Merge tag 'selinux-pr-20220523' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57
58 #include "internal.h"
59
60 #include <asm/irq_regs.h>
61
62 typedef int (*remote_function_f)(void *);
63
64 struct remote_function_call {
65         struct task_struct      *p;
66         remote_function_f       func;
67         void                    *info;
68         int                     ret;
69 };
70
71 static void remote_function(void *data)
72 {
73         struct remote_function_call *tfc = data;
74         struct task_struct *p = tfc->p;
75
76         if (p) {
77                 /* -EAGAIN */
78                 if (task_cpu(p) != smp_processor_id())
79                         return;
80
81                 /*
82                  * Now that we're on right CPU with IRQs disabled, we can test
83                  * if we hit the right task without races.
84                  */
85
86                 tfc->ret = -ESRCH; /* No such (running) process */
87                 if (p != current)
88                         return;
89         }
90
91         tfc->ret = tfc->func(tfc->info);
92 }
93
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:          the task to evaluate
97  * @func:       the function to be called
98  * @info:       the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110         struct remote_function_call data = {
111                 .p      = p,
112                 .func   = func,
113                 .info   = info,
114                 .ret    = -EAGAIN,
115         };
116         int ret;
117
118         for (;;) {
119                 ret = smp_call_function_single(task_cpu(p), remote_function,
120                                                &data, 1);
121                 if (!ret)
122                         ret = data.ret;
123
124                 if (ret != -EAGAIN)
125                         break;
126
127                 cond_resched();
128         }
129
130         return ret;
131 }
132
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:        target cpu to queue this function
136  * @func:       the function to be called
137  * @info:       the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145         struct remote_function_call data = {
146                 .p      = NULL,
147                 .func   = func,
148                 .info   = info,
149                 .ret    = -ENXIO, /* No such CPU */
150         };
151
152         smp_call_function_single(cpu, remote_function, &data, 1);
153
154         return data.ret;
155 }
156
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164                           struct perf_event_context *ctx)
165 {
166         raw_spin_lock(&cpuctx->ctx.lock);
167         if (ctx)
168                 raw_spin_lock(&ctx->lock);
169 }
170
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172                             struct perf_event_context *ctx)
173 {
174         if (ctx)
175                 raw_spin_unlock(&ctx->lock);
176         raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178
179 #define TASK_TOMBSTONE ((void *)-1L)
180
181 static bool is_kernel_event(struct perf_event *event)
182 {
183         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206                         struct perf_event_context *, void *);
207
208 struct event_function_struct {
209         struct perf_event *event;
210         event_f func;
211         void *data;
212 };
213
214 static int event_function(void *info)
215 {
216         struct event_function_struct *efs = info;
217         struct perf_event *event = efs->event;
218         struct perf_event_context *ctx = event->ctx;
219         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220         struct perf_event_context *task_ctx = cpuctx->task_ctx;
221         int ret = 0;
222
223         lockdep_assert_irqs_disabled();
224
225         perf_ctx_lock(cpuctx, task_ctx);
226         /*
227          * Since we do the IPI call without holding ctx->lock things can have
228          * changed, double check we hit the task we set out to hit.
229          */
230         if (ctx->task) {
231                 if (ctx->task != current) {
232                         ret = -ESRCH;
233                         goto unlock;
234                 }
235
236                 /*
237                  * We only use event_function_call() on established contexts,
238                  * and event_function() is only ever called when active (or
239                  * rather, we'll have bailed in task_function_call() or the
240                  * above ctx->task != current test), therefore we must have
241                  * ctx->is_active here.
242                  */
243                 WARN_ON_ONCE(!ctx->is_active);
244                 /*
245                  * And since we have ctx->is_active, cpuctx->task_ctx must
246                  * match.
247                  */
248                 WARN_ON_ONCE(task_ctx != ctx);
249         } else {
250                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
251         }
252
253         efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255         perf_ctx_unlock(cpuctx, task_ctx);
256
257         return ret;
258 }
259
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262         struct perf_event_context *ctx = event->ctx;
263         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264         struct event_function_struct efs = {
265                 .event = event,
266                 .func = func,
267                 .data = data,
268         };
269
270         if (!event->parent) {
271                 /*
272                  * If this is a !child event, we must hold ctx::mutex to
273                  * stabilize the event->ctx relation. See
274                  * perf_event_ctx_lock().
275                  */
276                 lockdep_assert_held(&ctx->mutex);
277         }
278
279         if (!task) {
280                 cpu_function_call(event->cpu, event_function, &efs);
281                 return;
282         }
283
284         if (task == TASK_TOMBSTONE)
285                 return;
286
287 again:
288         if (!task_function_call(task, event_function, &efs))
289                 return;
290
291         raw_spin_lock_irq(&ctx->lock);
292         /*
293          * Reload the task pointer, it might have been changed by
294          * a concurrent perf_event_context_sched_out().
295          */
296         task = ctx->task;
297         if (task == TASK_TOMBSTONE) {
298                 raw_spin_unlock_irq(&ctx->lock);
299                 return;
300         }
301         if (ctx->is_active) {
302                 raw_spin_unlock_irq(&ctx->lock);
303                 goto again;
304         }
305         func(event, NULL, ctx, data);
306         raw_spin_unlock_irq(&ctx->lock);
307 }
308
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315         struct perf_event_context *ctx = event->ctx;
316         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317         struct task_struct *task = READ_ONCE(ctx->task);
318         struct perf_event_context *task_ctx = NULL;
319
320         lockdep_assert_irqs_disabled();
321
322         if (task) {
323                 if (task == TASK_TOMBSTONE)
324                         return;
325
326                 task_ctx = ctx;
327         }
328
329         perf_ctx_lock(cpuctx, task_ctx);
330
331         task = ctx->task;
332         if (task == TASK_TOMBSTONE)
333                 goto unlock;
334
335         if (task) {
336                 /*
337                  * We must be either inactive or active and the right task,
338                  * otherwise we're screwed, since we cannot IPI to somewhere
339                  * else.
340                  */
341                 if (ctx->is_active) {
342                         if (WARN_ON_ONCE(task != current))
343                                 goto unlock;
344
345                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346                                 goto unlock;
347                 }
348         } else {
349                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
350         }
351
352         func(event, cpuctx, ctx, data);
353 unlock:
354         perf_ctx_unlock(cpuctx, task_ctx);
355 }
356
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358                        PERF_FLAG_FD_OUTPUT  |\
359                        PERF_FLAG_PID_CGROUP |\
360                        PERF_FLAG_FD_CLOEXEC)
361
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366         (PERF_SAMPLE_BRANCH_KERNEL |\
367          PERF_SAMPLE_BRANCH_HV)
368
369 enum event_type_t {
370         EVENT_FLEXIBLE = 0x1,
371         EVENT_PINNED = 0x2,
372         EVENT_TIME = 0x4,
373         /* see ctx_resched() for details */
374         EVENT_CPU = 0x8,
375         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE         100000
427 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
429
430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
431
432 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
434
435 static int perf_sample_allowed_ns __read_mostly =
436         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437
438 static void update_perf_cpu_limits(void)
439 {
440         u64 tmp = perf_sample_period_ns;
441
442         tmp *= sysctl_perf_cpu_time_max_percent;
443         tmp = div_u64(tmp, 100);
444         if (!tmp)
445                 tmp = 1;
446
447         WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453                 void *buffer, size_t *lenp, loff_t *ppos)
454 {
455         int ret;
456         int perf_cpu = sysctl_perf_cpu_time_max_percent;
457         /*
458          * If throttling is disabled don't allow the write:
459          */
460         if (write && (perf_cpu == 100 || perf_cpu == 0))
461                 return -EINVAL;
462
463         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464         if (ret || !write)
465                 return ret;
466
467         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469         update_perf_cpu_limits();
470
471         return 0;
472 }
473
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477                 void *buffer, size_t *lenp, loff_t *ppos)
478 {
479         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480
481         if (ret || !write)
482                 return ret;
483
484         if (sysctl_perf_cpu_time_max_percent == 100 ||
485             sysctl_perf_cpu_time_max_percent == 0) {
486                 printk(KERN_WARNING
487                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488                 WRITE_ONCE(perf_sample_allowed_ns, 0);
489         } else {
490                 update_perf_cpu_limits();
491         }
492
493         return 0;
494 }
495
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504
505 static u64 __report_avg;
506 static u64 __report_allowed;
507
508 static void perf_duration_warn(struct irq_work *w)
509 {
510         printk_ratelimited(KERN_INFO
511                 "perf: interrupt took too long (%lld > %lld), lowering "
512                 "kernel.perf_event_max_sample_rate to %d\n",
513                 __report_avg, __report_allowed,
514                 sysctl_perf_event_sample_rate);
515 }
516
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522         u64 running_len;
523         u64 avg_len;
524         u32 max;
525
526         if (max_len == 0)
527                 return;
528
529         /* Decay the counter by 1 average sample. */
530         running_len = __this_cpu_read(running_sample_length);
531         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532         running_len += sample_len_ns;
533         __this_cpu_write(running_sample_length, running_len);
534
535         /*
536          * Note: this will be biased artifically low until we have
537          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538          * from having to maintain a count.
539          */
540         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541         if (avg_len <= max_len)
542                 return;
543
544         __report_avg = avg_len;
545         __report_allowed = max_len;
546
547         /*
548          * Compute a throttle threshold 25% below the current duration.
549          */
550         avg_len += avg_len / 4;
551         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552         if (avg_len < max)
553                 max /= (u32)avg_len;
554         else
555                 max = 1;
556
557         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558         WRITE_ONCE(max_samples_per_tick, max);
559
560         sysctl_perf_event_sample_rate = max * HZ;
561         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562
563         if (!irq_work_queue(&perf_duration_work)) {
564                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565                              "kernel.perf_event_max_sample_rate to %d\n",
566                              __report_avg, __report_allowed,
567                              sysctl_perf_event_sample_rate);
568         }
569 }
570
571 static atomic64_t perf_event_id;
572
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574                               enum event_type_t event_type);
575
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577                              enum event_type_t event_type);
578
579 static void update_context_time(struct perf_event_context *ctx);
580 static u64 perf_event_time(struct perf_event *event);
581
582 void __weak perf_event_print_debug(void)        { }
583
584 static inline u64 perf_clock(void)
585 {
586         return local_clock();
587 }
588
589 static inline u64 perf_event_clock(struct perf_event *event)
590 {
591         return event->clock();
592 }
593
594 /*
595  * State based event timekeeping...
596  *
597  * The basic idea is to use event->state to determine which (if any) time
598  * fields to increment with the current delta. This means we only need to
599  * update timestamps when we change state or when they are explicitly requested
600  * (read).
601  *
602  * Event groups make things a little more complicated, but not terribly so. The
603  * rules for a group are that if the group leader is OFF the entire group is
604  * OFF, irrespecive of what the group member states are. This results in
605  * __perf_effective_state().
606  *
607  * A futher ramification is that when a group leader flips between OFF and
608  * !OFF, we need to update all group member times.
609  *
610  *
611  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
612  * need to make sure the relevant context time is updated before we try and
613  * update our timestamps.
614  */
615
616 static __always_inline enum perf_event_state
617 __perf_effective_state(struct perf_event *event)
618 {
619         struct perf_event *leader = event->group_leader;
620
621         if (leader->state <= PERF_EVENT_STATE_OFF)
622                 return leader->state;
623
624         return event->state;
625 }
626
627 static __always_inline void
628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
629 {
630         enum perf_event_state state = __perf_effective_state(event);
631         u64 delta = now - event->tstamp;
632
633         *enabled = event->total_time_enabled;
634         if (state >= PERF_EVENT_STATE_INACTIVE)
635                 *enabled += delta;
636
637         *running = event->total_time_running;
638         if (state >= PERF_EVENT_STATE_ACTIVE)
639                 *running += delta;
640 }
641
642 static void perf_event_update_time(struct perf_event *event)
643 {
644         u64 now = perf_event_time(event);
645
646         __perf_update_times(event, now, &event->total_time_enabled,
647                                         &event->total_time_running);
648         event->tstamp = now;
649 }
650
651 static void perf_event_update_sibling_time(struct perf_event *leader)
652 {
653         struct perf_event *sibling;
654
655         for_each_sibling_event(sibling, leader)
656                 perf_event_update_time(sibling);
657 }
658
659 static void
660 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
661 {
662         if (event->state == state)
663                 return;
664
665         perf_event_update_time(event);
666         /*
667          * If a group leader gets enabled/disabled all its siblings
668          * are affected too.
669          */
670         if ((event->state < 0) ^ (state < 0))
671                 perf_event_update_sibling_time(event);
672
673         WRITE_ONCE(event->state, state);
674 }
675
676 /*
677  * UP store-release, load-acquire
678  */
679
680 #define __store_release(ptr, val)                                       \
681 do {                                                                    \
682         barrier();                                                      \
683         WRITE_ONCE(*(ptr), (val));                                      \
684 } while (0)
685
686 #define __load_acquire(ptr)                                             \
687 ({                                                                      \
688         __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));        \
689         barrier();                                                      \
690         ___p;                                                           \
691 })
692
693 #ifdef CONFIG_CGROUP_PERF
694
695 static inline bool
696 perf_cgroup_match(struct perf_event *event)
697 {
698         struct perf_event_context *ctx = event->ctx;
699         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
700
701         /* @event doesn't care about cgroup */
702         if (!event->cgrp)
703                 return true;
704
705         /* wants specific cgroup scope but @cpuctx isn't associated with any */
706         if (!cpuctx->cgrp)
707                 return false;
708
709         /*
710          * Cgroup scoping is recursive.  An event enabled for a cgroup is
711          * also enabled for all its descendant cgroups.  If @cpuctx's
712          * cgroup is a descendant of @event's (the test covers identity
713          * case), it's a match.
714          */
715         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
716                                     event->cgrp->css.cgroup);
717 }
718
719 static inline void perf_detach_cgroup(struct perf_event *event)
720 {
721         css_put(&event->cgrp->css);
722         event->cgrp = NULL;
723 }
724
725 static inline int is_cgroup_event(struct perf_event *event)
726 {
727         return event->cgrp != NULL;
728 }
729
730 static inline u64 perf_cgroup_event_time(struct perf_event *event)
731 {
732         struct perf_cgroup_info *t;
733
734         t = per_cpu_ptr(event->cgrp->info, event->cpu);
735         return t->time;
736 }
737
738 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
739 {
740         struct perf_cgroup_info *t;
741
742         t = per_cpu_ptr(event->cgrp->info, event->cpu);
743         if (!__load_acquire(&t->active))
744                 return t->time;
745         now += READ_ONCE(t->timeoffset);
746         return now;
747 }
748
749 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
750 {
751         if (adv)
752                 info->time += now - info->timestamp;
753         info->timestamp = now;
754         /*
755          * see update_context_time()
756          */
757         WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
758 }
759
760 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
761 {
762         struct perf_cgroup *cgrp = cpuctx->cgrp;
763         struct cgroup_subsys_state *css;
764         struct perf_cgroup_info *info;
765
766         if (cgrp) {
767                 u64 now = perf_clock();
768
769                 for (css = &cgrp->css; css; css = css->parent) {
770                         cgrp = container_of(css, struct perf_cgroup, css);
771                         info = this_cpu_ptr(cgrp->info);
772
773                         __update_cgrp_time(info, now, true);
774                         if (final)
775                                 __store_release(&info->active, 0);
776                 }
777         }
778 }
779
780 static inline void update_cgrp_time_from_event(struct perf_event *event)
781 {
782         struct perf_cgroup_info *info;
783
784         /*
785          * ensure we access cgroup data only when needed and
786          * when we know the cgroup is pinned (css_get)
787          */
788         if (!is_cgroup_event(event))
789                 return;
790
791         info = this_cpu_ptr(event->cgrp->info);
792         /*
793          * Do not update time when cgroup is not active
794          */
795         if (info->active)
796                 __update_cgrp_time(info, perf_clock(), true);
797 }
798
799 static inline void
800 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
801 {
802         struct perf_event_context *ctx = &cpuctx->ctx;
803         struct perf_cgroup *cgrp = cpuctx->cgrp;
804         struct perf_cgroup_info *info;
805         struct cgroup_subsys_state *css;
806
807         /*
808          * ctx->lock held by caller
809          * ensure we do not access cgroup data
810          * unless we have the cgroup pinned (css_get)
811          */
812         if (!cgrp)
813                 return;
814
815         WARN_ON_ONCE(!ctx->nr_cgroups);
816
817         for (css = &cgrp->css; css; css = css->parent) {
818                 cgrp = container_of(css, struct perf_cgroup, css);
819                 info = this_cpu_ptr(cgrp->info);
820                 __update_cgrp_time(info, ctx->timestamp, false);
821                 __store_release(&info->active, 1);
822         }
823 }
824
825 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
826
827 /*
828  * reschedule events based on the cgroup constraint of task.
829  */
830 static void perf_cgroup_switch(struct task_struct *task)
831 {
832         struct perf_cgroup *cgrp;
833         struct perf_cpu_context *cpuctx, *tmp;
834         struct list_head *list;
835         unsigned long flags;
836
837         /*
838          * Disable interrupts and preemption to avoid this CPU's
839          * cgrp_cpuctx_entry to change under us.
840          */
841         local_irq_save(flags);
842
843         cgrp = perf_cgroup_from_task(task, NULL);
844
845         list = this_cpu_ptr(&cgrp_cpuctx_list);
846         list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
847                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
848                 if (READ_ONCE(cpuctx->cgrp) == cgrp)
849                         continue;
850
851                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
852                 perf_pmu_disable(cpuctx->ctx.pmu);
853
854                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
855                 /*
856                  * must not be done before ctxswout due
857                  * to update_cgrp_time_from_cpuctx() in
858                  * ctx_sched_out()
859                  */
860                 cpuctx->cgrp = cgrp;
861                 /*
862                  * set cgrp before ctxsw in to allow
863                  * perf_cgroup_set_timestamp() in ctx_sched_in()
864                  * to not have to pass task around
865                  */
866                 cpu_ctx_sched_in(cpuctx, EVENT_ALL);
867
868                 perf_pmu_enable(cpuctx->ctx.pmu);
869                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
870         }
871
872         local_irq_restore(flags);
873 }
874
875 static int perf_cgroup_ensure_storage(struct perf_event *event,
876                                 struct cgroup_subsys_state *css)
877 {
878         struct perf_cpu_context *cpuctx;
879         struct perf_event **storage;
880         int cpu, heap_size, ret = 0;
881
882         /*
883          * Allow storage to have sufficent space for an iterator for each
884          * possibly nested cgroup plus an iterator for events with no cgroup.
885          */
886         for (heap_size = 1; css; css = css->parent)
887                 heap_size++;
888
889         for_each_possible_cpu(cpu) {
890                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
891                 if (heap_size <= cpuctx->heap_size)
892                         continue;
893
894                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
895                                        GFP_KERNEL, cpu_to_node(cpu));
896                 if (!storage) {
897                         ret = -ENOMEM;
898                         break;
899                 }
900
901                 raw_spin_lock_irq(&cpuctx->ctx.lock);
902                 if (cpuctx->heap_size < heap_size) {
903                         swap(cpuctx->heap, storage);
904                         if (storage == cpuctx->heap_default)
905                                 storage = NULL;
906                         cpuctx->heap_size = heap_size;
907                 }
908                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
909
910                 kfree(storage);
911         }
912
913         return ret;
914 }
915
916 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
917                                       struct perf_event_attr *attr,
918                                       struct perf_event *group_leader)
919 {
920         struct perf_cgroup *cgrp;
921         struct cgroup_subsys_state *css;
922         struct fd f = fdget(fd);
923         int ret = 0;
924
925         if (!f.file)
926                 return -EBADF;
927
928         css = css_tryget_online_from_dir(f.file->f_path.dentry,
929                                          &perf_event_cgrp_subsys);
930         if (IS_ERR(css)) {
931                 ret = PTR_ERR(css);
932                 goto out;
933         }
934
935         ret = perf_cgroup_ensure_storage(event, css);
936         if (ret)
937                 goto out;
938
939         cgrp = container_of(css, struct perf_cgroup, css);
940         event->cgrp = cgrp;
941
942         /*
943          * all events in a group must monitor
944          * the same cgroup because a task belongs
945          * to only one perf cgroup at a time
946          */
947         if (group_leader && group_leader->cgrp != cgrp) {
948                 perf_detach_cgroup(event);
949                 ret = -EINVAL;
950         }
951 out:
952         fdput(f);
953         return ret;
954 }
955
956 static inline void
957 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
958 {
959         struct perf_cpu_context *cpuctx;
960
961         if (!is_cgroup_event(event))
962                 return;
963
964         /*
965          * Because cgroup events are always per-cpu events,
966          * @ctx == &cpuctx->ctx.
967          */
968         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
969
970         if (ctx->nr_cgroups++)
971                 return;
972
973         cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
974         list_add(&cpuctx->cgrp_cpuctx_entry,
975                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
976 }
977
978 static inline void
979 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
980 {
981         struct perf_cpu_context *cpuctx;
982
983         if (!is_cgroup_event(event))
984                 return;
985
986         /*
987          * Because cgroup events are always per-cpu events,
988          * @ctx == &cpuctx->ctx.
989          */
990         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
991
992         if (--ctx->nr_cgroups)
993                 return;
994
995         cpuctx->cgrp = NULL;
996         list_del(&cpuctx->cgrp_cpuctx_entry);
997 }
998
999 #else /* !CONFIG_CGROUP_PERF */
1000
1001 static inline bool
1002 perf_cgroup_match(struct perf_event *event)
1003 {
1004         return true;
1005 }
1006
1007 static inline void perf_detach_cgroup(struct perf_event *event)
1008 {}
1009
1010 static inline int is_cgroup_event(struct perf_event *event)
1011 {
1012         return 0;
1013 }
1014
1015 static inline void update_cgrp_time_from_event(struct perf_event *event)
1016 {
1017 }
1018
1019 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1020                                                 bool final)
1021 {
1022 }
1023
1024 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1025                                       struct perf_event_attr *attr,
1026                                       struct perf_event *group_leader)
1027 {
1028         return -EINVAL;
1029 }
1030
1031 static inline void
1032 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1033 {
1034 }
1035
1036 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1037 {
1038         return 0;
1039 }
1040
1041 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1042 {
1043         return 0;
1044 }
1045
1046 static inline void
1047 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1048 {
1049 }
1050
1051 static inline void
1052 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1053 {
1054 }
1055
1056 static void perf_cgroup_switch(struct task_struct *task)
1057 {
1058 }
1059 #endif
1060
1061 /*
1062  * set default to be dependent on timer tick just
1063  * like original code
1064  */
1065 #define PERF_CPU_HRTIMER (1000 / HZ)
1066 /*
1067  * function must be called with interrupts disabled
1068  */
1069 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1070 {
1071         struct perf_cpu_context *cpuctx;
1072         bool rotations;
1073
1074         lockdep_assert_irqs_disabled();
1075
1076         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1077         rotations = perf_rotate_context(cpuctx);
1078
1079         raw_spin_lock(&cpuctx->hrtimer_lock);
1080         if (rotations)
1081                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1082         else
1083                 cpuctx->hrtimer_active = 0;
1084         raw_spin_unlock(&cpuctx->hrtimer_lock);
1085
1086         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1087 }
1088
1089 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1090 {
1091         struct hrtimer *timer = &cpuctx->hrtimer;
1092         struct pmu *pmu = cpuctx->ctx.pmu;
1093         u64 interval;
1094
1095         /* no multiplexing needed for SW PMU */
1096         if (pmu->task_ctx_nr == perf_sw_context)
1097                 return;
1098
1099         /*
1100          * check default is sane, if not set then force to
1101          * default interval (1/tick)
1102          */
1103         interval = pmu->hrtimer_interval_ms;
1104         if (interval < 1)
1105                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1106
1107         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1108
1109         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1110         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1111         timer->function = perf_mux_hrtimer_handler;
1112 }
1113
1114 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1115 {
1116         struct hrtimer *timer = &cpuctx->hrtimer;
1117         struct pmu *pmu = cpuctx->ctx.pmu;
1118         unsigned long flags;
1119
1120         /* not for SW PMU */
1121         if (pmu->task_ctx_nr == perf_sw_context)
1122                 return 0;
1123
1124         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1125         if (!cpuctx->hrtimer_active) {
1126                 cpuctx->hrtimer_active = 1;
1127                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1128                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1129         }
1130         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1131
1132         return 0;
1133 }
1134
1135 void perf_pmu_disable(struct pmu *pmu)
1136 {
1137         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1138         if (!(*count)++)
1139                 pmu->pmu_disable(pmu);
1140 }
1141
1142 void perf_pmu_enable(struct pmu *pmu)
1143 {
1144         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1145         if (!--(*count))
1146                 pmu->pmu_enable(pmu);
1147 }
1148
1149 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1150
1151 /*
1152  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1153  * perf_event_task_tick() are fully serialized because they're strictly cpu
1154  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1155  * disabled, while perf_event_task_tick is called from IRQ context.
1156  */
1157 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1158 {
1159         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1160
1161         lockdep_assert_irqs_disabled();
1162
1163         WARN_ON(!list_empty(&ctx->active_ctx_list));
1164
1165         list_add(&ctx->active_ctx_list, head);
1166 }
1167
1168 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1169 {
1170         lockdep_assert_irqs_disabled();
1171
1172         WARN_ON(list_empty(&ctx->active_ctx_list));
1173
1174         list_del_init(&ctx->active_ctx_list);
1175 }
1176
1177 static void get_ctx(struct perf_event_context *ctx)
1178 {
1179         refcount_inc(&ctx->refcount);
1180 }
1181
1182 static void *alloc_task_ctx_data(struct pmu *pmu)
1183 {
1184         if (pmu->task_ctx_cache)
1185                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1186
1187         return NULL;
1188 }
1189
1190 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1191 {
1192         if (pmu->task_ctx_cache && task_ctx_data)
1193                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1194 }
1195
1196 static void free_ctx(struct rcu_head *head)
1197 {
1198         struct perf_event_context *ctx;
1199
1200         ctx = container_of(head, struct perf_event_context, rcu_head);
1201         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1202         kfree(ctx);
1203 }
1204
1205 static void put_ctx(struct perf_event_context *ctx)
1206 {
1207         if (refcount_dec_and_test(&ctx->refcount)) {
1208                 if (ctx->parent_ctx)
1209                         put_ctx(ctx->parent_ctx);
1210                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1211                         put_task_struct(ctx->task);
1212                 call_rcu(&ctx->rcu_head, free_ctx);
1213         }
1214 }
1215
1216 /*
1217  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1218  * perf_pmu_migrate_context() we need some magic.
1219  *
1220  * Those places that change perf_event::ctx will hold both
1221  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1222  *
1223  * Lock ordering is by mutex address. There are two other sites where
1224  * perf_event_context::mutex nests and those are:
1225  *
1226  *  - perf_event_exit_task_context()    [ child , 0 ]
1227  *      perf_event_exit_event()
1228  *        put_event()                   [ parent, 1 ]
1229  *
1230  *  - perf_event_init_context()         [ parent, 0 ]
1231  *      inherit_task_group()
1232  *        inherit_group()
1233  *          inherit_event()
1234  *            perf_event_alloc()
1235  *              perf_init_event()
1236  *                perf_try_init_event() [ child , 1 ]
1237  *
1238  * While it appears there is an obvious deadlock here -- the parent and child
1239  * nesting levels are inverted between the two. This is in fact safe because
1240  * life-time rules separate them. That is an exiting task cannot fork, and a
1241  * spawning task cannot (yet) exit.
1242  *
1243  * But remember that these are parent<->child context relations, and
1244  * migration does not affect children, therefore these two orderings should not
1245  * interact.
1246  *
1247  * The change in perf_event::ctx does not affect children (as claimed above)
1248  * because the sys_perf_event_open() case will install a new event and break
1249  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1250  * concerned with cpuctx and that doesn't have children.
1251  *
1252  * The places that change perf_event::ctx will issue:
1253  *
1254  *   perf_remove_from_context();
1255  *   synchronize_rcu();
1256  *   perf_install_in_context();
1257  *
1258  * to affect the change. The remove_from_context() + synchronize_rcu() should
1259  * quiesce the event, after which we can install it in the new location. This
1260  * means that only external vectors (perf_fops, prctl) can perturb the event
1261  * while in transit. Therefore all such accessors should also acquire
1262  * perf_event_context::mutex to serialize against this.
1263  *
1264  * However; because event->ctx can change while we're waiting to acquire
1265  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1266  * function.
1267  *
1268  * Lock order:
1269  *    exec_update_lock
1270  *      task_struct::perf_event_mutex
1271  *        perf_event_context::mutex
1272  *          perf_event::child_mutex;
1273  *            perf_event_context::lock
1274  *          perf_event::mmap_mutex
1275  *          mmap_lock
1276  *            perf_addr_filters_head::lock
1277  *
1278  *    cpu_hotplug_lock
1279  *      pmus_lock
1280  *        cpuctx->mutex / perf_event_context::mutex
1281  */
1282 static struct perf_event_context *
1283 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1284 {
1285         struct perf_event_context *ctx;
1286
1287 again:
1288         rcu_read_lock();
1289         ctx = READ_ONCE(event->ctx);
1290         if (!refcount_inc_not_zero(&ctx->refcount)) {
1291                 rcu_read_unlock();
1292                 goto again;
1293         }
1294         rcu_read_unlock();
1295
1296         mutex_lock_nested(&ctx->mutex, nesting);
1297         if (event->ctx != ctx) {
1298                 mutex_unlock(&ctx->mutex);
1299                 put_ctx(ctx);
1300                 goto again;
1301         }
1302
1303         return ctx;
1304 }
1305
1306 static inline struct perf_event_context *
1307 perf_event_ctx_lock(struct perf_event *event)
1308 {
1309         return perf_event_ctx_lock_nested(event, 0);
1310 }
1311
1312 static void perf_event_ctx_unlock(struct perf_event *event,
1313                                   struct perf_event_context *ctx)
1314 {
1315         mutex_unlock(&ctx->mutex);
1316         put_ctx(ctx);
1317 }
1318
1319 /*
1320  * This must be done under the ctx->lock, such as to serialize against
1321  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1322  * calling scheduler related locks and ctx->lock nests inside those.
1323  */
1324 static __must_check struct perf_event_context *
1325 unclone_ctx(struct perf_event_context *ctx)
1326 {
1327         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1328
1329         lockdep_assert_held(&ctx->lock);
1330
1331         if (parent_ctx)
1332                 ctx->parent_ctx = NULL;
1333         ctx->generation++;
1334
1335         return parent_ctx;
1336 }
1337
1338 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1339                                 enum pid_type type)
1340 {
1341         u32 nr;
1342         /*
1343          * only top level events have the pid namespace they were created in
1344          */
1345         if (event->parent)
1346                 event = event->parent;
1347
1348         nr = __task_pid_nr_ns(p, type, event->ns);
1349         /* avoid -1 if it is idle thread or runs in another ns */
1350         if (!nr && !pid_alive(p))
1351                 nr = -1;
1352         return nr;
1353 }
1354
1355 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1356 {
1357         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1358 }
1359
1360 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1361 {
1362         return perf_event_pid_type(event, p, PIDTYPE_PID);
1363 }
1364
1365 /*
1366  * If we inherit events we want to return the parent event id
1367  * to userspace.
1368  */
1369 static u64 primary_event_id(struct perf_event *event)
1370 {
1371         u64 id = event->id;
1372
1373         if (event->parent)
1374                 id = event->parent->id;
1375
1376         return id;
1377 }
1378
1379 /*
1380  * Get the perf_event_context for a task and lock it.
1381  *
1382  * This has to cope with the fact that until it is locked,
1383  * the context could get moved to another task.
1384  */
1385 static struct perf_event_context *
1386 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1387 {
1388         struct perf_event_context *ctx;
1389
1390 retry:
1391         /*
1392          * One of the few rules of preemptible RCU is that one cannot do
1393          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1394          * part of the read side critical section was irqs-enabled -- see
1395          * rcu_read_unlock_special().
1396          *
1397          * Since ctx->lock nests under rq->lock we must ensure the entire read
1398          * side critical section has interrupts disabled.
1399          */
1400         local_irq_save(*flags);
1401         rcu_read_lock();
1402         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1403         if (ctx) {
1404                 /*
1405                  * If this context is a clone of another, it might
1406                  * get swapped for another underneath us by
1407                  * perf_event_task_sched_out, though the
1408                  * rcu_read_lock() protects us from any context
1409                  * getting freed.  Lock the context and check if it
1410                  * got swapped before we could get the lock, and retry
1411                  * if so.  If we locked the right context, then it
1412                  * can't get swapped on us any more.
1413                  */
1414                 raw_spin_lock(&ctx->lock);
1415                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1416                         raw_spin_unlock(&ctx->lock);
1417                         rcu_read_unlock();
1418                         local_irq_restore(*flags);
1419                         goto retry;
1420                 }
1421
1422                 if (ctx->task == TASK_TOMBSTONE ||
1423                     !refcount_inc_not_zero(&ctx->refcount)) {
1424                         raw_spin_unlock(&ctx->lock);
1425                         ctx = NULL;
1426                 } else {
1427                         WARN_ON_ONCE(ctx->task != task);
1428                 }
1429         }
1430         rcu_read_unlock();
1431         if (!ctx)
1432                 local_irq_restore(*flags);
1433         return ctx;
1434 }
1435
1436 /*
1437  * Get the context for a task and increment its pin_count so it
1438  * can't get swapped to another task.  This also increments its
1439  * reference count so that the context can't get freed.
1440  */
1441 static struct perf_event_context *
1442 perf_pin_task_context(struct task_struct *task, int ctxn)
1443 {
1444         struct perf_event_context *ctx;
1445         unsigned long flags;
1446
1447         ctx = perf_lock_task_context(task, ctxn, &flags);
1448         if (ctx) {
1449                 ++ctx->pin_count;
1450                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1451         }
1452         return ctx;
1453 }
1454
1455 static void perf_unpin_context(struct perf_event_context *ctx)
1456 {
1457         unsigned long flags;
1458
1459         raw_spin_lock_irqsave(&ctx->lock, flags);
1460         --ctx->pin_count;
1461         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1462 }
1463
1464 /*
1465  * Update the record of the current time in a context.
1466  */
1467 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1468 {
1469         u64 now = perf_clock();
1470
1471         if (adv)
1472                 ctx->time += now - ctx->timestamp;
1473         ctx->timestamp = now;
1474
1475         /*
1476          * The above: time' = time + (now - timestamp), can be re-arranged
1477          * into: time` = now + (time - timestamp), which gives a single value
1478          * offset to compute future time without locks on.
1479          *
1480          * See perf_event_time_now(), which can be used from NMI context where
1481          * it's (obviously) not possible to acquire ctx->lock in order to read
1482          * both the above values in a consistent manner.
1483          */
1484         WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1485 }
1486
1487 static void update_context_time(struct perf_event_context *ctx)
1488 {
1489         __update_context_time(ctx, true);
1490 }
1491
1492 static u64 perf_event_time(struct perf_event *event)
1493 {
1494         struct perf_event_context *ctx = event->ctx;
1495
1496         if (unlikely(!ctx))
1497                 return 0;
1498
1499         if (is_cgroup_event(event))
1500                 return perf_cgroup_event_time(event);
1501
1502         return ctx->time;
1503 }
1504
1505 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1506 {
1507         struct perf_event_context *ctx = event->ctx;
1508
1509         if (unlikely(!ctx))
1510                 return 0;
1511
1512         if (is_cgroup_event(event))
1513                 return perf_cgroup_event_time_now(event, now);
1514
1515         if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1516                 return ctx->time;
1517
1518         now += READ_ONCE(ctx->timeoffset);
1519         return now;
1520 }
1521
1522 static enum event_type_t get_event_type(struct perf_event *event)
1523 {
1524         struct perf_event_context *ctx = event->ctx;
1525         enum event_type_t event_type;
1526
1527         lockdep_assert_held(&ctx->lock);
1528
1529         /*
1530          * It's 'group type', really, because if our group leader is
1531          * pinned, so are we.
1532          */
1533         if (event->group_leader != event)
1534                 event = event->group_leader;
1535
1536         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1537         if (!ctx->task)
1538                 event_type |= EVENT_CPU;
1539
1540         return event_type;
1541 }
1542
1543 /*
1544  * Helper function to initialize event group nodes.
1545  */
1546 static void init_event_group(struct perf_event *event)
1547 {
1548         RB_CLEAR_NODE(&event->group_node);
1549         event->group_index = 0;
1550 }
1551
1552 /*
1553  * Extract pinned or flexible groups from the context
1554  * based on event attrs bits.
1555  */
1556 static struct perf_event_groups *
1557 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1558 {
1559         if (event->attr.pinned)
1560                 return &ctx->pinned_groups;
1561         else
1562                 return &ctx->flexible_groups;
1563 }
1564
1565 /*
1566  * Helper function to initializes perf_event_group trees.
1567  */
1568 static void perf_event_groups_init(struct perf_event_groups *groups)
1569 {
1570         groups->tree = RB_ROOT;
1571         groups->index = 0;
1572 }
1573
1574 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1575 {
1576         struct cgroup *cgroup = NULL;
1577
1578 #ifdef CONFIG_CGROUP_PERF
1579         if (event->cgrp)
1580                 cgroup = event->cgrp->css.cgroup;
1581 #endif
1582
1583         return cgroup;
1584 }
1585
1586 /*
1587  * Compare function for event groups;
1588  *
1589  * Implements complex key that first sorts by CPU and then by virtual index
1590  * which provides ordering when rotating groups for the same CPU.
1591  */
1592 static __always_inline int
1593 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1594                       const u64 left_group_index, const struct perf_event *right)
1595 {
1596         if (left_cpu < right->cpu)
1597                 return -1;
1598         if (left_cpu > right->cpu)
1599                 return 1;
1600
1601 #ifdef CONFIG_CGROUP_PERF
1602         {
1603                 const struct cgroup *right_cgroup = event_cgroup(right);
1604
1605                 if (left_cgroup != right_cgroup) {
1606                         if (!left_cgroup) {
1607                                 /*
1608                                  * Left has no cgroup but right does, no
1609                                  * cgroups come first.
1610                                  */
1611                                 return -1;
1612                         }
1613                         if (!right_cgroup) {
1614                                 /*
1615                                  * Right has no cgroup but left does, no
1616                                  * cgroups come first.
1617                                  */
1618                                 return 1;
1619                         }
1620                         /* Two dissimilar cgroups, order by id. */
1621                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1622                                 return -1;
1623
1624                         return 1;
1625                 }
1626         }
1627 #endif
1628
1629         if (left_group_index < right->group_index)
1630                 return -1;
1631         if (left_group_index > right->group_index)
1632                 return 1;
1633
1634         return 0;
1635 }
1636
1637 #define __node_2_pe(node) \
1638         rb_entry((node), struct perf_event, group_node)
1639
1640 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1641 {
1642         struct perf_event *e = __node_2_pe(a);
1643         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1644                                      __node_2_pe(b)) < 0;
1645 }
1646
1647 struct __group_key {
1648         int cpu;
1649         struct cgroup *cgroup;
1650 };
1651
1652 static inline int __group_cmp(const void *key, const struct rb_node *node)
1653 {
1654         const struct __group_key *a = key;
1655         const struct perf_event *b = __node_2_pe(node);
1656
1657         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1658         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1659 }
1660
1661 /*
1662  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1663  * key (see perf_event_groups_less). This places it last inside the CPU
1664  * subtree.
1665  */
1666 static void
1667 perf_event_groups_insert(struct perf_event_groups *groups,
1668                          struct perf_event *event)
1669 {
1670         event->group_index = ++groups->index;
1671
1672         rb_add(&event->group_node, &groups->tree, __group_less);
1673 }
1674
1675 /*
1676  * Helper function to insert event into the pinned or flexible groups.
1677  */
1678 static void
1679 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1680 {
1681         struct perf_event_groups *groups;
1682
1683         groups = get_event_groups(event, ctx);
1684         perf_event_groups_insert(groups, event);
1685 }
1686
1687 /*
1688  * Delete a group from a tree.
1689  */
1690 static void
1691 perf_event_groups_delete(struct perf_event_groups *groups,
1692                          struct perf_event *event)
1693 {
1694         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1695                      RB_EMPTY_ROOT(&groups->tree));
1696
1697         rb_erase(&event->group_node, &groups->tree);
1698         init_event_group(event);
1699 }
1700
1701 /*
1702  * Helper function to delete event from its groups.
1703  */
1704 static void
1705 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1706 {
1707         struct perf_event_groups *groups;
1708
1709         groups = get_event_groups(event, ctx);
1710         perf_event_groups_delete(groups, event);
1711 }
1712
1713 /*
1714  * Get the leftmost event in the cpu/cgroup subtree.
1715  */
1716 static struct perf_event *
1717 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1718                         struct cgroup *cgrp)
1719 {
1720         struct __group_key key = {
1721                 .cpu = cpu,
1722                 .cgroup = cgrp,
1723         };
1724         struct rb_node *node;
1725
1726         node = rb_find_first(&key, &groups->tree, __group_cmp);
1727         if (node)
1728                 return __node_2_pe(node);
1729
1730         return NULL;
1731 }
1732
1733 /*
1734  * Like rb_entry_next_safe() for the @cpu subtree.
1735  */
1736 static struct perf_event *
1737 perf_event_groups_next(struct perf_event *event)
1738 {
1739         struct __group_key key = {
1740                 .cpu = event->cpu,
1741                 .cgroup = event_cgroup(event),
1742         };
1743         struct rb_node *next;
1744
1745         next = rb_next_match(&key, &event->group_node, __group_cmp);
1746         if (next)
1747                 return __node_2_pe(next);
1748
1749         return NULL;
1750 }
1751
1752 /*
1753  * Iterate through the whole groups tree.
1754  */
1755 #define perf_event_groups_for_each(event, groups)                       \
1756         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1757                                 typeof(*event), group_node); event;     \
1758                 event = rb_entry_safe(rb_next(&event->group_node),      \
1759                                 typeof(*event), group_node))
1760
1761 /*
1762  * Add an event from the lists for its context.
1763  * Must be called with ctx->mutex and ctx->lock held.
1764  */
1765 static void
1766 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1767 {
1768         lockdep_assert_held(&ctx->lock);
1769
1770         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1771         event->attach_state |= PERF_ATTACH_CONTEXT;
1772
1773         event->tstamp = perf_event_time(event);
1774
1775         /*
1776          * If we're a stand alone event or group leader, we go to the context
1777          * list, group events are kept attached to the group so that
1778          * perf_group_detach can, at all times, locate all siblings.
1779          */
1780         if (event->group_leader == event) {
1781                 event->group_caps = event->event_caps;
1782                 add_event_to_groups(event, ctx);
1783         }
1784
1785         list_add_rcu(&event->event_entry, &ctx->event_list);
1786         ctx->nr_events++;
1787         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1788                 ctx->nr_user++;
1789         if (event->attr.inherit_stat)
1790                 ctx->nr_stat++;
1791
1792         if (event->state > PERF_EVENT_STATE_OFF)
1793                 perf_cgroup_event_enable(event, ctx);
1794
1795         ctx->generation++;
1796 }
1797
1798 /*
1799  * Initialize event state based on the perf_event_attr::disabled.
1800  */
1801 static inline void perf_event__state_init(struct perf_event *event)
1802 {
1803         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1804                                               PERF_EVENT_STATE_INACTIVE;
1805 }
1806
1807 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1808 {
1809         int entry = sizeof(u64); /* value */
1810         int size = 0;
1811         int nr = 1;
1812
1813         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1814                 size += sizeof(u64);
1815
1816         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1817                 size += sizeof(u64);
1818
1819         if (event->attr.read_format & PERF_FORMAT_ID)
1820                 entry += sizeof(u64);
1821
1822         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1823                 nr += nr_siblings;
1824                 size += sizeof(u64);
1825         }
1826
1827         size += entry * nr;
1828         event->read_size = size;
1829 }
1830
1831 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1832 {
1833         struct perf_sample_data *data;
1834         u16 size = 0;
1835
1836         if (sample_type & PERF_SAMPLE_IP)
1837                 size += sizeof(data->ip);
1838
1839         if (sample_type & PERF_SAMPLE_ADDR)
1840                 size += sizeof(data->addr);
1841
1842         if (sample_type & PERF_SAMPLE_PERIOD)
1843                 size += sizeof(data->period);
1844
1845         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1846                 size += sizeof(data->weight.full);
1847
1848         if (sample_type & PERF_SAMPLE_READ)
1849                 size += event->read_size;
1850
1851         if (sample_type & PERF_SAMPLE_DATA_SRC)
1852                 size += sizeof(data->data_src.val);
1853
1854         if (sample_type & PERF_SAMPLE_TRANSACTION)
1855                 size += sizeof(data->txn);
1856
1857         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1858                 size += sizeof(data->phys_addr);
1859
1860         if (sample_type & PERF_SAMPLE_CGROUP)
1861                 size += sizeof(data->cgroup);
1862
1863         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1864                 size += sizeof(data->data_page_size);
1865
1866         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1867                 size += sizeof(data->code_page_size);
1868
1869         event->header_size = size;
1870 }
1871
1872 /*
1873  * Called at perf_event creation and when events are attached/detached from a
1874  * group.
1875  */
1876 static void perf_event__header_size(struct perf_event *event)
1877 {
1878         __perf_event_read_size(event,
1879                                event->group_leader->nr_siblings);
1880         __perf_event_header_size(event, event->attr.sample_type);
1881 }
1882
1883 static void perf_event__id_header_size(struct perf_event *event)
1884 {
1885         struct perf_sample_data *data;
1886         u64 sample_type = event->attr.sample_type;
1887         u16 size = 0;
1888
1889         if (sample_type & PERF_SAMPLE_TID)
1890                 size += sizeof(data->tid_entry);
1891
1892         if (sample_type & PERF_SAMPLE_TIME)
1893                 size += sizeof(data->time);
1894
1895         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1896                 size += sizeof(data->id);
1897
1898         if (sample_type & PERF_SAMPLE_ID)
1899                 size += sizeof(data->id);
1900
1901         if (sample_type & PERF_SAMPLE_STREAM_ID)
1902                 size += sizeof(data->stream_id);
1903
1904         if (sample_type & PERF_SAMPLE_CPU)
1905                 size += sizeof(data->cpu_entry);
1906
1907         event->id_header_size = size;
1908 }
1909
1910 static bool perf_event_validate_size(struct perf_event *event)
1911 {
1912         /*
1913          * The values computed here will be over-written when we actually
1914          * attach the event.
1915          */
1916         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1917         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1918         perf_event__id_header_size(event);
1919
1920         /*
1921          * Sum the lot; should not exceed the 64k limit we have on records.
1922          * Conservative limit to allow for callchains and other variable fields.
1923          */
1924         if (event->read_size + event->header_size +
1925             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1926                 return false;
1927
1928         return true;
1929 }
1930
1931 static void perf_group_attach(struct perf_event *event)
1932 {
1933         struct perf_event *group_leader = event->group_leader, *pos;
1934
1935         lockdep_assert_held(&event->ctx->lock);
1936
1937         /*
1938          * We can have double attach due to group movement in perf_event_open.
1939          */
1940         if (event->attach_state & PERF_ATTACH_GROUP)
1941                 return;
1942
1943         event->attach_state |= PERF_ATTACH_GROUP;
1944
1945         if (group_leader == event)
1946                 return;
1947
1948         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1949
1950         group_leader->group_caps &= event->event_caps;
1951
1952         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1953         group_leader->nr_siblings++;
1954
1955         perf_event__header_size(group_leader);
1956
1957         for_each_sibling_event(pos, group_leader)
1958                 perf_event__header_size(pos);
1959 }
1960
1961 /*
1962  * Remove an event from the lists for its context.
1963  * Must be called with ctx->mutex and ctx->lock held.
1964  */
1965 static void
1966 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1967 {
1968         WARN_ON_ONCE(event->ctx != ctx);
1969         lockdep_assert_held(&ctx->lock);
1970
1971         /*
1972          * We can have double detach due to exit/hot-unplug + close.
1973          */
1974         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1975                 return;
1976
1977         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1978
1979         ctx->nr_events--;
1980         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1981                 ctx->nr_user--;
1982         if (event->attr.inherit_stat)
1983                 ctx->nr_stat--;
1984
1985         list_del_rcu(&event->event_entry);
1986
1987         if (event->group_leader == event)
1988                 del_event_from_groups(event, ctx);
1989
1990         /*
1991          * If event was in error state, then keep it
1992          * that way, otherwise bogus counts will be
1993          * returned on read(). The only way to get out
1994          * of error state is by explicit re-enabling
1995          * of the event
1996          */
1997         if (event->state > PERF_EVENT_STATE_OFF) {
1998                 perf_cgroup_event_disable(event, ctx);
1999                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2000         }
2001
2002         ctx->generation++;
2003 }
2004
2005 static int
2006 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2007 {
2008         if (!has_aux(aux_event))
2009                 return 0;
2010
2011         if (!event->pmu->aux_output_match)
2012                 return 0;
2013
2014         return event->pmu->aux_output_match(aux_event);
2015 }
2016
2017 static void put_event(struct perf_event *event);
2018 static void event_sched_out(struct perf_event *event,
2019                             struct perf_cpu_context *cpuctx,
2020                             struct perf_event_context *ctx);
2021
2022 static void perf_put_aux_event(struct perf_event *event)
2023 {
2024         struct perf_event_context *ctx = event->ctx;
2025         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2026         struct perf_event *iter;
2027
2028         /*
2029          * If event uses aux_event tear down the link
2030          */
2031         if (event->aux_event) {
2032                 iter = event->aux_event;
2033                 event->aux_event = NULL;
2034                 put_event(iter);
2035                 return;
2036         }
2037
2038         /*
2039          * If the event is an aux_event, tear down all links to
2040          * it from other events.
2041          */
2042         for_each_sibling_event(iter, event->group_leader) {
2043                 if (iter->aux_event != event)
2044                         continue;
2045
2046                 iter->aux_event = NULL;
2047                 put_event(event);
2048
2049                 /*
2050                  * If it's ACTIVE, schedule it out and put it into ERROR
2051                  * state so that we don't try to schedule it again. Note
2052                  * that perf_event_enable() will clear the ERROR status.
2053                  */
2054                 event_sched_out(iter, cpuctx, ctx);
2055                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2056         }
2057 }
2058
2059 static bool perf_need_aux_event(struct perf_event *event)
2060 {
2061         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2062 }
2063
2064 static int perf_get_aux_event(struct perf_event *event,
2065                               struct perf_event *group_leader)
2066 {
2067         /*
2068          * Our group leader must be an aux event if we want to be
2069          * an aux_output. This way, the aux event will precede its
2070          * aux_output events in the group, and therefore will always
2071          * schedule first.
2072          */
2073         if (!group_leader)
2074                 return 0;
2075
2076         /*
2077          * aux_output and aux_sample_size are mutually exclusive.
2078          */
2079         if (event->attr.aux_output && event->attr.aux_sample_size)
2080                 return 0;
2081
2082         if (event->attr.aux_output &&
2083             !perf_aux_output_match(event, group_leader))
2084                 return 0;
2085
2086         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2087                 return 0;
2088
2089         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2090                 return 0;
2091
2092         /*
2093          * Link aux_outputs to their aux event; this is undone in
2094          * perf_group_detach() by perf_put_aux_event(). When the
2095          * group in torn down, the aux_output events loose their
2096          * link to the aux_event and can't schedule any more.
2097          */
2098         event->aux_event = group_leader;
2099
2100         return 1;
2101 }
2102
2103 static inline struct list_head *get_event_list(struct perf_event *event)
2104 {
2105         struct perf_event_context *ctx = event->ctx;
2106         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2107 }
2108
2109 /*
2110  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2111  * cannot exist on their own, schedule them out and move them into the ERROR
2112  * state. Also see _perf_event_enable(), it will not be able to recover
2113  * this ERROR state.
2114  */
2115 static inline void perf_remove_sibling_event(struct perf_event *event)
2116 {
2117         struct perf_event_context *ctx = event->ctx;
2118         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2119
2120         event_sched_out(event, cpuctx, ctx);
2121         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2122 }
2123
2124 static void perf_group_detach(struct perf_event *event)
2125 {
2126         struct perf_event *leader = event->group_leader;
2127         struct perf_event *sibling, *tmp;
2128         struct perf_event_context *ctx = event->ctx;
2129
2130         lockdep_assert_held(&ctx->lock);
2131
2132         /*
2133          * We can have double detach due to exit/hot-unplug + close.
2134          */
2135         if (!(event->attach_state & PERF_ATTACH_GROUP))
2136                 return;
2137
2138         event->attach_state &= ~PERF_ATTACH_GROUP;
2139
2140         perf_put_aux_event(event);
2141
2142         /*
2143          * If this is a sibling, remove it from its group.
2144          */
2145         if (leader != event) {
2146                 list_del_init(&event->sibling_list);
2147                 event->group_leader->nr_siblings--;
2148                 goto out;
2149         }
2150
2151         /*
2152          * If this was a group event with sibling events then
2153          * upgrade the siblings to singleton events by adding them
2154          * to whatever list we are on.
2155          */
2156         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2157
2158                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2159                         perf_remove_sibling_event(sibling);
2160
2161                 sibling->group_leader = sibling;
2162                 list_del_init(&sibling->sibling_list);
2163
2164                 /* Inherit group flags from the previous leader */
2165                 sibling->group_caps = event->group_caps;
2166
2167                 if (!RB_EMPTY_NODE(&event->group_node)) {
2168                         add_event_to_groups(sibling, event->ctx);
2169
2170                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2171                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2172                 }
2173
2174                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2175         }
2176
2177 out:
2178         for_each_sibling_event(tmp, leader)
2179                 perf_event__header_size(tmp);
2180
2181         perf_event__header_size(leader);
2182 }
2183
2184 static void sync_child_event(struct perf_event *child_event);
2185
2186 static void perf_child_detach(struct perf_event *event)
2187 {
2188         struct perf_event *parent_event = event->parent;
2189
2190         if (!(event->attach_state & PERF_ATTACH_CHILD))
2191                 return;
2192
2193         event->attach_state &= ~PERF_ATTACH_CHILD;
2194
2195         if (WARN_ON_ONCE(!parent_event))
2196                 return;
2197
2198         lockdep_assert_held(&parent_event->child_mutex);
2199
2200         sync_child_event(event);
2201         list_del_init(&event->child_list);
2202 }
2203
2204 static bool is_orphaned_event(struct perf_event *event)
2205 {
2206         return event->state == PERF_EVENT_STATE_DEAD;
2207 }
2208
2209 static inline int __pmu_filter_match(struct perf_event *event)
2210 {
2211         struct pmu *pmu = event->pmu;
2212         return pmu->filter_match ? pmu->filter_match(event) : 1;
2213 }
2214
2215 /*
2216  * Check whether we should attempt to schedule an event group based on
2217  * PMU-specific filtering. An event group can consist of HW and SW events,
2218  * potentially with a SW leader, so we must check all the filters, to
2219  * determine whether a group is schedulable:
2220  */
2221 static inline int pmu_filter_match(struct perf_event *event)
2222 {
2223         struct perf_event *sibling;
2224
2225         if (!__pmu_filter_match(event))
2226                 return 0;
2227
2228         for_each_sibling_event(sibling, event) {
2229                 if (!__pmu_filter_match(sibling))
2230                         return 0;
2231         }
2232
2233         return 1;
2234 }
2235
2236 static inline int
2237 event_filter_match(struct perf_event *event)
2238 {
2239         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2240                perf_cgroup_match(event) && pmu_filter_match(event);
2241 }
2242
2243 static void
2244 event_sched_out(struct perf_event *event,
2245                   struct perf_cpu_context *cpuctx,
2246                   struct perf_event_context *ctx)
2247 {
2248         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2249
2250         WARN_ON_ONCE(event->ctx != ctx);
2251         lockdep_assert_held(&ctx->lock);
2252
2253         if (event->state != PERF_EVENT_STATE_ACTIVE)
2254                 return;
2255
2256         /*
2257          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2258          * we can schedule events _OUT_ individually through things like
2259          * __perf_remove_from_context().
2260          */
2261         list_del_init(&event->active_list);
2262
2263         perf_pmu_disable(event->pmu);
2264
2265         event->pmu->del(event, 0);
2266         event->oncpu = -1;
2267
2268         if (READ_ONCE(event->pending_disable) >= 0) {
2269                 WRITE_ONCE(event->pending_disable, -1);
2270                 perf_cgroup_event_disable(event, ctx);
2271                 state = PERF_EVENT_STATE_OFF;
2272         }
2273         perf_event_set_state(event, state);
2274
2275         if (!is_software_event(event))
2276                 cpuctx->active_oncpu--;
2277         if (!--ctx->nr_active)
2278                 perf_event_ctx_deactivate(ctx);
2279         if (event->attr.freq && event->attr.sample_freq)
2280                 ctx->nr_freq--;
2281         if (event->attr.exclusive || !cpuctx->active_oncpu)
2282                 cpuctx->exclusive = 0;
2283
2284         perf_pmu_enable(event->pmu);
2285 }
2286
2287 static void
2288 group_sched_out(struct perf_event *group_event,
2289                 struct perf_cpu_context *cpuctx,
2290                 struct perf_event_context *ctx)
2291 {
2292         struct perf_event *event;
2293
2294         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2295                 return;
2296
2297         perf_pmu_disable(ctx->pmu);
2298
2299         event_sched_out(group_event, cpuctx, ctx);
2300
2301         /*
2302          * Schedule out siblings (if any):
2303          */
2304         for_each_sibling_event(event, group_event)
2305                 event_sched_out(event, cpuctx, ctx);
2306
2307         perf_pmu_enable(ctx->pmu);
2308 }
2309
2310 #define DETACH_GROUP    0x01UL
2311 #define DETACH_CHILD    0x02UL
2312
2313 /*
2314  * Cross CPU call to remove a performance event
2315  *
2316  * We disable the event on the hardware level first. After that we
2317  * remove it from the context list.
2318  */
2319 static void
2320 __perf_remove_from_context(struct perf_event *event,
2321                            struct perf_cpu_context *cpuctx,
2322                            struct perf_event_context *ctx,
2323                            void *info)
2324 {
2325         unsigned long flags = (unsigned long)info;
2326
2327         if (ctx->is_active & EVENT_TIME) {
2328                 update_context_time(ctx);
2329                 update_cgrp_time_from_cpuctx(cpuctx, false);
2330         }
2331
2332         event_sched_out(event, cpuctx, ctx);
2333         if (flags & DETACH_GROUP)
2334                 perf_group_detach(event);
2335         if (flags & DETACH_CHILD)
2336                 perf_child_detach(event);
2337         list_del_event(event, ctx);
2338
2339         if (!ctx->nr_events && ctx->is_active) {
2340                 if (ctx == &cpuctx->ctx)
2341                         update_cgrp_time_from_cpuctx(cpuctx, true);
2342
2343                 ctx->is_active = 0;
2344                 ctx->rotate_necessary = 0;
2345                 if (ctx->task) {
2346                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2347                         cpuctx->task_ctx = NULL;
2348                 }
2349         }
2350 }
2351
2352 /*
2353  * Remove the event from a task's (or a CPU's) list of events.
2354  *
2355  * If event->ctx is a cloned context, callers must make sure that
2356  * every task struct that event->ctx->task could possibly point to
2357  * remains valid.  This is OK when called from perf_release since
2358  * that only calls us on the top-level context, which can't be a clone.
2359  * When called from perf_event_exit_task, it's OK because the
2360  * context has been detached from its task.
2361  */
2362 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2363 {
2364         struct perf_event_context *ctx = event->ctx;
2365
2366         lockdep_assert_held(&ctx->mutex);
2367
2368         /*
2369          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2370          * to work in the face of TASK_TOMBSTONE, unlike every other
2371          * event_function_call() user.
2372          */
2373         raw_spin_lock_irq(&ctx->lock);
2374         /*
2375          * Cgroup events are per-cpu events, and must IPI because of
2376          * cgrp_cpuctx_list.
2377          */
2378         if (!ctx->is_active && !is_cgroup_event(event)) {
2379                 __perf_remove_from_context(event, __get_cpu_context(ctx),
2380                                            ctx, (void *)flags);
2381                 raw_spin_unlock_irq(&ctx->lock);
2382                 return;
2383         }
2384         raw_spin_unlock_irq(&ctx->lock);
2385
2386         event_function_call(event, __perf_remove_from_context, (void *)flags);
2387 }
2388
2389 /*
2390  * Cross CPU call to disable a performance event
2391  */
2392 static void __perf_event_disable(struct perf_event *event,
2393                                  struct perf_cpu_context *cpuctx,
2394                                  struct perf_event_context *ctx,
2395                                  void *info)
2396 {
2397         if (event->state < PERF_EVENT_STATE_INACTIVE)
2398                 return;
2399
2400         if (ctx->is_active & EVENT_TIME) {
2401                 update_context_time(ctx);
2402                 update_cgrp_time_from_event(event);
2403         }
2404
2405         if (event == event->group_leader)
2406                 group_sched_out(event, cpuctx, ctx);
2407         else
2408                 event_sched_out(event, cpuctx, ctx);
2409
2410         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2411         perf_cgroup_event_disable(event, ctx);
2412 }
2413
2414 /*
2415  * Disable an event.
2416  *
2417  * If event->ctx is a cloned context, callers must make sure that
2418  * every task struct that event->ctx->task could possibly point to
2419  * remains valid.  This condition is satisfied when called through
2420  * perf_event_for_each_child or perf_event_for_each because they
2421  * hold the top-level event's child_mutex, so any descendant that
2422  * goes to exit will block in perf_event_exit_event().
2423  *
2424  * When called from perf_pending_event it's OK because event->ctx
2425  * is the current context on this CPU and preemption is disabled,
2426  * hence we can't get into perf_event_task_sched_out for this context.
2427  */
2428 static void _perf_event_disable(struct perf_event *event)
2429 {
2430         struct perf_event_context *ctx = event->ctx;
2431
2432         raw_spin_lock_irq(&ctx->lock);
2433         if (event->state <= PERF_EVENT_STATE_OFF) {
2434                 raw_spin_unlock_irq(&ctx->lock);
2435                 return;
2436         }
2437         raw_spin_unlock_irq(&ctx->lock);
2438
2439         event_function_call(event, __perf_event_disable, NULL);
2440 }
2441
2442 void perf_event_disable_local(struct perf_event *event)
2443 {
2444         event_function_local(event, __perf_event_disable, NULL);
2445 }
2446
2447 /*
2448  * Strictly speaking kernel users cannot create groups and therefore this
2449  * interface does not need the perf_event_ctx_lock() magic.
2450  */
2451 void perf_event_disable(struct perf_event *event)
2452 {
2453         struct perf_event_context *ctx;
2454
2455         ctx = perf_event_ctx_lock(event);
2456         _perf_event_disable(event);
2457         perf_event_ctx_unlock(event, ctx);
2458 }
2459 EXPORT_SYMBOL_GPL(perf_event_disable);
2460
2461 void perf_event_disable_inatomic(struct perf_event *event)
2462 {
2463         WRITE_ONCE(event->pending_disable, smp_processor_id());
2464         /* can fail, see perf_pending_event_disable() */
2465         irq_work_queue(&event->pending);
2466 }
2467
2468 #define MAX_INTERRUPTS (~0ULL)
2469
2470 static void perf_log_throttle(struct perf_event *event, int enable);
2471 static void perf_log_itrace_start(struct perf_event *event);
2472
2473 static int
2474 event_sched_in(struct perf_event *event,
2475                  struct perf_cpu_context *cpuctx,
2476                  struct perf_event_context *ctx)
2477 {
2478         int ret = 0;
2479
2480         WARN_ON_ONCE(event->ctx != ctx);
2481
2482         lockdep_assert_held(&ctx->lock);
2483
2484         if (event->state <= PERF_EVENT_STATE_OFF)
2485                 return 0;
2486
2487         WRITE_ONCE(event->oncpu, smp_processor_id());
2488         /*
2489          * Order event::oncpu write to happen before the ACTIVE state is
2490          * visible. This allows perf_event_{stop,read}() to observe the correct
2491          * ->oncpu if it sees ACTIVE.
2492          */
2493         smp_wmb();
2494         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2495
2496         /*
2497          * Unthrottle events, since we scheduled we might have missed several
2498          * ticks already, also for a heavily scheduling task there is little
2499          * guarantee it'll get a tick in a timely manner.
2500          */
2501         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2502                 perf_log_throttle(event, 1);
2503                 event->hw.interrupts = 0;
2504         }
2505
2506         perf_pmu_disable(event->pmu);
2507
2508         perf_log_itrace_start(event);
2509
2510         if (event->pmu->add(event, PERF_EF_START)) {
2511                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2512                 event->oncpu = -1;
2513                 ret = -EAGAIN;
2514                 goto out;
2515         }
2516
2517         if (!is_software_event(event))
2518                 cpuctx->active_oncpu++;
2519         if (!ctx->nr_active++)
2520                 perf_event_ctx_activate(ctx);
2521         if (event->attr.freq && event->attr.sample_freq)
2522                 ctx->nr_freq++;
2523
2524         if (event->attr.exclusive)
2525                 cpuctx->exclusive = 1;
2526
2527 out:
2528         perf_pmu_enable(event->pmu);
2529
2530         return ret;
2531 }
2532
2533 static int
2534 group_sched_in(struct perf_event *group_event,
2535                struct perf_cpu_context *cpuctx,
2536                struct perf_event_context *ctx)
2537 {
2538         struct perf_event *event, *partial_group = NULL;
2539         struct pmu *pmu = ctx->pmu;
2540
2541         if (group_event->state == PERF_EVENT_STATE_OFF)
2542                 return 0;
2543
2544         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2545
2546         if (event_sched_in(group_event, cpuctx, ctx))
2547                 goto error;
2548
2549         /*
2550          * Schedule in siblings as one group (if any):
2551          */
2552         for_each_sibling_event(event, group_event) {
2553                 if (event_sched_in(event, cpuctx, ctx)) {
2554                         partial_group = event;
2555                         goto group_error;
2556                 }
2557         }
2558
2559         if (!pmu->commit_txn(pmu))
2560                 return 0;
2561
2562 group_error:
2563         /*
2564          * Groups can be scheduled in as one unit only, so undo any
2565          * partial group before returning:
2566          * The events up to the failed event are scheduled out normally.
2567          */
2568         for_each_sibling_event(event, group_event) {
2569                 if (event == partial_group)
2570                         break;
2571
2572                 event_sched_out(event, cpuctx, ctx);
2573         }
2574         event_sched_out(group_event, cpuctx, ctx);
2575
2576 error:
2577         pmu->cancel_txn(pmu);
2578         return -EAGAIN;
2579 }
2580
2581 /*
2582  * Work out whether we can put this event group on the CPU now.
2583  */
2584 static int group_can_go_on(struct perf_event *event,
2585                            struct perf_cpu_context *cpuctx,
2586                            int can_add_hw)
2587 {
2588         /*
2589          * Groups consisting entirely of software events can always go on.
2590          */
2591         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2592                 return 1;
2593         /*
2594          * If an exclusive group is already on, no other hardware
2595          * events can go on.
2596          */
2597         if (cpuctx->exclusive)
2598                 return 0;
2599         /*
2600          * If this group is exclusive and there are already
2601          * events on the CPU, it can't go on.
2602          */
2603         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2604                 return 0;
2605         /*
2606          * Otherwise, try to add it if all previous groups were able
2607          * to go on.
2608          */
2609         return can_add_hw;
2610 }
2611
2612 static void add_event_to_ctx(struct perf_event *event,
2613                                struct perf_event_context *ctx)
2614 {
2615         list_add_event(event, ctx);
2616         perf_group_attach(event);
2617 }
2618
2619 static void ctx_sched_out(struct perf_event_context *ctx,
2620                           struct perf_cpu_context *cpuctx,
2621                           enum event_type_t event_type);
2622 static void
2623 ctx_sched_in(struct perf_event_context *ctx,
2624              struct perf_cpu_context *cpuctx,
2625              enum event_type_t event_type);
2626
2627 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2628                                struct perf_event_context *ctx,
2629                                enum event_type_t event_type)
2630 {
2631         if (!cpuctx->task_ctx)
2632                 return;
2633
2634         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2635                 return;
2636
2637         ctx_sched_out(ctx, cpuctx, event_type);
2638 }
2639
2640 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2641                                 struct perf_event_context *ctx)
2642 {
2643         cpu_ctx_sched_in(cpuctx, EVENT_PINNED);
2644         if (ctx)
2645                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
2646         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
2647         if (ctx)
2648                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
2649 }
2650
2651 /*
2652  * We want to maintain the following priority of scheduling:
2653  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2654  *  - task pinned (EVENT_PINNED)
2655  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2656  *  - task flexible (EVENT_FLEXIBLE).
2657  *
2658  * In order to avoid unscheduling and scheduling back in everything every
2659  * time an event is added, only do it for the groups of equal priority and
2660  * below.
2661  *
2662  * This can be called after a batch operation on task events, in which case
2663  * event_type is a bit mask of the types of events involved. For CPU events,
2664  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2665  */
2666 static void ctx_resched(struct perf_cpu_context *cpuctx,
2667                         struct perf_event_context *task_ctx,
2668                         enum event_type_t event_type)
2669 {
2670         enum event_type_t ctx_event_type;
2671         bool cpu_event = !!(event_type & EVENT_CPU);
2672
2673         /*
2674          * If pinned groups are involved, flexible groups also need to be
2675          * scheduled out.
2676          */
2677         if (event_type & EVENT_PINNED)
2678                 event_type |= EVENT_FLEXIBLE;
2679
2680         ctx_event_type = event_type & EVENT_ALL;
2681
2682         perf_pmu_disable(cpuctx->ctx.pmu);
2683         if (task_ctx)
2684                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2685
2686         /*
2687          * Decide which cpu ctx groups to schedule out based on the types
2688          * of events that caused rescheduling:
2689          *  - EVENT_CPU: schedule out corresponding groups;
2690          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2691          *  - otherwise, do nothing more.
2692          */
2693         if (cpu_event)
2694                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2695         else if (ctx_event_type & EVENT_PINNED)
2696                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2697
2698         perf_event_sched_in(cpuctx, task_ctx);
2699         perf_pmu_enable(cpuctx->ctx.pmu);
2700 }
2701
2702 void perf_pmu_resched(struct pmu *pmu)
2703 {
2704         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2705         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2706
2707         perf_ctx_lock(cpuctx, task_ctx);
2708         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2709         perf_ctx_unlock(cpuctx, task_ctx);
2710 }
2711
2712 /*
2713  * Cross CPU call to install and enable a performance event
2714  *
2715  * Very similar to remote_function() + event_function() but cannot assume that
2716  * things like ctx->is_active and cpuctx->task_ctx are set.
2717  */
2718 static int  __perf_install_in_context(void *info)
2719 {
2720         struct perf_event *event = info;
2721         struct perf_event_context *ctx = event->ctx;
2722         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2723         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2724         bool reprogram = true;
2725         int ret = 0;
2726
2727         raw_spin_lock(&cpuctx->ctx.lock);
2728         if (ctx->task) {
2729                 raw_spin_lock(&ctx->lock);
2730                 task_ctx = ctx;
2731
2732                 reprogram = (ctx->task == current);
2733
2734                 /*
2735                  * If the task is running, it must be running on this CPU,
2736                  * otherwise we cannot reprogram things.
2737                  *
2738                  * If its not running, we don't care, ctx->lock will
2739                  * serialize against it becoming runnable.
2740                  */
2741                 if (task_curr(ctx->task) && !reprogram) {
2742                         ret = -ESRCH;
2743                         goto unlock;
2744                 }
2745
2746                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2747         } else if (task_ctx) {
2748                 raw_spin_lock(&task_ctx->lock);
2749         }
2750
2751 #ifdef CONFIG_CGROUP_PERF
2752         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2753                 /*
2754                  * If the current cgroup doesn't match the event's
2755                  * cgroup, we should not try to schedule it.
2756                  */
2757                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2758                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2759                                         event->cgrp->css.cgroup);
2760         }
2761 #endif
2762
2763         if (reprogram) {
2764                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2765                 add_event_to_ctx(event, ctx);
2766                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2767         } else {
2768                 add_event_to_ctx(event, ctx);
2769         }
2770
2771 unlock:
2772         perf_ctx_unlock(cpuctx, task_ctx);
2773
2774         return ret;
2775 }
2776
2777 static bool exclusive_event_installable(struct perf_event *event,
2778                                         struct perf_event_context *ctx);
2779
2780 /*
2781  * Attach a performance event to a context.
2782  *
2783  * Very similar to event_function_call, see comment there.
2784  */
2785 static void
2786 perf_install_in_context(struct perf_event_context *ctx,
2787                         struct perf_event *event,
2788                         int cpu)
2789 {
2790         struct task_struct *task = READ_ONCE(ctx->task);
2791
2792         lockdep_assert_held(&ctx->mutex);
2793
2794         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2795
2796         if (event->cpu != -1)
2797                 event->cpu = cpu;
2798
2799         /*
2800          * Ensures that if we can observe event->ctx, both the event and ctx
2801          * will be 'complete'. See perf_iterate_sb_cpu().
2802          */
2803         smp_store_release(&event->ctx, ctx);
2804
2805         /*
2806          * perf_event_attr::disabled events will not run and can be initialized
2807          * without IPI. Except when this is the first event for the context, in
2808          * that case we need the magic of the IPI to set ctx->is_active.
2809          * Similarly, cgroup events for the context also needs the IPI to
2810          * manipulate the cgrp_cpuctx_list.
2811          *
2812          * The IOC_ENABLE that is sure to follow the creation of a disabled
2813          * event will issue the IPI and reprogram the hardware.
2814          */
2815         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2816             ctx->nr_events && !is_cgroup_event(event)) {
2817                 raw_spin_lock_irq(&ctx->lock);
2818                 if (ctx->task == TASK_TOMBSTONE) {
2819                         raw_spin_unlock_irq(&ctx->lock);
2820                         return;
2821                 }
2822                 add_event_to_ctx(event, ctx);
2823                 raw_spin_unlock_irq(&ctx->lock);
2824                 return;
2825         }
2826
2827         if (!task) {
2828                 cpu_function_call(cpu, __perf_install_in_context, event);
2829                 return;
2830         }
2831
2832         /*
2833          * Should not happen, we validate the ctx is still alive before calling.
2834          */
2835         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2836                 return;
2837
2838         /*
2839          * Installing events is tricky because we cannot rely on ctx->is_active
2840          * to be set in case this is the nr_events 0 -> 1 transition.
2841          *
2842          * Instead we use task_curr(), which tells us if the task is running.
2843          * However, since we use task_curr() outside of rq::lock, we can race
2844          * against the actual state. This means the result can be wrong.
2845          *
2846          * If we get a false positive, we retry, this is harmless.
2847          *
2848          * If we get a false negative, things are complicated. If we are after
2849          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2850          * value must be correct. If we're before, it doesn't matter since
2851          * perf_event_context_sched_in() will program the counter.
2852          *
2853          * However, this hinges on the remote context switch having observed
2854          * our task->perf_event_ctxp[] store, such that it will in fact take
2855          * ctx::lock in perf_event_context_sched_in().
2856          *
2857          * We do this by task_function_call(), if the IPI fails to hit the task
2858          * we know any future context switch of task must see the
2859          * perf_event_ctpx[] store.
2860          */
2861
2862         /*
2863          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2864          * task_cpu() load, such that if the IPI then does not find the task
2865          * running, a future context switch of that task must observe the
2866          * store.
2867          */
2868         smp_mb();
2869 again:
2870         if (!task_function_call(task, __perf_install_in_context, event))
2871                 return;
2872
2873         raw_spin_lock_irq(&ctx->lock);
2874         task = ctx->task;
2875         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2876                 /*
2877                  * Cannot happen because we already checked above (which also
2878                  * cannot happen), and we hold ctx->mutex, which serializes us
2879                  * against perf_event_exit_task_context().
2880                  */
2881                 raw_spin_unlock_irq(&ctx->lock);
2882                 return;
2883         }
2884         /*
2885          * If the task is not running, ctx->lock will avoid it becoming so,
2886          * thus we can safely install the event.
2887          */
2888         if (task_curr(task)) {
2889                 raw_spin_unlock_irq(&ctx->lock);
2890                 goto again;
2891         }
2892         add_event_to_ctx(event, ctx);
2893         raw_spin_unlock_irq(&ctx->lock);
2894 }
2895
2896 /*
2897  * Cross CPU call to enable a performance event
2898  */
2899 static void __perf_event_enable(struct perf_event *event,
2900                                 struct perf_cpu_context *cpuctx,
2901                                 struct perf_event_context *ctx,
2902                                 void *info)
2903 {
2904         struct perf_event *leader = event->group_leader;
2905         struct perf_event_context *task_ctx;
2906
2907         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2908             event->state <= PERF_EVENT_STATE_ERROR)
2909                 return;
2910
2911         if (ctx->is_active)
2912                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2913
2914         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2915         perf_cgroup_event_enable(event, ctx);
2916
2917         if (!ctx->is_active)
2918                 return;
2919
2920         if (!event_filter_match(event)) {
2921                 ctx_sched_in(ctx, cpuctx, EVENT_TIME);
2922                 return;
2923         }
2924
2925         /*
2926          * If the event is in a group and isn't the group leader,
2927          * then don't put it on unless the group is on.
2928          */
2929         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2930                 ctx_sched_in(ctx, cpuctx, EVENT_TIME);
2931                 return;
2932         }
2933
2934         task_ctx = cpuctx->task_ctx;
2935         if (ctx->task)
2936                 WARN_ON_ONCE(task_ctx != ctx);
2937
2938         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2939 }
2940
2941 /*
2942  * Enable an event.
2943  *
2944  * If event->ctx is a cloned context, callers must make sure that
2945  * every task struct that event->ctx->task could possibly point to
2946  * remains valid.  This condition is satisfied when called through
2947  * perf_event_for_each_child or perf_event_for_each as described
2948  * for perf_event_disable.
2949  */
2950 static void _perf_event_enable(struct perf_event *event)
2951 {
2952         struct perf_event_context *ctx = event->ctx;
2953
2954         raw_spin_lock_irq(&ctx->lock);
2955         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2956             event->state <  PERF_EVENT_STATE_ERROR) {
2957 out:
2958                 raw_spin_unlock_irq(&ctx->lock);
2959                 return;
2960         }
2961
2962         /*
2963          * If the event is in error state, clear that first.
2964          *
2965          * That way, if we see the event in error state below, we know that it
2966          * has gone back into error state, as distinct from the task having
2967          * been scheduled away before the cross-call arrived.
2968          */
2969         if (event->state == PERF_EVENT_STATE_ERROR) {
2970                 /*
2971                  * Detached SIBLING events cannot leave ERROR state.
2972                  */
2973                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
2974                     event->group_leader == event)
2975                         goto out;
2976
2977                 event->state = PERF_EVENT_STATE_OFF;
2978         }
2979         raw_spin_unlock_irq(&ctx->lock);
2980
2981         event_function_call(event, __perf_event_enable, NULL);
2982 }
2983
2984 /*
2985  * See perf_event_disable();
2986  */
2987 void perf_event_enable(struct perf_event *event)
2988 {
2989         struct perf_event_context *ctx;
2990
2991         ctx = perf_event_ctx_lock(event);
2992         _perf_event_enable(event);
2993         perf_event_ctx_unlock(event, ctx);
2994 }
2995 EXPORT_SYMBOL_GPL(perf_event_enable);
2996
2997 struct stop_event_data {
2998         struct perf_event       *event;
2999         unsigned int            restart;
3000 };
3001
3002 static int __perf_event_stop(void *info)
3003 {
3004         struct stop_event_data *sd = info;
3005         struct perf_event *event = sd->event;
3006
3007         /* if it's already INACTIVE, do nothing */
3008         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3009                 return 0;
3010
3011         /* matches smp_wmb() in event_sched_in() */
3012         smp_rmb();
3013
3014         /*
3015          * There is a window with interrupts enabled before we get here,
3016          * so we need to check again lest we try to stop another CPU's event.
3017          */
3018         if (READ_ONCE(event->oncpu) != smp_processor_id())
3019                 return -EAGAIN;
3020
3021         event->pmu->stop(event, PERF_EF_UPDATE);
3022
3023         /*
3024          * May race with the actual stop (through perf_pmu_output_stop()),
3025          * but it is only used for events with AUX ring buffer, and such
3026          * events will refuse to restart because of rb::aux_mmap_count==0,
3027          * see comments in perf_aux_output_begin().
3028          *
3029          * Since this is happening on an event-local CPU, no trace is lost
3030          * while restarting.
3031          */
3032         if (sd->restart)
3033                 event->pmu->start(event, 0);
3034
3035         return 0;
3036 }
3037
3038 static int perf_event_stop(struct perf_event *event, int restart)
3039 {
3040         struct stop_event_data sd = {
3041                 .event          = event,
3042                 .restart        = restart,
3043         };
3044         int ret = 0;
3045
3046         do {
3047                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3048                         return 0;
3049
3050                 /* matches smp_wmb() in event_sched_in() */
3051                 smp_rmb();
3052
3053                 /*
3054                  * We only want to restart ACTIVE events, so if the event goes
3055                  * inactive here (event->oncpu==-1), there's nothing more to do;
3056                  * fall through with ret==-ENXIO.
3057                  */
3058                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3059                                         __perf_event_stop, &sd);
3060         } while (ret == -EAGAIN);
3061
3062         return ret;
3063 }
3064
3065 /*
3066  * In order to contain the amount of racy and tricky in the address filter
3067  * configuration management, it is a two part process:
3068  *
3069  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3070  *      we update the addresses of corresponding vmas in
3071  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3072  * (p2) when an event is scheduled in (pmu::add), it calls
3073  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3074  *      if the generation has changed since the previous call.
3075  *
3076  * If (p1) happens while the event is active, we restart it to force (p2).
3077  *
3078  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3079  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3080  *     ioctl;
3081  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3082  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3083  *     for reading;
3084  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3085  *     of exec.
3086  */
3087 void perf_event_addr_filters_sync(struct perf_event *event)
3088 {
3089         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3090
3091         if (!has_addr_filter(event))
3092                 return;
3093
3094         raw_spin_lock(&ifh->lock);
3095         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3096                 event->pmu->addr_filters_sync(event);
3097                 event->hw.addr_filters_gen = event->addr_filters_gen;
3098         }
3099         raw_spin_unlock(&ifh->lock);
3100 }
3101 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3102
3103 static int _perf_event_refresh(struct perf_event *event, int refresh)
3104 {
3105         /*
3106          * not supported on inherited events
3107          */
3108         if (event->attr.inherit || !is_sampling_event(event))
3109                 return -EINVAL;
3110
3111         atomic_add(refresh, &event->event_limit);
3112         _perf_event_enable(event);
3113
3114         return 0;
3115 }
3116
3117 /*
3118  * See perf_event_disable()
3119  */
3120 int perf_event_refresh(struct perf_event *event, int refresh)
3121 {
3122         struct perf_event_context *ctx;
3123         int ret;
3124
3125         ctx = perf_event_ctx_lock(event);
3126         ret = _perf_event_refresh(event, refresh);
3127         perf_event_ctx_unlock(event, ctx);
3128
3129         return ret;
3130 }
3131 EXPORT_SYMBOL_GPL(perf_event_refresh);
3132
3133 static int perf_event_modify_breakpoint(struct perf_event *bp,
3134                                          struct perf_event_attr *attr)
3135 {
3136         int err;
3137
3138         _perf_event_disable(bp);
3139
3140         err = modify_user_hw_breakpoint_check(bp, attr, true);
3141
3142         if (!bp->attr.disabled)
3143                 _perf_event_enable(bp);
3144
3145         return err;
3146 }
3147
3148 /*
3149  * Copy event-type-independent attributes that may be modified.
3150  */
3151 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3152                                         const struct perf_event_attr *from)
3153 {
3154         to->sig_data = from->sig_data;
3155 }
3156
3157 static int perf_event_modify_attr(struct perf_event *event,
3158                                   struct perf_event_attr *attr)
3159 {
3160         int (*func)(struct perf_event *, struct perf_event_attr *);
3161         struct perf_event *child;
3162         int err;
3163
3164         if (event->attr.type != attr->type)
3165                 return -EINVAL;
3166
3167         switch (event->attr.type) {
3168         case PERF_TYPE_BREAKPOINT:
3169                 func = perf_event_modify_breakpoint;
3170                 break;
3171         default:
3172                 /* Place holder for future additions. */
3173                 return -EOPNOTSUPP;
3174         }
3175
3176         WARN_ON_ONCE(event->ctx->parent_ctx);
3177
3178         mutex_lock(&event->child_mutex);
3179         /*
3180          * Event-type-independent attributes must be copied before event-type
3181          * modification, which will validate that final attributes match the
3182          * source attributes after all relevant attributes have been copied.
3183          */
3184         perf_event_modify_copy_attr(&event->attr, attr);
3185         err = func(event, attr);
3186         if (err)
3187                 goto out;
3188         list_for_each_entry(child, &event->child_list, child_list) {
3189                 perf_event_modify_copy_attr(&child->attr, attr);
3190                 err = func(child, attr);
3191                 if (err)
3192                         goto out;
3193         }
3194 out:
3195         mutex_unlock(&event->child_mutex);
3196         return err;
3197 }
3198
3199 static void ctx_sched_out(struct perf_event_context *ctx,
3200                           struct perf_cpu_context *cpuctx,
3201                           enum event_type_t event_type)
3202 {
3203         struct perf_event *event, *tmp;
3204         int is_active = ctx->is_active;
3205
3206         lockdep_assert_held(&ctx->lock);
3207
3208         if (likely(!ctx->nr_events)) {
3209                 /*
3210                  * See __perf_remove_from_context().
3211                  */
3212                 WARN_ON_ONCE(ctx->is_active);
3213                 if (ctx->task)
3214                         WARN_ON_ONCE(cpuctx->task_ctx);
3215                 return;
3216         }
3217
3218         /*
3219          * Always update time if it was set; not only when it changes.
3220          * Otherwise we can 'forget' to update time for any but the last
3221          * context we sched out. For example:
3222          *
3223          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3224          *   ctx_sched_out(.event_type = EVENT_PINNED)
3225          *
3226          * would only update time for the pinned events.
3227          */
3228         if (is_active & EVENT_TIME) {
3229                 /* update (and stop) ctx time */
3230                 update_context_time(ctx);
3231                 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3232                 /*
3233                  * CPU-release for the below ->is_active store,
3234                  * see __load_acquire() in perf_event_time_now()
3235                  */
3236                 barrier();
3237         }
3238
3239         ctx->is_active &= ~event_type;
3240         if (!(ctx->is_active & EVENT_ALL))
3241                 ctx->is_active = 0;
3242
3243         if (ctx->task) {
3244                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3245                 if (!ctx->is_active)
3246                         cpuctx->task_ctx = NULL;
3247         }
3248
3249         is_active ^= ctx->is_active; /* changed bits */
3250
3251         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3252                 return;
3253
3254         perf_pmu_disable(ctx->pmu);
3255         if (is_active & EVENT_PINNED) {
3256                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3257                         group_sched_out(event, cpuctx, ctx);
3258         }
3259
3260         if (is_active & EVENT_FLEXIBLE) {
3261                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3262                         group_sched_out(event, cpuctx, ctx);
3263
3264                 /*
3265                  * Since we cleared EVENT_FLEXIBLE, also clear
3266                  * rotate_necessary, is will be reset by
3267                  * ctx_flexible_sched_in() when needed.
3268                  */
3269                 ctx->rotate_necessary = 0;
3270         }
3271         perf_pmu_enable(ctx->pmu);
3272 }
3273
3274 /*
3275  * Test whether two contexts are equivalent, i.e. whether they have both been
3276  * cloned from the same version of the same context.
3277  *
3278  * Equivalence is measured using a generation number in the context that is
3279  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3280  * and list_del_event().
3281  */
3282 static int context_equiv(struct perf_event_context *ctx1,
3283                          struct perf_event_context *ctx2)
3284 {
3285         lockdep_assert_held(&ctx1->lock);
3286         lockdep_assert_held(&ctx2->lock);
3287
3288         /* Pinning disables the swap optimization */
3289         if (ctx1->pin_count || ctx2->pin_count)
3290                 return 0;
3291
3292         /* If ctx1 is the parent of ctx2 */
3293         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3294                 return 1;
3295
3296         /* If ctx2 is the parent of ctx1 */
3297         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3298                 return 1;
3299
3300         /*
3301          * If ctx1 and ctx2 have the same parent; we flatten the parent
3302          * hierarchy, see perf_event_init_context().
3303          */
3304         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3305                         ctx1->parent_gen == ctx2->parent_gen)
3306                 return 1;
3307
3308         /* Unmatched */
3309         return 0;
3310 }
3311
3312 static void __perf_event_sync_stat(struct perf_event *event,
3313                                      struct perf_event *next_event)
3314 {
3315         u64 value;
3316
3317         if (!event->attr.inherit_stat)
3318                 return;
3319
3320         /*
3321          * Update the event value, we cannot use perf_event_read()
3322          * because we're in the middle of a context switch and have IRQs
3323          * disabled, which upsets smp_call_function_single(), however
3324          * we know the event must be on the current CPU, therefore we
3325          * don't need to use it.
3326          */
3327         if (event->state == PERF_EVENT_STATE_ACTIVE)
3328                 event->pmu->read(event);
3329
3330         perf_event_update_time(event);
3331
3332         /*
3333          * In order to keep per-task stats reliable we need to flip the event
3334          * values when we flip the contexts.
3335          */
3336         value = local64_read(&next_event->count);
3337         value = local64_xchg(&event->count, value);
3338         local64_set(&next_event->count, value);
3339
3340         swap(event->total_time_enabled, next_event->total_time_enabled);
3341         swap(event->total_time_running, next_event->total_time_running);
3342
3343         /*
3344          * Since we swizzled the values, update the user visible data too.
3345          */
3346         perf_event_update_userpage(event);
3347         perf_event_update_userpage(next_event);
3348 }
3349
3350 static void perf_event_sync_stat(struct perf_event_context *ctx,
3351                                    struct perf_event_context *next_ctx)
3352 {
3353         struct perf_event *event, *next_event;
3354
3355         if (!ctx->nr_stat)
3356                 return;
3357
3358         update_context_time(ctx);
3359
3360         event = list_first_entry(&ctx->event_list,
3361                                    struct perf_event, event_entry);
3362
3363         next_event = list_first_entry(&next_ctx->event_list,
3364                                         struct perf_event, event_entry);
3365
3366         while (&event->event_entry != &ctx->event_list &&
3367                &next_event->event_entry != &next_ctx->event_list) {
3368
3369                 __perf_event_sync_stat(event, next_event);
3370
3371                 event = list_next_entry(event, event_entry);
3372                 next_event = list_next_entry(next_event, event_entry);
3373         }
3374 }
3375
3376 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3377                                          struct task_struct *next)
3378 {
3379         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3380         struct perf_event_context *next_ctx;
3381         struct perf_event_context *parent, *next_parent;
3382         struct perf_cpu_context *cpuctx;
3383         int do_switch = 1;
3384         struct pmu *pmu;
3385
3386         if (likely(!ctx))
3387                 return;
3388
3389         pmu = ctx->pmu;
3390         cpuctx = __get_cpu_context(ctx);
3391         if (!cpuctx->task_ctx)
3392                 return;
3393
3394         rcu_read_lock();
3395         next_ctx = next->perf_event_ctxp[ctxn];
3396         if (!next_ctx)
3397                 goto unlock;
3398
3399         parent = rcu_dereference(ctx->parent_ctx);
3400         next_parent = rcu_dereference(next_ctx->parent_ctx);
3401
3402         /* If neither context have a parent context; they cannot be clones. */
3403         if (!parent && !next_parent)
3404                 goto unlock;
3405
3406         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3407                 /*
3408                  * Looks like the two contexts are clones, so we might be
3409                  * able to optimize the context switch.  We lock both
3410                  * contexts and check that they are clones under the
3411                  * lock (including re-checking that neither has been
3412                  * uncloned in the meantime).  It doesn't matter which
3413                  * order we take the locks because no other cpu could
3414                  * be trying to lock both of these tasks.
3415                  */
3416                 raw_spin_lock(&ctx->lock);
3417                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3418                 if (context_equiv(ctx, next_ctx)) {
3419
3420                         WRITE_ONCE(ctx->task, next);
3421                         WRITE_ONCE(next_ctx->task, task);
3422
3423                         perf_pmu_disable(pmu);
3424
3425                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3426                                 pmu->sched_task(ctx, false);
3427
3428                         /*
3429                          * PMU specific parts of task perf context can require
3430                          * additional synchronization. As an example of such
3431                          * synchronization see implementation details of Intel
3432                          * LBR call stack data profiling;
3433                          */
3434                         if (pmu->swap_task_ctx)
3435                                 pmu->swap_task_ctx(ctx, next_ctx);
3436                         else
3437                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3438
3439                         perf_pmu_enable(pmu);
3440
3441                         /*
3442                          * RCU_INIT_POINTER here is safe because we've not
3443                          * modified the ctx and the above modification of
3444                          * ctx->task and ctx->task_ctx_data are immaterial
3445                          * since those values are always verified under
3446                          * ctx->lock which we're now holding.
3447                          */
3448                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3449                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3450
3451                         do_switch = 0;
3452
3453                         perf_event_sync_stat(ctx, next_ctx);
3454                 }
3455                 raw_spin_unlock(&next_ctx->lock);
3456                 raw_spin_unlock(&ctx->lock);
3457         }
3458 unlock:
3459         rcu_read_unlock();
3460
3461         if (do_switch) {
3462                 raw_spin_lock(&ctx->lock);
3463                 perf_pmu_disable(pmu);
3464
3465                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3466                         pmu->sched_task(ctx, false);
3467                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3468
3469                 perf_pmu_enable(pmu);
3470                 raw_spin_unlock(&ctx->lock);
3471         }
3472 }
3473
3474 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3475
3476 void perf_sched_cb_dec(struct pmu *pmu)
3477 {
3478         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3479
3480         this_cpu_dec(perf_sched_cb_usages);
3481
3482         if (!--cpuctx->sched_cb_usage)
3483                 list_del(&cpuctx->sched_cb_entry);
3484 }
3485
3486
3487 void perf_sched_cb_inc(struct pmu *pmu)
3488 {
3489         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3490
3491         if (!cpuctx->sched_cb_usage++)
3492                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3493
3494         this_cpu_inc(perf_sched_cb_usages);
3495 }
3496
3497 /*
3498  * This function provides the context switch callback to the lower code
3499  * layer. It is invoked ONLY when the context switch callback is enabled.
3500  *
3501  * This callback is relevant even to per-cpu events; for example multi event
3502  * PEBS requires this to provide PID/TID information. This requires we flush
3503  * all queued PEBS records before we context switch to a new task.
3504  */
3505 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3506 {
3507         struct pmu *pmu;
3508
3509         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3510
3511         if (WARN_ON_ONCE(!pmu->sched_task))
3512                 return;
3513
3514         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3515         perf_pmu_disable(pmu);
3516
3517         pmu->sched_task(cpuctx->task_ctx, sched_in);
3518
3519         perf_pmu_enable(pmu);
3520         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3521 }
3522
3523 static void perf_pmu_sched_task(struct task_struct *prev,
3524                                 struct task_struct *next,
3525                                 bool sched_in)
3526 {
3527         struct perf_cpu_context *cpuctx;
3528
3529         if (prev == next)
3530                 return;
3531
3532         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3533                 /* will be handled in perf_event_context_sched_in/out */
3534                 if (cpuctx->task_ctx)
3535                         continue;
3536
3537                 __perf_pmu_sched_task(cpuctx, sched_in);
3538         }
3539 }
3540
3541 static void perf_event_switch(struct task_struct *task,
3542                               struct task_struct *next_prev, bool sched_in);
3543
3544 #define for_each_task_context_nr(ctxn)                                  \
3545         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3546
3547 /*
3548  * Called from scheduler to remove the events of the current task,
3549  * with interrupts disabled.
3550  *
3551  * We stop each event and update the event value in event->count.
3552  *
3553  * This does not protect us against NMI, but disable()
3554  * sets the disabled bit in the control field of event _before_
3555  * accessing the event control register. If a NMI hits, then it will
3556  * not restart the event.
3557  */
3558 void __perf_event_task_sched_out(struct task_struct *task,
3559                                  struct task_struct *next)
3560 {
3561         int ctxn;
3562
3563         if (__this_cpu_read(perf_sched_cb_usages))
3564                 perf_pmu_sched_task(task, next, false);
3565
3566         if (atomic_read(&nr_switch_events))
3567                 perf_event_switch(task, next, false);
3568
3569         for_each_task_context_nr(ctxn)
3570                 perf_event_context_sched_out(task, ctxn, next);
3571
3572         /*
3573          * if cgroup events exist on this CPU, then we need
3574          * to check if we have to switch out PMU state.
3575          * cgroup event are system-wide mode only
3576          */
3577         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3578                 perf_cgroup_switch(next);
3579 }
3580
3581 /*
3582  * Called with IRQs disabled
3583  */
3584 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3585                               enum event_type_t event_type)
3586 {
3587         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3588 }
3589
3590 static bool perf_less_group_idx(const void *l, const void *r)
3591 {
3592         const struct perf_event *le = *(const struct perf_event **)l;
3593         const struct perf_event *re = *(const struct perf_event **)r;
3594
3595         return le->group_index < re->group_index;
3596 }
3597
3598 static void swap_ptr(void *l, void *r)
3599 {
3600         void **lp = l, **rp = r;
3601
3602         swap(*lp, *rp);
3603 }
3604
3605 static const struct min_heap_callbacks perf_min_heap = {
3606         .elem_size = sizeof(struct perf_event *),
3607         .less = perf_less_group_idx,
3608         .swp = swap_ptr,
3609 };
3610
3611 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3612 {
3613         struct perf_event **itrs = heap->data;
3614
3615         if (event) {
3616                 itrs[heap->nr] = event;
3617                 heap->nr++;
3618         }
3619 }
3620
3621 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3622                                 struct perf_event_groups *groups, int cpu,
3623                                 int (*func)(struct perf_event *, void *),
3624                                 void *data)
3625 {
3626 #ifdef CONFIG_CGROUP_PERF
3627         struct cgroup_subsys_state *css = NULL;
3628 #endif
3629         /* Space for per CPU and/or any CPU event iterators. */
3630         struct perf_event *itrs[2];
3631         struct min_heap event_heap;
3632         struct perf_event **evt;
3633         int ret;
3634
3635         if (cpuctx) {
3636                 event_heap = (struct min_heap){
3637                         .data = cpuctx->heap,
3638                         .nr = 0,
3639                         .size = cpuctx->heap_size,
3640                 };
3641
3642                 lockdep_assert_held(&cpuctx->ctx.lock);
3643
3644 #ifdef CONFIG_CGROUP_PERF
3645                 if (cpuctx->cgrp)
3646                         css = &cpuctx->cgrp->css;
3647 #endif
3648         } else {
3649                 event_heap = (struct min_heap){
3650                         .data = itrs,
3651                         .nr = 0,
3652                         .size = ARRAY_SIZE(itrs),
3653                 };
3654                 /* Events not within a CPU context may be on any CPU. */
3655                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3656         }
3657         evt = event_heap.data;
3658
3659         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3660
3661 #ifdef CONFIG_CGROUP_PERF
3662         for (; css; css = css->parent)
3663                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3664 #endif
3665
3666         min_heapify_all(&event_heap, &perf_min_heap);
3667
3668         while (event_heap.nr) {
3669                 ret = func(*evt, data);
3670                 if (ret)
3671                         return ret;
3672
3673                 *evt = perf_event_groups_next(*evt);
3674                 if (*evt)
3675                         min_heapify(&event_heap, 0, &perf_min_heap);
3676                 else
3677                         min_heap_pop(&event_heap, &perf_min_heap);
3678         }
3679
3680         return 0;
3681 }
3682
3683 /*
3684  * Because the userpage is strictly per-event (there is no concept of context,
3685  * so there cannot be a context indirection), every userpage must be updated
3686  * when context time starts :-(
3687  *
3688  * IOW, we must not miss EVENT_TIME edges.
3689  */
3690 static inline bool event_update_userpage(struct perf_event *event)
3691 {
3692         if (likely(!atomic_read(&event->mmap_count)))
3693                 return false;
3694
3695         perf_event_update_time(event);
3696         perf_event_update_userpage(event);
3697
3698         return true;
3699 }
3700
3701 static inline void group_update_userpage(struct perf_event *group_event)
3702 {
3703         struct perf_event *event;
3704
3705         if (!event_update_userpage(group_event))
3706                 return;
3707
3708         for_each_sibling_event(event, group_event)
3709                 event_update_userpage(event);
3710 }
3711
3712 static int merge_sched_in(struct perf_event *event, void *data)
3713 {
3714         struct perf_event_context *ctx = event->ctx;
3715         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3716         int *can_add_hw = data;
3717
3718         if (event->state <= PERF_EVENT_STATE_OFF)
3719                 return 0;
3720
3721         if (!event_filter_match(event))
3722                 return 0;
3723
3724         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3725                 if (!group_sched_in(event, cpuctx, ctx))
3726                         list_add_tail(&event->active_list, get_event_list(event));
3727         }
3728
3729         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3730                 *can_add_hw = 0;
3731                 if (event->attr.pinned) {
3732                         perf_cgroup_event_disable(event, ctx);
3733                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3734                 } else {
3735                         ctx->rotate_necessary = 1;
3736                         perf_mux_hrtimer_restart(cpuctx);
3737                         group_update_userpage(event);
3738                 }
3739         }
3740
3741         return 0;
3742 }
3743
3744 static void
3745 ctx_pinned_sched_in(struct perf_event_context *ctx,
3746                     struct perf_cpu_context *cpuctx)
3747 {
3748         int can_add_hw = 1;
3749
3750         if (ctx != &cpuctx->ctx)
3751                 cpuctx = NULL;
3752
3753         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3754                            smp_processor_id(),
3755                            merge_sched_in, &can_add_hw);
3756 }
3757
3758 static void
3759 ctx_flexible_sched_in(struct perf_event_context *ctx,
3760                       struct perf_cpu_context *cpuctx)
3761 {
3762         int can_add_hw = 1;
3763
3764         if (ctx != &cpuctx->ctx)
3765                 cpuctx = NULL;
3766
3767         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3768                            smp_processor_id(),
3769                            merge_sched_in, &can_add_hw);
3770 }
3771
3772 static void
3773 ctx_sched_in(struct perf_event_context *ctx,
3774              struct perf_cpu_context *cpuctx,
3775              enum event_type_t event_type)
3776 {
3777         int is_active = ctx->is_active;
3778
3779         lockdep_assert_held(&ctx->lock);
3780
3781         if (likely(!ctx->nr_events))
3782                 return;
3783
3784         if (is_active ^ EVENT_TIME) {
3785                 /* start ctx time */
3786                 __update_context_time(ctx, false);
3787                 perf_cgroup_set_timestamp(cpuctx);
3788                 /*
3789                  * CPU-release for the below ->is_active store,
3790                  * see __load_acquire() in perf_event_time_now()
3791                  */
3792                 barrier();
3793         }
3794
3795         ctx->is_active |= (event_type | EVENT_TIME);
3796         if (ctx->task) {
3797                 if (!is_active)
3798                         cpuctx->task_ctx = ctx;
3799                 else
3800                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3801         }
3802
3803         is_active ^= ctx->is_active; /* changed bits */
3804
3805         /*
3806          * First go through the list and put on any pinned groups
3807          * in order to give them the best chance of going on.
3808          */
3809         if (is_active & EVENT_PINNED)
3810                 ctx_pinned_sched_in(ctx, cpuctx);
3811
3812         /* Then walk through the lower prio flexible groups */
3813         if (is_active & EVENT_FLEXIBLE)
3814                 ctx_flexible_sched_in(ctx, cpuctx);
3815 }
3816
3817 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3818                              enum event_type_t event_type)
3819 {
3820         struct perf_event_context *ctx = &cpuctx->ctx;
3821
3822         ctx_sched_in(ctx, cpuctx, event_type);
3823 }
3824
3825 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3826                                         struct task_struct *task)
3827 {
3828         struct perf_cpu_context *cpuctx;
3829         struct pmu *pmu;
3830
3831         cpuctx = __get_cpu_context(ctx);
3832
3833         /*
3834          * HACK: for HETEROGENEOUS the task context might have switched to a
3835          * different PMU, force (re)set the context,
3836          */
3837         pmu = ctx->pmu = cpuctx->ctx.pmu;
3838
3839         if (cpuctx->task_ctx == ctx) {
3840                 if (cpuctx->sched_cb_usage)
3841                         __perf_pmu_sched_task(cpuctx, true);
3842                 return;
3843         }
3844
3845         perf_ctx_lock(cpuctx, ctx);
3846         /*
3847          * We must check ctx->nr_events while holding ctx->lock, such
3848          * that we serialize against perf_install_in_context().
3849          */
3850         if (!ctx->nr_events)
3851                 goto unlock;
3852
3853         perf_pmu_disable(pmu);
3854         /*
3855          * We want to keep the following priority order:
3856          * cpu pinned (that don't need to move), task pinned,
3857          * cpu flexible, task flexible.
3858          *
3859          * However, if task's ctx is not carrying any pinned
3860          * events, no need to flip the cpuctx's events around.
3861          */
3862         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3863                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3864         perf_event_sched_in(cpuctx, ctx);
3865
3866         if (cpuctx->sched_cb_usage && pmu->sched_task)
3867                 pmu->sched_task(cpuctx->task_ctx, true);
3868
3869         perf_pmu_enable(pmu);
3870
3871 unlock:
3872         perf_ctx_unlock(cpuctx, ctx);
3873 }
3874
3875 /*
3876  * Called from scheduler to add the events of the current task
3877  * with interrupts disabled.
3878  *
3879  * We restore the event value and then enable it.
3880  *
3881  * This does not protect us against NMI, but enable()
3882  * sets the enabled bit in the control field of event _before_
3883  * accessing the event control register. If a NMI hits, then it will
3884  * keep the event running.
3885  */
3886 void __perf_event_task_sched_in(struct task_struct *prev,
3887                                 struct task_struct *task)
3888 {
3889         struct perf_event_context *ctx;
3890         int ctxn;
3891
3892         for_each_task_context_nr(ctxn) {
3893                 ctx = task->perf_event_ctxp[ctxn];
3894                 if (likely(!ctx))
3895                         continue;
3896
3897                 perf_event_context_sched_in(ctx, task);
3898         }
3899
3900         if (atomic_read(&nr_switch_events))
3901                 perf_event_switch(task, prev, true);
3902
3903         if (__this_cpu_read(perf_sched_cb_usages))
3904                 perf_pmu_sched_task(prev, task, true);
3905 }
3906
3907 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3908 {
3909         u64 frequency = event->attr.sample_freq;
3910         u64 sec = NSEC_PER_SEC;
3911         u64 divisor, dividend;
3912
3913         int count_fls, nsec_fls, frequency_fls, sec_fls;
3914
3915         count_fls = fls64(count);
3916         nsec_fls = fls64(nsec);
3917         frequency_fls = fls64(frequency);
3918         sec_fls = 30;
3919
3920         /*
3921          * We got @count in @nsec, with a target of sample_freq HZ
3922          * the target period becomes:
3923          *
3924          *             @count * 10^9
3925          * period = -------------------
3926          *          @nsec * sample_freq
3927          *
3928          */
3929
3930         /*
3931          * Reduce accuracy by one bit such that @a and @b converge
3932          * to a similar magnitude.
3933          */
3934 #define REDUCE_FLS(a, b)                \
3935 do {                                    \
3936         if (a##_fls > b##_fls) {        \
3937                 a >>= 1;                \
3938                 a##_fls--;              \
3939         } else {                        \
3940                 b >>= 1;                \
3941                 b##_fls--;              \
3942         }                               \
3943 } while (0)
3944
3945         /*
3946          * Reduce accuracy until either term fits in a u64, then proceed with
3947          * the other, so that finally we can do a u64/u64 division.
3948          */
3949         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3950                 REDUCE_FLS(nsec, frequency);
3951                 REDUCE_FLS(sec, count);
3952         }
3953
3954         if (count_fls + sec_fls > 64) {
3955                 divisor = nsec * frequency;
3956
3957                 while (count_fls + sec_fls > 64) {
3958                         REDUCE_FLS(count, sec);
3959                         divisor >>= 1;
3960                 }
3961
3962                 dividend = count * sec;
3963         } else {
3964                 dividend = count * sec;
3965
3966                 while (nsec_fls + frequency_fls > 64) {
3967                         REDUCE_FLS(nsec, frequency);
3968                         dividend >>= 1;
3969                 }
3970
3971                 divisor = nsec * frequency;
3972         }
3973
3974         if (!divisor)
3975                 return dividend;
3976
3977         return div64_u64(dividend, divisor);
3978 }
3979
3980 static DEFINE_PER_CPU(int, perf_throttled_count);
3981 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3982
3983 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3984 {
3985         struct hw_perf_event *hwc = &event->hw;
3986         s64 period, sample_period;
3987         s64 delta;
3988
3989         period = perf_calculate_period(event, nsec, count);
3990
3991         delta = (s64)(period - hwc->sample_period);
3992         delta = (delta + 7) / 8; /* low pass filter */
3993
3994         sample_period = hwc->sample_period + delta;
3995
3996         if (!sample_period)
3997                 sample_period = 1;
3998
3999         hwc->sample_period = sample_period;
4000
4001         if (local64_read(&hwc->period_left) > 8*sample_period) {
4002                 if (disable)
4003                         event->pmu->stop(event, PERF_EF_UPDATE);
4004
4005                 local64_set(&hwc->period_left, 0);
4006
4007                 if (disable)
4008                         event->pmu->start(event, PERF_EF_RELOAD);
4009         }
4010 }
4011
4012 /*
4013  * combine freq adjustment with unthrottling to avoid two passes over the
4014  * events. At the same time, make sure, having freq events does not change
4015  * the rate of unthrottling as that would introduce bias.
4016  */
4017 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4018                                            int needs_unthr)
4019 {
4020         struct perf_event *event;
4021         struct hw_perf_event *hwc;
4022         u64 now, period = TICK_NSEC;
4023         s64 delta;
4024
4025         /*
4026          * only need to iterate over all events iff:
4027          * - context have events in frequency mode (needs freq adjust)
4028          * - there are events to unthrottle on this cpu
4029          */
4030         if (!(ctx->nr_freq || needs_unthr))
4031                 return;
4032
4033         raw_spin_lock(&ctx->lock);
4034         perf_pmu_disable(ctx->pmu);
4035
4036         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4037                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4038                         continue;
4039
4040                 if (!event_filter_match(event))
4041                         continue;
4042
4043                 perf_pmu_disable(event->pmu);
4044
4045                 hwc = &event->hw;
4046
4047                 if (hwc->interrupts == MAX_INTERRUPTS) {
4048                         hwc->interrupts = 0;
4049                         perf_log_throttle(event, 1);
4050                         event->pmu->start(event, 0);
4051                 }
4052
4053                 if (!event->attr.freq || !event->attr.sample_freq)
4054                         goto next;
4055
4056                 /*
4057                  * stop the event and update event->count
4058                  */
4059                 event->pmu->stop(event, PERF_EF_UPDATE);
4060
4061                 now = local64_read(&event->count);
4062                 delta = now - hwc->freq_count_stamp;
4063                 hwc->freq_count_stamp = now;
4064
4065                 /*
4066                  * restart the event
4067                  * reload only if value has changed
4068                  * we have stopped the event so tell that
4069                  * to perf_adjust_period() to avoid stopping it
4070                  * twice.
4071                  */
4072                 if (delta > 0)
4073                         perf_adjust_period(event, period, delta, false);
4074
4075                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4076         next:
4077                 perf_pmu_enable(event->pmu);
4078         }
4079
4080         perf_pmu_enable(ctx->pmu);
4081         raw_spin_unlock(&ctx->lock);
4082 }
4083
4084 /*
4085  * Move @event to the tail of the @ctx's elegible events.
4086  */
4087 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4088 {
4089         /*
4090          * Rotate the first entry last of non-pinned groups. Rotation might be
4091          * disabled by the inheritance code.
4092          */
4093         if (ctx->rotate_disable)
4094                 return;
4095
4096         perf_event_groups_delete(&ctx->flexible_groups, event);
4097         perf_event_groups_insert(&ctx->flexible_groups, event);
4098 }
4099
4100 /* pick an event from the flexible_groups to rotate */
4101 static inline struct perf_event *
4102 ctx_event_to_rotate(struct perf_event_context *ctx)
4103 {
4104         struct perf_event *event;
4105
4106         /* pick the first active flexible event */
4107         event = list_first_entry_or_null(&ctx->flexible_active,
4108                                          struct perf_event, active_list);
4109
4110         /* if no active flexible event, pick the first event */
4111         if (!event) {
4112                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4113                                       typeof(*event), group_node);
4114         }
4115
4116         /*
4117          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4118          * finds there are unschedulable events, it will set it again.
4119          */
4120         ctx->rotate_necessary = 0;
4121
4122         return event;
4123 }
4124
4125 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4126 {
4127         struct perf_event *cpu_event = NULL, *task_event = NULL;
4128         struct perf_event_context *task_ctx = NULL;
4129         int cpu_rotate, task_rotate;
4130
4131         /*
4132          * Since we run this from IRQ context, nobody can install new
4133          * events, thus the event count values are stable.
4134          */
4135
4136         cpu_rotate = cpuctx->ctx.rotate_necessary;
4137         task_ctx = cpuctx->task_ctx;
4138         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4139
4140         if (!(cpu_rotate || task_rotate))
4141                 return false;
4142
4143         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4144         perf_pmu_disable(cpuctx->ctx.pmu);
4145
4146         if (task_rotate)
4147                 task_event = ctx_event_to_rotate(task_ctx);
4148         if (cpu_rotate)
4149                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4150
4151         /*
4152          * As per the order given at ctx_resched() first 'pop' task flexible
4153          * and then, if needed CPU flexible.
4154          */
4155         if (task_event || (task_ctx && cpu_event))
4156                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4157         if (cpu_event)
4158                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4159
4160         if (task_event)
4161                 rotate_ctx(task_ctx, task_event);
4162         if (cpu_event)
4163                 rotate_ctx(&cpuctx->ctx, cpu_event);
4164
4165         perf_event_sched_in(cpuctx, task_ctx);
4166
4167         perf_pmu_enable(cpuctx->ctx.pmu);
4168         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4169
4170         return true;
4171 }
4172
4173 void perf_event_task_tick(void)
4174 {
4175         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4176         struct perf_event_context *ctx, *tmp;
4177         int throttled;
4178
4179         lockdep_assert_irqs_disabled();
4180
4181         __this_cpu_inc(perf_throttled_seq);
4182         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4183         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4184
4185         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4186                 perf_adjust_freq_unthr_context(ctx, throttled);
4187 }
4188
4189 static int event_enable_on_exec(struct perf_event *event,
4190                                 struct perf_event_context *ctx)
4191 {
4192         if (!event->attr.enable_on_exec)
4193                 return 0;
4194
4195         event->attr.enable_on_exec = 0;
4196         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4197                 return 0;
4198
4199         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4200
4201         return 1;
4202 }
4203
4204 /*
4205  * Enable all of a task's events that have been marked enable-on-exec.
4206  * This expects task == current.
4207  */
4208 static void perf_event_enable_on_exec(int ctxn)
4209 {
4210         struct perf_event_context *ctx, *clone_ctx = NULL;
4211         enum event_type_t event_type = 0;
4212         struct perf_cpu_context *cpuctx;
4213         struct perf_event *event;
4214         unsigned long flags;
4215         int enabled = 0;
4216
4217         local_irq_save(flags);
4218         ctx = current->perf_event_ctxp[ctxn];
4219         if (!ctx || !ctx->nr_events)
4220                 goto out;
4221
4222         cpuctx = __get_cpu_context(ctx);
4223         perf_ctx_lock(cpuctx, ctx);
4224         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4225         list_for_each_entry(event, &ctx->event_list, event_entry) {
4226                 enabled |= event_enable_on_exec(event, ctx);
4227                 event_type |= get_event_type(event);
4228         }
4229
4230         /*
4231          * Unclone and reschedule this context if we enabled any event.
4232          */
4233         if (enabled) {
4234                 clone_ctx = unclone_ctx(ctx);
4235                 ctx_resched(cpuctx, ctx, event_type);
4236         } else {
4237                 ctx_sched_in(ctx, cpuctx, EVENT_TIME);
4238         }
4239         perf_ctx_unlock(cpuctx, ctx);
4240
4241 out:
4242         local_irq_restore(flags);
4243
4244         if (clone_ctx)
4245                 put_ctx(clone_ctx);
4246 }
4247
4248 static void perf_remove_from_owner(struct perf_event *event);
4249 static void perf_event_exit_event(struct perf_event *event,
4250                                   struct perf_event_context *ctx);
4251
4252 /*
4253  * Removes all events from the current task that have been marked
4254  * remove-on-exec, and feeds their values back to parent events.
4255  */
4256 static void perf_event_remove_on_exec(int ctxn)
4257 {
4258         struct perf_event_context *ctx, *clone_ctx = NULL;
4259         struct perf_event *event, *next;
4260         LIST_HEAD(free_list);
4261         unsigned long flags;
4262         bool modified = false;
4263
4264         ctx = perf_pin_task_context(current, ctxn);
4265         if (!ctx)
4266                 return;
4267
4268         mutex_lock(&ctx->mutex);
4269
4270         if (WARN_ON_ONCE(ctx->task != current))
4271                 goto unlock;
4272
4273         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4274                 if (!event->attr.remove_on_exec)
4275                         continue;
4276
4277                 if (!is_kernel_event(event))
4278                         perf_remove_from_owner(event);
4279
4280                 modified = true;
4281
4282                 perf_event_exit_event(event, ctx);
4283         }
4284
4285         raw_spin_lock_irqsave(&ctx->lock, flags);
4286         if (modified)
4287                 clone_ctx = unclone_ctx(ctx);
4288         --ctx->pin_count;
4289         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4290
4291 unlock:
4292         mutex_unlock(&ctx->mutex);
4293
4294         put_ctx(ctx);
4295         if (clone_ctx)
4296                 put_ctx(clone_ctx);
4297 }
4298
4299 struct perf_read_data {
4300         struct perf_event *event;
4301         bool group;
4302         int ret;
4303 };
4304
4305 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4306 {
4307         u16 local_pkg, event_pkg;
4308
4309         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4310                 int local_cpu = smp_processor_id();
4311
4312                 event_pkg = topology_physical_package_id(event_cpu);
4313                 local_pkg = topology_physical_package_id(local_cpu);
4314
4315                 if (event_pkg == local_pkg)
4316                         return local_cpu;
4317         }
4318
4319         return event_cpu;
4320 }
4321
4322 /*
4323  * Cross CPU call to read the hardware event
4324  */
4325 static void __perf_event_read(void *info)
4326 {
4327         struct perf_read_data *data = info;
4328         struct perf_event *sub, *event = data->event;
4329         struct perf_event_context *ctx = event->ctx;
4330         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4331         struct pmu *pmu = event->pmu;
4332
4333         /*
4334          * If this is a task context, we need to check whether it is
4335          * the current task context of this cpu.  If not it has been
4336          * scheduled out before the smp call arrived.  In that case
4337          * event->count would have been updated to a recent sample
4338          * when the event was scheduled out.
4339          */
4340         if (ctx->task && cpuctx->task_ctx != ctx)
4341                 return;
4342
4343         raw_spin_lock(&ctx->lock);
4344         if (ctx->is_active & EVENT_TIME) {
4345                 update_context_time(ctx);
4346                 update_cgrp_time_from_event(event);
4347         }
4348
4349         perf_event_update_time(event);
4350         if (data->group)
4351                 perf_event_update_sibling_time(event);
4352
4353         if (event->state != PERF_EVENT_STATE_ACTIVE)
4354                 goto unlock;
4355
4356         if (!data->group) {
4357                 pmu->read(event);
4358                 data->ret = 0;
4359                 goto unlock;
4360         }
4361
4362         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4363
4364         pmu->read(event);
4365
4366         for_each_sibling_event(sub, event) {
4367                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4368                         /*
4369                          * Use sibling's PMU rather than @event's since
4370                          * sibling could be on different (eg: software) PMU.
4371                          */
4372                         sub->pmu->read(sub);
4373                 }
4374         }
4375
4376         data->ret = pmu->commit_txn(pmu);
4377
4378 unlock:
4379         raw_spin_unlock(&ctx->lock);
4380 }
4381
4382 static inline u64 perf_event_count(struct perf_event *event)
4383 {
4384         return local64_read(&event->count) + atomic64_read(&event->child_count);
4385 }
4386
4387 static void calc_timer_values(struct perf_event *event,
4388                                 u64 *now,
4389                                 u64 *enabled,
4390                                 u64 *running)
4391 {
4392         u64 ctx_time;
4393
4394         *now = perf_clock();
4395         ctx_time = perf_event_time_now(event, *now);
4396         __perf_update_times(event, ctx_time, enabled, running);
4397 }
4398
4399 /*
4400  * NMI-safe method to read a local event, that is an event that
4401  * is:
4402  *   - either for the current task, or for this CPU
4403  *   - does not have inherit set, for inherited task events
4404  *     will not be local and we cannot read them atomically
4405  *   - must not have a pmu::count method
4406  */
4407 int perf_event_read_local(struct perf_event *event, u64 *value,
4408                           u64 *enabled, u64 *running)
4409 {
4410         unsigned long flags;
4411         int ret = 0;
4412
4413         /*
4414          * Disabling interrupts avoids all counter scheduling (context
4415          * switches, timer based rotation and IPIs).
4416          */
4417         local_irq_save(flags);
4418
4419         /*
4420          * It must not be an event with inherit set, we cannot read
4421          * all child counters from atomic context.
4422          */
4423         if (event->attr.inherit) {
4424                 ret = -EOPNOTSUPP;
4425                 goto out;
4426         }
4427
4428         /* If this is a per-task event, it must be for current */
4429         if ((event->attach_state & PERF_ATTACH_TASK) &&
4430             event->hw.target != current) {
4431                 ret = -EINVAL;
4432                 goto out;
4433         }
4434
4435         /* If this is a per-CPU event, it must be for this CPU */
4436         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4437             event->cpu != smp_processor_id()) {
4438                 ret = -EINVAL;
4439                 goto out;
4440         }
4441
4442         /* If this is a pinned event it must be running on this CPU */
4443         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4444                 ret = -EBUSY;
4445                 goto out;
4446         }
4447
4448         /*
4449          * If the event is currently on this CPU, its either a per-task event,
4450          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4451          * oncpu == -1).
4452          */
4453         if (event->oncpu == smp_processor_id())
4454                 event->pmu->read(event);
4455
4456         *value = local64_read(&event->count);
4457         if (enabled || running) {
4458                 u64 __enabled, __running, __now;;
4459
4460                 calc_timer_values(event, &__now, &__enabled, &__running);
4461                 if (enabled)
4462                         *enabled = __enabled;
4463                 if (running)
4464                         *running = __running;
4465         }
4466 out:
4467         local_irq_restore(flags);
4468
4469         return ret;
4470 }
4471
4472 static int perf_event_read(struct perf_event *event, bool group)
4473 {
4474         enum perf_event_state state = READ_ONCE(event->state);
4475         int event_cpu, ret = 0;
4476
4477         /*
4478          * If event is enabled and currently active on a CPU, update the
4479          * value in the event structure:
4480          */
4481 again:
4482         if (state == PERF_EVENT_STATE_ACTIVE) {
4483                 struct perf_read_data data;
4484
4485                 /*
4486                  * Orders the ->state and ->oncpu loads such that if we see
4487                  * ACTIVE we must also see the right ->oncpu.
4488                  *
4489                  * Matches the smp_wmb() from event_sched_in().
4490                  */
4491                 smp_rmb();
4492
4493                 event_cpu = READ_ONCE(event->oncpu);
4494                 if ((unsigned)event_cpu >= nr_cpu_ids)
4495                         return 0;
4496
4497                 data = (struct perf_read_data){
4498                         .event = event,
4499                         .group = group,
4500                         .ret = 0,
4501                 };
4502
4503                 preempt_disable();
4504                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4505
4506                 /*
4507                  * Purposely ignore the smp_call_function_single() return
4508                  * value.
4509                  *
4510                  * If event_cpu isn't a valid CPU it means the event got
4511                  * scheduled out and that will have updated the event count.
4512                  *
4513                  * Therefore, either way, we'll have an up-to-date event count
4514                  * after this.
4515                  */
4516                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4517                 preempt_enable();
4518                 ret = data.ret;
4519
4520         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4521                 struct perf_event_context *ctx = event->ctx;
4522                 unsigned long flags;
4523
4524                 raw_spin_lock_irqsave(&ctx->lock, flags);
4525                 state = event->state;
4526                 if (state != PERF_EVENT_STATE_INACTIVE) {
4527                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4528                         goto again;
4529                 }
4530
4531                 /*
4532                  * May read while context is not active (e.g., thread is
4533                  * blocked), in that case we cannot update context time
4534                  */
4535                 if (ctx->is_active & EVENT_TIME) {
4536                         update_context_time(ctx);
4537                         update_cgrp_time_from_event(event);
4538                 }
4539
4540                 perf_event_update_time(event);
4541                 if (group)
4542                         perf_event_update_sibling_time(event);
4543                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4544         }
4545
4546         return ret;
4547 }
4548
4549 /*
4550  * Initialize the perf_event context in a task_struct:
4551  */
4552 static void __perf_event_init_context(struct perf_event_context *ctx)
4553 {
4554         raw_spin_lock_init(&ctx->lock);
4555         mutex_init(&ctx->mutex);
4556         INIT_LIST_HEAD(&ctx->active_ctx_list);
4557         perf_event_groups_init(&ctx->pinned_groups);
4558         perf_event_groups_init(&ctx->flexible_groups);
4559         INIT_LIST_HEAD(&ctx->event_list);
4560         INIT_LIST_HEAD(&ctx->pinned_active);
4561         INIT_LIST_HEAD(&ctx->flexible_active);
4562         refcount_set(&ctx->refcount, 1);
4563 }
4564
4565 static struct perf_event_context *
4566 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4567 {
4568         struct perf_event_context *ctx;
4569
4570         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4571         if (!ctx)
4572                 return NULL;
4573
4574         __perf_event_init_context(ctx);
4575         if (task)
4576                 ctx->task = get_task_struct(task);
4577         ctx->pmu = pmu;
4578
4579         return ctx;
4580 }
4581
4582 static struct task_struct *
4583 find_lively_task_by_vpid(pid_t vpid)
4584 {
4585         struct task_struct *task;
4586
4587         rcu_read_lock();
4588         if (!vpid)
4589                 task = current;
4590         else
4591                 task = find_task_by_vpid(vpid);
4592         if (task)
4593                 get_task_struct(task);
4594         rcu_read_unlock();
4595
4596         if (!task)
4597                 return ERR_PTR(-ESRCH);
4598
4599         return task;
4600 }
4601
4602 /*
4603  * Returns a matching context with refcount and pincount.
4604  */
4605 static struct perf_event_context *
4606 find_get_context(struct pmu *pmu, struct task_struct *task,
4607                 struct perf_event *event)
4608 {
4609         struct perf_event_context *ctx, *clone_ctx = NULL;
4610         struct perf_cpu_context *cpuctx;
4611         void *task_ctx_data = NULL;
4612         unsigned long flags;
4613         int ctxn, err;
4614         int cpu = event->cpu;
4615
4616         if (!task) {
4617                 /* Must be root to operate on a CPU event: */
4618                 err = perf_allow_cpu(&event->attr);
4619                 if (err)
4620                         return ERR_PTR(err);
4621
4622                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4623                 ctx = &cpuctx->ctx;
4624                 get_ctx(ctx);
4625                 raw_spin_lock_irqsave(&ctx->lock, flags);
4626                 ++ctx->pin_count;
4627                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4628
4629                 return ctx;
4630         }
4631
4632         err = -EINVAL;
4633         ctxn = pmu->task_ctx_nr;
4634         if (ctxn < 0)
4635                 goto errout;
4636
4637         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4638                 task_ctx_data = alloc_task_ctx_data(pmu);
4639                 if (!task_ctx_data) {
4640                         err = -ENOMEM;
4641                         goto errout;
4642                 }
4643         }
4644
4645 retry:
4646         ctx = perf_lock_task_context(task, ctxn, &flags);
4647         if (ctx) {
4648                 clone_ctx = unclone_ctx(ctx);
4649                 ++ctx->pin_count;
4650
4651                 if (task_ctx_data && !ctx->task_ctx_data) {
4652                         ctx->task_ctx_data = task_ctx_data;
4653                         task_ctx_data = NULL;
4654                 }
4655                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4656
4657                 if (clone_ctx)
4658                         put_ctx(clone_ctx);
4659         } else {
4660                 ctx = alloc_perf_context(pmu, task);
4661                 err = -ENOMEM;
4662                 if (!ctx)
4663                         goto errout;
4664
4665                 if (task_ctx_data) {
4666                         ctx->task_ctx_data = task_ctx_data;
4667                         task_ctx_data = NULL;
4668                 }
4669
4670                 err = 0;
4671                 mutex_lock(&task->perf_event_mutex);
4672                 /*
4673                  * If it has already passed perf_event_exit_task().
4674                  * we must see PF_EXITING, it takes this mutex too.
4675                  */
4676                 if (task->flags & PF_EXITING)
4677                         err = -ESRCH;
4678                 else if (task->perf_event_ctxp[ctxn])
4679                         err = -EAGAIN;
4680                 else {
4681                         get_ctx(ctx);
4682                         ++ctx->pin_count;
4683                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4684                 }
4685                 mutex_unlock(&task->perf_event_mutex);
4686
4687                 if (unlikely(err)) {
4688                         put_ctx(ctx);
4689
4690                         if (err == -EAGAIN)
4691                                 goto retry;
4692                         goto errout;
4693                 }
4694         }
4695
4696         free_task_ctx_data(pmu, task_ctx_data);
4697         return ctx;
4698
4699 errout:
4700         free_task_ctx_data(pmu, task_ctx_data);
4701         return ERR_PTR(err);
4702 }
4703
4704 static void perf_event_free_filter(struct perf_event *event);
4705
4706 static void free_event_rcu(struct rcu_head *head)
4707 {
4708         struct perf_event *event;
4709
4710         event = container_of(head, struct perf_event, rcu_head);
4711         if (event->ns)
4712                 put_pid_ns(event->ns);
4713         perf_event_free_filter(event);
4714         kmem_cache_free(perf_event_cache, event);
4715 }
4716
4717 static void ring_buffer_attach(struct perf_event *event,
4718                                struct perf_buffer *rb);
4719
4720 static void detach_sb_event(struct perf_event *event)
4721 {
4722         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4723
4724         raw_spin_lock(&pel->lock);
4725         list_del_rcu(&event->sb_list);
4726         raw_spin_unlock(&pel->lock);
4727 }
4728
4729 static bool is_sb_event(struct perf_event *event)
4730 {
4731         struct perf_event_attr *attr = &event->attr;
4732
4733         if (event->parent)
4734                 return false;
4735
4736         if (event->attach_state & PERF_ATTACH_TASK)
4737                 return false;
4738
4739         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4740             attr->comm || attr->comm_exec ||
4741             attr->task || attr->ksymbol ||
4742             attr->context_switch || attr->text_poke ||
4743             attr->bpf_event)
4744                 return true;
4745         return false;
4746 }
4747
4748 static void unaccount_pmu_sb_event(struct perf_event *event)
4749 {
4750         if (is_sb_event(event))
4751                 detach_sb_event(event);
4752 }
4753
4754 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4755 {
4756         if (event->parent)
4757                 return;
4758
4759         if (is_cgroup_event(event))
4760                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4761 }
4762
4763 #ifdef CONFIG_NO_HZ_FULL
4764 static DEFINE_SPINLOCK(nr_freq_lock);
4765 #endif
4766
4767 static void unaccount_freq_event_nohz(void)
4768 {
4769 #ifdef CONFIG_NO_HZ_FULL
4770         spin_lock(&nr_freq_lock);
4771         if (atomic_dec_and_test(&nr_freq_events))
4772                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4773         spin_unlock(&nr_freq_lock);
4774 #endif
4775 }
4776
4777 static void unaccount_freq_event(void)
4778 {
4779         if (tick_nohz_full_enabled())
4780                 unaccount_freq_event_nohz();
4781         else
4782                 atomic_dec(&nr_freq_events);
4783 }
4784
4785 static void unaccount_event(struct perf_event *event)
4786 {
4787         bool dec = false;
4788
4789         if (event->parent)
4790                 return;
4791
4792         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4793                 dec = true;
4794         if (event->attr.mmap || event->attr.mmap_data)
4795                 atomic_dec(&nr_mmap_events);
4796         if (event->attr.build_id)
4797                 atomic_dec(&nr_build_id_events);
4798         if (event->attr.comm)
4799                 atomic_dec(&nr_comm_events);
4800         if (event->attr.namespaces)
4801                 atomic_dec(&nr_namespaces_events);
4802         if (event->attr.cgroup)
4803                 atomic_dec(&nr_cgroup_events);
4804         if (event->attr.task)
4805                 atomic_dec(&nr_task_events);
4806         if (event->attr.freq)
4807                 unaccount_freq_event();
4808         if (event->attr.context_switch) {
4809                 dec = true;
4810                 atomic_dec(&nr_switch_events);
4811         }
4812         if (is_cgroup_event(event))
4813                 dec = true;
4814         if (has_branch_stack(event))
4815                 dec = true;
4816         if (event->attr.ksymbol)
4817                 atomic_dec(&nr_ksymbol_events);
4818         if (event->attr.bpf_event)
4819                 atomic_dec(&nr_bpf_events);
4820         if (event->attr.text_poke)
4821                 atomic_dec(&nr_text_poke_events);
4822
4823         if (dec) {
4824                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4825                         schedule_delayed_work(&perf_sched_work, HZ);
4826         }
4827
4828         unaccount_event_cpu(event, event->cpu);
4829
4830         unaccount_pmu_sb_event(event);
4831 }
4832
4833 static void perf_sched_delayed(struct work_struct *work)
4834 {
4835         mutex_lock(&perf_sched_mutex);
4836         if (atomic_dec_and_test(&perf_sched_count))
4837                 static_branch_disable(&perf_sched_events);
4838         mutex_unlock(&perf_sched_mutex);
4839 }
4840
4841 /*
4842  * The following implement mutual exclusion of events on "exclusive" pmus
4843  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4844  * at a time, so we disallow creating events that might conflict, namely:
4845  *
4846  *  1) cpu-wide events in the presence of per-task events,
4847  *  2) per-task events in the presence of cpu-wide events,
4848  *  3) two matching events on the same context.
4849  *
4850  * The former two cases are handled in the allocation path (perf_event_alloc(),
4851  * _free_event()), the latter -- before the first perf_install_in_context().
4852  */
4853 static int exclusive_event_init(struct perf_event *event)
4854 {
4855         struct pmu *pmu = event->pmu;
4856
4857         if (!is_exclusive_pmu(pmu))
4858                 return 0;
4859
4860         /*
4861          * Prevent co-existence of per-task and cpu-wide events on the
4862          * same exclusive pmu.
4863          *
4864          * Negative pmu::exclusive_cnt means there are cpu-wide
4865          * events on this "exclusive" pmu, positive means there are
4866          * per-task events.
4867          *
4868          * Since this is called in perf_event_alloc() path, event::ctx
4869          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4870          * to mean "per-task event", because unlike other attach states it
4871          * never gets cleared.
4872          */
4873         if (event->attach_state & PERF_ATTACH_TASK) {
4874                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4875                         return -EBUSY;
4876         } else {
4877                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4878                         return -EBUSY;
4879         }
4880
4881         return 0;
4882 }
4883
4884 static void exclusive_event_destroy(struct perf_event *event)
4885 {
4886         struct pmu *pmu = event->pmu;
4887
4888         if (!is_exclusive_pmu(pmu))
4889                 return;
4890
4891         /* see comment in exclusive_event_init() */
4892         if (event->attach_state & PERF_ATTACH_TASK)
4893                 atomic_dec(&pmu->exclusive_cnt);
4894         else
4895                 atomic_inc(&pmu->exclusive_cnt);
4896 }
4897
4898 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4899 {
4900         if ((e1->pmu == e2->pmu) &&
4901             (e1->cpu == e2->cpu ||
4902              e1->cpu == -1 ||
4903              e2->cpu == -1))
4904                 return true;
4905         return false;
4906 }
4907
4908 static bool exclusive_event_installable(struct perf_event *event,
4909                                         struct perf_event_context *ctx)
4910 {
4911         struct perf_event *iter_event;
4912         struct pmu *pmu = event->pmu;
4913
4914         lockdep_assert_held(&ctx->mutex);
4915
4916         if (!is_exclusive_pmu(pmu))
4917                 return true;
4918
4919         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4920                 if (exclusive_event_match(iter_event, event))
4921                         return false;
4922         }
4923
4924         return true;
4925 }
4926
4927 static void perf_addr_filters_splice(struct perf_event *event,
4928                                        struct list_head *head);
4929
4930 static void _free_event(struct perf_event *event)
4931 {
4932         irq_work_sync(&event->pending);
4933
4934         unaccount_event(event);
4935
4936         security_perf_event_free(event);
4937
4938         if (event->rb) {
4939                 /*
4940                  * Can happen when we close an event with re-directed output.
4941                  *
4942                  * Since we have a 0 refcount, perf_mmap_close() will skip
4943                  * over us; possibly making our ring_buffer_put() the last.
4944                  */
4945                 mutex_lock(&event->mmap_mutex);
4946                 ring_buffer_attach(event, NULL);
4947                 mutex_unlock(&event->mmap_mutex);
4948         }
4949
4950         if (is_cgroup_event(event))
4951                 perf_detach_cgroup(event);
4952
4953         if (!event->parent) {
4954                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4955                         put_callchain_buffers();
4956         }
4957
4958         perf_event_free_bpf_prog(event);
4959         perf_addr_filters_splice(event, NULL);
4960         kfree(event->addr_filter_ranges);
4961
4962         if (event->destroy)
4963                 event->destroy(event);
4964
4965         /*
4966          * Must be after ->destroy(), due to uprobe_perf_close() using
4967          * hw.target.
4968          */
4969         if (event->hw.target)
4970                 put_task_struct(event->hw.target);
4971
4972         /*
4973          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4974          * all task references must be cleaned up.
4975          */
4976         if (event->ctx)
4977                 put_ctx(event->ctx);
4978
4979         exclusive_event_destroy(event);
4980         module_put(event->pmu->module);
4981
4982         call_rcu(&event->rcu_head, free_event_rcu);
4983 }
4984
4985 /*
4986  * Used to free events which have a known refcount of 1, such as in error paths
4987  * where the event isn't exposed yet and inherited events.
4988  */
4989 static void free_event(struct perf_event *event)
4990 {
4991         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4992                                 "unexpected event refcount: %ld; ptr=%p\n",
4993                                 atomic_long_read(&event->refcount), event)) {
4994                 /* leak to avoid use-after-free */
4995                 return;
4996         }
4997
4998         _free_event(event);
4999 }
5000
5001 /*
5002  * Remove user event from the owner task.
5003  */
5004 static void perf_remove_from_owner(struct perf_event *event)
5005 {
5006         struct task_struct *owner;
5007
5008         rcu_read_lock();
5009         /*
5010          * Matches the smp_store_release() in perf_event_exit_task(). If we
5011          * observe !owner it means the list deletion is complete and we can
5012          * indeed free this event, otherwise we need to serialize on
5013          * owner->perf_event_mutex.
5014          */
5015         owner = READ_ONCE(event->owner);
5016         if (owner) {
5017                 /*
5018                  * Since delayed_put_task_struct() also drops the last
5019                  * task reference we can safely take a new reference
5020                  * while holding the rcu_read_lock().
5021                  */
5022                 get_task_struct(owner);
5023         }
5024         rcu_read_unlock();
5025
5026         if (owner) {
5027                 /*
5028                  * If we're here through perf_event_exit_task() we're already
5029                  * holding ctx->mutex which would be an inversion wrt. the
5030                  * normal lock order.
5031                  *
5032                  * However we can safely take this lock because its the child
5033                  * ctx->mutex.
5034                  */
5035                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5036
5037                 /*
5038                  * We have to re-check the event->owner field, if it is cleared
5039                  * we raced with perf_event_exit_task(), acquiring the mutex
5040                  * ensured they're done, and we can proceed with freeing the
5041                  * event.
5042                  */
5043                 if (event->owner) {
5044                         list_del_init(&event->owner_entry);
5045                         smp_store_release(&event->owner, NULL);
5046                 }
5047                 mutex_unlock(&owner->perf_event_mutex);
5048                 put_task_struct(owner);
5049         }
5050 }
5051
5052 static void put_event(struct perf_event *event)
5053 {
5054         if (!atomic_long_dec_and_test(&event->refcount))
5055                 return;
5056
5057         _free_event(event);
5058 }
5059
5060 /*
5061  * Kill an event dead; while event:refcount will preserve the event
5062  * object, it will not preserve its functionality. Once the last 'user'
5063  * gives up the object, we'll destroy the thing.
5064  */
5065 int perf_event_release_kernel(struct perf_event *event)
5066 {
5067         struct perf_event_context *ctx = event->ctx;
5068         struct perf_event *child, *tmp;
5069         LIST_HEAD(free_list);
5070
5071         /*
5072          * If we got here through err_file: fput(event_file); we will not have
5073          * attached to a context yet.
5074          */
5075         if (!ctx) {
5076                 WARN_ON_ONCE(event->attach_state &
5077                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5078                 goto no_ctx;
5079         }
5080
5081         if (!is_kernel_event(event))
5082                 perf_remove_from_owner(event);
5083
5084         ctx = perf_event_ctx_lock(event);
5085         WARN_ON_ONCE(ctx->parent_ctx);
5086         perf_remove_from_context(event, DETACH_GROUP);
5087
5088         raw_spin_lock_irq(&ctx->lock);
5089         /*
5090          * Mark this event as STATE_DEAD, there is no external reference to it
5091          * anymore.
5092          *
5093          * Anybody acquiring event->child_mutex after the below loop _must_
5094          * also see this, most importantly inherit_event() which will avoid
5095          * placing more children on the list.
5096          *
5097          * Thus this guarantees that we will in fact observe and kill _ALL_
5098          * child events.
5099          */
5100         event->state = PERF_EVENT_STATE_DEAD;
5101         raw_spin_unlock_irq(&ctx->lock);
5102
5103         perf_event_ctx_unlock(event, ctx);
5104
5105 again:
5106         mutex_lock(&event->child_mutex);
5107         list_for_each_entry(child, &event->child_list, child_list) {
5108
5109                 /*
5110                  * Cannot change, child events are not migrated, see the
5111                  * comment with perf_event_ctx_lock_nested().
5112                  */
5113                 ctx = READ_ONCE(child->ctx);
5114                 /*
5115                  * Since child_mutex nests inside ctx::mutex, we must jump
5116                  * through hoops. We start by grabbing a reference on the ctx.
5117                  *
5118                  * Since the event cannot get freed while we hold the
5119                  * child_mutex, the context must also exist and have a !0
5120                  * reference count.
5121                  */
5122                 get_ctx(ctx);
5123
5124                 /*
5125                  * Now that we have a ctx ref, we can drop child_mutex, and
5126                  * acquire ctx::mutex without fear of it going away. Then we
5127                  * can re-acquire child_mutex.
5128                  */
5129                 mutex_unlock(&event->child_mutex);
5130                 mutex_lock(&ctx->mutex);
5131                 mutex_lock(&event->child_mutex);
5132
5133                 /*
5134                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5135                  * state, if child is still the first entry, it didn't get freed
5136                  * and we can continue doing so.
5137                  */
5138                 tmp = list_first_entry_or_null(&event->child_list,
5139                                                struct perf_event, child_list);
5140                 if (tmp == child) {
5141                         perf_remove_from_context(child, DETACH_GROUP);
5142                         list_move(&child->child_list, &free_list);
5143                         /*
5144                          * This matches the refcount bump in inherit_event();
5145                          * this can't be the last reference.
5146                          */
5147                         put_event(event);
5148                 }
5149
5150                 mutex_unlock(&event->child_mutex);
5151                 mutex_unlock(&ctx->mutex);
5152                 put_ctx(ctx);
5153                 goto again;
5154         }
5155         mutex_unlock(&event->child_mutex);
5156
5157         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5158                 void *var = &child->ctx->refcount;
5159
5160                 list_del(&child->child_list);
5161                 free_event(child);
5162
5163                 /*
5164                  * Wake any perf_event_free_task() waiting for this event to be
5165                  * freed.
5166                  */
5167                 smp_mb(); /* pairs with wait_var_event() */
5168                 wake_up_var(var);
5169         }
5170
5171 no_ctx:
5172         put_event(event); /* Must be the 'last' reference */
5173         return 0;
5174 }
5175 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5176
5177 /*
5178  * Called when the last reference to the file is gone.
5179  */
5180 static int perf_release(struct inode *inode, struct file *file)
5181 {
5182         perf_event_release_kernel(file->private_data);
5183         return 0;
5184 }
5185
5186 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5187 {
5188         struct perf_event *child;
5189         u64 total = 0;
5190
5191         *enabled = 0;
5192         *running = 0;
5193
5194         mutex_lock(&event->child_mutex);
5195
5196         (void)perf_event_read(event, false);
5197         total += perf_event_count(event);
5198
5199         *enabled += event->total_time_enabled +
5200                         atomic64_read(&event->child_total_time_enabled);
5201         *running += event->total_time_running +
5202                         atomic64_read(&event->child_total_time_running);
5203
5204         list_for_each_entry(child, &event->child_list, child_list) {
5205                 (void)perf_event_read(child, false);
5206                 total += perf_event_count(child);
5207                 *enabled += child->total_time_enabled;
5208                 *running += child->total_time_running;
5209         }
5210         mutex_unlock(&event->child_mutex);
5211
5212         return total;
5213 }
5214
5215 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5216 {
5217         struct perf_event_context *ctx;
5218         u64 count;
5219
5220         ctx = perf_event_ctx_lock(event);
5221         count = __perf_event_read_value(event, enabled, running);
5222         perf_event_ctx_unlock(event, ctx);
5223
5224         return count;
5225 }
5226 EXPORT_SYMBOL_GPL(perf_event_read_value);
5227
5228 static int __perf_read_group_add(struct perf_event *leader,
5229                                         u64 read_format, u64 *values)
5230 {
5231         struct perf_event_context *ctx = leader->ctx;
5232         struct perf_event *sub;
5233         unsigned long flags;
5234         int n = 1; /* skip @nr */
5235         int ret;
5236
5237         ret = perf_event_read(leader, true);
5238         if (ret)
5239                 return ret;
5240
5241         raw_spin_lock_irqsave(&ctx->lock, flags);
5242
5243         /*
5244          * Since we co-schedule groups, {enabled,running} times of siblings
5245          * will be identical to those of the leader, so we only publish one
5246          * set.
5247          */
5248         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5249                 values[n++] += leader->total_time_enabled +
5250                         atomic64_read(&leader->child_total_time_enabled);
5251         }
5252
5253         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5254                 values[n++] += leader->total_time_running +
5255                         atomic64_read(&leader->child_total_time_running);
5256         }
5257
5258         /*
5259          * Write {count,id} tuples for every sibling.
5260          */
5261         values[n++] += perf_event_count(leader);
5262         if (read_format & PERF_FORMAT_ID)
5263                 values[n++] = primary_event_id(leader);
5264
5265         for_each_sibling_event(sub, leader) {
5266                 values[n++] += perf_event_count(sub);
5267                 if (read_format & PERF_FORMAT_ID)
5268                         values[n++] = primary_event_id(sub);
5269         }
5270
5271         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5272         return 0;
5273 }
5274
5275 static int perf_read_group(struct perf_event *event,
5276                                    u64 read_format, char __user *buf)
5277 {
5278         struct perf_event *leader = event->group_leader, *child;
5279         struct perf_event_context *ctx = leader->ctx;
5280         int ret;
5281         u64 *values;
5282
5283         lockdep_assert_held(&ctx->mutex);
5284
5285         values = kzalloc(event->read_size, GFP_KERNEL);
5286         if (!values)
5287                 return -ENOMEM;
5288
5289         values[0] = 1 + leader->nr_siblings;
5290
5291         /*
5292          * By locking the child_mutex of the leader we effectively
5293          * lock the child list of all siblings.. XXX explain how.
5294          */
5295         mutex_lock(&leader->child_mutex);
5296
5297         ret = __perf_read_group_add(leader, read_format, values);
5298         if (ret)
5299                 goto unlock;
5300
5301         list_for_each_entry(child, &leader->child_list, child_list) {
5302                 ret = __perf_read_group_add(child, read_format, values);
5303                 if (ret)
5304                         goto unlock;
5305         }
5306
5307         mutex_unlock(&leader->child_mutex);
5308
5309         ret = event->read_size;
5310         if (copy_to_user(buf, values, event->read_size))
5311                 ret = -EFAULT;
5312         goto out;
5313
5314 unlock:
5315         mutex_unlock(&leader->child_mutex);
5316 out:
5317         kfree(values);
5318         return ret;
5319 }
5320
5321 static int perf_read_one(struct perf_event *event,
5322                                  u64 read_format, char __user *buf)
5323 {
5324         u64 enabled, running;
5325         u64 values[4];
5326         int n = 0;
5327
5328         values[n++] = __perf_event_read_value(event, &enabled, &running);
5329         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5330                 values[n++] = enabled;
5331         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5332                 values[n++] = running;
5333         if (read_format & PERF_FORMAT_ID)
5334                 values[n++] = primary_event_id(event);
5335
5336         if (copy_to_user(buf, values, n * sizeof(u64)))
5337                 return -EFAULT;
5338
5339         return n * sizeof(u64);
5340 }
5341
5342 static bool is_event_hup(struct perf_event *event)
5343 {
5344         bool no_children;
5345
5346         if (event->state > PERF_EVENT_STATE_EXIT)
5347                 return false;
5348
5349         mutex_lock(&event->child_mutex);
5350         no_children = list_empty(&event->child_list);
5351         mutex_unlock(&event->child_mutex);
5352         return no_children;
5353 }
5354
5355 /*
5356  * Read the performance event - simple non blocking version for now
5357  */
5358 static ssize_t
5359 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5360 {
5361         u64 read_format = event->attr.read_format;
5362         int ret;
5363
5364         /*
5365          * Return end-of-file for a read on an event that is in
5366          * error state (i.e. because it was pinned but it couldn't be
5367          * scheduled on to the CPU at some point).
5368          */
5369         if (event->state == PERF_EVENT_STATE_ERROR)
5370                 return 0;
5371
5372         if (count < event->read_size)
5373                 return -ENOSPC;
5374
5375         WARN_ON_ONCE(event->ctx->parent_ctx);
5376         if (read_format & PERF_FORMAT_GROUP)
5377                 ret = perf_read_group(event, read_format, buf);
5378         else
5379                 ret = perf_read_one(event, read_format, buf);
5380
5381         return ret;
5382 }
5383
5384 static ssize_t
5385 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5386 {
5387         struct perf_event *event = file->private_data;
5388         struct perf_event_context *ctx;
5389         int ret;
5390
5391         ret = security_perf_event_read(event);
5392         if (ret)
5393                 return ret;
5394
5395         ctx = perf_event_ctx_lock(event);
5396         ret = __perf_read(event, buf, count);
5397         perf_event_ctx_unlock(event, ctx);
5398
5399         return ret;
5400 }
5401
5402 static __poll_t perf_poll(struct file *file, poll_table *wait)
5403 {
5404         struct perf_event *event = file->private_data;
5405         struct perf_buffer *rb;
5406         __poll_t events = EPOLLHUP;
5407
5408         poll_wait(file, &event->waitq, wait);
5409
5410         if (is_event_hup(event))
5411                 return events;
5412
5413         /*
5414          * Pin the event->rb by taking event->mmap_mutex; otherwise
5415          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5416          */
5417         mutex_lock(&event->mmap_mutex);
5418         rb = event->rb;
5419         if (rb)
5420                 events = atomic_xchg(&rb->poll, 0);
5421         mutex_unlock(&event->mmap_mutex);
5422         return events;
5423 }
5424
5425 static void _perf_event_reset(struct perf_event *event)
5426 {
5427         (void)perf_event_read(event, false);
5428         local64_set(&event->count, 0);
5429         perf_event_update_userpage(event);
5430 }
5431
5432 /* Assume it's not an event with inherit set. */
5433 u64 perf_event_pause(struct perf_event *event, bool reset)
5434 {
5435         struct perf_event_context *ctx;
5436         u64 count;
5437
5438         ctx = perf_event_ctx_lock(event);
5439         WARN_ON_ONCE(event->attr.inherit);
5440         _perf_event_disable(event);
5441         count = local64_read(&event->count);
5442         if (reset)
5443                 local64_set(&event->count, 0);
5444         perf_event_ctx_unlock(event, ctx);
5445
5446         return count;
5447 }
5448 EXPORT_SYMBOL_GPL(perf_event_pause);
5449
5450 /*
5451  * Holding the top-level event's child_mutex means that any
5452  * descendant process that has inherited this event will block
5453  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5454  * task existence requirements of perf_event_enable/disable.
5455  */
5456 static void perf_event_for_each_child(struct perf_event *event,
5457                                         void (*func)(struct perf_event *))
5458 {
5459         struct perf_event *child;
5460
5461         WARN_ON_ONCE(event->ctx->parent_ctx);
5462
5463         mutex_lock(&event->child_mutex);
5464         func(event);
5465         list_for_each_entry(child, &event->child_list, child_list)
5466                 func(child);
5467         mutex_unlock(&event->child_mutex);
5468 }
5469
5470 static void perf_event_for_each(struct perf_event *event,
5471                                   void (*func)(struct perf_event *))
5472 {
5473         struct perf_event_context *ctx = event->ctx;
5474         struct perf_event *sibling;
5475
5476         lockdep_assert_held(&ctx->mutex);
5477
5478         event = event->group_leader;
5479
5480         perf_event_for_each_child(event, func);
5481         for_each_sibling_event(sibling, event)
5482                 perf_event_for_each_child(sibling, func);
5483 }
5484
5485 static void __perf_event_period(struct perf_event *event,
5486                                 struct perf_cpu_context *cpuctx,
5487                                 struct perf_event_context *ctx,
5488                                 void *info)
5489 {
5490         u64 value = *((u64 *)info);
5491         bool active;
5492
5493         if (event->attr.freq) {
5494                 event->attr.sample_freq = value;
5495         } else {
5496                 event->attr.sample_period = value;
5497                 event->hw.sample_period = value;
5498         }
5499
5500         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5501         if (active) {
5502                 perf_pmu_disable(ctx->pmu);
5503                 /*
5504                  * We could be throttled; unthrottle now to avoid the tick
5505                  * trying to unthrottle while we already re-started the event.
5506                  */
5507                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5508                         event->hw.interrupts = 0;
5509                         perf_log_throttle(event, 1);
5510                 }
5511                 event->pmu->stop(event, PERF_EF_UPDATE);
5512         }
5513
5514         local64_set(&event->hw.period_left, 0);
5515
5516         if (active) {
5517                 event->pmu->start(event, PERF_EF_RELOAD);
5518                 perf_pmu_enable(ctx->pmu);
5519         }
5520 }
5521
5522 static int perf_event_check_period(struct perf_event *event, u64 value)
5523 {
5524         return event->pmu->check_period(event, value);
5525 }
5526
5527 static int _perf_event_period(struct perf_event *event, u64 value)
5528 {
5529         if (!is_sampling_event(event))
5530                 return -EINVAL;
5531
5532         if (!value)
5533                 return -EINVAL;
5534
5535         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5536                 return -EINVAL;
5537
5538         if (perf_event_check_period(event, value))
5539                 return -EINVAL;
5540
5541         if (!event->attr.freq && (value & (1ULL << 63)))
5542                 return -EINVAL;
5543
5544         event_function_call(event, __perf_event_period, &value);
5545
5546         return 0;
5547 }
5548
5549 int perf_event_period(struct perf_event *event, u64 value)
5550 {
5551         struct perf_event_context *ctx;
5552         int ret;
5553
5554         ctx = perf_event_ctx_lock(event);
5555         ret = _perf_event_period(event, value);
5556         perf_event_ctx_unlock(event, ctx);
5557
5558         return ret;
5559 }
5560 EXPORT_SYMBOL_GPL(perf_event_period);
5561
5562 static const struct file_operations perf_fops;
5563
5564 static inline int perf_fget_light(int fd, struct fd *p)
5565 {
5566         struct fd f = fdget(fd);
5567         if (!f.file)
5568                 return -EBADF;
5569
5570         if (f.file->f_op != &perf_fops) {
5571                 fdput(f);
5572                 return -EBADF;
5573         }
5574         *p = f;
5575         return 0;
5576 }
5577
5578 static int perf_event_set_output(struct perf_event *event,
5579                                  struct perf_event *output_event);
5580 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5581 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5582                           struct perf_event_attr *attr);
5583
5584 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5585 {
5586         void (*func)(struct perf_event *);
5587         u32 flags = arg;
5588
5589         switch (cmd) {
5590         case PERF_EVENT_IOC_ENABLE:
5591                 func = _perf_event_enable;
5592                 break;
5593         case PERF_EVENT_IOC_DISABLE:
5594                 func = _perf_event_disable;
5595                 break;
5596         case PERF_EVENT_IOC_RESET:
5597                 func = _perf_event_reset;
5598                 break;
5599
5600         case PERF_EVENT_IOC_REFRESH:
5601                 return _perf_event_refresh(event, arg);
5602
5603         case PERF_EVENT_IOC_PERIOD:
5604         {
5605                 u64 value;
5606
5607                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5608                         return -EFAULT;
5609
5610                 return _perf_event_period(event, value);
5611         }
5612         case PERF_EVENT_IOC_ID:
5613         {
5614                 u64 id = primary_event_id(event);
5615
5616                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5617                         return -EFAULT;
5618                 return 0;
5619         }
5620
5621         case PERF_EVENT_IOC_SET_OUTPUT:
5622         {
5623                 int ret;
5624                 if (arg != -1) {
5625                         struct perf_event *output_event;
5626                         struct fd output;
5627                         ret = perf_fget_light(arg, &output);
5628                         if (ret)
5629                                 return ret;
5630                         output_event = output.file->private_data;
5631                         ret = perf_event_set_output(event, output_event);
5632                         fdput(output);
5633                 } else {
5634                         ret = perf_event_set_output(event, NULL);
5635                 }
5636                 return ret;
5637         }
5638
5639         case PERF_EVENT_IOC_SET_FILTER:
5640                 return perf_event_set_filter(event, (void __user *)arg);
5641
5642         case PERF_EVENT_IOC_SET_BPF:
5643         {
5644                 struct bpf_prog *prog;
5645                 int err;
5646
5647                 prog = bpf_prog_get(arg);
5648                 if (IS_ERR(prog))
5649                         return PTR_ERR(prog);
5650
5651                 err = perf_event_set_bpf_prog(event, prog, 0);
5652                 if (err) {
5653                         bpf_prog_put(prog);
5654                         return err;
5655                 }
5656
5657                 return 0;
5658         }
5659
5660         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5661                 struct perf_buffer *rb;
5662
5663                 rcu_read_lock();
5664                 rb = rcu_dereference(event->rb);
5665                 if (!rb || !rb->nr_pages) {
5666                         rcu_read_unlock();
5667                         return -EINVAL;
5668                 }
5669                 rb_toggle_paused(rb, !!arg);
5670                 rcu_read_unlock();
5671                 return 0;
5672         }
5673
5674         case PERF_EVENT_IOC_QUERY_BPF:
5675                 return perf_event_query_prog_array(event, (void __user *)arg);
5676
5677         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5678                 struct perf_event_attr new_attr;
5679                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5680                                          &new_attr);
5681
5682                 if (err)
5683                         return err;
5684
5685                 return perf_event_modify_attr(event,  &new_attr);
5686         }
5687         default:
5688                 return -ENOTTY;
5689         }
5690
5691         if (flags & PERF_IOC_FLAG_GROUP)
5692                 perf_event_for_each(event, func);
5693         else
5694                 perf_event_for_each_child(event, func);
5695
5696         return 0;
5697 }
5698
5699 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5700 {
5701         struct perf_event *event = file->private_data;
5702         struct perf_event_context *ctx;
5703         long ret;
5704
5705         /* Treat ioctl like writes as it is likely a mutating operation. */
5706         ret = security_perf_event_write(event);
5707         if (ret)
5708                 return ret;
5709
5710         ctx = perf_event_ctx_lock(event);
5711         ret = _perf_ioctl(event, cmd, arg);
5712         perf_event_ctx_unlock(event, ctx);
5713
5714         return ret;
5715 }
5716
5717 #ifdef CONFIG_COMPAT
5718 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5719                                 unsigned long arg)
5720 {
5721         switch (_IOC_NR(cmd)) {
5722         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5723         case _IOC_NR(PERF_EVENT_IOC_ID):
5724         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5725         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5726                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5727                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5728                         cmd &= ~IOCSIZE_MASK;
5729                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5730                 }
5731                 break;
5732         }
5733         return perf_ioctl(file, cmd, arg);
5734 }
5735 #else
5736 # define perf_compat_ioctl NULL
5737 #endif
5738
5739 int perf_event_task_enable(void)
5740 {
5741         struct perf_event_context *ctx;
5742         struct perf_event *event;
5743
5744         mutex_lock(&current->perf_event_mutex);
5745         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5746                 ctx = perf_event_ctx_lock(event);
5747                 perf_event_for_each_child(event, _perf_event_enable);
5748                 perf_event_ctx_unlock(event, ctx);
5749         }
5750         mutex_unlock(&current->perf_event_mutex);
5751
5752         return 0;
5753 }
5754
5755 int perf_event_task_disable(void)
5756 {
5757         struct perf_event_context *ctx;
5758         struct perf_event *event;
5759
5760         mutex_lock(&current->perf_event_mutex);
5761         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5762                 ctx = perf_event_ctx_lock(event);
5763                 perf_event_for_each_child(event, _perf_event_disable);
5764                 perf_event_ctx_unlock(event, ctx);
5765         }
5766         mutex_unlock(&current->perf_event_mutex);
5767
5768         return 0;
5769 }
5770
5771 static int perf_event_index(struct perf_event *event)
5772 {
5773         if (event->hw.state & PERF_HES_STOPPED)
5774                 return 0;
5775
5776         if (event->state != PERF_EVENT_STATE_ACTIVE)
5777                 return 0;
5778
5779         return event->pmu->event_idx(event);
5780 }
5781
5782 static void perf_event_init_userpage(struct perf_event *event)
5783 {
5784         struct perf_event_mmap_page *userpg;
5785         struct perf_buffer *rb;
5786
5787         rcu_read_lock();
5788         rb = rcu_dereference(event->rb);
5789         if (!rb)
5790                 goto unlock;
5791
5792         userpg = rb->user_page;
5793
5794         /* Allow new userspace to detect that bit 0 is deprecated */
5795         userpg->cap_bit0_is_deprecated = 1;
5796         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5797         userpg->data_offset = PAGE_SIZE;
5798         userpg->data_size = perf_data_size(rb);
5799
5800 unlock:
5801         rcu_read_unlock();
5802 }
5803
5804 void __weak arch_perf_update_userpage(
5805         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5806 {
5807 }
5808
5809 /*
5810  * Callers need to ensure there can be no nesting of this function, otherwise
5811  * the seqlock logic goes bad. We can not serialize this because the arch
5812  * code calls this from NMI context.
5813  */
5814 void perf_event_update_userpage(struct perf_event *event)
5815 {
5816         struct perf_event_mmap_page *userpg;
5817         struct perf_buffer *rb;
5818         u64 enabled, running, now;
5819
5820         rcu_read_lock();
5821         rb = rcu_dereference(event->rb);
5822         if (!rb)
5823                 goto unlock;
5824
5825         /*
5826          * compute total_time_enabled, total_time_running
5827          * based on snapshot values taken when the event
5828          * was last scheduled in.
5829          *
5830          * we cannot simply called update_context_time()
5831          * because of locking issue as we can be called in
5832          * NMI context
5833          */
5834         calc_timer_values(event, &now, &enabled, &running);
5835
5836         userpg = rb->user_page;
5837         /*
5838          * Disable preemption to guarantee consistent time stamps are stored to
5839          * the user page.
5840          */
5841         preempt_disable();
5842         ++userpg->lock;
5843         barrier();
5844         userpg->index = perf_event_index(event);
5845         userpg->offset = perf_event_count(event);
5846         if (userpg->index)
5847                 userpg->offset -= local64_read(&event->hw.prev_count);
5848
5849         userpg->time_enabled = enabled +
5850                         atomic64_read(&event->child_total_time_enabled);
5851
5852         userpg->time_running = running +
5853                         atomic64_read(&event->child_total_time_running);
5854
5855         arch_perf_update_userpage(event, userpg, now);
5856
5857         barrier();
5858         ++userpg->lock;
5859         preempt_enable();
5860 unlock:
5861         rcu_read_unlock();
5862 }
5863 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5864
5865 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5866 {
5867         struct perf_event *event = vmf->vma->vm_file->private_data;
5868         struct perf_buffer *rb;
5869         vm_fault_t ret = VM_FAULT_SIGBUS;
5870
5871         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5872                 if (vmf->pgoff == 0)
5873                         ret = 0;
5874                 return ret;
5875         }
5876
5877         rcu_read_lock();
5878         rb = rcu_dereference(event->rb);
5879         if (!rb)
5880                 goto unlock;
5881
5882         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5883                 goto unlock;
5884
5885         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5886         if (!vmf->page)
5887                 goto unlock;
5888
5889         get_page(vmf->page);
5890         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5891         vmf->page->index   = vmf->pgoff;
5892
5893         ret = 0;
5894 unlock:
5895         rcu_read_unlock();
5896
5897         return ret;
5898 }
5899
5900 static void ring_buffer_attach(struct perf_event *event,
5901                                struct perf_buffer *rb)
5902 {
5903         struct perf_buffer *old_rb = NULL;
5904         unsigned long flags;
5905
5906         WARN_ON_ONCE(event->parent);
5907
5908         if (event->rb) {
5909                 /*
5910                  * Should be impossible, we set this when removing
5911                  * event->rb_entry and wait/clear when adding event->rb_entry.
5912                  */
5913                 WARN_ON_ONCE(event->rcu_pending);
5914
5915                 old_rb = event->rb;
5916                 spin_lock_irqsave(&old_rb->event_lock, flags);
5917                 list_del_rcu(&event->rb_entry);
5918                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5919
5920                 event->rcu_batches = get_state_synchronize_rcu();
5921                 event->rcu_pending = 1;
5922         }
5923
5924         if (rb) {
5925                 if (event->rcu_pending) {
5926                         cond_synchronize_rcu(event->rcu_batches);
5927                         event->rcu_pending = 0;
5928                 }
5929
5930                 spin_lock_irqsave(&rb->event_lock, flags);
5931                 list_add_rcu(&event->rb_entry, &rb->event_list);
5932                 spin_unlock_irqrestore(&rb->event_lock, flags);
5933         }
5934
5935         /*
5936          * Avoid racing with perf_mmap_close(AUX): stop the event
5937          * before swizzling the event::rb pointer; if it's getting
5938          * unmapped, its aux_mmap_count will be 0 and it won't
5939          * restart. See the comment in __perf_pmu_output_stop().
5940          *
5941          * Data will inevitably be lost when set_output is done in
5942          * mid-air, but then again, whoever does it like this is
5943          * not in for the data anyway.
5944          */
5945         if (has_aux(event))
5946                 perf_event_stop(event, 0);
5947
5948         rcu_assign_pointer(event->rb, rb);
5949
5950         if (old_rb) {
5951                 ring_buffer_put(old_rb);
5952                 /*
5953                  * Since we detached before setting the new rb, so that we
5954                  * could attach the new rb, we could have missed a wakeup.
5955                  * Provide it now.
5956                  */
5957                 wake_up_all(&event->waitq);
5958         }
5959 }
5960
5961 static void ring_buffer_wakeup(struct perf_event *event)
5962 {
5963         struct perf_buffer *rb;
5964
5965         if (event->parent)
5966                 event = event->parent;
5967
5968         rcu_read_lock();
5969         rb = rcu_dereference(event->rb);
5970         if (rb) {
5971                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5972                         wake_up_all(&event->waitq);
5973         }
5974         rcu_read_unlock();
5975 }
5976
5977 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5978 {
5979         struct perf_buffer *rb;
5980
5981         if (event->parent)
5982                 event = event->parent;
5983
5984         rcu_read_lock();
5985         rb = rcu_dereference(event->rb);
5986         if (rb) {
5987                 if (!refcount_inc_not_zero(&rb->refcount))
5988                         rb = NULL;
5989         }
5990         rcu_read_unlock();
5991
5992         return rb;
5993 }
5994
5995 void ring_buffer_put(struct perf_buffer *rb)
5996 {
5997         if (!refcount_dec_and_test(&rb->refcount))
5998                 return;
5999
6000         WARN_ON_ONCE(!list_empty(&rb->event_list));
6001
6002         call_rcu(&rb->rcu_head, rb_free_rcu);
6003 }
6004
6005 static void perf_mmap_open(struct vm_area_struct *vma)
6006 {
6007         struct perf_event *event = vma->vm_file->private_data;
6008
6009         atomic_inc(&event->mmap_count);
6010         atomic_inc(&event->rb->mmap_count);
6011
6012         if (vma->vm_pgoff)
6013                 atomic_inc(&event->rb->aux_mmap_count);
6014
6015         if (event->pmu->event_mapped)
6016                 event->pmu->event_mapped(event, vma->vm_mm);
6017 }
6018
6019 static void perf_pmu_output_stop(struct perf_event *event);
6020
6021 /*
6022  * A buffer can be mmap()ed multiple times; either directly through the same
6023  * event, or through other events by use of perf_event_set_output().
6024  *
6025  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6026  * the buffer here, where we still have a VM context. This means we need
6027  * to detach all events redirecting to us.
6028  */
6029 static void perf_mmap_close(struct vm_area_struct *vma)
6030 {
6031         struct perf_event *event = vma->vm_file->private_data;
6032         struct perf_buffer *rb = ring_buffer_get(event);
6033         struct user_struct *mmap_user = rb->mmap_user;
6034         int mmap_locked = rb->mmap_locked;
6035         unsigned long size = perf_data_size(rb);
6036         bool detach_rest = false;
6037
6038         if (event->pmu->event_unmapped)
6039                 event->pmu->event_unmapped(event, vma->vm_mm);
6040
6041         /*
6042          * rb->aux_mmap_count will always drop before rb->mmap_count and
6043          * event->mmap_count, so it is ok to use event->mmap_mutex to
6044          * serialize with perf_mmap here.
6045          */
6046         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6047             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6048                 /*
6049                  * Stop all AUX events that are writing to this buffer,
6050                  * so that we can free its AUX pages and corresponding PMU
6051                  * data. Note that after rb::aux_mmap_count dropped to zero,
6052                  * they won't start any more (see perf_aux_output_begin()).
6053                  */
6054                 perf_pmu_output_stop(event);
6055
6056                 /* now it's safe to free the pages */
6057                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6058                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6059
6060                 /* this has to be the last one */
6061                 rb_free_aux(rb);
6062                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6063
6064                 mutex_unlock(&event->mmap_mutex);
6065         }
6066
6067         if (atomic_dec_and_test(&rb->mmap_count))
6068                 detach_rest = true;
6069
6070         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6071                 goto out_put;
6072
6073         ring_buffer_attach(event, NULL);
6074         mutex_unlock(&event->mmap_mutex);
6075
6076         /* If there's still other mmap()s of this buffer, we're done. */
6077         if (!detach_rest)
6078                 goto out_put;
6079
6080         /*
6081          * No other mmap()s, detach from all other events that might redirect
6082          * into the now unreachable buffer. Somewhat complicated by the
6083          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6084          */
6085 again:
6086         rcu_read_lock();
6087         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6088                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6089                         /*
6090                          * This event is en-route to free_event() which will
6091                          * detach it and remove it from the list.
6092                          */
6093                         continue;
6094                 }
6095                 rcu_read_unlock();
6096
6097                 mutex_lock(&event->mmap_mutex);
6098                 /*
6099                  * Check we didn't race with perf_event_set_output() which can
6100                  * swizzle the rb from under us while we were waiting to
6101                  * acquire mmap_mutex.
6102                  *
6103                  * If we find a different rb; ignore this event, a next
6104                  * iteration will no longer find it on the list. We have to
6105                  * still restart the iteration to make sure we're not now
6106                  * iterating the wrong list.
6107                  */
6108                 if (event->rb == rb)
6109                         ring_buffer_attach(event, NULL);
6110
6111                 mutex_unlock(&event->mmap_mutex);
6112                 put_event(event);
6113
6114                 /*
6115                  * Restart the iteration; either we're on the wrong list or
6116                  * destroyed its integrity by doing a deletion.
6117                  */
6118                 goto again;
6119         }
6120         rcu_read_unlock();
6121
6122         /*
6123          * It could be there's still a few 0-ref events on the list; they'll
6124          * get cleaned up by free_event() -- they'll also still have their
6125          * ref on the rb and will free it whenever they are done with it.
6126          *
6127          * Aside from that, this buffer is 'fully' detached and unmapped,
6128          * undo the VM accounting.
6129          */
6130
6131         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6132                         &mmap_user->locked_vm);
6133         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6134         free_uid(mmap_user);
6135
6136 out_put:
6137         ring_buffer_put(rb); /* could be last */
6138 }
6139
6140 static const struct vm_operations_struct perf_mmap_vmops = {
6141         .open           = perf_mmap_open,
6142         .close          = perf_mmap_close, /* non mergeable */
6143         .fault          = perf_mmap_fault,
6144         .page_mkwrite   = perf_mmap_fault,
6145 };
6146
6147 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6148 {
6149         struct perf_event *event = file->private_data;
6150         unsigned long user_locked, user_lock_limit;
6151         struct user_struct *user = current_user();
6152         struct perf_buffer *rb = NULL;
6153         unsigned long locked, lock_limit;
6154         unsigned long vma_size;
6155         unsigned long nr_pages;
6156         long user_extra = 0, extra = 0;
6157         int ret = 0, flags = 0;
6158
6159         /*
6160          * Don't allow mmap() of inherited per-task counters. This would
6161          * create a performance issue due to all children writing to the
6162          * same rb.
6163          */
6164         if (event->cpu == -1 && event->attr.inherit)
6165                 return -EINVAL;
6166
6167         if (!(vma->vm_flags & VM_SHARED))
6168                 return -EINVAL;
6169
6170         ret = security_perf_event_read(event);
6171         if (ret)
6172                 return ret;
6173
6174         vma_size = vma->vm_end - vma->vm_start;
6175
6176         if (vma->vm_pgoff == 0) {
6177                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6178         } else {
6179                 /*
6180                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6181                  * mapped, all subsequent mappings should have the same size
6182                  * and offset. Must be above the normal perf buffer.
6183                  */
6184                 u64 aux_offset, aux_size;
6185
6186                 if (!event->rb)
6187                         return -EINVAL;
6188
6189                 nr_pages = vma_size / PAGE_SIZE;
6190
6191                 mutex_lock(&event->mmap_mutex);
6192                 ret = -EINVAL;
6193
6194                 rb = event->rb;
6195                 if (!rb)
6196                         goto aux_unlock;
6197
6198                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6199                 aux_size = READ_ONCE(rb->user_page->aux_size);
6200
6201                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6202                         goto aux_unlock;
6203
6204                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6205                         goto aux_unlock;
6206
6207                 /* already mapped with a different offset */
6208                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6209                         goto aux_unlock;
6210
6211                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6212                         goto aux_unlock;
6213
6214                 /* already mapped with a different size */
6215                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6216                         goto aux_unlock;
6217
6218                 if (!is_power_of_2(nr_pages))
6219                         goto aux_unlock;
6220
6221                 if (!atomic_inc_not_zero(&rb->mmap_count))
6222                         goto aux_unlock;
6223
6224                 if (rb_has_aux(rb)) {
6225                         atomic_inc(&rb->aux_mmap_count);
6226                         ret = 0;
6227                         goto unlock;
6228                 }
6229
6230                 atomic_set(&rb->aux_mmap_count, 1);
6231                 user_extra = nr_pages;
6232
6233                 goto accounting;
6234         }
6235
6236         /*
6237          * If we have rb pages ensure they're a power-of-two number, so we
6238          * can do bitmasks instead of modulo.
6239          */
6240         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6241                 return -EINVAL;
6242
6243         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6244                 return -EINVAL;
6245
6246         WARN_ON_ONCE(event->ctx->parent_ctx);
6247 again:
6248         mutex_lock(&event->mmap_mutex);
6249         if (event->rb) {
6250                 if (data_page_nr(event->rb) != nr_pages) {
6251                         ret = -EINVAL;
6252                         goto unlock;
6253                 }
6254
6255                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6256                         /*
6257                          * Raced against perf_mmap_close() through
6258                          * perf_event_set_output(). Try again, hope for better
6259                          * luck.
6260                          */
6261                         mutex_unlock(&event->mmap_mutex);
6262                         goto again;
6263                 }
6264
6265                 goto unlock;
6266         }
6267
6268         user_extra = nr_pages + 1;
6269
6270 accounting:
6271         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6272
6273         /*
6274          * Increase the limit linearly with more CPUs:
6275          */
6276         user_lock_limit *= num_online_cpus();
6277
6278         user_locked = atomic_long_read(&user->locked_vm);
6279
6280         /*
6281          * sysctl_perf_event_mlock may have changed, so that
6282          *     user->locked_vm > user_lock_limit
6283          */
6284         if (user_locked > user_lock_limit)
6285                 user_locked = user_lock_limit;
6286         user_locked += user_extra;
6287
6288         if (user_locked > user_lock_limit) {
6289                 /*
6290                  * charge locked_vm until it hits user_lock_limit;
6291                  * charge the rest from pinned_vm
6292                  */
6293                 extra = user_locked - user_lock_limit;
6294                 user_extra -= extra;
6295         }
6296
6297         lock_limit = rlimit(RLIMIT_MEMLOCK);
6298         lock_limit >>= PAGE_SHIFT;
6299         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6300
6301         if ((locked > lock_limit) && perf_is_paranoid() &&
6302                 !capable(CAP_IPC_LOCK)) {
6303                 ret = -EPERM;
6304                 goto unlock;
6305         }
6306
6307         WARN_ON(!rb && event->rb);
6308
6309         if (vma->vm_flags & VM_WRITE)
6310                 flags |= RING_BUFFER_WRITABLE;
6311
6312         if (!rb) {
6313                 rb = rb_alloc(nr_pages,
6314                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6315                               event->cpu, flags);
6316
6317                 if (!rb) {
6318                         ret = -ENOMEM;
6319                         goto unlock;
6320                 }
6321
6322                 atomic_set(&rb->mmap_count, 1);
6323                 rb->mmap_user = get_current_user();
6324                 rb->mmap_locked = extra;
6325
6326                 ring_buffer_attach(event, rb);
6327
6328                 perf_event_update_time(event);
6329                 perf_event_init_userpage(event);
6330                 perf_event_update_userpage(event);
6331         } else {
6332                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6333                                    event->attr.aux_watermark, flags);
6334                 if (!ret)
6335                         rb->aux_mmap_locked = extra;
6336         }
6337
6338 unlock:
6339         if (!ret) {
6340                 atomic_long_add(user_extra, &user->locked_vm);
6341                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6342
6343                 atomic_inc(&event->mmap_count);
6344         } else if (rb) {
6345                 atomic_dec(&rb->mmap_count);
6346         }
6347 aux_unlock:
6348         mutex_unlock(&event->mmap_mutex);
6349
6350         /*
6351          * Since pinned accounting is per vm we cannot allow fork() to copy our
6352          * vma.
6353          */
6354         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6355         vma->vm_ops = &perf_mmap_vmops;
6356
6357         if (event->pmu->event_mapped)
6358                 event->pmu->event_mapped(event, vma->vm_mm);
6359
6360         return ret;
6361 }
6362
6363 static int perf_fasync(int fd, struct file *filp, int on)
6364 {
6365         struct inode *inode = file_inode(filp);
6366         struct perf_event *event = filp->private_data;
6367         int retval;
6368
6369         inode_lock(inode);
6370         retval = fasync_helper(fd, filp, on, &event->fasync);
6371         inode_unlock(inode);
6372
6373         if (retval < 0)
6374                 return retval;
6375
6376         return 0;
6377 }
6378
6379 static const struct file_operations perf_fops = {
6380         .llseek                 = no_llseek,
6381         .release                = perf_release,
6382         .read                   = perf_read,
6383         .poll                   = perf_poll,
6384         .unlocked_ioctl         = perf_ioctl,
6385         .compat_ioctl           = perf_compat_ioctl,
6386         .mmap                   = perf_mmap,
6387         .fasync                 = perf_fasync,
6388 };
6389
6390 /*
6391  * Perf event wakeup
6392  *
6393  * If there's data, ensure we set the poll() state and publish everything
6394  * to user-space before waking everybody up.
6395  */
6396
6397 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6398 {
6399         /* only the parent has fasync state */
6400         if (event->parent)
6401                 event = event->parent;
6402         return &event->fasync;
6403 }
6404
6405 void perf_event_wakeup(struct perf_event *event)
6406 {
6407         ring_buffer_wakeup(event);
6408
6409         if (event->pending_kill) {
6410                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6411                 event->pending_kill = 0;
6412         }
6413 }
6414
6415 static void perf_sigtrap(struct perf_event *event)
6416 {
6417         /*
6418          * We'd expect this to only occur if the irq_work is delayed and either
6419          * ctx->task or current has changed in the meantime. This can be the
6420          * case on architectures that do not implement arch_irq_work_raise().
6421          */
6422         if (WARN_ON_ONCE(event->ctx->task != current))
6423                 return;
6424
6425         /*
6426          * perf_pending_event() can race with the task exiting.
6427          */
6428         if (current->flags & PF_EXITING)
6429                 return;
6430
6431         send_sig_perf((void __user *)event->pending_addr,
6432                       event->attr.type, event->attr.sig_data);
6433 }
6434
6435 static void perf_pending_event_disable(struct perf_event *event)
6436 {
6437         int cpu = READ_ONCE(event->pending_disable);
6438
6439         if (cpu < 0)
6440                 return;
6441
6442         if (cpu == smp_processor_id()) {
6443                 WRITE_ONCE(event->pending_disable, -1);
6444
6445                 if (event->attr.sigtrap) {
6446                         perf_sigtrap(event);
6447                         atomic_set_release(&event->event_limit, 1); /* rearm event */
6448                         return;
6449                 }
6450
6451                 perf_event_disable_local(event);
6452                 return;
6453         }
6454
6455         /*
6456          *  CPU-A                       CPU-B
6457          *
6458          *  perf_event_disable_inatomic()
6459          *    @pending_disable = CPU-A;
6460          *    irq_work_queue();
6461          *
6462          *  sched-out
6463          *    @pending_disable = -1;
6464          *
6465          *                              sched-in
6466          *                              perf_event_disable_inatomic()
6467          *                                @pending_disable = CPU-B;
6468          *                                irq_work_queue(); // FAILS
6469          *
6470          *  irq_work_run()
6471          *    perf_pending_event()
6472          *
6473          * But the event runs on CPU-B and wants disabling there.
6474          */
6475         irq_work_queue_on(&event->pending, cpu);
6476 }
6477
6478 static void perf_pending_event(struct irq_work *entry)
6479 {
6480         struct perf_event *event = container_of(entry, struct perf_event, pending);
6481         int rctx;
6482
6483         rctx = perf_swevent_get_recursion_context();
6484         /*
6485          * If we 'fail' here, that's OK, it means recursion is already disabled
6486          * and we won't recurse 'further'.
6487          */
6488
6489         perf_pending_event_disable(event);
6490
6491         if (event->pending_wakeup) {
6492                 event->pending_wakeup = 0;
6493                 perf_event_wakeup(event);
6494         }
6495
6496         if (rctx >= 0)
6497                 perf_swevent_put_recursion_context(rctx);
6498 }
6499
6500 #ifdef CONFIG_GUEST_PERF_EVENTS
6501 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6502
6503 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6504 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6505 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6506
6507 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6508 {
6509         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6510                 return;
6511
6512         rcu_assign_pointer(perf_guest_cbs, cbs);
6513         static_call_update(__perf_guest_state, cbs->state);
6514         static_call_update(__perf_guest_get_ip, cbs->get_ip);
6515
6516         /* Implementing ->handle_intel_pt_intr is optional. */
6517         if (cbs->handle_intel_pt_intr)
6518                 static_call_update(__perf_guest_handle_intel_pt_intr,
6519                                    cbs->handle_intel_pt_intr);
6520 }
6521 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6522
6523 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6524 {
6525         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6526                 return;
6527
6528         rcu_assign_pointer(perf_guest_cbs, NULL);
6529         static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6530         static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6531         static_call_update(__perf_guest_handle_intel_pt_intr,
6532                            (void *)&__static_call_return0);
6533         synchronize_rcu();
6534 }
6535 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6536 #endif
6537
6538 static void
6539 perf_output_sample_regs(struct perf_output_handle *handle,
6540                         struct pt_regs *regs, u64 mask)
6541 {
6542         int bit;
6543         DECLARE_BITMAP(_mask, 64);
6544
6545         bitmap_from_u64(_mask, mask);
6546         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6547                 u64 val;
6548
6549                 val = perf_reg_value(regs, bit);
6550                 perf_output_put(handle, val);
6551         }
6552 }
6553
6554 static void perf_sample_regs_user(struct perf_regs *regs_user,
6555                                   struct pt_regs *regs)
6556 {
6557         if (user_mode(regs)) {
6558                 regs_user->abi = perf_reg_abi(current);
6559                 regs_user->regs = regs;
6560         } else if (!(current->flags & PF_KTHREAD)) {
6561                 perf_get_regs_user(regs_user, regs);
6562         } else {
6563                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6564                 regs_user->regs = NULL;
6565         }
6566 }
6567
6568 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6569                                   struct pt_regs *regs)
6570 {
6571         regs_intr->regs = regs;
6572         regs_intr->abi  = perf_reg_abi(current);
6573 }
6574
6575
6576 /*
6577  * Get remaining task size from user stack pointer.
6578  *
6579  * It'd be better to take stack vma map and limit this more
6580  * precisely, but there's no way to get it safely under interrupt,
6581  * so using TASK_SIZE as limit.
6582  */
6583 static u64 perf_ustack_task_size(struct pt_regs *regs)
6584 {
6585         unsigned long addr = perf_user_stack_pointer(regs);
6586
6587         if (!addr || addr >= TASK_SIZE)
6588                 return 0;
6589
6590         return TASK_SIZE - addr;
6591 }
6592
6593 static u16
6594 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6595                         struct pt_regs *regs)
6596 {
6597         u64 task_size;
6598
6599         /* No regs, no stack pointer, no dump. */
6600         if (!regs)
6601                 return 0;
6602
6603         /*
6604          * Check if we fit in with the requested stack size into the:
6605          * - TASK_SIZE
6606          *   If we don't, we limit the size to the TASK_SIZE.
6607          *
6608          * - remaining sample size
6609          *   If we don't, we customize the stack size to
6610          *   fit in to the remaining sample size.
6611          */
6612
6613         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6614         stack_size = min(stack_size, (u16) task_size);
6615
6616         /* Current header size plus static size and dynamic size. */
6617         header_size += 2 * sizeof(u64);
6618
6619         /* Do we fit in with the current stack dump size? */
6620         if ((u16) (header_size + stack_size) < header_size) {
6621                 /*
6622                  * If we overflow the maximum size for the sample,
6623                  * we customize the stack dump size to fit in.
6624                  */
6625                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6626                 stack_size = round_up(stack_size, sizeof(u64));
6627         }
6628
6629         return stack_size;
6630 }
6631
6632 static void
6633 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6634                           struct pt_regs *regs)
6635 {
6636         /* Case of a kernel thread, nothing to dump */
6637         if (!regs) {
6638                 u64 size = 0;
6639                 perf_output_put(handle, size);
6640         } else {
6641                 unsigned long sp;
6642                 unsigned int rem;
6643                 u64 dyn_size;
6644
6645                 /*
6646                  * We dump:
6647                  * static size
6648                  *   - the size requested by user or the best one we can fit
6649                  *     in to the sample max size
6650                  * data
6651                  *   - user stack dump data
6652                  * dynamic size
6653                  *   - the actual dumped size
6654                  */
6655
6656                 /* Static size. */
6657                 perf_output_put(handle, dump_size);
6658
6659                 /* Data. */
6660                 sp = perf_user_stack_pointer(regs);
6661                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6662                 dyn_size = dump_size - rem;
6663
6664                 perf_output_skip(handle, rem);
6665
6666                 /* Dynamic size. */
6667                 perf_output_put(handle, dyn_size);
6668         }
6669 }
6670
6671 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6672                                           struct perf_sample_data *data,
6673                                           size_t size)
6674 {
6675         struct perf_event *sampler = event->aux_event;
6676         struct perf_buffer *rb;
6677
6678         data->aux_size = 0;
6679
6680         if (!sampler)
6681                 goto out;
6682
6683         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6684                 goto out;
6685
6686         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6687                 goto out;
6688
6689         rb = ring_buffer_get(sampler);
6690         if (!rb)
6691                 goto out;
6692
6693         /*
6694          * If this is an NMI hit inside sampling code, don't take
6695          * the sample. See also perf_aux_sample_output().
6696          */
6697         if (READ_ONCE(rb->aux_in_sampling)) {
6698                 data->aux_size = 0;
6699         } else {
6700                 size = min_t(size_t, size, perf_aux_size(rb));
6701                 data->aux_size = ALIGN(size, sizeof(u64));
6702         }
6703         ring_buffer_put(rb);
6704
6705 out:
6706         return data->aux_size;
6707 }
6708
6709 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6710                                  struct perf_event *event,
6711                                  struct perf_output_handle *handle,
6712                                  unsigned long size)
6713 {
6714         unsigned long flags;
6715         long ret;
6716
6717         /*
6718          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6719          * paths. If we start calling them in NMI context, they may race with
6720          * the IRQ ones, that is, for example, re-starting an event that's just
6721          * been stopped, which is why we're using a separate callback that
6722          * doesn't change the event state.
6723          *
6724          * IRQs need to be disabled to prevent IPIs from racing with us.
6725          */
6726         local_irq_save(flags);
6727         /*
6728          * Guard against NMI hits inside the critical section;
6729          * see also perf_prepare_sample_aux().
6730          */
6731         WRITE_ONCE(rb->aux_in_sampling, 1);
6732         barrier();
6733
6734         ret = event->pmu->snapshot_aux(event, handle, size);
6735
6736         barrier();
6737         WRITE_ONCE(rb->aux_in_sampling, 0);
6738         local_irq_restore(flags);
6739
6740         return ret;
6741 }
6742
6743 static void perf_aux_sample_output(struct perf_event *event,
6744                                    struct perf_output_handle *handle,
6745                                    struct perf_sample_data *data)
6746 {
6747         struct perf_event *sampler = event->aux_event;
6748         struct perf_buffer *rb;
6749         unsigned long pad;
6750         long size;
6751
6752         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6753                 return;
6754
6755         rb = ring_buffer_get(sampler);
6756         if (!rb)
6757                 return;
6758
6759         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6760
6761         /*
6762          * An error here means that perf_output_copy() failed (returned a
6763          * non-zero surplus that it didn't copy), which in its current
6764          * enlightened implementation is not possible. If that changes, we'd
6765          * like to know.
6766          */
6767         if (WARN_ON_ONCE(size < 0))
6768                 goto out_put;
6769
6770         /*
6771          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6772          * perf_prepare_sample_aux(), so should not be more than that.
6773          */
6774         pad = data->aux_size - size;
6775         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6776                 pad = 8;
6777
6778         if (pad) {
6779                 u64 zero = 0;
6780                 perf_output_copy(handle, &zero, pad);
6781         }
6782
6783 out_put:
6784         ring_buffer_put(rb);
6785 }
6786
6787 static void __perf_event_header__init_id(struct perf_event_header *header,
6788                                          struct perf_sample_data *data,
6789                                          struct perf_event *event)
6790 {
6791         u64 sample_type = event->attr.sample_type;
6792
6793         data->type = sample_type;
6794         header->size += event->id_header_size;
6795
6796         if (sample_type & PERF_SAMPLE_TID) {
6797                 /* namespace issues */
6798                 data->tid_entry.pid = perf_event_pid(event, current);
6799                 data->tid_entry.tid = perf_event_tid(event, current);
6800         }
6801
6802         if (sample_type & PERF_SAMPLE_TIME)
6803                 data->time = perf_event_clock(event);
6804
6805         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6806                 data->id = primary_event_id(event);
6807
6808         if (sample_type & PERF_SAMPLE_STREAM_ID)
6809                 data->stream_id = event->id;
6810
6811         if (sample_type & PERF_SAMPLE_CPU) {
6812                 data->cpu_entry.cpu      = raw_smp_processor_id();
6813                 data->cpu_entry.reserved = 0;
6814         }
6815 }
6816
6817 void perf_event_header__init_id(struct perf_event_header *header,
6818                                 struct perf_sample_data *data,
6819                                 struct perf_event *event)
6820 {
6821         if (event->attr.sample_id_all)
6822                 __perf_event_header__init_id(header, data, event);
6823 }
6824
6825 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6826                                            struct perf_sample_data *data)
6827 {
6828         u64 sample_type = data->type;
6829
6830         if (sample_type & PERF_SAMPLE_TID)
6831                 perf_output_put(handle, data->tid_entry);
6832
6833         if (sample_type & PERF_SAMPLE_TIME)
6834                 perf_output_put(handle, data->time);
6835
6836         if (sample_type & PERF_SAMPLE_ID)
6837                 perf_output_put(handle, data->id);
6838
6839         if (sample_type & PERF_SAMPLE_STREAM_ID)
6840                 perf_output_put(handle, data->stream_id);
6841
6842         if (sample_type & PERF_SAMPLE_CPU)
6843                 perf_output_put(handle, data->cpu_entry);
6844
6845         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6846                 perf_output_put(handle, data->id);
6847 }
6848
6849 void perf_event__output_id_sample(struct perf_event *event,
6850                                   struct perf_output_handle *handle,
6851                                   struct perf_sample_data *sample)
6852 {
6853         if (event->attr.sample_id_all)
6854                 __perf_event__output_id_sample(handle, sample);
6855 }
6856
6857 static void perf_output_read_one(struct perf_output_handle *handle,
6858                                  struct perf_event *event,
6859                                  u64 enabled, u64 running)
6860 {
6861         u64 read_format = event->attr.read_format;
6862         u64 values[4];
6863         int n = 0;
6864
6865         values[n++] = perf_event_count(event);
6866         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6867                 values[n++] = enabled +
6868                         atomic64_read(&event->child_total_time_enabled);
6869         }
6870         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6871                 values[n++] = running +
6872                         atomic64_read(&event->child_total_time_running);
6873         }
6874         if (read_format & PERF_FORMAT_ID)
6875                 values[n++] = primary_event_id(event);
6876
6877         __output_copy(handle, values, n * sizeof(u64));
6878 }
6879
6880 static void perf_output_read_group(struct perf_output_handle *handle,
6881                             struct perf_event *event,
6882                             u64 enabled, u64 running)
6883 {
6884         struct perf_event *leader = event->group_leader, *sub;
6885         u64 read_format = event->attr.read_format;
6886         u64 values[5];
6887         int n = 0;
6888
6889         values[n++] = 1 + leader->nr_siblings;
6890
6891         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6892                 values[n++] = enabled;
6893
6894         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6895                 values[n++] = running;
6896
6897         if ((leader != event) &&
6898             (leader->state == PERF_EVENT_STATE_ACTIVE))
6899                 leader->pmu->read(leader);
6900
6901         values[n++] = perf_event_count(leader);
6902         if (read_format & PERF_FORMAT_ID)
6903                 values[n++] = primary_event_id(leader);
6904
6905         __output_copy(handle, values, n * sizeof(u64));
6906
6907         for_each_sibling_event(sub, leader) {
6908                 n = 0;
6909
6910                 if ((sub != event) &&
6911                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6912                         sub->pmu->read(sub);
6913
6914                 values[n++] = perf_event_count(sub);
6915                 if (read_format & PERF_FORMAT_ID)
6916                         values[n++] = primary_event_id(sub);
6917
6918                 __output_copy(handle, values, n * sizeof(u64));
6919         }
6920 }
6921
6922 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6923                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6924
6925 /*
6926  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6927  *
6928  * The problem is that its both hard and excessively expensive to iterate the
6929  * child list, not to mention that its impossible to IPI the children running
6930  * on another CPU, from interrupt/NMI context.
6931  */
6932 static void perf_output_read(struct perf_output_handle *handle,
6933                              struct perf_event *event)
6934 {
6935         u64 enabled = 0, running = 0, now;
6936         u64 read_format = event->attr.read_format;
6937
6938         /*
6939          * compute total_time_enabled, total_time_running
6940          * based on snapshot values taken when the event
6941          * was last scheduled in.
6942          *
6943          * we cannot simply called update_context_time()
6944          * because of locking issue as we are called in
6945          * NMI context
6946          */
6947         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6948                 calc_timer_values(event, &now, &enabled, &running);
6949
6950         if (event->attr.read_format & PERF_FORMAT_GROUP)
6951                 perf_output_read_group(handle, event, enabled, running);
6952         else
6953                 perf_output_read_one(handle, event, enabled, running);
6954 }
6955
6956 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6957 {
6958         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6959 }
6960
6961 void perf_output_sample(struct perf_output_handle *handle,
6962                         struct perf_event_header *header,
6963                         struct perf_sample_data *data,
6964                         struct perf_event *event)
6965 {
6966         u64 sample_type = data->type;
6967
6968         perf_output_put(handle, *header);
6969
6970         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6971                 perf_output_put(handle, data->id);
6972
6973         if (sample_type & PERF_SAMPLE_IP)
6974                 perf_output_put(handle, data->ip);
6975
6976         if (sample_type & PERF_SAMPLE_TID)
6977                 perf_output_put(handle, data->tid_entry);
6978
6979         if (sample_type & PERF_SAMPLE_TIME)
6980                 perf_output_put(handle, data->time);
6981
6982         if (sample_type & PERF_SAMPLE_ADDR)
6983                 perf_output_put(handle, data->addr);
6984
6985         if (sample_type & PERF_SAMPLE_ID)
6986                 perf_output_put(handle, data->id);
6987
6988         if (sample_type & PERF_SAMPLE_STREAM_ID)
6989                 perf_output_put(handle, data->stream_id);
6990
6991         if (sample_type & PERF_SAMPLE_CPU)
6992                 perf_output_put(handle, data->cpu_entry);
6993
6994         if (sample_type & PERF_SAMPLE_PERIOD)
6995                 perf_output_put(handle, data->period);
6996
6997         if (sample_type & PERF_SAMPLE_READ)
6998                 perf_output_read(handle, event);
6999
7000         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7001                 int size = 1;
7002
7003                 size += data->callchain->nr;
7004                 size *= sizeof(u64);
7005                 __output_copy(handle, data->callchain, size);
7006         }
7007
7008         if (sample_type & PERF_SAMPLE_RAW) {
7009                 struct perf_raw_record *raw = data->raw;
7010
7011                 if (raw) {
7012                         struct perf_raw_frag *frag = &raw->frag;
7013
7014                         perf_output_put(handle, raw->size);
7015                         do {
7016                                 if (frag->copy) {
7017                                         __output_custom(handle, frag->copy,
7018                                                         frag->data, frag->size);
7019                                 } else {
7020                                         __output_copy(handle, frag->data,
7021                                                       frag->size);
7022                                 }
7023                                 if (perf_raw_frag_last(frag))
7024                                         break;
7025                                 frag = frag->next;
7026                         } while (1);
7027                         if (frag->pad)
7028                                 __output_skip(handle, NULL, frag->pad);
7029                 } else {
7030                         struct {
7031                                 u32     size;
7032                                 u32     data;
7033                         } raw = {
7034                                 .size = sizeof(u32),
7035                                 .data = 0,
7036                         };
7037                         perf_output_put(handle, raw);
7038                 }
7039         }
7040
7041         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7042                 if (data->br_stack) {
7043                         size_t size;
7044
7045                         size = data->br_stack->nr
7046                              * sizeof(struct perf_branch_entry);
7047
7048                         perf_output_put(handle, data->br_stack->nr);
7049                         if (perf_sample_save_hw_index(event))
7050                                 perf_output_put(handle, data->br_stack->hw_idx);
7051                         perf_output_copy(handle, data->br_stack->entries, size);
7052                 } else {
7053                         /*
7054                          * we always store at least the value of nr
7055                          */
7056                         u64 nr = 0;
7057                         perf_output_put(handle, nr);
7058                 }
7059         }
7060
7061         if (sample_type & PERF_SAMPLE_REGS_USER) {
7062                 u64 abi = data->regs_user.abi;
7063
7064                 /*
7065                  * If there are no regs to dump, notice it through
7066                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7067                  */
7068                 perf_output_put(handle, abi);
7069
7070                 if (abi) {
7071                         u64 mask = event->attr.sample_regs_user;
7072                         perf_output_sample_regs(handle,
7073                                                 data->regs_user.regs,
7074                                                 mask);
7075                 }
7076         }
7077
7078         if (sample_type & PERF_SAMPLE_STACK_USER) {
7079                 perf_output_sample_ustack(handle,
7080                                           data->stack_user_size,
7081                                           data->regs_user.regs);
7082         }
7083
7084         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7085                 perf_output_put(handle, data->weight.full);
7086
7087         if (sample_type & PERF_SAMPLE_DATA_SRC)
7088                 perf_output_put(handle, data->data_src.val);
7089
7090         if (sample_type & PERF_SAMPLE_TRANSACTION)
7091                 perf_output_put(handle, data->txn);
7092
7093         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7094                 u64 abi = data->regs_intr.abi;
7095                 /*
7096                  * If there are no regs to dump, notice it through
7097                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7098                  */
7099                 perf_output_put(handle, abi);
7100
7101                 if (abi) {
7102                         u64 mask = event->attr.sample_regs_intr;
7103
7104                         perf_output_sample_regs(handle,
7105                                                 data->regs_intr.regs,
7106                                                 mask);
7107                 }
7108         }
7109
7110         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7111                 perf_output_put(handle, data->phys_addr);
7112
7113         if (sample_type & PERF_SAMPLE_CGROUP)
7114                 perf_output_put(handle, data->cgroup);
7115
7116         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7117                 perf_output_put(handle, data->data_page_size);
7118
7119         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7120                 perf_output_put(handle, data->code_page_size);
7121
7122         if (sample_type & PERF_SAMPLE_AUX) {
7123                 perf_output_put(handle, data->aux_size);
7124
7125                 if (data->aux_size)
7126                         perf_aux_sample_output(event, handle, data);
7127         }
7128
7129         if (!event->attr.watermark) {
7130                 int wakeup_events = event->attr.wakeup_events;
7131
7132                 if (wakeup_events) {
7133                         struct perf_buffer *rb = handle->rb;
7134                         int events = local_inc_return(&rb->events);
7135
7136                         if (events >= wakeup_events) {
7137                                 local_sub(wakeup_events, &rb->events);
7138                                 local_inc(&rb->wakeup);
7139                         }
7140                 }
7141         }
7142 }
7143
7144 static u64 perf_virt_to_phys(u64 virt)
7145 {
7146         u64 phys_addr = 0;
7147
7148         if (!virt)
7149                 return 0;
7150
7151         if (virt >= TASK_SIZE) {
7152                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7153                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7154                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7155                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7156         } else {
7157                 /*
7158                  * Walking the pages tables for user address.
7159                  * Interrupts are disabled, so it prevents any tear down
7160                  * of the page tables.
7161                  * Try IRQ-safe get_user_page_fast_only first.
7162                  * If failed, leave phys_addr as 0.
7163                  */
7164                 if (current->mm != NULL) {
7165                         struct page *p;
7166
7167                         pagefault_disable();
7168                         if (get_user_page_fast_only(virt, 0, &p)) {
7169                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7170                                 put_page(p);
7171                         }
7172                         pagefault_enable();
7173                 }
7174         }
7175
7176         return phys_addr;
7177 }
7178
7179 /*
7180  * Return the pagetable size of a given virtual address.
7181  */
7182 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7183 {
7184         u64 size = 0;
7185
7186 #ifdef CONFIG_HAVE_FAST_GUP
7187         pgd_t *pgdp, pgd;
7188         p4d_t *p4dp, p4d;
7189         pud_t *pudp, pud;
7190         pmd_t *pmdp, pmd;
7191         pte_t *ptep, pte;
7192
7193         pgdp = pgd_offset(mm, addr);
7194         pgd = READ_ONCE(*pgdp);
7195         if (pgd_none(pgd))
7196                 return 0;
7197
7198         if (pgd_leaf(pgd))
7199                 return pgd_leaf_size(pgd);
7200
7201         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7202         p4d = READ_ONCE(*p4dp);
7203         if (!p4d_present(p4d))
7204                 return 0;
7205
7206         if (p4d_leaf(p4d))
7207                 return p4d_leaf_size(p4d);
7208
7209         pudp = pud_offset_lockless(p4dp, p4d, addr);
7210         pud = READ_ONCE(*pudp);
7211         if (!pud_present(pud))
7212                 return 0;
7213
7214         if (pud_leaf(pud))
7215                 return pud_leaf_size(pud);
7216
7217         pmdp = pmd_offset_lockless(pudp, pud, addr);
7218         pmd = READ_ONCE(*pmdp);
7219         if (!pmd_present(pmd))
7220                 return 0;
7221
7222         if (pmd_leaf(pmd))
7223                 return pmd_leaf_size(pmd);
7224
7225         ptep = pte_offset_map(&pmd, addr);
7226         pte = ptep_get_lockless(ptep);
7227         if (pte_present(pte))
7228                 size = pte_leaf_size(pte);
7229         pte_unmap(ptep);
7230 #endif /* CONFIG_HAVE_FAST_GUP */
7231
7232         return size;
7233 }
7234
7235 static u64 perf_get_page_size(unsigned long addr)
7236 {
7237         struct mm_struct *mm;
7238         unsigned long flags;
7239         u64 size;
7240
7241         if (!addr)
7242                 return 0;
7243
7244         /*
7245          * Software page-table walkers must disable IRQs,
7246          * which prevents any tear down of the page tables.
7247          */
7248         local_irq_save(flags);
7249
7250         mm = current->mm;
7251         if (!mm) {
7252                 /*
7253                  * For kernel threads and the like, use init_mm so that
7254                  * we can find kernel memory.
7255                  */
7256                 mm = &init_mm;
7257         }
7258
7259         size = perf_get_pgtable_size(mm, addr);
7260
7261         local_irq_restore(flags);
7262
7263         return size;
7264 }
7265
7266 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7267
7268 struct perf_callchain_entry *
7269 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7270 {
7271         bool kernel = !event->attr.exclude_callchain_kernel;
7272         bool user   = !event->attr.exclude_callchain_user;
7273         /* Disallow cross-task user callchains. */
7274         bool crosstask = event->ctx->task && event->ctx->task != current;
7275         const u32 max_stack = event->attr.sample_max_stack;
7276         struct perf_callchain_entry *callchain;
7277
7278         if (!kernel && !user)
7279                 return &__empty_callchain;
7280
7281         callchain = get_perf_callchain(regs, 0, kernel, user,
7282                                        max_stack, crosstask, true);
7283         return callchain ?: &__empty_callchain;
7284 }
7285
7286 void perf_prepare_sample(struct perf_event_header *header,
7287                          struct perf_sample_data *data,
7288                          struct perf_event *event,
7289                          struct pt_regs *regs)
7290 {
7291         u64 sample_type = event->attr.sample_type;
7292
7293         header->type = PERF_RECORD_SAMPLE;
7294         header->size = sizeof(*header) + event->header_size;
7295
7296         header->misc = 0;
7297         header->misc |= perf_misc_flags(regs);
7298
7299         __perf_event_header__init_id(header, data, event);
7300
7301         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7302                 data->ip = perf_instruction_pointer(regs);
7303
7304         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7305                 int size = 1;
7306
7307                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7308                         data->callchain = perf_callchain(event, regs);
7309
7310                 size += data->callchain->nr;
7311
7312                 header->size += size * sizeof(u64);
7313         }
7314
7315         if (sample_type & PERF_SAMPLE_RAW) {
7316                 struct perf_raw_record *raw = data->raw;
7317                 int size;
7318
7319                 if (raw) {
7320                         struct perf_raw_frag *frag = &raw->frag;
7321                         u32 sum = 0;
7322
7323                         do {
7324                                 sum += frag->size;
7325                                 if (perf_raw_frag_last(frag))
7326                                         break;
7327                                 frag = frag->next;
7328                         } while (1);
7329
7330                         size = round_up(sum + sizeof(u32), sizeof(u64));
7331                         raw->size = size - sizeof(u32);
7332                         frag->pad = raw->size - sum;
7333                 } else {
7334                         size = sizeof(u64);
7335                 }
7336
7337                 header->size += size;
7338         }
7339
7340         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7341                 int size = sizeof(u64); /* nr */
7342                 if (data->br_stack) {
7343                         if (perf_sample_save_hw_index(event))
7344                                 size += sizeof(u64);
7345
7346                         size += data->br_stack->nr
7347                               * sizeof(struct perf_branch_entry);
7348                 }
7349                 header->size += size;
7350         }
7351
7352         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7353                 perf_sample_regs_user(&data->regs_user, regs);
7354
7355         if (sample_type & PERF_SAMPLE_REGS_USER) {
7356                 /* regs dump ABI info */
7357                 int size = sizeof(u64);
7358
7359                 if (data->regs_user.regs) {
7360                         u64 mask = event->attr.sample_regs_user;
7361                         size += hweight64(mask) * sizeof(u64);
7362                 }
7363
7364                 header->size += size;
7365         }
7366
7367         if (sample_type & PERF_SAMPLE_STACK_USER) {
7368                 /*
7369                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7370                  * processed as the last one or have additional check added
7371                  * in case new sample type is added, because we could eat
7372                  * up the rest of the sample size.
7373                  */
7374                 u16 stack_size = event->attr.sample_stack_user;
7375                 u16 size = sizeof(u64);
7376
7377                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7378                                                      data->regs_user.regs);
7379
7380                 /*
7381                  * If there is something to dump, add space for the dump
7382                  * itself and for the field that tells the dynamic size,
7383                  * which is how many have been actually dumped.
7384                  */
7385                 if (stack_size)
7386                         size += sizeof(u64) + stack_size;
7387
7388                 data->stack_user_size = stack_size;
7389                 header->size += size;
7390         }
7391
7392         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7393                 /* regs dump ABI info */
7394                 int size = sizeof(u64);
7395
7396                 perf_sample_regs_intr(&data->regs_intr, regs);
7397
7398                 if (data->regs_intr.regs) {
7399                         u64 mask = event->attr.sample_regs_intr;
7400
7401                         size += hweight64(mask) * sizeof(u64);
7402                 }
7403
7404                 header->size += size;
7405         }
7406
7407         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7408                 data->phys_addr = perf_virt_to_phys(data->addr);
7409
7410 #ifdef CONFIG_CGROUP_PERF
7411         if (sample_type & PERF_SAMPLE_CGROUP) {
7412                 struct cgroup *cgrp;
7413
7414                 /* protected by RCU */
7415                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7416                 data->cgroup = cgroup_id(cgrp);
7417         }
7418 #endif
7419
7420         /*
7421          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7422          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7423          * but the value will not dump to the userspace.
7424          */
7425         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7426                 data->data_page_size = perf_get_page_size(data->addr);
7427
7428         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7429                 data->code_page_size = perf_get_page_size(data->ip);
7430
7431         if (sample_type & PERF_SAMPLE_AUX) {
7432                 u64 size;
7433
7434                 header->size += sizeof(u64); /* size */
7435
7436                 /*
7437                  * Given the 16bit nature of header::size, an AUX sample can
7438                  * easily overflow it, what with all the preceding sample bits.
7439                  * Make sure this doesn't happen by using up to U16_MAX bytes
7440                  * per sample in total (rounded down to 8 byte boundary).
7441                  */
7442                 size = min_t(size_t, U16_MAX - header->size,
7443                              event->attr.aux_sample_size);
7444                 size = rounddown(size, 8);
7445                 size = perf_prepare_sample_aux(event, data, size);
7446
7447                 WARN_ON_ONCE(size + header->size > U16_MAX);
7448                 header->size += size;
7449         }
7450         /*
7451          * If you're adding more sample types here, you likely need to do
7452          * something about the overflowing header::size, like repurpose the
7453          * lowest 3 bits of size, which should be always zero at the moment.
7454          * This raises a more important question, do we really need 512k sized
7455          * samples and why, so good argumentation is in order for whatever you
7456          * do here next.
7457          */
7458         WARN_ON_ONCE(header->size & 7);
7459 }
7460
7461 static __always_inline int
7462 __perf_event_output(struct perf_event *event,
7463                     struct perf_sample_data *data,
7464                     struct pt_regs *regs,
7465                     int (*output_begin)(struct perf_output_handle *,
7466                                         struct perf_sample_data *,
7467                                         struct perf_event *,
7468                                         unsigned int))
7469 {
7470         struct perf_output_handle handle;
7471         struct perf_event_header header;
7472         int err;
7473
7474         /* protect the callchain buffers */
7475         rcu_read_lock();
7476
7477         perf_prepare_sample(&header, data, event, regs);
7478
7479         err = output_begin(&handle, data, event, header.size);
7480         if (err)
7481                 goto exit;
7482
7483         perf_output_sample(&handle, &header, data, event);
7484
7485         perf_output_end(&handle);
7486
7487 exit:
7488         rcu_read_unlock();
7489         return err;
7490 }
7491
7492 void
7493 perf_event_output_forward(struct perf_event *event,
7494                          struct perf_sample_data *data,
7495                          struct pt_regs *regs)
7496 {
7497         __perf_event_output(event, data, regs, perf_output_begin_forward);
7498 }
7499
7500 void
7501 perf_event_output_backward(struct perf_event *event,
7502                            struct perf_sample_data *data,
7503                            struct pt_regs *regs)
7504 {
7505         __perf_event_output(event, data, regs, perf_output_begin_backward);
7506 }
7507
7508 int
7509 perf_event_output(struct perf_event *event,
7510                   struct perf_sample_data *data,
7511                   struct pt_regs *regs)
7512 {
7513         return __perf_event_output(event, data, regs, perf_output_begin);
7514 }
7515
7516 /*
7517  * read event_id
7518  */
7519
7520 struct perf_read_event {
7521         struct perf_event_header        header;
7522
7523         u32                             pid;
7524         u32                             tid;
7525 };
7526
7527 static void
7528 perf_event_read_event(struct perf_event *event,
7529                         struct task_struct *task)
7530 {
7531         struct perf_output_handle handle;
7532         struct perf_sample_data sample;
7533         struct perf_read_event read_event = {
7534                 .header = {
7535                         .type = PERF_RECORD_READ,
7536                         .misc = 0,
7537                         .size = sizeof(read_event) + event->read_size,
7538                 },
7539                 .pid = perf_event_pid(event, task),
7540                 .tid = perf_event_tid(event, task),
7541         };
7542         int ret;
7543
7544         perf_event_header__init_id(&read_event.header, &sample, event);
7545         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7546         if (ret)
7547                 return;
7548
7549         perf_output_put(&handle, read_event);
7550         perf_output_read(&handle, event);
7551         perf_event__output_id_sample(event, &handle, &sample);
7552
7553         perf_output_end(&handle);
7554 }
7555
7556 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7557
7558 static void
7559 perf_iterate_ctx(struct perf_event_context *ctx,
7560                    perf_iterate_f output,
7561                    void *data, bool all)
7562 {
7563         struct perf_event *event;
7564
7565         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7566                 if (!all) {
7567                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7568                                 continue;
7569                         if (!event_filter_match(event))
7570                                 continue;
7571                 }
7572
7573                 output(event, data);
7574         }
7575 }
7576
7577 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7578 {
7579         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7580         struct perf_event *event;
7581
7582         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7583                 /*
7584                  * Skip events that are not fully formed yet; ensure that
7585                  * if we observe event->ctx, both event and ctx will be
7586                  * complete enough. See perf_install_in_context().
7587                  */
7588                 if (!smp_load_acquire(&event->ctx))
7589                         continue;
7590
7591                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7592                         continue;
7593                 if (!event_filter_match(event))
7594                         continue;
7595                 output(event, data);
7596         }
7597 }
7598
7599 /*
7600  * Iterate all events that need to receive side-band events.
7601  *
7602  * For new callers; ensure that account_pmu_sb_event() includes
7603  * your event, otherwise it might not get delivered.
7604  */
7605 static void
7606 perf_iterate_sb(perf_iterate_f output, void *data,
7607                struct perf_event_context *task_ctx)
7608 {
7609         struct perf_event_context *ctx;
7610         int ctxn;
7611
7612         rcu_read_lock();
7613         preempt_disable();
7614
7615         /*
7616          * If we have task_ctx != NULL we only notify the task context itself.
7617          * The task_ctx is set only for EXIT events before releasing task
7618          * context.
7619          */
7620         if (task_ctx) {
7621                 perf_iterate_ctx(task_ctx, output, data, false);
7622                 goto done;
7623         }
7624
7625         perf_iterate_sb_cpu(output, data);
7626
7627         for_each_task_context_nr(ctxn) {
7628                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7629                 if (ctx)
7630                         perf_iterate_ctx(ctx, output, data, false);
7631         }
7632 done:
7633         preempt_enable();
7634         rcu_read_unlock();
7635 }
7636
7637 /*
7638  * Clear all file-based filters at exec, they'll have to be
7639  * re-instated when/if these objects are mmapped again.
7640  */
7641 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7642 {
7643         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7644         struct perf_addr_filter *filter;
7645         unsigned int restart = 0, count = 0;
7646         unsigned long flags;
7647
7648         if (!has_addr_filter(event))
7649                 return;
7650
7651         raw_spin_lock_irqsave(&ifh->lock, flags);
7652         list_for_each_entry(filter, &ifh->list, entry) {
7653                 if (filter->path.dentry) {
7654                         event->addr_filter_ranges[count].start = 0;
7655                         event->addr_filter_ranges[count].size = 0;
7656                         restart++;
7657                 }
7658
7659                 count++;
7660         }
7661
7662         if (restart)
7663                 event->addr_filters_gen++;
7664         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7665
7666         if (restart)
7667                 perf_event_stop(event, 1);
7668 }
7669
7670 void perf_event_exec(void)
7671 {
7672         struct perf_event_context *ctx;
7673         int ctxn;
7674
7675         for_each_task_context_nr(ctxn) {
7676                 perf_event_enable_on_exec(ctxn);
7677                 perf_event_remove_on_exec(ctxn);
7678
7679                 rcu_read_lock();
7680                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7681                 if (ctx) {
7682                         perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7683                                          NULL, true);
7684                 }
7685                 rcu_read_unlock();
7686         }
7687 }
7688
7689 struct remote_output {
7690         struct perf_buffer      *rb;
7691         int                     err;
7692 };
7693
7694 static void __perf_event_output_stop(struct perf_event *event, void *data)
7695 {
7696         struct perf_event *parent = event->parent;
7697         struct remote_output *ro = data;
7698         struct perf_buffer *rb = ro->rb;
7699         struct stop_event_data sd = {
7700                 .event  = event,
7701         };
7702
7703         if (!has_aux(event))
7704                 return;
7705
7706         if (!parent)
7707                 parent = event;
7708
7709         /*
7710          * In case of inheritance, it will be the parent that links to the
7711          * ring-buffer, but it will be the child that's actually using it.
7712          *
7713          * We are using event::rb to determine if the event should be stopped,
7714          * however this may race with ring_buffer_attach() (through set_output),
7715          * which will make us skip the event that actually needs to be stopped.
7716          * So ring_buffer_attach() has to stop an aux event before re-assigning
7717          * its rb pointer.
7718          */
7719         if (rcu_dereference(parent->rb) == rb)
7720                 ro->err = __perf_event_stop(&sd);
7721 }
7722
7723 static int __perf_pmu_output_stop(void *info)
7724 {
7725         struct perf_event *event = info;
7726         struct pmu *pmu = event->ctx->pmu;
7727         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7728         struct remote_output ro = {
7729                 .rb     = event->rb,
7730         };
7731
7732         rcu_read_lock();
7733         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7734         if (cpuctx->task_ctx)
7735                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7736                                    &ro, false);
7737         rcu_read_unlock();
7738
7739         return ro.err;
7740 }
7741
7742 static void perf_pmu_output_stop(struct perf_event *event)
7743 {
7744         struct perf_event *iter;
7745         int err, cpu;
7746
7747 restart:
7748         rcu_read_lock();
7749         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7750                 /*
7751                  * For per-CPU events, we need to make sure that neither they
7752                  * nor their children are running; for cpu==-1 events it's
7753                  * sufficient to stop the event itself if it's active, since
7754                  * it can't have children.
7755                  */
7756                 cpu = iter->cpu;
7757                 if (cpu == -1)
7758                         cpu = READ_ONCE(iter->oncpu);
7759
7760                 if (cpu == -1)
7761                         continue;
7762
7763                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7764                 if (err == -EAGAIN) {
7765                         rcu_read_unlock();
7766                         goto restart;
7767                 }
7768         }
7769         rcu_read_unlock();
7770 }
7771
7772 /*
7773  * task tracking -- fork/exit
7774  *
7775  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7776  */
7777
7778 struct perf_task_event {
7779         struct task_struct              *task;
7780         struct perf_event_context       *task_ctx;
7781
7782         struct {
7783                 struct perf_event_header        header;
7784
7785                 u32                             pid;
7786                 u32                             ppid;
7787                 u32                             tid;
7788                 u32                             ptid;
7789                 u64                             time;
7790         } event_id;
7791 };
7792
7793 static int perf_event_task_match(struct perf_event *event)
7794 {
7795         return event->attr.comm  || event->attr.mmap ||
7796                event->attr.mmap2 || event->attr.mmap_data ||
7797                event->attr.task;
7798 }
7799
7800 static void perf_event_task_output(struct perf_event *event,
7801                                    void *data)
7802 {
7803         struct perf_task_event *task_event = data;
7804         struct perf_output_handle handle;
7805         struct perf_sample_data sample;
7806         struct task_struct *task = task_event->task;
7807         int ret, size = task_event->event_id.header.size;
7808
7809         if (!perf_event_task_match(event))
7810                 return;
7811
7812         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7813
7814         ret = perf_output_begin(&handle, &sample, event,
7815                                 task_event->event_id.header.size);
7816         if (ret)
7817                 goto out;
7818
7819         task_event->event_id.pid = perf_event_pid(event, task);
7820         task_event->event_id.tid = perf_event_tid(event, task);
7821
7822         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7823                 task_event->event_id.ppid = perf_event_pid(event,
7824                                                         task->real_parent);
7825                 task_event->event_id.ptid = perf_event_pid(event,
7826                                                         task->real_parent);
7827         } else {  /* PERF_RECORD_FORK */
7828                 task_event->event_id.ppid = perf_event_pid(event, current);
7829                 task_event->event_id.ptid = perf_event_tid(event, current);
7830         }
7831
7832         task_event->event_id.time = perf_event_clock(event);
7833
7834         perf_output_put(&handle, task_event->event_id);
7835
7836         perf_event__output_id_sample(event, &handle, &sample);
7837
7838         perf_output_end(&handle);
7839 out:
7840         task_event->event_id.header.size = size;
7841 }
7842
7843 static void perf_event_task(struct task_struct *task,
7844                               struct perf_event_context *task_ctx,
7845                               int new)
7846 {
7847         struct perf_task_event task_event;
7848
7849         if (!atomic_read(&nr_comm_events) &&
7850             !atomic_read(&nr_mmap_events) &&
7851             !atomic_read(&nr_task_events))
7852                 return;
7853
7854         task_event = (struct perf_task_event){
7855                 .task     = task,
7856                 .task_ctx = task_ctx,
7857                 .event_id    = {
7858                         .header = {
7859                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7860                                 .misc = 0,
7861                                 .size = sizeof(task_event.event_id),
7862                         },
7863                         /* .pid  */
7864                         /* .ppid */
7865                         /* .tid  */
7866                         /* .ptid */
7867                         /* .time */
7868                 },
7869         };
7870
7871         perf_iterate_sb(perf_event_task_output,
7872                        &task_event,
7873                        task_ctx);
7874 }
7875
7876 void perf_event_fork(struct task_struct *task)
7877 {
7878         perf_event_task(task, NULL, 1);
7879         perf_event_namespaces(task);
7880 }
7881
7882 /*
7883  * comm tracking
7884  */
7885
7886 struct perf_comm_event {
7887         struct task_struct      *task;
7888         char                    *comm;
7889         int                     comm_size;
7890
7891         struct {
7892                 struct perf_event_header        header;
7893
7894                 u32                             pid;
7895                 u32                             tid;
7896         } event_id;
7897 };
7898
7899 static int perf_event_comm_match(struct perf_event *event)
7900 {
7901         return event->attr.comm;
7902 }
7903
7904 static void perf_event_comm_output(struct perf_event *event,
7905                                    void *data)
7906 {
7907         struct perf_comm_event *comm_event = data;
7908         struct perf_output_handle handle;
7909         struct perf_sample_data sample;
7910         int size = comm_event->event_id.header.size;
7911         int ret;
7912
7913         if (!perf_event_comm_match(event))
7914                 return;
7915
7916         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7917         ret = perf_output_begin(&handle, &sample, event,
7918                                 comm_event->event_id.header.size);
7919
7920         if (ret)
7921                 goto out;
7922
7923         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7924         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7925
7926         perf_output_put(&handle, comm_event->event_id);
7927         __output_copy(&handle, comm_event->comm,
7928                                    comm_event->comm_size);
7929
7930         perf_event__output_id_sample(event, &handle, &sample);
7931
7932         perf_output_end(&handle);
7933 out:
7934         comm_event->event_id.header.size = size;
7935 }
7936
7937 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7938 {
7939         char comm[TASK_COMM_LEN];
7940         unsigned int size;
7941
7942         memset(comm, 0, sizeof(comm));
7943         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7944         size = ALIGN(strlen(comm)+1, sizeof(u64));
7945
7946         comm_event->comm = comm;
7947         comm_event->comm_size = size;
7948
7949         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7950
7951         perf_iterate_sb(perf_event_comm_output,
7952                        comm_event,
7953                        NULL);
7954 }
7955
7956 void perf_event_comm(struct task_struct *task, bool exec)
7957 {
7958         struct perf_comm_event comm_event;
7959
7960         if (!atomic_read(&nr_comm_events))
7961                 return;
7962
7963         comm_event = (struct perf_comm_event){
7964                 .task   = task,
7965                 /* .comm      */
7966                 /* .comm_size */
7967                 .event_id  = {
7968                         .header = {
7969                                 .type = PERF_RECORD_COMM,
7970                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7971                                 /* .size */
7972                         },
7973                         /* .pid */
7974                         /* .tid */
7975                 },
7976         };
7977
7978         perf_event_comm_event(&comm_event);
7979 }
7980
7981 /*
7982  * namespaces tracking
7983  */
7984
7985 struct perf_namespaces_event {
7986         struct task_struct              *task;
7987
7988         struct {
7989                 struct perf_event_header        header;
7990
7991                 u32                             pid;
7992                 u32                             tid;
7993                 u64                             nr_namespaces;
7994                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7995         } event_id;
7996 };
7997
7998 static int perf_event_namespaces_match(struct perf_event *event)
7999 {
8000         return event->attr.namespaces;
8001 }
8002
8003 static void perf_event_namespaces_output(struct perf_event *event,
8004                                          void *data)
8005 {
8006         struct perf_namespaces_event *namespaces_event = data;
8007         struct perf_output_handle handle;
8008         struct perf_sample_data sample;
8009         u16 header_size = namespaces_event->event_id.header.size;
8010         int ret;
8011
8012         if (!perf_event_namespaces_match(event))
8013                 return;
8014
8015         perf_event_header__init_id(&namespaces_event->event_id.header,
8016                                    &sample, event);
8017         ret = perf_output_begin(&handle, &sample, event,
8018                                 namespaces_event->event_id.header.size);
8019         if (ret)
8020                 goto out;
8021
8022         namespaces_event->event_id.pid = perf_event_pid(event,
8023                                                         namespaces_event->task);
8024         namespaces_event->event_id.tid = perf_event_tid(event,
8025                                                         namespaces_event->task);
8026
8027         perf_output_put(&handle, namespaces_event->event_id);
8028
8029         perf_event__output_id_sample(event, &handle, &sample);
8030
8031         perf_output_end(&handle);
8032 out:
8033         namespaces_event->event_id.header.size = header_size;
8034 }
8035
8036 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8037                                    struct task_struct *task,
8038                                    const struct proc_ns_operations *ns_ops)
8039 {
8040         struct path ns_path;
8041         struct inode *ns_inode;
8042         int error;
8043
8044         error = ns_get_path(&ns_path, task, ns_ops);
8045         if (!error) {
8046                 ns_inode = ns_path.dentry->d_inode;
8047                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8048                 ns_link_info->ino = ns_inode->i_ino;
8049                 path_put(&ns_path);
8050         }
8051 }
8052
8053 void perf_event_namespaces(struct task_struct *task)
8054 {
8055         struct perf_namespaces_event namespaces_event;
8056         struct perf_ns_link_info *ns_link_info;
8057
8058         if (!atomic_read(&nr_namespaces_events))
8059                 return;
8060
8061         namespaces_event = (struct perf_namespaces_event){
8062                 .task   = task,
8063                 .event_id  = {
8064                         .header = {
8065                                 .type = PERF_RECORD_NAMESPACES,
8066                                 .misc = 0,
8067                                 .size = sizeof(namespaces_event.event_id),
8068                         },
8069                         /* .pid */
8070                         /* .tid */
8071                         .nr_namespaces = NR_NAMESPACES,
8072                         /* .link_info[NR_NAMESPACES] */
8073                 },
8074         };
8075
8076         ns_link_info = namespaces_event.event_id.link_info;
8077
8078         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8079                                task, &mntns_operations);
8080
8081 #ifdef CONFIG_USER_NS
8082         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8083                                task, &userns_operations);
8084 #endif
8085 #ifdef CONFIG_NET_NS
8086         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8087                                task, &netns_operations);
8088 #endif
8089 #ifdef CONFIG_UTS_NS
8090         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8091                                task, &utsns_operations);
8092 #endif
8093 #ifdef CONFIG_IPC_NS
8094         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8095                                task, &ipcns_operations);
8096 #endif
8097 #ifdef CONFIG_PID_NS
8098         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8099                                task, &pidns_operations);
8100 #endif
8101 #ifdef CONFIG_CGROUPS
8102         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8103                                task, &cgroupns_operations);
8104 #endif
8105
8106         perf_iterate_sb(perf_event_namespaces_output,
8107                         &namespaces_event,
8108                         NULL);
8109 }
8110
8111 /*
8112  * cgroup tracking
8113  */
8114 #ifdef CONFIG_CGROUP_PERF
8115
8116 struct perf_cgroup_event {
8117         char                            *path;
8118         int                             path_size;
8119         struct {
8120                 struct perf_event_header        header;
8121                 u64                             id;
8122                 char                            path[];
8123         } event_id;
8124 };
8125
8126 static int perf_event_cgroup_match(struct perf_event *event)
8127 {
8128         return event->attr.cgroup;
8129 }
8130
8131 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8132 {
8133         struct perf_cgroup_event *cgroup_event = data;
8134         struct perf_output_handle handle;
8135         struct perf_sample_data sample;
8136         u16 header_size = cgroup_event->event_id.header.size;
8137         int ret;
8138
8139         if (!perf_event_cgroup_match(event))
8140                 return;
8141
8142         perf_event_header__init_id(&cgroup_event->event_id.header,
8143                                    &sample, event);
8144         ret = perf_output_begin(&handle, &sample, event,
8145                                 cgroup_event->event_id.header.size);
8146         if (ret)
8147                 goto out;
8148
8149         perf_output_put(&handle, cgroup_event->event_id);
8150         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8151
8152         perf_event__output_id_sample(event, &handle, &sample);
8153
8154         perf_output_end(&handle);
8155 out:
8156         cgroup_event->event_id.header.size = header_size;
8157 }
8158
8159 static void perf_event_cgroup(struct cgroup *cgrp)
8160 {
8161         struct perf_cgroup_event cgroup_event;
8162         char path_enomem[16] = "//enomem";
8163         char *pathname;
8164         size_t size;
8165
8166         if (!atomic_read(&nr_cgroup_events))
8167                 return;
8168
8169         cgroup_event = (struct perf_cgroup_event){
8170                 .event_id  = {
8171                         .header = {
8172                                 .type = PERF_RECORD_CGROUP,
8173                                 .misc = 0,
8174                                 .size = sizeof(cgroup_event.event_id),
8175                         },
8176                         .id = cgroup_id(cgrp),
8177                 },
8178         };
8179
8180         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8181         if (pathname == NULL) {
8182                 cgroup_event.path = path_enomem;
8183         } else {
8184                 /* just to be sure to have enough space for alignment */
8185                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8186                 cgroup_event.path = pathname;
8187         }
8188
8189         /*
8190          * Since our buffer works in 8 byte units we need to align our string
8191          * size to a multiple of 8. However, we must guarantee the tail end is
8192          * zero'd out to avoid leaking random bits to userspace.
8193          */
8194         size = strlen(cgroup_event.path) + 1;
8195         while (!IS_ALIGNED(size, sizeof(u64)))
8196                 cgroup_event.path[size++] = '\0';
8197
8198         cgroup_event.event_id.header.size += size;
8199         cgroup_event.path_size = size;
8200
8201         perf_iterate_sb(perf_event_cgroup_output,
8202                         &cgroup_event,
8203                         NULL);
8204
8205         kfree(pathname);
8206 }
8207
8208 #endif
8209
8210 /*
8211  * mmap tracking
8212  */
8213
8214 struct perf_mmap_event {
8215         struct vm_area_struct   *vma;
8216
8217         const char              *file_name;
8218         int                     file_size;
8219         int                     maj, min;
8220         u64                     ino;
8221         u64                     ino_generation;
8222         u32                     prot, flags;
8223         u8                      build_id[BUILD_ID_SIZE_MAX];
8224         u32                     build_id_size;
8225
8226         struct {
8227                 struct perf_event_header        header;
8228
8229                 u32                             pid;
8230                 u32                             tid;
8231                 u64                             start;
8232                 u64                             len;
8233                 u64                             pgoff;
8234         } event_id;
8235 };
8236
8237 static int perf_event_mmap_match(struct perf_event *event,
8238                                  void *data)
8239 {
8240         struct perf_mmap_event *mmap_event = data;
8241         struct vm_area_struct *vma = mmap_event->vma;
8242         int executable = vma->vm_flags & VM_EXEC;
8243
8244         return (!executable && event->attr.mmap_data) ||
8245                (executable && (event->attr.mmap || event->attr.mmap2));
8246 }
8247
8248 static void perf_event_mmap_output(struct perf_event *event,
8249                                    void *data)
8250 {
8251         struct perf_mmap_event *mmap_event = data;
8252         struct perf_output_handle handle;
8253         struct perf_sample_data sample;
8254         int size = mmap_event->event_id.header.size;
8255         u32 type = mmap_event->event_id.header.type;
8256         bool use_build_id;
8257         int ret;
8258
8259         if (!perf_event_mmap_match(event, data))
8260                 return;
8261
8262         if (event->attr.mmap2) {
8263                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8264                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8265                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8266                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8267                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8268                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8269                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8270         }
8271
8272         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8273         ret = perf_output_begin(&handle, &sample, event,
8274                                 mmap_event->event_id.header.size);
8275         if (ret)
8276                 goto out;
8277
8278         mmap_event->event_id.pid = perf_event_pid(event, current);
8279         mmap_event->event_id.tid = perf_event_tid(event, current);
8280
8281         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8282
8283         if (event->attr.mmap2 && use_build_id)
8284                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8285
8286         perf_output_put(&handle, mmap_event->event_id);
8287
8288         if (event->attr.mmap2) {
8289                 if (use_build_id) {
8290                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8291
8292                         __output_copy(&handle, size, 4);
8293                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8294                 } else {
8295                         perf_output_put(&handle, mmap_event->maj);
8296                         perf_output_put(&handle, mmap_event->min);
8297                         perf_output_put(&handle, mmap_event->ino);
8298                         perf_output_put(&handle, mmap_event->ino_generation);
8299                 }
8300                 perf_output_put(&handle, mmap_event->prot);
8301                 perf_output_put(&handle, mmap_event->flags);
8302         }
8303
8304         __output_copy(&handle, mmap_event->file_name,
8305                                    mmap_event->file_size);
8306
8307         perf_event__output_id_sample(event, &handle, &sample);
8308
8309         perf_output_end(&handle);
8310 out:
8311         mmap_event->event_id.header.size = size;
8312         mmap_event->event_id.header.type = type;
8313 }
8314
8315 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8316 {
8317         struct vm_area_struct *vma = mmap_event->vma;
8318         struct file *file = vma->vm_file;
8319         int maj = 0, min = 0;
8320         u64 ino = 0, gen = 0;
8321         u32 prot = 0, flags = 0;
8322         unsigned int size;
8323         char tmp[16];
8324         char *buf = NULL;
8325         char *name;
8326
8327         if (vma->vm_flags & VM_READ)
8328                 prot |= PROT_READ;
8329         if (vma->vm_flags & VM_WRITE)
8330                 prot |= PROT_WRITE;
8331         if (vma->vm_flags & VM_EXEC)
8332                 prot |= PROT_EXEC;
8333
8334         if (vma->vm_flags & VM_MAYSHARE)
8335                 flags = MAP_SHARED;
8336         else
8337                 flags = MAP_PRIVATE;
8338
8339         if (vma->vm_flags & VM_LOCKED)
8340                 flags |= MAP_LOCKED;
8341         if (is_vm_hugetlb_page(vma))
8342                 flags |= MAP_HUGETLB;
8343
8344         if (file) {
8345                 struct inode *inode;
8346                 dev_t dev;
8347
8348                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8349                 if (!buf) {
8350                         name = "//enomem";
8351                         goto cpy_name;
8352                 }
8353                 /*
8354                  * d_path() works from the end of the rb backwards, so we
8355                  * need to add enough zero bytes after the string to handle
8356                  * the 64bit alignment we do later.
8357                  */
8358                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8359                 if (IS_ERR(name)) {
8360                         name = "//toolong";
8361                         goto cpy_name;
8362                 }
8363                 inode = file_inode(vma->vm_file);
8364                 dev = inode->i_sb->s_dev;
8365                 ino = inode->i_ino;
8366                 gen = inode->i_generation;
8367                 maj = MAJOR(dev);
8368                 min = MINOR(dev);
8369
8370                 goto got_name;
8371         } else {
8372                 if (vma->vm_ops && vma->vm_ops->name) {
8373                         name = (char *) vma->vm_ops->name(vma);
8374                         if (name)
8375                                 goto cpy_name;
8376                 }
8377
8378                 name = (char *)arch_vma_name(vma);
8379                 if (name)
8380                         goto cpy_name;
8381
8382                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8383                                 vma->vm_end >= vma->vm_mm->brk) {
8384                         name = "[heap]";
8385                         goto cpy_name;
8386                 }
8387                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8388                                 vma->vm_end >= vma->vm_mm->start_stack) {
8389                         name = "[stack]";
8390                         goto cpy_name;
8391                 }
8392
8393                 name = "//anon";
8394                 goto cpy_name;
8395         }
8396
8397 cpy_name:
8398         strlcpy(tmp, name, sizeof(tmp));
8399         name = tmp;
8400 got_name:
8401         /*
8402          * Since our buffer works in 8 byte units we need to align our string
8403          * size to a multiple of 8. However, we must guarantee the tail end is
8404          * zero'd out to avoid leaking random bits to userspace.
8405          */
8406         size = strlen(name)+1;
8407         while (!IS_ALIGNED(size, sizeof(u64)))
8408                 name[size++] = '\0';
8409
8410         mmap_event->file_name = name;
8411         mmap_event->file_size = size;
8412         mmap_event->maj = maj;
8413         mmap_event->min = min;
8414         mmap_event->ino = ino;
8415         mmap_event->ino_generation = gen;
8416         mmap_event->prot = prot;
8417         mmap_event->flags = flags;
8418
8419         if (!(vma->vm_flags & VM_EXEC))
8420                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8421
8422         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8423
8424         if (atomic_read(&nr_build_id_events))
8425                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8426
8427         perf_iterate_sb(perf_event_mmap_output,
8428                        mmap_event,
8429                        NULL);
8430
8431         kfree(buf);
8432 }
8433
8434 /*
8435  * Check whether inode and address range match filter criteria.
8436  */
8437 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8438                                      struct file *file, unsigned long offset,
8439                                      unsigned long size)
8440 {
8441         /* d_inode(NULL) won't be equal to any mapped user-space file */
8442         if (!filter->path.dentry)
8443                 return false;
8444
8445         if (d_inode(filter->path.dentry) != file_inode(file))
8446                 return false;
8447
8448         if (filter->offset > offset + size)
8449                 return false;
8450
8451         if (filter->offset + filter->size < offset)
8452                 return false;
8453
8454         return true;
8455 }
8456
8457 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8458                                         struct vm_area_struct *vma,
8459                                         struct perf_addr_filter_range *fr)
8460 {
8461         unsigned long vma_size = vma->vm_end - vma->vm_start;
8462         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8463         struct file *file = vma->vm_file;
8464
8465         if (!perf_addr_filter_match(filter, file, off, vma_size))
8466                 return false;
8467
8468         if (filter->offset < off) {
8469                 fr->start = vma->vm_start;
8470                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8471         } else {
8472                 fr->start = vma->vm_start + filter->offset - off;
8473                 fr->size = min(vma->vm_end - fr->start, filter->size);
8474         }
8475
8476         return true;
8477 }
8478
8479 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8480 {
8481         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8482         struct vm_area_struct *vma = data;
8483         struct perf_addr_filter *filter;
8484         unsigned int restart = 0, count = 0;
8485         unsigned long flags;
8486
8487         if (!has_addr_filter(event))
8488                 return;
8489
8490         if (!vma->vm_file)
8491                 return;
8492
8493         raw_spin_lock_irqsave(&ifh->lock, flags);
8494         list_for_each_entry(filter, &ifh->list, entry) {
8495                 if (perf_addr_filter_vma_adjust(filter, vma,
8496                                                 &event->addr_filter_ranges[count]))
8497                         restart++;
8498
8499                 count++;
8500         }
8501
8502         if (restart)
8503                 event->addr_filters_gen++;
8504         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8505
8506         if (restart)
8507                 perf_event_stop(event, 1);
8508 }
8509
8510 /*
8511  * Adjust all task's events' filters to the new vma
8512  */
8513 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8514 {
8515         struct perf_event_context *ctx;
8516         int ctxn;
8517
8518         /*
8519          * Data tracing isn't supported yet and as such there is no need
8520          * to keep track of anything that isn't related to executable code:
8521          */
8522         if (!(vma->vm_flags & VM_EXEC))
8523                 return;
8524
8525         rcu_read_lock();
8526         for_each_task_context_nr(ctxn) {
8527                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8528                 if (!ctx)
8529                         continue;
8530
8531                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8532         }
8533         rcu_read_unlock();
8534 }
8535
8536 void perf_event_mmap(struct vm_area_struct *vma)
8537 {
8538         struct perf_mmap_event mmap_event;
8539
8540         if (!atomic_read(&nr_mmap_events))
8541                 return;
8542
8543         mmap_event = (struct perf_mmap_event){
8544                 .vma    = vma,
8545                 /* .file_name */
8546                 /* .file_size */
8547                 .event_id  = {
8548                         .header = {
8549                                 .type = PERF_RECORD_MMAP,
8550                                 .misc = PERF_RECORD_MISC_USER,
8551                                 /* .size */
8552                         },
8553                         /* .pid */
8554                         /* .tid */
8555                         .start  = vma->vm_start,
8556                         .len    = vma->vm_end - vma->vm_start,
8557                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8558                 },
8559                 /* .maj (attr_mmap2 only) */
8560                 /* .min (attr_mmap2 only) */
8561                 /* .ino (attr_mmap2 only) */
8562                 /* .ino_generation (attr_mmap2 only) */
8563                 /* .prot (attr_mmap2 only) */
8564                 /* .flags (attr_mmap2 only) */
8565         };
8566
8567         perf_addr_filters_adjust(vma);
8568         perf_event_mmap_event(&mmap_event);
8569 }
8570
8571 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8572                           unsigned long size, u64 flags)
8573 {
8574         struct perf_output_handle handle;
8575         struct perf_sample_data sample;
8576         struct perf_aux_event {
8577                 struct perf_event_header        header;
8578                 u64                             offset;
8579                 u64                             size;
8580                 u64                             flags;
8581         } rec = {
8582                 .header = {
8583                         .type = PERF_RECORD_AUX,
8584                         .misc = 0,
8585                         .size = sizeof(rec),
8586                 },
8587                 .offset         = head,
8588                 .size           = size,
8589                 .flags          = flags,
8590         };
8591         int ret;
8592
8593         perf_event_header__init_id(&rec.header, &sample, event);
8594         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8595
8596         if (ret)
8597                 return;
8598
8599         perf_output_put(&handle, rec);
8600         perf_event__output_id_sample(event, &handle, &sample);
8601
8602         perf_output_end(&handle);
8603 }
8604
8605 /*
8606  * Lost/dropped samples logging
8607  */
8608 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8609 {
8610         struct perf_output_handle handle;
8611         struct perf_sample_data sample;
8612         int ret;
8613
8614         struct {
8615                 struct perf_event_header        header;
8616                 u64                             lost;
8617         } lost_samples_event = {
8618                 .header = {
8619                         .type = PERF_RECORD_LOST_SAMPLES,
8620                         .misc = 0,
8621                         .size = sizeof(lost_samples_event),
8622                 },
8623                 .lost           = lost,
8624         };
8625
8626         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8627
8628         ret = perf_output_begin(&handle, &sample, event,
8629                                 lost_samples_event.header.size);
8630         if (ret)
8631                 return;
8632
8633         perf_output_put(&handle, lost_samples_event);
8634         perf_event__output_id_sample(event, &handle, &sample);
8635         perf_output_end(&handle);
8636 }
8637
8638 /*
8639  * context_switch tracking
8640  */
8641
8642 struct perf_switch_event {
8643         struct task_struct      *task;
8644         struct task_struct      *next_prev;
8645
8646         struct {
8647                 struct perf_event_header        header;
8648                 u32                             next_prev_pid;
8649                 u32                             next_prev_tid;
8650         } event_id;
8651 };
8652
8653 static int perf_event_switch_match(struct perf_event *event)
8654 {
8655         return event->attr.context_switch;
8656 }
8657
8658 static void perf_event_switch_output(struct perf_event *event, void *data)
8659 {
8660         struct perf_switch_event *se = data;
8661         struct perf_output_handle handle;
8662         struct perf_sample_data sample;
8663         int ret;
8664
8665         if (!perf_event_switch_match(event))
8666                 return;
8667
8668         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8669         if (event->ctx->task) {
8670                 se->event_id.header.type = PERF_RECORD_SWITCH;
8671                 se->event_id.header.size = sizeof(se->event_id.header);
8672         } else {
8673                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8674                 se->event_id.header.size = sizeof(se->event_id);
8675                 se->event_id.next_prev_pid =
8676                                         perf_event_pid(event, se->next_prev);
8677                 se->event_id.next_prev_tid =
8678                                         perf_event_tid(event, se->next_prev);
8679         }
8680
8681         perf_event_header__init_id(&se->event_id.header, &sample, event);
8682
8683         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8684         if (ret)
8685                 return;
8686
8687         if (event->ctx->task)
8688                 perf_output_put(&handle, se->event_id.header);
8689         else
8690                 perf_output_put(&handle, se->event_id);
8691
8692         perf_event__output_id_sample(event, &handle, &sample);
8693
8694         perf_output_end(&handle);
8695 }
8696
8697 static void perf_event_switch(struct task_struct *task,
8698                               struct task_struct *next_prev, bool sched_in)
8699 {
8700         struct perf_switch_event switch_event;
8701
8702         /* N.B. caller checks nr_switch_events != 0 */
8703
8704         switch_event = (struct perf_switch_event){
8705                 .task           = task,
8706                 .next_prev      = next_prev,
8707                 .event_id       = {
8708                         .header = {
8709                                 /* .type */
8710                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8711                                 /* .size */
8712                         },
8713                         /* .next_prev_pid */
8714                         /* .next_prev_tid */
8715                 },
8716         };
8717
8718         if (!sched_in && task->on_rq) {
8719                 switch_event.event_id.header.misc |=
8720                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8721         }
8722
8723         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8724 }
8725
8726 /*
8727  * IRQ throttle logging
8728  */
8729
8730 static void perf_log_throttle(struct perf_event *event, int enable)
8731 {
8732         struct perf_output_handle handle;
8733         struct perf_sample_data sample;
8734         int ret;
8735
8736         struct {
8737                 struct perf_event_header        header;
8738                 u64                             time;
8739                 u64                             id;
8740                 u64                             stream_id;
8741         } throttle_event = {
8742                 .header = {
8743                         .type = PERF_RECORD_THROTTLE,
8744                         .misc = 0,
8745                         .size = sizeof(throttle_event),
8746                 },
8747                 .time           = perf_event_clock(event),
8748                 .id             = primary_event_id(event),
8749                 .stream_id      = event->id,
8750         };
8751
8752         if (enable)
8753                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8754
8755         perf_event_header__init_id(&throttle_event.header, &sample, event);
8756
8757         ret = perf_output_begin(&handle, &sample, event,
8758                                 throttle_event.header.size);
8759         if (ret)
8760                 return;
8761
8762         perf_output_put(&handle, throttle_event);
8763         perf_event__output_id_sample(event, &handle, &sample);
8764         perf_output_end(&handle);
8765 }
8766
8767 /*
8768  * ksymbol register/unregister tracking
8769  */
8770
8771 struct perf_ksymbol_event {
8772         const char      *name;
8773         int             name_len;
8774         struct {
8775                 struct perf_event_header        header;
8776                 u64                             addr;
8777                 u32                             len;
8778                 u16                             ksym_type;
8779                 u16                             flags;
8780         } event_id;
8781 };
8782
8783 static int perf_event_ksymbol_match(struct perf_event *event)
8784 {
8785         return event->attr.ksymbol;
8786 }
8787
8788 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8789 {
8790         struct perf_ksymbol_event *ksymbol_event = data;
8791         struct perf_output_handle handle;
8792         struct perf_sample_data sample;
8793         int ret;
8794
8795         if (!perf_event_ksymbol_match(event))
8796                 return;
8797
8798         perf_event_header__init_id(&ksymbol_event->event_id.header,
8799                                    &sample, event);
8800         ret = perf_output_begin(&handle, &sample, event,
8801                                 ksymbol_event->event_id.header.size);
8802         if (ret)
8803                 return;
8804
8805         perf_output_put(&handle, ksymbol_event->event_id);
8806         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8807         perf_event__output_id_sample(event, &handle, &sample);
8808
8809         perf_output_end(&handle);
8810 }
8811
8812 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8813                         const char *sym)
8814 {
8815         struct perf_ksymbol_event ksymbol_event;
8816         char name[KSYM_NAME_LEN];
8817         u16 flags = 0;
8818         int name_len;
8819
8820         if (!atomic_read(&nr_ksymbol_events))
8821                 return;
8822
8823         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8824             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8825                 goto err;
8826
8827         strlcpy(name, sym, KSYM_NAME_LEN);
8828         name_len = strlen(name) + 1;
8829         while (!IS_ALIGNED(name_len, sizeof(u64)))
8830                 name[name_len++] = '\0';
8831         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8832
8833         if (unregister)
8834                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8835
8836         ksymbol_event = (struct perf_ksymbol_event){
8837                 .name = name,
8838                 .name_len = name_len,
8839                 .event_id = {
8840                         .header = {
8841                                 .type = PERF_RECORD_KSYMBOL,
8842                                 .size = sizeof(ksymbol_event.event_id) +
8843                                         name_len,
8844                         },
8845                         .addr = addr,
8846                         .len = len,
8847                         .ksym_type = ksym_type,
8848                         .flags = flags,
8849                 },
8850         };
8851
8852         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8853         return;
8854 err:
8855         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8856 }
8857
8858 /*
8859  * bpf program load/unload tracking
8860  */
8861
8862 struct perf_bpf_event {
8863         struct bpf_prog *prog;
8864         struct {
8865                 struct perf_event_header        header;
8866                 u16                             type;
8867                 u16                             flags;
8868                 u32                             id;
8869                 u8                              tag[BPF_TAG_SIZE];
8870         } event_id;
8871 };
8872
8873 static int perf_event_bpf_match(struct perf_event *event)
8874 {
8875         return event->attr.bpf_event;
8876 }
8877
8878 static void perf_event_bpf_output(struct perf_event *event, void *data)
8879 {
8880         struct perf_bpf_event *bpf_event = data;
8881         struct perf_output_handle handle;
8882         struct perf_sample_data sample;
8883         int ret;
8884
8885         if (!perf_event_bpf_match(event))
8886                 return;
8887
8888         perf_event_header__init_id(&bpf_event->event_id.header,
8889                                    &sample, event);
8890         ret = perf_output_begin(&handle, data, event,
8891                                 bpf_event->event_id.header.size);
8892         if (ret)
8893                 return;
8894
8895         perf_output_put(&handle, bpf_event->event_id);
8896         perf_event__output_id_sample(event, &handle, &sample);
8897
8898         perf_output_end(&handle);
8899 }
8900
8901 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8902                                          enum perf_bpf_event_type type)
8903 {
8904         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8905         int i;
8906
8907         if (prog->aux->func_cnt == 0) {
8908                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8909                                    (u64)(unsigned long)prog->bpf_func,
8910                                    prog->jited_len, unregister,
8911                                    prog->aux->ksym.name);
8912         } else {
8913                 for (i = 0; i < prog->aux->func_cnt; i++) {
8914                         struct bpf_prog *subprog = prog->aux->func[i];
8915
8916                         perf_event_ksymbol(
8917                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8918                                 (u64)(unsigned long)subprog->bpf_func,
8919                                 subprog->jited_len, unregister,
8920                                 prog->aux->ksym.name);
8921                 }
8922         }
8923 }
8924
8925 void perf_event_bpf_event(struct bpf_prog *prog,
8926                           enum perf_bpf_event_type type,
8927                           u16 flags)
8928 {
8929         struct perf_bpf_event bpf_event;
8930
8931         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8932             type >= PERF_BPF_EVENT_MAX)
8933                 return;
8934
8935         switch (type) {
8936         case PERF_BPF_EVENT_PROG_LOAD:
8937         case PERF_BPF_EVENT_PROG_UNLOAD:
8938                 if (atomic_read(&nr_ksymbol_events))
8939                         perf_event_bpf_emit_ksymbols(prog, type);
8940                 break;
8941         default:
8942                 break;
8943         }
8944
8945         if (!atomic_read(&nr_bpf_events))
8946                 return;
8947
8948         bpf_event = (struct perf_bpf_event){
8949                 .prog = prog,
8950                 .event_id = {
8951                         .header = {
8952                                 .type = PERF_RECORD_BPF_EVENT,
8953                                 .size = sizeof(bpf_event.event_id),
8954                         },
8955                         .type = type,
8956                         .flags = flags,
8957                         .id = prog->aux->id,
8958                 },
8959         };
8960
8961         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8962
8963         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8964         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8965 }
8966
8967 struct perf_text_poke_event {
8968         const void              *old_bytes;
8969         const void              *new_bytes;
8970         size_t                  pad;
8971         u16                     old_len;
8972         u16                     new_len;
8973
8974         struct {
8975                 struct perf_event_header        header;
8976
8977                 u64                             addr;
8978         } event_id;
8979 };
8980
8981 static int perf_event_text_poke_match(struct perf_event *event)
8982 {
8983         return event->attr.text_poke;
8984 }
8985
8986 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8987 {
8988         struct perf_text_poke_event *text_poke_event = data;
8989         struct perf_output_handle handle;
8990         struct perf_sample_data sample;
8991         u64 padding = 0;
8992         int ret;
8993
8994         if (!perf_event_text_poke_match(event))
8995                 return;
8996
8997         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8998
8999         ret = perf_output_begin(&handle, &sample, event,
9000                                 text_poke_event->event_id.header.size);
9001         if (ret)
9002                 return;
9003
9004         perf_output_put(&handle, text_poke_event->event_id);
9005         perf_output_put(&handle, text_poke_event->old_len);
9006         perf_output_put(&handle, text_poke_event->new_len);
9007
9008         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9009         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9010
9011         if (text_poke_event->pad)
9012                 __output_copy(&handle, &padding, text_poke_event->pad);
9013
9014         perf_event__output_id_sample(event, &handle, &sample);
9015
9016         perf_output_end(&handle);
9017 }
9018
9019 void perf_event_text_poke(const void *addr, const void *old_bytes,
9020                           size_t old_len, const void *new_bytes, size_t new_len)
9021 {
9022         struct perf_text_poke_event text_poke_event;
9023         size_t tot, pad;
9024
9025         if (!atomic_read(&nr_text_poke_events))
9026                 return;
9027
9028         tot  = sizeof(text_poke_event.old_len) + old_len;
9029         tot += sizeof(text_poke_event.new_len) + new_len;
9030         pad  = ALIGN(tot, sizeof(u64)) - tot;
9031
9032         text_poke_event = (struct perf_text_poke_event){
9033                 .old_bytes    = old_bytes,
9034                 .new_bytes    = new_bytes,
9035                 .pad          = pad,
9036                 .old_len      = old_len,
9037                 .new_len      = new_len,
9038                 .event_id  = {
9039                         .header = {
9040                                 .type = PERF_RECORD_TEXT_POKE,
9041                                 .misc = PERF_RECORD_MISC_KERNEL,
9042                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9043                         },
9044                         .addr = (unsigned long)addr,
9045                 },
9046         };
9047
9048         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9049 }
9050
9051 void perf_event_itrace_started(struct perf_event *event)
9052 {
9053         event->attach_state |= PERF_ATTACH_ITRACE;
9054 }
9055
9056 static void perf_log_itrace_start(struct perf_event *event)
9057 {
9058         struct perf_output_handle handle;
9059         struct perf_sample_data sample;
9060         struct perf_aux_event {
9061                 struct perf_event_header        header;
9062                 u32                             pid;
9063                 u32                             tid;
9064         } rec;
9065         int ret;
9066
9067         if (event->parent)
9068                 event = event->parent;
9069
9070         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9071             event->attach_state & PERF_ATTACH_ITRACE)
9072                 return;
9073
9074         rec.header.type = PERF_RECORD_ITRACE_START;
9075         rec.header.misc = 0;
9076         rec.header.size = sizeof(rec);
9077         rec.pid = perf_event_pid(event, current);
9078         rec.tid = perf_event_tid(event, current);
9079
9080         perf_event_header__init_id(&rec.header, &sample, event);
9081         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9082
9083         if (ret)
9084                 return;
9085
9086         perf_output_put(&handle, rec);
9087         perf_event__output_id_sample(event, &handle, &sample);
9088
9089         perf_output_end(&handle);
9090 }
9091
9092 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9093 {
9094         struct perf_output_handle handle;
9095         struct perf_sample_data sample;
9096         struct perf_aux_event {
9097                 struct perf_event_header        header;
9098                 u64                             hw_id;
9099         } rec;
9100         int ret;
9101
9102         if (event->parent)
9103                 event = event->parent;
9104
9105         rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9106         rec.header.misc = 0;
9107         rec.header.size = sizeof(rec);
9108         rec.hw_id       = hw_id;
9109
9110         perf_event_header__init_id(&rec.header, &sample, event);
9111         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9112
9113         if (ret)
9114                 return;
9115
9116         perf_output_put(&handle, rec);
9117         perf_event__output_id_sample(event, &handle, &sample);
9118
9119         perf_output_end(&handle);
9120 }
9121
9122 static int
9123 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9124 {
9125         struct hw_perf_event *hwc = &event->hw;
9126         int ret = 0;
9127         u64 seq;
9128
9129         seq = __this_cpu_read(perf_throttled_seq);
9130         if (seq != hwc->interrupts_seq) {
9131                 hwc->interrupts_seq = seq;
9132                 hwc->interrupts = 1;
9133         } else {
9134                 hwc->interrupts++;
9135                 if (unlikely(throttle
9136                              && hwc->interrupts >= max_samples_per_tick)) {
9137                         __this_cpu_inc(perf_throttled_count);
9138                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9139                         hwc->interrupts = MAX_INTERRUPTS;
9140                         perf_log_throttle(event, 0);
9141                         ret = 1;
9142                 }
9143         }
9144
9145         if (event->attr.freq) {
9146                 u64 now = perf_clock();
9147                 s64 delta = now - hwc->freq_time_stamp;
9148
9149                 hwc->freq_time_stamp = now;
9150
9151                 if (delta > 0 && delta < 2*TICK_NSEC)
9152                         perf_adjust_period(event, delta, hwc->last_period, true);
9153         }
9154
9155         return ret;
9156 }
9157
9158 int perf_event_account_interrupt(struct perf_event *event)
9159 {
9160         return __perf_event_account_interrupt(event, 1);
9161 }
9162
9163 /*
9164  * Generic event overflow handling, sampling.
9165  */
9166
9167 static int __perf_event_overflow(struct perf_event *event,
9168                                    int throttle, struct perf_sample_data *data,
9169                                    struct pt_regs *regs)
9170 {
9171         int events = atomic_read(&event->event_limit);
9172         int ret = 0;
9173
9174         /*
9175          * Non-sampling counters might still use the PMI to fold short
9176          * hardware counters, ignore those.
9177          */
9178         if (unlikely(!is_sampling_event(event)))
9179                 return 0;
9180
9181         ret = __perf_event_account_interrupt(event, throttle);
9182
9183         /*
9184          * XXX event_limit might not quite work as expected on inherited
9185          * events
9186          */
9187
9188         event->pending_kill = POLL_IN;
9189         if (events && atomic_dec_and_test(&event->event_limit)) {
9190                 ret = 1;
9191                 event->pending_kill = POLL_HUP;
9192                 event->pending_addr = data->addr;
9193
9194                 perf_event_disable_inatomic(event);
9195         }
9196
9197         READ_ONCE(event->overflow_handler)(event, data, regs);
9198
9199         if (*perf_event_fasync(event) && event->pending_kill) {
9200                 event->pending_wakeup = 1;
9201                 irq_work_queue(&event->pending);
9202         }
9203
9204         return ret;
9205 }
9206
9207 int perf_event_overflow(struct perf_event *event,
9208                           struct perf_sample_data *data,
9209                           struct pt_regs *regs)
9210 {
9211         return __perf_event_overflow(event, 1, data, regs);
9212 }
9213
9214 /*
9215  * Generic software event infrastructure
9216  */
9217
9218 struct swevent_htable {
9219         struct swevent_hlist            *swevent_hlist;
9220         struct mutex                    hlist_mutex;
9221         int                             hlist_refcount;
9222
9223         /* Recursion avoidance in each contexts */
9224         int                             recursion[PERF_NR_CONTEXTS];
9225 };
9226
9227 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9228
9229 /*
9230  * We directly increment event->count and keep a second value in
9231  * event->hw.period_left to count intervals. This period event
9232  * is kept in the range [-sample_period, 0] so that we can use the
9233  * sign as trigger.
9234  */
9235
9236 u64 perf_swevent_set_period(struct perf_event *event)
9237 {
9238         struct hw_perf_event *hwc = &event->hw;
9239         u64 period = hwc->last_period;
9240         u64 nr, offset;
9241         s64 old, val;
9242
9243         hwc->last_period = hwc->sample_period;
9244
9245 again:
9246         old = val = local64_read(&hwc->period_left);
9247         if (val < 0)
9248                 return 0;
9249
9250         nr = div64_u64(period + val, period);
9251         offset = nr * period;
9252         val -= offset;
9253         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9254                 goto again;
9255
9256         return nr;
9257 }
9258
9259 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9260                                     struct perf_sample_data *data,
9261                                     struct pt_regs *regs)
9262 {
9263         struct hw_perf_event *hwc = &event->hw;
9264         int throttle = 0;
9265
9266         if (!overflow)
9267                 overflow = perf_swevent_set_period(event);
9268
9269         if (hwc->interrupts == MAX_INTERRUPTS)
9270                 return;
9271
9272         for (; overflow; overflow--) {
9273                 if (__perf_event_overflow(event, throttle,
9274                                             data, regs)) {
9275                         /*
9276                          * We inhibit the overflow from happening when
9277                          * hwc->interrupts == MAX_INTERRUPTS.
9278                          */
9279                         break;
9280                 }
9281                 throttle = 1;
9282         }
9283 }
9284
9285 static void perf_swevent_event(struct perf_event *event, u64 nr,
9286                                struct perf_sample_data *data,
9287                                struct pt_regs *regs)
9288 {
9289         struct hw_perf_event *hwc = &event->hw;
9290
9291         local64_add(nr, &event->count);
9292
9293         if (!regs)
9294                 return;
9295
9296         if (!is_sampling_event(event))
9297                 return;
9298
9299         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9300                 data->period = nr;
9301                 return perf_swevent_overflow(event, 1, data, regs);
9302         } else
9303                 data->period = event->hw.last_period;
9304
9305         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9306                 return perf_swevent_overflow(event, 1, data, regs);
9307
9308         if (local64_add_negative(nr, &hwc->period_left))
9309                 return;
9310
9311         perf_swevent_overflow(event, 0, data, regs);
9312 }
9313
9314 static int perf_exclude_event(struct perf_event *event,
9315                               struct pt_regs *regs)
9316 {
9317         if (event->hw.state & PERF_HES_STOPPED)
9318                 return 1;
9319
9320         if (regs) {
9321                 if (event->attr.exclude_user && user_mode(regs))
9322                         return 1;
9323
9324                 if (event->attr.exclude_kernel && !user_mode(regs))
9325                         return 1;
9326         }
9327
9328         return 0;
9329 }
9330
9331 static int perf_swevent_match(struct perf_event *event,
9332                                 enum perf_type_id type,
9333                                 u32 event_id,
9334                                 struct perf_sample_data *data,
9335                                 struct pt_regs *regs)
9336 {
9337         if (event->attr.type != type)
9338                 return 0;
9339
9340         if (event->attr.config != event_id)
9341                 return 0;
9342
9343         if (perf_exclude_event(event, regs))
9344                 return 0;
9345
9346         return 1;
9347 }
9348
9349 static inline u64 swevent_hash(u64 type, u32 event_id)
9350 {
9351         u64 val = event_id | (type << 32);
9352
9353         return hash_64(val, SWEVENT_HLIST_BITS);
9354 }
9355
9356 static inline struct hlist_head *
9357 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9358 {
9359         u64 hash = swevent_hash(type, event_id);
9360
9361         return &hlist->heads[hash];
9362 }
9363
9364 /* For the read side: events when they trigger */
9365 static inline struct hlist_head *
9366 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9367 {
9368         struct swevent_hlist *hlist;
9369
9370         hlist = rcu_dereference(swhash->swevent_hlist);
9371         if (!hlist)
9372                 return NULL;
9373
9374         return __find_swevent_head(hlist, type, event_id);
9375 }
9376
9377 /* For the event head insertion and removal in the hlist */
9378 static inline struct hlist_head *
9379 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9380 {
9381         struct swevent_hlist *hlist;
9382         u32 event_id = event->attr.config;
9383         u64 type = event->attr.type;
9384
9385         /*
9386          * Event scheduling is always serialized against hlist allocation
9387          * and release. Which makes the protected version suitable here.
9388          * The context lock guarantees that.
9389          */
9390         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9391                                           lockdep_is_held(&event->ctx->lock));
9392         if (!hlist)
9393                 return NULL;
9394
9395         return __find_swevent_head(hlist, type, event_id);
9396 }
9397
9398 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9399                                     u64 nr,
9400                                     struct perf_sample_data *data,
9401                                     struct pt_regs *regs)
9402 {
9403         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9404         struct perf_event *event;
9405         struct hlist_head *head;
9406
9407         rcu_read_lock();
9408         head = find_swevent_head_rcu(swhash, type, event_id);
9409         if (!head)
9410                 goto end;
9411
9412         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9413                 if (perf_swevent_match(event, type, event_id, data, regs))
9414                         perf_swevent_event(event, nr, data, regs);
9415         }
9416 end:
9417         rcu_read_unlock();
9418 }
9419
9420 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9421
9422 int perf_swevent_get_recursion_context(void)
9423 {
9424         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9425
9426         return get_recursion_context(swhash->recursion);
9427 }
9428 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9429
9430 void perf_swevent_put_recursion_context(int rctx)
9431 {
9432         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9433
9434         put_recursion_context(swhash->recursion, rctx);
9435 }
9436
9437 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9438 {
9439         struct perf_sample_data data;
9440
9441         if (WARN_ON_ONCE(!regs))
9442                 return;
9443
9444         perf_sample_data_init(&data, addr, 0);
9445         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9446 }
9447
9448 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9449 {
9450         int rctx;
9451
9452         preempt_disable_notrace();
9453         rctx = perf_swevent_get_recursion_context();
9454         if (unlikely(rctx < 0))
9455                 goto fail;
9456
9457         ___perf_sw_event(event_id, nr, regs, addr);
9458
9459         perf_swevent_put_recursion_context(rctx);
9460 fail:
9461         preempt_enable_notrace();
9462 }
9463
9464 static void perf_swevent_read(struct perf_event *event)
9465 {
9466 }
9467
9468 static int perf_swevent_add(struct perf_event *event, int flags)
9469 {
9470         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9471         struct hw_perf_event *hwc = &event->hw;
9472         struct hlist_head *head;
9473
9474         if (is_sampling_event(event)) {
9475                 hwc->last_period = hwc->sample_period;
9476                 perf_swevent_set_period(event);
9477         }
9478
9479         hwc->state = !(flags & PERF_EF_START);
9480
9481         head = find_swevent_head(swhash, event);
9482         if (WARN_ON_ONCE(!head))
9483                 return -EINVAL;
9484
9485         hlist_add_head_rcu(&event->hlist_entry, head);
9486         perf_event_update_userpage(event);
9487
9488         return 0;
9489 }
9490
9491 static void perf_swevent_del(struct perf_event *event, int flags)
9492 {
9493         hlist_del_rcu(&event->hlist_entry);
9494 }
9495
9496 static void perf_swevent_start(struct perf_event *event, int flags)
9497 {
9498         event->hw.state = 0;
9499 }
9500
9501 static void perf_swevent_stop(struct perf_event *event, int flags)
9502 {
9503         event->hw.state = PERF_HES_STOPPED;
9504 }
9505
9506 /* Deref the hlist from the update side */
9507 static inline struct swevent_hlist *
9508 swevent_hlist_deref(struct swevent_htable *swhash)
9509 {
9510         return rcu_dereference_protected(swhash->swevent_hlist,
9511                                          lockdep_is_held(&swhash->hlist_mutex));
9512 }
9513
9514 static void swevent_hlist_release(struct swevent_htable *swhash)
9515 {
9516         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9517
9518         if (!hlist)
9519                 return;
9520
9521         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9522         kfree_rcu(hlist, rcu_head);
9523 }
9524
9525 static void swevent_hlist_put_cpu(int cpu)
9526 {
9527         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9528
9529         mutex_lock(&swhash->hlist_mutex);
9530
9531         if (!--swhash->hlist_refcount)
9532                 swevent_hlist_release(swhash);
9533
9534         mutex_unlock(&swhash->hlist_mutex);
9535 }
9536
9537 static void swevent_hlist_put(void)
9538 {
9539         int cpu;
9540
9541         for_each_possible_cpu(cpu)
9542                 swevent_hlist_put_cpu(cpu);
9543 }
9544
9545 static int swevent_hlist_get_cpu(int cpu)
9546 {
9547         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9548         int err = 0;
9549
9550         mutex_lock(&swhash->hlist_mutex);
9551         if (!swevent_hlist_deref(swhash) &&
9552             cpumask_test_cpu(cpu, perf_online_mask)) {
9553                 struct swevent_hlist *hlist;
9554
9555                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9556                 if (!hlist) {
9557                         err = -ENOMEM;
9558                         goto exit;
9559                 }
9560                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9561         }
9562         swhash->hlist_refcount++;
9563 exit:
9564         mutex_unlock(&swhash->hlist_mutex);
9565
9566         return err;
9567 }
9568
9569 static int swevent_hlist_get(void)
9570 {
9571         int err, cpu, failed_cpu;
9572
9573         mutex_lock(&pmus_lock);
9574         for_each_possible_cpu(cpu) {
9575                 err = swevent_hlist_get_cpu(cpu);
9576                 if (err) {
9577                         failed_cpu = cpu;
9578                         goto fail;
9579                 }
9580         }
9581         mutex_unlock(&pmus_lock);
9582         return 0;
9583 fail:
9584         for_each_possible_cpu(cpu) {
9585                 if (cpu == failed_cpu)
9586                         break;
9587                 swevent_hlist_put_cpu(cpu);
9588         }
9589         mutex_unlock(&pmus_lock);
9590         return err;
9591 }
9592
9593 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9594
9595 static void sw_perf_event_destroy(struct perf_event *event)
9596 {
9597         u64 event_id = event->attr.config;
9598
9599         WARN_ON(event->parent);
9600
9601         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9602         swevent_hlist_put();
9603 }
9604
9605 static int perf_swevent_init(struct perf_event *event)
9606 {
9607         u64 event_id = event->attr.config;
9608
9609         if (event->attr.type != PERF_TYPE_SOFTWARE)
9610                 return -ENOENT;
9611
9612         /*
9613          * no branch sampling for software events
9614          */
9615         if (has_branch_stack(event))
9616                 return -EOPNOTSUPP;
9617
9618         switch (event_id) {
9619         case PERF_COUNT_SW_CPU_CLOCK:
9620         case PERF_COUNT_SW_TASK_CLOCK:
9621                 return -ENOENT;
9622
9623         default:
9624                 break;
9625         }
9626
9627         if (event_id >= PERF_COUNT_SW_MAX)
9628                 return -ENOENT;
9629
9630         if (!event->parent) {
9631                 int err;
9632
9633                 err = swevent_hlist_get();
9634                 if (err)
9635                         return err;
9636
9637                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9638                 event->destroy = sw_perf_event_destroy;
9639         }
9640
9641         return 0;
9642 }
9643
9644 static struct pmu perf_swevent = {
9645         .task_ctx_nr    = perf_sw_context,
9646
9647         .capabilities   = PERF_PMU_CAP_NO_NMI,
9648
9649         .event_init     = perf_swevent_init,
9650         .add            = perf_swevent_add,
9651         .del            = perf_swevent_del,
9652         .start          = perf_swevent_start,
9653         .stop           = perf_swevent_stop,
9654         .read           = perf_swevent_read,
9655 };
9656
9657 #ifdef CONFIG_EVENT_TRACING
9658
9659 static int perf_tp_filter_match(struct perf_event *event,
9660                                 struct perf_sample_data *data)
9661 {
9662         void *record = data->raw->frag.data;
9663
9664         /* only top level events have filters set */
9665         if (event->parent)
9666                 event = event->parent;
9667
9668         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9669                 return 1;
9670         return 0;
9671 }
9672
9673 static int perf_tp_event_match(struct perf_event *event,
9674                                 struct perf_sample_data *data,
9675                                 struct pt_regs *regs)
9676 {
9677         if (event->hw.state & PERF_HES_STOPPED)
9678                 return 0;
9679         /*
9680          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9681          */
9682         if (event->attr.exclude_kernel && !user_mode(regs))
9683                 return 0;
9684
9685         if (!perf_tp_filter_match(event, data))
9686                 return 0;
9687
9688         return 1;
9689 }
9690
9691 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9692                                struct trace_event_call *call, u64 count,
9693                                struct pt_regs *regs, struct hlist_head *head,
9694                                struct task_struct *task)
9695 {
9696         if (bpf_prog_array_valid(call)) {
9697                 *(struct pt_regs **)raw_data = regs;
9698                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9699                         perf_swevent_put_recursion_context(rctx);
9700                         return;
9701                 }
9702         }
9703         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9704                       rctx, task);
9705 }
9706 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9707
9708 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9709                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9710                    struct task_struct *task)
9711 {
9712         struct perf_sample_data data;
9713         struct perf_event *event;
9714
9715         struct perf_raw_record raw = {
9716                 .frag = {
9717                         .size = entry_size,
9718                         .data = record,
9719                 },
9720         };
9721
9722         perf_sample_data_init(&data, 0, 0);
9723         data.raw = &raw;
9724
9725         perf_trace_buf_update(record, event_type);
9726
9727         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9728                 if (perf_tp_event_match(event, &data, regs))
9729                         perf_swevent_event(event, count, &data, regs);
9730         }
9731
9732         /*
9733          * If we got specified a target task, also iterate its context and
9734          * deliver this event there too.
9735          */
9736         if (task && task != current) {
9737                 struct perf_event_context *ctx;
9738                 struct trace_entry *entry = record;
9739
9740                 rcu_read_lock();
9741                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9742                 if (!ctx)
9743                         goto unlock;
9744
9745                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9746                         if (event->cpu != smp_processor_id())
9747                                 continue;
9748                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9749                                 continue;
9750                         if (event->attr.config != entry->type)
9751                                 continue;
9752                         /* Cannot deliver synchronous signal to other task. */
9753                         if (event->attr.sigtrap)
9754                                 continue;
9755                         if (perf_tp_event_match(event, &data, regs))
9756                                 perf_swevent_event(event, count, &data, regs);
9757                 }
9758 unlock:
9759                 rcu_read_unlock();
9760         }
9761
9762         perf_swevent_put_recursion_context(rctx);
9763 }
9764 EXPORT_SYMBOL_GPL(perf_tp_event);
9765
9766 static void tp_perf_event_destroy(struct perf_event *event)
9767 {
9768         perf_trace_destroy(event);
9769 }
9770
9771 static int perf_tp_event_init(struct perf_event *event)
9772 {
9773         int err;
9774
9775         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9776                 return -ENOENT;
9777
9778         /*
9779          * no branch sampling for tracepoint events
9780          */
9781         if (has_branch_stack(event))
9782                 return -EOPNOTSUPP;
9783
9784         err = perf_trace_init(event);
9785         if (err)
9786                 return err;
9787
9788         event->destroy = tp_perf_event_destroy;
9789
9790         return 0;
9791 }
9792
9793 static struct pmu perf_tracepoint = {
9794         .task_ctx_nr    = perf_sw_context,
9795
9796         .event_init     = perf_tp_event_init,
9797         .add            = perf_trace_add,
9798         .del            = perf_trace_del,
9799         .start          = perf_swevent_start,
9800         .stop           = perf_swevent_stop,
9801         .read           = perf_swevent_read,
9802 };
9803
9804 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9805 /*
9806  * Flags in config, used by dynamic PMU kprobe and uprobe
9807  * The flags should match following PMU_FORMAT_ATTR().
9808  *
9809  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9810  *                               if not set, create kprobe/uprobe
9811  *
9812  * The following values specify a reference counter (or semaphore in the
9813  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9814  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9815  *
9816  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9817  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9818  */
9819 enum perf_probe_config {
9820         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9821         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9822         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9823 };
9824
9825 PMU_FORMAT_ATTR(retprobe, "config:0");
9826 #endif
9827
9828 #ifdef CONFIG_KPROBE_EVENTS
9829 static struct attribute *kprobe_attrs[] = {
9830         &format_attr_retprobe.attr,
9831         NULL,
9832 };
9833
9834 static struct attribute_group kprobe_format_group = {
9835         .name = "format",
9836         .attrs = kprobe_attrs,
9837 };
9838
9839 static const struct attribute_group *kprobe_attr_groups[] = {
9840         &kprobe_format_group,
9841         NULL,
9842 };
9843
9844 static int perf_kprobe_event_init(struct perf_event *event);
9845 static struct pmu perf_kprobe = {
9846         .task_ctx_nr    = perf_sw_context,
9847         .event_init     = perf_kprobe_event_init,
9848         .add            = perf_trace_add,
9849         .del            = perf_trace_del,
9850         .start          = perf_swevent_start,
9851         .stop           = perf_swevent_stop,
9852         .read           = perf_swevent_read,
9853         .attr_groups    = kprobe_attr_groups,
9854 };
9855
9856 static int perf_kprobe_event_init(struct perf_event *event)
9857 {
9858         int err;
9859         bool is_retprobe;
9860
9861         if (event->attr.type != perf_kprobe.type)
9862                 return -ENOENT;
9863
9864         if (!perfmon_capable())
9865                 return -EACCES;
9866
9867         /*
9868          * no branch sampling for probe events
9869          */
9870         if (has_branch_stack(event))
9871                 return -EOPNOTSUPP;
9872
9873         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9874         err = perf_kprobe_init(event, is_retprobe);
9875         if (err)
9876                 return err;
9877
9878         event->destroy = perf_kprobe_destroy;
9879
9880         return 0;
9881 }
9882 #endif /* CONFIG_KPROBE_EVENTS */
9883
9884 #ifdef CONFIG_UPROBE_EVENTS
9885 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9886
9887 static struct attribute *uprobe_attrs[] = {
9888         &format_attr_retprobe.attr,
9889         &format_attr_ref_ctr_offset.attr,
9890         NULL,
9891 };
9892
9893 static struct attribute_group uprobe_format_group = {
9894         .name = "format",
9895         .attrs = uprobe_attrs,
9896 };
9897
9898 static const struct attribute_group *uprobe_attr_groups[] = {
9899         &uprobe_format_group,
9900         NULL,
9901 };
9902
9903 static int perf_uprobe_event_init(struct perf_event *event);
9904 static struct pmu perf_uprobe = {
9905         .task_ctx_nr    = perf_sw_context,
9906         .event_init     = perf_uprobe_event_init,
9907         .add            = perf_trace_add,
9908         .del            = perf_trace_del,
9909         .start          = perf_swevent_start,
9910         .stop           = perf_swevent_stop,
9911         .read           = perf_swevent_read,
9912         .attr_groups    = uprobe_attr_groups,
9913 };
9914
9915 static int perf_uprobe_event_init(struct perf_event *event)
9916 {
9917         int err;
9918         unsigned long ref_ctr_offset;
9919         bool is_retprobe;
9920
9921         if (event->attr.type != perf_uprobe.type)
9922                 return -ENOENT;
9923
9924         if (!perfmon_capable())
9925                 return -EACCES;
9926
9927         /*
9928          * no branch sampling for probe events
9929          */
9930         if (has_branch_stack(event))
9931                 return -EOPNOTSUPP;
9932
9933         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9934         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9935         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9936         if (err)
9937                 return err;
9938
9939         event->destroy = perf_uprobe_destroy;
9940
9941         return 0;
9942 }
9943 #endif /* CONFIG_UPROBE_EVENTS */
9944
9945 static inline void perf_tp_register(void)
9946 {
9947         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9948 #ifdef CONFIG_KPROBE_EVENTS
9949         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9950 #endif
9951 #ifdef CONFIG_UPROBE_EVENTS
9952         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9953 #endif
9954 }
9955
9956 static void perf_event_free_filter(struct perf_event *event)
9957 {
9958         ftrace_profile_free_filter(event);
9959 }
9960
9961 #ifdef CONFIG_BPF_SYSCALL
9962 static void bpf_overflow_handler(struct perf_event *event,
9963                                  struct perf_sample_data *data,
9964                                  struct pt_regs *regs)
9965 {
9966         struct bpf_perf_event_data_kern ctx = {
9967                 .data = data,
9968                 .event = event,
9969         };
9970         struct bpf_prog *prog;
9971         int ret = 0;
9972
9973         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9974         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9975                 goto out;
9976         rcu_read_lock();
9977         prog = READ_ONCE(event->prog);
9978         if (prog)
9979                 ret = bpf_prog_run(prog, &ctx);
9980         rcu_read_unlock();
9981 out:
9982         __this_cpu_dec(bpf_prog_active);
9983         if (!ret)
9984                 return;
9985
9986         event->orig_overflow_handler(event, data, regs);
9987 }
9988
9989 static int perf_event_set_bpf_handler(struct perf_event *event,
9990                                       struct bpf_prog *prog,
9991                                       u64 bpf_cookie)
9992 {
9993         if (event->overflow_handler_context)
9994                 /* hw breakpoint or kernel counter */
9995                 return -EINVAL;
9996
9997         if (event->prog)
9998                 return -EEXIST;
9999
10000         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10001                 return -EINVAL;
10002
10003         if (event->attr.precise_ip &&
10004             prog->call_get_stack &&
10005             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10006              event->attr.exclude_callchain_kernel ||
10007              event->attr.exclude_callchain_user)) {
10008                 /*
10009                  * On perf_event with precise_ip, calling bpf_get_stack()
10010                  * may trigger unwinder warnings and occasional crashes.
10011                  * bpf_get_[stack|stackid] works around this issue by using
10012                  * callchain attached to perf_sample_data. If the
10013                  * perf_event does not full (kernel and user) callchain
10014                  * attached to perf_sample_data, do not allow attaching BPF
10015                  * program that calls bpf_get_[stack|stackid].
10016                  */
10017                 return -EPROTO;
10018         }
10019
10020         event->prog = prog;
10021         event->bpf_cookie = bpf_cookie;
10022         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10023         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10024         return 0;
10025 }
10026
10027 static void perf_event_free_bpf_handler(struct perf_event *event)
10028 {
10029         struct bpf_prog *prog = event->prog;
10030
10031         if (!prog)
10032                 return;
10033
10034         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10035         event->prog = NULL;
10036         bpf_prog_put(prog);
10037 }
10038 #else
10039 static int perf_event_set_bpf_handler(struct perf_event *event,
10040                                       struct bpf_prog *prog,
10041                                       u64 bpf_cookie)
10042 {
10043         return -EOPNOTSUPP;
10044 }
10045 static void perf_event_free_bpf_handler(struct perf_event *event)
10046 {
10047 }
10048 #endif
10049
10050 /*
10051  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10052  * with perf_event_open()
10053  */
10054 static inline bool perf_event_is_tracing(struct perf_event *event)
10055 {
10056         if (event->pmu == &perf_tracepoint)
10057                 return true;
10058 #ifdef CONFIG_KPROBE_EVENTS
10059         if (event->pmu == &perf_kprobe)
10060                 return true;
10061 #endif
10062 #ifdef CONFIG_UPROBE_EVENTS
10063         if (event->pmu == &perf_uprobe)
10064                 return true;
10065 #endif
10066         return false;
10067 }
10068
10069 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10070                             u64 bpf_cookie)
10071 {
10072         bool is_kprobe, is_tracepoint, is_syscall_tp;
10073
10074         if (!perf_event_is_tracing(event))
10075                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10076
10077         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10078         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10079         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10080         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10081                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10082                 return -EINVAL;
10083
10084         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10085             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10086             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10087                 return -EINVAL;
10088
10089         /* Kprobe override only works for kprobes, not uprobes. */
10090         if (prog->kprobe_override &&
10091             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10092                 return -EINVAL;
10093
10094         if (is_tracepoint || is_syscall_tp) {
10095                 int off = trace_event_get_offsets(event->tp_event);
10096
10097                 if (prog->aux->max_ctx_offset > off)
10098                         return -EACCES;
10099         }
10100
10101         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10102 }
10103
10104 void perf_event_free_bpf_prog(struct perf_event *event)
10105 {
10106         if (!perf_event_is_tracing(event)) {
10107                 perf_event_free_bpf_handler(event);
10108                 return;
10109         }
10110         perf_event_detach_bpf_prog(event);
10111 }
10112
10113 #else
10114
10115 static inline void perf_tp_register(void)
10116 {
10117 }
10118
10119 static void perf_event_free_filter(struct perf_event *event)
10120 {
10121 }
10122
10123 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10124                             u64 bpf_cookie)
10125 {
10126         return -ENOENT;
10127 }
10128
10129 void perf_event_free_bpf_prog(struct perf_event *event)
10130 {
10131 }
10132 #endif /* CONFIG_EVENT_TRACING */
10133
10134 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10135 void perf_bp_event(struct perf_event *bp, void *data)
10136 {
10137         struct perf_sample_data sample;
10138         struct pt_regs *regs = data;
10139
10140         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10141
10142         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10143                 perf_swevent_event(bp, 1, &sample, regs);
10144 }
10145 #endif
10146
10147 /*
10148  * Allocate a new address filter
10149  */
10150 static struct perf_addr_filter *
10151 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10152 {
10153         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10154         struct perf_addr_filter *filter;
10155
10156         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10157         if (!filter)
10158                 return NULL;
10159
10160         INIT_LIST_HEAD(&filter->entry);
10161         list_add_tail(&filter->entry, filters);
10162
10163         return filter;
10164 }
10165
10166 static void free_filters_list(struct list_head *filters)
10167 {
10168         struct perf_addr_filter *filter, *iter;
10169
10170         list_for_each_entry_safe(filter, iter, filters, entry) {
10171                 path_put(&filter->path);
10172                 list_del(&filter->entry);
10173                 kfree(filter);
10174         }
10175 }
10176
10177 /*
10178  * Free existing address filters and optionally install new ones
10179  */
10180 static void perf_addr_filters_splice(struct perf_event *event,
10181                                      struct list_head *head)
10182 {
10183         unsigned long flags;
10184         LIST_HEAD(list);
10185
10186         if (!has_addr_filter(event))
10187                 return;
10188
10189         /* don't bother with children, they don't have their own filters */
10190         if (event->parent)
10191                 return;
10192
10193         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10194
10195         list_splice_init(&event->addr_filters.list, &list);
10196         if (head)
10197                 list_splice(head, &event->addr_filters.list);
10198
10199         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10200
10201         free_filters_list(&list);
10202 }
10203
10204 /*
10205  * Scan through mm's vmas and see if one of them matches the
10206  * @filter; if so, adjust filter's address range.
10207  * Called with mm::mmap_lock down for reading.
10208  */
10209 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10210                                    struct mm_struct *mm,
10211                                    struct perf_addr_filter_range *fr)
10212 {
10213         struct vm_area_struct *vma;
10214
10215         for (vma = mm->mmap; vma; vma = vma->vm_next) {
10216                 if (!vma->vm_file)
10217                         continue;
10218
10219                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10220                         return;
10221         }
10222 }
10223
10224 /*
10225  * Update event's address range filters based on the
10226  * task's existing mappings, if any.
10227  */
10228 static void perf_event_addr_filters_apply(struct perf_event *event)
10229 {
10230         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10231         struct task_struct *task = READ_ONCE(event->ctx->task);
10232         struct perf_addr_filter *filter;
10233         struct mm_struct *mm = NULL;
10234         unsigned int count = 0;
10235         unsigned long flags;
10236
10237         /*
10238          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10239          * will stop on the parent's child_mutex that our caller is also holding
10240          */
10241         if (task == TASK_TOMBSTONE)
10242                 return;
10243
10244         if (ifh->nr_file_filters) {
10245                 mm = get_task_mm(task);
10246                 if (!mm)
10247                         goto restart;
10248
10249                 mmap_read_lock(mm);
10250         }
10251
10252         raw_spin_lock_irqsave(&ifh->lock, flags);
10253         list_for_each_entry(filter, &ifh->list, entry) {
10254                 if (filter->path.dentry) {
10255                         /*
10256                          * Adjust base offset if the filter is associated to a
10257                          * binary that needs to be mapped:
10258                          */
10259                         event->addr_filter_ranges[count].start = 0;
10260                         event->addr_filter_ranges[count].size = 0;
10261
10262                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10263                 } else {
10264                         event->addr_filter_ranges[count].start = filter->offset;
10265                         event->addr_filter_ranges[count].size  = filter->size;
10266                 }
10267
10268                 count++;
10269         }
10270
10271         event->addr_filters_gen++;
10272         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10273
10274         if (ifh->nr_file_filters) {
10275                 mmap_read_unlock(mm);
10276
10277                 mmput(mm);
10278         }
10279
10280 restart:
10281         perf_event_stop(event, 1);
10282 }
10283
10284 /*
10285  * Address range filtering: limiting the data to certain
10286  * instruction address ranges. Filters are ioctl()ed to us from
10287  * userspace as ascii strings.
10288  *
10289  * Filter string format:
10290  *
10291  * ACTION RANGE_SPEC
10292  * where ACTION is one of the
10293  *  * "filter": limit the trace to this region
10294  *  * "start": start tracing from this address
10295  *  * "stop": stop tracing at this address/region;
10296  * RANGE_SPEC is
10297  *  * for kernel addresses: <start address>[/<size>]
10298  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10299  *
10300  * if <size> is not specified or is zero, the range is treated as a single
10301  * address; not valid for ACTION=="filter".
10302  */
10303 enum {
10304         IF_ACT_NONE = -1,
10305         IF_ACT_FILTER,
10306         IF_ACT_START,
10307         IF_ACT_STOP,
10308         IF_SRC_FILE,
10309         IF_SRC_KERNEL,
10310         IF_SRC_FILEADDR,
10311         IF_SRC_KERNELADDR,
10312 };
10313
10314 enum {
10315         IF_STATE_ACTION = 0,
10316         IF_STATE_SOURCE,
10317         IF_STATE_END,
10318 };
10319
10320 static const match_table_t if_tokens = {
10321         { IF_ACT_FILTER,        "filter" },
10322         { IF_ACT_START,         "start" },
10323         { IF_ACT_STOP,          "stop" },
10324         { IF_SRC_FILE,          "%u/%u@%s" },
10325         { IF_SRC_KERNEL,        "%u/%u" },
10326         { IF_SRC_FILEADDR,      "%u@%s" },
10327         { IF_SRC_KERNELADDR,    "%u" },
10328         { IF_ACT_NONE,          NULL },
10329 };
10330
10331 /*
10332  * Address filter string parser
10333  */
10334 static int
10335 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10336                              struct list_head *filters)
10337 {
10338         struct perf_addr_filter *filter = NULL;
10339         char *start, *orig, *filename = NULL;
10340         substring_t args[MAX_OPT_ARGS];
10341         int state = IF_STATE_ACTION, token;
10342         unsigned int kernel = 0;
10343         int ret = -EINVAL;
10344
10345         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10346         if (!fstr)
10347                 return -ENOMEM;
10348
10349         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10350                 static const enum perf_addr_filter_action_t actions[] = {
10351                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10352                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10353                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10354                 };
10355                 ret = -EINVAL;
10356
10357                 if (!*start)
10358                         continue;
10359
10360                 /* filter definition begins */
10361                 if (state == IF_STATE_ACTION) {
10362                         filter = perf_addr_filter_new(event, filters);
10363                         if (!filter)
10364                                 goto fail;
10365                 }
10366
10367                 token = match_token(start, if_tokens, args);
10368                 switch (token) {
10369                 case IF_ACT_FILTER:
10370                 case IF_ACT_START:
10371                 case IF_ACT_STOP:
10372                         if (state != IF_STATE_ACTION)
10373                                 goto fail;
10374
10375                         filter->action = actions[token];
10376                         state = IF_STATE_SOURCE;
10377                         break;
10378
10379                 case IF_SRC_KERNELADDR:
10380                 case IF_SRC_KERNEL:
10381                         kernel = 1;
10382                         fallthrough;
10383
10384                 case IF_SRC_FILEADDR:
10385                 case IF_SRC_FILE:
10386                         if (state != IF_STATE_SOURCE)
10387                                 goto fail;
10388
10389                         *args[0].to = 0;
10390                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10391                         if (ret)
10392                                 goto fail;
10393
10394                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10395                                 *args[1].to = 0;
10396                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10397                                 if (ret)
10398                                         goto fail;
10399                         }
10400
10401                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10402                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10403
10404                                 kfree(filename);
10405                                 filename = match_strdup(&args[fpos]);
10406                                 if (!filename) {
10407                                         ret = -ENOMEM;
10408                                         goto fail;
10409                                 }
10410                         }
10411
10412                         state = IF_STATE_END;
10413                         break;
10414
10415                 default:
10416                         goto fail;
10417                 }
10418
10419                 /*
10420                  * Filter definition is fully parsed, validate and install it.
10421                  * Make sure that it doesn't contradict itself or the event's
10422                  * attribute.
10423                  */
10424                 if (state == IF_STATE_END) {
10425                         ret = -EINVAL;
10426
10427                         /*
10428                          * ACTION "filter" must have a non-zero length region
10429                          * specified.
10430                          */
10431                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10432                             !filter->size)
10433                                 goto fail;
10434
10435                         if (!kernel) {
10436                                 if (!filename)
10437                                         goto fail;
10438
10439                                 /*
10440                                  * For now, we only support file-based filters
10441                                  * in per-task events; doing so for CPU-wide
10442                                  * events requires additional context switching
10443                                  * trickery, since same object code will be
10444                                  * mapped at different virtual addresses in
10445                                  * different processes.
10446                                  */
10447                                 ret = -EOPNOTSUPP;
10448                                 if (!event->ctx->task)
10449                                         goto fail;
10450
10451                                 /* look up the path and grab its inode */
10452                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10453                                                 &filter->path);
10454                                 if (ret)
10455                                         goto fail;
10456
10457                                 ret = -EINVAL;
10458                                 if (!filter->path.dentry ||
10459                                     !S_ISREG(d_inode(filter->path.dentry)
10460                                              ->i_mode))
10461                                         goto fail;
10462
10463                                 event->addr_filters.nr_file_filters++;
10464                         }
10465
10466                         /* ready to consume more filters */
10467                         kfree(filename);
10468                         filename = NULL;
10469                         state = IF_STATE_ACTION;
10470                         filter = NULL;
10471                         kernel = 0;
10472                 }
10473         }
10474
10475         if (state != IF_STATE_ACTION)
10476                 goto fail;
10477
10478         kfree(filename);
10479         kfree(orig);
10480
10481         return 0;
10482
10483 fail:
10484         kfree(filename);
10485         free_filters_list(filters);
10486         kfree(orig);
10487
10488         return ret;
10489 }
10490
10491 static int
10492 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10493 {
10494         LIST_HEAD(filters);
10495         int ret;
10496
10497         /*
10498          * Since this is called in perf_ioctl() path, we're already holding
10499          * ctx::mutex.
10500          */
10501         lockdep_assert_held(&event->ctx->mutex);
10502
10503         if (WARN_ON_ONCE(event->parent))
10504                 return -EINVAL;
10505
10506         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10507         if (ret)
10508                 goto fail_clear_files;
10509
10510         ret = event->pmu->addr_filters_validate(&filters);
10511         if (ret)
10512                 goto fail_free_filters;
10513
10514         /* remove existing filters, if any */
10515         perf_addr_filters_splice(event, &filters);
10516
10517         /* install new filters */
10518         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10519
10520         return ret;
10521
10522 fail_free_filters:
10523         free_filters_list(&filters);
10524
10525 fail_clear_files:
10526         event->addr_filters.nr_file_filters = 0;
10527
10528         return ret;
10529 }
10530
10531 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10532 {
10533         int ret = -EINVAL;
10534         char *filter_str;
10535
10536         filter_str = strndup_user(arg, PAGE_SIZE);
10537         if (IS_ERR(filter_str))
10538                 return PTR_ERR(filter_str);
10539
10540 #ifdef CONFIG_EVENT_TRACING
10541         if (perf_event_is_tracing(event)) {
10542                 struct perf_event_context *ctx = event->ctx;
10543
10544                 /*
10545                  * Beware, here be dragons!!
10546                  *
10547                  * the tracepoint muck will deadlock against ctx->mutex, but
10548                  * the tracepoint stuff does not actually need it. So
10549                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10550                  * already have a reference on ctx.
10551                  *
10552                  * This can result in event getting moved to a different ctx,
10553                  * but that does not affect the tracepoint state.
10554                  */
10555                 mutex_unlock(&ctx->mutex);
10556                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10557                 mutex_lock(&ctx->mutex);
10558         } else
10559 #endif
10560         if (has_addr_filter(event))
10561                 ret = perf_event_set_addr_filter(event, filter_str);
10562
10563         kfree(filter_str);
10564         return ret;
10565 }
10566
10567 /*
10568  * hrtimer based swevent callback
10569  */
10570
10571 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10572 {
10573         enum hrtimer_restart ret = HRTIMER_RESTART;
10574         struct perf_sample_data data;
10575         struct pt_regs *regs;
10576         struct perf_event *event;
10577         u64 period;
10578
10579         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10580
10581         if (event->state != PERF_EVENT_STATE_ACTIVE)
10582                 return HRTIMER_NORESTART;
10583
10584         event->pmu->read(event);
10585
10586         perf_sample_data_init(&data, 0, event->hw.last_period);
10587         regs = get_irq_regs();
10588
10589         if (regs && !perf_exclude_event(event, regs)) {
10590                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10591                         if (__perf_event_overflow(event, 1, &data, regs))
10592                                 ret = HRTIMER_NORESTART;
10593         }
10594
10595         period = max_t(u64, 10000, event->hw.sample_period);
10596         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10597
10598         return ret;
10599 }
10600
10601 static void perf_swevent_start_hrtimer(struct perf_event *event)
10602 {
10603         struct hw_perf_event *hwc = &event->hw;
10604         s64 period;
10605
10606         if (!is_sampling_event(event))
10607                 return;
10608
10609         period = local64_read(&hwc->period_left);
10610         if (period) {
10611                 if (period < 0)
10612                         period = 10000;
10613
10614                 local64_set(&hwc->period_left, 0);
10615         } else {
10616                 period = max_t(u64, 10000, hwc->sample_period);
10617         }
10618         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10619                       HRTIMER_MODE_REL_PINNED_HARD);
10620 }
10621
10622 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10623 {
10624         struct hw_perf_event *hwc = &event->hw;
10625
10626         if (is_sampling_event(event)) {
10627                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10628                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10629
10630                 hrtimer_cancel(&hwc->hrtimer);
10631         }
10632 }
10633
10634 static void perf_swevent_init_hrtimer(struct perf_event *event)
10635 {
10636         struct hw_perf_event *hwc = &event->hw;
10637
10638         if (!is_sampling_event(event))
10639                 return;
10640
10641         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10642         hwc->hrtimer.function = perf_swevent_hrtimer;
10643
10644         /*
10645          * Since hrtimers have a fixed rate, we can do a static freq->period
10646          * mapping and avoid the whole period adjust feedback stuff.
10647          */
10648         if (event->attr.freq) {
10649                 long freq = event->attr.sample_freq;
10650
10651                 event->attr.sample_period = NSEC_PER_SEC / freq;
10652                 hwc->sample_period = event->attr.sample_period;
10653                 local64_set(&hwc->period_left, hwc->sample_period);
10654                 hwc->last_period = hwc->sample_period;
10655                 event->attr.freq = 0;
10656         }
10657 }
10658
10659 /*
10660  * Software event: cpu wall time clock
10661  */
10662
10663 static void cpu_clock_event_update(struct perf_event *event)
10664 {
10665         s64 prev;
10666         u64 now;
10667
10668         now = local_clock();
10669         prev = local64_xchg(&event->hw.prev_count, now);
10670         local64_add(now - prev, &event->count);
10671 }
10672
10673 static void cpu_clock_event_start(struct perf_event *event, int flags)
10674 {
10675         local64_set(&event->hw.prev_count, local_clock());
10676         perf_swevent_start_hrtimer(event);
10677 }
10678
10679 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10680 {
10681         perf_swevent_cancel_hrtimer(event);
10682         cpu_clock_event_update(event);
10683 }
10684
10685 static int cpu_clock_event_add(struct perf_event *event, int flags)
10686 {
10687         if (flags & PERF_EF_START)
10688                 cpu_clock_event_start(event, flags);
10689         perf_event_update_userpage(event);
10690
10691         return 0;
10692 }
10693
10694 static void cpu_clock_event_del(struct perf_event *event, int flags)
10695 {
10696         cpu_clock_event_stop(event, flags);
10697 }
10698
10699 static void cpu_clock_event_read(struct perf_event *event)
10700 {
10701         cpu_clock_event_update(event);
10702 }
10703
10704 static int cpu_clock_event_init(struct perf_event *event)
10705 {
10706         if (event->attr.type != PERF_TYPE_SOFTWARE)
10707                 return -ENOENT;
10708
10709         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10710                 return -ENOENT;
10711
10712         /*
10713          * no branch sampling for software events
10714          */
10715         if (has_branch_stack(event))
10716                 return -EOPNOTSUPP;
10717
10718         perf_swevent_init_hrtimer(event);
10719
10720         return 0;
10721 }
10722
10723 static struct pmu perf_cpu_clock = {
10724         .task_ctx_nr    = perf_sw_context,
10725
10726         .capabilities   = PERF_PMU_CAP_NO_NMI,
10727
10728         .event_init     = cpu_clock_event_init,
10729         .add            = cpu_clock_event_add,
10730         .del            = cpu_clock_event_del,
10731         .start          = cpu_clock_event_start,
10732         .stop           = cpu_clock_event_stop,
10733         .read           = cpu_clock_event_read,
10734 };
10735
10736 /*
10737  * Software event: task time clock
10738  */
10739
10740 static void task_clock_event_update(struct perf_event *event, u64 now)
10741 {
10742         u64 prev;
10743         s64 delta;
10744
10745         prev = local64_xchg(&event->hw.prev_count, now);
10746         delta = now - prev;
10747         local64_add(delta, &event->count);
10748 }
10749
10750 static void task_clock_event_start(struct perf_event *event, int flags)
10751 {
10752         local64_set(&event->hw.prev_count, event->ctx->time);
10753         perf_swevent_start_hrtimer(event);
10754 }
10755
10756 static void task_clock_event_stop(struct perf_event *event, int flags)
10757 {
10758         perf_swevent_cancel_hrtimer(event);
10759         task_clock_event_update(event, event->ctx->time);
10760 }
10761
10762 static int task_clock_event_add(struct perf_event *event, int flags)
10763 {
10764         if (flags & PERF_EF_START)
10765                 task_clock_event_start(event, flags);
10766         perf_event_update_userpage(event);
10767
10768         return 0;
10769 }
10770
10771 static void task_clock_event_del(struct perf_event *event, int flags)
10772 {
10773         task_clock_event_stop(event, PERF_EF_UPDATE);
10774 }
10775
10776 static void task_clock_event_read(struct perf_event *event)
10777 {
10778         u64 now = perf_clock();
10779         u64 delta = now - event->ctx->timestamp;
10780         u64 time = event->ctx->time + delta;
10781
10782         task_clock_event_update(event, time);
10783 }
10784
10785 static int task_clock_event_init(struct perf_event *event)
10786 {
10787         if (event->attr.type != PERF_TYPE_SOFTWARE)
10788                 return -ENOENT;
10789
10790         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10791                 return -ENOENT;
10792
10793         /*
10794          * no branch sampling for software events
10795          */
10796         if (has_branch_stack(event))
10797                 return -EOPNOTSUPP;
10798
10799         perf_swevent_init_hrtimer(event);
10800
10801         return 0;
10802 }
10803
10804 static struct pmu perf_task_clock = {
10805         .task_ctx_nr    = perf_sw_context,
10806
10807         .capabilities   = PERF_PMU_CAP_NO_NMI,
10808
10809         .event_init     = task_clock_event_init,
10810         .add            = task_clock_event_add,
10811         .del            = task_clock_event_del,
10812         .start          = task_clock_event_start,
10813         .stop           = task_clock_event_stop,
10814         .read           = task_clock_event_read,
10815 };
10816
10817 static void perf_pmu_nop_void(struct pmu *pmu)
10818 {
10819 }
10820
10821 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10822 {
10823 }
10824
10825 static int perf_pmu_nop_int(struct pmu *pmu)
10826 {
10827         return 0;
10828 }
10829
10830 static int perf_event_nop_int(struct perf_event *event, u64 value)
10831 {
10832         return 0;
10833 }
10834
10835 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10836
10837 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10838 {
10839         __this_cpu_write(nop_txn_flags, flags);
10840
10841         if (flags & ~PERF_PMU_TXN_ADD)
10842                 return;
10843
10844         perf_pmu_disable(pmu);
10845 }
10846
10847 static int perf_pmu_commit_txn(struct pmu *pmu)
10848 {
10849         unsigned int flags = __this_cpu_read(nop_txn_flags);
10850
10851         __this_cpu_write(nop_txn_flags, 0);
10852
10853         if (flags & ~PERF_PMU_TXN_ADD)
10854                 return 0;
10855
10856         perf_pmu_enable(pmu);
10857         return 0;
10858 }
10859
10860 static void perf_pmu_cancel_txn(struct pmu *pmu)
10861 {
10862         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10863
10864         __this_cpu_write(nop_txn_flags, 0);
10865
10866         if (flags & ~PERF_PMU_TXN_ADD)
10867                 return;
10868
10869         perf_pmu_enable(pmu);
10870 }
10871
10872 static int perf_event_idx_default(struct perf_event *event)
10873 {
10874         return 0;
10875 }
10876
10877 /*
10878  * Ensures all contexts with the same task_ctx_nr have the same
10879  * pmu_cpu_context too.
10880  */
10881 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10882 {
10883         struct pmu *pmu;
10884
10885         if (ctxn < 0)
10886                 return NULL;
10887
10888         list_for_each_entry(pmu, &pmus, entry) {
10889                 if (pmu->task_ctx_nr == ctxn)
10890                         return pmu->pmu_cpu_context;
10891         }
10892
10893         return NULL;
10894 }
10895
10896 static void free_pmu_context(struct pmu *pmu)
10897 {
10898         /*
10899          * Static contexts such as perf_sw_context have a global lifetime
10900          * and may be shared between different PMUs. Avoid freeing them
10901          * when a single PMU is going away.
10902          */
10903         if (pmu->task_ctx_nr > perf_invalid_context)
10904                 return;
10905
10906         free_percpu(pmu->pmu_cpu_context);
10907 }
10908
10909 /*
10910  * Let userspace know that this PMU supports address range filtering:
10911  */
10912 static ssize_t nr_addr_filters_show(struct device *dev,
10913                                     struct device_attribute *attr,
10914                                     char *page)
10915 {
10916         struct pmu *pmu = dev_get_drvdata(dev);
10917
10918         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10919 }
10920 DEVICE_ATTR_RO(nr_addr_filters);
10921
10922 static struct idr pmu_idr;
10923
10924 static ssize_t
10925 type_show(struct device *dev, struct device_attribute *attr, char *page)
10926 {
10927         struct pmu *pmu = dev_get_drvdata(dev);
10928
10929         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10930 }
10931 static DEVICE_ATTR_RO(type);
10932
10933 static ssize_t
10934 perf_event_mux_interval_ms_show(struct device *dev,
10935                                 struct device_attribute *attr,
10936                                 char *page)
10937 {
10938         struct pmu *pmu = dev_get_drvdata(dev);
10939
10940         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10941 }
10942
10943 static DEFINE_MUTEX(mux_interval_mutex);
10944
10945 static ssize_t
10946 perf_event_mux_interval_ms_store(struct device *dev,
10947                                  struct device_attribute *attr,
10948                                  const char *buf, size_t count)
10949 {
10950         struct pmu *pmu = dev_get_drvdata(dev);
10951         int timer, cpu, ret;
10952
10953         ret = kstrtoint(buf, 0, &timer);
10954         if (ret)
10955                 return ret;
10956
10957         if (timer < 1)
10958                 return -EINVAL;
10959
10960         /* same value, noting to do */
10961         if (timer == pmu->hrtimer_interval_ms)
10962                 return count;
10963
10964         mutex_lock(&mux_interval_mutex);
10965         pmu->hrtimer_interval_ms = timer;
10966
10967         /* update all cpuctx for this PMU */
10968         cpus_read_lock();
10969         for_each_online_cpu(cpu) {
10970                 struct perf_cpu_context *cpuctx;
10971                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10972                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10973
10974                 cpu_function_call(cpu,
10975                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10976         }
10977         cpus_read_unlock();
10978         mutex_unlock(&mux_interval_mutex);
10979
10980         return count;
10981 }
10982 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10983
10984 static struct attribute *pmu_dev_attrs[] = {
10985         &dev_attr_type.attr,
10986         &dev_attr_perf_event_mux_interval_ms.attr,
10987         NULL,
10988 };
10989 ATTRIBUTE_GROUPS(pmu_dev);
10990
10991 static int pmu_bus_running;
10992 static struct bus_type pmu_bus = {
10993         .name           = "event_source",
10994         .dev_groups     = pmu_dev_groups,
10995 };
10996
10997 static void pmu_dev_release(struct device *dev)
10998 {
10999         kfree(dev);
11000 }
11001
11002 static int pmu_dev_alloc(struct pmu *pmu)
11003 {
11004         int ret = -ENOMEM;
11005
11006         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11007         if (!pmu->dev)
11008                 goto out;
11009
11010         pmu->dev->groups = pmu->attr_groups;
11011         device_initialize(pmu->dev);
11012         ret = dev_set_name(pmu->dev, "%s", pmu->name);
11013         if (ret)
11014                 goto free_dev;
11015
11016         dev_set_drvdata(pmu->dev, pmu);
11017         pmu->dev->bus = &pmu_bus;
11018         pmu->dev->release = pmu_dev_release;
11019         ret = device_add(pmu->dev);
11020         if (ret)
11021                 goto free_dev;
11022
11023         /* For PMUs with address filters, throw in an extra attribute: */
11024         if (pmu->nr_addr_filters)
11025                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11026
11027         if (ret)
11028                 goto del_dev;
11029
11030         if (pmu->attr_update)
11031                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11032
11033         if (ret)
11034                 goto del_dev;
11035
11036 out:
11037         return ret;
11038
11039 del_dev:
11040         device_del(pmu->dev);
11041
11042 free_dev:
11043         put_device(pmu->dev);
11044         goto out;
11045 }
11046
11047 static struct lock_class_key cpuctx_mutex;
11048 static struct lock_class_key cpuctx_lock;
11049
11050 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11051 {
11052         int cpu, ret, max = PERF_TYPE_MAX;
11053
11054         mutex_lock(&pmus_lock);
11055         ret = -ENOMEM;
11056         pmu->pmu_disable_count = alloc_percpu(int);
11057         if (!pmu->pmu_disable_count)
11058                 goto unlock;
11059
11060         pmu->type = -1;
11061         if (!name)
11062                 goto skip_type;
11063         pmu->name = name;
11064
11065         if (type != PERF_TYPE_SOFTWARE) {
11066                 if (type >= 0)
11067                         max = type;
11068
11069                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11070                 if (ret < 0)
11071                         goto free_pdc;
11072
11073                 WARN_ON(type >= 0 && ret != type);
11074
11075                 type = ret;
11076         }
11077         pmu->type = type;
11078
11079         if (pmu_bus_running) {
11080                 ret = pmu_dev_alloc(pmu);
11081                 if (ret)
11082                         goto free_idr;
11083         }
11084
11085 skip_type:
11086         if (pmu->task_ctx_nr == perf_hw_context) {
11087                 static int hw_context_taken = 0;
11088
11089                 /*
11090                  * Other than systems with heterogeneous CPUs, it never makes
11091                  * sense for two PMUs to share perf_hw_context. PMUs which are
11092                  * uncore must use perf_invalid_context.
11093                  */
11094                 if (WARN_ON_ONCE(hw_context_taken &&
11095                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11096                         pmu->task_ctx_nr = perf_invalid_context;
11097
11098                 hw_context_taken = 1;
11099         }
11100
11101         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11102         if (pmu->pmu_cpu_context)
11103                 goto got_cpu_context;
11104
11105         ret = -ENOMEM;
11106         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11107         if (!pmu->pmu_cpu_context)
11108                 goto free_dev;
11109
11110         for_each_possible_cpu(cpu) {
11111                 struct perf_cpu_context *cpuctx;
11112
11113                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11114                 __perf_event_init_context(&cpuctx->ctx);
11115                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11116                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11117                 cpuctx->ctx.pmu = pmu;
11118                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11119
11120                 __perf_mux_hrtimer_init(cpuctx, cpu);
11121
11122                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11123                 cpuctx->heap = cpuctx->heap_default;
11124         }
11125
11126 got_cpu_context:
11127         if (!pmu->start_txn) {
11128                 if (pmu->pmu_enable) {
11129                         /*
11130                          * If we have pmu_enable/pmu_disable calls, install
11131                          * transaction stubs that use that to try and batch
11132                          * hardware accesses.
11133                          */
11134                         pmu->start_txn  = perf_pmu_start_txn;
11135                         pmu->commit_txn = perf_pmu_commit_txn;
11136                         pmu->cancel_txn = perf_pmu_cancel_txn;
11137                 } else {
11138                         pmu->start_txn  = perf_pmu_nop_txn;
11139                         pmu->commit_txn = perf_pmu_nop_int;
11140                         pmu->cancel_txn = perf_pmu_nop_void;
11141                 }
11142         }
11143
11144         if (!pmu->pmu_enable) {
11145                 pmu->pmu_enable  = perf_pmu_nop_void;
11146                 pmu->pmu_disable = perf_pmu_nop_void;
11147         }
11148
11149         if (!pmu->check_period)
11150                 pmu->check_period = perf_event_nop_int;
11151
11152         if (!pmu->event_idx)
11153                 pmu->event_idx = perf_event_idx_default;
11154
11155         /*
11156          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11157          * since these cannot be in the IDR. This way the linear search
11158          * is fast, provided a valid software event is provided.
11159          */
11160         if (type == PERF_TYPE_SOFTWARE || !name)
11161                 list_add_rcu(&pmu->entry, &pmus);
11162         else
11163                 list_add_tail_rcu(&pmu->entry, &pmus);
11164
11165         atomic_set(&pmu->exclusive_cnt, 0);
11166         ret = 0;
11167 unlock:
11168         mutex_unlock(&pmus_lock);
11169
11170         return ret;
11171
11172 free_dev:
11173         device_del(pmu->dev);
11174         put_device(pmu->dev);
11175
11176 free_idr:
11177         if (pmu->type != PERF_TYPE_SOFTWARE)
11178                 idr_remove(&pmu_idr, pmu->type);
11179
11180 free_pdc:
11181         free_percpu(pmu->pmu_disable_count);
11182         goto unlock;
11183 }
11184 EXPORT_SYMBOL_GPL(perf_pmu_register);
11185
11186 void perf_pmu_unregister(struct pmu *pmu)
11187 {
11188         mutex_lock(&pmus_lock);
11189         list_del_rcu(&pmu->entry);
11190
11191         /*
11192          * We dereference the pmu list under both SRCU and regular RCU, so
11193          * synchronize against both of those.
11194          */
11195         synchronize_srcu(&pmus_srcu);
11196         synchronize_rcu();
11197
11198         free_percpu(pmu->pmu_disable_count);
11199         if (pmu->type != PERF_TYPE_SOFTWARE)
11200                 idr_remove(&pmu_idr, pmu->type);
11201         if (pmu_bus_running) {
11202                 if (pmu->nr_addr_filters)
11203                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11204                 device_del(pmu->dev);
11205                 put_device(pmu->dev);
11206         }
11207         free_pmu_context(pmu);
11208         mutex_unlock(&pmus_lock);
11209 }
11210 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11211
11212 static inline bool has_extended_regs(struct perf_event *event)
11213 {
11214         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11215                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11216 }
11217
11218 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11219 {
11220         struct perf_event_context *ctx = NULL;
11221         int ret;
11222
11223         if (!try_module_get(pmu->module))
11224                 return -ENODEV;
11225
11226         /*
11227          * A number of pmu->event_init() methods iterate the sibling_list to,
11228          * for example, validate if the group fits on the PMU. Therefore,
11229          * if this is a sibling event, acquire the ctx->mutex to protect
11230          * the sibling_list.
11231          */
11232         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11233                 /*
11234                  * This ctx->mutex can nest when we're called through
11235                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11236                  */
11237                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11238                                                  SINGLE_DEPTH_NESTING);
11239                 BUG_ON(!ctx);
11240         }
11241
11242         event->pmu = pmu;
11243         ret = pmu->event_init(event);
11244
11245         if (ctx)
11246                 perf_event_ctx_unlock(event->group_leader, ctx);
11247
11248         if (!ret) {
11249                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11250                     has_extended_regs(event))
11251                         ret = -EOPNOTSUPP;
11252
11253                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11254                     event_has_any_exclude_flag(event))
11255                         ret = -EINVAL;
11256
11257                 if (ret && event->destroy)
11258                         event->destroy(event);
11259         }
11260
11261         if (ret)
11262                 module_put(pmu->module);
11263
11264         return ret;
11265 }
11266
11267 static struct pmu *perf_init_event(struct perf_event *event)
11268 {
11269         bool extended_type = false;
11270         int idx, type, ret;
11271         struct pmu *pmu;
11272
11273         idx = srcu_read_lock(&pmus_srcu);
11274
11275         /* Try parent's PMU first: */
11276         if (event->parent && event->parent->pmu) {
11277                 pmu = event->parent->pmu;
11278                 ret = perf_try_init_event(pmu, event);
11279                 if (!ret)
11280                         goto unlock;
11281         }
11282
11283         /*
11284          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11285          * are often aliases for PERF_TYPE_RAW.
11286          */
11287         type = event->attr.type;
11288         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11289                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11290                 if (!type) {
11291                         type = PERF_TYPE_RAW;
11292                 } else {
11293                         extended_type = true;
11294                         event->attr.config &= PERF_HW_EVENT_MASK;
11295                 }
11296         }
11297
11298 again:
11299         rcu_read_lock();
11300         pmu = idr_find(&pmu_idr, type);
11301         rcu_read_unlock();
11302         if (pmu) {
11303                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11304                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11305                         goto fail;
11306
11307                 ret = perf_try_init_event(pmu, event);
11308                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11309                         type = event->attr.type;
11310                         goto again;
11311                 }
11312
11313                 if (ret)
11314                         pmu = ERR_PTR(ret);
11315
11316                 goto unlock;
11317         }
11318
11319         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11320                 ret = perf_try_init_event(pmu, event);
11321                 if (!ret)
11322                         goto unlock;
11323
11324                 if (ret != -ENOENT) {
11325                         pmu = ERR_PTR(ret);
11326                         goto unlock;
11327                 }
11328         }
11329 fail:
11330         pmu = ERR_PTR(-ENOENT);
11331 unlock:
11332         srcu_read_unlock(&pmus_srcu, idx);
11333
11334         return pmu;
11335 }
11336
11337 static void attach_sb_event(struct perf_event *event)
11338 {
11339         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11340
11341         raw_spin_lock(&pel->lock);
11342         list_add_rcu(&event->sb_list, &pel->list);
11343         raw_spin_unlock(&pel->lock);
11344 }
11345
11346 /*
11347  * We keep a list of all !task (and therefore per-cpu) events
11348  * that need to receive side-band records.
11349  *
11350  * This avoids having to scan all the various PMU per-cpu contexts
11351  * looking for them.
11352  */
11353 static void account_pmu_sb_event(struct perf_event *event)
11354 {
11355         if (is_sb_event(event))
11356                 attach_sb_event(event);
11357 }
11358
11359 static void account_event_cpu(struct perf_event *event, int cpu)
11360 {
11361         if (event->parent)
11362                 return;
11363
11364         if (is_cgroup_event(event))
11365                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11366 }
11367
11368 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11369 static void account_freq_event_nohz(void)
11370 {
11371 #ifdef CONFIG_NO_HZ_FULL
11372         /* Lock so we don't race with concurrent unaccount */
11373         spin_lock(&nr_freq_lock);
11374         if (atomic_inc_return(&nr_freq_events) == 1)
11375                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11376         spin_unlock(&nr_freq_lock);
11377 #endif
11378 }
11379
11380 static void account_freq_event(void)
11381 {
11382         if (tick_nohz_full_enabled())
11383                 account_freq_event_nohz();
11384         else
11385                 atomic_inc(&nr_freq_events);
11386 }
11387
11388
11389 static void account_event(struct perf_event *event)
11390 {
11391         bool inc = false;
11392
11393         if (event->parent)
11394                 return;
11395
11396         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11397                 inc = true;
11398         if (event->attr.mmap || event->attr.mmap_data)
11399                 atomic_inc(&nr_mmap_events);
11400         if (event->attr.build_id)
11401                 atomic_inc(&nr_build_id_events);
11402         if (event->attr.comm)
11403                 atomic_inc(&nr_comm_events);
11404         if (event->attr.namespaces)
11405                 atomic_inc(&nr_namespaces_events);
11406         if (event->attr.cgroup)
11407                 atomic_inc(&nr_cgroup_events);
11408         if (event->attr.task)
11409                 atomic_inc(&nr_task_events);
11410         if (event->attr.freq)
11411                 account_freq_event();
11412         if (event->attr.context_switch) {
11413                 atomic_inc(&nr_switch_events);
11414                 inc = true;
11415         }
11416         if (has_branch_stack(event))
11417                 inc = true;
11418         if (is_cgroup_event(event))
11419                 inc = true;
11420         if (event->attr.ksymbol)
11421                 atomic_inc(&nr_ksymbol_events);
11422         if (event->attr.bpf_event)
11423                 atomic_inc(&nr_bpf_events);
11424         if (event->attr.text_poke)
11425                 atomic_inc(&nr_text_poke_events);
11426
11427         if (inc) {
11428                 /*
11429                  * We need the mutex here because static_branch_enable()
11430                  * must complete *before* the perf_sched_count increment
11431                  * becomes visible.
11432                  */
11433                 if (atomic_inc_not_zero(&perf_sched_count))
11434                         goto enabled;
11435
11436                 mutex_lock(&perf_sched_mutex);
11437                 if (!atomic_read(&perf_sched_count)) {
11438                         static_branch_enable(&perf_sched_events);
11439                         /*
11440                          * Guarantee that all CPUs observe they key change and
11441                          * call the perf scheduling hooks before proceeding to
11442                          * install events that need them.
11443                          */
11444                         synchronize_rcu();
11445                 }
11446                 /*
11447                  * Now that we have waited for the sync_sched(), allow further
11448                  * increments to by-pass the mutex.
11449                  */
11450                 atomic_inc(&perf_sched_count);
11451                 mutex_unlock(&perf_sched_mutex);
11452         }
11453 enabled:
11454
11455         account_event_cpu(event, event->cpu);
11456
11457         account_pmu_sb_event(event);
11458 }
11459
11460 /*
11461  * Allocate and initialize an event structure
11462  */
11463 static struct perf_event *
11464 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11465                  struct task_struct *task,
11466                  struct perf_event *group_leader,
11467                  struct perf_event *parent_event,
11468                  perf_overflow_handler_t overflow_handler,
11469                  void *context, int cgroup_fd)
11470 {
11471         struct pmu *pmu;
11472         struct perf_event *event;
11473         struct hw_perf_event *hwc;
11474         long err = -EINVAL;
11475         int node;
11476
11477         if ((unsigned)cpu >= nr_cpu_ids) {
11478                 if (!task || cpu != -1)
11479                         return ERR_PTR(-EINVAL);
11480         }
11481         if (attr->sigtrap && !task) {
11482                 /* Requires a task: avoid signalling random tasks. */
11483                 return ERR_PTR(-EINVAL);
11484         }
11485
11486         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11487         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11488                                       node);
11489         if (!event)
11490                 return ERR_PTR(-ENOMEM);
11491
11492         /*
11493          * Single events are their own group leaders, with an
11494          * empty sibling list:
11495          */
11496         if (!group_leader)
11497                 group_leader = event;
11498
11499         mutex_init(&event->child_mutex);
11500         INIT_LIST_HEAD(&event->child_list);
11501
11502         INIT_LIST_HEAD(&event->event_entry);
11503         INIT_LIST_HEAD(&event->sibling_list);
11504         INIT_LIST_HEAD(&event->active_list);
11505         init_event_group(event);
11506         INIT_LIST_HEAD(&event->rb_entry);
11507         INIT_LIST_HEAD(&event->active_entry);
11508         INIT_LIST_HEAD(&event->addr_filters.list);
11509         INIT_HLIST_NODE(&event->hlist_entry);
11510
11511
11512         init_waitqueue_head(&event->waitq);
11513         event->pending_disable = -1;
11514         init_irq_work(&event->pending, perf_pending_event);
11515
11516         mutex_init(&event->mmap_mutex);
11517         raw_spin_lock_init(&event->addr_filters.lock);
11518
11519         atomic_long_set(&event->refcount, 1);
11520         event->cpu              = cpu;
11521         event->attr             = *attr;
11522         event->group_leader     = group_leader;
11523         event->pmu              = NULL;
11524         event->oncpu            = -1;
11525
11526         event->parent           = parent_event;
11527
11528         event->ns               = get_pid_ns(task_active_pid_ns(current));
11529         event->id               = atomic64_inc_return(&perf_event_id);
11530
11531         event->state            = PERF_EVENT_STATE_INACTIVE;
11532
11533         if (parent_event)
11534                 event->event_caps = parent_event->event_caps;
11535
11536         if (event->attr.sigtrap)
11537                 atomic_set(&event->event_limit, 1);
11538
11539         if (task) {
11540                 event->attach_state = PERF_ATTACH_TASK;
11541                 /*
11542                  * XXX pmu::event_init needs to know what task to account to
11543                  * and we cannot use the ctx information because we need the
11544                  * pmu before we get a ctx.
11545                  */
11546                 event->hw.target = get_task_struct(task);
11547         }
11548
11549         event->clock = &local_clock;
11550         if (parent_event)
11551                 event->clock = parent_event->clock;
11552
11553         if (!overflow_handler && parent_event) {
11554                 overflow_handler = parent_event->overflow_handler;
11555                 context = parent_event->overflow_handler_context;
11556 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11557                 if (overflow_handler == bpf_overflow_handler) {
11558                         struct bpf_prog *prog = parent_event->prog;
11559
11560                         bpf_prog_inc(prog);
11561                         event->prog = prog;
11562                         event->orig_overflow_handler =
11563                                 parent_event->orig_overflow_handler;
11564                 }
11565 #endif
11566         }
11567
11568         if (overflow_handler) {
11569                 event->overflow_handler = overflow_handler;
11570                 event->overflow_handler_context = context;
11571         } else if (is_write_backward(event)){
11572                 event->overflow_handler = perf_event_output_backward;
11573                 event->overflow_handler_context = NULL;
11574         } else {
11575                 event->overflow_handler = perf_event_output_forward;
11576                 event->overflow_handler_context = NULL;
11577         }
11578
11579         perf_event__state_init(event);
11580
11581         pmu = NULL;
11582
11583         hwc = &event->hw;
11584         hwc->sample_period = attr->sample_period;
11585         if (attr->freq && attr->sample_freq)
11586                 hwc->sample_period = 1;
11587         hwc->last_period = hwc->sample_period;
11588
11589         local64_set(&hwc->period_left, hwc->sample_period);
11590
11591         /*
11592          * We currently do not support PERF_SAMPLE_READ on inherited events.
11593          * See perf_output_read().
11594          */
11595         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11596                 goto err_ns;
11597
11598         if (!has_branch_stack(event))
11599                 event->attr.branch_sample_type = 0;
11600
11601         pmu = perf_init_event(event);
11602         if (IS_ERR(pmu)) {
11603                 err = PTR_ERR(pmu);
11604                 goto err_ns;
11605         }
11606
11607         /*
11608          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11609          * be different on other CPUs in the uncore mask.
11610          */
11611         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11612                 err = -EINVAL;
11613                 goto err_pmu;
11614         }
11615
11616         if (event->attr.aux_output &&
11617             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11618                 err = -EOPNOTSUPP;
11619                 goto err_pmu;
11620         }
11621
11622         if (cgroup_fd != -1) {
11623                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11624                 if (err)
11625                         goto err_pmu;
11626         }
11627
11628         err = exclusive_event_init(event);
11629         if (err)
11630                 goto err_pmu;
11631
11632         if (has_addr_filter(event)) {
11633                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11634                                                     sizeof(struct perf_addr_filter_range),
11635                                                     GFP_KERNEL);
11636                 if (!event->addr_filter_ranges) {
11637                         err = -ENOMEM;
11638                         goto err_per_task;
11639                 }
11640
11641                 /*
11642                  * Clone the parent's vma offsets: they are valid until exec()
11643                  * even if the mm is not shared with the parent.
11644                  */
11645                 if (event->parent) {
11646                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11647
11648                         raw_spin_lock_irq(&ifh->lock);
11649                         memcpy(event->addr_filter_ranges,
11650                                event->parent->addr_filter_ranges,
11651                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11652                         raw_spin_unlock_irq(&ifh->lock);
11653                 }
11654
11655                 /* force hw sync on the address filters */
11656                 event->addr_filters_gen = 1;
11657         }
11658
11659         if (!event->parent) {
11660                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11661                         err = get_callchain_buffers(attr->sample_max_stack);
11662                         if (err)
11663                                 goto err_addr_filters;
11664                 }
11665         }
11666
11667         err = security_perf_event_alloc(event);
11668         if (err)
11669                 goto err_callchain_buffer;
11670
11671         /* symmetric to unaccount_event() in _free_event() */
11672         account_event(event);
11673
11674         return event;
11675
11676 err_callchain_buffer:
11677         if (!event->parent) {
11678                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11679                         put_callchain_buffers();
11680         }
11681 err_addr_filters:
11682         kfree(event->addr_filter_ranges);
11683
11684 err_per_task:
11685         exclusive_event_destroy(event);
11686
11687 err_pmu:
11688         if (is_cgroup_event(event))
11689                 perf_detach_cgroup(event);
11690         if (event->destroy)
11691                 event->destroy(event);
11692         module_put(pmu->module);
11693 err_ns:
11694         if (event->ns)
11695                 put_pid_ns(event->ns);
11696         if (event->hw.target)
11697                 put_task_struct(event->hw.target);
11698         kmem_cache_free(perf_event_cache, event);
11699
11700         return ERR_PTR(err);
11701 }
11702
11703 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11704                           struct perf_event_attr *attr)
11705 {
11706         u32 size;
11707         int ret;
11708
11709         /* Zero the full structure, so that a short copy will be nice. */
11710         memset(attr, 0, sizeof(*attr));
11711
11712         ret = get_user(size, &uattr->size);
11713         if (ret)
11714                 return ret;
11715
11716         /* ABI compatibility quirk: */
11717         if (!size)
11718                 size = PERF_ATTR_SIZE_VER0;
11719         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11720                 goto err_size;
11721
11722         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11723         if (ret) {
11724                 if (ret == -E2BIG)
11725                         goto err_size;
11726                 return ret;
11727         }
11728
11729         attr->size = size;
11730
11731         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11732                 return -EINVAL;
11733
11734         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11735                 return -EINVAL;
11736
11737         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11738                 return -EINVAL;
11739
11740         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11741                 u64 mask = attr->branch_sample_type;
11742
11743                 /* only using defined bits */
11744                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11745                         return -EINVAL;
11746
11747                 /* at least one branch bit must be set */
11748                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11749                         return -EINVAL;
11750
11751                 /* propagate priv level, when not set for branch */
11752                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11753
11754                         /* exclude_kernel checked on syscall entry */
11755                         if (!attr->exclude_kernel)
11756                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11757
11758                         if (!attr->exclude_user)
11759                                 mask |= PERF_SAMPLE_BRANCH_USER;
11760
11761                         if (!attr->exclude_hv)
11762                                 mask |= PERF_SAMPLE_BRANCH_HV;
11763                         /*
11764                          * adjust user setting (for HW filter setup)
11765                          */
11766                         attr->branch_sample_type = mask;
11767                 }
11768                 /* privileged levels capture (kernel, hv): check permissions */
11769                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11770                         ret = perf_allow_kernel(attr);
11771                         if (ret)
11772                                 return ret;
11773                 }
11774         }
11775
11776         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11777                 ret = perf_reg_validate(attr->sample_regs_user);
11778                 if (ret)
11779                         return ret;
11780         }
11781
11782         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11783                 if (!arch_perf_have_user_stack_dump())
11784                         return -ENOSYS;
11785
11786                 /*
11787                  * We have __u32 type for the size, but so far
11788                  * we can only use __u16 as maximum due to the
11789                  * __u16 sample size limit.
11790                  */
11791                 if (attr->sample_stack_user >= USHRT_MAX)
11792                         return -EINVAL;
11793                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11794                         return -EINVAL;
11795         }
11796
11797         if (!attr->sample_max_stack)
11798                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11799
11800         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11801                 ret = perf_reg_validate(attr->sample_regs_intr);
11802
11803 #ifndef CONFIG_CGROUP_PERF
11804         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11805                 return -EINVAL;
11806 #endif
11807         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11808             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11809                 return -EINVAL;
11810
11811         if (!attr->inherit && attr->inherit_thread)
11812                 return -EINVAL;
11813
11814         if (attr->remove_on_exec && attr->enable_on_exec)
11815                 return -EINVAL;
11816
11817         if (attr->sigtrap && !attr->remove_on_exec)
11818                 return -EINVAL;
11819
11820 out:
11821         return ret;
11822
11823 err_size:
11824         put_user(sizeof(*attr), &uattr->size);
11825         ret = -E2BIG;
11826         goto out;
11827 }
11828
11829 static int
11830 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11831 {
11832         struct perf_buffer *rb = NULL;
11833         int ret = -EINVAL;
11834
11835         if (!output_event)
11836                 goto set;
11837
11838         /* don't allow circular references */
11839         if (event == output_event)
11840                 goto out;
11841
11842         /*
11843          * Don't allow cross-cpu buffers
11844          */
11845         if (output_event->cpu != event->cpu)
11846                 goto out;
11847
11848         /*
11849          * If its not a per-cpu rb, it must be the same task.
11850          */
11851         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11852                 goto out;
11853
11854         /*
11855          * Mixing clocks in the same buffer is trouble you don't need.
11856          */
11857         if (output_event->clock != event->clock)
11858                 goto out;
11859
11860         /*
11861          * Either writing ring buffer from beginning or from end.
11862          * Mixing is not allowed.
11863          */
11864         if (is_write_backward(output_event) != is_write_backward(event))
11865                 goto out;
11866
11867         /*
11868          * If both events generate aux data, they must be on the same PMU
11869          */
11870         if (has_aux(event) && has_aux(output_event) &&
11871             event->pmu != output_event->pmu)
11872                 goto out;
11873
11874 set:
11875         mutex_lock(&event->mmap_mutex);
11876         /* Can't redirect output if we've got an active mmap() */
11877         if (atomic_read(&event->mmap_count))
11878                 goto unlock;
11879
11880         if (output_event) {
11881                 /* get the rb we want to redirect to */
11882                 rb = ring_buffer_get(output_event);
11883                 if (!rb)
11884                         goto unlock;
11885         }
11886
11887         ring_buffer_attach(event, rb);
11888
11889         ret = 0;
11890 unlock:
11891         mutex_unlock(&event->mmap_mutex);
11892
11893 out:
11894         return ret;
11895 }
11896
11897 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11898 {
11899         if (b < a)
11900                 swap(a, b);
11901
11902         mutex_lock(a);
11903         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11904 }
11905
11906 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11907 {
11908         bool nmi_safe = false;
11909
11910         switch (clk_id) {
11911         case CLOCK_MONOTONIC:
11912                 event->clock = &ktime_get_mono_fast_ns;
11913                 nmi_safe = true;
11914                 break;
11915
11916         case CLOCK_MONOTONIC_RAW:
11917                 event->clock = &ktime_get_raw_fast_ns;
11918                 nmi_safe = true;
11919                 break;
11920
11921         case CLOCK_REALTIME:
11922                 event->clock = &ktime_get_real_ns;
11923                 break;
11924
11925         case CLOCK_BOOTTIME:
11926                 event->clock = &ktime_get_boottime_ns;
11927                 break;
11928
11929         case CLOCK_TAI:
11930                 event->clock = &ktime_get_clocktai_ns;
11931                 break;
11932
11933         default:
11934                 return -EINVAL;
11935         }
11936
11937         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11938                 return -EINVAL;
11939
11940         return 0;
11941 }
11942
11943 /*
11944  * Variation on perf_event_ctx_lock_nested(), except we take two context
11945  * mutexes.
11946  */
11947 static struct perf_event_context *
11948 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11949                              struct perf_event_context *ctx)
11950 {
11951         struct perf_event_context *gctx;
11952
11953 again:
11954         rcu_read_lock();
11955         gctx = READ_ONCE(group_leader->ctx);
11956         if (!refcount_inc_not_zero(&gctx->refcount)) {
11957                 rcu_read_unlock();
11958                 goto again;
11959         }
11960         rcu_read_unlock();
11961
11962         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11963
11964         if (group_leader->ctx != gctx) {
11965                 mutex_unlock(&ctx->mutex);
11966                 mutex_unlock(&gctx->mutex);
11967                 put_ctx(gctx);
11968                 goto again;
11969         }
11970
11971         return gctx;
11972 }
11973
11974 static bool
11975 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
11976 {
11977         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
11978         bool is_capable = perfmon_capable();
11979
11980         if (attr->sigtrap) {
11981                 /*
11982                  * perf_event_attr::sigtrap sends signals to the other task.
11983                  * Require the current task to also have CAP_KILL.
11984                  */
11985                 rcu_read_lock();
11986                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
11987                 rcu_read_unlock();
11988
11989                 /*
11990                  * If the required capabilities aren't available, checks for
11991                  * ptrace permissions: upgrade to ATTACH, since sending signals
11992                  * can effectively change the target task.
11993                  */
11994                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
11995         }
11996
11997         /*
11998          * Preserve ptrace permission check for backwards compatibility. The
11999          * ptrace check also includes checks that the current task and other
12000          * task have matching uids, and is therefore not done here explicitly.
12001          */
12002         return is_capable || ptrace_may_access(task, ptrace_mode);
12003 }
12004
12005 /**
12006  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12007  *
12008  * @attr_uptr:  event_id type attributes for monitoring/sampling
12009  * @pid:                target pid
12010  * @cpu:                target cpu
12011  * @group_fd:           group leader event fd
12012  * @flags:              perf event open flags
12013  */
12014 SYSCALL_DEFINE5(perf_event_open,
12015                 struct perf_event_attr __user *, attr_uptr,
12016                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12017 {
12018         struct perf_event *group_leader = NULL, *output_event = NULL;
12019         struct perf_event *event, *sibling;
12020         struct perf_event_attr attr;
12021         struct perf_event_context *ctx, *gctx;
12022         struct file *event_file = NULL;
12023         struct fd group = {NULL, 0};
12024         struct task_struct *task = NULL;
12025         struct pmu *pmu;
12026         int event_fd;
12027         int move_group = 0;
12028         int err;
12029         int f_flags = O_RDWR;
12030         int cgroup_fd = -1;
12031
12032         /* for future expandability... */
12033         if (flags & ~PERF_FLAG_ALL)
12034                 return -EINVAL;
12035
12036         /* Do we allow access to perf_event_open(2) ? */
12037         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12038         if (err)
12039                 return err;
12040
12041         err = perf_copy_attr(attr_uptr, &attr);
12042         if (err)
12043                 return err;
12044
12045         if (!attr.exclude_kernel) {
12046                 err = perf_allow_kernel(&attr);
12047                 if (err)
12048                         return err;
12049         }
12050
12051         if (attr.namespaces) {
12052                 if (!perfmon_capable())
12053                         return -EACCES;
12054         }
12055
12056         if (attr.freq) {
12057                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12058                         return -EINVAL;
12059         } else {
12060                 if (attr.sample_period & (1ULL << 63))
12061                         return -EINVAL;
12062         }
12063
12064         /* Only privileged users can get physical addresses */
12065         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12066                 err = perf_allow_kernel(&attr);
12067                 if (err)
12068                         return err;
12069         }
12070
12071         /* REGS_INTR can leak data, lockdown must prevent this */
12072         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12073                 err = security_locked_down(LOCKDOWN_PERF);
12074                 if (err)
12075                         return err;
12076         }
12077
12078         /*
12079          * In cgroup mode, the pid argument is used to pass the fd
12080          * opened to the cgroup directory in cgroupfs. The cpu argument
12081          * designates the cpu on which to monitor threads from that
12082          * cgroup.
12083          */
12084         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12085                 return -EINVAL;
12086
12087         if (flags & PERF_FLAG_FD_CLOEXEC)
12088                 f_flags |= O_CLOEXEC;
12089
12090         event_fd = get_unused_fd_flags(f_flags);
12091         if (event_fd < 0)
12092                 return event_fd;
12093
12094         if (group_fd != -1) {
12095                 err = perf_fget_light(group_fd, &group);
12096                 if (err)
12097                         goto err_fd;
12098                 group_leader = group.file->private_data;
12099                 if (flags & PERF_FLAG_FD_OUTPUT)
12100                         output_event = group_leader;
12101                 if (flags & PERF_FLAG_FD_NO_GROUP)
12102                         group_leader = NULL;
12103         }
12104
12105         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12106                 task = find_lively_task_by_vpid(pid);
12107                 if (IS_ERR(task)) {
12108                         err = PTR_ERR(task);
12109                         goto err_group_fd;
12110                 }
12111         }
12112
12113         if (task && group_leader &&
12114             group_leader->attr.inherit != attr.inherit) {
12115                 err = -EINVAL;
12116                 goto err_task;
12117         }
12118
12119         if (flags & PERF_FLAG_PID_CGROUP)
12120                 cgroup_fd = pid;
12121
12122         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12123                                  NULL, NULL, cgroup_fd);
12124         if (IS_ERR(event)) {
12125                 err = PTR_ERR(event);
12126                 goto err_task;
12127         }
12128
12129         if (is_sampling_event(event)) {
12130                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12131                         err = -EOPNOTSUPP;
12132                         goto err_alloc;
12133                 }
12134         }
12135
12136         /*
12137          * Special case software events and allow them to be part of
12138          * any hardware group.
12139          */
12140         pmu = event->pmu;
12141
12142         if (attr.use_clockid) {
12143                 err = perf_event_set_clock(event, attr.clockid);
12144                 if (err)
12145                         goto err_alloc;
12146         }
12147
12148         if (pmu->task_ctx_nr == perf_sw_context)
12149                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12150
12151         if (group_leader) {
12152                 if (is_software_event(event) &&
12153                     !in_software_context(group_leader)) {
12154                         /*
12155                          * If the event is a sw event, but the group_leader
12156                          * is on hw context.
12157                          *
12158                          * Allow the addition of software events to hw
12159                          * groups, this is safe because software events
12160                          * never fail to schedule.
12161                          */
12162                         pmu = group_leader->ctx->pmu;
12163                 } else if (!is_software_event(event) &&
12164                            is_software_event(group_leader) &&
12165                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12166                         /*
12167                          * In case the group is a pure software group, and we
12168                          * try to add a hardware event, move the whole group to
12169                          * the hardware context.
12170                          */
12171                         move_group = 1;
12172                 }
12173         }
12174
12175         /*
12176          * Get the target context (task or percpu):
12177          */
12178         ctx = find_get_context(pmu, task, event);
12179         if (IS_ERR(ctx)) {
12180                 err = PTR_ERR(ctx);
12181                 goto err_alloc;
12182         }
12183
12184         /*
12185          * Look up the group leader (we will attach this event to it):
12186          */
12187         if (group_leader) {
12188                 err = -EINVAL;
12189
12190                 /*
12191                  * Do not allow a recursive hierarchy (this new sibling
12192                  * becoming part of another group-sibling):
12193                  */
12194                 if (group_leader->group_leader != group_leader)
12195                         goto err_context;
12196
12197                 /* All events in a group should have the same clock */
12198                 if (group_leader->clock != event->clock)
12199                         goto err_context;
12200
12201                 /*
12202                  * Make sure we're both events for the same CPU;
12203                  * grouping events for different CPUs is broken; since
12204                  * you can never concurrently schedule them anyhow.
12205                  */
12206                 if (group_leader->cpu != event->cpu)
12207                         goto err_context;
12208
12209                 /*
12210                  * Make sure we're both on the same task, or both
12211                  * per-CPU events.
12212                  */
12213                 if (group_leader->ctx->task != ctx->task)
12214                         goto err_context;
12215
12216                 /*
12217                  * Do not allow to attach to a group in a different task
12218                  * or CPU context. If we're moving SW events, we'll fix
12219                  * this up later, so allow that.
12220                  *
12221                  * Racy, not holding group_leader->ctx->mutex, see comment with
12222                  * perf_event_ctx_lock().
12223                  */
12224                 if (!move_group && group_leader->ctx != ctx)
12225                         goto err_context;
12226
12227                 /*
12228                  * Only a group leader can be exclusive or pinned
12229                  */
12230                 if (attr.exclusive || attr.pinned)
12231                         goto err_context;
12232         }
12233
12234         if (output_event) {
12235                 err = perf_event_set_output(event, output_event);
12236                 if (err)
12237                         goto err_context;
12238         }
12239
12240         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12241                                         f_flags);
12242         if (IS_ERR(event_file)) {
12243                 err = PTR_ERR(event_file);
12244                 event_file = NULL;
12245                 goto err_context;
12246         }
12247
12248         if (task) {
12249                 err = down_read_interruptible(&task->signal->exec_update_lock);
12250                 if (err)
12251                         goto err_file;
12252
12253                 /*
12254                  * We must hold exec_update_lock across this and any potential
12255                  * perf_install_in_context() call for this new event to
12256                  * serialize against exec() altering our credentials (and the
12257                  * perf_event_exit_task() that could imply).
12258                  */
12259                 err = -EACCES;
12260                 if (!perf_check_permission(&attr, task))
12261                         goto err_cred;
12262         }
12263
12264         if (move_group) {
12265                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12266
12267                 if (gctx->task == TASK_TOMBSTONE) {
12268                         err = -ESRCH;
12269                         goto err_locked;
12270                 }
12271
12272                 /*
12273                  * Check if we raced against another sys_perf_event_open() call
12274                  * moving the software group underneath us.
12275                  */
12276                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12277                         /*
12278                          * If someone moved the group out from under us, check
12279                          * if this new event wound up on the same ctx, if so
12280                          * its the regular !move_group case, otherwise fail.
12281                          */
12282                         if (gctx != ctx) {
12283                                 err = -EINVAL;
12284                                 goto err_locked;
12285                         } else {
12286                                 perf_event_ctx_unlock(group_leader, gctx);
12287                                 move_group = 0;
12288                                 goto not_move_group;
12289                         }
12290                 }
12291
12292                 /*
12293                  * Failure to create exclusive events returns -EBUSY.
12294                  */
12295                 err = -EBUSY;
12296                 if (!exclusive_event_installable(group_leader, ctx))
12297                         goto err_locked;
12298
12299                 for_each_sibling_event(sibling, group_leader) {
12300                         if (!exclusive_event_installable(sibling, ctx))
12301                                 goto err_locked;
12302                 }
12303         } else {
12304                 mutex_lock(&ctx->mutex);
12305
12306                 /*
12307                  * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx,
12308                  * see the group_leader && !move_group test earlier.
12309                  */
12310                 if (group_leader && group_leader->ctx != ctx) {
12311                         err = -EINVAL;
12312                         goto err_locked;
12313                 }
12314         }
12315 not_move_group:
12316
12317         if (ctx->task == TASK_TOMBSTONE) {
12318                 err = -ESRCH;
12319                 goto err_locked;
12320         }
12321
12322         if (!perf_event_validate_size(event)) {
12323                 err = -E2BIG;
12324                 goto err_locked;
12325         }
12326
12327         if (!task) {
12328                 /*
12329                  * Check if the @cpu we're creating an event for is online.
12330                  *
12331                  * We use the perf_cpu_context::ctx::mutex to serialize against
12332                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12333                  */
12334                 struct perf_cpu_context *cpuctx =
12335                         container_of(ctx, struct perf_cpu_context, ctx);
12336
12337                 if (!cpuctx->online) {
12338                         err = -ENODEV;
12339                         goto err_locked;
12340                 }
12341         }
12342
12343         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12344                 err = -EINVAL;
12345                 goto err_locked;
12346         }
12347
12348         /*
12349          * Must be under the same ctx::mutex as perf_install_in_context(),
12350          * because we need to serialize with concurrent event creation.
12351          */
12352         if (!exclusive_event_installable(event, ctx)) {
12353                 err = -EBUSY;
12354                 goto err_locked;
12355         }
12356
12357         WARN_ON_ONCE(ctx->parent_ctx);
12358
12359         /*
12360          * This is the point on no return; we cannot fail hereafter. This is
12361          * where we start modifying current state.
12362          */
12363
12364         if (move_group) {
12365                 /*
12366                  * See perf_event_ctx_lock() for comments on the details
12367                  * of swizzling perf_event::ctx.
12368                  */
12369                 perf_remove_from_context(group_leader, 0);
12370                 put_ctx(gctx);
12371
12372                 for_each_sibling_event(sibling, group_leader) {
12373                         perf_remove_from_context(sibling, 0);
12374                         put_ctx(gctx);
12375                 }
12376
12377                 /*
12378                  * Wait for everybody to stop referencing the events through
12379                  * the old lists, before installing it on new lists.
12380                  */
12381                 synchronize_rcu();
12382
12383                 /*
12384                  * Install the group siblings before the group leader.
12385                  *
12386                  * Because a group leader will try and install the entire group
12387                  * (through the sibling list, which is still in-tact), we can
12388                  * end up with siblings installed in the wrong context.
12389                  *
12390                  * By installing siblings first we NO-OP because they're not
12391                  * reachable through the group lists.
12392                  */
12393                 for_each_sibling_event(sibling, group_leader) {
12394                         perf_event__state_init(sibling);
12395                         perf_install_in_context(ctx, sibling, sibling->cpu);
12396                         get_ctx(ctx);
12397                 }
12398
12399                 /*
12400                  * Removing from the context ends up with disabled
12401                  * event. What we want here is event in the initial
12402                  * startup state, ready to be add into new context.
12403                  */
12404                 perf_event__state_init(group_leader);
12405                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12406                 get_ctx(ctx);
12407         }
12408
12409         /*
12410          * Precalculate sample_data sizes; do while holding ctx::mutex such
12411          * that we're serialized against further additions and before
12412          * perf_install_in_context() which is the point the event is active and
12413          * can use these values.
12414          */
12415         perf_event__header_size(event);
12416         perf_event__id_header_size(event);
12417
12418         event->owner = current;
12419
12420         perf_install_in_context(ctx, event, event->cpu);
12421         perf_unpin_context(ctx);
12422
12423         if (move_group)
12424                 perf_event_ctx_unlock(group_leader, gctx);
12425         mutex_unlock(&ctx->mutex);
12426
12427         if (task) {
12428                 up_read(&task->signal->exec_update_lock);
12429                 put_task_struct(task);
12430         }
12431
12432         mutex_lock(&current->perf_event_mutex);
12433         list_add_tail(&event->owner_entry, &current->perf_event_list);
12434         mutex_unlock(&current->perf_event_mutex);
12435
12436         /*
12437          * Drop the reference on the group_event after placing the
12438          * new event on the sibling_list. This ensures destruction
12439          * of the group leader will find the pointer to itself in
12440          * perf_group_detach().
12441          */
12442         fdput(group);
12443         fd_install(event_fd, event_file);
12444         return event_fd;
12445
12446 err_locked:
12447         if (move_group)
12448                 perf_event_ctx_unlock(group_leader, gctx);
12449         mutex_unlock(&ctx->mutex);
12450 err_cred:
12451         if (task)
12452                 up_read(&task->signal->exec_update_lock);
12453 err_file:
12454         fput(event_file);
12455 err_context:
12456         perf_unpin_context(ctx);
12457         put_ctx(ctx);
12458 err_alloc:
12459         /*
12460          * If event_file is set, the fput() above will have called ->release()
12461          * and that will take care of freeing the event.
12462          */
12463         if (!event_file)
12464                 free_event(event);
12465 err_task:
12466         if (task)
12467                 put_task_struct(task);
12468 err_group_fd:
12469         fdput(group);
12470 err_fd:
12471         put_unused_fd(event_fd);
12472         return err;
12473 }
12474
12475 /**
12476  * perf_event_create_kernel_counter
12477  *
12478  * @attr: attributes of the counter to create
12479  * @cpu: cpu in which the counter is bound
12480  * @task: task to profile (NULL for percpu)
12481  * @overflow_handler: callback to trigger when we hit the event
12482  * @context: context data could be used in overflow_handler callback
12483  */
12484 struct perf_event *
12485 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12486                                  struct task_struct *task,
12487                                  perf_overflow_handler_t overflow_handler,
12488                                  void *context)
12489 {
12490         struct perf_event_context *ctx;
12491         struct perf_event *event;
12492         int err;
12493
12494         /*
12495          * Grouping is not supported for kernel events, neither is 'AUX',
12496          * make sure the caller's intentions are adjusted.
12497          */
12498         if (attr->aux_output)
12499                 return ERR_PTR(-EINVAL);
12500
12501         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12502                                  overflow_handler, context, -1);
12503         if (IS_ERR(event)) {
12504                 err = PTR_ERR(event);
12505                 goto err;
12506         }
12507
12508         /* Mark owner so we could distinguish it from user events. */
12509         event->owner = TASK_TOMBSTONE;
12510
12511         /*
12512          * Get the target context (task or percpu):
12513          */
12514         ctx = find_get_context(event->pmu, task, event);
12515         if (IS_ERR(ctx)) {
12516                 err = PTR_ERR(ctx);
12517                 goto err_free;
12518         }
12519
12520         WARN_ON_ONCE(ctx->parent_ctx);
12521         mutex_lock(&ctx->mutex);
12522         if (ctx->task == TASK_TOMBSTONE) {
12523                 err = -ESRCH;
12524                 goto err_unlock;
12525         }
12526
12527         if (!task) {
12528                 /*
12529                  * Check if the @cpu we're creating an event for is online.
12530                  *
12531                  * We use the perf_cpu_context::ctx::mutex to serialize against
12532                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12533                  */
12534                 struct perf_cpu_context *cpuctx =
12535                         container_of(ctx, struct perf_cpu_context, ctx);
12536                 if (!cpuctx->online) {
12537                         err = -ENODEV;
12538                         goto err_unlock;
12539                 }
12540         }
12541
12542         if (!exclusive_event_installable(event, ctx)) {
12543                 err = -EBUSY;
12544                 goto err_unlock;
12545         }
12546
12547         perf_install_in_context(ctx, event, event->cpu);
12548         perf_unpin_context(ctx);
12549         mutex_unlock(&ctx->mutex);
12550
12551         return event;
12552
12553 err_unlock:
12554         mutex_unlock(&ctx->mutex);
12555         perf_unpin_context(ctx);
12556         put_ctx(ctx);
12557 err_free:
12558         free_event(event);
12559 err:
12560         return ERR_PTR(err);
12561 }
12562 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12563
12564 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12565 {
12566         struct perf_event_context *src_ctx;
12567         struct perf_event_context *dst_ctx;
12568         struct perf_event *event, *tmp;
12569         LIST_HEAD(events);
12570
12571         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12572         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12573
12574         /*
12575          * See perf_event_ctx_lock() for comments on the details
12576          * of swizzling perf_event::ctx.
12577          */
12578         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12579         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12580                                  event_entry) {
12581                 perf_remove_from_context(event, 0);
12582                 unaccount_event_cpu(event, src_cpu);
12583                 put_ctx(src_ctx);
12584                 list_add(&event->migrate_entry, &events);
12585         }
12586
12587         /*
12588          * Wait for the events to quiesce before re-instating them.
12589          */
12590         synchronize_rcu();
12591
12592         /*
12593          * Re-instate events in 2 passes.
12594          *
12595          * Skip over group leaders and only install siblings on this first
12596          * pass, siblings will not get enabled without a leader, however a
12597          * leader will enable its siblings, even if those are still on the old
12598          * context.
12599          */
12600         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12601                 if (event->group_leader == event)
12602                         continue;
12603
12604                 list_del(&event->migrate_entry);
12605                 if (event->state >= PERF_EVENT_STATE_OFF)
12606                         event->state = PERF_EVENT_STATE_INACTIVE;
12607                 account_event_cpu(event, dst_cpu);
12608                 perf_install_in_context(dst_ctx, event, dst_cpu);
12609                 get_ctx(dst_ctx);
12610         }
12611
12612         /*
12613          * Once all the siblings are setup properly, install the group leaders
12614          * to make it go.
12615          */
12616         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12617                 list_del(&event->migrate_entry);
12618                 if (event->state >= PERF_EVENT_STATE_OFF)
12619                         event->state = PERF_EVENT_STATE_INACTIVE;
12620                 account_event_cpu(event, dst_cpu);
12621                 perf_install_in_context(dst_ctx, event, dst_cpu);
12622                 get_ctx(dst_ctx);
12623         }
12624         mutex_unlock(&dst_ctx->mutex);
12625         mutex_unlock(&src_ctx->mutex);
12626 }
12627 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12628
12629 static void sync_child_event(struct perf_event *child_event)
12630 {
12631         struct perf_event *parent_event = child_event->parent;
12632         u64 child_val;
12633
12634         if (child_event->attr.inherit_stat) {
12635                 struct task_struct *task = child_event->ctx->task;
12636
12637                 if (task && task != TASK_TOMBSTONE)
12638                         perf_event_read_event(child_event, task);
12639         }
12640
12641         child_val = perf_event_count(child_event);
12642
12643         /*
12644          * Add back the child's count to the parent's count:
12645          */
12646         atomic64_add(child_val, &parent_event->child_count);
12647         atomic64_add(child_event->total_time_enabled,
12648                      &parent_event->child_total_time_enabled);
12649         atomic64_add(child_event->total_time_running,
12650                      &parent_event->child_total_time_running);
12651 }
12652
12653 static void
12654 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12655 {
12656         struct perf_event *parent_event = event->parent;
12657         unsigned long detach_flags = 0;
12658
12659         if (parent_event) {
12660                 /*
12661                  * Do not destroy the 'original' grouping; because of the
12662                  * context switch optimization the original events could've
12663                  * ended up in a random child task.
12664                  *
12665                  * If we were to destroy the original group, all group related
12666                  * operations would cease to function properly after this
12667                  * random child dies.
12668                  *
12669                  * Do destroy all inherited groups, we don't care about those
12670                  * and being thorough is better.
12671                  */
12672                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12673                 mutex_lock(&parent_event->child_mutex);
12674         }
12675
12676         perf_remove_from_context(event, detach_flags);
12677
12678         raw_spin_lock_irq(&ctx->lock);
12679         if (event->state > PERF_EVENT_STATE_EXIT)
12680                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12681         raw_spin_unlock_irq(&ctx->lock);
12682
12683         /*
12684          * Child events can be freed.
12685          */
12686         if (parent_event) {
12687                 mutex_unlock(&parent_event->child_mutex);
12688                 /*
12689                  * Kick perf_poll() for is_event_hup();
12690                  */
12691                 perf_event_wakeup(parent_event);
12692                 free_event(event);
12693                 put_event(parent_event);
12694                 return;
12695         }
12696
12697         /*
12698          * Parent events are governed by their filedesc, retain them.
12699          */
12700         perf_event_wakeup(event);
12701 }
12702
12703 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12704 {
12705         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12706         struct perf_event *child_event, *next;
12707
12708         WARN_ON_ONCE(child != current);
12709
12710         child_ctx = perf_pin_task_context(child, ctxn);
12711         if (!child_ctx)
12712                 return;
12713
12714         /*
12715          * In order to reduce the amount of tricky in ctx tear-down, we hold
12716          * ctx::mutex over the entire thing. This serializes against almost
12717          * everything that wants to access the ctx.
12718          *
12719          * The exception is sys_perf_event_open() /
12720          * perf_event_create_kernel_count() which does find_get_context()
12721          * without ctx::mutex (it cannot because of the move_group double mutex
12722          * lock thing). See the comments in perf_install_in_context().
12723          */
12724         mutex_lock(&child_ctx->mutex);
12725
12726         /*
12727          * In a single ctx::lock section, de-schedule the events and detach the
12728          * context from the task such that we cannot ever get it scheduled back
12729          * in.
12730          */
12731         raw_spin_lock_irq(&child_ctx->lock);
12732         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12733
12734         /*
12735          * Now that the context is inactive, destroy the task <-> ctx relation
12736          * and mark the context dead.
12737          */
12738         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12739         put_ctx(child_ctx); /* cannot be last */
12740         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12741         put_task_struct(current); /* cannot be last */
12742
12743         clone_ctx = unclone_ctx(child_ctx);
12744         raw_spin_unlock_irq(&child_ctx->lock);
12745
12746         if (clone_ctx)
12747                 put_ctx(clone_ctx);
12748
12749         /*
12750          * Report the task dead after unscheduling the events so that we
12751          * won't get any samples after PERF_RECORD_EXIT. We can however still
12752          * get a few PERF_RECORD_READ events.
12753          */
12754         perf_event_task(child, child_ctx, 0);
12755
12756         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12757                 perf_event_exit_event(child_event, child_ctx);
12758
12759         mutex_unlock(&child_ctx->mutex);
12760
12761         put_ctx(child_ctx);
12762 }
12763
12764 /*
12765  * When a child task exits, feed back event values to parent events.
12766  *
12767  * Can be called with exec_update_lock held when called from
12768  * setup_new_exec().
12769  */
12770 void perf_event_exit_task(struct task_struct *child)
12771 {
12772         struct perf_event *event, *tmp;
12773         int ctxn;
12774
12775         mutex_lock(&child->perf_event_mutex);
12776         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12777                                  owner_entry) {
12778                 list_del_init(&event->owner_entry);
12779
12780                 /*
12781                  * Ensure the list deletion is visible before we clear
12782                  * the owner, closes a race against perf_release() where
12783                  * we need to serialize on the owner->perf_event_mutex.
12784                  */
12785                 smp_store_release(&event->owner, NULL);
12786         }
12787         mutex_unlock(&child->perf_event_mutex);
12788
12789         for_each_task_context_nr(ctxn)
12790                 perf_event_exit_task_context(child, ctxn);
12791
12792         /*
12793          * The perf_event_exit_task_context calls perf_event_task
12794          * with child's task_ctx, which generates EXIT events for
12795          * child contexts and sets child->perf_event_ctxp[] to NULL.
12796          * At this point we need to send EXIT events to cpu contexts.
12797          */
12798         perf_event_task(child, NULL, 0);
12799 }
12800
12801 static void perf_free_event(struct perf_event *event,
12802                             struct perf_event_context *ctx)
12803 {
12804         struct perf_event *parent = event->parent;
12805
12806         if (WARN_ON_ONCE(!parent))
12807                 return;
12808
12809         mutex_lock(&parent->child_mutex);
12810         list_del_init(&event->child_list);
12811         mutex_unlock(&parent->child_mutex);
12812
12813         put_event(parent);
12814
12815         raw_spin_lock_irq(&ctx->lock);
12816         perf_group_detach(event);
12817         list_del_event(event, ctx);
12818         raw_spin_unlock_irq(&ctx->lock);
12819         free_event(event);
12820 }
12821
12822 /*
12823  * Free a context as created by inheritance by perf_event_init_task() below,
12824  * used by fork() in case of fail.
12825  *
12826  * Even though the task has never lived, the context and events have been
12827  * exposed through the child_list, so we must take care tearing it all down.
12828  */
12829 void perf_event_free_task(struct task_struct *task)
12830 {
12831         struct perf_event_context *ctx;
12832         struct perf_event *event, *tmp;
12833         int ctxn;
12834
12835         for_each_task_context_nr(ctxn) {
12836                 ctx = task->perf_event_ctxp[ctxn];
12837                 if (!ctx)
12838                         continue;
12839
12840                 mutex_lock(&ctx->mutex);
12841                 raw_spin_lock_irq(&ctx->lock);
12842                 /*
12843                  * Destroy the task <-> ctx relation and mark the context dead.
12844                  *
12845                  * This is important because even though the task hasn't been
12846                  * exposed yet the context has been (through child_list).
12847                  */
12848                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12849                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12850                 put_task_struct(task); /* cannot be last */
12851                 raw_spin_unlock_irq(&ctx->lock);
12852
12853                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12854                         perf_free_event(event, ctx);
12855
12856                 mutex_unlock(&ctx->mutex);
12857
12858                 /*
12859                  * perf_event_release_kernel() could've stolen some of our
12860                  * child events and still have them on its free_list. In that
12861                  * case we must wait for these events to have been freed (in
12862                  * particular all their references to this task must've been
12863                  * dropped).
12864                  *
12865                  * Without this copy_process() will unconditionally free this
12866                  * task (irrespective of its reference count) and
12867                  * _free_event()'s put_task_struct(event->hw.target) will be a
12868                  * use-after-free.
12869                  *
12870                  * Wait for all events to drop their context reference.
12871                  */
12872                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12873                 put_ctx(ctx); /* must be last */
12874         }
12875 }
12876
12877 void perf_event_delayed_put(struct task_struct *task)
12878 {
12879         int ctxn;
12880
12881         for_each_task_context_nr(ctxn)
12882                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12883 }
12884
12885 struct file *perf_event_get(unsigned int fd)
12886 {
12887         struct file *file = fget(fd);
12888         if (!file)
12889                 return ERR_PTR(-EBADF);
12890
12891         if (file->f_op != &perf_fops) {
12892                 fput(file);
12893                 return ERR_PTR(-EBADF);
12894         }
12895
12896         return file;
12897 }
12898
12899 const struct perf_event *perf_get_event(struct file *file)
12900 {
12901         if (file->f_op != &perf_fops)
12902                 return ERR_PTR(-EINVAL);
12903
12904         return file->private_data;
12905 }
12906
12907 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12908 {
12909         if (!event)
12910                 return ERR_PTR(-EINVAL);
12911
12912         return &event->attr;
12913 }
12914
12915 /*
12916  * Inherit an event from parent task to child task.
12917  *
12918  * Returns:
12919  *  - valid pointer on success
12920  *  - NULL for orphaned events
12921  *  - IS_ERR() on error
12922  */
12923 static struct perf_event *
12924 inherit_event(struct perf_event *parent_event,
12925               struct task_struct *parent,
12926               struct perf_event_context *parent_ctx,
12927               struct task_struct *child,
12928               struct perf_event *group_leader,
12929               struct perf_event_context *child_ctx)
12930 {
12931         enum perf_event_state parent_state = parent_event->state;
12932         struct perf_event *child_event;
12933         unsigned long flags;
12934
12935         /*
12936          * Instead of creating recursive hierarchies of events,
12937          * we link inherited events back to the original parent,
12938          * which has a filp for sure, which we use as the reference
12939          * count:
12940          */
12941         if (parent_event->parent)
12942                 parent_event = parent_event->parent;
12943
12944         child_event = perf_event_alloc(&parent_event->attr,
12945                                            parent_event->cpu,
12946                                            child,
12947                                            group_leader, parent_event,
12948                                            NULL, NULL, -1);
12949         if (IS_ERR(child_event))
12950                 return child_event;
12951
12952
12953         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12954             !child_ctx->task_ctx_data) {
12955                 struct pmu *pmu = child_event->pmu;
12956
12957                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12958                 if (!child_ctx->task_ctx_data) {
12959                         free_event(child_event);
12960                         return ERR_PTR(-ENOMEM);
12961                 }
12962         }
12963
12964         /*
12965          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12966          * must be under the same lock in order to serialize against
12967          * perf_event_release_kernel(), such that either we must observe
12968          * is_orphaned_event() or they will observe us on the child_list.
12969          */
12970         mutex_lock(&parent_event->child_mutex);
12971         if (is_orphaned_event(parent_event) ||
12972             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12973                 mutex_unlock(&parent_event->child_mutex);
12974                 /* task_ctx_data is freed with child_ctx */
12975                 free_event(child_event);
12976                 return NULL;
12977         }
12978
12979         get_ctx(child_ctx);
12980
12981         /*
12982          * Make the child state follow the state of the parent event,
12983          * not its attr.disabled bit.  We hold the parent's mutex,
12984          * so we won't race with perf_event_{en, dis}able_family.
12985          */
12986         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12987                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12988         else
12989                 child_event->state = PERF_EVENT_STATE_OFF;
12990
12991         if (parent_event->attr.freq) {
12992                 u64 sample_period = parent_event->hw.sample_period;
12993                 struct hw_perf_event *hwc = &child_event->hw;
12994
12995                 hwc->sample_period = sample_period;
12996                 hwc->last_period   = sample_period;
12997
12998                 local64_set(&hwc->period_left, sample_period);
12999         }
13000
13001         child_event->ctx = child_ctx;
13002         child_event->overflow_handler = parent_event->overflow_handler;
13003         child_event->overflow_handler_context
13004                 = parent_event->overflow_handler_context;
13005
13006         /*
13007          * Precalculate sample_data sizes
13008          */
13009         perf_event__header_size(child_event);
13010         perf_event__id_header_size(child_event);
13011
13012         /*
13013          * Link it up in the child's context:
13014          */
13015         raw_spin_lock_irqsave(&child_ctx->lock, flags);
13016         add_event_to_ctx(child_event, child_ctx);
13017         child_event->attach_state |= PERF_ATTACH_CHILD;
13018         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13019
13020         /*
13021          * Link this into the parent event's child list
13022          */
13023         list_add_tail(&child_event->child_list, &parent_event->child_list);
13024         mutex_unlock(&parent_event->child_mutex);
13025
13026         return child_event;
13027 }
13028
13029 /*
13030  * Inherits an event group.
13031  *
13032  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13033  * This matches with perf_event_release_kernel() removing all child events.
13034  *
13035  * Returns:
13036  *  - 0 on success
13037  *  - <0 on error
13038  */
13039 static int inherit_group(struct perf_event *parent_event,
13040               struct task_struct *parent,
13041               struct perf_event_context *parent_ctx,
13042               struct task_struct *child,
13043               struct perf_event_context *child_ctx)
13044 {
13045         struct perf_event *leader;
13046         struct perf_event *sub;
13047         struct perf_event *child_ctr;
13048
13049         leader = inherit_event(parent_event, parent, parent_ctx,
13050                                  child, NULL, child_ctx);
13051         if (IS_ERR(leader))
13052                 return PTR_ERR(leader);
13053         /*
13054          * @leader can be NULL here because of is_orphaned_event(). In this
13055          * case inherit_event() will create individual events, similar to what
13056          * perf_group_detach() would do anyway.
13057          */
13058         for_each_sibling_event(sub, parent_event) {
13059                 child_ctr = inherit_event(sub, parent, parent_ctx,
13060                                             child, leader, child_ctx);
13061                 if (IS_ERR(child_ctr))
13062                         return PTR_ERR(child_ctr);
13063
13064                 if (sub->aux_event == parent_event && child_ctr &&
13065                     !perf_get_aux_event(child_ctr, leader))
13066                         return -EINVAL;
13067         }
13068         return 0;
13069 }
13070
13071 /*
13072  * Creates the child task context and tries to inherit the event-group.
13073  *
13074  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13075  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13076  * consistent with perf_event_release_kernel() removing all child events.
13077  *
13078  * Returns:
13079  *  - 0 on success
13080  *  - <0 on error
13081  */
13082 static int
13083 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13084                    struct perf_event_context *parent_ctx,
13085                    struct task_struct *child, int ctxn,
13086                    u64 clone_flags, int *inherited_all)
13087 {
13088         int ret;
13089         struct perf_event_context *child_ctx;
13090
13091         if (!event->attr.inherit ||
13092             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13093             /* Do not inherit if sigtrap and signal handlers were cleared. */
13094             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13095                 *inherited_all = 0;
13096                 return 0;
13097         }
13098
13099         child_ctx = child->perf_event_ctxp[ctxn];
13100         if (!child_ctx) {
13101                 /*
13102                  * This is executed from the parent task context, so
13103                  * inherit events that have been marked for cloning.
13104                  * First allocate and initialize a context for the
13105                  * child.
13106                  */
13107                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13108                 if (!child_ctx)
13109                         return -ENOMEM;
13110
13111                 child->perf_event_ctxp[ctxn] = child_ctx;
13112         }
13113
13114         ret = inherit_group(event, parent, parent_ctx,
13115                             child, child_ctx);
13116
13117         if (ret)
13118                 *inherited_all = 0;
13119
13120         return ret;
13121 }
13122
13123 /*
13124  * Initialize the perf_event context in task_struct
13125  */
13126 static int perf_event_init_context(struct task_struct *child, int ctxn,
13127                                    u64 clone_flags)
13128 {
13129         struct perf_event_context *child_ctx, *parent_ctx;
13130         struct perf_event_context *cloned_ctx;
13131         struct perf_event *event;
13132         struct task_struct *parent = current;
13133         int inherited_all = 1;
13134         unsigned long flags;
13135         int ret = 0;
13136
13137         if (likely(!parent->perf_event_ctxp[ctxn]))
13138                 return 0;
13139
13140         /*
13141          * If the parent's context is a clone, pin it so it won't get
13142          * swapped under us.
13143          */
13144         parent_ctx = perf_pin_task_context(parent, ctxn);
13145         if (!parent_ctx)
13146                 return 0;
13147
13148         /*
13149          * No need to check if parent_ctx != NULL here; since we saw
13150          * it non-NULL earlier, the only reason for it to become NULL
13151          * is if we exit, and since we're currently in the middle of
13152          * a fork we can't be exiting at the same time.
13153          */
13154
13155         /*
13156          * Lock the parent list. No need to lock the child - not PID
13157          * hashed yet and not running, so nobody can access it.
13158          */
13159         mutex_lock(&parent_ctx->mutex);
13160
13161         /*
13162          * We dont have to disable NMIs - we are only looking at
13163          * the list, not manipulating it:
13164          */
13165         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13166                 ret = inherit_task_group(event, parent, parent_ctx,
13167                                          child, ctxn, clone_flags,
13168                                          &inherited_all);
13169                 if (ret)
13170                         goto out_unlock;
13171         }
13172
13173         /*
13174          * We can't hold ctx->lock when iterating the ->flexible_group list due
13175          * to allocations, but we need to prevent rotation because
13176          * rotate_ctx() will change the list from interrupt context.
13177          */
13178         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13179         parent_ctx->rotate_disable = 1;
13180         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13181
13182         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13183                 ret = inherit_task_group(event, parent, parent_ctx,
13184                                          child, ctxn, clone_flags,
13185                                          &inherited_all);
13186                 if (ret)
13187                         goto out_unlock;
13188         }
13189
13190         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13191         parent_ctx->rotate_disable = 0;
13192
13193         child_ctx = child->perf_event_ctxp[ctxn];
13194
13195         if (child_ctx && inherited_all) {
13196                 /*
13197                  * Mark the child context as a clone of the parent
13198                  * context, or of whatever the parent is a clone of.
13199                  *
13200                  * Note that if the parent is a clone, the holding of
13201                  * parent_ctx->lock avoids it from being uncloned.
13202                  */
13203                 cloned_ctx = parent_ctx->parent_ctx;
13204                 if (cloned_ctx) {
13205                         child_ctx->parent_ctx = cloned_ctx;
13206                         child_ctx->parent_gen = parent_ctx->parent_gen;
13207                 } else {
13208                         child_ctx->parent_ctx = parent_ctx;
13209                         child_ctx->parent_gen = parent_ctx->generation;
13210                 }
13211                 get_ctx(child_ctx->parent_ctx);
13212         }
13213
13214         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13215 out_unlock:
13216         mutex_unlock(&parent_ctx->mutex);
13217
13218         perf_unpin_context(parent_ctx);
13219         put_ctx(parent_ctx);
13220
13221         return ret;
13222 }
13223
13224 /*
13225  * Initialize the perf_event context in task_struct
13226  */
13227 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13228 {
13229         int ctxn, ret;
13230
13231         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13232         mutex_init(&child->perf_event_mutex);
13233         INIT_LIST_HEAD(&child->perf_event_list);
13234
13235         for_each_task_context_nr(ctxn) {
13236                 ret = perf_event_init_context(child, ctxn, clone_flags);
13237                 if (ret) {
13238                         perf_event_free_task(child);
13239                         return ret;
13240                 }
13241         }
13242
13243         return 0;
13244 }
13245
13246 static void __init perf_event_init_all_cpus(void)
13247 {
13248         struct swevent_htable *swhash;
13249         int cpu;
13250
13251         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13252
13253         for_each_possible_cpu(cpu) {
13254                 swhash = &per_cpu(swevent_htable, cpu);
13255                 mutex_init(&swhash->hlist_mutex);
13256                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13257
13258                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13259                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13260
13261 #ifdef CONFIG_CGROUP_PERF
13262                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13263 #endif
13264                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13265         }
13266 }
13267
13268 static void perf_swevent_init_cpu(unsigned int cpu)
13269 {
13270         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13271
13272         mutex_lock(&swhash->hlist_mutex);
13273         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13274                 struct swevent_hlist *hlist;
13275
13276                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13277                 WARN_ON(!hlist);
13278                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13279         }
13280         mutex_unlock(&swhash->hlist_mutex);
13281 }
13282
13283 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13284 static void __perf_event_exit_context(void *__info)
13285 {
13286         struct perf_event_context *ctx = __info;
13287         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13288         struct perf_event *event;
13289
13290         raw_spin_lock(&ctx->lock);
13291         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13292         list_for_each_entry(event, &ctx->event_list, event_entry)
13293                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13294         raw_spin_unlock(&ctx->lock);
13295 }
13296
13297 static void perf_event_exit_cpu_context(int cpu)
13298 {
13299         struct perf_cpu_context *cpuctx;
13300         struct perf_event_context *ctx;
13301         struct pmu *pmu;
13302
13303         mutex_lock(&pmus_lock);
13304         list_for_each_entry(pmu, &pmus, entry) {
13305                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13306                 ctx = &cpuctx->ctx;
13307
13308                 mutex_lock(&ctx->mutex);
13309                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13310                 cpuctx->online = 0;
13311                 mutex_unlock(&ctx->mutex);
13312         }
13313         cpumask_clear_cpu(cpu, perf_online_mask);
13314         mutex_unlock(&pmus_lock);
13315 }
13316 #else
13317
13318 static void perf_event_exit_cpu_context(int cpu) { }
13319
13320 #endif
13321
13322 int perf_event_init_cpu(unsigned int cpu)
13323 {
13324         struct perf_cpu_context *cpuctx;
13325         struct perf_event_context *ctx;
13326         struct pmu *pmu;
13327
13328         perf_swevent_init_cpu(cpu);
13329
13330         mutex_lock(&pmus_lock);
13331         cpumask_set_cpu(cpu, perf_online_mask);
13332         list_for_each_entry(pmu, &pmus, entry) {
13333                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13334                 ctx = &cpuctx->ctx;
13335
13336                 mutex_lock(&ctx->mutex);
13337                 cpuctx->online = 1;
13338                 mutex_unlock(&ctx->mutex);
13339         }
13340         mutex_unlock(&pmus_lock);
13341
13342         return 0;
13343 }
13344
13345 int perf_event_exit_cpu(unsigned int cpu)
13346 {
13347         perf_event_exit_cpu_context(cpu);
13348         return 0;
13349 }
13350
13351 static int
13352 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13353 {
13354         int cpu;
13355
13356         for_each_online_cpu(cpu)
13357                 perf_event_exit_cpu(cpu);
13358
13359         return NOTIFY_OK;
13360 }
13361
13362 /*
13363  * Run the perf reboot notifier at the very last possible moment so that
13364  * the generic watchdog code runs as long as possible.
13365  */
13366 static struct notifier_block perf_reboot_notifier = {
13367         .notifier_call = perf_reboot,
13368         .priority = INT_MIN,
13369 };
13370
13371 void __init perf_event_init(void)
13372 {
13373         int ret;
13374
13375         idr_init(&pmu_idr);
13376
13377         perf_event_init_all_cpus();
13378         init_srcu_struct(&pmus_srcu);
13379         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13380         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13381         perf_pmu_register(&perf_task_clock, NULL, -1);
13382         perf_tp_register();
13383         perf_event_init_cpu(smp_processor_id());
13384         register_reboot_notifier(&perf_reboot_notifier);
13385
13386         ret = init_hw_breakpoint();
13387         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13388
13389         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13390
13391         /*
13392          * Build time assertion that we keep the data_head at the intended
13393          * location.  IOW, validation we got the __reserved[] size right.
13394          */
13395         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13396                      != 1024);
13397 }
13398
13399 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13400                               char *page)
13401 {
13402         struct perf_pmu_events_attr *pmu_attr =
13403                 container_of(attr, struct perf_pmu_events_attr, attr);
13404
13405         if (pmu_attr->event_str)
13406                 return sprintf(page, "%s\n", pmu_attr->event_str);
13407
13408         return 0;
13409 }
13410 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13411
13412 static int __init perf_event_sysfs_init(void)
13413 {
13414         struct pmu *pmu;
13415         int ret;
13416
13417         mutex_lock(&pmus_lock);
13418
13419         ret = bus_register(&pmu_bus);
13420         if (ret)
13421                 goto unlock;
13422
13423         list_for_each_entry(pmu, &pmus, entry) {
13424                 if (!pmu->name || pmu->type < 0)
13425                         continue;
13426
13427                 ret = pmu_dev_alloc(pmu);
13428                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13429         }
13430         pmu_bus_running = 1;
13431         ret = 0;
13432
13433 unlock:
13434         mutex_unlock(&pmus_lock);
13435
13436         return ret;
13437 }
13438 device_initcall(perf_event_sysfs_init);
13439
13440 #ifdef CONFIG_CGROUP_PERF
13441 static struct cgroup_subsys_state *
13442 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13443 {
13444         struct perf_cgroup *jc;
13445
13446         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13447         if (!jc)
13448                 return ERR_PTR(-ENOMEM);
13449
13450         jc->info = alloc_percpu(struct perf_cgroup_info);
13451         if (!jc->info) {
13452                 kfree(jc);
13453                 return ERR_PTR(-ENOMEM);
13454         }
13455
13456         return &jc->css;
13457 }
13458
13459 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13460 {
13461         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13462
13463         free_percpu(jc->info);
13464         kfree(jc);
13465 }
13466
13467 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13468 {
13469         perf_event_cgroup(css->cgroup);
13470         return 0;
13471 }
13472
13473 static int __perf_cgroup_move(void *info)
13474 {
13475         struct task_struct *task = info;
13476         rcu_read_lock();
13477         perf_cgroup_switch(task);
13478         rcu_read_unlock();
13479         return 0;
13480 }
13481
13482 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13483 {
13484         struct task_struct *task;
13485         struct cgroup_subsys_state *css;
13486
13487         cgroup_taskset_for_each(task, css, tset)
13488                 task_function_call(task, __perf_cgroup_move, task);
13489 }
13490
13491 struct cgroup_subsys perf_event_cgrp_subsys = {
13492         .css_alloc      = perf_cgroup_css_alloc,
13493         .css_free       = perf_cgroup_css_free,
13494         .css_online     = perf_cgroup_css_online,
13495         .attach         = perf_cgroup_attach,
13496         /*
13497          * Implicitly enable on dfl hierarchy so that perf events can
13498          * always be filtered by cgroup2 path as long as perf_event
13499          * controller is not mounted on a legacy hierarchy.
13500          */
13501         .implicit_on_dfl = true,
13502         .threaded       = true,
13503 };
13504 #endif /* CONFIG_CGROUP_PERF */
13505
13506 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);