don't need to move), task pinned,
3421          * cpu flexible, task flexible.
3422          *
3423          * However, if task's ctx is not carrying any pinned
3424          * events, no need to flip the cpuctx's events around.
3425          */
3426         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3427                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3428         perf_event_sched_in(cpuctx, ctx, task);
3429         perf_pmu_enable(ctx->pmu);
3430
3431 unlock:
3432         perf_ctx_unlock(cpuctx, ctx);
3433 }
3434
3435 /*
3436  * Called from scheduler to add the events of the current task
3437  * with interrupts disabled.
3438  *
3439  * We restore the event value and then enable it.
3440  *
3441  * This does not protect us against NMI, but enable()
3442  * sets the enabled bit in the control field of event _before_
3443  * accessing the event control register. If a NMI hits, then it will
3444  * keep the event running.
3445  */
3446 void __perf_event_task_sched_in(struct task_struct *prev,
3447                                 struct task_struct *task)
3448 {
3449         struct perf_event_context *ctx;
3450         int ctxn;
3451
3452         /*
3453          * If cgroup events exist on this CPU, then we need to check if we have
3454          * to switch in PMU state; cgroup event are system-wide mode only.
3455          *
3456          * Since cgroup events are CPU events, we must schedule these in before
3457          * we schedule in the task events.
3458          */
3459         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3460                 perf_cgroup_sched_in(prev, task);
3461
3462         for_each_task_context_nr(ctxn) {
3463                 ctx = task->perf_event_ctxp[ctxn];
3464                 if (likely(!ctx))
3465                         continue;
3466
3467                 perf_event_context_sched_in(ctx, task);
3468         }
3469
3470         if (atomic_read(&nr_switch_events))
3471                 perf_event_switch(task, prev, true);
3472
3473         if (__this_cpu_read(perf_sched_cb_usages))
3474                 perf_pmu_sched_task(prev, task, true);
3475 }
3476
3477 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3478 {
3479         u64 frequency = event->attr.sample_freq;
3480         u64 sec = NSEC_PER_SEC;
3481         u64 divisor, dividend;
3482
3483         int count_fls, nsec_fls, frequency_fls, sec_fls;
3484
3485         count_fls = fls64(count);
3486         nsec_fls = fls64(nsec);
3487         frequency_fls = fls64(frequency);
3488         sec_fls = 30;
3489
3490         /*
3491          * We got @count in @nsec, with a target of sample_freq HZ
3492          * the target period becomes:
3493          *
3494          *             @count * 10^9
3495          * period = -------------------
3496          *          @nsec * sample_freq
3497          *
3498          */
3499
3500         /*
3501          * Reduce accuracy by one bit such that @a and @b converge
3502          * to a similar magnitude.
3503          */
3504 #define REDUCE_FLS(a, b)                \
3505 do {                                    \
3506         if (a##_fls > b##_fls) {        \
3507                 a >>= 1;                \
3508                 a##_fls--;              \
3509         } else {                        \
3510                 b >>= 1;                \
3511                 b##_fls--;              \
3512         }                               \
3513 } while (0)
3514
3515         /*
3516          * Reduce accuracy until either term fits in a u64, then proceed with
3517          * the other, so that finally we can do a u64/u64 division.
3518          */
3519         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3520                 REDUCE_FLS(nsec, frequency);
3521                 REDUCE_FLS(sec, count);
3522         }
3523
3524         if (count_fls + sec_fls > 64) {
3525                 divisor = nsec * frequency;
3526
3527                 while (count_fls + sec_fls > 64) {
3528                         REDUCE_FLS(count, sec);
3529                         divisor >>= 1;
3530                 }
3531
3532                 dividend = count * sec;
3533         } else {
3534                 dividend = count * sec;
3535
3536                 while (nsec_fls + frequency_fls > 64) {
3537                         REDUCE_FLS(nsec, frequency);
3538                         dividend >>= 1;
3539                 }
3540
3541                 divisor = nsec * frequency;
3542         }
3543
3544         if (!divisor)
3545                 return dividend;
3546
3547         return div64_u64(dividend, divisor);
3548 }
3549
3550 static DEFINE_PER_CPU(int, perf_throttled_count);
3551 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3552
3553 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3554 {
3555         struct hw_perf_event *hwc = &event->hw;
3556         s64 period, sample_period;
3557         s64 delta;
3558
3559         period = perf_calculate_period(event, nsec, count);
3560
3561         delta = (s64)(period - hwc->sample_period);
3562         delta = (delta + 7) / 8; /* low pass filter */
3563
3564         sample_period = hwc->sample_period + delta;
3565
3566         if (!sample_period)
3567                 sample_period = 1;
3568
3569         hwc->sample_period = sample_period;
3570
3571         if (local64_read(&hwc->period_left) > 8*sample_period) {
3572                 if (disable)
3573                         event->pmu->stop(event, PERF_EF_UPDATE);
3574
3575                 local64_set(&hwc->period_left, 0);
3576
3577                 if (disable)
3578                         event->pmu->start(event, PERF_EF_RELOAD);
3579         }
3580 }
3581
3582 /*
3583  * combine freq adjustment with unthrottling to avoid two passes over the
3584  * events. At the same time, make sure, having freq events does not change
3585  * the rate of unthrottling as that would introduce bias.
3586  */
3587 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3588                                            int needs_unthr)
3589 {
3590         struct perf_event *event;
3591         struct hw_perf_event *hwc;
3592         u64 now, period = TICK_NSEC;
3593         s64 delta;
3594
3595         /*
3596          * only need to iterate over all events iff:
3597          * - context have events in frequency mode (needs freq adjust)
3598          * - there are events to unthrottle on this cpu
3599          */
3600         if (!(ctx->nr_freq || needs_unthr))
3601                 return;
3602
3603         raw_spin_lock(&ctx->lock);
3604         perf_pmu_disable(ctx->pmu);
3605
3606         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3607                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3608                         continue;
3609
3610                 if (!event_filter_match(event))
3611                         continue;
3612
3613                 perf_pmu_disable(event->pmu);
3614
3615                 hwc = &event->hw;
3616
3617                 if (hwc->interrupts == MAX_INTERRUPTS) {
3618                         hwc->interrupts = 0;
3619                         perf_log_throttle(event, 1);
3620                         event->pmu->start(event, 0);
3621                 }
3622
3623                 if (!event->attr.freq || !event->attr.sample_freq)
3624                         goto next;
3625
3626                 /*
3627                  * stop the event and update event->count
3628                  */
3629                 event->pmu->stop(event, PERF_EF_UPDATE);
3630
3631                 now = local64_read(&event->count);
3632                 delta = now - hwc->freq_count_stamp;
3633                 hwc->freq_count_stamp = now;
3634
3635                 /*
3636                  * restart the event
3637                  * reload only if value has changed
3638                  * we have stopped the event so tell that
3639                  * to perf_adjust_period() to avoid stopping it
3640                  * twice.
3641                  */
3642                 if (delta > 0)
3643                         perf_adjust_period(event, period, delta, false);
3644
3645                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3646         next:
3647                 perf_pmu_enable(event->pmu);
3648         }
3649
3650         perf_pmu_enable(ctx->pmu);
3651         raw_spin_unlock(&ctx->lock);
3652 }
3653
3654 /*
3655  * Move @event to the tail of the @ctx's elegible events.
3656  */
3657 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3658 {
3659         /*
3660          * Rotate the first entry last of non-pinned groups. Rotation might be
3661          * disabled by the inheritance code.
3662          */
3663         if (ctx->rotate_disable)
3664                 return;
3665
3666         perf_event_groups_delete(&ctx->flexible_groups, event);
3667         perf_event_groups_insert(&ctx->flexible_groups, event);
3668 }
3669
3670 static inline struct perf_event *
3671 ctx_first_active(struct perf_event_context *ctx)
3672 {
3673         return list_first_entry_or_null(&ctx->flexible_active,
3674                                         struct perf_event, active_list);
3675 }
3676
3677 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3678 {
3679         struct perf_event *cpu_event = NULL, *task_event = NULL;
3680         bool cpu_rotate = false, task_rotate = false;
3681         struct perf_event_context *ctx = NULL;
3682
3683         /*
3684          * Since we run this from IRQ context, nobody can install new
3685          * events, thus the event count values are stable.
3686          */
3687
3688         if (cpuctx->ctx.nr_events) {
3689                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3690                         cpu_rotate = true;
3691         }
3692
3693         ctx = cpuctx->task_ctx;
3694         if (ctx && ctx->nr_events) {
3695                 if (ctx->nr_events != ctx->nr_active)
3696                         task_rotate = true;
3697         }
3698
3699         if (!(cpu_rotate || task_rotate))
3700                 return false;
3701
3702         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3703         perf_pmu_disable(cpuctx->ctx.pmu);
3704
3705         if (task_rotate)
3706                 task_event = ctx_first_active(ctx);
3707         if (cpu_rotate)
3708                 cpu_event = ctx_first_active(&cpuctx->ctx);
3709
3710         /*
3711          * As per the order given at ctx_resched() first 'pop' task flexible
3712          * and then, if needed CPU flexible.
3713          */
3714         if (task_event || (ctx && cpu_event))
3715                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3716         if (cpu_event)
3717                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3718
3719         if (task_event)
3720                 rotate_ctx(ctx, task_event);
3721         if (cpu_event)
3722                 rotate_ctx(&cpuctx->ctx, cpu_event);
3723
3724         perf_event_sched_in(cpuctx, ctx, current);
3725
3726         perf_pmu_enable(cpuctx->ctx.pmu);
3727         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3728
3729         return true;
3730 }
3731
3732 void perf_event_task_tick(void)
3733 {
3734         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3735         struct perf_event_context *ctx, *tmp;
3736         int throttled;
3737
3738         lockdep_assert_irqs_disabled();
3739
3740         __this_cpu_inc(perf_throttled_seq);
3741         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3742         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3743
3744         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3745                 perf_adjust_freq_unthr_context(ctx, throttled);
3746 }
3747
3748 static int event_enable_on_exec(struct perf_event *event,
3749                                 struct perf_event_context *ctx)
3750 {
3751         if (!event->attr.enable_on_exec)
3752                 return 0;
3753
3754         event->attr.enable_on_exec = 0;
3755         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3756                 return 0;
3757
3758         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3759
3760         return 1;
3761 }
3762
3763 /*
3764  * Enable all of a task's events that have been marked enable-on-exec.
3765  * This expects task == current.
3766  */
3767 static void perf_event_enable_on_exec(int ctxn)
3768 {
3769         struct perf_event_context *ctx, *clone_ctx = NULL;
3770         enum event_type_t event_type = 0;
3771         struct perf_cpu_context *cpuctx;
3772         struct perf_event *event;
3773         unsigned long flags;
3774         int enabled = 0;
3775
3776         local_irq_save(flags);
3777         ctx = current->perf_event_ctxp[ctxn];
3778         if (!ctx || !ctx->nr_events)
3779                 goto out;
3780
3781         cpuctx = __get_cpu_context(ctx);
3782         perf_ctx_lock(cpuctx, ctx);
3783         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3784         list_for_each_entry(event, &ctx->event_list, event_entry) {
3785                 enabled |= event_enable_on_exec(event, ctx);
3786                 event_type |= get_event_type(event);
3787         }
3788
3789         /*
3790          * Unclone and reschedule this context if we enabled any event.
3791          */
3792         if (enabled) {
3793                 clone_ctx = unclone_ctx(ctx);
3794                 ctx_resched(cpuctx, ctx, event_type);
3795         } else {
3796                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3797         }
3798         perf_ctx_unlock(cpuctx, ctx);
3799
3800 out:
3801         local_irq_restore(flags);
3802
3803         if (clone_ctx)
3804                 put_ctx(clone_ctx);
3805 }
3806
3807 struct perf_read_data {
3808         struct perf_event *event;
3809         bool group;
3810         int ret;
3811 };
3812
3813 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3814 {
3815         u16 local_pkg, event_pkg;
3816
3817         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3818                 int local_cpu = smp_processor_id();
3819
3820                 event_pkg = topology_physical_package_id(event_cpu);
3821                 local_pkg = topology_physical_package_id(local_cpu);
3822
3823                 if (event_pkg == local_pkg)
3824                         return local_cpu;
3825         }
3826
3827         return event_cpu;
3828 }
3829
3830 /*
3831  * Cross CPU call to read the hardware event
3832  */
3833 static void __perf_event_read(void *info)
3834 {
3835         struct perf_read_data *data = info;
3836         struct perf_event *sub, *event = data->event;
3837         struct perf_event_context *ctx = event->ctx;
3838         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3839         struct pmu *pmu = event->pmu;
3840
3841         /*
3842          * If this is a task context, we need to check whether it is
3843          * the current task context of this cpu.  If not it has been
3844          * scheduled out before the smp call arrived.  In that case
3845          * event->count would have been updated to a recent sample
3846          * when the event was scheduled out.
3847          */
3848         if (ctx->task && cpuctx->task_ctx != ctx)
3849                 return;
3850
3851         raw_spin_lock(&ctx->lock);
3852         if (ctx->is_active & EVENT_TIME) {
3853                 update_context_time(ctx);
3854                 update_cgrp_time_from_event(event);
3855         }
3856
3857         perf_event_update_time(event);
3858         if (data->group)
3859                 perf_event_update_sibling_time(event);
3860
3861         if (event->state != PERF_EVENT_STATE_ACTIVE)
3862                 goto unlock;
3863
3864         if (!data->group) {
3865                 pmu->read(event);
3866                 data->ret = 0;
3867                 goto unlock;
3868         }
3869
3870         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3871
3872         pmu->read(event);
3873
3874         for_each_sibling_event(sub, event) {
3875                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3876                         /*
3877                          * Use sibling's PMU rather than @event's since
3878                          * sibling could be on different (eg: software) PMU.
3879                          */
3880                         sub->pmu->read(sub);
3881                 }
3882         }
3883
3884         data->ret = pmu->commit_txn(pmu);
3885
3886 unlock:
3887         raw_spin_unlock(&ctx->lock);
3888 }
3889
3890 static inline u64 perf_event_count(struct perf_event *event)
3891 {
3892         return local64_read(&event->count) + atomic64_read(&event->child_count);
3893 }
3894
3895 /*
3896  * NMI-safe method to read a local event, that is an event that
3897  * is:
3898  *   - either for the current task, or for this CPU
3899  *   - does not have inherit set, for inherited task events
3900  *     will not be local and we cannot read them atomically
3901  *   - must not have a pmu::count method
3902  */
3903 int perf_event_read_local(struct perf_event *event, u64 *value,
3904                           u64 *enabled, u64 *running)
3905 {
3906         unsigned long flags;
3907         int ret = 0;
3908
3909         /*
3910          * Disabling interrupts avoids all counter scheduling (context
3911          * switches, timer based rotation and IPIs).
3912          */
3913         local_irq_save(flags);
3914
3915         /*
3916          * It must not be an event with inherit set, we cannot read
3917          * all child counters from atomic context.
3918          */
3919         if (event->attr.inherit) {
3920                 ret = -EOPNOTSUPP;
3921                 goto out;
3922         }
3923
3924         /* If this is a per-task event, it must be for current */
3925         if ((event->attach_state & PERF_ATTACH_TASK) &&
3926             event->hw.target != current) {
3927                 ret = -EINVAL;
3928                 goto out;
3929         }
3930
3931         /* If this is a per-CPU event, it must be for this CPU */
3932         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3933             event->cpu != smp_processor_id()) {
3934                 ret = -EINVAL;
3935                 goto out;
3936         }
3937
3938         /*
3939          * If the event is currently on this CPU, its either a per-task event,
3940          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3941          * oncpu == -1).
3942          */
3943         if (event->oncpu == smp_processor_id())
3944                 event->pmu->read(event);
3945
3946         *value = local64_read(&event->count);
3947         if (enabled || running) {
3948                 u64 now = event->shadow_ctx_time + perf_clock();
3949                 u64 __enabled, __running;
3950
3951                 __perf_update_times(event, now, &__enabled, &__running);
3952                 if (enabled)
3953                         *enabled = __enabled;
3954                 if (running)
3955                         *running = __running;
3956         }
3957 out:
3958         local_irq_restore(flags);
3959
3960         return ret;
3961 }
3962
3963 static int perf_event_read(struct perf_event *event, bool group)
3964 {
3965         enum perf_event_state state = READ_ONCE(event->state);
3966         int event_cpu, ret = 0;
3967
3968         /*
3969          * If event is enabled and currently active on a CPU, update the
3970          * value in the event structure:
3971          */
3972 again:
3973         if (state == PERF_EVENT_STATE_ACTIVE) {
3974                 struct perf_read_data data;
3975
3976                 /*
3977                  * Orders the ->state and ->oncpu loads such that if we see
3978                  * ACTIVE we must also see the right ->oncpu.
3979                  *
3980                  * Matches the smp_wmb() from event_sched_in().
3981                  */
3982                 smp_rmb();
3983
3984                 event_cpu = READ_ONCE(event->oncpu);
3985                 if ((unsigned)event_cpu >= nr_cpu_ids)
3986                         return 0;
3987
3988                 data = (struct perf_read_data){
3989                         .event = event,
3990                         .group = group,
3991                         .ret = 0,
3992                 };
3993
3994                 preempt_disable();
3995                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3996
3997                 /*
3998                  * Purposely ignore the smp_call_function_single() return
3999                  * value.
4000                  *
4001                  * If event_cpu isn't a valid CPU it means the event got
4002                  * scheduled out and that will have updated the event count.
4003                  *
4004                  * Therefore, either way, we'll have an up-to-date event count
4005                  * after this.
4006                  */
4007                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4008                 preempt_enable();
4009                 ret = data.ret;
4010
4011         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4012                 struct perf_event_context *ctx = event->ctx;
4013                 unsigned long flags;
4014
4015                 raw_spin_lock_irqsave(&ctx->lock, flags);
4016                 state = event->state;
4017                 if (state != PERF_EVENT_STATE_INACTIVE) {
4018                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4019                         goto again;
4020                 }
4021
4022                 /*
4023                  * May read while context is not active (e.g., thread is
4024                  * blocked), in that case we cannot update context time
4025                  */
4026                 if (ctx->is_active & EVENT_TIME) {
4027                         update_context_time(ctx);
4028                         update_cgrp_time_from_event(event);
4029                 }
4030
4031                 perf_event_update_time(event);
4032                 if (group)
4033                         perf_event_update_sibling_time(event);
4034                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4035         }
4036
4037         return ret;
4038 }
4039
4040 /*
4041  * Initialize the perf_event context in a task_struct:
4042  */
4043 static void __perf_event_init_context(struct perf_event_context *ctx)
4044 {
4045         raw_spin_lock_init(&ctx->lock);
4046         mutex_init(&ctx->mutex);
4047         INIT_LIST_HEAD(&ctx->active_ctx_list);
4048         perf_event_groups_init(&ctx->pinned_groups);
4049         perf_event_groups_init(&ctx->flexible_groups);
4050         INIT_LIST_HEAD(&ctx->event_list);
4051         INIT_LIST_HEAD(&ctx->pinned_active);
4052         INIT_LIST_HEAD(&ctx->flexible_active);
4053         atomic_set(&ctx->refcount, 1);
4054 }
4055
4056 static struct perf_event_context *
4057 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4058 {
4059         struct perf_event_context *ctx;
4060
4061         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4062         if (!ctx)
4063                 return NULL;
4064
4065         __perf_event_init_context(ctx);
4066         if (task) {
4067                 ctx->task = task;
4068                 get_task_struct(task);
4069         }
4070         ctx->pmu = pmu;
4071
4072         return ctx;
4073 }
4074
4075 static struct task_struct *
4076 find_lively_task_by_vpid(pid_t vpid)
4077 {
4078         struct task_struct *task;
4079
4080         rcu_read_lock();
4081         if (!vpid)
4082                 task = current;
4083         else
4084                 task = find_task_by_vpid(vpid);
4085         if (task)
4086                 get_task_struct(task);
4087         rcu_read_unlock();
4088
4089         if (!task)
4090                 return ERR_PTR(-ESRCH);
4091
4092         return task;
4093 }
4094
4095 /*
4096  * Returns a matching context with refcount and pincount.
4097  */
4098 static struct perf_event_context *
4099 find_get_context(struct pmu *pmu, struct task_struct *task,
4100                 struct perf_event *event)
4101 {
4102         struct perf_event_context *ctx, *clone_ctx = NULL;
4103         struct perf_cpu_context *cpuctx;
4104         void *task_ctx_data = NULL;
4105         unsigned long flags;
4106         int ctxn, err;
4107         int cpu = event->cpu;
4108
4109         if (!task) {
4110                 /* Must be root to operate on a CPU event: */
4111                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4112                         return ERR_PTR(-EACCES);
4113
4114                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4115                 ctx = &cpuctx->ctx;
4116                 get_ctx(ctx);
4117                 ++ctx->pin_count;
4118
4119                 return ctx;
4120         }
4121
4122         err = -EINVAL;
4123         ctxn = pmu->task_ctx_nr;
4124         if (ctxn < 0)
4125                 goto errout;
4126
4127         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4128                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4129                 if (!task_ctx_data) {
4130                         err = -ENOMEM;
4131                         goto errout;
4132                 }
4133         }
4134
4135 retry:
4136         ctx = perf_lock_task_context(task, ctxn, &flags);
4137         if (ctx) {
4138                 clone_ctx = unclone_ctx(ctx);
4139                 ++ctx->pin_count;
4140
4141                 if (task_ctx_data && !ctx->task_ctx_data) {
4142                         ctx->task_ctx_data = task_ctx_data;
4143                         task_ctx_data = NULL;
4144                 }
4145                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4146
4147                 if (clone_ctx)
4148                         put_ctx(clone_ctx);
4149         } else {
4150                 ctx = alloc_perf_context(pmu, task);
4151                 err = -ENOMEM;
4152                 if (!ctx)
4153                         goto errout;
4154
4155                 if (task_ctx_data) {
4156                         ctx->task_ctx_data = task_ctx_data;
4157                         task_ctx_data = NULL;
4158                 }
4159
4160                 err = 0;
4161                 mutex_lock(&task->perf_event_mutex);
4162                 /*
4163                  * If it has already passed perf_event_exit_task().
4164                  * we must see PF_EXITING, it takes this mutex too.
4165                  */
4166                 if (task->flags & PF_EXITING)
4167                         err = -ESRCH;
4168                 else if (task->perf_event_ctxp[ctxn])
4169                         err = -EAGAIN;
4170                 else {
4171                         get_ctx(ctx);
4172                         ++ctx->pin_count;
4173                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4174                 }
4175                 mutex_unlock(&task->perf_event_mutex);
4176
4177                 if (unlikely(err)) {
4178                         put_ctx(ctx);
4179
4180                         if (err == -EAGAIN)
4181                                 goto retry;
4182                         goto errout;
4183                 }
4184         }
4185
4186         kfree(task_ctx_data);
4187         return ctx;
4188
4189 errout:
4190         kfree(task_ctx_data);
4191         return ERR_PTR(err);
4192 }
4193
4194 static void perf_event_free_filter(struct perf_event *event);
4195 static void perf_event_free_bpf_prog(struct perf_event *event);
4196
4197 static void free_event_rcu(struct rcu_head *head)
4198 {
4199         struct perf_event *event;
4200
4201         event = container_of(head, struct perf_event, rcu_head);
4202         if (event->ns)
4203                 put_pid_ns(event->ns);
4204         perf_event_free_filter(event);
4205         kfree(event);
4206 }
4207
4208 static void ring_buffer_attach(struct perf_event *event,
4209                                struct ring_buffer *rb);
4210
4211 static void detach_sb_event(struct perf_event *event)
4212 {
4213         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4214
4215         raw_spin_lock(&pel->lock);
4216         list_del_rcu(&event->sb_list);
4217         raw_spin_unlock(&pel->lock);
4218 }
4219
4220 static bool is_sb_event(struct perf_event *event)
4221 {
4222         struct perf_event_attr *attr = &event->attr;
4223
4224         if (event->parent)
4225                 return false;
4226
4227         if (event->attach_state & PERF_ATTACH_TASK)
4228                 return false;
4229
4230         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4231             attr->comm || attr->comm_exec ||
4232             attr->task ||
4233             attr->context_switch)
4234                 return true;
4235         return false;
4236 }
4237
4238 static void unaccount_pmu_sb_event(struct perf_event *event)
4239 {
4240         if (is_sb_event(event))
4241                 detach_sb_event(event);
4242 }
4243
4244 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4245 {
4246         if (event->parent)
4247                 return;
4248
4249         if (is_cgroup_event(event))
4250                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4251 }
4252
4253 #ifdef CONFIG_NO_HZ_FULL
4254 static DEFINE_SPINLOCK(nr_freq_lock);
4255 #endif
4256
4257 static void unaccount_freq_event_nohz(void)
4258 {
4259 #ifdef CONFIG_NO_HZ_FULL
4260         spin_lock(&nr_freq_lock);
4261         if (atomic_dec_and_test(&nr_freq_events))
4262                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4263         spin_unlock(&nr_freq_lock);
4264 #endif
4265 }
4266
4267 static void unaccount_freq_event(void)
4268 {
4269         if (tick_nohz_full_enabled())
4270                 unaccount_freq_event_nohz();
4271         else
4272                 atomic_dec(&nr_freq_events);
4273 }
4274
4275 static void unaccount_event(struct perf_event *event)
4276 {
4277         bool dec = false;
4278
4279         if (event->parent)
4280                 return;
4281
4282         if (event->attach_state & PERF_ATTACH_TASK)
4283                 dec = true;
4284         if (event->attr.mmap || event->attr.mmap_data)
4285                 atomic_dec(&nr_mmap_events);
4286         if (event->attr.comm)
4287                 atomic_dec(&nr_comm_events);
4288         if (event->attr.namespaces)
4289                 atomic_dec(&nr_namespaces_events);
4290         if (event->attr.task)
4291                 atomic_dec(&nr_task_events);
4292         if (event->attr.freq)
4293                 unaccount_freq_event();
4294         if (event->attr.context_switch) {
4295                 dec = true;
4296                 atomic_dec(&nr_switch_events);
4297         }
4298         if (is_cgroup_event(event))
4299                 dec = true;
4300         if (has_branch_stack(event))
4301                 dec = true;
4302
4303         if (dec) {
4304                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4305                         schedule_delayed_work(&perf_sched_work, HZ);
4306         }
4307
4308         unaccount_event_cpu(event, event->cpu);
4309
4310         unaccount_pmu_sb_event(event);
4311 }
4312
4313 static void perf_sched_delayed(struct work_struct *work)
4314 {
4315         mutex_lock(&perf_sched_mutex);
4316         if (atomic_dec_and_test(&perf_sched_count))
4317                 static_branch_disable(&perf_sched_events);
4318         mutex_unlock(&perf_sched_mutex);
4319 }
4320
4321 /*
4322  * The following implement mutual exclusion of events on "exclusive" pmus
4323  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4324  * at a time, so we disallow creating events that might conflict, namely:
4325  *
4326  *  1) cpu-wide events in the presence of per-task events,
4327  *  2) per-task events in the presence of cpu-wide events,
4328  *  3) two matching events on the same context.
4329  *
4330  * The former two cases are handled in the allocation path (perf_event_alloc(),
4331  * _free_event()), the latter -- before the first perf_install_in_context().
4332  */
4333 static int exclusive_event_init(struct perf_event *event)
4334 {
4335         struct pmu *pmu = event->pmu;
4336
4337         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4338                 return 0;
4339
4340         /*
4341          * Prevent co-existence of per-task and cpu-wide events on the
4342          * same exclusive pmu.
4343          *
4344          * Negative pmu::exclusive_cnt means there are cpu-wide
4345          * events on this "exclusive" pmu, positive means there are
4346          * per-task events.
4347          *
4348          * Since this is called in perf_event_alloc() path, event::ctx
4349          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4350          * to mean "per-task event", because unlike other attach states it
4351          * never gets cleared.
4352          */
4353         if (event->attach_state & PERF_ATTACH_TASK) {
4354                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4355                         return -EBUSY;
4356         } else {
4357                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4358                         return -EBUSY;
4359         }
4360
4361         return 0;
4362 }
4363
4364 static void exclusive_event_destroy(struct perf_event *event)
4365 {
4366         struct pmu *pmu = event->pmu;
4367
4368         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4369                 return;
4370
4371         /* see comment in exclusive_event_init() */
4372         if (event->attach_state & PERF_ATTACH_TASK)
4373                 atomic_dec(&pmu->exclusive_cnt);
4374         else
4375                 atomic_inc(&pmu->exclusive_cnt);
4376 }
4377
4378 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4379 {
4380         if ((e1->pmu == e2->pmu) &&
4381             (e1->cpu == e2->cpu ||
4382              e1->cpu == -1 ||
4383              e2->cpu == -1))
4384                 return true;
4385         return false;
4386 }
4387
4388 /* Called under the same ctx::mutex as perf_install_in_context() */
4389 static bool exclusive_event_installable(struct perf_event *event,
4390                                         struct perf_event_context *ctx)
4391 {
4392         struct perf_event *iter_event;
4393         struct pmu *pmu = event->pmu;
4394
4395         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4396                 return true;
4397
4398         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4399                 if (exclusive_event_match(iter_event, event))
4400                         return false;
4401         }
4402
4403         return true;
4404 }
4405
4406 static void perf_addr_filters_splice(struct perf_event *event,
4407                                        struct list_head *head);
4408
4409 static void _free_event(struct perf_event *event)
4410 {
4411         irq_work_sync(&event->pending);
4412
4413         unaccount_event(event);
4414
4415         if (event->rb) {
4416                 /*
4417                  * Can happen when we close an event with re-directed output.
4418                  *
4419                  * Since we have a 0 refcount, perf_mmap_close() will skip
4420                  * over us; possibly making our ring_buffer_put() the last.
4421                  */
4422                 mutex_lock(&event->mmap_mutex);
4423                 ring_buffer_attach(event, NULL);
4424                 mutex_unlock(&event->mmap_mutex);
4425         }
4426
4427         if (is_cgroup_event(event))
4428                 perf_detach_cgroup(event);
4429
4430         if (!event->parent) {
4431                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4432                         put_callchain_buffers();
4433         }
4434
4435         perf_event_free_bpf_prog(event);
4436         perf_addr_filters_splice(event, NULL);
4437         kfree(event->addr_filters_offs);
4438
4439         if (event->destroy)
4440                 event->destroy(event);
4441
4442         if (event->ctx)
4443                 put_ctx(event->ctx);
4444
4445         if (event->hw.target)
4446                 put_task_struct(event->hw.target);
4447
4448         exclusive_event_destroy(event);
4449         module_put(event->pmu->module);
4450
4451         call_rcu(&event->rcu_head, free_event_rcu);
4452 }
4453
4454 /*
4455  * Used to free events which have a known refcount of 1, such as in error paths
4456  * where the event isn't exposed yet and inherited events.
4457  */
4458 static void free_event(struct perf_event *event)
4459 {
4460         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4461                                 "unexpected event refcount: %ld; ptr=%p\n",
4462                                 atomic_long_read(&event->refcount), event)) {
4463                 /* leak to avoid use-after-free */
4464                 return;
4465         }
4466
4467         _free_event(event);
4468 }
4469
4470 /*
4471  * Remove user event from the owner task.
4472  */
4473 static void perf_remove_from_owner(struct perf_event *event)
4474 {
4475         struct task_struct *owner;
4476
4477         rcu_read_lock();
4478         /*
4479          * Matches the smp_store_release() in perf_event_exit_task(). If we
4480          * observe !owner it means the list deletion is complete and we can
4481          * indeed free this event, otherwise we need to serialize on
4482          * owner->perf_event_mutex.
4483          */
4484         owner = READ_ONCE(event->owner);
4485         if (owner) {
4486                 /*
4487                  * Since delayed_put_task_struct() also drops the last
4488                  * task reference we can safely take a new reference
4489                  * while holding the rcu_read_lock().
4490                  */
4491                 get_task_struct(owner);
4492         }
4493         rcu_read_unlock();
4494
4495         if (owner) {
4496                 /*
4497                  * If we're here through perf_event_exit_task() we're already
4498                  * holding ctx->mutex which would be an inversion wrt. the
4499                  * normal lock order.
4500                  *
4501                  * However we can safely take this lock because its the child
4502                  * ctx->mutex.
4503                  */
4504                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4505
4506                 /*
4507                  * We have to re-check the event->owner field, if it is cleared
4508                  * we raced with perf_event_exit_task(), acquiring the mutex
4509                  * ensured they're done, and we can proceed with freeing the
4510                  * event.
4511                  */
4512                 if (event->owner) {
4513                         list_del_init(&event->owner_entry);
4514                         smp_store_release(&event->owner, NULL);
4515                 }
4516                 mutex_unlock(&owner->perf_event_mutex);
4517                 put_task_struct(owner);
4518         }
4519 }
4520
4521 static void put_event(struct perf_event *event)
4522 {
4523         if (!atomic_long_dec_and_test(&event->refcount))
4524                 return;
4525
4526         _free_event(event);
4527 }
4528
4529 /*
4530  * Kill an event dead; while event:refcount will preserve the event
4531  * object, it will not preserve its functionality. Once the last 'user'
4532  * gives up the object, we'll destroy the thing.
4533  */
4534 int perf_event_release_kernel(struct perf_event *event)
4535 {
4536         struct perf_event_context *ctx = event->ctx;
4537         struct perf_event *child, *tmp;
4538         LIST_HEAD(free_list);
4539
4540         /*
4541          * If we got here through err_file: fput(event_file); we will not have
4542          * attached to a context yet.
4543          */
4544         if (!ctx) {
4545                 WARN_ON_ONCE(event->attach_state &
4546                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4547                 goto no_ctx;
4548         }
4549
4550         if (!is_kernel_event(event))
4551                 perf_remove_from_owner(event);
4552
4553         ctx = perf_event_ctx_lock(event);
4554         WARN_ON_ONCE(ctx->parent_ctx);
4555         perf_remove_from_context(event, DETACH_GROUP);
4556
4557         raw_spin_lock_irq(&ctx->lock);
4558         /*
4559          * Mark this event as STATE_DEAD, there is no external reference to it
4560          * anymore.
4561          *
4562          * Anybody acquiring event->child_mutex after the below loop _must_
4563          * also see this, most importantly inherit_event() which will avoid
4564          * placing more children on the list.
4565          *
4566          * Thus this guarantees that we will in fact observe and kill _ALL_
4567          * child events.
4568          */
4569         event->state = PERF_EVENT_STATE_DEAD;
4570         raw_spin_unlock_irq(&ctx->lock);
4571
4572         perf_event_ctx_unlock(event, ctx);
4573
4574 again:
4575         mutex_lock(&event->child_mutex);
4576         list_for_each_entry(child, &event->child_list, child_list) {
4577
4578                 /*
4579                  * Cannot change, child events are not migrated, see the
4580                  * comment with perf_event_ctx_lock_nested().
4581                  */
4582                 ctx = READ_ONCE(child->ctx);
4583                 /*
4584                  * Since child_mutex nests inside ctx::mutex, we must jump
4585                  * through hoops. We start by grabbing a reference on the ctx.
4586                  *
4587                  * Since the event cannot get freed while we hold the
4588                  * child_mutex, the context must also exist and have a !0
4589                  * reference count.
4590                  */
4591                 get_ctx(ctx);
4592
4593                 /*
4594                  * Now that we have a ctx ref, we can drop child_mutex, and
4595                  * acquire ctx::mutex without fear of it going away. Then we
4596                  * can re-acquire child_mutex.
4597                  */
4598                 mutex_unlock(&event->child_mutex);
4599                 mutex_lock(&ctx->mutex);
4600                 mutex_lock(&event->child_mutex);
4601
4602                 /*
4603                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4604                  * state, if child is still the first entry, it didn't get freed
4605                  * and we can continue doing so.
4606                  */
4607                 tmp = list_first_entry_or_null(&event->child_list,
4608                                                struct perf_event, child_list);
4609                 if (tmp == child) {
4610                         perf_remove_from_context(child, DETACH_GROUP);
4611                         list_move(&child->child_list, &free_list);
4612                         /*
4613                          * This matches the refcount bump in inherit_event();
4614                          * this can't be the last reference.
4615                          */
4616                         put_event(event);
4617                 }
4618
4619                 mutex_unlock(&event->child_mutex);
4620                 mutex_unlock(&ctx->mutex);
4621                 put_ctx(ctx);
4622                 goto again;
4623         }
4624         mutex_unlock(&event->child_mutex);
4625
4626         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4627                 list_del(&child->child_list);
4628                 free_event(child);
4629         }
4630
4631 no_ctx:
4632         put_event(event); /* Must be the 'last' reference */
4633         return 0;
4634 }
4635 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4636
4637 /*
4638  * Called when the last reference to the file is gone.
4639  */
4640 static int perf_release(struct inode *inode, struct file *file)
4641 {
4642         perf_event_release_kernel(file->private_data);
4643         return 0;
4644 }
4645
4646 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4647 {
4648         struct perf_event *child;
4649         u64 total = 0;
4650
4651         *enabled = 0;
4652         *running = 0;
4653
4654         mutex_lock(&event->child_mutex);
4655
4656         (void)perf_event_read(event, false);
4657         total += perf_event_count(event);
4658
4659         *enabled += event->total_time_enabled +
4660                         atomic64_read(&event->child_total_time_enabled);
4661         *running += event->total_time_running +
4662                         atomic64_read(&event->child_total_time_running);
4663
4664         list_for_each_entry(child, &event->child_list, child_list) {
4665                 (void)perf_event_read(child, false);
4666                 total += perf_event_count(child);
4667                 *enabled += child->total_time_enabled;
4668                 *running += child->total_time_running;
4669         }
4670         mutex_unlock(&event->child_mutex);
4671
4672         return total;
4673 }
4674
4675 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4676 {
4677         struct perf_event_context *ctx;
4678         u64 count;
4679
4680         ctx = perf_event_ctx_lock(event);
4681         count = __perf_event_read_value(event, enabled, running);
4682         perf_event_ctx_unlock(event, ctx);
4683
4684         return count;
4685 }
4686 EXPORT_SYMBOL_GPL(perf_event_read_value);
4687
4688 static int __perf_read_group_add(struct perf_event *leader,
4689                                         u64 read_format, u64 *values)
4690 {
4691         struct perf_event_context *ctx = leader->ctx;
4692         struct perf_event *sub;
4693         unsigned long flags;
4694         int n = 1; /* skip @nr */
4695         int ret;
4696
4697         ret = perf_event_read(leader, true);
4698         if (ret)
4699                 return ret;
4700
4701         raw_spin_lock_irqsave(&ctx->lock, flags);
4702
4703         /*
4704          * Since we co-schedule groups, {enabled,running} times of siblings
4705          * will be identical to those of the leader, so we only publish one
4706          * set.
4707          */
4708         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4709                 values[n++] += leader->total_time_enabled +
4710                         atomic64_read(&leader->child_total_time_enabled);
4711         }
4712
4713         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4714                 values[n++] += leader->total_time_running +
4715                         atomic64_read(&leader->child_total_time_running);
4716         }
4717
4718         /*
4719          * Write {count,id} tuples for every sibling.
4720          */
4721         values[n++] += perf_event_count(leader);
4722         if (read_format & PERF_FORMAT_ID)
4723                 values[n++] = primary_event_id(leader);
4724
4725         for_each_sibling_event(sub, leader) {
4726                 values[n++] += perf_event_count(sub);
4727                 if (read_format & PERF_FORMAT_ID)
4728                         values[n++] = primary_event_id(sub);
4729         }
4730
4731         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4732         return 0;
4733 }
4734
4735 static int perf_read_group(struct perf_event *event,
4736                                    u64 read_format, char __user *buf)
4737 {
4738         struct perf_event *leader = event->group_leader, *child;
4739         struct perf_event_context *ctx = leader->ctx;
4740         int ret;
4741         u64 *values;
4742
4743         lockdep_assert_held(&ctx->mutex);
4744
4745         values = kzalloc(event->read_size, GFP_KERNEL);
4746         if (!values)
4747                 return -ENOMEM;
4748
4749         values[0] = 1 + leader->nr_siblings;
4750
4751         /*
4752          * By locking the child_mutex of the leader we effectively
4753          * lock the child list of all siblings.. XXX explain how.
4754          */
4755         mutex_lock(&leader->child_mutex);
4756
4757         ret = __perf_read_group_add(leader, read_format, values);
4758         if (ret)
4759                 goto unlock;
4760
4761         list_for_each_entry(child, &leader->child_list, child_list) {
4762                 ret = __perf_read_group_add(child, read_format, values);
4763                 if (ret)
4764                         goto unlock;
4765         }
4766
4767         mutex_unlock(&leader->child_mutex);
4768
4769         ret = event->read_size;
4770         if (copy_to_user(buf, values, event->read_size))
4771                 ret = -EFAULT;
4772         goto out;
4773
4774 unlock:
4775         mutex_unlock(&leader->child_mutex);
4776 out:
4777         kfree(values);
4778         return ret;
4779 }
4780
4781 static int perf_read_one(struct perf_event *event,
4782                                  u64 read_format, char __user *buf)
4783 {
4784         u64 enabled, running;
4785         u64 values[4];
4786         int n = 0;
4787
4788         values[n++] = __perf_event_read_value(event, &enabled, &running);
4789         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4790                 values[n++] = enabled;
4791         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4792                 values[n++] = running;
4793         if (read_format & PERF_FORMAT_ID)
4794                 values[n++] = primary_event_id(event);
4795
4796         if (copy_to_user(buf, values, n * sizeof(u64)))
4797                 return -EFAULT;
4798
4799         return n * sizeof(u64);
4800 }
4801
4802 static bool is_event_hup(struct perf_event *event)
4803 {
4804         bool no_children;
4805
4806         if (event->state > PERF_EVENT_STATE_EXIT)
4807                 return false;
4808
4809         mutex_lock(&event->child_mutex);
4810         no_children = list_empty(&event->child_list);
4811         mutex_unlock(&event->child_mutex);
4812         return no_children;
4813 }
4814
4815 /*
4816  * Read the performance event - simple non blocking version for now
4817  */
4818 static ssize_t
4819 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4820 {
4821         u64 read_format = event->attr.read_format;
4822         int ret;
4823
4824         /*
4825          * Return end-of-file for a read on an event that is in
4826          * error state (i.e. because it was pinned but it couldn't be
4827          * scheduled on to the CPU at some point).
4828          */
4829         if (event->state == PERF_EVENT_STATE_ERROR)
4830                 return 0;
4831
4832         if (count < event->read_size)
4833                 return -ENOSPC;
4834
4835         WARN_ON_ONCE(event->ctx->parent_ctx);
4836         if (read_format & PERF_FORMAT_GROUP)
4837                 ret = perf_read_group(event, read_format, buf);
4838         else
4839                 ret = perf_read_one(event, read_format, buf);
4840
4841         return ret;
4842 }
4843
4844 static ssize_t
4845 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4846 {
4847         struct perf_event *event = file->private_data;
4848         struct perf_event_context *ctx;
4849         int ret;
4850
4851         ctx = perf_event_ctx_lock(event);
4852         ret = __perf_read(event, buf, count);
4853         perf_event_ctx_unlock(event, ctx);
4854
4855         return ret;
4856 }
4857
4858 static __poll_t perf_poll(struct file *file, poll_table *wait)
4859 {
4860         struct perf_event *event = file->private_data;
4861         struct ring_buffer *rb;
4862         __poll_t events = EPOLLHUP;
4863
4864         poll_wait(file, &event->waitq, wait);
4865
4866         if (is_event_hup(event))
4867                 return events;
4868
4869         /*
4870          * Pin the event->rb by taking event->mmap_mutex; otherwise
4871          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4872          */
4873         mutex_lock(&event->mmap_mutex);
4874         rb = event->rb;
4875         if (rb)
4876                 events = atomic_xchg(&rb->poll, 0);
4877         mutex_unlock(&event->mmap_mutex);
4878         return events;
4879 }
4880
4881 static void _perf_event_reset(struct perf_event *event)
4882 {
4883         (void)perf_event_read(event, false);
4884         local64_set(&event->count, 0);
4885         perf_event_update_userpage(event);
4886 }
4887
4888 /*
4889  * Holding the top-level event's child_mutex means that any
4890  * descendant process that has inherited this event will block
4891  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4892  * task existence requirements of perf_event_enable/disable.
4893  */
4894 static void perf_event_for_each_child(struct perf_event *event,
4895                                         void (*func)(struct perf_event *))
4896 {
4897         struct perf_event *child;
4898
4899         WARN_ON_ONCE(event->ctx->parent_ctx);
4900
4901         mutex_lock(&event->child_mutex);
4902         func(event);
4903         list_for_each_entry(child, &event->child_list, child_list)
4904                 func(child);
4905         mutex_unlock(&event->child_mutex);
4906 }
4907
4908 static void perf_event_for_each(struct perf_event *event,
4909                                   void (*func)(struct perf_event *))
4910 {
4911         struct perf_event_context *ctx = event->ctx;
4912         struct perf_event *sibling;
4913
4914         lockdep_assert_held(&ctx->mutex);
4915
4916         event = event->group_leader;
4917
4918         perf_event_for_each_child(event, func);
4919         for_each_sibling_event(sibling, event)
4920                 perf_event_for_each_child(sibling, func);
4921 }
4922
4923 static void __perf_event_period(struct perf_event *event,
4924                                 struct perf_cpu_context *cpuctx,
4925                                 struct perf_event_context *ctx,
4926                                 void *info)
4927 {
4928         u64 value = *((u64 *)info);
4929         bool active;
4930
4931         if (event->attr.freq) {
4932                 event->attr.sample_freq = value;
4933         } else {
4934                 event->attr.sample_period = value;
4935                 event->hw.sample_period = value;
4936         }
4937
4938         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4939         if (active) {
4940                 perf_pmu_disable(ctx->pmu);
4941                 /*
4942                  * We could be throttled; unthrottle now to avoid the tick
4943                  * trying to unthrottle while we already re-started the event.
4944                  */
4945                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4946                         event->hw.interrupts = 0;
4947                         perf_log_throttle(event, 1);
4948                 }
4949                 event->pmu->stop(event, PERF_EF_UPDATE);
4950         }
4951
4952         local64_set(&event->hw.period_left, 0);
4953
4954         if (active) {
4955                 event->pmu->start(event, PERF_EF_RELOAD);
4956                 perf_pmu_enable(ctx->pmu);
4957         }
4958 }
4959
4960 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4961 {
4962         u64 value;
4963
4964         if (!is_sampling_event(event))
4965                 return -EINVAL;
4966
4967         if (copy_from_user(&value, arg, sizeof(value)))
4968                 return -EFAULT;
4969
4970         if (!value)
4971                 return -EINVAL;
4972
4973         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4974                 return -EINVAL;
4975
4976         event_function_call(event, __perf_event_period, &value);
4977
4978         return 0;
4979 }
4980
4981 static const struct file_operations perf_fops;
4982
4983 static inline int perf_fget_light(int fd, struct fd *p)
4984 {
4985         struct fd f = fdget(fd);
4986         if (!f.file)
4987                 return -EBADF;
4988
4989         if (f.file->f_op != &perf_fops) {
4990                 fdput(f);
4991                 return -EBADF;
4992         }
4993         *p = f;
4994         return 0;
4995 }
4996
4997 static int perf_event_set_output(struct perf_event *event,
4998                                  struct perf_event *output_event);
4999 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5000 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5001 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5002                           struct perf_event_attr *attr);
5003
5004 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5005 {
5006         void (*func)(struct perf_event *);
5007         u32 flags = arg;
5008
5009         switch (cmd) {
5010         case PERF_EVENT_IOC_ENABLE:
5011                 func = _perf_event_enable;
5012                 break;
5013         case PERF_EVENT_IOC_DISABLE:
5014                 func = _perf_event_disable;
5015                 break;
5016         case PERF_EVENT_IOC_RESET:
5017                 func = _perf_event_reset;
5018                 break;
5019
5020         case PERF_EVENT_IOC_REFRESH:
5021                 return _perf_event_refresh(event, arg);
5022
5023         case PERF_EVENT_IOC_PERIOD:
5024                 return perf_event_period(event, (u64 __user *)arg);
5025
5026         case PERF_EVENT_IOC_ID:
5027         {
5028                 u64 id = primary_event_id(event);
5029
5030                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5031                         return -EFAULT;
5032                 return 0;
5033         }
5034
5035         case PERF_EVENT_IOC_SET_OUTPUT:
5036         {
5037                 int ret;
5038                 if (arg != -1) {
5039                         struct perf_event *output_event;
5040                         struct fd output;
5041                         ret = perf_fget_light(arg, &output);
5042                         if (ret)
5043                                 return ret;
5044                         output_event = output.file->private_data;
5045                         ret = perf_event_set_output(event, output_event);
5046                         fdput(output);
5047                 } else {
5048                         ret = perf_event_set_output(event, NULL);
5049                 }
5050                 return ret;
5051         }
5052
5053         case PERF_EVENT_IOC_SET_FILTER:
5054                 return perf_event_set_filter(event, (void __user *)arg);
5055
5056         case PERF_EVENT_IOC_SET_BPF:
5057                 return perf_event_set_bpf_prog(event, arg);
5058
5059         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5060                 struct ring_buffer *rb;
5061
5062                 rcu_read_lock();
5063                 rb = rcu_dereference(event->rb);
5064                 if (!rb || !rb->nr_pages) {
5065                         rcu_read_unlock();
5066                         return -EINVAL;
5067                 }
5068                 rb_toggle_paused(rb, !!arg);
5069                 rcu_read_unlock();
5070                 return 0;
5071         }
5072
5073         case PERF_EVENT_IOC_QUERY_BPF:
5074                 return perf_event_query_prog_array(event, (void __user *)arg);
5075
5076         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5077                 struct perf_event_attr new_attr;
5078                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5079                                          &new_attr);
5080
5081                 if (err)
5082                         return err;
5083
5084                 return perf_event_modify_attr(event,  &new_attr);
5085         }
5086         default:
5087                 return -ENOTTY;
5088         }
5089
5090         if (flags & PERF_IOC_FLAG_GROUP)
5091                 perf_event_for_each(event, func);
5092         else
5093                 perf_event_for_each_child(event, func);
5094
5095         return 0;
5096 }
5097
5098 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5099 {
5100         struct perf_event *event = file->private_data;
5101         struct perf_event_context *ctx;
5102         long ret;
5103
5104         ctx = perf_event_ctx_lock(event);
5105         ret = _perf_ioctl(event, cmd, arg);
5106         perf_event_ctx_unlock(event, ctx);
5107
5108         return ret;
5109 }
5110
5111 #ifdef CONFIG_COMPAT
5112 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5113                                 unsigned long arg)
5114 {
5115         switch (_IOC_NR(cmd)) {
5116         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5117         case _IOC_NR(PERF_EVENT_IOC_ID):
5118         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5119         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5120                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5121                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5122                         cmd &= ~IOCSIZE_MASK;
5123                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5124                 }
5125                 break;
5126         }
5127         return perf_ioctl(file, cmd, arg);
5128 }
5129 #else
5130 # define perf_compat_ioctl NULL
5131 #endif
5132
5133 int perf_event_task_enable(void)
5134 {
5135         struct perf_event_context *ctx;
5136         struct perf_event *event;
5137
5138         mutex_lock(&current->perf_event_mutex);
5139         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5140                 ctx = perf_event_ctx_lock(event);
5141                 perf_event_for_each_child(event, _perf_event_enable);
5142                 perf_event_ctx_unlock(event, ctx);
5143         }
5144         mutex_unlock(&current->perf_event_mutex);
5145
5146         return 0;
5147 }
5148
5149 int perf_event_task_disable(void)
5150 {
5151         struct perf_event_context *ctx;
5152         struct perf_event *event;
5153
5154         mutex_lock(&current->perf_event_mutex);
5155         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5156                 ctx = perf_event_ctx_lock(event);
5157                 perf_event_for_each_child(event, _perf_event_disable);
5158                 perf_event_ctx_unlock(event, ctx);
5159         }
5160         mutex_unlock(&current->perf_event_mutex);
5161
5162         return 0;
5163 }
5164
5165 static int perf_event_index(struct perf_event *event)
5166 {
5167         if (event->hw.state & PERF_HES_STOPPED)
5168                 return 0;
5169
5170         if (event->state != PERF_EVENT_STATE_ACTIVE)
5171                 return 0;
5172
5173         return event->pmu->event_idx(event);
5174 }
5175
5176 static void calc_timer_values(struct perf_event *event,
5177                                 u64 *now,
5178                                 u64 *enabled,
5179                                 u64 *running)
5180 {
5181         u64 ctx_time;
5182
5183         *now = perf_clock();
5184         ctx_time = event->shadow_ctx_time + *now;
5185         __perf_update_times(event, ctx_time, enabled, running);
5186 }
5187
5188 static void perf_event_init_userpage(struct perf_event *event)
5189 {
5190         struct perf_event_mmap_page *userpg;
5191         struct ring_buffer *rb;
5192
5193         rcu_read_lock();
5194         rb = rcu_dereference(event->rb);
5195         if (!rb)
5196                 goto unlock;
5197
5198         userpg = rb->user_page;
5199
5200         /* Allow new userspace to detect that bit 0 is deprecated */
5201         userpg->cap_bit0_is_deprecated = 1;
5202         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5203         userpg->data_offset = PAGE_SIZE;
5204         userpg->data_size = perf_data_size(rb);
5205
5206 unlock:
5207         rcu_read_unlock();
5208 }
5209
5210 void __weak arch_perf_update_userpage(
5211         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5212 {
5213 }
5214
5215 /*
5216  * Callers need to ensure there can be no nesting of this function, otherwise
5217  * the seqlock logic goes bad. We can not serialize this because the arch
5218  * code calls this from NMI context.
5219  */
5220 void perf_event_update_userpage(struct perf_event *event)
5221 {
5222         struct perf_event_mmap_page *userpg;
5223         struct ring_buffer *rb;
5224         u64 enabled, running, now;
5225
5226         rcu_read_lock();
5227         rb = rcu_dereference(event->rb);
5228         if (!rb)
5229                 goto unlock;
5230
5231         /*
5232          * compute total_time_enabled, total_time_running
5233          * based on snapshot values taken when the event
5234          * was last scheduled in.
5235          *
5236          * we cannot simply called update_context_time()
5237          * because of locking issue as we can be called in
5238          * NMI context
5239          */
5240         calc_timer_values(event, &now, &enabled, &running);
5241
5242         userpg = rb->user_page;
5243         /*
5244          * Disable preemption to guarantee consistent time stamps are stored to
5245          * the user page.
5246          */
5247         preempt_disable();
5248         ++userpg->lock;
5249         barrier();
5250         userpg->index = perf_event_index(event);
5251         userpg->offset = perf_event_count(event);
5252         if (userpg->index)
5253                 userpg->offset -= local64_read(&event->hw.prev_count);
5254
5255         userpg->time_enabled = enabled +
5256                         atomic64_read(&event->child_total_time_enabled);
5257
5258         userpg->time_running = running +
5259                         atomic64_read(&event->child_total_time_running);
5260
5261         arch_perf_update_userpage(event, userpg, now);
5262
5263         barrier();
5264         ++userpg->lock;
5265         preempt_enable();
5266 unlock:
5267         rcu_read_unlock();
5268 }
5269 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5270
5271 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5272 {
5273         struct perf_event *event = vmf->vma->vm_file->private_data;
5274         struct ring_buffer *rb;
5275         vm_fault_t ret = VM_FAULT_SIGBUS;
5276
5277         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5278                 if (vmf->pgoff == 0)
5279                         ret = 0;
5280                 return ret;
5281         }
5282
5283         rcu_read_lock();
5284         rb = rcu_dereference(event->rb);
5285         if (!rb)
5286                 goto unlock;
5287
5288         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5289                 goto unlock;
5290
5291         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5292         if (!vmf->page)
5293                 goto unlock;
5294
5295         get_page(vmf->page);
5296         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5297         vmf->page->index   = vmf->pgoff;
5298
5299         ret = 0;
5300 unlock:
5301         rcu_read_unlock();
5302
5303         return ret;
5304 }
5305
5306 static void ring_buffer_attach(struct perf_event *event,
5307                                struct ring_buffer *rb)
5308 {
5309         struct ring_buffer *old_rb = NULL;
5310         unsigned long flags;
5311
5312         if (event->rb) {
5313                 /*
5314                  * Should be impossible, we set this when removing
5315                  * event->rb_entry and wait/clear when adding event->rb_entry.
5316                  */
5317                 WARN_ON_ONCE(event->rcu_pending);
5318
5319                 old_rb = event->rb;
5320                 spin_lock_irqsave(&old_rb->event_lock, flags);
5321                 list_del_rcu(&event->rb_entry);
5322                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5323
5324                 event->rcu_batches = get_state_synchronize_rcu();
5325                 event->rcu_pending = 1;
5326         }
5327
5328         if (rb) {
5329                 if (event->rcu_pending) {
5330                         cond_synchronize_rcu(event->rcu_batches);
5331                         event->rcu_pending = 0;
5332                 }
5333
5334                 spin_lock_irqsave(&rb->event_lock, flags);
5335                 list_add_rcu(&event->rb_entry, &rb->event_list);
5336                 spin_unlock_irqrestore(&rb->event_lock, flags);
5337         }
5338
5339         /*
5340          * Avoid racing with perf_mmap_close(AUX): stop the event
5341          * before swizzling the event::rb pointer; if it's getting
5342          * unmapped, its aux_mmap_count will be 0 and it won't
5343          * restart. See the comment in __perf_pmu_output_stop().
5344          *
5345          * Data will inevitably be lost when set_output is done in
5346          * mid-air, but then again, whoever does it like this is
5347          * not in for the data anyway.
5348          */
5349         if (has_aux(event))
5350                 perf_event_stop(event, 0);
5351
5352         rcu_assign_pointer(event->rb, rb);
5353
5354         if (old_rb) {
5355                 ring_buffer_put(old_rb);
5356                 /*
5357                  * Since we detached before setting the new rb, so that we
5358                  * could attach the new rb, we could have missed a wakeup.
5359                  * Provide it now.
5360                  */
5361                 wake_up_all(&event->waitq);
5362         }
5363 }
5364
5365 static void ring_buffer_wakeup(struct perf_event *event)
5366 {
5367         struct ring_buffer *rb;
5368
5369         rcu_read_lock();
5370         rb = rcu_dereference(event->rb);
5371         if (rb) {
5372                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5373                         wake_up_all(&event->waitq);
5374         }
5375         rcu_read_unlock();
5376 }
5377
5378 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5379 {
5380         struct ring_buffer *rb;
5381
5382         rcu_read_lock();
5383         rb = rcu_dereference(event->rb);
5384         if (rb) {
5385                 if (!atomic_inc_not_zero(&rb->refcount))
5386                         rb = NULL;
5387         }
5388         rcu_read_unlock();
5389
5390         return rb;
5391 }
5392
5393 void ring_buffer_put(struct ring_buffer *rb)
5394 {
5395         if (!atomic_dec_and_test(&rb->refcount))
5396                 return;
5397
5398         WARN_ON_ONCE(!list_empty(&rb->event_list));
5399
5400         call_rcu(&rb->rcu_head, rb_free_rcu);
5401 }
5402
5403 static void perf_mmap_open(struct vm_area_struct *vma)
5404 {
5405         struct perf_event *event = vma->vm_file->private_data;
5406
5407         atomic_inc(&event->mmap_count);
5408         atomic_inc(&event->rb->mmap_count);
5409
5410         if (vma->vm_pgoff)
5411                 atomic_inc(&event->rb->aux_mmap_count);
5412
5413         if (event->pmu->event_mapped)
5414                 event->pmu->event_mapped(event, vma->vm_mm);
5415 }
5416
5417 static void perf_pmu_output_stop(struct perf_event *event);
5418
5419 /*
5420  * A buffer can be mmap()ed multiple times; either directly through the same
5421  * event, or through other events by use of perf_event_set_output().
5422  *
5423  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5424  * the buffer here, where we still have a VM context. This means we need
5425  * to detach all events redirecting to us.
5426  */
5427 static void perf_mmap_close(struct vm_area_struct *vma)
5428 {
5429         struct perf_event *event = vma->vm_file->private_data;
5430
5431         struct ring_buffer *rb = ring_buffer_get(event);
5432         struct user_struct *mmap_user = rb->mmap_user;
5433         int mmap_locked = rb->mmap_locked;
5434         unsigned long size = perf_data_size(rb);
5435
5436         if (event->pmu->event_unmapped)
5437                 event->pmu->event_unmapped(event, vma->vm_mm);
5438
5439         /*
5440          * rb->aux_mmap_count will always drop before rb->mmap_count and
5441          * event->mmap_count, so it is ok to use event->mmap_mutex to
5442          * serialize with perf_mmap here.
5443          */
5444         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5445             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5446                 /*
5447                  * Stop all AUX events that are writing to this buffer,
5448                  * so that we can free its AUX pages and corresponding PMU
5449                  * data. Note that after rb::aux_mmap_count dropped to zero,
5450                  * they won't start any more (see perf_aux_output_begin()).
5451                  */
5452                 perf_pmu_output_stop(event);
5453
5454                 /* now it's safe to free the pages */
5455                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5456                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5457
5458                 /* this has to be the last one */
5459                 rb_free_aux(rb);
5460                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5461
5462                 mutex_unlock(&event->mmap_mutex);
5463         }
5464
5465         atomic_dec(&rb->mmap_count);
5466
5467         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5468                 goto out_put;
5469
5470         ring_buffer_attach(event, NULL);
5471         mutex_unlock(&event->mmap_mutex);
5472
5473         /* If there's still other mmap()s of this buffer, we're done. */
5474         if (atomic_read(&rb->mmap_count))
5475                 goto out_put;
5476
5477         /*
5478          * No other mmap()s, detach from all other events that might redirect
5479          * into the now unreachable buffer. Somewhat complicated by the
5480          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5481          */
5482 again:
5483         rcu_read_lock();
5484         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5485                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5486                         /*
5487                          * This event is en-route to free_event() which will
5488                          * detach it and remove it from the list.
5489                          */
5490                         continue;
5491                 }
5492                 rcu_read_unlock();
5493
5494                 mutex_lock(&event->mmap_mutex);
5495                 /*
5496                  * Check we didn't race with perf_event_set_output() which can
5497                  * swizzle the rb from under us while we were waiting to
5498                  * acquire mmap_mutex.
5499                  *
5500                  * If we find a different rb; ignore this event, a next
5501                  * iteration will no longer find it on the list. We have to
5502                  * still restart the iteration to make sure we're not now
5503                  * iterating the wrong list.
5504                  */
5505                 if (event->rb == rb)
5506                         ring_buffer_attach(event, NULL);
5507
5508                 mutex_unlock(&event->mmap_mutex);
5509                 put_event(event);
5510
5511                 /*
5512                  * Restart the iteration; either we're on the wrong list or
5513                  * destroyed its integrity by doing a deletion.
5514                  */
5515                 goto again;
5516         }
5517         rcu_read_unlock();
5518
5519         /*
5520          * It could be there's still a few 0-ref events on the list; they'll
5521          * get cleaned up by free_event() -- they'll also still have their
5522          * ref on the rb and will free it whenever they are done with it.
5523          *
5524          * Aside from that, this buffer is 'fully' detached and unmapped,
5525          * undo the VM accounting.
5526          */
5527
5528         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5529         vma->vm_mm->pinned_vm -= mmap_locked;
5530         free_uid(mmap_user);
5531
5532 out_put:
5533         ring_buffer_put(rb); /* could be last */
5534 }
5535
5536 static const struct vm_operations_struct perf_mmap_vmops = {
5537         .open           = perf_mmap_open,
5538         .close          = perf_mmap_close, /* non mergable */
5539         .fault          = perf_mmap_fault,
5540         .page_mkwrite   = perf_mmap_fault,
5541 };
5542
5543 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5544 {
5545         struct perf_event *event = file->private_data;
5546         unsigned long user_locked, user_lock_limit;
5547         struct user_struct *user = current_user();
5548         unsigned long locked, lock_limit;
5549         struct ring_buffer *rb = NULL;
5550         unsigned long vma_size;
5551         unsigned long nr_pages;
5552         long user_extra = 0, extra = 0;
5553         int ret = 0, flags = 0;
5554
5555         /*
5556          * Don't allow mmap() of inherited per-task counters. This would
5557          * create a performance issue due to all children writing to the
5558          * same rb.
5559          */
5560         if (event->cpu == -1 && event->attr.inherit)
5561                 return -EINVAL;
5562
5563         if (!(vma->vm_flags & VM_SHARED))
5564                 return -EINVAL;
5565
5566         vma_size = vma->vm_end - vma->vm_start;
5567
5568         if (vma->vm_pgoff == 0) {
5569                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5570         } else {
5571                 /*
5572                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5573                  * mapped, all subsequent mappings should have the same size
5574                  * and offset. Must be above the normal perf buffer.
5575                  */
5576                 u64 aux_offset, aux_size;
5577
5578                 if (!event->rb)
5579                         return -EINVAL;
5580
5581                 nr_pages = vma_size / PAGE_SIZE;
5582
5583                 mutex_lock(&event->mmap_mutex);
5584                 ret = -EINVAL;
5585
5586                 rb = event->rb;
5587                 if (!rb)
5588                         goto aux_unlock;
5589
5590                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5591                 aux_size = READ_ONCE(rb->user_page->aux_size);
5592
5593                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5594                         goto aux_unlock;
5595
5596                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5597                         goto aux_unlock;
5598
5599                 /* already mapped with a different offset */
5600                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5601                         goto aux_unlock;
5602
5603                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5604                         goto aux_unlock;
5605
5606                 /* already mapped with a different size */
5607                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5608                         goto aux_unlock;
5609
5610                 if (!is_power_of_2(nr_pages))
5611                         goto aux_unlock;
5612
5613                 if (!atomic_inc_not_zero(&rb->mmap_count))
5614                         goto aux_unlock;
5615
5616                 if (rb_has_aux(rb)) {
5617                         atomic_inc(&rb->aux_mmap_count);
5618                         ret = 0;
5619                         goto unlock;
5620                 }
5621
5622                 atomic_set(&rb->aux_mmap_count, 1);
5623                 user_extra = nr_pages;
5624
5625                 goto accounting;
5626         }
5627
5628         /*
5629          * If we have rb pages ensure they're a power-of-two number, so we
5630          * can do bitmasks instead of modulo.
5631          */
5632         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5633                 return -EINVAL;
5634
5635         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5636                 return -EINVAL;
5637
5638         WARN_ON_ONCE(event->ctx->parent_ctx);
5639 again:
5640         mutex_lock(&event->mmap_mutex);
5641         if (event->rb) {
5642                 if (event->rb->nr_pages != nr_pages) {
5643                         ret = -EINVAL;
5644                         goto unlock;
5645                 }
5646
5647                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5648                         /*
5649                          * Raced against perf_mmap_close() through
5650                          * perf_event_set_output(). Try again, hope for better
5651                          * luck.
5652                          */
5653                         mutex_unlock(&event->mmap_mutex);
5654                         goto again;
5655                 }
5656
5657                 goto unlock;
5658         }
5659
5660         user_extra = nr_pages + 1;
5661
5662 accounting:
5663         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5664
5665         /*
5666          * Increase the limit linearly with more CPUs:
5667          */
5668         user_lock_limit *= num_online_cpus();
5669
5670         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5671
5672         if (user_locked > user_lock_limit)
5673                 extra = user_locked - user_lock_limit;
5674
5675         lock_limit = rlimit(RLIMIT_MEMLOCK);
5676         lock_limit >>= PAGE_SHIFT;
5677         locked = vma->vm_mm->pinned_vm + extra;
5678
5679         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5680                 !capable(CAP_IPC_LOCK)) {
5681                 ret = -EPERM;
5682                 goto unlock;
5683         }
5684
5685         WARN_ON(!rb && event->rb);
5686
5687         if (vma->vm_flags & VM_WRITE)
5688                 flags |= RING_BUFFER_WRITABLE;
5689
5690         if (!rb) {
5691                 rb = rb_alloc(nr_pages,
5692                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5693                               event->cpu, flags);
5694
5695                 if (!rb) {
5696                         ret = -ENOMEM;
5697                         goto unlock;
5698                 }
5699
5700                 atomic_set(&rb->mmap_count, 1);
5701                 rb->mmap_user = get_current_user();
5702                 rb->mmap_locked = extra;
5703
5704                 ring_buffer_attach(event, rb);
5705
5706                 perf_event_init_userpage(event);
5707                 perf_event_update_userpage(event);
5708         } else {
5709                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5710                                    event->attr.aux_watermark, flags);
5711                 if (!ret)
5712                         rb->aux_mmap_locked = extra;
5713         }
5714
5715 unlock:
5716         if (!ret) {
5717                 atomic_long_add(user_extra, &user->locked_vm);
5718                 vma->vm_mm->pinned_vm += extra;
5719
5720                 atomic_inc(&event->mmap_count);
5721         } else if (rb) {
5722                 atomic_dec(&rb->mmap_count);
5723         }
5724 aux_unlock:
5725         mutex_unlock(&event->mmap_mutex);
5726
5727         /*
5728          * Since pinned accounting is per vm we cannot allow fork() to copy our
5729          * vma.
5730          */
5731         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5732         vma->vm_ops = &perf_mmap_vmops;
5733
5734         if (event->pmu->event_mapped)
5735                 event->pmu->event_mapped(event, vma->vm_mm);
5736
5737         return ret;
5738 }
5739
5740 static int perf_fasync(int fd, struct file *filp, int on)
5741 {
5742         struct inode *inode = file_inode(filp);
5743         struct perf_event *event = filp->private_data;
5744         int retval;
5745
5746         inode_lock(inode);
5747         retval = fasync_helper(fd, filp, on, &event->fasync);
5748         inode_unlock(inode);
5749
5750         if (retval < 0)
5751                 return retval;
5752
5753         return 0;
5754 }
5755
5756 static const struct file_operations perf_fops = {
5757         .llseek                 = no_llseek,
5758         .release                = perf_release,
5759         .read                   = perf_read,
5760         .poll                   = perf_poll,
5761         .unlocked_ioctl         = perf_ioctl,
5762         .compat_ioctl           = perf_compat_ioctl,
5763         .mmap                   = perf_mmap,
5764         .fasync                 = perf_fasync,
5765 };
5766
5767 /*
5768  * Perf event wakeup
5769  *
5770  * If there's data, ensure we set the poll() state and publish everything
5771  * to user-space before waking everybody up.
5772  */
5773
5774 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5775 {
5776         /* only the parent has fasync state */
5777         if (event->parent)
5778                 event = event->parent;
5779         return &event->fasync;
5780 }
5781
5782 void perf_event_wakeup(struct perf_event *event)
5783 {
5784         ring_buffer_wakeup(event);
5785
5786         if (event->pending_kill) {
5787                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5788                 event->pending_kill = 0;
5789         }
5790 }
5791
5792 static void perf_pending_event(struct irq_work *entry)
5793 {
5794         struct perf_event *event = container_of(entry,
5795                         struct perf_event, pending);
5796         int rctx;
5797
5798         rctx = perf_swevent_get_recursion_context();
5799         /*
5800          * If we 'fail' here, that's OK, it means recursion is already disabled
5801          * and we won't recurse 'further'.
5802          */
5803
5804         if (event->pending_disable) {
5805                 event->pending_disable = 0;
5806                 perf_event_disable_local(event);
5807         }
5808
5809         if (event->pending_wakeup) {
5810                 event->pending_wakeup = 0;
5811                 perf_event_wakeup(event);
5812         }
5813
5814         if (rctx >= 0)
5815                 perf_swevent_put_recursion_context(rctx);
5816 }
5817
5818 /*
5819  * We assume there is only KVM supporting the callbacks.
5820  * Later on, we might change it to a list if there is
5821  * another virtualization implementation supporting the callbacks.
5822  */
5823 struct perf_guest_info_callbacks *perf_guest_cbs;
5824
5825 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5826 {
5827         perf_guest_cbs = cbs;
5828         return 0;
5829 }
5830 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5831
5832 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5833 {
5834         perf_guest_cbs = NULL;
5835         return 0;
5836 }
5837 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5838
5839 static void
5840 perf_output_sample_regs(struct perf_output_handle *handle,
5841                         struct pt_regs *regs, u64 mask)
5842 {
5843         int bit;
5844         DECLARE_BITMAP(_mask, 64);
5845
5846         bitmap_from_u64(_mask, mask);
5847         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5848                 u64 val;
5849
5850                 val = perf_reg_value(regs, bit);
5851                 perf_output_put(handle, val);
5852         }
5853 }
5854
5855 static void perf_sample_regs_user(struct perf_regs *regs_user,
5856                                   struct pt_regs *regs,
5857                                   struct pt_regs *regs_user_copy)
5858 {
5859         if (user_mode(regs)) {
5860                 regs_user->abi = perf_reg_abi(current);
5861                 regs_user->regs = regs;
5862         } else if (current->mm) {
5863                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5864         } else {
5865                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5866                 regs_user->regs = NULL;
5867         }
5868 }
5869
5870 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5871                                   struct pt_regs *regs)
5872 {
5873         regs_intr->regs = regs;
5874         regs_intr->abi  = perf_reg_abi(current);
5875 }
5876
5877
5878 /*
5879  * Get remaining task size from user stack pointer.
5880  *
5881  * It'd be better to take stack vma map and limit this more
5882  * precisly, but there's no way to get it safely under interrupt,
5883  * so using TASK_SIZE as limit.
5884  */
5885 static u64 perf_ustack_task_size(struct pt_regs *regs)
5886 {
5887         unsigned long addr = perf_user_stack_pointer(regs);
5888
5889         if (!addr || addr >= TASK_SIZE)
5890                 return 0;
5891
5892         return TASK_SIZE - addr;
5893 }
5894
5895 static u16
5896 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5897                         struct pt_regs *regs)
5898 {
5899         u64 task_size;
5900
5901         /* No regs, no stack pointer, no dump. */
5902         if (!regs)
5903                 return 0;
5904
5905         /*
5906          * Check if we fit in with the requested stack size into the:
5907          * - TASK_SIZE
5908          *   If we don't, we limit the size to the TASK_SIZE.
5909          *
5910          * - remaining sample size
5911          *   If we don't, we customize the stack size to
5912          *   fit in to the remaining sample size.
5913          */
5914
5915         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5916         stack_size = min(stack_size, (u16) task_size);
5917
5918         /* Current header size plus static size and dynamic size. */
5919         header_size += 2 * sizeof(u64);
5920
5921         /* Do we fit in with the current stack dump size? */
5922         if ((u16) (header_size + stack_size) < header_size) {
5923                 /*
5924                  * If we overflow the maximum size for the sample,
5925                  * we customize the stack dump size to fit in.
5926                  */
5927                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5928                 stack_size = round_up(stack_size, sizeof(u64));
5929         }
5930
5931         return stack_size;
5932 }
5933
5934 static void
5935 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5936                           struct pt_regs *regs)
5937 {
5938         /* Case of a kernel thread, nothing to dump */
5939         if (!regs) {
5940                 u64 size = 0;
5941                 perf_output_put(handle, size);
5942         } else {
5943                 unsigned long sp;
5944                 unsigned int rem;
5945                 u64 dyn_size;
5946
5947                 /*
5948                  * We dump:
5949                  * static size
5950                  *   - the size requested by user or the best one we can fit
5951                  *     in to the sample max size
5952                  * data
5953                  *   - user stack dump data
5954                  * dynamic size
5955                  *   - the actual dumped size
5956                  */
5957
5958                 /* Static size. */
5959                 perf_output_put(handle, dump_size);
5960
5961                 /* Data. */
5962                 sp = perf_user_stack_pointer(regs);
5963                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5964                 dyn_size = dump_size - rem;
5965
5966                 perf_output_skip(handle, rem);
5967
5968                 /* Dynamic size. */
5969                 perf_output_put(handle, dyn_size);
5970         }
5971 }
5972
5973 static void __perf_event_header__init_id(struct perf_event_header *header,
5974                                          struct perf_sample_data *data,
5975                                          struct perf_event *event)
5976 {
5977         u64 sample_type = event->attr.sample_type;
5978
5979         data->type = sample_type;
5980         header->size += event->id_header_size;
5981
5982         if (sample_type & PERF_SAMPLE_TID) {
5983                 /* namespace issues */
5984                 data->tid_entry.pid = perf_event_pid(event, current);
5985                 data->tid_entry.tid = perf_event_tid(event, current);
5986         }
5987
5988         if (sample_type & PERF_SAMPLE_TIME)
5989                 data->time = perf_event_clock(event);
5990
5991         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5992                 data->id = primary_event_id(event);
5993
5994         if (sample_type & PERF_SAMPLE_STREAM_ID)
5995                 data->stream_id = event->id;
5996
5997         if (sample_type & PERF_SAMPLE_CPU) {
5998                 data->cpu_entry.cpu      = raw_smp_processor_id();
5999                 data->cpu_entry.reserved = 0;
6000         }
6001 }
6002
6003 void perf_event_header__init_id(struct perf_event_header *header,
6004                                 struct perf_sample_data *data,
6005                                 struct perf_event *event)
6006 {
6007         if (event->attr.sample_id_all)
6008                 __perf_event_header__init_id(header, data, event);
6009 }
6010
6011 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6012                                            struct perf_sample_data *data)
6013 {
6014         u64 sample_type = data->type;
6015
6016         if (sample_type & PERF_SAMPLE_TID)
6017                 perf_output_put(handle, data->tid_entry);
6018
6019         if (sample_type & PERF_SAMPLE_TIME)
6020                 perf_output_put(handle, data->time);
6021
6022         if (sample_type & PERF_SAMPLE_ID)
6023                 perf_output_put(handle, data->id);
6024
6025         if (sample_type & PERF_SAMPLE_STREAM_ID)
6026                 perf_output_put(handle, data->stream_id);
6027
6028         if (sample_type & PERF_SAMPLE_CPU)
6029                 perf_output_put(handle, data->cpu_entry);
6030
6031         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6032                 perf_output_put(handle, data->id);
6033 }
6034
6035 void perf_event__output_id_sample(struct perf_event *event,
6036                                   struct perf_output_handle *handle,
6037                                   struct perf_sample_data *sample)
6038 {
6039         if (event->attr.sample_id_all)
6040                 __perf_event__output_id_sample(handle, sample);
6041 }
6042
6043 static void perf_output_read_one(struct perf_output_handle *handle,
6044                                  struct perf_event *event,
6045                                  u64 enabled, u64 running)
6046 {
6047         u64 read_format = event->attr.read_format;
6048         u64 values[4];
6049         int n = 0;
6050
6051         values[n++] = perf_event_count(event);
6052         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6053                 values[n++] = enabled +
6054                         atomic64_read(&event->child_total_time_enabled);
6055         }
6056         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6057                 values[n++] = running +
6058                         atomic64_read(&event->child_total_time_running);
6059         }
6060         if (read_format & PERF_FORMAT_ID)
6061                 values[n++] = primary_event_id(event);
6062
6063         __output_copy(handle, values, n * sizeof(u64));
6064 }
6065
6066 static void perf_output_read_group(struct perf_output_handle *handle,
6067                             struct perf_event *event,
6068                             u64 enabled, u64 running)
6069 {
6070         struct perf_event *leader = event->group_leader, *sub;
6071         u64 read_format = event->attr.read_format;
6072         u64 values[5];
6073         int n = 0;
6074
6075         values[n++] = 1 + leader->nr_siblings;
6076
6077         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6078                 values[n++] = enabled;
6079
6080         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6081                 values[n++] = running;
6082
6083         if ((leader != event) &&
6084             (leader->state == PERF_EVENT_STATE_ACTIVE))
6085                 leader->pmu->read(leader);
6086
6087         values[n++] = perf_event_count(leader);
6088         if (read_format & PERF_FORMAT_ID)
6089                 values[n++] = primary_event_id(leader);
6090
6091         __output_copy(handle, values, n * sizeof(u64));
6092
6093         for_each_sibling_event(sub, leader) {
6094                 n = 0;
6095
6096                 if ((sub != event) &&
6097                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6098                         sub->pmu->read(sub);
6099
6100                 values[n++] = perf_event_count(sub);
6101                 if (read_format & PERF_FORMAT_ID)
6102                         values[n++] = primary_event_id(sub);
6103
6104                 __output_copy(handle, values, n * sizeof(u64));
6105         }
6106 }
6107
6108 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6109                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6110
6111 /*
6112  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6113  *
6114  * The problem is that its both hard and excessively expensive to iterate the
6115  * child list, not to mention that its impossible to IPI the children running
6116  * on another CPU, from interrupt/NMI context.
6117  */
6118 static void perf_output_read(struct perf_output_handle *handle,
6119                              struct perf_event *event)
6120 {
6121         u64 enabled = 0, running = 0, now;
6122         u64 read_format = event->attr.read_format;
6123
6124         /*
6125          * compute total_time_enabled, total_time_running
6126          * based on snapshot values taken when the event
6127          * was last scheduled in.
6128          *
6129          * we cannot simply called update_context_time()
6130          * because of locking issue as we are called in
6131          * NMI context
6132          */
6133         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6134                 calc_timer_values(event, &now, &enabled, &running);
6135
6136         if (event->attr.read_format & PERF_FORMAT_GROUP)
6137                 perf_output_read_group(handle, event, enabled, running);
6138         else
6139                 perf_output_read_one(handle, event, enabled, running);
6140 }
6141
6142 void perf_output_sample(struct perf_output_handle *handle,
6143                         struct perf_event_header *header,
6144                         struct perf_sample_data *data,
6145                         struct perf_event *event)
6146 {
6147         u64 sample_type = data->type;
6148
6149         perf_output_put(handle, *header);
6150
6151         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6152                 perf_output_put(handle, data->id);
6153
6154         if (sample_type & PERF_SAMPLE_IP)
6155                 perf_output_put(handle, data->ip);
6156
6157         if (sample_type & PERF_SAMPLE_TID)
6158                 perf_output_put(handle, data->tid_entry);
6159
6160         if (sample_type & PERF_SAMPLE_TIME)
6161                 perf_output_put(handle, data->time);
6162
6163         if (sample_type & PERF_SAMPLE_ADDR)
6164                 perf_output_put(handle, data->addr);
6165
6166         if (sample_type & PERF_SAMPLE_ID)
6167                 perf_output_put(handle, data->id);
6168
6169         if (sample_type & PERF_SAMPLE_STREAM_ID)
6170                 perf_output_put(handle, data->stream_id);
6171
6172         if (sample_type & PERF_SAMPLE_CPU)
6173                 perf_output_put(handle, data->cpu_entry);
6174
6175         if (sample_type & PERF_SAMPLE_PERIOD)
6176                 perf_output_put(handle, data->period);
6177
6178         if (sample_type & PERF_SAMPLE_READ)
6179                 perf_output_read(handle, event);
6180
6181         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6182                 int size = 1;
6183
6184                 size += data->callchain->nr;
6185                 size *= sizeof(u64);
6186                 __output_copy(handle, data->callchain, size);
6187         }
6188
6189         if (sample_type & PERF_SAMPLE_RAW) {
6190                 struct perf_raw_record *raw = data->raw;
6191
6192                 if (raw) {
6193                         struct perf_raw_frag *frag = &raw->frag;
6194
6195                         perf_output_put(handle, raw->size);
6196                         do {
6197                                 if (frag->copy) {
6198                                         __output_custom(handle, frag->copy,
6199                                                         frag->data, frag->size);
6200                                 } else {
6201                                         __output_copy(handle, frag->data,
6202                                                       frag->size);
6203                                 }
6204                                 if (perf_raw_frag_last(frag))
6205                                         break;
6206                                 frag = frag->next;
6207                         } while (1);
6208                         if (frag->pad)
6209                                 __output_skip(handle, NULL, frag->pad);
6210                 } else {
6211                         struct {
6212                                 u32     size;
6213                                 u32     data;
6214                         } raw = {
6215                                 .size = sizeof(u32),
6216                                 .data = 0,
6217                         };
6218                         perf_output_put(handle, raw);
6219                 }
6220         }
6221
6222         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6223                 if (data->br_stack) {
6224                         size_t size;
6225
6226                         size = data->br_stack->nr
6227                              * sizeof(struct perf_branch_entry);
6228
6229                         perf_output_put(handle, data->br_stack->nr);
6230                         perf_output_copy(handle, data->br_stack->entries, size);
6231                 } else {
6232                         /*
6233                          * we always store at least the value of nr
6234                          */
6235                         u64 nr = 0;
6236                         perf_output_put(handle, nr);
6237                 }
6238         }
6239
6240         if (sample_type & PERF_SAMPLE_REGS_USER) {
6241                 u64 abi = data->regs_user.abi;
6242
6243                 /*
6244                  * If there are no regs to dump, notice it through
6245                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6246                  */
6247                 perf_output_put(handle, abi);
6248
6249                 if (abi) {
6250                         u64 mask = event->attr.sample_regs_user;
6251                         perf_output_sample_regs(handle,
6252                                                 data->regs_user.regs,
6253                                                 mask);
6254                 }
6255         }
6256
6257         if (sample_type & PERF_SAMPLE_STACK_USER) {
6258                 perf_output_sample_ustack(handle,
6259                                           data->stack_user_size,
6260                                           data->regs_user.regs);
6261         }
6262
6263         if (sample_type & PERF_SAMPLE_WEIGHT)
6264                 perf_output_put(handle, data->weight);
6265
6266         if (sample_type & PERF_SAMPLE_DATA_SRC)
6267                 perf_output_put(handle, data->data_src.val);
6268
6269         if (sample_type & PERF_SAMPLE_TRANSACTION)
6270                 perf_output_put(handle, data->txn);
6271
6272         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6273                 u64 abi = data->regs_intr.abi;
6274                 /*
6275                  * If there are no regs to dump, notice it through
6276                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6277                  */
6278                 perf_output_put(handle, abi);
6279
6280                 if (abi) {
6281                         u64 mask = event->attr.sample_regs_intr;
6282
6283                         perf_output_sample_regs(handle,
6284                                                 data->regs_intr.regs,
6285                                                 mask);
6286                 }
6287         }
6288
6289         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6290                 perf_output_put(handle, data->phys_addr);
6291
6292         if (!event->attr.watermark) {
6293                 int wakeup_events = event->attr.wakeup_events;
6294
6295                 if (wakeup_events) {
6296                         struct ring_buffer *rb = handle->rb;
6297                         int events = local_inc_return(&rb->events);
6298
6299                         if (events >= wakeup_events) {
6300                                 local_sub(wakeup_events, &rb->events);
6301                                 local_inc(&rb->wakeup);
6302                         }
6303                 }
6304         }
6305 }
6306
6307 static u64 perf_virt_to_phys(u64 virt)
6308 {
6309         u64 phys_addr = 0;
6310         struct page *p = NULL;
6311
6312         if (!virt)
6313                 return 0;
6314
6315         if (virt >= TASK_SIZE) {
6316                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6317                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6318                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6319                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6320         } else {
6321                 /*
6322                  * Walking the pages tables for user address.
6323                  * Interrupts are disabled, so it prevents any tear down
6324                  * of the page tables.
6325                  * Try IRQ-safe __get_user_pages_fast first.
6326                  * If failed, leave phys_addr as 0.
6327                  */
6328                 if ((current->mm != NULL) &&
6329                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6330                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6331
6332                 if (p)
6333                         put_page(p);
6334         }
6335
6336         return phys_addr;
6337 }
6338
6339 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6340
6341 struct perf_callchain_entry *
6342 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6343 {
6344         bool kernel = !event->attr.exclude_callchain_kernel;
6345         bool user   = !event->attr.exclude_callchain_user;
6346         /* Disallow cross-task user callchains. */
6347         bool crosstask = event->ctx->task && event->ctx->task != current;
6348         const u32 max_stack = event->attr.sample_max_stack;
6349         struct perf_callchain_entry *callchain;
6350
6351         if (!kernel && !user)
6352                 return &__empty_callchain;
6353
6354         callchain = get_perf_callchain(regs, 0, kernel, user,
6355                                        max_stack, crosstask, true);
6356         return callchain ?: &__empty_callchain;
6357 }
6358
6359 void perf_prepare_sample(struct perf_event_header *header,
6360                          struct perf_sample_data *data,
6361                          struct perf_event *event,
6362                          struct pt_regs *regs)
6363 {
6364         u64 sample_type = event->attr.sample_type;
6365
6366         header->type = PERF_RECORD_SAMPLE;
6367         header->size = sizeof(*header) + event->header_size;
6368
6369         header->misc = 0;
6370         header->misc |= perf_misc_flags(regs);
6371
6372         __perf_event_header__init_id(header, data, event);
6373
6374         if (sample_type & PERF_SAMPLE_IP)
6375                 data->ip = perf_instruction_pointer(regs);
6376
6377         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6378                 int size = 1;
6379
6380                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6381                         data->callchain = perf_callchain(event, regs);
6382
6383                 size += data->callchain->nr;
6384
6385                 header->size += size * sizeof(u64);
6386         }
6387
6388         if (sample_type & PERF_SAMPLE_RAW) {
6389                 struct perf_raw_record *raw = data->raw;
6390                 int size;
6391
6392                 if (raw) {
6393                         struct perf_raw_frag *frag = &raw->frag;
6394                         u32 sum = 0;
6395
6396                         do {
6397                                 sum += frag->size;
6398                                 if (perf_raw_frag_last(frag))
6399                                         break;
6400                                 frag = frag->next;
6401                         } while (1);
6402
6403                         size = round_up(sum + sizeof(u32), sizeof(u64));
6404                         raw->size = size - sizeof(u32);
6405                         frag->pad = raw->size - sum;
6406                 } else {
6407                         size = sizeof(u64);
6408                 }
6409
6410                 header->size += size;
6411         }
6412
6413         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6414                 int size = sizeof(u64); /* nr */
6415                 if (data->br_stack) {
6416                         size += data->br_stack->nr
6417                               * sizeof(struct perf_branch_entry);
6418                 }
6419                 header->size += size;
6420         }
6421
6422         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6423                 perf_sample_regs_user(&data->regs_user, regs,
6424                                       &data->regs_user_copy);
6425
6426         if (sample_type & PERF_SAMPLE_REGS_USER) {
6427                 /* regs dump ABI info */
6428                 int size = sizeof(u64);
6429
6430                 if (data->regs_user.regs) {
6431                         u64 mask = event->attr.sample_regs_user;
6432                         size += hweight64(mask) * sizeof(u64);
6433                 }
6434
6435                 header->size += size;
6436         }
6437
6438         if (sample_type & PERF_SAMPLE_STACK_USER) {
6439                 /*
6440                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6441                  * processed as the last one or have additional check added
6442                  * in case new sample type is added, because we could eat
6443                  * up the rest of the sample size.
6444                  */
6445                 u16 stack_size = event->attr.sample_stack_user;
6446                 u16 size = sizeof(u64);
6447
6448                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6449                                                      data->regs_user.regs);
6450
6451                 /*
6452                  * If there is something to dump, add space for the dump
6453                  * itself and for the field that tells the dynamic size,
6454                  * which is how many have been actually dumped.
6455                  */
6456                 if (stack_size)
6457                         size += sizeof(u64) + stack_size;
6458
6459                 data->stack_user_size = stack_size;
6460                 header->size += size;
6461         }
6462
6463         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6464                 /* regs dump ABI info */
6465                 int size = sizeof(u64);
6466
6467                 perf_sample_regs_intr(&data->regs_intr, regs);
6468
6469                 if (data->regs_intr.regs) {
6470                         u64 mask = event->attr.sample_regs_intr;
6471
6472                         size += hweight64(mask) * sizeof(u64);
6473                 }
6474
6475                 header->size += size;
6476         }
6477
6478         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6479                 data->phys_addr = perf_virt_to_phys(data->addr);
6480 }
6481
6482 static __always_inline void
6483 __perf_event_output(struct perf_event *event,
6484                     struct perf_sample_data *data,
6485                     struct pt_regs *regs,
6486                     int (*output_begin)(struct perf_output_handle *,
6487                                         struct perf_event *,
6488                                         unsigned int))
6489 {
6490         struct perf_output_handle handle;
6491         struct perf_event_header header;
6492
6493         /* protect the callchain buffers */
6494         rcu_read_lock();
6495
6496         perf_prepare_sample(&header, data, event, regs);
6497
6498         if (output_begin(&handle, event, header.size))
6499                 goto exit;
6500
6501         perf_output_sample(&handle, &header, data, event);
6502
6503         perf_output_end(&handle);
6504
6505 exit:
6506         rcu_read_unlock();
6507 }
6508
6509 void
6510 perf_event_output_forward(struct perf_event *event,
6511                          struct perf_sample_data *data,
6512                          struct pt_regs *regs)
6513 {
6514         __perf_event_output(event, data, regs, perf_output_begin_forward);
6515 }
6516
6517 void
6518 perf_event_output_backward(struct perf_event *event,
6519                            struct perf_sample_data *data,
6520                            struct pt_regs *regs)
6521 {
6522         __perf_event_output(event, data, regs, perf_output_begin_backward);
6523 }
6524
6525 void
6526 perf_event_output(struct perf_event *event,
6527                   struct perf_sample_data *data,
6528                   struct pt_regs *regs)
6529 {
6530         __perf_event_output(event, data, regs, perf_output_begin);
6531 }
6532
6533 /*
6534  * read event_id
6535  */
6536
6537 struct perf_read_event {
6538         struct perf_event_header        header;
6539
6540         u32                             pid;
6541         u32                             tid;
6542 };
6543
6544 static void
6545 perf_event_read_event(struct perf_event *event,
6546                         struct task_struct *task)
6547 {
6548         struct perf_output_handle handle;
6549         struct perf_sample_data sample;
6550         struct perf_read_event read_event = {
6551                 .header = {
6552                         .type = PERF_RECORD_READ,
6553                         .misc = 0,
6554                         .size = sizeof(read_event) + event->read_size,
6555                 },
6556                 .pid = perf_event_pid(event, task),
6557                 .tid = perf_event_tid(event, task),
6558         };
6559         int ret;
6560
6561         perf_event_header__init_id(&read_event.header, &sample, event);
6562         ret = perf_output_begin(&handle, event, read_event.header.size);
6563         if (ret)
6564                 return;
6565
6566         perf_output_put(&handle, read_event);
6567         perf_output_read(&handle, event);
6568         perf_event__output_id_sample(event, &handle, &sample);
6569
6570         perf_output_end(&handle);
6571 }
6572
6573 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6574
6575 static void
6576 perf_iterate_ctx(struct perf_event_context *ctx,
6577                    perf_iterate_f output,
6578                    void *data, bool all)
6579 {
6580         struct perf_event *event;
6581
6582         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6583                 if (!all) {
6584                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6585                                 continue;
6586                         if (!event_filter_match(event))
6587                                 continue;
6588                 }
6589
6590                 output(event, data);
6591         }
6592 }
6593
6594 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6595 {
6596         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6597         struct perf_event *event;
6598
6599         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6600                 /*
6601                  * Skip events that are not fully formed yet; ensure that
6602                  * if we observe event->ctx, both event and ctx will be
6603                  * complete enough. See perf_install_in_context().
6604                  */
6605                 if (!smp_load_acquire(&event->ctx))
6606                         continue;
6607
6608                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6609                         continue;
6610                 if (!event_filter_match(event))
6611                         continue;
6612                 output(event, data);
6613         }
6614 }
6615
6616 /*
6617  * Iterate all events that need to receive side-band events.
6618  *
6619  * For new callers; ensure that account_pmu_sb_event() includes
6620  * your event, otherwise it might not get delivered.
6621  */
6622 static void
6623 perf_iterate_sb(perf_iterate_f output, void *data,
6624                struct perf_event_context *task_ctx)
6625 {
6626         struct perf_event_context *ctx;
6627         int ctxn;
6628
6629         rcu_read_lock();
6630         preempt_disable();
6631
6632         /*
6633          * If we have task_ctx != NULL we only notify the task context itself.
6634          * The task_ctx is set only for EXIT events before releasing task
6635          * context.
6636          */
6637         if (task_ctx) {
6638                 perf_iterate_ctx(task_ctx, output, data, false);
6639                 goto done;
6640         }
6641
6642         perf_iterate_sb_cpu(output, data);
6643
6644         for_each_task_context_nr(ctxn) {
6645                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6646                 if (ctx)
6647                         perf_iterate_ctx(ctx, output, data, false);
6648         }
6649 done:
6650         preempt_enable();
6651         rcu_read_unlock();
6652 }
6653
6654 /*
6655  * Clear all file-based filters at exec, they'll have to be
6656  * re-instated when/if these objects are mmapped again.
6657  */
6658 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6659 {
6660         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6661         struct perf_addr_filter *filter;
6662         unsigned int restart = 0, count = 0;
6663         unsigned long flags;
6664
6665         if (!has_addr_filter(event))
6666                 return;
6667
6668         raw_spin_lock_irqsave(&ifh->lock, flags);
6669         list_for_each_entry(filter, &ifh->list, entry) {
6670                 if (filter->path.dentry) {
6671                         event->addr_filters_offs[count] = 0;
6672                         restart++;
6673                 }
6674
6675                 count++;
6676         }
6677
6678         if (restart)
6679                 event->addr_filters_gen++;
6680         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6681
6682         if (restart)
6683                 perf_event_stop(event, 1);
6684 }
6685
6686 void perf_event_exec(void)
6687 {
6688         struct perf_event_context *ctx;
6689         int ctxn;
6690
6691         rcu_read_lock();
6692         for_each_task_context_nr(ctxn) {
6693                 ctx = current->perf_event_ctxp[ctxn];
6694                 if (!ctx)
6695                         continue;
6696
6697                 perf_event_enable_on_exec(ctxn);
6698
6699                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6700                                    true);
6701         }
6702         rcu_read_unlock();
6703 }
6704
6705 struct remote_output {
6706         struct ring_buffer      *rb;
6707         int                     err;
6708 };
6709
6710 static void __perf_event_output_stop(struct perf_event *event, void *data)
6711 {
6712         struct perf_event *parent = event->parent;
6713         struct remote_output *ro = data;
6714         struct ring_buffer *rb = ro->rb;
6715         struct stop_event_data sd = {
6716                 .event  = event,
6717         };
6718
6719         if (!has_aux(event))
6720                 return;
6721
6722         if (!parent)
6723                 parent = event;
6724
6725         /*
6726          * In case of inheritance, it will be the parent that links to the
6727          * ring-buffer, but it will be the child that's actually using it.
6728          *
6729          * We are using event::rb to determine if the event should be stopped,
6730          * however this may race with ring_buffer_attach() (through set_output),
6731          * which will make us skip the event that actually needs to be stopped.
6732          * So ring_buffer_attach() has to stop an aux event before re-assigning
6733          * its rb pointer.
6734          */
6735         if (rcu_dereference(parent->rb) == rb)
6736                 ro->err = __perf_event_stop(&sd);
6737 }
6738
6739 static int __perf_pmu_output_stop(void *info)
6740 {
6741         struct perf_event *event = info;
6742         struct pmu *pmu = event->pmu;
6743         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6744         struct remote_output ro = {
6745                 .rb     = event->rb,
6746         };
6747
6748         rcu_read_lock();
6749         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6750         if (cpuctx->task_ctx)
6751                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6752                                    &ro, false);
6753         rcu_read_unlock();
6754
6755         return ro.err;
6756 }
6757
6758 static void perf_pmu_output_stop(struct perf_event *event)
6759 {
6760         struct perf_event *iter;
6761         int err, cpu;
6762
6763 restart:
6764         rcu_read_lock();
6765         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6766                 /*
6767                  * For per-CPU events, we need to make sure that neither they
6768                  * nor their children are running; for cpu==-1 events it's
6769                  * sufficient to stop the event itself if it's active, since
6770                  * it can't have children.
6771                  */
6772                 cpu = iter->cpu;
6773                 if (cpu == -1)
6774                         cpu = READ_ONCE(iter->oncpu);
6775
6776                 if (cpu == -1)
6777                         continue;
6778
6779                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6780                 if (err == -EAGAIN) {
6781                         rcu_read_unlock();
6782                         goto restart;
6783                 }
6784         }
6785         rcu_read_unlock();
6786 }
6787
6788 /*
6789  * task tracking -- fork/exit
6790  *
6791  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6792  */
6793
6794 struct perf_task_event {
6795         struct task_struct              *task;
6796         struct perf_event_context       *task_ctx;
6797
6798         struct {
6799                 struct perf_event_header        header;
6800
6801                 u32                             pid;
6802                 u32                             ppid;
6803                 u32                             tid;
6804                 u32                             ptid;
6805                 u64                             time;
6806         } event_id;
6807 };
6808
6809 static int perf_event_task_match(struct perf_event *event)
6810 {
6811         return event->attr.comm  || event->attr.mmap ||
6812                event->attr.mmap2 || event->attr.mmap_data ||
6813                event->attr.task;
6814 }
6815
6816 static void perf_event_task_output(struct perf_event *event,
6817                                    void *data)
6818 {
6819         struct perf_task_event *task_event = data;
6820         struct perf_output_handle handle;
6821         struct perf_sample_data sample;
6822         struct task_struct *task = task_event->task;
6823         int ret, size = task_event->event_id.header.size;
6824
6825         if (!perf_event_task_match(event))
6826                 return;
6827
6828         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6829
6830         ret = perf_output_begin(&handle, event,
6831                                 task_event->event_id.header.size);
6832         if (ret)
6833                 goto out;
6834
6835         task_event->event_id.pid = perf_event_pid(event, task);
6836         task_event->event_id.ppid = perf_event_pid(event, current);
6837
6838         task_event->event_id.tid = perf_event_tid(event, task);
6839         task_event->event_id.ptid = perf_event_tid(event, current);
6840
6841         task_event->event_id.time = perf_event_clock(event);
6842
6843         perf_output_put(&handle, task_event->event_id);
6844
6845         perf_event__output_id_sample(event, &handle, &sample);
6846
6847         perf_output_end(&handle);
6848 out:
6849         task_event->event_id.header.size = size;
6850 }
6851
6852 static void perf_event_task(struct task_struct *task,
6853                               struct perf_event_context *task_ctx,
6854                               int new)
6855 {
6856         struct perf_task_event task_event;
6857
6858         if (!atomic_read(&nr_comm_events) &&
6859             !atomic_read(&nr_mmap_events) &&
6860             !atomic_read(&nr_task_events))
6861                 return;
6862
6863         task_event = (struct perf_task_event){
6864                 .task     = task,
6865                 .task_ctx = task_ctx,
6866                 .event_id    = {
6867                         .header = {
6868                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6869                                 .misc = 0,
6870                                 .size = sizeof(task_event.event_id),
6871                         },
6872                         /* .pid  */
6873                         /* .ppid */
6874                         /* .tid  */
6875                         /* .ptid */
6876                         /* .time */
6877                 },
6878         };
6879
6880         perf_iterate_sb(perf_event_task_output,
6881                        &task_event,
6882                        task_ctx);
6883 }
6884
6885 void perf_event_fork(struct task_struct *task)
6886 {
6887         perf_event_task(task, NULL, 1);
6888         perf_event_namespaces(task);
6889 }
6890
6891 /*
6892  * comm tracking
6893  */
6894
6895 struct perf_comm_event {
6896         struct task_struct      *task;
6897         char                    *comm;
6898         int                     comm_size;
6899
6900         struct {
6901                 struct perf_event_header        header;
6902
6903                 u32                             pid;
6904                 u32                             tid;
6905         } event_id;
6906 };
6907
6908 static int perf_event_comm_match(struct perf_event *event)
6909 {
6910         return event->attr.comm;
6911 }
6912
6913 static void perf_event_comm_output(struct perf_event *event,
6914                                    void *data)
6915 {
6916         struct perf_comm_event *comm_event = data;
6917         struct perf_output_handle handle;
6918         struct perf_sample_data sample;
6919         int size = comm_event->event_id.header.size;
6920         int ret;
6921
6922         if (!perf_event_comm_match(event))
6923                 return;
6924
6925         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6926         ret = perf_output_begin(&handle, event,
6927                                 comm_event->event_id.header.size);
6928
6929         if (ret)
6930                 goto out;
6931
6932         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6933         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6934
6935         perf_output_put(&handle, comm_event->event_id);
6936         __output_copy(&handle, comm_event->comm,
6937                                    comm_event->comm_size);
6938
6939         perf_event__output_id_sample(event, &handle, &sample);
6940
6941         perf_output_end(&handle);
6942 out:
6943         comm_event->event_id.header.size = size;
6944 }
6945
6946 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6947 {
6948         char comm[TASK_COMM_LEN];
6949         unsigned int size;
6950
6951         memset(comm, 0, sizeof(comm));
6952         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6953         size = ALIGN(strlen(comm)+1, sizeof(u64));
6954
6955         comm_event->comm = comm;
6956         comm_event->comm_size = size;
6957
6958         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6959
6960         perf_iterate_sb(perf_event_comm_output,
6961                        comm_event,
6962                        NULL);
6963 }
6964
6965 void perf_event_comm(struct task_struct *task, bool exec)
6966 {
6967         struct perf_comm_event comm_event;
6968
6969         if (!atomic_read(&nr_comm_events))
6970                 return;
6971
6972         comm_event = (struct perf_comm_event){
6973                 .task   = task,
6974                 /* .comm      */
6975                 /* .comm_size */
6976                 .event_id  = {
6977                         .header = {
6978                                 .type = PERF_RECORD_COMM,
6979                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6980                                 /* .size */
6981                         },
6982                         /* .pid */
6983                         /* .tid */
6984                 },
6985         };
6986
6987         perf_event_comm_event(&comm_event);
6988 }
6989
6990 /*
6991  * namespaces tracking
6992  */
6993
6994 struct perf_namespaces_event {
6995         struct task_struct              *task;
6996
6997         struct {
6998                 struct perf_event_header        header;
6999
7000                 u32                             pid;
7001                 u32                             tid;
7002                 u64                             nr_namespaces;
7003                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7004         } event_id;
7005 };
7006
7007 static int perf_event_namespaces_match(struct perf_event *event)
7008 {
7009         return event->attr.namespaces;
7010 }
7011
7012 static void perf_event_namespaces_output(struct perf_event *event,
7013                                          void *data)
7014 {
7015         struct perf_namespaces_event *namespaces_event = data;
7016         struct perf_output_handle handle;
7017         struct perf_sample_data sample;
7018         u16 header_size = namespaces_event->event_id.header.size;
7019         int ret;
7020
7021         if (!perf_event_namespaces_match(event))
7022                 return;
7023
7024         perf_event_header__init_id(&namespaces_event->event_id.header,
7025                                    &sample, event);
7026         ret = perf_output_begin(&handle, event,
7027                                 namespaces_event->event_id.header.size);
7028         if (ret)
7029                 goto out;
7030
7031         namespaces_event->event_id.pid = perf_event_pid(event,
7032                                                         namespaces_event->task);
7033         namespaces_event->event_id.tid = perf_event_tid(event,
7034                                                         namespaces_event->task);
7035
7036         perf_output_put(&handle, namespaces_event->event_id);
7037
7038         perf_event__output_id_sample(event, &handle, &sample);
7039
7040         perf_output_end(&handle);
7041 out:
7042         namespaces_event->event_id.header.size = header_size;
7043 }
7044
7045 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7046                                    struct task_struct *task,
7047                                    const struct proc_ns_operations *ns_ops)
7048 {
7049         struct path ns_path;
7050         struct inode *ns_inode;
7051         void *error;
7052
7053         error = ns_get_path(&ns_path, task, ns_ops);
7054         if (!error) {
7055                 ns_inode = ns_path.dentry->d_inode;
7056                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7057                 ns_link_info->ino = ns_inode->i_ino;
7058                 path_put(&ns_path);
7059         }
7060 }
7061
7062 void perf_event_namespaces(struct task_struct *task)
7063 {
7064         struct perf_namespaces_event namespaces_event;
7065         struct perf_ns_link_info *ns_link_info;
7066
7067         if (!atomic_read(&nr_namespaces_events))
7068                 return;
7069
7070         namespaces_event = (struct perf_namespaces_event){
7071                 .task   = task,
7072                 .event_id  = {
7073                         .header = {
7074                                 .type = PERF_RECORD_NAMESPACES,
7075                                 .misc = 0,
7076                                 .size = sizeof(namespaces_event.event_id),
7077                         },
7078                         /* .pid */
7079                         /* .tid */
7080                         .nr_namespaces = NR_NAMESPACES,
7081                         /* .link_info[NR_NAMESPACES] */
7082                 },
7083         };
7084
7085         ns_link_info = namespaces_event.event_id.link_info;
7086
7087         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7088                                task, &mntns_operations);
7089
7090 #ifdef CONFIG_USER_NS
7091         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7092                                task, &userns_operations);
7093 #endif
7094 #ifdef CONFIG_NET_NS
7095         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7096                                task, &netns_operations);
7097 #endif
7098 #ifdef CONFIG_UTS_NS
7099         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7100                                task, &utsns_operations);
7101 #endif
7102 #ifdef CONFIG_IPC_NS
7103         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7104                                task, &ipcns_operations);
7105 #endif
7106 #ifdef CONFIG_PID_NS
7107         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7108                                task, &pidns_operations);
7109 #endif
7110 #ifdef CONFIG_CGROUPS
7111         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7112                                task, &cgroupns_operations);
7113 #endif
7114
7115         perf_iterate_sb(perf_event_namespaces_output,
7116                         &namespaces_event,
7117                         NULL);
7118 }
7119
7120 /*
7121  * mmap tracking
7122  */
7123
7124 struct perf_mmap_event {
7125         struct vm_area_struct   *vma;
7126
7127         const char              *file_name;
7128         int                     file_size;
7129         int                     maj, min;
7130         u64                     ino;
7131         u64                     ino_generation;
7132         u32                     prot, flags;
7133
7134         struct {
7135                 struct perf_event_header        header;
7136
7137                 u32                             pid;
7138                 u32                             tid;
7139                 u64                             start;
7140                 u64                             len;
7141                 u64                             pgoff;
7142         } event_id;
7143 };
7144
7145 static int perf_event_mmap_match(struct perf_event *event,
7146                                  void *data)
7147 {
7148         struct perf_mmap_event *mmap_event = data;
7149         struct vm_area_struct *vma = mmap_event->vma;
7150         int executable = vma->vm_flags & VM_EXEC;
7151
7152         return (!executable && event->attr.mmap_data) ||
7153                (executable && (event->attr.mmap || event->attr.mmap2));
7154 }
7155
7156 static void perf_event_mmap_output(struct perf_event *event,
7157                                    void *data)
7158 {
7159         struct perf_mmap_event *mmap_event = data;
7160         struct perf_output_handle handle;
7161         struct perf_sample_data sample;
7162         int size = mmap_event->event_id.header.size;
7163         int ret;
7164
7165         if (!perf_event_mmap_match(event, data))
7166                 return;
7167
7168         if (event->attr.mmap2) {
7169                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7170                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7171                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7172                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7173                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7174                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7175                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7176         }
7177
7178         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7179         ret = perf_output_begin(&handle, event,
7180                                 mmap_event->event_id.header.size);
7181         if (ret)
7182                 goto out;
7183
7184         mmap_event->event_id.pid = perf_event_pid(event, current);
7185         mmap_event->event_id.tid = perf_event_tid(event, current);
7186
7187         perf_output_put(&handle, mmap_event->event_id);
7188
7189         if (event->attr.mmap2) {
7190                 perf_output_put(&handle, mmap_event->maj);
7191                 perf_output_put(&handle, mmap_event->min);
7192                 perf_output_put(&handle, mmap_event->ino);
7193                 perf_output_put(&handle, mmap_event->ino_generation);
7194                 perf_output_put(&handle, mmap_event->prot);
7195                 perf_output_put(&handle, mmap_event->flags);
7196         }
7197
7198         __output_copy(&handle, mmap_event->file_name,
7199                                    mmap_event->file_size);
7200
7201         perf_event__output_id_sample(event, &handle, &sample);
7202
7203         perf_output_end(&handle);
7204 out:
7205         mmap_event->event_id.header.size = size;
7206 }
7207
7208 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7209 {
7210         struct vm_area_struct *vma = mmap_event->vma;
7211         struct file *file = vma->vm_file;
7212         int maj = 0, min = 0;
7213         u64 ino = 0, gen = 0;
7214         u32 prot = 0, flags = 0;
7215         unsigned int size;
7216         char tmp[16];
7217         char *buf = NULL;
7218         char *name;
7219
7220         if (vma->vm_flags & VM_READ)
7221                 prot |= PROT_READ;
7222         if (vma->vm_flags & VM_WRITE)
7223                 prot |= PROT_WRITE;
7224         if (vma->vm_flags & VM_EXEC)
7225                 prot |= PROT_EXEC;
7226
7227         if (vma->vm_flags & VM_MAYSHARE)
7228                 flags = MAP_SHARED;
7229         else
7230                 flags = MAP_PRIVATE;
7231
7232         if (vma->vm_flags & VM_DENYWRITE)
7233                 flags |= MAP_DENYWRITE;
7234         if (vma->vm_flags & VM_MAYEXEC)
7235                 flags |= MAP_EXECUTABLE;
7236         if (vma->vm_flags & VM_LOCKED)
7237                 flags |= MAP_LOCKED;
7238         if (vma->vm_flags & VM_HUGETLB)
7239                 flags |= MAP_HUGETLB;
7240
7241         if (file) {
7242                 struct inode *inode;
7243                 dev_t dev;
7244
7245                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7246                 if (!buf) {
7247                         name = "//enomem";
7248                         goto cpy_name;
7249                 }
7250                 /*
7251                  * d_path() works from the end of the rb backwards, so we
7252                  * need to add enough zero bytes after the string to handle
7253                  * the 64bit alignment we do later.
7254                  */
7255                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7256                 if (IS_ERR(name)) {
7257                         name = "//toolong";
7258                         goto cpy_name;
7259                 }
7260                 inode = file_inode(vma->vm_file);
7261                 dev = inode->i_sb->s_dev;
7262                 ino = inode->i_ino;
7263                 gen = inode->i_generation;
7264                 maj = MAJOR(dev);
7265                 min = MINOR(dev);
7266
7267                 goto got_name;
7268         } else {
7269                 if (vma->vm_ops && vma->vm_ops->name) {
7270                         name = (char *) vma->vm_ops->name(vma);
7271                         if (name)
7272                                 goto cpy_name;
7273                 }
7274
7275                 name = (char *)arch_vma_name(vma);
7276                 if (name)
7277                         goto cpy_name;
7278
7279                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7280                                 vma->vm_end >= vma->vm_mm->brk) {
7281                         name = "[heap]";
7282                         goto cpy_name;
7283                 }
7284                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7285                                 vma->vm_end >= vma->vm_mm->start_stack) {
7286                         name = "[stack]";
7287                         goto cpy_name;
7288                 }
7289
7290                 name = "//anon";
7291                 goto cpy_name;
7292         }
7293
7294 cpy_name:
7295         strlcpy(tmp, name, sizeof(tmp));
7296         name = tmp;
7297 got_name:
7298         /*
7299          * Since our buffer works in 8 byte units we need to align our string
7300          * size to a multiple of 8. However, we must guarantee the tail end is
7301          * zero'd out to avoid leaking random bits to userspace.
7302          */
7303         size = strlen(name)+1;
7304         while (!IS_ALIGNED(size, sizeof(u64)))
7305                 name[size++] = '\0';
7306
7307         mmap_event->file_name = name;
7308         mmap_event->file_size = size;
7309         mmap_event->maj = maj;
7310         mmap_event->min = min;
7311         mmap_event->ino = ino;
7312         mmap_event->ino_generation = gen;
7313         mmap_event->prot = prot;
7314         mmap_event->flags = flags;
7315
7316         if (!(vma->vm_flags & VM_EXEC))
7317                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7318
7319         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7320
7321         perf_iterate_sb(perf_event_mmap_output,
7322                        mmap_event,
7323                        NULL);
7324
7325         kfree(buf);
7326 }
7327
7328 /*
7329  * Check whether inode and address range match filter criteria.
7330  */
7331 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7332                                      struct file *file, unsigned long offset,
7333                                      unsigned long size)
7334 {
7335         /* d_inode(NULL) won't be equal to any mapped user-space file */
7336         if (!filter->path.dentry)
7337                 return false;
7338
7339         if (d_inode(filter->path.dentry) != file_inode(file))
7340                 return false;
7341
7342         if (filter->offset > offset + size)
7343                 return false;
7344
7345         if (filter->offset + filter->size < offset)
7346                 return false;
7347
7348         return true;
7349 }
7350
7351 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7352 {
7353         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7354         struct vm_area_struct *vma = data;
7355         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7356         struct file *file = vma->vm_file;
7357         struct perf_addr_filter *filter;
7358         unsigned int restart = 0, count = 0;
7359
7360         if (!has_addr_filter(event))
7361                 return;
7362
7363         if (!file)
7364                 return;
7365
7366         raw_spin_lock_irqsave(&ifh->lock, flags);
7367         list_for_each_entry(filter, &ifh->list, entry) {
7368                 if (perf_addr_filter_match(filter, file, off,
7369                                              vma->vm_end - vma->vm_start)) {
7370                         event->addr_filters_offs[count] = vma->vm_start;
7371                         restart++;
7372                 }
7373
7374                 count++;
7375         }
7376
7377         if (restart)
7378                 event->addr_filters_gen++;
7379         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7380
7381         if (restart)
7382                 perf_event_stop(event, 1);
7383 }
7384
7385 /*
7386  * Adjust all task's events' filters to the new vma
7387  */
7388 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7389 {
7390         struct perf_event_context *ctx;
7391         int ctxn;
7392
7393         /*
7394          * Data tracing isn't supported yet and as such there is no need
7395          * to keep track of anything that isn't related to executable code:
7396          */
7397         if (!(vma->vm_flags & VM_EXEC))
7398                 return;
7399
7400         rcu_read_lock();
7401         for_each_task_context_nr(ctxn) {
7402                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7403                 if (!ctx)
7404                         continue;
7405
7406                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7407         }
7408         rcu_read_unlock();
7409 }
7410
7411 void perf_event_mmap(struct vm_area_struct *vma)
7412 {
7413         struct perf_mmap_event mmap_event;
7414
7415         if (!atomic_read(&nr_mmap_events))
7416                 return;
7417
7418         mmap_event = (struct perf_mmap_event){
7419                 .vma    = vma,
7420                 /* .file_name */
7421                 /* .file_size */
7422                 .event_id  = {
7423                         .header = {
7424                                 .type = PERF_RECORD_MMAP,
7425                                 .misc = PERF_RECORD_MISC_USER,
7426                                 /* .size */
7427                         },
7428                         /* .pid */
7429                         /* .tid */
7430                         .start  = vma->vm_start,
7431                         .len    = vma->vm_end - vma->vm_start,
7432                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7433                 },
7434                 /* .maj (attr_mmap2 only) */
7435                 /* .min (attr_mmap2 only) */
7436                 /* .ino (attr_mmap2 only) */
7437                 /* .ino_generation (attr_mmap2 only) */
7438                 /* .prot (attr_mmap2 only) */
7439                 /* .flags (attr_mmap2 only) */
7440         };
7441
7442         perf_addr_filters_adjust(vma);
7443         perf_event_mmap_event(&mmap_event);
7444 }
7445
7446 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7447                           unsigned long size, u64 flags)
7448 {
7449         struct perf_output_handle handle;
7450         struct perf_sample_data sample;
7451         struct perf_aux_event {
7452                 struct perf_event_header        header;
7453                 u64                             offset;
7454                 u64                             size;
7455                 u64                             flags;
7456         } rec = {
7457                 .header = {
7458                         .type = PERF_RECORD_AUX,
7459                         .misc = 0,
7460                         .size = sizeof(rec),
7461                 },
7462                 .offset         = head,
7463                 .size           = size,
7464                 .flags          = flags,
7465         };
7466         int ret;
7467
7468         perf_event_header__init_id(&rec.header, &sample, event);
7469         ret = perf_output_begin(&handle, event, rec.header.size);
7470
7471         if (ret)
7472                 return;
7473
7474         perf_output_put(&handle, rec);
7475         perf_event__output_id_sample(event, &handle, &sample);
7476
7477         perf_output_end(&handle);
7478 }
7479
7480 /*
7481  * Lost/dropped samples logging
7482  */
7483 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7484 {
7485         struct perf_output_handle handle;
7486         struct perf_sample_data sample;
7487         int ret;
7488
7489         struct {
7490                 struct perf_event_header        header;
7491                 u64                             lost;
7492         } lost_samples_event = {
7493                 .header = {
7494                         .type = PERF_RECORD_LOST_SAMPLES,
7495                         .misc = 0,
7496                         .size = sizeof(lost_samples_event),
7497                 },
7498                 .lost           = lost,
7499         };
7500
7501         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7502
7503         ret = perf_output_begin(&handle, event,
7504                                 lost_samples_event.header.size);
7505         if (ret)
7506                 return;
7507
7508         perf_output_put(&handle, lost_samples_event);
7509         perf_event__output_id_sample(event, &handle, &sample);
7510         perf_output_end(&handle);
7511 }
7512
7513 /*
7514  * context_switch tracking
7515  */
7516
7517 struct perf_switch_event {
7518         struct task_struct      *task;
7519         struct task_struct      *next_prev;
7520
7521         struct {
7522                 struct perf_event_header        header;
7523                 u32                             next_prev_pid;
7524                 u32                             next_prev_tid;
7525         } event_id;
7526 };
7527
7528 static int perf_event_switch_match(struct perf_event *event)
7529 {
7530         return event->attr.context_switch;
7531 }
7532
7533 static void perf_event_switch_output(struct perf_event *event, void *data)
7534 {
7535         struct perf_switch_event *se = data;
7536         struct perf_output_handle handle;
7537         struct perf_sample_data sample;
7538         int ret;
7539
7540         if (!perf_event_switch_match(event))
7541                 return;
7542
7543         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7544         if (event->ctx->task) {
7545                 se->event_id.header.type = PERF_RECORD_SWITCH;
7546                 se->event_id.header.size = sizeof(se->event_id.header);
7547         } else {
7548                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7549                 se->event_id.header.size = sizeof(se->event_id);
7550                 se->event_id.next_prev_pid =
7551                                         perf_event_pid(event, se->next_prev);
7552                 se->event_id.next_prev_tid =
7553                                         perf_event_tid(event, se->next_prev);
7554         }
7555
7556         perf_event_header__init_id(&se->event_id.header, &sample, event);
7557
7558         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7559         if (ret)
7560                 return;
7561
7562         if (event->ctx->task)
7563                 perf_output_put(&handle, se->event_id.header);
7564         else
7565                 perf_output_put(&handle, se->event_id);
7566
7567         perf_event__output_id_sample(event, &handle, &sample);
7568
7569         perf_output_end(&handle);
7570 }
7571
7572 static void perf_event_switch(struct task_struct *task,
7573                               struct task_struct *next_prev, bool sched_in)
7574 {
7575         struct perf_switch_event switch_event;
7576
7577         /* N.B. caller checks nr_switch_events != 0 */
7578
7579         switch_event = (struct perf_switch_event){
7580                 .task           = task,
7581                 .next_prev      = next_prev,
7582                 .event_id       = {
7583                         .header = {
7584                                 /* .type */
7585                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7586                                 /* .size */
7587                         },
7588                         /* .next_prev_pid */
7589                         /* .next_prev_tid */
7590                 },
7591         };
7592
7593         if (!sched_in && task->state == TASK_RUNNING)
7594                 switch_event.event_id.header.misc |=
7595                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7596
7597         perf_iterate_sb(perf_event_switch_output,
7598                        &switch_event,
7599                        NULL);
7600 }
7601
7602 /*
7603  * IRQ throttle logging
7604  */
7605
7606 static void perf_log_throttle(struct perf_event *event, int enable)
7607 {
7608         struct perf_output_handle handle;
7609         struct perf_sample_data sample;
7610         int ret;
7611
7612         struct {
7613                 struct perf_event_header        header;
7614                 u64                             time;
7615                 u64                             id;
7616                 u64                             stream_id;
7617         } throttle_event = {
7618                 .header = {
7619                         .type = PERF_RECORD_THROTTLE,
7620                         .misc = 0,
7621                         .size = sizeof(throttle_event),
7622                 },
7623                 .time           = perf_event_clock(event),
7624                 .id             = primary_event_id(event),
7625                 .stream_id      = event->id,
7626         };
7627
7628         if (enable)
7629                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7630
7631         perf_event_header__init_id(&throttle_event.header, &sample, event);
7632
7633         ret = perf_output_begin(&handle, event,
7634                                 throttle_event.header.size);
7635         if (ret)
7636                 return;
7637
7638         perf_output_put(&handle, throttle_event);
7639         perf_event__output_id_sample(event, &handle, &sample);
7640         perf_output_end(&handle);
7641 }
7642
7643 void perf_event_itrace_started(struct perf_event *event)
7644 {
7645         event->attach_state |= PERF_ATTACH_ITRACE;
7646 }
7647
7648 static void perf_log_itrace_start(struct perf_event *event)
7649 {
7650         struct perf_output_handle handle;
7651         struct perf_sample_data sample;
7652         struct perf_aux_event {
7653                 struct perf_event_header        header;
7654                 u32                             pid;
7655                 u32                             tid;
7656         } rec;
7657         int ret;
7658
7659         if (event->parent)
7660                 event = event->parent;
7661
7662         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7663             event->attach_state & PERF_ATTACH_ITRACE)
7664                 return;
7665
7666         rec.header.type = PERF_RECORD_ITRACE_START;
7667         rec.header.misc = 0;
7668         rec.header.size = sizeof(rec);
7669         rec.pid = perf_event_pid(event, current);
7670         rec.tid = perf_event_tid(event, current);
7671
7672         perf_event_header__init_id(&rec.header, &sample, event);
7673         ret = perf_output_begin(&handle, event, rec.header.size);
7674
7675         if (ret)
7676                 return;
7677
7678         perf_output_put(&handle, rec);
7679         perf_event__output_id_sample(event, &handle, &sample);
7680
7681         perf_output_end(&handle);
7682 }
7683
7684 static int
7685 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7686 {
7687         struct hw_perf_event *hwc = &event->hw;
7688         int ret = 0;
7689         u64 seq;
7690
7691         seq = __this_cpu_read(perf_throttled_seq);
7692         if (seq != hwc->interrupts_seq) {
7693                 hwc->interrupts_seq = seq;
7694                 hwc->interrupts = 1;
7695         } else {
7696                 hwc->interrupts++;
7697                 if (unlikely(throttle
7698                              && hwc->interrupts >= max_samples_per_tick)) {
7699                         __this_cpu_inc(perf_throttled_count);
7700                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7701                         hwc->interrupts = MAX_INTERRUPTS;
7702                         perf_log_throttle(event, 0);
7703                         ret = 1;
7704                 }
7705         }
7706
7707         if (event->attr.freq) {
7708                 u64 now = perf_clock();
7709                 s64 delta = now - hwc->freq_time_stamp;
7710
7711                 hwc->freq_time_stamp = now;
7712
7713                 if (delta > 0 && delta < 2*TICK_NSEC)
7714                         perf_adjust_period(event, delta, hwc->last_period, true);
7715         }
7716
7717         return ret;
7718 }
7719
7720 int perf_event_account_interrupt(struct perf_event *event)
7721 {
7722         return __perf_event_account_interrupt(event, 1);
7723 }
7724
7725 /*
7726  * Generic event overflow handling, sampling.
7727  */
7728
7729 static int __perf_event_overflow(struct perf_event *event,
7730                                    int throttle, struct perf_sample_data *data,
7731                                    struct pt_regs *regs)
7732 {
7733         int events = atomic_read(&event->event_limit);
7734         int ret = 0;
7735
7736         /*
7737          * Non-sampling counters might still use the PMI to fold short
7738          * hardware counters, ignore those.
7739          */
7740         if (unlikely(!is_sampling_event(event)))
7741                 return 0;
7742
7743         ret = __perf_event_account_interrupt(event, throttle);
7744
7745         /*
7746          * XXX event_limit might not quite work as expected on inherited
7747          * events
7748          */
7749
7750         event->pending_kill = POLL_IN;
7751         if (events && atomic_dec_and_test(&event->event_limit)) {
7752                 ret = 1;
7753                 event->pending_kill = POLL_HUP;
7754
7755                 perf_event_disable_inatomic(event);
7756         }
7757
7758         READ_ONCE(event->overflow_handler)(event, data, regs);
7759
7760         if (*perf_event_fasync(event) && event->pending_kill) {
7761                 event->pending_wakeup = 1;
7762                 irq_work_queue(&event->pending);
7763         }
7764
7765         return ret;
7766 }
7767
7768 int perf_event_overflow(struct perf_event *event,
7769                           struct perf_sample_data *data,
7770                           struct pt_regs *regs)
7771 {
7772         return __perf_event_overflow(event, 1, data, regs);
7773 }
7774
7775 /*
7776  * Generic software event infrastructure
7777  */
7778
7779 struct swevent_htable {
7780         struct swevent_hlist            *swevent_hlist;
7781         struct mutex                    hlist_mutex;
7782         int                             hlist_refcount;
7783
7784         /* Recursion avoidance in each contexts */
7785         int                             recursion[PERF_NR_CONTEXTS];
7786 };
7787
7788 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7789
7790 /*
7791  * We directly increment event->count and keep a second value in
7792  * event->hw.period_left to count intervals. This period event
7793  * is kept in the range [-sample_period, 0] so that we can use the
7794  * sign as trigger.
7795  */
7796
7797 u64 perf_swevent_set_period(struct perf_event *event)
7798 {
7799         struct hw_perf_event *hwc = &event->hw;
7800         u64 period = hwc->last_period;
7801         u64 nr, offset;
7802         s64 old, val;
7803
7804         hwc->last_period = hwc->sample_period;
7805
7806 again:
7807         old = val = local64_read(&hwc->period_left);
7808         if (val < 0)
7809                 return 0;
7810
7811         nr = div64_u64(period + val, period);
7812         offset = nr * period;
7813         val -= offset;
7814         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7815                 goto again;
7816
7817         return nr;
7818 }
7819
7820 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7821                                     struct perf_sample_data *data,
7822                                     struct pt_regs *regs)
7823 {
7824         struct hw_perf_event *hwc = &event->hw;
7825         int throttle = 0;
7826
7827         if (!overflow)
7828                 overflow = perf_swevent_set_period(event);
7829
7830         if (hwc->interrupts == MAX_INTERRUPTS)
7831                 return;
7832
7833         for (; overflow; overflow--) {
7834                 if (__perf_event_overflow(event, throttle,
7835                                             data, regs)) {
7836                         /*
7837                          * We inhibit the overflow from happening when
7838                          * hwc->interrupts == MAX_INTERRUPTS.
7839                          */
7840                         break;
7841                 }
7842                 throttle = 1;
7843         }
7844 }
7845
7846 static void perf_swevent_event(struct perf_event *event, u64 nr,
7847                                struct perf_sample_data *data,
7848                                struct pt_regs *regs)
7849 {
7850         struct hw_perf_event *hwc = &event->hw;
7851
7852         local64_add(nr, &event->count);
7853
7854         if (!regs)
7855                 return;
7856
7857         if (!is_sampling_event(event))
7858                 return;
7859
7860         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7861                 data->period = nr;
7862                 return perf_swevent_overflow(event, 1, data, regs);
7863         } else
7864                 data->period = event->hw.last_period;
7865
7866         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7867                 return perf_swevent_overflow(event, 1, data, regs);
7868
7869         if (local64_add_negative(nr, &hwc->period_left))
7870                 return;
7871
7872         perf_swevent_overflow(event, 0, data, regs);
7873 }
7874
7875 static int perf_exclude_event(struct perf_event *event,
7876                               struct pt_regs *regs)
7877 {
7878         if (event->hw.state & PERF_HES_STOPPED)
7879                 return 1;
7880
7881         if (regs) {
7882                 if (event->attr.exclude_user && user_mode(regs))
7883                         return 1;
7884
7885                 if (event->attr.exclude_kernel && !user_mode(regs))
7886                         return 1;
7887         }
7888
7889         return 0;
7890 }
7891
7892 static int perf_swevent_match(struct perf_event *event,
7893                                 enum perf_type_id type,
7894                                 u32 event_id,
7895                                 struct perf_sample_data *data,
7896                                 struct pt_regs *regs)
7897 {
7898         if (event->attr.type != type)
7899                 return 0;
7900
7901         if (event->attr.config != event_id)
7902                 return 0;
7903
7904         if (perf_exclude_event(event, regs))
7905                 return 0;
7906
7907         return 1;
7908 }
7909
7910 static inline u64 swevent_hash(u64 type, u32 event_id)
7911 {
7912         u64 val = event_id | (type << 32);
7913
7914         return hash_64(val, SWEVENT_HLIST_BITS);
7915 }
7916
7917 static inline struct hlist_head *
7918 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7919 {
7920         u64 hash = swevent_hash(type, event_id);
7921
7922         return &hlist->heads[hash];
7923 }
7924
7925 /* For the read side: events when they trigger */
7926 static inline struct hlist_head *
7927 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7928 {
7929         struct swevent_hlist *hlist;
7930
7931         hlist = rcu_dereference(swhash->swevent_hlist);
7932         if (!hlist)
7933                 return NULL;
7934
7935         return __find_swevent_head(hlist, type, event_id);
7936 }
7937
7938 /* For the event head insertion and removal in the hlist */
7939 static inline struct hlist_head *
7940 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7941 {
7942         struct swevent_hlist *hlist;
7943         u32 event_id = event->attr.config;
7944         u64 type = event->attr.type;
7945
7946         /*
7947          * Event scheduling is always serialized against hlist allocation
7948          * and release. Which makes the protected version suitable here.
7949          * The context lock guarantees that.
7950          */
7951         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7952                                           lockdep_is_held(&event->ctx->lock));
7953         if (!hlist)
7954                 return NULL;
7955
7956         return __find_swevent_head(hlist, type, event_id);
7957 }
7958
7959 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7960                                     u64 nr,
7961                                     struct perf_sample_data *data,
7962                                     struct pt_regs *regs)
7963 {
7964         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7965         struct perf_event *event;
7966         struct hlist_head *head;
7967
7968         rcu_read_lock();
7969         head = find_swevent_head_rcu(swhash, type, event_id);
7970         if (!head)
7971                 goto end;
7972
7973         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7974                 if (perf_swevent_match(event, type, event_id, data, regs))
7975                         perf_swevent_event(event, nr, data, regs);
7976         }
7977 end:
7978         rcu_read_unlock();
7979 }
7980
7981 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7982
7983 int perf_swevent_get_recursion_context(void)
7984 {
7985         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7986
7987         return get_recursion_context(swhash->recursion);
7988 }
7989 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7990
7991 void perf_swevent_put_recursion_context(int rctx)
7992 {
7993         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7994
7995         put_recursion_context(swhash->recursion, rctx);
7996 }
7997
7998 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7999 {
8000         struct perf_sample_data data;
8001
8002         if (WARN_ON_ONCE(!regs))
8003                 return;
8004
8005         perf_sample_data_init(&data, addr, 0);
8006         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8007 }
8008
8009 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8010 {
8011         int rctx;
8012
8013         preempt_disable_notrace();
8014         rctx = perf_swevent_get_recursion_context();
8015         if (unlikely(rctx < 0))
8016                 goto fail;
8017
8018         ___perf_sw_event(event_id, nr, regs, addr);
8019
8020         perf_swevent_put_recursion_context(rctx);
8021 fail:
8022         preempt_enable_notrace();
8023 }
8024
8025 static void perf_swevent_read(struct perf_event *event)
8026 {
8027 }
8028
8029 static int perf_swevent_add(struct perf_event *event, int flags)
8030 {
8031         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8032         struct hw_perf_event *hwc = &event->hw;
8033         struct hlist_head *head;
8034
8035         if (is_sampling_event(event)) {
8036                 hwc->last_period = hwc->sample_period;
8037                 perf_swevent_set_period(event);
8038         }
8039
8040         hwc->state = !(flags & PERF_EF_START);
8041
8042         head = find_swevent_head(swhash, event);
8043         if (WARN_ON_ONCE(!head))
8044                 return -EINVAL;
8045
8046         hlist_add_head_rcu(&event->hlist_entry, head);
8047         perf_event_update_userpage(event);
8048
8049         return 0;
8050 }
8051
8052 static void perf_swevent_del(struct perf_event *event, int flags)
8053 {
8054         hlist_del_rcu(&event->hlist_entry);
8055 }
8056
8057 static void perf_swevent_start(struct perf_event *event, int flags)
8058 {
8059         event->hw.state = 0;
8060 }
8061
8062 static void perf_swevent_stop(struct perf_event *event, int flags)
8063 {
8064         event->hw.state = PERF_HES_STOPPED;
8065 }
8066
8067 /* Deref the hlist from the update side */
8068 static inline struct swevent_hlist *
8069 swevent_hlist_deref(struct swevent_htable *swhash)
8070 {
8071         return rcu_dereference_protected(swhash->swevent_hlist,
8072                                          lockdep_is_held(&swhash->hlist_mutex));
8073 }
8074
8075 static void swevent_hlist_release(struct swevent_htable *swhash)
8076 {
8077         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8078
8079         if (!hlist)
8080                 return;
8081
8082         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8083         kfree_rcu(hlist, rcu_head);
8084 }
8085
8086 static void swevent_hlist_put_cpu(int cpu)
8087 {
8088         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8089
8090         mutex_lock(&swhash->hlist_mutex);
8091
8092         if (!--swhash->hlist_refcount)
8093                 swevent_hlist_release(swhash);
8094
8095         mutex_unlock(&swhash->hlist_mutex);
8096 }
8097
8098 static void swevent_hlist_put(void)
8099 {
8100         int cpu;
8101
8102         for_each_possible_cpu(cpu)
8103                 swevent_hlist_put_cpu(cpu);
8104 }
8105
8106 static int swevent_hlist_get_cpu(int cpu)
8107 {
8108         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8109         int err = 0;
8110
8111         mutex_lock(&swhash->hlist_mutex);
8112         if (!swevent_hlist_deref(swhash) &&
8113             cpumask_test_cpu(cpu, perf_online_mask)) {
8114                 struct swevent_hlist *hlist;
8115
8116                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8117                 if (!hlist) {
8118                         err = -ENOMEM;
8119                         goto exit;
8120                 }
8121                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8122         }
8123         swhash->hlist_refcount++;
8124 exit:
8125         mutex_unlock(&swhash->hlist_mutex);
8126
8127         return err;
8128 }
8129
8130 static int swevent_hlist_get(void)
8131 {
8132         int err, cpu, failed_cpu;
8133
8134         mutex_lock(&pmus_lock);
8135         for_each_possible_cpu(cpu) {
8136                 err = swevent_hlist_get_cpu(cpu);
8137                 if (err) {
8138                         failed_cpu = cpu;
8139                         goto fail;
8140                 }
8141         }
8142         mutex_unlock(&pmus_lock);
8143         return 0;
8144 fail:
8145         for_each_possible_cpu(cpu) {
8146                 if (cpu == failed_cpu)
8147                         break;
8148                 swevent_hlist_put_cpu(cpu);
8149         }
8150         mutex_unlock(&pmus_lock);
8151         return err;
8152 }
8153
8154 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8155
8156 static void sw_perf_event_destroy(struct perf_event *event)
8157 {
8158         u64 event_id = event->attr.config;
8159
8160         WARN_ON(event->parent);
8161
8162         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8163         swevent_hlist_put();
8164 }
8165
8166 static int perf_swevent_init(struct perf_event *event)
8167 {
8168         u64 event_id = event->attr.config;
8169
8170         if (event->attr.type != PERF_TYPE_SOFTWARE)
8171                 return -ENOENT;
8172
8173         /*
8174          * no branch sampling for software events
8175          */
8176         if (has_branch_stack(event))
8177                 return -EOPNOTSUPP;
8178
8179         switch (event_id) {
8180         case PERF_COUNT_SW_CPU_CLOCK:
8181         case PERF_COUNT_SW_TASK_CLOCK:
8182                 return -ENOENT;
8183
8184         default:
8185                 break;
8186         }
8187
8188         if (event_id >= PERF_COUNT_SW_MAX)
8189                 return -ENOENT;
8190
8191         if (!event->parent) {
8192                 int err;
8193
8194                 err = swevent_hlist_get();
8195                 if (err)
8196                         return err;
8197
8198                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8199                 event->destroy = sw_perf_event_destroy;
8200         }
8201
8202         return 0;
8203 }
8204
8205 static struct pmu perf_swevent = {
8206         .task_ctx_nr    = perf_sw_context,
8207
8208         .capabilities   = PERF_PMU_CAP_NO_NMI,
8209
8210         .event_init     = perf_swevent_init,
8211         .add            = perf_swevent_add,
8212         .del            = perf_swevent_del,
8213         .start          = perf_swevent_start,
8214         .stop           = perf_swevent_stop,
8215         .read           = perf_swevent_read,
8216 };
8217
8218 #ifdef CONFIG_EVENT_TRACING
8219
8220 static int perf_tp_filter_match(struct perf_event *event,
8221                                 struct perf_sample_data *data)
8222 {
8223         void *record = data->raw->frag.data;
8224
8225         /* only top level events have filters set */
8226         if (event->parent)
8227                 event = event->parent;
8228
8229         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8230                 return 1;
8231         return 0;
8232 }
8233
8234 static int perf_tp_event_match(struct perf_event *event,
8235                                 struct perf_sample_data *data,
8236                                 struct pt_regs *regs)
8237 {
8238         if (event->hw.state & PERF_HES_STOPPED)
8239                 return 0;
8240         /*
8241          * All tracepoints are from kernel-space.
8242          */
8243         if (event->attr.exclude_kernel)
8244                 return 0;
8245
8246         if (!perf_tp_filter_match(event, data))
8247                 return 0;
8248
8249         return 1;
8250 }
8251
8252 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8253                                struct trace_event_call *call, u64 count,
8254                                struct pt_regs *regs, struct hlist_head *head,
8255                                struct task_struct *task)
8256 {
8257         if (bpf_prog_array_valid(call)) {
8258                 *(struct pt_regs **)raw_data = regs;
8259                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8260                         perf_swevent_put_recursion_context(rctx);
8261                         return;
8262                 }
8263         }
8264         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8265                       rctx, task);
8266 }
8267 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8268
8269 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8270                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8271                    struct task_struct *task)
8272 {
8273         struct perf_sample_data data;
8274         struct perf_event *event;
8275
8276         struct perf_raw_record raw = {
8277                 .frag = {
8278                         .size = entry_size,
8279                         .data = record,
8280                 },
8281         };
8282
8283         perf_sample_data_init(&data, 0, 0);
8284         data.raw = &raw;
8285
8286         perf_trace_buf_update(record, event_type);
8287
8288         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8289                 if (perf_tp_event_match(event, &data, regs))
8290                         perf_swevent_event(event, count, &data, regs);
8291         }
8292
8293         /*
8294          * If we got specified a target task, also iterate its context and
8295          * deliver this event there too.
8296          */
8297         if (task && task != current) {
8298                 struct perf_event_context *ctx;
8299                 struct trace_entry *entry = record;
8300
8301                 rcu_read_lock();
8302                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8303                 if (!ctx)
8304                         goto unlock;
8305
8306                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8307                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8308                                 continue;
8309                         if (event->attr.config != entry->type)
8310                                 continue;
8311                         if (perf_tp_event_match(event, &data, regs))
8312                                 perf_swevent_event(event, count, &data, regs);
8313                 }
8314 unlock:
8315                 rcu_read_unlock();
8316         }
8317
8318         perf_swevent_put_recursion_context(rctx);
8319 }
8320 EXPORT_SYMBOL_GPL(perf_tp_event);
8321
8322 static void tp_perf_event_destroy(struct perf_event *event)
8323 {
8324         perf_trace_destroy(event);
8325 }
8326
8327 static int perf_tp_event_init(struct perf_event *event)
8328 {
8329         int err;
8330
8331         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8332                 return -ENOENT;
8333
8334         /*
8335          * no branch sampling for tracepoint events
8336          */
8337         if (has_branch_stack(event))
8338                 return -EOPNOTSUPP;
8339
8340         err = perf_trace_init(event);
8341         if (err)
8342                 return err;
8343
8344         event->destroy = tp_perf_event_destroy;
8345
8346         return 0;
8347 }
8348
8349 static struct pmu perf_tracepoint = {
8350         .task_ctx_nr    = perf_sw_context,
8351
8352         .event_init     = perf_tp_event_init,
8353         .add            = perf_trace_add,
8354         .del            = perf_trace_del,
8355         .start          = perf_swevent_start,
8356         .stop           = perf_swevent_stop,
8357         .read           = perf_swevent_read,
8358 };
8359
8360 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8361 /*
8362  * Flags in config, used by dynamic PMU kprobe and uprobe
8363  * The flags should match following PMU_FORMAT_ATTR().
8364  *
8365  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8366  *                               if not set, create kprobe/uprobe
8367  */
8368 enum perf_probe_config {
8369         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8370 };
8371
8372 PMU_FORMAT_ATTR(retprobe, "config:0");
8373
8374 static struct attribute *probe_attrs[] = {
8375         &format_attr_retprobe.attr,
8376         NULL,
8377 };
8378
8379 static struct attribute_group probe_format_group = {
8380         .name = "format",
8381         .attrs = probe_attrs,
8382 };
8383
8384 static const struct attribute_group *probe_attr_groups[] = {
8385         &probe_format_group,
8386         NULL,
8387 };
8388 #endif
8389
8390 #ifdef CONFIG_KPROBE_EVENTS
8391 static int perf_kprobe_event_init(struct perf_event *event);
8392 static struct pmu perf_kprobe = {
8393         .task_ctx_nr    = perf_sw_context,
8394         .event_init     = perf_kprobe_event_init,
8395         .add            = perf_trace_add,
8396         .del            = perf_trace_del,
8397         .start          = perf_swevent_start,
8398         .stop           = perf_swevent_stop,
8399         .read           = perf_swevent_read,
8400         .attr_groups    = probe_attr_groups,
8401 };
8402
8403 static int perf_kprobe_event_init(struct perf_event *event)
8404 {
8405         int err;
8406         bool is_retprobe;
8407
8408         if (event->attr.type != perf_kprobe.type)
8409                 return -ENOENT;
8410
8411         if (!capable(CAP_SYS_ADMIN))
8412                 return -EACCES;
8413
8414         /*
8415          * no branch sampling for probe events
8416          */
8417         if (has_branch_stack(event))
8418                 return -EOPNOTSUPP;
8419
8420         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8421         err = perf_kprobe_init(event, is_retprobe);
8422         if (err)
8423                 return err;
8424
8425         event->destroy = perf_kprobe_destroy;
8426
8427         return 0;
8428 }
8429 #endif /* CONFIG_KPROBE_EVENTS */
8430
8431 #ifdef CONFIG_UPROBE_EVENTS
8432 static int perf_uprobe_event_init(struct perf_event *event);
8433 static struct pmu perf_uprobe = {
8434         .task_ctx_nr    = perf_sw_context,
8435         .event_init     = perf_uprobe_event_init,
8436         .add            = perf_trace_add,
8437         .del            = perf_trace_del,
8438         .start          = perf_swevent_start,
8439         .stop           = perf_swevent_stop,
8440         .read           = perf_swevent_read,
8441         .attr_groups    = probe_attr_groups,
8442 };
8443
8444 static int perf_uprobe_event_init(struct perf_event *event)
8445 {
8446         int err;
8447         bool is_retprobe;
8448
8449         if (event->attr.type != perf_uprobe.type)
8450                 return -ENOENT;
8451
8452         if (!capable(CAP_SYS_ADMIN))
8453                 return -EACCES;
8454
8455         /*
8456          * no branch sampling for probe events
8457          */
8458         if (has_branch_stack(event))
8459                 return -EOPNOTSUPP;
8460
8461         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8462         err = perf_uprobe_init(event, is_retprobe);
8463         if (err)
8464                 return err;
8465
8466         event->destroy = perf_uprobe_destroy;
8467
8468         return 0;
8469 }
8470 #endif /* CONFIG_UPROBE_EVENTS */
8471
8472 static inline void perf_tp_register(void)
8473 {
8474         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8475 #ifdef CONFIG_KPROBE_EVENTS
8476         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8477 #endif
8478 #ifdef CONFIG_UPROBE_EVENTS
8479         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8480 #endif
8481 }
8482
8483 static void perf_event_free_filter(struct perf_event *event)
8484 {
8485         ftrace_profile_free_filter(event);
8486 }
8487
8488 #ifdef CONFIG_BPF_SYSCALL
8489 static void bpf_overflow_handler(struct perf_event *event,
8490                                  struct perf_sample_data *data,
8491                                  struct pt_regs *regs)
8492 {
8493         struct bpf_perf_event_data_kern ctx = {
8494                 .data = data,
8495                 .event = event,
8496         };
8497         int ret = 0;
8498
8499         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8500         preempt_disable();
8501         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8502                 goto out;
8503         rcu_read_lock();
8504         ret = BPF_PROG_RUN(event->prog, &ctx);
8505         rcu_read_unlock();
8506 out:
8507         __this_cpu_dec(bpf_prog_active);
8508         preempt_enable();
8509         if (!ret)
8510                 return;
8511
8512         event->orig_overflow_handler(event, data, regs);
8513 }
8514
8515 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8516 {
8517         struct bpf_prog *prog;
8518
8519         if (event->overflow_handler_context)
8520                 /* hw breakpoint or kernel counter */
8521                 return -EINVAL;
8522
8523         if (event->prog)
8524                 return -EEXIST;
8525
8526         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8527         if (IS_ERR(prog))
8528                 return PTR_ERR(prog);
8529
8530         event->prog = prog;
8531         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8532         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8533         return 0;
8534 }
8535
8536 static void perf_event_free_bpf_handler(struct perf_event *event)
8537 {
8538         struct bpf_prog *prog = event->prog;
8539
8540         if (!prog)
8541                 return;
8542
8543         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8544         event->prog = NULL;
8545         bpf_prog_put(prog);
8546 }
8547 #else
8548 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8549 {
8550         return -EOPNOTSUPP;
8551 }
8552 static void perf_event_free_bpf_handler(struct perf_event *event)
8553 {
8554 }
8555 #endif
8556
8557 /*
8558  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8559  * with perf_event_open()
8560  */
8561 static inline bool perf_event_is_tracing(struct perf_event *event)
8562 {
8563         if (event->pmu == &perf_tracepoint)
8564                 return true;
8565 #ifdef CONFIG_KPROBE_EVENTS
8566         if (event->pmu == &perf_kprobe)
8567                 return true;
8568 #endif
8569 #ifdef CONFIG_UPROBE_EVENTS
8570         if (event->pmu == &perf_uprobe)
8571                 return true;
8572 #endif
8573         return false;
8574 }
8575
8576 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8577 {
8578         bool is_kprobe, is_tracepoint, is_syscall_tp;
8579         struct bpf_prog *prog;
8580         int ret;
8581
8582         if (!perf_event_is_tracing(event))
8583                 return perf_event_set_bpf_handler(event, prog_fd);
8584
8585         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8586         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8587         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8588         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8589                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8590                 return -EINVAL;
8591
8592         prog = bpf_prog_get(prog_fd);
8593         if (IS_ERR(prog))
8594                 return PTR_ERR(prog);
8595
8596         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8597             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8598             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8599                 /* valid fd, but invalid bpf program type */
8600                 bpf_prog_put(prog);
8601                 return -EINVAL;
8602         }
8603
8604         /* Kprobe override only works for kprobes, not uprobes. */
8605         if (prog->kprobe_override &&
8606             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8607                 bpf_prog_put(prog);
8608                 return -EINVAL;
8609         }
8610
8611         if (is_tracepoint || is_syscall_tp) {
8612                 int off = trace_event_get_offsets(event->tp_event);
8613
8614                 if (prog->aux->max_ctx_offset > off) {
8615                         bpf_prog_put(prog);
8616                         return -EACCES;
8617                 }
8618         }
8619
8620         ret = perf_event_attach_bpf_prog(event, prog);
8621         if (ret)
8622                 bpf_prog_put(prog);
8623         return ret;
8624 }
8625
8626 static void perf_event_free_bpf_prog(struct perf_event *event)
8627 {
8628         if (!perf_event_is_tracing(event)) {
8629                 perf_event_free_bpf_handler(event);
8630                 return;
8631         }
8632         perf_event_detach_bpf_prog(event);
8633 }
8634
8635 #else
8636
8637 static inline void perf_tp_register(void)
8638 {
8639 }
8640
8641 static void perf_event_free_filter(struct perf_event *event)
8642 {
8643 }
8644
8645 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8646 {
8647         return -ENOENT;
8648 }
8649
8650 static void perf_event_free_bpf_prog(struct perf_event *event)
8651 {
8652 }
8653 #endif /* CONFIG_EVENT_TRACING */
8654
8655 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8656 void perf_bp_event(struct perf_event *bp, void *data)
8657 {
8658         struct perf_sample_data sample;
8659         struct pt_regs *regs = data;
8660
8661         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8662
8663         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8664                 perf_swevent_event(bp, 1, &sample, regs);
8665 }
8666 #endif
8667
8668 /*
8669  * Allocate a new address filter
8670  */
8671 static struct perf_addr_filter *
8672 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8673 {
8674         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8675         struct perf_addr_filter *filter;
8676
8677         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8678         if (!filter)
8679                 return NULL;
8680
8681         INIT_LIST_HEAD(&filter->entry);
8682         list_add_tail(&filter->entry, filters);
8683
8684         return filter;
8685 }
8686
8687 static void free_filters_list(struct list_head *filters)
8688 {
8689         struct perf_addr_filter *filter, *iter;
8690
8691         list_for_each_entry_safe(filter, iter, filters, entry) {
8692                 path_put(&filter->path);
8693                 list_del(&filter->entry);
8694                 kfree(filter);
8695         }
8696 }
8697
8698 /*
8699  * Free existing address filters and optionally install new ones
8700  */
8701 static void perf_addr_filters_splice(struct perf_event *event,
8702                                      struct list_head *head)
8703 {
8704         unsigned long flags;
8705         LIST_HEAD(list);
8706
8707         if (!has_addr_filter(event))
8708                 return;
8709
8710         /* don't bother with children, they don't have their own filters */
8711         if (event->parent)
8712                 return;
8713
8714         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8715
8716         list_splice_init(&event->addr_filters.list, &list);
8717         if (head)
8718                 list_splice(head, &event->addr_filters.list);
8719
8720         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8721
8722         free_filters_list(&list);
8723 }
8724
8725 /*
8726  * Scan through mm's vmas and see if one of them matches the
8727  * @filter; if so, adjust filter's address range.
8728  * Called with mm::mmap_sem down for reading.
8729  */
8730 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8731                                             struct mm_struct *mm)
8732 {
8733         struct vm_area_struct *vma;
8734
8735         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8736                 struct file *file = vma->vm_file;
8737                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8738                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8739
8740                 if (!file)
8741                         continue;
8742
8743                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8744                         continue;
8745
8746                 return vma->vm_start;
8747         }
8748
8749         return 0;
8750 }
8751
8752 /*
8753  * Update event's address range filters based on the
8754  * task's existing mappings, if any.
8755  */
8756 static void perf_event_addr_filters_apply(struct perf_event *event)
8757 {
8758         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8759         struct task_struct *task = READ_ONCE(event->ctx->task);
8760         struct perf_addr_filter *filter;
8761         struct mm_struct *mm = NULL;
8762         unsigned int count = 0;
8763         unsigned long flags;
8764
8765         /*
8766          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8767          * will stop on the parent's child_mutex that our caller is also holding
8768          */
8769         if (task == TASK_TOMBSTONE)
8770                 return;
8771
8772         if (!ifh->nr_file_filters)
8773                 return;
8774
8775         mm = get_task_mm(event->ctx->task);
8776         if (!mm)
8777                 goto restart;
8778
8779         down_read(&mm->mmap_sem);
8780
8781         raw_spin_lock_irqsave(&ifh->lock, flags);
8782         list_for_each_entry(filter, &ifh->list, entry) {
8783                 event->addr_filters_offs[count] = 0;
8784
8785                 /*
8786                  * Adjust base offset if the filter is associated to a binary
8787                  * that needs to be mapped:
8788                  */
8789                 if (filter->path.dentry)
8790                         event->addr_filters_offs[count] =
8791                                 perf_addr_filter_apply(filter, mm);
8792
8793                 count++;
8794         }
8795
8796         event->addr_filters_gen++;
8797         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8798
8799         up_read(&mm->mmap_sem);
8800
8801         mmput(mm);
8802
8803 restart:
8804         perf_event_stop(event, 1);
8805 }
8806
8807 /*
8808  * Address range filtering: limiting the data to certain
8809  * instruction address ranges. Filters are ioctl()ed to us from
8810  * userspace as ascii strings.
8811  *
8812  * Filter string format:
8813  *
8814  * ACTION RANGE_SPEC
8815  * where ACTION is one of the
8816  *  * "filter": limit the trace to this region
8817  *  * "start": start tracing from this address
8818  *  * "stop": stop tracing at this address/region;
8819  * RANGE_SPEC is
8820  *  * for kernel addresses: <start address>[/<size>]
8821  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8822  *
8823  * if <size> is not specified or is zero, the range is treated as a single
8824  * address; not valid for ACTION=="filter".
8825  */
8826 enum {
8827         IF_ACT_NONE = -1,
8828         IF_ACT_FILTER,
8829         IF_ACT_START,
8830         IF_ACT_STOP,
8831         IF_SRC_FILE,
8832         IF_SRC_KERNEL,
8833         IF_SRC_FILEADDR,
8834         IF_SRC_KERNELADDR,
8835 };
8836
8837 enum {
8838         IF_STATE_ACTION = 0,
8839         IF_STATE_SOURCE,
8840         IF_STATE_END,
8841 };
8842
8843 static const match_table_t if_tokens = {
8844         { IF_ACT_FILTER,        "filter" },
8845         { IF_ACT_START,         "start" },
8846         { IF_ACT_STOP,          "stop" },
8847         { IF_SRC_FILE,          "%u/%u@%s" },
8848         { IF_SRC_KERNEL,        "%u/%u" },
8849         { IF_SRC_FILEADDR,      "%u@%s" },
8850         { IF_SRC_KERNELADDR,    "%u" },
8851         { IF_ACT_NONE,          NULL },
8852 };
8853
8854 /*
8855  * Address filter string parser
8856  */
8857 static int
8858 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8859                              struct list_head *filters)
8860 {
8861         struct perf_addr_filter *filter = NULL;
8862         char *start, *orig, *filename = NULL;
8863         substring_t args[MAX_OPT_ARGS];
8864         int state = IF_STATE_ACTION, token;
8865         unsigned int kernel = 0;
8866         int ret = -EINVAL;
8867
8868         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8869         if (!fstr)
8870                 return -ENOMEM;
8871
8872         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8873                 static const enum perf_addr_filter_action_t actions[] = {
8874                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
8875                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
8876                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
8877                 };
8878                 ret = -EINVAL;
8879
8880                 if (!*start)
8881                         continue;
8882
8883                 /* filter definition begins */
8884                 if (state == IF_STATE_ACTION) {
8885                         filter = perf_addr_filter_new(event, filters);
8886                         if (!filter)
8887                                 goto fail;
8888                 }
8889
8890                 token = match_token(start, if_tokens, args);
8891                 switch (token) {
8892                 case IF_ACT_FILTER:
8893                 case IF_ACT_START:
8894                 case IF_ACT_STOP:
8895                         if (state != IF_STATE_ACTION)
8896                                 goto fail;
8897
8898                         filter->action = actions[token];
8899                         state = IF_STATE_SOURCE;
8900                         break;
8901
8902                 case IF_SRC_KERNELADDR:
8903                 case IF_SRC_KERNEL:
8904                         kernel = 1;
8905
8906                 case IF_SRC_FILEADDR:
8907                 case IF_SRC_FILE:
8908                         if (state != IF_STATE_SOURCE)
8909                                 goto fail;
8910
8911                         *args[0].to = 0;
8912                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8913                         if (ret)
8914                                 goto fail;
8915
8916                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
8917                                 *args[1].to = 0;
8918                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8919                                 if (ret)
8920                                         goto fail;
8921                         }
8922
8923                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8924                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
8925
8926                                 filename = match_strdup(&args[fpos]);
8927                                 if (!filename) {
8928                                         ret = -ENOMEM;
8929                                         goto fail;
8930                                 }
8931                         }
8932
8933                         state = IF_STATE_END;
8934                         break;
8935
8936                 default:
8937                         goto fail;
8938                 }
8939
8940                 /*
8941                  * Filter definition is fully parsed, validate and install it.
8942                  * Make sure that it doesn't contradict itself or the event's
8943                  * attribute.
8944                  */
8945                 if (state == IF_STATE_END) {
8946                         ret = -EINVAL;
8947                         if (kernel && event->attr.exclude_kernel)
8948                                 goto fail;
8949
8950                         /*
8951                          * ACTION "filter" must have a non-zero length region
8952                          * specified.
8953                          */
8954                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
8955                             !filter->size)
8956                                 goto fail;
8957
8958                         if (!kernel) {
8959                                 if (!filename)
8960                                         goto fail;
8961
8962                                 /*
8963                                  * For now, we only support file-based filters
8964                                  * in per-task events; doing so for CPU-wide
8965                                  * events requires additional context switching
8966                                  * trickery, since same object code will be
8967                                  * mapped at different virtual addresses in
8968                                  * different processes.
8969                                  */
8970                                 ret = -EOPNOTSUPP;
8971                                 if (!event->ctx->task)
8972                                         goto fail_free_name;
8973
8974                                 /* look up the path and grab its inode */
8975                                 ret = kern_path(filename, LOOKUP_FOLLOW,
8976                                                 &filter->path);
8977                                 if (ret)
8978                                         goto fail_free_name;
8979
8980                                 kfree(filename);
8981                                 filename = NULL;
8982
8983                                 ret = -EINVAL;
8984                                 if (!filter->path.dentry ||
8985                                     !S_ISREG(d_inode(filter->path.dentry)
8986                                              ->i_mode))
8987                                         goto fail;
8988
8989                                 event->addr_filters.nr_file_filters++;
8990                         }
8991
8992                         /* ready to consume more filters */
8993                         state = IF_STATE_ACTION;
8994                         filter = NULL;
8995                 }
8996         }
8997
8998         if (state != IF_STATE_ACTION)
8999                 goto fail;
9000
9001         kfree(orig);
9002
9003         return 0;
9004
9005 fail_free_name:
9006         kfree(filename);
9007 fail:
9008         free_filters_list(filters);
9009         kfree(orig);
9010
9011         return ret;
9012 }
9013
9014 static int
9015 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9016 {
9017         LIST_HEAD(filters);
9018         int ret;
9019
9020         /*
9021          * Since this is called in perf_ioctl() path, we're already holding
9022          * ctx::mutex.
9023          */
9024         lockdep_assert_held(&event->ctx->mutex);
9025
9026         if (WARN_ON_ONCE(event->parent))
9027                 return -EINVAL;
9028
9029         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9030         if (ret)
9031                 goto fail_clear_files;
9032
9033         ret = event->pmu->addr_filters_validate(&filters);
9034         if (ret)
9035                 goto fail_free_filters;
9036
9037         /* remove existing filters, if any */
9038         perf_addr_filters_splice(event, &filters);
9039
9040         /* install new filters */
9041         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9042
9043         return ret;
9044
9045 fail_free_filters:
9046         free_filters_list(&filters);
9047
9048 fail_clear_files:
9049         event->addr_filters.nr_file_filters = 0;
9050
9051         return ret;
9052 }
9053
9054 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9055 {
9056         int ret = -EINVAL;
9057         char *filter_str;
9058
9059         filter_str = strndup_user(arg, PAGE_SIZE);
9060         if (IS_ERR(filter_str))
9061                 return PTR_ERR(filter_str);
9062
9063 #ifdef CONFIG_EVENT_TRACING
9064         if (perf_event_is_tracing(event)) {
9065                 struct perf_event_context *ctx = event->ctx;
9066
9067                 /*
9068                  * Beware, here be dragons!!
9069                  *
9070                  * the tracepoint muck will deadlock against ctx->mutex, but
9071                  * the tracepoint stuff does not actually need it. So
9072                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9073                  * already have a reference on ctx.
9074                  *
9075                  * This can result in event getting moved to a different ctx,
9076                  * but that does not affect the tracepoint state.
9077                  */
9078                 mutex_unlock(&ctx->mutex);
9079                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9080                 mutex_lock(&ctx->mutex);
9081         } else
9082 #endif
9083         if (has_addr_filter(event))
9084                 ret = perf_event_set_addr_filter(event, filter_str);
9085
9086         kfree(filter_str);
9087         return ret;
9088 }
9089
9090 /*
9091  * hrtimer based swevent callback
9092  */
9093
9094 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9095 {
9096         enum hrtimer_restart ret = HRTIMER_RESTART;
9097         struct perf_sample_data data;
9098         struct pt_regs *regs;
9099         struct perf_event *event;
9100         u64 period;
9101
9102         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9103
9104         if (event->state != PERF_EVENT_STATE_ACTIVE)
9105                 return HRTIMER_NORESTART;
9106
9107         event->pmu->read(event);
9108
9109         perf_sample_data_init(&data, 0, event->hw.last_period);
9110         regs = get_irq_regs();
9111
9112         if (regs && !perf_exclude_event(event, regs)) {
9113                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9114                         if (__perf_event_overflow(event, 1, &data, regs))
9115                                 ret = HRTIMER_NORESTART;
9116         }
9117
9118         period = max_t(u64, 10000, event->hw.sample_period);
9119         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9120
9121         return ret;
9122 }
9123
9124 static void perf_swevent_start_hrtimer(struct perf_event *event)
9125 {
9126         struct hw_perf_event *hwc = &event->hw;
9127         s64 period;
9128
9129         if (!is_sampling_event(event))
9130                 return;
9131
9132         period = local64_read(&hwc->period_left);
9133         if (period) {
9134                 if (period < 0)
9135                         period = 10000;
9136
9137                 local64_set(&hwc->period_left, 0);
9138         } else {
9139                 period = max_t(u64, 10000, hwc->sample_period);
9140         }
9141         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9142                       HRTIMER_MODE_REL_PINNED);
9143 }
9144
9145 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9146 {
9147         struct hw_perf_event *hwc = &event->hw;
9148
9149         if (is_sampling_event(event)) {
9150                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9151                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9152
9153                 hrtimer_cancel(&hwc->hrtimer);
9154         }
9155 }
9156
9157 static void perf_swevent_init_hrtimer(struct perf_event *event)
9158 {
9159         struct hw_perf_event *hwc = &event->hw;
9160
9161         if (!is_sampling_event(event))
9162                 return;
9163
9164         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9165         hwc->hrtimer.function = perf_swevent_hrtimer;
9166
9167         /*
9168          * Since hrtimers have a fixed rate, we can do a static freq->period
9169          * mapping and avoid the whole period adjust feedback stuff.
9170          */
9171         if (event->attr.freq) {
9172                 long freq = event->attr.sample_freq;
9173
9174                 event->attr.sample_period = NSEC_PER_SEC / freq;
9175                 hwc->sample_period = event->attr.sample_period;
9176                 local64_set(&hwc->period_left, hwc->sample_period);
9177                 hwc->last_period = hwc->sample_period;
9178                 event->attr.freq = 0;
9179         }
9180 }
9181
9182 /*
9183  * Software event: cpu wall time clock
9184  */
9185
9186 static void cpu_clock_event_update(struct perf_event *event)
9187 {
9188         s64 prev;
9189         u64 now;
9190
9191         now = local_clock();
9192         prev = local64_xchg(&event->hw.prev_count, now);
9193         local64_add(now - prev, &event->count);
9194 }
9195
9196 static void cpu_clock_event_start(struct perf_event *event, int flags)
9197 {
9198         local64_set(&event->hw.prev_count, local_clock());
9199         perf_swevent_start_hrtimer(event);
9200 }
9201
9202 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9203 {
9204         perf_swevent_cancel_hrtimer(event);
9205         cpu_clock_event_update(event);
9206 }
9207
9208 static int cpu_clock_event_add(struct perf_event *event, int flags)
9209 {
9210         if (flags & PERF_EF_START)
9211                 cpu_clock_event_start(event, flags);
9212         perf_event_update_userpage(event);
9213
9214         return 0;
9215 }
9216
9217 static void cpu_clock_event_del(struct perf_event *event, int flags)
9218 {
9219         cpu_clock_event_stop(event, flags);
9220 }
9221
9222 static void cpu_clock_event_read(struct perf_event *event)
9223 {
9224         cpu_clock_event_update(event);
9225 }
9226
9227 static int cpu_clock_event_init(struct perf_event *event)
9228 {
9229         if (event->attr.type != PERF_TYPE_SOFTWARE)
9230                 return -ENOENT;
9231
9232         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9233                 return -ENOENT;
9234
9235         /*
9236          * no branch sampling for software events
9237          */
9238         if (has_branch_stack(event))
9239                 return -EOPNOTSUPP;
9240
9241         perf_swevent_init_hrtimer(event);
9242
9243         return 0;
9244 }
9245
9246 static struct pmu perf_cpu_clock = {
9247         .task_ctx_nr    = perf_sw_context,
9248
9249         .capabilities   = PERF_PMU_CAP_NO_NMI,
9250
9251         .event_init     = cpu_clock_event_init,
9252         .add            = cpu_clock_event_add,
9253         .del            = cpu_clock_event_del,
9254         .start          = cpu_clock_event_start,
9255         .stop           = cpu_clock_event_stop,
9256         .read           = cpu_clock_event_read,
9257 };
9258
9259 /*
9260  * Software event: task time clock
9261  */
9262
9263 static void task_clock_event_update(struct perf_event *event, u64 now)
9264 {
9265         u64 prev;
9266         s64 delta;
9267
9268         prev = local64_xchg(&event->hw.prev_count, now);
9269         delta = now - prev;
9270         local64_add(delta, &event->count);
9271 }
9272
9273 static void task_clock_event_start(struct perf_event *event, int flags)
9274 {
9275         local64_set(&event->hw.prev_count, event->ctx->time);
9276         perf_swevent_start_hrtimer(event);
9277 }
9278
9279 static void task_clock_event_stop(struct perf_event *event, int flags)
9280 {
9281         perf_swevent_cancel_hrtimer(event);
9282         task_clock_event_update(event, event->ctx->time);
9283 }
9284
9285 static int task_clock_event_add(struct perf_event *event, int flags)
9286 {
9287         if (flags & PERF_EF_START)
9288                 task_clock_event_start(event, flags);
9289         perf_event_update_userpage(event);
9290
9291         return 0;
9292 }
9293
9294 static void task_clock_event_del(struct perf_event *event, int flags)
9295 {
9296         task_clock_event_stop(event, PERF_EF_UPDATE);
9297 }
9298
9299 static void task_clock_event_read(struct perf_event *event)
9300 {
9301         u64 now = perf_clock();
9302         u64 delta = now - event->ctx->timestamp;
9303         u64 time = event->ctx->time + delta;
9304
9305         task_clock_event_update(event, time);
9306 }
9307
9308 static int task_clock_event_init(struct perf_event *event)
9309 {
9310         if (event->attr.type != PERF_TYPE_SOFTWARE)
9311                 return -ENOENT;
9312
9313         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9314                 return -ENOENT;
9315
9316         /*
9317          * no branch sampling for software events
9318          */
9319         if (has_branch_stack(event))
9320                 return -EOPNOTSUPP;
9321
9322         perf_swevent_init_hrtimer(event);
9323
9324         return 0;
9325 }
9326
9327 static struct pmu perf_task_clock = {
9328         .task_ctx_nr    = perf_sw_context,
9329
9330         .capabilities   = PERF_PMU_CAP_NO_NMI,
9331
9332         .event_init     = task_clock_event_init,
9333         .add            = task_clock_event_add,
9334         .del            = task_clock_event_del,
9335         .start          = task_clock_event_start,
9336         .stop           = task_clock_event_stop,
9337         .read           = task_clock_event_read,
9338 };
9339
9340 static void perf_pmu_nop_void(struct pmu *pmu)
9341 {
9342 }
9343
9344 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9345 {
9346 }
9347
9348 static int perf_pmu_nop_int(struct pmu *pmu)
9349 {
9350         return 0;
9351 }
9352
9353 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9354
9355 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9356 {
9357         __this_cpu_write(nop_txn_flags, flags);
9358
9359         if (flags & ~PERF_PMU_TXN_ADD)
9360                 return;
9361
9362         perf_pmu_disable(pmu);
9363 }
9364
9365 static int perf_pmu_commit_txn(struct pmu *pmu)
9366 {
9367         unsigned int flags = __this_cpu_read(nop_txn_flags);
9368
9369         __this_cpu_write(nop_txn_flags, 0);
9370
9371         if (flags & ~PERF_PMU_TXN_ADD)
9372                 return 0;
9373
9374         perf_pmu_enable(pmu);
9375         return 0;
9376 }
9377
9378 static void perf_pmu_cancel_txn(struct pmu *pmu)
9379 {
9380         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9381
9382         __this_cpu_write(nop_txn_flags, 0);
9383
9384         if (flags & ~PERF_PMU_TXN_ADD)
9385                 return;
9386
9387         perf_pmu_enable(pmu);
9388 }
9389
9390 static int perf_event_idx_default(struct perf_event *event)
9391 {
9392         return 0;
9393 }
9394
9395 /*
9396  * Ensures all contexts with the same task_ctx_nr have the same
9397  * pmu_cpu_context too.
9398  */
9399 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9400 {
9401         struct pmu *pmu;
9402
9403         if (ctxn < 0)
9404                 return NULL;
9405
9406         list_for_each_entry(pmu, &pmus, entry) {
9407                 if (pmu->task_ctx_nr == ctxn)
9408                         return pmu->pmu_cpu_context;
9409         }
9410
9411         return NULL;
9412 }
9413
9414 static void free_pmu_context(struct pmu *pmu)
9415 {
9416         /*
9417          * Static contexts such as perf_sw_context have a global lifetime
9418          * and may be shared between different PMUs. Avoid freeing them
9419          * when a single PMU is going away.
9420          */
9421         if (pmu->task_ctx_nr > perf_invalid_context)
9422                 return;
9423
9424         mutex_lock(&pmus_lock);
9425         free_percpu(pmu->pmu_cpu_context);
9426         mutex_unlock(&pmus_lock);
9427 }
9428
9429 /*
9430  * Let userspace know that this PMU supports address range filtering:
9431  */
9432 static ssize_t nr_addr_filters_show(struct device *dev,
9433                                     struct device_attribute *attr,
9434                                     char *page)
9435 {
9436         struct pmu *pmu = dev_get_drvdata(dev);
9437
9438         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9439 }
9440 DEVICE_ATTR_RO(nr_addr_filters);
9441
9442 static struct idr pmu_idr;
9443
9444 static ssize_t
9445 type_show(struct device *dev, struct device_attribute *attr, char *page)
9446 {
9447         struct pmu *pmu = dev_get_drvdata(dev);
9448
9449         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9450 }
9451 static DEVICE_ATTR_RO(type);
9452
9453 static ssize_t
9454 perf_event_mux_interval_ms_show(struct device *dev,
9455                                 struct device_attribute *attr,
9456                                 char *page)
9457 {
9458         struct pmu *pmu = dev_get_drvdata(dev);
9459
9460         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9461 }
9462
9463 static DEFINE_MUTEX(mux_interval_mutex);
9464
9465 static ssize_t
9466 perf_event_mux_interval_ms_store(struct device *dev,
9467                                  struct device_attribute *attr,
9468                                  const char *buf, size_t count)
9469 {
9470         struct pmu *pmu = dev_get_drvdata(dev);
9471         int timer, cpu, ret;
9472
9473         ret = kstrtoint(buf, 0, &timer);
9474         if (ret)
9475                 return ret;
9476
9477         if (timer < 1)
9478                 return -EINVAL;
9479
9480         /* same value, noting to do */
9481         if (timer == pmu->hrtimer_interval_ms)
9482                 return count;
9483
9484         mutex_lock(&mux_interval_mutex);
9485         pmu->hrtimer_interval_ms = timer;
9486
9487         /* update all cpuctx for this PMU */
9488         cpus_read_lock();
9489         for_each_online_cpu(cpu) {
9490                 struct perf_cpu_context *cpuctx;
9491                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9492                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9493
9494                 cpu_function_call(cpu,
9495                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9496         }
9497         cpus_read_unlock();
9498         mutex_unlock(&mux_interval_mutex);
9499
9500         return count;
9501 }
9502 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9503
9504 static struct attribute *pmu_dev_attrs[] = {
9505         &dev_attr_type.attr,
9506         &dev_attr_perf_event_mux_interval_ms.attr,
9507         NULL,
9508 };
9509 ATTRIBUTE_GROUPS(pmu_dev);
9510
9511 static int pmu_bus_running;
9512 static struct bus_type pmu_bus = {
9513         .name           = "event_source",
9514         .dev_groups     = pmu_dev_groups,
9515 };
9516
9517 static void pmu_dev_release(struct device *dev)
9518 {
9519         kfree(dev);
9520 }
9521
9522 static int pmu_dev_alloc(struct pmu *pmu)
9523 {
9524         int ret = -ENOMEM;
9525
9526         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9527         if (!pmu->dev)
9528                 goto out;
9529
9530         pmu->dev->groups = pmu->attr_groups;
9531         device_initialize(pmu->dev);
9532         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9533         if (ret)
9534                 goto free_dev;
9535
9536         dev_set_drvdata(pmu->dev, pmu);
9537         pmu->dev->bus = &pmu_bus;
9538         pmu->dev->release = pmu_dev_release;
9539         ret = device_add(pmu->dev);
9540         if (ret)
9541                 goto free_dev;
9542
9543         /* For PMUs with address filters, throw in an extra attribute: */
9544         if (pmu->nr_addr_filters)
9545                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9546
9547         if (ret)
9548                 goto del_dev;
9549
9550 out:
9551         return ret;
9552
9553 del_dev:
9554         device_del(pmu->dev);
9555
9556 free_dev:
9557         put_device(pmu->dev);
9558         goto out;
9559 }
9560
9561 static struct lock_class_key cpuctx_mutex;
9562 static struct lock_class_key cpuctx_lock;
9563
9564 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9565 {
9566         int cpu, ret;
9567
9568         mutex_lock(&pmus_lock);
9569         ret = -ENOMEM;
9570         pmu->pmu_disable_count = alloc_percpu(int);
9571         if (!pmu->pmu_disable_count)
9572                 goto unlock;
9573
9574         pmu->type = -1;
9575         if (!name)
9576                 goto skip_type;
9577         pmu->name = name;
9578
9579         if (type < 0) {
9580                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9581                 if (type < 0) {
9582                         ret = type;
9583                         goto free_pdc;
9584                 }
9585         }
9586         pmu->type = type;
9587
9588         if (pmu_bus_running) {
9589                 ret = pmu_dev_alloc(pmu);
9590                 if (ret)
9591                         goto free_idr;
9592         }
9593
9594 skip_type:
9595         if (pmu->task_ctx_nr == perf_hw_context) {
9596                 static int hw_context_taken = 0;
9597
9598                 /*
9599                  * Other than systems with heterogeneous CPUs, it never makes
9600                  * sense for two PMUs to share perf_hw_context. PMUs which are
9601                  * uncore must use perf_invalid_context.
9602                  */
9603                 if (WARN_ON_ONCE(hw_context_taken &&
9604                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9605                         pmu->task_ctx_nr = perf_invalid_context;
9606
9607                 hw_context_taken = 1;
9608         }
9609
9610         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9611         if (pmu->pmu_cpu_context)
9612                 goto got_cpu_context;
9613
9614         ret = -ENOMEM;
9615         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9616         if (!pmu->pmu_cpu_context)
9617                 goto free_dev;
9618
9619         for_each_possible_cpu(cpu) {
9620                 struct perf_cpu_context *cpuctx;
9621
9622                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9623                 __perf_event_init_context(&cpuctx->ctx);
9624                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9625                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9626                 cpuctx->ctx.pmu = pmu;
9627                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9628
9629                 __perf_mux_hrtimer_init(cpuctx, cpu);
9630         }
9631
9632 got_cpu_context:
9633         if (!pmu->start_txn) {
9634                 if (pmu->pmu_enable) {
9635                         /*
9636                          * If we have pmu_enable/pmu_disable calls, install
9637                          * transaction stubs that use that to try and batch
9638                          * hardware accesses.
9639                          */
9640                         pmu->start_txn  = perf_pmu_start_txn;
9641                         pmu->commit_txn = perf_pmu_commit_txn;
9642                         pmu->cancel_txn = perf_pmu_cancel_txn;
9643                 } else {
9644                         pmu->start_txn  = perf_pmu_nop_txn;
9645                         pmu->commit_txn = perf_pmu_nop_int;
9646                         pmu->cancel_txn = perf_pmu_nop_void;
9647                 }
9648         }
9649
9650         if (!pmu->pmu_enable) {
9651                 pmu->pmu_enable  = perf_pmu_nop_void;
9652                 pmu->pmu_disable = perf_pmu_nop_void;
9653         }
9654
9655         if (!pmu->event_idx)
9656                 pmu->event_idx = perf_event_idx_default;
9657
9658         list_add_rcu(&pmu->entry, &pmus);
9659         atomic_set(&pmu->exclusive_cnt, 0);
9660         ret = 0;
9661 unlock:
9662         mutex_unlock(&pmus_lock);
9663
9664         return ret;
9665
9666 free_dev:
9667         device_del(pmu->dev);
9668         put_device(pmu->dev);
9669
9670 free_idr:
9671         if (pmu->type >= PERF_TYPE_MAX)
9672                 idr_remove(&pmu_idr, pmu->type);
9673
9674 free_pdc:
9675         free_percpu(pmu->pmu_disable_count);
9676         goto unlock;
9677 }
9678 EXPORT_SYMBOL_GPL(perf_pmu_register);
9679
9680 void perf_pmu_unregister(struct pmu *pmu)
9681 {
9682         int remove_device;
9683
9684         mutex_lock(&pmus_lock);
9685         remove_device = pmu_bus_running;
9686         list_del_rcu(&pmu->entry);
9687         mutex_unlock(&pmus_lock);
9688
9689         /*
9690          * We dereference the pmu list under both SRCU and regular RCU, so
9691          * synchronize against both of those.
9692          */
9693         synchronize_srcu(&pmus_srcu);
9694         synchronize_rcu();
9695
9696         free_percpu(pmu->pmu_disable_count);
9697         if (pmu->type >= PERF_TYPE_MAX)
9698                 idr_remove(&pmu_idr, pmu->type);
9699         if (remove_device) {
9700                 if (pmu->nr_addr_filters)
9701                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9702                 device_del(pmu->dev);
9703                 put_device(pmu->dev);
9704         }
9705         free_pmu_context(pmu);
9706 }
9707 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9708
9709 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9710 {
9711         struct perf_event_context *ctx = NULL;
9712         int ret;
9713
9714         if (!try_module_get(pmu->module))
9715                 return -ENODEV;
9716
9717         /*
9718          * A number of pmu->event_init() methods iterate the sibling_list to,
9719          * for example, validate if the group fits on the PMU. Therefore,
9720          * if this is a sibling event, acquire the ctx->mutex to protect
9721          * the sibling_list.
9722          */
9723         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9724                 /*
9725                  * This ctx->mutex can nest when we're called through
9726                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9727                  */
9728                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9729                                                  SINGLE_DEPTH_NESTING);
9730                 BUG_ON(!ctx);
9731         }
9732
9733         event->pmu = pmu;
9734         ret = pmu->event_init(event);
9735
9736         if (ctx)
9737                 perf_event_ctx_unlock(event->group_leader, ctx);
9738
9739         if (ret)
9740                 module_put(pmu->module);
9741
9742         return ret;
9743 }
9744
9745 static struct pmu *perf_init_event(struct perf_event *event)
9746 {
9747         struct pmu *pmu;
9748         int idx;
9749         int ret;
9750
9751         idx = srcu_read_lock(&pmus_srcu);
9752
9753         /* Try parent's PMU first: */
9754         if (event->parent && event->parent->pmu) {
9755                 pmu = event->parent->pmu;
9756                 ret = perf_try_init_event(pmu, event);
9757                 if (!ret)
9758                         goto unlock;
9759         }
9760
9761         rcu_read_lock();
9762         pmu = idr_find(&pmu_idr, event->attr.type);
9763         rcu_read_unlock();
9764         if (pmu) {
9765                 ret = perf_try_init_event(pmu, event);
9766                 if (ret)
9767                         pmu = ERR_PTR(ret);
9768                 goto unlock;
9769         }
9770
9771         list_for_each_entry_rcu(pmu, &pmus, entry) {
9772                 ret = perf_try_init_event(pmu, event);
9773                 if (!ret)
9774                         goto unlock;
9775
9776                 if (ret != -ENOENT) {
9777                         pmu = ERR_PTR(ret);
9778                         goto unlock;
9779                 }
9780         }
9781         pmu = ERR_PTR(-ENOENT);
9782 unlock:
9783         srcu_read_unlock(&pmus_srcu, idx);
9784
9785         return pmu;
9786 }
9787
9788 static void attach_sb_event(struct perf_event *event)
9789 {
9790         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9791
9792         raw_spin_lock(&pel->lock);
9793         list_add_rcu(&event->sb_list, &pel->list);
9794         raw_spin_unlock(&pel->lock);
9795 }
9796
9797 /*
9798  * We keep a list of all !task (and therefore per-cpu) events
9799  * that need to receive side-band records.
9800  *
9801  * This avoids having to scan all the various PMU per-cpu contexts
9802  * looking for them.
9803  */
9804 static void account_pmu_sb_event(struct perf_event *event)
9805 {
9806         if (is_sb_event(event))
9807                 attach_sb_event(event);
9808 }
9809
9810 static void account_event_cpu(struct perf_event *event, int cpu)
9811 {
9812         if (event->parent)
9813                 return;
9814
9815         if (is_cgroup_event(event))
9816                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9817 }
9818
9819 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9820 static void account_freq_event_nohz(void)
9821 {
9822 #ifdef CONFIG_NO_HZ_FULL
9823         /* Lock so we don't race with concurrent unaccount */
9824         spin_lock(&nr_freq_lock);
9825         if (atomic_inc_return(&nr_freq_events) == 1)
9826                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9827         spin_unlock(&nr_freq_lock);
9828 #endif
9829 }
9830
9831 static void account_freq_event(void)
9832 {
9833         if (tick_nohz_full_enabled())
9834                 account_freq_event_nohz();
9835         else
9836                 atomic_inc(&nr_freq_events);
9837 }
9838
9839
9840 static void account_event(struct perf_event *event)
9841 {
9842         bool inc = false;
9843
9844         if (event->parent)
9845                 return;
9846
9847         if (event->attach_state & PERF_ATTACH_TASK)
9848                 inc = true;
9849         if (event->attr.mmap || event->attr.mmap_data)
9850                 atomic_inc(&nr_mmap_events);
9851         if (event->attr.comm)
9852                 atomic_inc(&nr_comm_events);
9853         if (event->attr.namespaces)
9854                 atomic_inc(&nr_namespaces_events);
9855         if (event->attr.task)
9856                 atomic_inc(&nr_task_events);
9857         if (event->attr.freq)
9858                 account_freq_event();
9859         if (event->attr.context_switch) {
9860                 atomic_inc(&nr_switch_events);
9861                 inc = true;
9862         }
9863         if (has_branch_stack(event))
9864                 inc = true;
9865         if (is_cgroup_event(event))
9866                 inc = true;
9867
9868         if (inc) {
9869                 /*
9870                  * We need the mutex here because static_branch_enable()
9871                  * must complete *before* the perf_sched_count increment
9872                  * becomes visible.
9873                  */
9874                 if (atomic_inc_not_zero(&perf_sched_count))
9875                         goto enabled;
9876
9877                 mutex_lock(&perf_sched_mutex);
9878                 if (!atomic_read(&perf_sched_count)) {
9879                         static_branch_enable(&perf_sched_events);
9880                         /*
9881                          * Guarantee that all CPUs observe they key change and
9882                          * call the perf scheduling hooks before proceeding to
9883                          * install events that need them.
9884                          */
9885                         synchronize_sched();
9886                 }
9887                 /*
9888                  * Now that we have waited for the sync_sched(), allow further
9889                  * increments to by-pass the mutex.
9890                  */
9891                 atomic_inc(&perf_sched_count);
9892                 mutex_unlock(&perf_sched_mutex);
9893         }
9894 enabled:
9895
9896         account_event_cpu(event, event->cpu);
9897
9898         account_pmu_sb_event(event);
9899 }
9900
9901 /*
9902  * Allocate and initialize an event structure
9903  */
9904 static struct perf_event *
9905 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9906                  struct task_struct *task,
9907                  struct perf_event *group_leader,
9908                  struct perf_event *parent_event,
9909                  perf_overflow_handler_t overflow_handler,
9910                  void *context, int cgroup_fd)
9911 {
9912         struct pmu *pmu;
9913         struct perf_event *event;
9914         struct hw_perf_event *hwc;
9915         long err = -EINVAL;
9916
9917         if ((unsigned)cpu >= nr_cpu_ids) {
9918                 if (!task || cpu != -1)
9919                         return ERR_PTR(-EINVAL);
9920         }
9921
9922         event = kzalloc(sizeof(*event), GFP_KERNEL);
9923         if (!event)
9924                 return ERR_PTR(-ENOMEM);
9925
9926         /*
9927          * Single events are their own group leaders, with an
9928          * empty sibling list:
9929          */
9930         if (!group_leader)
9931                 group_leader = event;
9932
9933         mutex_init(&event->child_mutex);
9934         INIT_LIST_HEAD(&event->child_list);
9935
9936         INIT_LIST_HEAD(&event->event_entry);
9937         INIT_LIST_HEAD(&event->sibling_list);
9938         INIT_LIST_HEAD(&event->active_list);
9939         init_event_group(event);
9940         INIT_LIST_HEAD(&event->rb_entry);
9941         INIT_LIST_HEAD(&event->active_entry);
9942         INIT_LIST_HEAD(&event->addr_filters.list);
9943         INIT_HLIST_NODE(&event->hlist_entry);
9944
9945
9946         init_waitqueue_head(&event->waitq);
9947         init_irq_work(&event->pending, perf_pending_event);
9948
9949         mutex_init(&event->mmap_mutex);
9950         raw_spin_lock_init(&event->addr_filters.lock);
9951
9952         atomic_long_set(&event->refcount, 1);
9953         event->cpu              = cpu;
9954         event->attr             = *attr;
9955         event->group_leader     = group_leader;
9956         event->pmu              = NULL;
9957         event->oncpu            = -1;
9958
9959         event->parent           = parent_event;
9960
9961         event->ns               = get_pid_ns(task_active_pid_ns(current));
9962         event->id               = atomic64_inc_return(&perf_event_id);
9963
9964         event->state            = PERF_EVENT_STATE_INACTIVE;
9965
9966         if (task) {
9967                 event->attach_state = PERF_ATTACH_TASK;
9968                 /*
9969                  * XXX pmu::event_init needs to know what task to account to
9970                  * and we cannot use the ctx information because we need the
9971                  * pmu before we get a ctx.
9972                  */
9973                 get_task_struct(task);
9974                 event->hw.target = task;
9975         }
9976
9977         event->clock = &local_clock;
9978         if (parent_event)
9979                 event->clock = parent_event->clock;
9980
9981         if (!overflow_handler && parent_event) {
9982                 overflow_handler = parent_event->overflow_handler;
9983                 context = parent_event->overflow_handler_context;
9984 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9985                 if (overflow_handler == bpf_overflow_handler) {
9986                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9987
9988                         if (IS_ERR(prog)) {
9989                                 err = PTR_ERR(prog);
9990                                 goto err_ns;
9991                         }
9992                         event->prog = prog;
9993                         event->orig_overflow_handler =
9994                                 parent_event->orig_overflow_handler;
9995                 }
9996 #endif
9997         }
9998
9999         if (overflow_handler) {
10000                 event->overflow_handler = overflow_handler;
10001                 event->overflow_handler_context = context;
10002         } else if (is_write_backward(event)){
10003                 event->overflow_handler = perf_event_output_backward;
10004                 event->overflow_handler_context = NULL;
10005         } else {
10006                 event->overflow_handler = perf_event_output_forward;
10007                 event->overflow_handler_context = NULL;
10008         }
10009
10010         perf_event__state_init(event);
10011
10012         pmu = NULL;
10013
10014         hwc = &event->hw;
10015         hwc->sample_period = attr->sample_period;
10016         if (attr->freq && attr->sample_freq)
10017                 hwc->sample_period = 1;
10018         hwc->last_period = hwc->sample_period;
10019
10020         local64_set(&hwc->period_left, hwc->sample_period);
10021
10022         /*
10023          * We currently do not support PERF_SAMPLE_READ on inherited events.
10024          * See perf_output_read().
10025          */
10026         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10027                 goto err_ns;
10028
10029         if (!has_branch_stack(event))
10030                 event->attr.branch_sample_type = 0;
10031
10032         if (cgroup_fd != -1) {
10033                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10034                 if (err)
10035                         goto err_ns;
10036         }
10037
10038         pmu = perf_init_event(event);
10039         if (IS_ERR(pmu)) {
10040                 err = PTR_ERR(pmu);
10041                 goto err_ns;
10042         }
10043
10044         err = exclusive_event_init(event);
10045         if (err)
10046                 goto err_pmu;
10047
10048         if (has_addr_filter(event)) {
10049                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10050                                                    sizeof(unsigned long),
10051                                                    GFP_KERNEL);
10052                 if (!event->addr_filters_offs) {
10053                         err = -ENOMEM;
10054                         goto err_per_task;
10055                 }
10056
10057                 /* force hw sync on the address filters */
10058                 event->addr_filters_gen = 1;
10059         }
10060
10061         if (!event->parent) {
10062                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10063                         err = get_callchain_buffers(attr->sample_max_stack);
10064                         if (err)
10065                                 goto err_addr_filters;
10066                 }
10067         }
10068
10069         /* symmetric to unaccount_event() in _free_event() */
10070         account_event(event);
10071
10072         return event;
10073
10074 err_addr_filters:
10075         kfree(event->addr_filters_offs);
10076
10077 err_per_task:
10078         exclusive_event_destroy(event);
10079
10080 err_pmu:
10081         if (event->destroy)
10082                 event->destroy(event);
10083         module_put(pmu->module);
10084 err_ns:
10085         if (is_cgroup_event(event))
10086                 perf_detach_cgroup(event);
10087         if (event->ns)
10088                 put_pid_ns(event->ns);
10089         if (event->hw.target)
10090                 put_task_struct(event->hw.target);
10091         kfree(event);
10092
10093         return ERR_PTR(err);
10094 }
10095
10096 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10097                           struct perf_event_attr *attr)
10098 {
10099         u32 size;
10100         int ret;
10101
10102         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10103                 return -EFAULT;
10104
10105         /*
10106          * zero the full structure, so that a short copy will be nice.
10107          */
10108         memset(attr, 0, sizeof(*attr));
10109
10110         ret = get_user(size, &uattr->size);
10111         if (ret)
10112                 return ret;
10113
10114         if (size > PAGE_SIZE)   /* silly large */
10115                 goto err_size;
10116
10117         if (!size)              /* abi compat */
10118                 size = PERF_ATTR_SIZE_VER0;
10119
10120         if (size < PERF_ATTR_SIZE_VER0)
10121                 goto err_size;
10122
10123         /*
10124          * If we're handed a bigger struct than we know of,
10125          * ensure all the unknown bits are 0 - i.e. new
10126          * user-space does not rely on any kernel feature
10127          * extensions we dont know about yet.
10128          */
10129         if (size > sizeof(*attr)) {
10130                 unsigned char __user *addr;
10131                 unsigned char __user *end;
10132                 unsigned char val;
10133
10134                 addr = (void __user *)uattr + sizeof(*attr);
10135                 end  = (void __user *)uattr + size;
10136
10137                 for (; addr < end; addr++) {
10138                         ret = get_user(val, addr);
10139                         if (ret)
10140                                 return ret;
10141                         if (val)
10142                                 goto err_size;
10143                 }
10144                 size = sizeof(*attr);
10145         }
10146
10147         ret = copy_from_user(attr, uattr, size);
10148         if (ret)
10149                 return -EFAULT;
10150
10151         attr->size = size;
10152
10153         if (attr->__reserved_1)
10154                 return -EINVAL;
10155
10156         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10157                 return -EINVAL;
10158
10159         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10160                 return -EINVAL;
10161
10162         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10163                 u64 mask = attr->branch_sample_type;
10164
10165                 /* only using defined bits */
10166                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10167                         return -EINVAL;
10168
10169                 /* at least one branch bit must be set */
10170                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10171                         return -EINVAL;
10172
10173                 /* propagate priv level, when not set for branch */
10174                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10175
10176                         /* exclude_kernel checked on syscall entry */
10177                         if (!attr->exclude_kernel)
10178                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10179
10180                         if (!attr->exclude_user)
10181                                 mask |= PERF_SAMPLE_BRANCH_USER;
10182
10183                         if (!attr->exclude_hv)
10184                                 mask |= PERF_SAMPLE_BRANCH_HV;
10185                         /*
10186                          * adjust user setting (for HW filter setup)
10187                          */
10188                         attr->branch_sample_type = mask;
10189                 }
10190                 /* privileged levels capture (kernel, hv): check permissions */
10191                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10192                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10193                         return -EACCES;
10194         }
10195
10196         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10197                 ret = perf_reg_validate(attr->sample_regs_user);
10198                 if (ret)
10199                         return ret;
10200         }
10201
10202         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10203                 if (!arch_perf_have_user_stack_dump())
10204                         return -ENOSYS;
10205
10206                 /*
10207                  * We have __u32 type for the size, but so far
10208                  * we can only use __u16 as maximum due to the
10209                  * __u16 sample size limit.
10210                  */
10211                 if (attr->sample_stack_user >= USHRT_MAX)
10212                         return -EINVAL;
10213                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10214                         return -EINVAL;
10215         }
10216
10217         if (!attr->sample_max_stack)
10218                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10219
10220         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10221                 ret = perf_reg_validate(attr->sample_regs_intr);
10222 out:
10223         return ret;
10224
10225 err_size:
10226         put_user(sizeof(*attr), &uattr->size);
10227         ret = -E2BIG;
10228         goto out;
10229 }
10230
10231 static int
10232 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10233 {
10234         struct ring_buffer *rb = NULL;
10235         int ret = -EINVAL;
10236
10237         if (!output_event)
10238                 goto set;
10239
10240         /* don't allow circular references */
10241         if (event == output_event)
10242                 goto out;
10243
10244         /*
10245          * Don't allow cross-cpu buffers
10246          */
10247         if (output_event->cpu != event->cpu)
10248                 goto out;
10249
10250         /*
10251          * If its not a per-cpu rb, it must be the same task.
10252          */
10253         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10254                 goto out;
10255
10256         /*
10257          * Mixing clocks in the same buffer is trouble you don't need.
10258          */
10259         if (output_event->clock != event->clock)
10260                 goto out;
10261
10262         /*
10263          * Either writing ring buffer from beginning or from end.
10264          * Mixing is not allowed.
10265          */
10266         if (is_write_backward(output_event) != is_write_backward(event))
10267                 goto out;
10268
10269         /*
10270          * If both events generate aux data, they must be on the same PMU
10271          */
10272         if (has_aux(event) && has_aux(output_event) &&
10273             event->pmu != output_event->pmu)
10274                 goto out;
10275
10276 set:
10277         mutex_lock(&event->mmap_mutex);
10278         /* Can't redirect output if we've got an active mmap() */
10279         if (atomic_read(&event->mmap_count))
10280                 goto unlock;
10281
10282         if (output_event) {
10283                 /* get the rb we want to redirect to */
10284                 rb = ring_buffer_get(output_event);
10285                 if (!rb)
10286                         goto unlock;
10287         }
10288
10289         ring_buffer_attach(event, rb);
10290
10291         ret = 0;
10292 unlock:
10293         mutex_unlock(&event->mmap_mutex);
10294
10295 out:
10296         return ret;
10297 }
10298
10299 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10300 {
10301         if (b < a)
10302                 swap(a, b);
10303
10304         mutex_lock(a);
10305         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10306 }
10307
10308 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10309 {
10310         bool nmi_safe = false;
10311
10312         switch (clk_id) {
10313         case CLOCK_MONOTONIC:
10314                 event->clock = &ktime_get_mono_fast_ns;
10315                 nmi_safe = true;
10316                 break;
10317
10318         case CLOCK_MONOTONIC_RAW:
10319                 event->clock = &ktime_get_raw_fast_ns;
10320                 nmi_safe = true;
10321                 break;
10322
10323         case CLOCK_REALTIME:
10324                 event->clock = &ktime_get_real_ns;
10325                 break;
10326
10327         case CLOCK_BOOTTIME:
10328                 event->clock = &ktime_get_boot_ns;
10329                 break;
10330
10331         case CLOCK_TAI:
10332                 event->clock = &ktime_get_tai_ns;
10333                 break;
10334
10335         default:
10336                 return -EINVAL;
10337         }
10338
10339         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10340                 return -EINVAL;
10341
10342         return 0;
10343 }
10344
10345 /*
10346  * Variation on perf_event_ctx_lock_nested(), except we take two context
10347  * mutexes.
10348  */
10349 static struct perf_event_context *
10350 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10351                              struct perf_event_context *ctx)
10352 {
10353         struct perf_event_context *gctx;
10354
10355 again:
10356         rcu_read_lock();
10357         gctx = READ_ONCE(group_leader->ctx);
10358         if (!atomic_inc_not_zero(&gctx->refcount)) {
10359                 rcu_read_unlock();
10360                 goto again;
10361         }
10362         rcu_read_unlock();
10363
10364         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10365
10366         if (group_leader->ctx != gctx) {
10367                 mutex_unlock(&ctx->mutex);
10368                 mutex_unlock(&gctx->mutex);
10369                 put_ctx(gctx);
10370                 goto again;
10371         }
10372
10373         return gctx;
10374 }
10375
10376 /**
10377  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10378  *
10379  * @attr_uptr:  event_id type attributes for monitoring/sampling
10380  * @pid:                target pid
10381  * @cpu:                target cpu
10382  * @group_fd:           group leader event fd
10383  */
10384 SYSCALL_DEFINE5(perf_event_open,
10385                 struct perf_event_attr __user *, attr_uptr,
10386                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10387 {
10388         struct perf_event *group_leader = NULL, *output_event = NULL;
10389         struct perf_event *event, *sibling;
10390         struct perf_event_attr attr;
10391         struct perf_event_context *ctx, *uninitialized_var(gctx);
10392         struct file *event_file = NULL;
10393         struct fd group = {NULL, 0};
10394         struct task_struct *task = NULL;
10395         struct pmu *pmu;
10396         int event_fd;
10397         int move_group = 0;
10398         int err;
10399         int f_flags = O_RDWR;
10400         int cgroup_fd = -1;
10401
10402         /* for future expandability... */
10403         if (flags & ~PERF_FLAG_ALL)
10404                 return -EINVAL;
10405
10406         err = perf_copy_attr(attr_uptr, &attr);
10407         if (err)
10408                 return err;
10409
10410         if (!attr.exclude_kernel) {
10411                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10412                         return -EACCES;
10413         }
10414
10415         if (attr.namespaces) {
10416                 if (!capable(CAP_SYS_ADMIN))
10417                         return -EACCES;
10418         }
10419
10420         if (attr.freq) {
10421                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10422                         return -EINVAL;
10423         } else {
10424                 if (attr.sample_period & (1ULL << 63))
10425                         return -EINVAL;
10426         }
10427
10428         /* Only privileged users can get physical addresses */
10429         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10430             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10431                 return -EACCES;
10432
10433         /*
10434          * In cgroup mode, the pid argument is used to pass the fd
10435          * opened to the cgroup directory in cgroupfs. The cpu argument
10436          * designates the cpu on which to monitor threads from that
10437          * cgroup.
10438          */
10439         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10440                 return -EINVAL;
10441
10442         if (flags & PERF_FLAG_FD_CLOEXEC)
10443                 f_flags |= O_CLOEXEC;
10444
10445         event_fd = get_unused_fd_flags(f_flags);
10446         if (event_fd < 0)
10447                 return event_fd;
10448
10449         if (group_fd != -1) {
10450                 err = perf_fget_light(group_fd, &group);
10451                 if (err)
10452                         goto err_fd;
10453                 group_leader = group.file->private_data;
10454                 if (flags & PERF_FLAG_FD_OUTPUT)
10455                         output_event = group_leader;
10456                 if (flags & PERF_FLAG_FD_NO_GROUP)
10457                         group_leader = NULL;
10458         }
10459
10460         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10461                 task = find_lively_task_by_vpid(pid);
10462                 if (IS_ERR(task)) {
10463                         err = PTR_ERR(task);
10464                         goto err_group_fd;
10465                 }
10466         }
10467
10468         if (task && group_leader &&
10469             group_leader->attr.inherit != attr.inherit) {
10470                 err = -EINVAL;
10471                 goto err_task;
10472         }
10473
10474         if (task) {
10475                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10476                 if (err)
10477                         goto err_task;
10478
10479                 /*
10480                  * Reuse ptrace permission checks for now.
10481                  *
10482                  * We must hold cred_guard_mutex across this and any potential
10483                  * perf_install_in_context() call for this new event to
10484                  * serialize against exec() altering our credentials (and the
10485                  * perf_event_exit_task() that could imply).
10486                  */
10487                 err = -EACCES;
10488                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10489                         goto err_cred;
10490         }
10491
10492         if (flags & PERF_FLAG_PID_CGROUP)
10493                 cgroup_fd = pid;
10494
10495         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10496                                  NULL, NULL, cgroup_fd);
10497         if (IS_ERR(event)) {
10498                 err = PTR_ERR(event);
10499                 goto err_cred;
10500         }
10501
10502         if (is_sampling_event(event)) {
10503                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10504                         err = -EOPNOTSUPP;
10505                         goto err_alloc;
10506                 }
10507         }
10508
10509         /*
10510          * Special case software events and allow them to be part of
10511          * any hardware group.
10512          */
10513         pmu = event->pmu;
10514
10515         if (attr.use_clockid) {
10516                 err = perf_event_set_clock(event, attr.clockid);
10517                 if (err)
10518                         goto err_alloc;
10519         }
10520
10521         if (pmu->task_ctx_nr == perf_sw_context)
10522                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10523
10524         if (group_leader) {
10525                 if (is_software_event(event) &&
10526                     !in_software_context(group_leader)) {
10527                         /*
10528                          * If the event is a sw event, but the group_leader
10529                          * is on hw context.
10530                          *
10531                          * Allow the addition of software events to hw
10532                          * groups, this is safe because software events
10533                          * never fail to schedule.
10534                          */
10535                         pmu = group_leader->ctx->pmu;
10536                 } else if (!is_software_event(event) &&
10537                            is_software_event(group_leader) &&
10538                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10539                         /*
10540                          * In case the group is a pure software group, and we
10541                          * try to add a hardware event, move the whole group to
10542                          * the hardware context.
10543                          */
10544                         move_group = 1;
10545                 }
10546         }
10547
10548         /*
10549          * Get the target context (task or percpu):
10550          */
10551         ctx = find_get_context(pmu, task, event);
10552         if (IS_ERR(ctx)) {
10553                 err = PTR_ERR(ctx);
10554                 goto err_alloc;
10555         }
10556
10557         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10558                 err = -EBUSY;
10559                 goto err_context;
10560         }
10561
10562         /*
10563          * Look up the group leader (we will attach this event to it):
10564          */
10565         if (group_leader) {
10566                 err = -EINVAL;
10567
10568                 /*
10569                  * Do not allow a recursive hierarchy (this new sibling
10570                  * becoming part of another group-sibling):
10571                  */
10572                 if (group_leader->group_leader != group_leader)
10573                         goto err_context;
10574
10575                 /* All events in a group should have the same clock */
10576                 if (group_leader->clock != event->clock)
10577                         goto err_context;
10578
10579                 /*
10580                  * Make sure we're both events for the same CPU;
10581                  * grouping events for different CPUs is broken; since
10582                  * you can never concurrently schedule them anyhow.
10583                  */
10584                 if (group_leader->cpu != event->cpu)
10585                         goto err_context;
10586
10587                 /*
10588                  * Make sure we're both on the same task, or both
10589                  * per-CPU events.
10590                  */
10591                 if (group_leader->ctx->task != ctx->task)
10592                         goto err_context;
10593
10594                 /*
10595                  * Do not allow to attach to a group in a different task
10596                  * or CPU context. If we're moving SW events, we'll fix
10597                  * this up later, so allow that.
10598                  */
10599                 if (!move_group && group_leader->ctx != ctx)
10600                         goto err_context;
10601
10602                 /*
10603                  * Only a group leader can be exclusive or pinned
10604                  */
10605                 if (attr.exclusive || attr.pinned)
10606                         goto err_context;
10607         }
10608
10609         if (output_event) {
10610                 err = perf_event_set_output(event, output_event);
10611                 if (err)
10612                         goto err_context;
10613         }
10614
10615         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10616                                         f_flags);
10617         if (IS_ERR(event_file)) {
10618                 err = PTR_ERR(event_file);
10619                 event_file = NULL;
10620                 goto err_context;
10621         }
10622
10623         if (move_group) {
10624                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10625
10626                 if (gctx->task == TASK_TOMBSTONE) {
10627                         err = -ESRCH;
10628                         goto err_locked;
10629                 }
10630
10631                 /*
10632                  * Check if we raced against another sys_perf_event_open() call
10633                  * moving the software group underneath us.
10634                  */
10635                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10636                         /*
10637                          * If someone moved the group out from under us, check
10638                          * if this new event wound up on the same ctx, if so
10639                          * its the regular !move_group case, otherwise fail.
10640                          */
10641                         if (gctx != ctx) {
10642                                 err = -EINVAL;
10643                                 goto err_locked;
10644                         } else {
10645                                 perf_event_ctx_unlock(group_leader, gctx);
10646                                 move_group = 0;
10647                         }
10648                 }
10649         } else {
10650                 mutex_lock(&ctx->mutex);
10651         }
10652
10653         if (ctx->task == TASK_TOMBSTONE) {
10654                 err = -ESRCH;
10655                 goto err_locked;
10656         }
10657
10658         if (!perf_event_validate_size(event)) {
10659                 err = -E2BIG;
10660                 goto err_locked;
10661         }
10662
10663         if (!task) {
10664                 /*
10665                  * Check if the @cpu we're creating an event for is online.
10666                  *
10667                  * We use the perf_cpu_context::ctx::mutex to serialize against
10668                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10669                  */
10670                 struct perf_cpu_context *cpuctx =
10671                         container_of(ctx, struct perf_cpu_context, ctx);
10672
10673                 if (!cpuctx->online) {
10674                         err = -ENODEV;
10675                         goto err_locked;
10676                 }
10677         }
10678
10679
10680         /*
10681          * Must be under the same ctx::mutex as perf_install_in_context(),
10682          * because we need to serialize with concurrent event creation.
10683          */
10684         if (!exclusive_event_installable(event, ctx)) {
10685                 /* exclusive and group stuff are assumed mutually exclusive */
10686                 WARN_ON_ONCE(move_group);
10687
10688                 err = -EBUSY;
10689                 goto err_locked;
10690         }
10691
10692         WARN_ON_ONCE(ctx->parent_ctx);
10693
10694         /*
10695          * This is the point on no return; we cannot fail hereafter. This is
10696          * where we start modifying current state.
10697          */
10698
10699         if (move_group) {
10700                 /*
10701                  * See perf_event_ctx_lock() for comments on the details
10702                  * of swizzling perf_event::ctx.
10703                  */
10704                 perf_remove_from_context(group_leader, 0);
10705                 put_ctx(gctx);
10706
10707                 for_each_sibling_event(sibling, group_leader) {
10708                         perf_remove_from_context(sibling, 0);
10709                         put_ctx(gctx);
10710                 }
10711
10712                 /*
10713                  * Wait for everybody to stop referencing the events through
10714                  * the old lists, before installing it on new lists.
10715                  */
10716                 synchronize_rcu();
10717
10718                 /*
10719                  * Install the group siblings before the group leader.
10720                  *
10721                  * Because a group leader will try and install the entire group
10722                  * (through the sibling list, which is still in-tact), we can
10723                  * end up with siblings installed in the wrong context.
10724                  *
10725                  * By installing siblings first we NO-OP because they're not
10726                  * reachable through the group lists.
10727                  */
10728                 for_each_sibling_event(sibling, group_leader) {
10729                         perf_event__state_init(sibling);
10730                         perf_install_in_context(ctx, sibling, sibling->cpu);
10731                         get_ctx(ctx);
10732                 }
10733
10734                 /*
10735                  * Removing from the context ends up with disabled
10736                  * event. What we want here is event in the initial
10737                  * startup state, ready to be add into new context.
10738                  */
10739                 perf_event__state_init(group_leader);
10740                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10741                 get_ctx(ctx);
10742         }
10743
10744         /*
10745          * Precalculate sample_data sizes; do while holding ctx::mutex such
10746          * that we're serialized against further additions and before
10747          * perf_install_in_context() which is the point the event is active and
10748          * can use these values.
10749          */
10750         perf_event__header_size(event);
10751         perf_event__id_header_size(event);
10752
10753         event->owner = current;
10754
10755         perf_install_in_context(ctx, event, event->cpu);
10756         perf_unpin_context(ctx);
10757
10758         if (move_group)
10759                 perf_event_ctx_unlock(group_leader, gctx);
10760         mutex_unlock(&ctx->mutex);
10761
10762         if (task) {
10763                 mutex_unlock(&task->signal->cred_guard_mutex);
10764                 put_task_struct(task);
10765         }
10766
10767         mutex_lock(&current->perf_event_mutex);
10768         list_add_tail(&event->owner_entry, &current->perf_event_list);
10769         mutex_unlock(&current->perf_event_mutex);
10770
10771         /*
10772          * Drop the reference on the group_event after placing the
10773          * new event on the sibling_list. This ensures destruction
10774          * of the group leader will find the pointer to itself in
10775          * perf_group_detach().
10776          */
10777         fdput(group);
10778         fd_install(event_fd, event_file);
10779         return event_fd;
10780
10781 err_locked:
10782         if (move_group)
10783                 perf_event_ctx_unlock(group_leader, gctx);
10784         mutex_unlock(&ctx->mutex);
10785 /* err_file: */
10786         fput(event_file);
10787 err_context:
10788         perf_unpin_context(ctx);
10789         put_ctx(ctx);
10790 err_alloc:
10791         /*
10792          * If event_file is set, the fput() above will have called ->release()
10793          * and that will take care of freeing the event.
10794          */
10795         if (!event_file)
10796                 free_event(event);
10797 err_cred:
10798         if (task)
10799                 mutex_unlock(&task->signal->cred_guard_mutex);
10800 err_task:
10801         if (task)
10802                 put_task_struct(task);
10803 err_group_fd:
10804         fdput(group);
10805 err_fd:
10806         put_unused_fd(event_fd);
10807         return err;
10808 }
10809
10810 /**
10811  * perf_event_create_kernel_counter
10812  *
10813  * @attr: attributes of the counter to create
10814  * @cpu: cpu in which the counter is bound
10815  * @task: task to profile (NULL for percpu)
10816  */
10817 struct perf_event *
10818 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10819                                  struct task_struct *task,
10820                                  perf_overflow_handler_t overflow_handler,
10821                                  void *context)
10822 {
10823         struct perf_event_context *ctx;
10824         struct perf_event *event;
10825         int err;
10826
10827         /*
10828          * Get the target context (task or percpu):
10829          */
10830
10831         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10832                                  overflow_handler, context, -1);
10833         if (IS_ERR(event)) {
10834                 err = PTR_ERR(event);
10835                 goto err;
10836         }
10837
10838         /* Mark owner so we could distinguish it from user events. */
10839         event->owner = TASK_TOMBSTONE;
10840
10841         ctx = find_get_context(event->pmu, task, event);
10842         if (IS_ERR(ctx)) {
10843                 err = PTR_ERR(ctx);
10844                 goto err_free;
10845         }
10846
10847         WARN_ON_ONCE(ctx->parent_ctx);
10848         mutex_lock(&ctx->mutex);
10849         if (ctx->task == TASK_TOMBSTONE) {
10850                 err = -ESRCH;
10851                 goto err_unlock;
10852         }
10853
10854         if (!task) {
10855                 /*
10856                  * Check if the @cpu we're creating an event for is online.
10857                  *
10858                  * We use the perf_cpu_context::ctx::mutex to serialize against
10859                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10860                  */
10861                 struct perf_cpu_context *cpuctx =
10862                         container_of(ctx, struct perf_cpu_context, ctx);
10863                 if (!cpuctx->online) {
10864                         err = -ENODEV;
10865                         goto err_unlock;
10866                 }
10867         }
10868
10869         if (!exclusive_event_installable(event, ctx)) {
10870                 err = -EBUSY;
10871                 goto err_unlock;
10872         }
10873
10874         perf_install_in_context(ctx, event, cpu);
10875         perf_unpin_context(ctx);
10876         mutex_unlock(&ctx->mutex);
10877
10878         return event;
10879
10880 err_unlock:
10881         mutex_unlock(&ctx->mutex);
10882         perf_unpin_context(ctx);
10883         put_ctx(ctx);
10884 err_free:
10885         free_event(event);
10886 err:
10887         return ERR_PTR(err);
10888 }
10889 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10890
10891 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10892 {
10893         struct perf_event_context *src_ctx;
10894         struct perf_event_context *dst_ctx;
10895         struct perf_event *event, *tmp;
10896         LIST_HEAD(events);
10897
10898         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10899         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10900
10901         /*
10902          * See perf_event_ctx_lock() for comments on the details
10903          * of swizzling perf_event::ctx.
10904          */
10905         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10906         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10907                                  event_entry) {
10908                 perf_remove_from_context(event, 0);
10909                 unaccount_event_cpu(event, src_cpu);
10910                 put_ctx(src_ctx);
10911                 list_add(&event->migrate_entry, &events);
10912         }
10913
10914         /*
10915          * Wait for the events to quiesce before re-instating them.
10916          */
10917         synchronize_rcu();
10918
10919         /*
10920          * Re-instate events in 2 passes.
10921          *
10922          * Skip over group leaders and only install siblings on this first
10923          * pass, siblings will not get enabled without a leader, however a
10924          * leader will enable its siblings, even if those are still on the old
10925          * context.
10926          */
10927         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10928                 if (event->group_leader == event)
10929                         continue;
10930
10931                 list_del(&event->migrate_entry);
10932                 if (event->state >= PERF_EVENT_STATE_OFF)
10933                         event->state = PERF_EVENT_STATE_INACTIVE;
10934                 account_event_cpu(event, dst_cpu);
10935                 perf_install_in_context(dst_ctx, event, dst_cpu);
10936                 get_ctx(dst_ctx);
10937         }
10938
10939         /*
10940          * Once all the siblings are setup properly, install the group leaders
10941          * to make it go.
10942          */
10943         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10944                 list_del(&event->migrate_entry);
10945                 if (event->state >= PERF_EVENT_STATE_OFF)
10946                         event->state = PERF_EVENT_STATE_INACTIVE;
10947                 account_event_cpu(event, dst_cpu);
10948                 perf_install_in_context(dst_ctx, event, dst_cpu);
10949                 get_ctx(dst_ctx);
10950         }
10951         mutex_unlock(&dst_ctx->mutex);
10952         mutex_unlock(&src_ctx->mutex);
10953 }
10954 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10955
10956 static void sync_child_event(struct perf_event *child_event,
10957                                struct task_struct *child)
10958 {
10959         struct perf_event *parent_event = child_event->parent;
10960         u64 child_val;
10961
10962         if (child_event->attr.inherit_stat)
10963                 perf_event_read_event(child_event, child);
10964
10965         child_val = perf_event_count(child_event);
10966
10967         /*
10968          * Add back the child's count to the parent's count:
10969          */
10970         atomic64_add(child_val, &parent_event->child_count);
10971         atomic64_add(child_event->total_time_enabled,
10972                      &parent_event->child_total_time_enabled);
10973         atomic64_add(child_event->total_time_running,
10974                      &parent_event->child_total_time_running);
10975 }
10976
10977 static void
10978 perf_event_exit_event(struct perf_event *child_event,
10979                       struct perf_event_context *child_ctx,
10980                       struct task_struct *child)
10981 {
10982         struct perf_event *parent_event = child_event->parent;
10983
10984         /*
10985          * Do not destroy the 'original' grouping; because of the context
10986          * switch optimization the original events could've ended up in a
10987          * random child task.
10988          *
10989          * If we were to destroy the original group, all group related
10990          * operations would cease to function properly after this random
10991          * child dies.
10992          *
10993          * Do destroy all inherited groups, we don't care about those
10994          * and being thorough is better.
10995          */
10996         raw_spin_lock_irq(&child_ctx->lock);
10997         WARN_ON_ONCE(child_ctx->is_active);
10998
10999         if (parent_event)
11000                 perf_group_detach(child_event);
11001         list_del_event(child_event, child_ctx);
11002         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11003         raw_spin_unlock_irq(&child_ctx->lock);
11004
11005         /*
11006          * Parent events are governed by their filedesc, retain them.
11007          */
11008         if (!parent_event) {
11009                 perf_event_wakeup(child_event);
11010                 return;
11011         }
11012         /*
11013          * Child events can be cleaned up.
11014          */
11015
11016         sync_child_event(child_event, child);
11017
11018         /*
11019          * Remove this event from the parent's list
11020          */
11021         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11022         mutex_lock(&parent_event->child_mutex);
11023         list_del_init(&child_event->child_list);
11024         mutex_unlock(&parent_event->child_mutex);
11025
11026         /*
11027          * Kick perf_poll() for is_event_hup().
11028          */
11029         perf_event_wakeup(parent_event);
11030         free_event(child_event);
11031         put_event(parent_event);
11032 }
11033
11034 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11035 {
11036         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11037         struct perf_event *child_event, *next;
11038
11039         WARN_ON_ONCE(child != current);
11040
11041         child_ctx = perf_pin_task_context(child, ctxn);
11042         if (!child_ctx)
11043                 return;
11044
11045         /*
11046          * In order to reduce the amount of tricky in ctx tear-down, we hold
11047          * ctx::mutex over the entire thing. This serializes against almost
11048          * everything that wants to access the ctx.
11049          *
11050          * The exception is sys_perf_event_open() /
11051          * perf_event_create_kernel_count() which does find_get_context()
11052          * without ctx::mutex (it cannot because of the move_group double mutex
11053          * lock thing). See the comments in perf_install_in_context().
11054          */
11055         mutex_lock(&child_ctx->mutex);
11056
11057         /*
11058          * In a single ctx::lock section, de-schedule the events and detach the
11059          * context from the task such that we cannot ever get it scheduled back
11060          * in.
11061          */
11062         raw_spin_lock_irq(&child_ctx->lock);
11063         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11064
11065         /*
11066          * Now that the context is inactive, destroy the task <-> ctx relation
11067          * and mark the context dead.
11068          */
11069         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11070         put_ctx(child_ctx); /* cannot be last */
11071         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11072         put_task_struct(current); /* cannot be last */
11073
11074         clone_ctx = unclone_ctx(child_ctx);
11075         raw_spin_unlock_irq(&child_ctx->lock);
11076
11077         if (clone_ctx)
11078                 put_ctx(clone_ctx);
11079
11080         /*
11081          * Report the task dead after unscheduling the events so that we
11082          * won't get any samples after PERF_RECORD_EXIT. We can however still
11083          * get a few PERF_RECORD_READ events.
11084          */
11085         perf_event_task(child, child_ctx, 0);
11086
11087         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11088                 perf_event_exit_event(child_event, child_ctx, child);
11089
11090         mutex_unlock(&child_ctx->mutex);
11091
11092         put_ctx(child_ctx);
11093 }
11094
11095 /*
11096  * When a child task exits, feed back event values to parent events.
11097  *
11098  * Can be called with cred_guard_mutex held when called from
11099  * install_exec_creds().
11100  */
11101 void perf_event_exit_task(struct task_struct *child)
11102 {
11103         struct perf_event *event, *tmp;
11104         int ctxn;
11105
11106         mutex_lock(&child->perf_event_mutex);
11107         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11108                                  owner_entry) {
11109                 list_del_init(&event->owner_entry);
11110
11111                 /*
11112                  * Ensure the list deletion is visible before we clear
11113                  * the owner, closes a race against perf_release() where
11114                  * we need to serialize on the owner->perf_event_mutex.
11115                  */
11116                 smp_store_release(&event->owner, NULL);
11117         }
11118         mutex_unlock(&child->perf_event_mutex);
11119
11120         for_each_task_context_nr(ctxn)
11121                 perf_event_exit_task_context(child, ctxn);
11122
11123         /*
11124          * The perf_event_exit_task_context calls perf_event_task
11125          * with child's task_ctx, which generates EXIT events for
11126          * child contexts and sets child->perf_event_ctxp[] to NULL.
11127          * At this point we need to send EXIT events to cpu contexts.
11128          */
11129         perf_event_task(child, NULL, 0);
11130 }
11131
11132 static void perf_free_event(struct perf_event *event,
11133                             struct perf_event_context *ctx)
11134 {
11135         struct perf_event *parent = event->parent;
11136
11137         if (WARN_ON_ONCE(!parent))
11138                 return;
11139
11140         mutex_lock(&parent->child_mutex);
11141         list_del_init(&event->child_list);
11142         mutex_unlock(&parent->child_mutex);
11143
11144         put_event(parent);
11145
11146         raw_spin_lock_irq(&ctx->lock);
11147         perf_group_detach(event);
11148         list_del_event(event, ctx);
11149         raw_spin_unlock_irq(&ctx->lock);
11150         free_event(event);
11151 }
11152
11153 /*
11154  * Free an unexposed, unused context as created by inheritance by
11155  * perf_event_init_task below, used by fork() in case of fail.
11156  *
11157  * Not all locks are strictly required, but take them anyway to be nice and
11158  * help out with the lockdep assertions.
11159  */
11160 void perf_event_free_task(struct task_struct *task)
11161 {
11162         struct perf_event_context *ctx;
11163         struct perf_event *event, *tmp;
11164         int ctxn;
11165
11166         for_each_task_context_nr(ctxn) {
11167                 ctx = task->perf_event_ctxp[ctxn];
11168                 if (!ctx)
11169                         continue;
11170
11171                 mutex_lock(&ctx->mutex);
11172                 raw_spin_lock_irq(&ctx->lock);
11173                 /*
11174                  * Destroy the task <-> ctx relation and mark the context dead.
11175                  *
11176                  * This is important because even though the task hasn't been
11177                  * exposed yet the context has been (through child_list).
11178                  */
11179                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11180                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11181                 put_task_struct(task); /* cannot be last */
11182                 raw_spin_unlock_irq(&ctx->lock);
11183
11184                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11185                         perf_free_event(event, ctx);
11186
11187                 mutex_unlock(&ctx->mutex);
11188                 put_ctx(ctx);
11189         }
11190 }
11191
11192 void perf_event_delayed_put(struct task_struct *task)
11193 {
11194         int ctxn;
11195
11196         for_each_task_context_nr(ctxn)
11197                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11198 }
11199
11200 struct file *perf_event_get(unsigned int fd)
11201 {
11202         struct file *file;
11203
11204         file = fget_raw(fd);
11205         if (!file)
11206                 return ERR_PTR(-EBADF);
11207
11208         if (file->f_op != &perf_fops) {
11209                 fput(file);
11210                 return ERR_PTR(-EBADF);
11211         }
11212
11213         return file;
11214 }
11215
11216 const struct perf_event *perf_get_event(struct file *file)
11217 {
11218         if (file->f_op != &perf_fops)
11219                 return ERR_PTR(-EINVAL);
11220
11221         return file->private_data;
11222 }
11223
11224 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11225 {
11226         if (!event)
11227                 return ERR_PTR(-EINVAL);
11228
11229         return &event->attr;
11230 }
11231
11232 /*
11233  * Inherit an event from parent task to child task.
11234  *
11235  * Returns:
11236  *  - valid pointer on success
11237  *  - NULL for orphaned events
11238  *  - IS_ERR() on error
11239  */
11240 static struct perf_event *
11241 inherit_event(struct perf_event *parent_event,
11242               struct task_struct *parent,
11243               struct perf_event_context *parent_ctx,
11244               struct task_struct *child,
11245               struct perf_event *group_leader,
11246               struct perf_event_context *child_ctx)
11247 {
11248         enum perf_event_state parent_state = parent_event->state;
11249         struct perf_event *child_event;
11250         unsigned long flags;
11251
11252         /*
11253          * Instead of creating recursive hierarchies of events,
11254          * we link inherited events back to the original parent,
11255          * which has a filp for sure, which we use as the reference
11256          * count:
11257          */
11258         if (parent_event->parent)
11259                 parent_event = parent_event->parent;
11260
11261         child_event = perf_event_alloc(&parent_event->attr,
11262                                            parent_event->cpu,
11263                                            child,
11264                                            group_leader, parent_event,
11265                                            NULL, NULL, -1);
11266         if (IS_ERR(child_event))
11267                 return child_event;
11268
11269
11270         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11271             !child_ctx->task_ctx_data) {
11272                 struct pmu *pmu = child_event->pmu;
11273
11274                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11275                                                    GFP_KERNEL);
11276                 if (!child_ctx->task_ctx_data) {
11277                         free_event(child_event);
11278                         return NULL;
11279                 }
11280         }
11281
11282         /*
11283          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11284          * must be under the same lock in order to serialize against
11285          * perf_event_release_kernel(), such that either we must observe
11286          * is_orphaned_event() or they will observe us on the child_list.
11287          */
11288         mutex_lock(&parent_event->child_mutex);
11289         if (is_orphaned_event(parent_event) ||
11290             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11291                 mutex_unlock(&parent_event->child_mutex);
11292                 /* task_ctx_data is freed with child_ctx */
11293                 free_event(child_event);
11294                 return NULL;
11295         }
11296
11297         get_ctx(child_ctx);
11298
11299         /*
11300          * Make the child state follow the state of the parent event,
11301          * not its attr.disabled bit.  We hold the parent's mutex,
11302          * so we won't race with perf_event_{en, dis}able_family.
11303          */
11304         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11305                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11306         else
11307                 child_event->state = PERF_EVENT_STATE_OFF;
11308
11309         if (parent_event->attr.freq) {
11310                 u64 sample_period = parent_event->hw.sample_period;
11311                 struct hw_perf_event *hwc = &child_event->hw;
11312
11313                 hwc->sample_period = sample_period;
11314                 hwc->last_period   = sample_period;
11315
11316                 local64_set(&hwc->period_left, sample_period);
11317         }
11318
11319         child_event->ctx = child_ctx;
11320         child_event->overflow_handler = parent_event->overflow_handler;
11321         child_event->overflow_handler_context
11322                 = parent_event->overflow_handler_context;
11323
11324         /*
11325          * Precalculate sample_data sizes
11326          */
11327         perf_event__header_size(child_event);
11328         perf_event__id_header_size(child_event);
11329
11330         /*
11331          * Link it up in the child's context:
11332          */
11333         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11334         add_event_to_ctx(child_event, child_ctx);
11335         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11336
11337         /*
11338          * Link this into the parent event's child list
11339          */
11340         list_add_tail(&child_event->child_list, &parent_event->child_list);
11341         mutex_unlock(&parent_event->child_mutex);
11342
11343         return child_event;
11344 }
11345
11346 /*
11347  * Inherits an event group.
11348  *
11349  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11350  * This matches with perf_event_release_kernel() removing all child events.
11351  *
11352  * Returns:
11353  *  - 0 on success
11354  *  - <0 on error
11355  */
11356 static int inherit_group(struct perf_event *parent_event,
11357               struct task_struct *parent,
11358               struct perf_event_context *parent_ctx,
11359               struct task_struct *child,
11360               struct perf_event_context *child_ctx)
11361 {
11362         struct perf_event *leader;
11363         struct perf_event *sub;
11364         struct perf_event *child_ctr;
11365
11366         leader = inherit_event(parent_event, parent, parent_ctx,
11367                                  child, NULL, child_ctx);
11368         if (IS_ERR(leader))
11369                 return PTR_ERR(leader);
11370         /*
11371          * @leader can be NULL here because of is_orphaned_event(). In this
11372          * case inherit_event() will create individual events, similar to what
11373          * perf_group_detach() would do anyway.
11374          */
11375         for_each_sibling_event(sub, parent_event) {
11376                 child_ctr = inherit_event(sub, parent, parent_ctx,
11377                                             child, leader, child_ctx);
11378                 if (IS_ERR(child_ctr))
11379                         return PTR_ERR(child_ctr);
11380         }
11381         return 0;
11382 }
11383
11384 /*
11385  * Creates the child task context and tries to inherit the event-group.
11386  *
11387  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11388  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11389  * consistent with perf_event_release_kernel() removing all child events.
11390  *
11391  * Returns:
11392  *  - 0 on success
11393  *  - <0 on error
11394  */
11395 static int
11396 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11397                    struct perf_event_context *parent_ctx,
11398                    struct task_struct *child, int ctxn,
11399                    int *inherited_all)
11400 {
11401         int ret;
11402         struct perf_event_context *child_ctx;
11403
11404         if (!event->attr.inherit) {
11405                 *inherited_all = 0;
11406                 return 0;
11407         }
11408
11409         child_ctx = child->perf_event_ctxp[ctxn];
11410         if (!child_ctx) {
11411                 /*
11412                  * This is executed from the parent task context, so
11413                  * inherit events that have been marked for cloning.
11414                  * First allocate and initialize a context for the
11415                  * child.
11416                  */
11417                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11418                 if (!child_ctx)
11419                         return -ENOMEM;
11420
11421                 child->perf_event_ctxp[ctxn] = child_ctx;
11422         }
11423
11424         ret = inherit_group(event, parent, parent_ctx,
11425                             child, child_ctx);
11426
11427         if (ret)
11428                 *inherited_all = 0;
11429
11430         return ret;
11431 }
11432
11433 /*
11434  * Initialize the perf_event context in task_struct
11435  */
11436 static int perf_event_init_context(struct task_struct *child, int ctxn)
11437 {
11438         struct perf_event_context *child_ctx, *parent_ctx;
11439         struct perf_event_context *cloned_ctx;
11440         struct perf_event *event;
11441         struct task_struct *parent = current;
11442         int inherited_all = 1;
11443         unsigned long flags;
11444         int ret = 0;
11445
11446         if (likely(!parent->perf_event_ctxp[ctxn]))
11447                 return 0;
11448
11449         /*
11450          * If the parent's context is a clone, pin it so it won't get
11451          * swapped under us.
11452          */
11453         parent_ctx = perf_pin_task_context(parent, ctxn);
11454         if (!parent_ctx)
11455                 return 0;
11456
11457         /*
11458          * No need to check if parent_ctx != NULL here; since we saw
11459          * it non-NULL earlier, the only reason for it to become NULL
11460          * is if we exit, and since we're currently in the middle of
11461          * a fork we can't be exiting at the same time.
11462          */
11463
11464         /*
11465          * Lock the parent list. No need to lock the child - not PID
11466          * hashed yet and not running, so nobody can access it.
11467          */
11468         mutex_lock(&parent_ctx->mutex);
11469
11470         /*
11471          * We dont have to disable NMIs - we are only looking at
11472          * the list, not manipulating it:
11473          */
11474         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11475                 ret = inherit_task_group(event, parent, parent_ctx,
11476                                          child, ctxn, &inherited_all);
11477                 if (ret)
11478                         goto out_unlock;
11479         }
11480
11481         /*
11482          * We can't hold ctx->lock when iterating the ->flexible_group list due
11483          * to allocations, but we need to prevent rotation because
11484          * rotate_ctx() will change the list from interrupt context.
11485          */
11486         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11487         parent_ctx->rotate_disable = 1;
11488         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11489
11490         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11491                 ret = inherit_task_group(event, parent, parent_ctx,
11492                                          child, ctxn, &inherited_all);
11493                 if (ret)
11494                         goto out_unlock;
11495         }
11496
11497         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11498         parent_ctx->rotate_disable = 0;
11499
11500         child_ctx = child->perf_event_ctxp[ctxn];
11501
11502         if (child_ctx && inherited_all) {
11503                 /*
11504                  * Mark the child context as a clone of the parent
11505                  * context, or of whatever the parent is a clone of.
11506                  *
11507                  * Note that if the parent is a clone, the holding of
11508                  * parent_ctx->lock avoids it from being uncloned.
11509                  */
11510                 cloned_ctx = parent_ctx->parent_ctx;
11511                 if (cloned_ctx) {
11512                         child_ctx->parent_ctx = cloned_ctx;
11513                         child_ctx->parent_gen = parent_ctx->parent_gen;
11514                 } else {
11515                         child_ctx->parent_ctx = parent_ctx;
11516                         child_ctx->parent_gen = parent_ctx->generation;
11517                 }
11518                 get_ctx(child_ctx->parent_ctx);
11519         }
11520
11521         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11522 out_unlock:
11523         mutex_unlock(&parent_ctx->mutex);
11524
11525         perf_unpin_context(parent_ctx);
11526         put_ctx(parent_ctx);
11527
11528         return ret;
11529 }
11530
11531 /*
11532  * Initialize the perf_event context in task_struct
11533  */
11534 int perf_event_init_task(struct task_struct *child)
11535 {
11536         int ctxn, ret;
11537
11538         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11539         mutex_init(&child->perf_event_mutex);
11540         INIT_LIST_HEAD(&child->perf_event_list);
11541
11542         for_each_task_context_nr(ctxn) {
11543                 ret = perf_event_init_context(child, ctxn);
11544                 if (ret) {
11545                         perf_event_free_task(child);
11546                         return ret;
11547                 }
11548         }
11549
11550         return 0;
11551 }
11552
11553 static void __init perf_event_init_all_cpus(void)
11554 {
11555         struct swevent_htable *swhash;
11556         int cpu;
11557
11558         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11559
11560         for_each_possible_cpu(cpu) {
11561                 swhash = &per_cpu(swevent_htable, cpu);
11562                 mutex_init(&swhash->hlist_mutex);
11563                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11564
11565                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11566                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11567
11568 #ifdef CONFIG_CGROUP_PERF
11569                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11570 #endif
11571                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11572         }
11573 }
11574
11575 void perf_swevent_init_cpu(unsigned int cpu)
11576 {
11577         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11578
11579         mutex_lock(&swhash->hlist_mutex);
11580         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11581                 struct swevent_hlist *hlist;
11582
11583                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11584                 WARN_ON(!hlist);
11585                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11586         }
11587         mutex_unlock(&swhash->hlist_mutex);
11588 }
11589
11590 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11591 static void __perf_event_exit_context(void *__info)
11592 {
11593         struct perf_event_context *ctx = __info;
11594         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11595         struct perf_event *event;
11596
11597         raw_spin_lock(&ctx->lock);
11598         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11599         list_for_each_entry(event, &ctx->event_list, event_entry)
11600                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11601         raw_spin_unlock(&ctx->lock);
11602 }
11603
11604 static void perf_event_exit_cpu_context(int cpu)
11605 {
11606         struct perf_cpu_context *cpuctx;
11607         struct perf_event_context *ctx;
11608         struct pmu *pmu;
11609
11610         mutex_lock(&pmus_lock);
11611         list_for_each_entry(pmu, &pmus, entry) {
11612                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11613                 ctx = &cpuctx->ctx;
11614
11615                 mutex_lock(&ctx->mutex);
11616                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11617                 cpuctx->online = 0;
11618                 mutex_unlock(&ctx->mutex);
11619         }
11620         cpumask_clear_cpu(cpu, perf_online_mask);
11621         mutex_unlock(&pmus_lock);
11622 }
11623 #else
11624
11625 static void perf_event_exit_cpu_context(int cpu) { }
11626
11627 #endif
11628
11629 int perf_event_init_cpu(unsigned int cpu)
11630 {
11631         struct perf_cpu_context *cpuctx;
11632         struct perf_event_context *ctx;
11633         struct pmu *pmu;
11634
11635         perf_swevent_init_cpu(cpu);
11636
11637         mutex_lock(&pmus_lock);
11638         cpumask_set_cpu(cpu, perf_online_mask);
11639         list_for_each_entry(pmu, &pmus, entry) {
11640                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11641                 ctx = &cpuctx->ctx;
11642
11643                 mutex_lock(&ctx->mutex);
11644                 cpuctx->online = 1;
11645                 mutex_unlock(&ctx->mutex);
11646         }
11647         mutex_unlock(&pmus_lock);
11648
11649         return 0;
11650 }
11651
11652 int perf_event_exit_cpu(unsigned int cpu)
11653 {
11654         perf_event_exit_cpu_context(cpu);
11655         return 0;
11656 }
11657
11658 static int
11659 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11660 {
11661         int cpu;
11662
11663         for_each_online_cpu(cpu)
11664                 perf_event_exit_cpu(cpu);
11665
11666         return NOTIFY_OK;
11667 }
11668
11669 /*
11670  * Run the perf reboot notifier at the very last possible moment so that
11671  * the generic watchdog code runs as long as possible.
11672  */
11673 static struct notifier_block perf_reboot_notifier = {
11674         .notifier_call = perf_reboot,
11675         .priority = INT_MIN,
11676 };
11677
11678 void __init perf_event_init(void)
11679 {
11680         int ret;
11681
11682         idr_init(&pmu_idr);
11683
11684         perf_event_init_all_cpus();
11685         init_srcu_struct(&pmus_srcu);
11686         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11687         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11688         perf_pmu_register(&perf_task_clock, NULL, -1);
11689         perf_tp_register();
11690         perf_event_init_cpu(smp_processor_id());
11691         register_reboot_notifier(&perf_reboot_notifier);
11692
11693         ret = init_hw_breakpoint();
11694         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11695
11696         /*
11697          * Build time assertion that we keep the data_head at the intended
11698          * location.  IOW, validation we got the __reserved[] size right.
11699          */
11700         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11701                      != 1024);
11702 }
11703
11704 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11705                               char *page)
11706 {
11707         struct perf_pmu_events_attr *pmu_attr =
11708                 container_of(attr, struct perf_pmu_events_attr, attr);
11709
11710         if (pmu_attr->event_str)
11711                 return sprintf(page, "%s\n", pmu_attr->event_str);
11712
11713         return 0;
11714 }
11715 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11716
11717 static int __init perf_event_sysfs_init(void)
11718 {
11719         struct pmu *pmu;
11720         int ret;
11721
11722         mutex_lock(&pmus_lock);
11723
11724         ret = bus_register(&pmu_bus);
11725         if (ret)
11726                 goto unlock;
11727
11728         list_for_each_entry(pmu, &pmus, entry) {
11729                 if (!pmu->name || pmu->type < 0)
11730                         continue;
11731
11732                 ret = pmu_dev_alloc(pmu);
11733                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11734         }
11735         pmu_bus_running = 1;
11736         ret = 0;
11737
11738 unlock:
11739         mutex_unlock(&pmus_lock);
11740
11741         return ret;
11742 }
11743 device_initcall(perf_event_sysfs_init);
11744
11745 #ifdef CONFIG_CGROUP_PERF
11746 static struct cgroup_subsys_state *
11747 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11748 {
11749         struct perf_cgroup *jc;
11750
11751         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11752         if (!jc)
11753                 return ERR_PTR(-ENOMEM);
11754
11755         jc->info = alloc_percpu(struct perf_cgroup_info);
11756         if (!jc->info) {
11757                 kfree(jc);
11758                 return ERR_PTR(-ENOMEM);
11759         }
11760
11761         return &jc->css;
11762 }
11763
11764 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11765 {
11766         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11767
11768         free_percpu(jc->info);
11769         kfree(jc);
11770 }
11771
11772 static int __perf_cgroup_move(void *info)
11773 {
11774         struct task_struct *task = info;
11775         rcu_read_lock();
11776         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11777         rcu_read_unlock();
11778         return 0;
11779 }
11780
11781 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11782 {
11783         struct task_struct *task;
11784         struct cgroup_subsys_state *css;
11785
11786         cgroup_taskset_for_each(task, css, tset)
11787                 task_function_call(task, __perf_cgroup_move, task);
11788 }
11789
11790 struct cgroup_subsys perf_event_cgrp_subsys = {
11791         .css_alloc      = perf_cgroup_css_alloc,
11792         .css_free       = perf_cgroup_css_free,
11793         .attach         = perf_cgroup_attach,
11794         /*
11795          * Implicitly enable on dfl hierarchy so that perf events can
11796          * always be filtered by cgroup2 path as long as perf_event
11797          * controller is not mounted on a legacy hierarchy.
11798          */
11799         .implicit_on_dfl = true,
11800         .threaded       = true,
11801 };
11802 #endif /* CONFIG_CGROUP_PERF */