Merge tag 'dlm-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/teigland/linux-dlm
[linux-block.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58
59 #include "internal.h"
60
61 #include <asm/irq_regs.h>
62
63 typedef int (*remote_function_f)(void *);
64
65 struct remote_function_call {
66         struct task_struct      *p;
67         remote_function_f       func;
68         void                    *info;
69         int                     ret;
70 };
71
72 static void remote_function(void *data)
73 {
74         struct remote_function_call *tfc = data;
75         struct task_struct *p = tfc->p;
76
77         if (p) {
78                 /* -EAGAIN */
79                 if (task_cpu(p) != smp_processor_id())
80                         return;
81
82                 /*
83                  * Now that we're on right CPU with IRQs disabled, we can test
84                  * if we hit the right task without races.
85                  */
86
87                 tfc->ret = -ESRCH; /* No such (running) process */
88                 if (p != current)
89                         return;
90         }
91
92         tfc->ret = tfc->func(tfc->info);
93 }
94
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:          the task to evaluate
98  * @func:       the function to be called
99  * @info:       the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111         struct remote_function_call data = {
112                 .p      = p,
113                 .func   = func,
114                 .info   = info,
115                 .ret    = -EAGAIN,
116         };
117         int ret;
118
119         for (;;) {
120                 ret = smp_call_function_single(task_cpu(p), remote_function,
121                                                &data, 1);
122                 if (!ret)
123                         ret = data.ret;
124
125                 if (ret != -EAGAIN)
126                         break;
127
128                 cond_resched();
129         }
130
131         return ret;
132 }
133
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:        target cpu to queue this function
137  * @func:       the function to be called
138  * @info:       the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146         struct remote_function_call data = {
147                 .p      = NULL,
148                 .func   = func,
149                 .info   = info,
150                 .ret    = -ENXIO, /* No such CPU */
151         };
152
153         smp_call_function_single(cpu, remote_function, &data, 1);
154
155         return data.ret;
156 }
157
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159                           struct perf_event_context *ctx)
160 {
161         raw_spin_lock(&cpuctx->ctx.lock);
162         if (ctx)
163                 raw_spin_lock(&ctx->lock);
164 }
165
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167                             struct perf_event_context *ctx)
168 {
169         if (ctx)
170                 raw_spin_unlock(&ctx->lock);
171         raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
176 static bool is_kernel_event(struct perf_event *event)
177 {
178         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185         lockdep_assert_irqs_disabled();
186         return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209                         struct perf_event_context *, void *);
210
211 struct event_function_struct {
212         struct perf_event *event;
213         event_f func;
214         void *data;
215 };
216
217 static int event_function(void *info)
218 {
219         struct event_function_struct *efs = info;
220         struct perf_event *event = efs->event;
221         struct perf_event_context *ctx = event->ctx;
222         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223         struct perf_event_context *task_ctx = cpuctx->task_ctx;
224         int ret = 0;
225
226         lockdep_assert_irqs_disabled();
227
228         perf_ctx_lock(cpuctx, task_ctx);
229         /*
230          * Since we do the IPI call without holding ctx->lock things can have
231          * changed, double check we hit the task we set out to hit.
232          */
233         if (ctx->task) {
234                 if (ctx->task != current) {
235                         ret = -ESRCH;
236                         goto unlock;
237                 }
238
239                 /*
240                  * We only use event_function_call() on established contexts,
241                  * and event_function() is only ever called when active (or
242                  * rather, we'll have bailed in task_function_call() or the
243                  * above ctx->task != current test), therefore we must have
244                  * ctx->is_active here.
245                  */
246                 WARN_ON_ONCE(!ctx->is_active);
247                 /*
248                  * And since we have ctx->is_active, cpuctx->task_ctx must
249                  * match.
250                  */
251                 WARN_ON_ONCE(task_ctx != ctx);
252         } else {
253                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
254         }
255
256         efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258         perf_ctx_unlock(cpuctx, task_ctx);
259
260         return ret;
261 }
262
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265         struct perf_event_context *ctx = event->ctx;
266         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267         struct event_function_struct efs = {
268                 .event = event,
269                 .func = func,
270                 .data = data,
271         };
272
273         if (!event->parent) {
274                 /*
275                  * If this is a !child event, we must hold ctx::mutex to
276                  * stabilize the event->ctx relation. See
277                  * perf_event_ctx_lock().
278                  */
279                 lockdep_assert_held(&ctx->mutex);
280         }
281
282         if (!task) {
283                 cpu_function_call(event->cpu, event_function, &efs);
284                 return;
285         }
286
287         if (task == TASK_TOMBSTONE)
288                 return;
289
290 again:
291         if (!task_function_call(task, event_function, &efs))
292                 return;
293
294         raw_spin_lock_irq(&ctx->lock);
295         /*
296          * Reload the task pointer, it might have been changed by
297          * a concurrent perf_event_context_sched_out().
298          */
299         task = ctx->task;
300         if (task == TASK_TOMBSTONE) {
301                 raw_spin_unlock_irq(&ctx->lock);
302                 return;
303         }
304         if (ctx->is_active) {
305                 raw_spin_unlock_irq(&ctx->lock);
306                 goto again;
307         }
308         func(event, NULL, ctx, data);
309         raw_spin_unlock_irq(&ctx->lock);
310 }
311
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318         struct perf_event_context *ctx = event->ctx;
319         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320         struct task_struct *task = READ_ONCE(ctx->task);
321         struct perf_event_context *task_ctx = NULL;
322
323         lockdep_assert_irqs_disabled();
324
325         if (task) {
326                 if (task == TASK_TOMBSTONE)
327                         return;
328
329                 task_ctx = ctx;
330         }
331
332         perf_ctx_lock(cpuctx, task_ctx);
333
334         task = ctx->task;
335         if (task == TASK_TOMBSTONE)
336                 goto unlock;
337
338         if (task) {
339                 /*
340                  * We must be either inactive or active and the right task,
341                  * otherwise we're screwed, since we cannot IPI to somewhere
342                  * else.
343                  */
344                 if (ctx->is_active) {
345                         if (WARN_ON_ONCE(task != current))
346                                 goto unlock;
347
348                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349                                 goto unlock;
350                 }
351         } else {
352                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
353         }
354
355         func(event, cpuctx, ctx, data);
356 unlock:
357         perf_ctx_unlock(cpuctx, task_ctx);
358 }
359
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361                        PERF_FLAG_FD_OUTPUT  |\
362                        PERF_FLAG_PID_CGROUP |\
363                        PERF_FLAG_FD_CLOEXEC)
364
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369         (PERF_SAMPLE_BRANCH_KERNEL |\
370          PERF_SAMPLE_BRANCH_HV)
371
372 enum event_type_t {
373         EVENT_FLEXIBLE = 0x1,
374         EVENT_PINNED = 0x2,
375         EVENT_TIME = 0x4,
376         /* see ctx_resched() for details */
377         EVENT_CPU = 0x8,
378         EVENT_CGROUP = 0x10,
379         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381
382 /*
383  * perf_sched_events : >0 events exist
384  */
385
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE         100000
428 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
430
431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
432
433 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
435
436 static int perf_sample_allowed_ns __read_mostly =
437         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438
439 static void update_perf_cpu_limits(void)
440 {
441         u64 tmp = perf_sample_period_ns;
442
443         tmp *= sysctl_perf_cpu_time_max_percent;
444         tmp = div_u64(tmp, 100);
445         if (!tmp)
446                 tmp = 1;
447
448         WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452
453 int perf_event_max_sample_rate_handler(struct ctl_table *table, int write,
454                                        void *buffer, size_t *lenp, loff_t *ppos)
455 {
456         int ret;
457         int perf_cpu = sysctl_perf_cpu_time_max_percent;
458         /*
459          * If throttling is disabled don't allow the write:
460          */
461         if (write && (perf_cpu == 100 || perf_cpu == 0))
462                 return -EINVAL;
463
464         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465         if (ret || !write)
466                 return ret;
467
468         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470         update_perf_cpu_limits();
471
472         return 0;
473 }
474
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476
477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478                 void *buffer, size_t *lenp, loff_t *ppos)
479 {
480         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481
482         if (ret || !write)
483                 return ret;
484
485         if (sysctl_perf_cpu_time_max_percent == 100 ||
486             sysctl_perf_cpu_time_max_percent == 0) {
487                 printk(KERN_WARNING
488                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489                 WRITE_ONCE(perf_sample_allowed_ns, 0);
490         } else {
491                 update_perf_cpu_limits();
492         }
493
494         return 0;
495 }
496
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505
506 static u64 __report_avg;
507 static u64 __report_allowed;
508
509 static void perf_duration_warn(struct irq_work *w)
510 {
511         printk_ratelimited(KERN_INFO
512                 "perf: interrupt took too long (%lld > %lld), lowering "
513                 "kernel.perf_event_max_sample_rate to %d\n",
514                 __report_avg, __report_allowed,
515                 sysctl_perf_event_sample_rate);
516 }
517
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523         u64 running_len;
524         u64 avg_len;
525         u32 max;
526
527         if (max_len == 0)
528                 return;
529
530         /* Decay the counter by 1 average sample. */
531         running_len = __this_cpu_read(running_sample_length);
532         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533         running_len += sample_len_ns;
534         __this_cpu_write(running_sample_length, running_len);
535
536         /*
537          * Note: this will be biased artifically low until we have
538          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539          * from having to maintain a count.
540          */
541         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542         if (avg_len <= max_len)
543                 return;
544
545         __report_avg = avg_len;
546         __report_allowed = max_len;
547
548         /*
549          * Compute a throttle threshold 25% below the current duration.
550          */
551         avg_len += avg_len / 4;
552         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553         if (avg_len < max)
554                 max /= (u32)avg_len;
555         else
556                 max = 1;
557
558         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559         WRITE_ONCE(max_samples_per_tick, max);
560
561         sysctl_perf_event_sample_rate = max * HZ;
562         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563
564         if (!irq_work_queue(&perf_duration_work)) {
565                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566                              "kernel.perf_event_max_sample_rate to %d\n",
567                              __report_avg, __report_allowed,
568                              sysctl_perf_event_sample_rate);
569         }
570 }
571
572 static atomic64_t perf_event_id;
573
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576
577 void __weak perf_event_print_debug(void)        { }
578
579 static inline u64 perf_clock(void)
580 {
581         return local_clock();
582 }
583
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586         return event->clock();
587 }
588
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614         struct perf_event *leader = event->group_leader;
615
616         if (leader->state <= PERF_EVENT_STATE_OFF)
617                 return leader->state;
618
619         return event->state;
620 }
621
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625         enum perf_event_state state = __perf_effective_state(event);
626         u64 delta = now - event->tstamp;
627
628         *enabled = event->total_time_enabled;
629         if (state >= PERF_EVENT_STATE_INACTIVE)
630                 *enabled += delta;
631
632         *running = event->total_time_running;
633         if (state >= PERF_EVENT_STATE_ACTIVE)
634                 *running += delta;
635 }
636
637 static void perf_event_update_time(struct perf_event *event)
638 {
639         u64 now = perf_event_time(event);
640
641         __perf_update_times(event, now, &event->total_time_enabled,
642                                         &event->total_time_running);
643         event->tstamp = now;
644 }
645
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648         struct perf_event *sibling;
649
650         for_each_sibling_event(sibling, leader)
651                 perf_event_update_time(sibling);
652 }
653
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657         if (event->state == state)
658                 return;
659
660         perf_event_update_time(event);
661         /*
662          * If a group leader gets enabled/disabled all its siblings
663          * are affected too.
664          */
665         if ((event->state < 0) ^ (state < 0))
666                 perf_event_update_sibling_time(event);
667
668         WRITE_ONCE(event->state, state);
669 }
670
671 /*
672  * UP store-release, load-acquire
673  */
674
675 #define __store_release(ptr, val)                                       \
676 do {                                                                    \
677         barrier();                                                      \
678         WRITE_ONCE(*(ptr), (val));                                      \
679 } while (0)
680
681 #define __load_acquire(ptr)                                             \
682 ({                                                                      \
683         __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));        \
684         barrier();                                                      \
685         ___p;                                                           \
686 })
687
688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690         struct perf_event_pmu_context *pmu_ctx;
691
692         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693                 if (cgroup && !pmu_ctx->nr_cgroups)
694                         continue;
695                 perf_pmu_disable(pmu_ctx->pmu);
696         }
697 }
698
699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701         struct perf_event_pmu_context *pmu_ctx;
702
703         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704                 if (cgroup && !pmu_ctx->nr_cgroups)
705                         continue;
706                 perf_pmu_enable(pmu_ctx->pmu);
707         }
708 }
709
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712
713 #ifdef CONFIG_CGROUP_PERF
714
715 static inline bool
716 perf_cgroup_match(struct perf_event *event)
717 {
718         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719
720         /* @event doesn't care about cgroup */
721         if (!event->cgrp)
722                 return true;
723
724         /* wants specific cgroup scope but @cpuctx isn't associated with any */
725         if (!cpuctx->cgrp)
726                 return false;
727
728         /*
729          * Cgroup scoping is recursive.  An event enabled for a cgroup is
730          * also enabled for all its descendant cgroups.  If @cpuctx's
731          * cgroup is a descendant of @event's (the test covers identity
732          * case), it's a match.
733          */
734         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735                                     event->cgrp->css.cgroup);
736 }
737
738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740         css_put(&event->cgrp->css);
741         event->cgrp = NULL;
742 }
743
744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746         return event->cgrp != NULL;
747 }
748
749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751         struct perf_cgroup_info *t;
752
753         t = per_cpu_ptr(event->cgrp->info, event->cpu);
754         return t->time;
755 }
756
757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759         struct perf_cgroup_info *t;
760
761         t = per_cpu_ptr(event->cgrp->info, event->cpu);
762         if (!__load_acquire(&t->active))
763                 return t->time;
764         now += READ_ONCE(t->timeoffset);
765         return now;
766 }
767
768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770         if (adv)
771                 info->time += now - info->timestamp;
772         info->timestamp = now;
773         /*
774          * see update_context_time()
775          */
776         WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778
779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781         struct perf_cgroup *cgrp = cpuctx->cgrp;
782         struct cgroup_subsys_state *css;
783         struct perf_cgroup_info *info;
784
785         if (cgrp) {
786                 u64 now = perf_clock();
787
788                 for (css = &cgrp->css; css; css = css->parent) {
789                         cgrp = container_of(css, struct perf_cgroup, css);
790                         info = this_cpu_ptr(cgrp->info);
791
792                         __update_cgrp_time(info, now, true);
793                         if (final)
794                                 __store_release(&info->active, 0);
795                 }
796         }
797 }
798
799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801         struct perf_cgroup_info *info;
802
803         /*
804          * ensure we access cgroup data only when needed and
805          * when we know the cgroup is pinned (css_get)
806          */
807         if (!is_cgroup_event(event))
808                 return;
809
810         info = this_cpu_ptr(event->cgrp->info);
811         /*
812          * Do not update time when cgroup is not active
813          */
814         if (info->active)
815                 __update_cgrp_time(info, perf_clock(), true);
816 }
817
818 static inline void
819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821         struct perf_event_context *ctx = &cpuctx->ctx;
822         struct perf_cgroup *cgrp = cpuctx->cgrp;
823         struct perf_cgroup_info *info;
824         struct cgroup_subsys_state *css;
825
826         /*
827          * ctx->lock held by caller
828          * ensure we do not access cgroup data
829          * unless we have the cgroup pinned (css_get)
830          */
831         if (!cgrp)
832                 return;
833
834         WARN_ON_ONCE(!ctx->nr_cgroups);
835
836         for (css = &cgrp->css; css; css = css->parent) {
837                 cgrp = container_of(css, struct perf_cgroup, css);
838                 info = this_cpu_ptr(cgrp->info);
839                 __update_cgrp_time(info, ctx->timestamp, false);
840                 __store_release(&info->active, 1);
841         }
842 }
843
844 /*
845  * reschedule events based on the cgroup constraint of task.
846  */
847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850         struct perf_cgroup *cgrp;
851
852         /*
853          * cpuctx->cgrp is set when the first cgroup event enabled,
854          * and is cleared when the last cgroup event disabled.
855          */
856         if (READ_ONCE(cpuctx->cgrp) == NULL)
857                 return;
858
859         WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860
861         cgrp = perf_cgroup_from_task(task, NULL);
862         if (READ_ONCE(cpuctx->cgrp) == cgrp)
863                 return;
864
865         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866         perf_ctx_disable(&cpuctx->ctx, true);
867
868         ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869         /*
870          * must not be done before ctxswout due
871          * to update_cgrp_time_from_cpuctx() in
872          * ctx_sched_out()
873          */
874         cpuctx->cgrp = cgrp;
875         /*
876          * set cgrp before ctxsw in to allow
877          * perf_cgroup_set_timestamp() in ctx_sched_in()
878          * to not have to pass task around
879          */
880         ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881
882         perf_ctx_enable(&cpuctx->ctx, true);
883         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885
886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887                                 struct cgroup_subsys_state *css)
888 {
889         struct perf_cpu_context *cpuctx;
890         struct perf_event **storage;
891         int cpu, heap_size, ret = 0;
892
893         /*
894          * Allow storage to have sufficent space for an iterator for each
895          * possibly nested cgroup plus an iterator for events with no cgroup.
896          */
897         for (heap_size = 1; css; css = css->parent)
898                 heap_size++;
899
900         for_each_possible_cpu(cpu) {
901                 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902                 if (heap_size <= cpuctx->heap_size)
903                         continue;
904
905                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906                                        GFP_KERNEL, cpu_to_node(cpu));
907                 if (!storage) {
908                         ret = -ENOMEM;
909                         break;
910                 }
911
912                 raw_spin_lock_irq(&cpuctx->ctx.lock);
913                 if (cpuctx->heap_size < heap_size) {
914                         swap(cpuctx->heap, storage);
915                         if (storage == cpuctx->heap_default)
916                                 storage = NULL;
917                         cpuctx->heap_size = heap_size;
918                 }
919                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
920
921                 kfree(storage);
922         }
923
924         return ret;
925 }
926
927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928                                       struct perf_event_attr *attr,
929                                       struct perf_event *group_leader)
930 {
931         struct perf_cgroup *cgrp;
932         struct cgroup_subsys_state *css;
933         struct fd f = fdget(fd);
934         int ret = 0;
935
936         if (!f.file)
937                 return -EBADF;
938
939         css = css_tryget_online_from_dir(f.file->f_path.dentry,
940                                          &perf_event_cgrp_subsys);
941         if (IS_ERR(css)) {
942                 ret = PTR_ERR(css);
943                 goto out;
944         }
945
946         ret = perf_cgroup_ensure_storage(event, css);
947         if (ret)
948                 goto out;
949
950         cgrp = container_of(css, struct perf_cgroup, css);
951         event->cgrp = cgrp;
952
953         /*
954          * all events in a group must monitor
955          * the same cgroup because a task belongs
956          * to only one perf cgroup at a time
957          */
958         if (group_leader && group_leader->cgrp != cgrp) {
959                 perf_detach_cgroup(event);
960                 ret = -EINVAL;
961         }
962 out:
963         fdput(f);
964         return ret;
965 }
966
967 static inline void
968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970         struct perf_cpu_context *cpuctx;
971
972         if (!is_cgroup_event(event))
973                 return;
974
975         event->pmu_ctx->nr_cgroups++;
976
977         /*
978          * Because cgroup events are always per-cpu events,
979          * @ctx == &cpuctx->ctx.
980          */
981         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982
983         if (ctx->nr_cgroups++)
984                 return;
985
986         cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988
989 static inline void
990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992         struct perf_cpu_context *cpuctx;
993
994         if (!is_cgroup_event(event))
995                 return;
996
997         event->pmu_ctx->nr_cgroups--;
998
999         /*
1000          * Because cgroup events are always per-cpu events,
1001          * @ctx == &cpuctx->ctx.
1002          */
1003         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004
1005         if (--ctx->nr_cgroups)
1006                 return;
1007
1008         cpuctx->cgrp = NULL;
1009 }
1010
1011 #else /* !CONFIG_CGROUP_PERF */
1012
1013 static inline bool
1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016         return true;
1017 }
1018
1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021
1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024         return 0;
1025 }
1026
1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030
1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032                                                 bool final)
1033 {
1034 }
1035
1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037                                       struct perf_event_attr *attr,
1038                                       struct perf_event *group_leader)
1039 {
1040         return -EINVAL;
1041 }
1042
1043 static inline void
1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047
1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050         return 0;
1051 }
1052
1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055         return 0;
1056 }
1057
1058 static inline void
1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062
1063 static inline void
1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067
1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072
1073 /*
1074  * set default to be dependent on timer tick just
1075  * like original code
1076  */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079  * function must be called with interrupts disabled
1080  */
1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083         struct perf_cpu_pmu_context *cpc;
1084         bool rotations;
1085
1086         lockdep_assert_irqs_disabled();
1087
1088         cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089         rotations = perf_rotate_context(cpc);
1090
1091         raw_spin_lock(&cpc->hrtimer_lock);
1092         if (rotations)
1093                 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094         else
1095                 cpc->hrtimer_active = 0;
1096         raw_spin_unlock(&cpc->hrtimer_lock);
1097
1098         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100
1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103         struct hrtimer *timer = &cpc->hrtimer;
1104         struct pmu *pmu = cpc->epc.pmu;
1105         u64 interval;
1106
1107         /*
1108          * check default is sane, if not set then force to
1109          * default interval (1/tick)
1110          */
1111         interval = pmu->hrtimer_interval_ms;
1112         if (interval < 1)
1113                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114
1115         cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116
1117         raw_spin_lock_init(&cpc->hrtimer_lock);
1118         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119         timer->function = perf_mux_hrtimer_handler;
1120 }
1121
1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124         struct hrtimer *timer = &cpc->hrtimer;
1125         unsigned long flags;
1126
1127         raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128         if (!cpc->hrtimer_active) {
1129                 cpc->hrtimer_active = 1;
1130                 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132         }
1133         raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134
1135         return 0;
1136 }
1137
1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140         return perf_mux_hrtimer_restart(arg);
1141 }
1142
1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146         if (!(*count)++)
1147                 pmu->pmu_disable(pmu);
1148 }
1149
1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153         if (!--(*count))
1154                 pmu->pmu_enable(pmu);
1155 }
1156
1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159         WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161
1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164         refcount_inc(&ctx->refcount);
1165 }
1166
1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169         if (pmu->task_ctx_cache)
1170                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171
1172         return NULL;
1173 }
1174
1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177         if (pmu->task_ctx_cache && task_ctx_data)
1178                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180
1181 static void free_ctx(struct rcu_head *head)
1182 {
1183         struct perf_event_context *ctx;
1184
1185         ctx = container_of(head, struct perf_event_context, rcu_head);
1186         kfree(ctx);
1187 }
1188
1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191         if (refcount_dec_and_test(&ctx->refcount)) {
1192                 if (ctx->parent_ctx)
1193                         put_ctx(ctx->parent_ctx);
1194                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195                         put_task_struct(ctx->task);
1196                 call_rcu(&ctx->rcu_head, free_ctx);
1197         }
1198 }
1199
1200 /*
1201  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202  * perf_pmu_migrate_context() we need some magic.
1203  *
1204  * Those places that change perf_event::ctx will hold both
1205  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206  *
1207  * Lock ordering is by mutex address. There are two other sites where
1208  * perf_event_context::mutex nests and those are:
1209  *
1210  *  - perf_event_exit_task_context()    [ child , 0 ]
1211  *      perf_event_exit_event()
1212  *        put_event()                   [ parent, 1 ]
1213  *
1214  *  - perf_event_init_context()         [ parent, 0 ]
1215  *      inherit_task_group()
1216  *        inherit_group()
1217  *          inherit_event()
1218  *            perf_event_alloc()
1219  *              perf_init_event()
1220  *                perf_try_init_event() [ child , 1 ]
1221  *
1222  * While it appears there is an obvious deadlock here -- the parent and child
1223  * nesting levels are inverted between the two. This is in fact safe because
1224  * life-time rules separate them. That is an exiting task cannot fork, and a
1225  * spawning task cannot (yet) exit.
1226  *
1227  * But remember that these are parent<->child context relations, and
1228  * migration does not affect children, therefore these two orderings should not
1229  * interact.
1230  *
1231  * The change in perf_event::ctx does not affect children (as claimed above)
1232  * because the sys_perf_event_open() case will install a new event and break
1233  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234  * concerned with cpuctx and that doesn't have children.
1235  *
1236  * The places that change perf_event::ctx will issue:
1237  *
1238  *   perf_remove_from_context();
1239  *   synchronize_rcu();
1240  *   perf_install_in_context();
1241  *
1242  * to affect the change. The remove_from_context() + synchronize_rcu() should
1243  * quiesce the event, after which we can install it in the new location. This
1244  * means that only external vectors (perf_fops, prctl) can perturb the event
1245  * while in transit. Therefore all such accessors should also acquire
1246  * perf_event_context::mutex to serialize against this.
1247  *
1248  * However; because event->ctx can change while we're waiting to acquire
1249  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250  * function.
1251  *
1252  * Lock order:
1253  *    exec_update_lock
1254  *      task_struct::perf_event_mutex
1255  *        perf_event_context::mutex
1256  *          perf_event::child_mutex;
1257  *            perf_event_context::lock
1258  *          perf_event::mmap_mutex
1259  *          mmap_lock
1260  *            perf_addr_filters_head::lock
1261  *
1262  *    cpu_hotplug_lock
1263  *      pmus_lock
1264  *        cpuctx->mutex / perf_event_context::mutex
1265  */
1266 static struct perf_event_context *
1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1268 {
1269         struct perf_event_context *ctx;
1270
1271 again:
1272         rcu_read_lock();
1273         ctx = READ_ONCE(event->ctx);
1274         if (!refcount_inc_not_zero(&ctx->refcount)) {
1275                 rcu_read_unlock();
1276                 goto again;
1277         }
1278         rcu_read_unlock();
1279
1280         mutex_lock_nested(&ctx->mutex, nesting);
1281         if (event->ctx != ctx) {
1282                 mutex_unlock(&ctx->mutex);
1283                 put_ctx(ctx);
1284                 goto again;
1285         }
1286
1287         return ctx;
1288 }
1289
1290 static inline struct perf_event_context *
1291 perf_event_ctx_lock(struct perf_event *event)
1292 {
1293         return perf_event_ctx_lock_nested(event, 0);
1294 }
1295
1296 static void perf_event_ctx_unlock(struct perf_event *event,
1297                                   struct perf_event_context *ctx)
1298 {
1299         mutex_unlock(&ctx->mutex);
1300         put_ctx(ctx);
1301 }
1302
1303 /*
1304  * This must be done under the ctx->lock, such as to serialize against
1305  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306  * calling scheduler related locks and ctx->lock nests inside those.
1307  */
1308 static __must_check struct perf_event_context *
1309 unclone_ctx(struct perf_event_context *ctx)
1310 {
1311         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312
1313         lockdep_assert_held(&ctx->lock);
1314
1315         if (parent_ctx)
1316                 ctx->parent_ctx = NULL;
1317         ctx->generation++;
1318
1319         return parent_ctx;
1320 }
1321
1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323                                 enum pid_type type)
1324 {
1325         u32 nr;
1326         /*
1327          * only top level events have the pid namespace they were created in
1328          */
1329         if (event->parent)
1330                 event = event->parent;
1331
1332         nr = __task_pid_nr_ns(p, type, event->ns);
1333         /* avoid -1 if it is idle thread or runs in another ns */
1334         if (!nr && !pid_alive(p))
1335                 nr = -1;
1336         return nr;
1337 }
1338
1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1340 {
1341         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1342 }
1343
1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345 {
1346         return perf_event_pid_type(event, p, PIDTYPE_PID);
1347 }
1348
1349 /*
1350  * If we inherit events we want to return the parent event id
1351  * to userspace.
1352  */
1353 static u64 primary_event_id(struct perf_event *event)
1354 {
1355         u64 id = event->id;
1356
1357         if (event->parent)
1358                 id = event->parent->id;
1359
1360         return id;
1361 }
1362
1363 /*
1364  * Get the perf_event_context for a task and lock it.
1365  *
1366  * This has to cope with the fact that until it is locked,
1367  * the context could get moved to another task.
1368  */
1369 static struct perf_event_context *
1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1371 {
1372         struct perf_event_context *ctx;
1373
1374 retry:
1375         /*
1376          * One of the few rules of preemptible RCU is that one cannot do
1377          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1378          * part of the read side critical section was irqs-enabled -- see
1379          * rcu_read_unlock_special().
1380          *
1381          * Since ctx->lock nests under rq->lock we must ensure the entire read
1382          * side critical section has interrupts disabled.
1383          */
1384         local_irq_save(*flags);
1385         rcu_read_lock();
1386         ctx = rcu_dereference(task->perf_event_ctxp);
1387         if (ctx) {
1388                 /*
1389                  * If this context is a clone of another, it might
1390                  * get swapped for another underneath us by
1391                  * perf_event_task_sched_out, though the
1392                  * rcu_read_lock() protects us from any context
1393                  * getting freed.  Lock the context and check if it
1394                  * got swapped before we could get the lock, and retry
1395                  * if so.  If we locked the right context, then it
1396                  * can't get swapped on us any more.
1397                  */
1398                 raw_spin_lock(&ctx->lock);
1399                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1400                         raw_spin_unlock(&ctx->lock);
1401                         rcu_read_unlock();
1402                         local_irq_restore(*flags);
1403                         goto retry;
1404                 }
1405
1406                 if (ctx->task == TASK_TOMBSTONE ||
1407                     !refcount_inc_not_zero(&ctx->refcount)) {
1408                         raw_spin_unlock(&ctx->lock);
1409                         ctx = NULL;
1410                 } else {
1411                         WARN_ON_ONCE(ctx->task != task);
1412                 }
1413         }
1414         rcu_read_unlock();
1415         if (!ctx)
1416                 local_irq_restore(*flags);
1417         return ctx;
1418 }
1419
1420 /*
1421  * Get the context for a task and increment its pin_count so it
1422  * can't get swapped to another task.  This also increments its
1423  * reference count so that the context can't get freed.
1424  */
1425 static struct perf_event_context *
1426 perf_pin_task_context(struct task_struct *task)
1427 {
1428         struct perf_event_context *ctx;
1429         unsigned long flags;
1430
1431         ctx = perf_lock_task_context(task, &flags);
1432         if (ctx) {
1433                 ++ctx->pin_count;
1434                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435         }
1436         return ctx;
1437 }
1438
1439 static void perf_unpin_context(struct perf_event_context *ctx)
1440 {
1441         unsigned long flags;
1442
1443         raw_spin_lock_irqsave(&ctx->lock, flags);
1444         --ctx->pin_count;
1445         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446 }
1447
1448 /*
1449  * Update the record of the current time in a context.
1450  */
1451 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1452 {
1453         u64 now = perf_clock();
1454
1455         lockdep_assert_held(&ctx->lock);
1456
1457         if (adv)
1458                 ctx->time += now - ctx->timestamp;
1459         ctx->timestamp = now;
1460
1461         /*
1462          * The above: time' = time + (now - timestamp), can be re-arranged
1463          * into: time` = now + (time - timestamp), which gives a single value
1464          * offset to compute future time without locks on.
1465          *
1466          * See perf_event_time_now(), which can be used from NMI context where
1467          * it's (obviously) not possible to acquire ctx->lock in order to read
1468          * both the above values in a consistent manner.
1469          */
1470         WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471 }
1472
1473 static void update_context_time(struct perf_event_context *ctx)
1474 {
1475         __update_context_time(ctx, true);
1476 }
1477
1478 static u64 perf_event_time(struct perf_event *event)
1479 {
1480         struct perf_event_context *ctx = event->ctx;
1481
1482         if (unlikely(!ctx))
1483                 return 0;
1484
1485         if (is_cgroup_event(event))
1486                 return perf_cgroup_event_time(event);
1487
1488         return ctx->time;
1489 }
1490
1491 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492 {
1493         struct perf_event_context *ctx = event->ctx;
1494
1495         if (unlikely(!ctx))
1496                 return 0;
1497
1498         if (is_cgroup_event(event))
1499                 return perf_cgroup_event_time_now(event, now);
1500
1501         if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502                 return ctx->time;
1503
1504         now += READ_ONCE(ctx->timeoffset);
1505         return now;
1506 }
1507
1508 static enum event_type_t get_event_type(struct perf_event *event)
1509 {
1510         struct perf_event_context *ctx = event->ctx;
1511         enum event_type_t event_type;
1512
1513         lockdep_assert_held(&ctx->lock);
1514
1515         /*
1516          * It's 'group type', really, because if our group leader is
1517          * pinned, so are we.
1518          */
1519         if (event->group_leader != event)
1520                 event = event->group_leader;
1521
1522         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523         if (!ctx->task)
1524                 event_type |= EVENT_CPU;
1525
1526         return event_type;
1527 }
1528
1529 /*
1530  * Helper function to initialize event group nodes.
1531  */
1532 static void init_event_group(struct perf_event *event)
1533 {
1534         RB_CLEAR_NODE(&event->group_node);
1535         event->group_index = 0;
1536 }
1537
1538 /*
1539  * Extract pinned or flexible groups from the context
1540  * based on event attrs bits.
1541  */
1542 static struct perf_event_groups *
1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1544 {
1545         if (event->attr.pinned)
1546                 return &ctx->pinned_groups;
1547         else
1548                 return &ctx->flexible_groups;
1549 }
1550
1551 /*
1552  * Helper function to initializes perf_event_group trees.
1553  */
1554 static void perf_event_groups_init(struct perf_event_groups *groups)
1555 {
1556         groups->tree = RB_ROOT;
1557         groups->index = 0;
1558 }
1559
1560 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561 {
1562         struct cgroup *cgroup = NULL;
1563
1564 #ifdef CONFIG_CGROUP_PERF
1565         if (event->cgrp)
1566                 cgroup = event->cgrp->css.cgroup;
1567 #endif
1568
1569         return cgroup;
1570 }
1571
1572 /*
1573  * Compare function for event groups;
1574  *
1575  * Implements complex key that first sorts by CPU and then by virtual index
1576  * which provides ordering when rotating groups for the same CPU.
1577  */
1578 static __always_inline int
1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580                       const struct cgroup *left_cgroup, const u64 left_group_index,
1581                       const struct perf_event *right)
1582 {
1583         if (left_cpu < right->cpu)
1584                 return -1;
1585         if (left_cpu > right->cpu)
1586                 return 1;
1587
1588         if (left_pmu) {
1589                 if (left_pmu < right->pmu_ctx->pmu)
1590                         return -1;
1591                 if (left_pmu > right->pmu_ctx->pmu)
1592                         return 1;
1593         }
1594
1595 #ifdef CONFIG_CGROUP_PERF
1596         {
1597                 const struct cgroup *right_cgroup = event_cgroup(right);
1598
1599                 if (left_cgroup != right_cgroup) {
1600                         if (!left_cgroup) {
1601                                 /*
1602                                  * Left has no cgroup but right does, no
1603                                  * cgroups come first.
1604                                  */
1605                                 return -1;
1606                         }
1607                         if (!right_cgroup) {
1608                                 /*
1609                                  * Right has no cgroup but left does, no
1610                                  * cgroups come first.
1611                                  */
1612                                 return 1;
1613                         }
1614                         /* Two dissimilar cgroups, order by id. */
1615                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616                                 return -1;
1617
1618                         return 1;
1619                 }
1620         }
1621 #endif
1622
1623         if (left_group_index < right->group_index)
1624                 return -1;
1625         if (left_group_index > right->group_index)
1626                 return 1;
1627
1628         return 0;
1629 }
1630
1631 #define __node_2_pe(node) \
1632         rb_entry((node), struct perf_event, group_node)
1633
1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635 {
1636         struct perf_event *e = __node_2_pe(a);
1637         return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638                                      e->group_index, __node_2_pe(b)) < 0;
1639 }
1640
1641 struct __group_key {
1642         int cpu;
1643         struct pmu *pmu;
1644         struct cgroup *cgroup;
1645 };
1646
1647 static inline int __group_cmp(const void *key, const struct rb_node *node)
1648 {
1649         const struct __group_key *a = key;
1650         const struct perf_event *b = __node_2_pe(node);
1651
1652         /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653         return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654 }
1655
1656 static inline int
1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658 {
1659         const struct __group_key *a = key;
1660         const struct perf_event *b = __node_2_pe(node);
1661
1662         /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663         return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664                                      b->group_index, b);
1665 }
1666
1667 /*
1668  * Insert @event into @groups' tree; using
1669  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1671  */
1672 static void
1673 perf_event_groups_insert(struct perf_event_groups *groups,
1674                          struct perf_event *event)
1675 {
1676         event->group_index = ++groups->index;
1677
1678         rb_add(&event->group_node, &groups->tree, __group_less);
1679 }
1680
1681 /*
1682  * Helper function to insert event into the pinned or flexible groups.
1683  */
1684 static void
1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686 {
1687         struct perf_event_groups *groups;
1688
1689         groups = get_event_groups(event, ctx);
1690         perf_event_groups_insert(groups, event);
1691 }
1692
1693 /*
1694  * Delete a group from a tree.
1695  */
1696 static void
1697 perf_event_groups_delete(struct perf_event_groups *groups,
1698                          struct perf_event *event)
1699 {
1700         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701                      RB_EMPTY_ROOT(&groups->tree));
1702
1703         rb_erase(&event->group_node, &groups->tree);
1704         init_event_group(event);
1705 }
1706
1707 /*
1708  * Helper function to delete event from its groups.
1709  */
1710 static void
1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712 {
1713         struct perf_event_groups *groups;
1714
1715         groups = get_event_groups(event, ctx);
1716         perf_event_groups_delete(groups, event);
1717 }
1718
1719 /*
1720  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1721  */
1722 static struct perf_event *
1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1724                         struct pmu *pmu, struct cgroup *cgrp)
1725 {
1726         struct __group_key key = {
1727                 .cpu = cpu,
1728                 .pmu = pmu,
1729                 .cgroup = cgrp,
1730         };
1731         struct rb_node *node;
1732
1733         node = rb_find_first(&key, &groups->tree, __group_cmp);
1734         if (node)
1735                 return __node_2_pe(node);
1736
1737         return NULL;
1738 }
1739
1740 static struct perf_event *
1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1742 {
1743         struct __group_key key = {
1744                 .cpu = event->cpu,
1745                 .pmu = pmu,
1746                 .cgroup = event_cgroup(event),
1747         };
1748         struct rb_node *next;
1749
1750         next = rb_next_match(&key, &event->group_node, __group_cmp);
1751         if (next)
1752                 return __node_2_pe(next);
1753
1754         return NULL;
1755 }
1756
1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)          \
1758         for (event = perf_event_groups_first(groups, cpu, pmu, NULL);   \
1759              event; event = perf_event_groups_next(event, pmu))
1760
1761 /*
1762  * Iterate through the whole groups tree.
1763  */
1764 #define perf_event_groups_for_each(event, groups)                       \
1765         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1766                                 typeof(*event), group_node); event;     \
1767                 event = rb_entry_safe(rb_next(&event->group_node),      \
1768                                 typeof(*event), group_node))
1769
1770 /*
1771  * Add an event from the lists for its context.
1772  * Must be called with ctx->mutex and ctx->lock held.
1773  */
1774 static void
1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777         lockdep_assert_held(&ctx->lock);
1778
1779         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780         event->attach_state |= PERF_ATTACH_CONTEXT;
1781
1782         event->tstamp = perf_event_time(event);
1783
1784         /*
1785          * If we're a stand alone event or group leader, we go to the context
1786          * list, group events are kept attached to the group so that
1787          * perf_group_detach can, at all times, locate all siblings.
1788          */
1789         if (event->group_leader == event) {
1790                 event->group_caps = event->event_caps;
1791                 add_event_to_groups(event, ctx);
1792         }
1793
1794         list_add_rcu(&event->event_entry, &ctx->event_list);
1795         ctx->nr_events++;
1796         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797                 ctx->nr_user++;
1798         if (event->attr.inherit_stat)
1799                 ctx->nr_stat++;
1800
1801         if (event->state > PERF_EVENT_STATE_OFF)
1802                 perf_cgroup_event_enable(event, ctx);
1803
1804         ctx->generation++;
1805         event->pmu_ctx->nr_events++;
1806 }
1807
1808 /*
1809  * Initialize event state based on the perf_event_attr::disabled.
1810  */
1811 static inline void perf_event__state_init(struct perf_event *event)
1812 {
1813         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814                                               PERF_EVENT_STATE_INACTIVE;
1815 }
1816
1817 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1818 {
1819         int entry = sizeof(u64); /* value */
1820         int size = 0;
1821         int nr = 1;
1822
1823         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1824                 size += sizeof(u64);
1825
1826         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827                 size += sizeof(u64);
1828
1829         if (read_format & PERF_FORMAT_ID)
1830                 entry += sizeof(u64);
1831
1832         if (read_format & PERF_FORMAT_LOST)
1833                 entry += sizeof(u64);
1834
1835         if (read_format & PERF_FORMAT_GROUP) {
1836                 nr += nr_siblings;
1837                 size += sizeof(u64);
1838         }
1839
1840         /*
1841          * Since perf_event_validate_size() limits this to 16k and inhibits
1842          * adding more siblings, this will never overflow.
1843          */
1844         return size + nr * entry;
1845 }
1846
1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1848 {
1849         struct perf_sample_data *data;
1850         u16 size = 0;
1851
1852         if (sample_type & PERF_SAMPLE_IP)
1853                 size += sizeof(data->ip);
1854
1855         if (sample_type & PERF_SAMPLE_ADDR)
1856                 size += sizeof(data->addr);
1857
1858         if (sample_type & PERF_SAMPLE_PERIOD)
1859                 size += sizeof(data->period);
1860
1861         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1862                 size += sizeof(data->weight.full);
1863
1864         if (sample_type & PERF_SAMPLE_READ)
1865                 size += event->read_size;
1866
1867         if (sample_type & PERF_SAMPLE_DATA_SRC)
1868                 size += sizeof(data->data_src.val);
1869
1870         if (sample_type & PERF_SAMPLE_TRANSACTION)
1871                 size += sizeof(data->txn);
1872
1873         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1874                 size += sizeof(data->phys_addr);
1875
1876         if (sample_type & PERF_SAMPLE_CGROUP)
1877                 size += sizeof(data->cgroup);
1878
1879         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1880                 size += sizeof(data->data_page_size);
1881
1882         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1883                 size += sizeof(data->code_page_size);
1884
1885         event->header_size = size;
1886 }
1887
1888 /*
1889  * Called at perf_event creation and when events are attached/detached from a
1890  * group.
1891  */
1892 static void perf_event__header_size(struct perf_event *event)
1893 {
1894         event->read_size =
1895                 __perf_event_read_size(event->attr.read_format,
1896                                        event->group_leader->nr_siblings);
1897         __perf_event_header_size(event, event->attr.sample_type);
1898 }
1899
1900 static void perf_event__id_header_size(struct perf_event *event)
1901 {
1902         struct perf_sample_data *data;
1903         u64 sample_type = event->attr.sample_type;
1904         u16 size = 0;
1905
1906         if (sample_type & PERF_SAMPLE_TID)
1907                 size += sizeof(data->tid_entry);
1908
1909         if (sample_type & PERF_SAMPLE_TIME)
1910                 size += sizeof(data->time);
1911
1912         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1913                 size += sizeof(data->id);
1914
1915         if (sample_type & PERF_SAMPLE_ID)
1916                 size += sizeof(data->id);
1917
1918         if (sample_type & PERF_SAMPLE_STREAM_ID)
1919                 size += sizeof(data->stream_id);
1920
1921         if (sample_type & PERF_SAMPLE_CPU)
1922                 size += sizeof(data->cpu_entry);
1923
1924         event->id_header_size = size;
1925 }
1926
1927 /*
1928  * Check that adding an event to the group does not result in anybody
1929  * overflowing the 64k event limit imposed by the output buffer.
1930  *
1931  * Specifically, check that the read_size for the event does not exceed 16k,
1932  * read_size being the one term that grows with groups size. Since read_size
1933  * depends on per-event read_format, also (re)check the existing events.
1934  *
1935  * This leaves 48k for the constant size fields and things like callchains,
1936  * branch stacks and register sets.
1937  */
1938 static bool perf_event_validate_size(struct perf_event *event)
1939 {
1940         struct perf_event *sibling, *group_leader = event->group_leader;
1941
1942         if (__perf_event_read_size(event->attr.read_format,
1943                                    group_leader->nr_siblings + 1) > 16*1024)
1944                 return false;
1945
1946         if (__perf_event_read_size(group_leader->attr.read_format,
1947                                    group_leader->nr_siblings + 1) > 16*1024)
1948                 return false;
1949
1950         /*
1951          * When creating a new group leader, group_leader->ctx is initialized
1952          * after the size has been validated, but we cannot safely use
1953          * for_each_sibling_event() until group_leader->ctx is set. A new group
1954          * leader cannot have any siblings yet, so we can safely skip checking
1955          * the non-existent siblings.
1956          */
1957         if (event == group_leader)
1958                 return true;
1959
1960         for_each_sibling_event(sibling, group_leader) {
1961                 if (__perf_event_read_size(sibling->attr.read_format,
1962                                            group_leader->nr_siblings + 1) > 16*1024)
1963                         return false;
1964         }
1965
1966         return true;
1967 }
1968
1969 static void perf_group_attach(struct perf_event *event)
1970 {
1971         struct perf_event *group_leader = event->group_leader, *pos;
1972
1973         lockdep_assert_held(&event->ctx->lock);
1974
1975         /*
1976          * We can have double attach due to group movement (move_group) in
1977          * perf_event_open().
1978          */
1979         if (event->attach_state & PERF_ATTACH_GROUP)
1980                 return;
1981
1982         event->attach_state |= PERF_ATTACH_GROUP;
1983
1984         if (group_leader == event)
1985                 return;
1986
1987         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1988
1989         group_leader->group_caps &= event->event_caps;
1990
1991         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1992         group_leader->nr_siblings++;
1993         group_leader->group_generation++;
1994
1995         perf_event__header_size(group_leader);
1996
1997         for_each_sibling_event(pos, group_leader)
1998                 perf_event__header_size(pos);
1999 }
2000
2001 /*
2002  * Remove an event from the lists for its context.
2003  * Must be called with ctx->mutex and ctx->lock held.
2004  */
2005 static void
2006 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2007 {
2008         WARN_ON_ONCE(event->ctx != ctx);
2009         lockdep_assert_held(&ctx->lock);
2010
2011         /*
2012          * We can have double detach due to exit/hot-unplug + close.
2013          */
2014         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2015                 return;
2016
2017         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2018
2019         ctx->nr_events--;
2020         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2021                 ctx->nr_user--;
2022         if (event->attr.inherit_stat)
2023                 ctx->nr_stat--;
2024
2025         list_del_rcu(&event->event_entry);
2026
2027         if (event->group_leader == event)
2028                 del_event_from_groups(event, ctx);
2029
2030         /*
2031          * If event was in error state, then keep it
2032          * that way, otherwise bogus counts will be
2033          * returned on read(). The only way to get out
2034          * of error state is by explicit re-enabling
2035          * of the event
2036          */
2037         if (event->state > PERF_EVENT_STATE_OFF) {
2038                 perf_cgroup_event_disable(event, ctx);
2039                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2040         }
2041
2042         ctx->generation++;
2043         event->pmu_ctx->nr_events--;
2044 }
2045
2046 static int
2047 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2048 {
2049         if (!has_aux(aux_event))
2050                 return 0;
2051
2052         if (!event->pmu->aux_output_match)
2053                 return 0;
2054
2055         return event->pmu->aux_output_match(aux_event);
2056 }
2057
2058 static void put_event(struct perf_event *event);
2059 static void event_sched_out(struct perf_event *event,
2060                             struct perf_event_context *ctx);
2061
2062 static void perf_put_aux_event(struct perf_event *event)
2063 {
2064         struct perf_event_context *ctx = event->ctx;
2065         struct perf_event *iter;
2066
2067         /*
2068          * If event uses aux_event tear down the link
2069          */
2070         if (event->aux_event) {
2071                 iter = event->aux_event;
2072                 event->aux_event = NULL;
2073                 put_event(iter);
2074                 return;
2075         }
2076
2077         /*
2078          * If the event is an aux_event, tear down all links to
2079          * it from other events.
2080          */
2081         for_each_sibling_event(iter, event->group_leader) {
2082                 if (iter->aux_event != event)
2083                         continue;
2084
2085                 iter->aux_event = NULL;
2086                 put_event(event);
2087
2088                 /*
2089                  * If it's ACTIVE, schedule it out and put it into ERROR
2090                  * state so that we don't try to schedule it again. Note
2091                  * that perf_event_enable() will clear the ERROR status.
2092                  */
2093                 event_sched_out(iter, ctx);
2094                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2095         }
2096 }
2097
2098 static bool perf_need_aux_event(struct perf_event *event)
2099 {
2100         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2101 }
2102
2103 static int perf_get_aux_event(struct perf_event *event,
2104                               struct perf_event *group_leader)
2105 {
2106         /*
2107          * Our group leader must be an aux event if we want to be
2108          * an aux_output. This way, the aux event will precede its
2109          * aux_output events in the group, and therefore will always
2110          * schedule first.
2111          */
2112         if (!group_leader)
2113                 return 0;
2114
2115         /*
2116          * aux_output and aux_sample_size are mutually exclusive.
2117          */
2118         if (event->attr.aux_output && event->attr.aux_sample_size)
2119                 return 0;
2120
2121         if (event->attr.aux_output &&
2122             !perf_aux_output_match(event, group_leader))
2123                 return 0;
2124
2125         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2126                 return 0;
2127
2128         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2129                 return 0;
2130
2131         /*
2132          * Link aux_outputs to their aux event; this is undone in
2133          * perf_group_detach() by perf_put_aux_event(). When the
2134          * group in torn down, the aux_output events loose their
2135          * link to the aux_event and can't schedule any more.
2136          */
2137         event->aux_event = group_leader;
2138
2139         return 1;
2140 }
2141
2142 static inline struct list_head *get_event_list(struct perf_event *event)
2143 {
2144         return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2145                                     &event->pmu_ctx->flexible_active;
2146 }
2147
2148 /*
2149  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2150  * cannot exist on their own, schedule them out and move them into the ERROR
2151  * state. Also see _perf_event_enable(), it will not be able to recover
2152  * this ERROR state.
2153  */
2154 static inline void perf_remove_sibling_event(struct perf_event *event)
2155 {
2156         event_sched_out(event, event->ctx);
2157         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2158 }
2159
2160 static void perf_group_detach(struct perf_event *event)
2161 {
2162         struct perf_event *leader = event->group_leader;
2163         struct perf_event *sibling, *tmp;
2164         struct perf_event_context *ctx = event->ctx;
2165
2166         lockdep_assert_held(&ctx->lock);
2167
2168         /*
2169          * We can have double detach due to exit/hot-unplug + close.
2170          */
2171         if (!(event->attach_state & PERF_ATTACH_GROUP))
2172                 return;
2173
2174         event->attach_state &= ~PERF_ATTACH_GROUP;
2175
2176         perf_put_aux_event(event);
2177
2178         /*
2179          * If this is a sibling, remove it from its group.
2180          */
2181         if (leader != event) {
2182                 list_del_init(&event->sibling_list);
2183                 event->group_leader->nr_siblings--;
2184                 event->group_leader->group_generation++;
2185                 goto out;
2186         }
2187
2188         /*
2189          * If this was a group event with sibling events then
2190          * upgrade the siblings to singleton events by adding them
2191          * to whatever list we are on.
2192          */
2193         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2194
2195                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2196                         perf_remove_sibling_event(sibling);
2197
2198                 sibling->group_leader = sibling;
2199                 list_del_init(&sibling->sibling_list);
2200
2201                 /* Inherit group flags from the previous leader */
2202                 sibling->group_caps = event->group_caps;
2203
2204                 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2205                         add_event_to_groups(sibling, event->ctx);
2206
2207                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2208                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2209                 }
2210
2211                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2212         }
2213
2214 out:
2215         for_each_sibling_event(tmp, leader)
2216                 perf_event__header_size(tmp);
2217
2218         perf_event__header_size(leader);
2219 }
2220
2221 static void sync_child_event(struct perf_event *child_event);
2222
2223 static void perf_child_detach(struct perf_event *event)
2224 {
2225         struct perf_event *parent_event = event->parent;
2226
2227         if (!(event->attach_state & PERF_ATTACH_CHILD))
2228                 return;
2229
2230         event->attach_state &= ~PERF_ATTACH_CHILD;
2231
2232         if (WARN_ON_ONCE(!parent_event))
2233                 return;
2234
2235         lockdep_assert_held(&parent_event->child_mutex);
2236
2237         sync_child_event(event);
2238         list_del_init(&event->child_list);
2239 }
2240
2241 static bool is_orphaned_event(struct perf_event *event)
2242 {
2243         return event->state == PERF_EVENT_STATE_DEAD;
2244 }
2245
2246 static inline int
2247 event_filter_match(struct perf_event *event)
2248 {
2249         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2250                perf_cgroup_match(event);
2251 }
2252
2253 static void
2254 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2255 {
2256         struct perf_event_pmu_context *epc = event->pmu_ctx;
2257         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2258         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2259
2260         // XXX cpc serialization, probably per-cpu IRQ disabled
2261
2262         WARN_ON_ONCE(event->ctx != ctx);
2263         lockdep_assert_held(&ctx->lock);
2264
2265         if (event->state != PERF_EVENT_STATE_ACTIVE)
2266                 return;
2267
2268         /*
2269          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2270          * we can schedule events _OUT_ individually through things like
2271          * __perf_remove_from_context().
2272          */
2273         list_del_init(&event->active_list);
2274
2275         perf_pmu_disable(event->pmu);
2276
2277         event->pmu->del(event, 0);
2278         event->oncpu = -1;
2279
2280         if (event->pending_disable) {
2281                 event->pending_disable = 0;
2282                 perf_cgroup_event_disable(event, ctx);
2283                 state = PERF_EVENT_STATE_OFF;
2284         }
2285
2286         if (event->pending_sigtrap) {
2287                 bool dec = true;
2288
2289                 event->pending_sigtrap = 0;
2290                 if (state != PERF_EVENT_STATE_OFF &&
2291                     !event->pending_work) {
2292                         event->pending_work = 1;
2293                         dec = false;
2294                         WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2295                         task_work_add(current, &event->pending_task, TWA_RESUME);
2296                 }
2297                 if (dec)
2298                         local_dec(&event->ctx->nr_pending);
2299         }
2300
2301         perf_event_set_state(event, state);
2302
2303         if (!is_software_event(event))
2304                 cpc->active_oncpu--;
2305         if (event->attr.freq && event->attr.sample_freq)
2306                 ctx->nr_freq--;
2307         if (event->attr.exclusive || !cpc->active_oncpu)
2308                 cpc->exclusive = 0;
2309
2310         perf_pmu_enable(event->pmu);
2311 }
2312
2313 static void
2314 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2315 {
2316         struct perf_event *event;
2317
2318         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2319                 return;
2320
2321         perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2322
2323         event_sched_out(group_event, ctx);
2324
2325         /*
2326          * Schedule out siblings (if any):
2327          */
2328         for_each_sibling_event(event, group_event)
2329                 event_sched_out(event, ctx);
2330 }
2331
2332 #define DETACH_GROUP    0x01UL
2333 #define DETACH_CHILD    0x02UL
2334 #define DETACH_DEAD     0x04UL
2335
2336 /*
2337  * Cross CPU call to remove a performance event
2338  *
2339  * We disable the event on the hardware level first. After that we
2340  * remove it from the context list.
2341  */
2342 static void
2343 __perf_remove_from_context(struct perf_event *event,
2344                            struct perf_cpu_context *cpuctx,
2345                            struct perf_event_context *ctx,
2346                            void *info)
2347 {
2348         struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2349         unsigned long flags = (unsigned long)info;
2350
2351         if (ctx->is_active & EVENT_TIME) {
2352                 update_context_time(ctx);
2353                 update_cgrp_time_from_cpuctx(cpuctx, false);
2354         }
2355
2356         /*
2357          * Ensure event_sched_out() switches to OFF, at the very least
2358          * this avoids raising perf_pending_task() at this time.
2359          */
2360         if (flags & DETACH_DEAD)
2361                 event->pending_disable = 1;
2362         event_sched_out(event, ctx);
2363         if (flags & DETACH_GROUP)
2364                 perf_group_detach(event);
2365         if (flags & DETACH_CHILD)
2366                 perf_child_detach(event);
2367         list_del_event(event, ctx);
2368         if (flags & DETACH_DEAD)
2369                 event->state = PERF_EVENT_STATE_DEAD;
2370
2371         if (!pmu_ctx->nr_events) {
2372                 pmu_ctx->rotate_necessary = 0;
2373
2374                 if (ctx->task && ctx->is_active) {
2375                         struct perf_cpu_pmu_context *cpc;
2376
2377                         cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2378                         WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2379                         cpc->task_epc = NULL;
2380                 }
2381         }
2382
2383         if (!ctx->nr_events && ctx->is_active) {
2384                 if (ctx == &cpuctx->ctx)
2385                         update_cgrp_time_from_cpuctx(cpuctx, true);
2386
2387                 ctx->is_active = 0;
2388                 if (ctx->task) {
2389                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2390                         cpuctx->task_ctx = NULL;
2391                 }
2392         }
2393 }
2394
2395 /*
2396  * Remove the event from a task's (or a CPU's) list of events.
2397  *
2398  * If event->ctx is a cloned context, callers must make sure that
2399  * every task struct that event->ctx->task could possibly point to
2400  * remains valid.  This is OK when called from perf_release since
2401  * that only calls us on the top-level context, which can't be a clone.
2402  * When called from perf_event_exit_task, it's OK because the
2403  * context has been detached from its task.
2404  */
2405 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2406 {
2407         struct perf_event_context *ctx = event->ctx;
2408
2409         lockdep_assert_held(&ctx->mutex);
2410
2411         /*
2412          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2413          * to work in the face of TASK_TOMBSTONE, unlike every other
2414          * event_function_call() user.
2415          */
2416         raw_spin_lock_irq(&ctx->lock);
2417         if (!ctx->is_active) {
2418                 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2419                                            ctx, (void *)flags);
2420                 raw_spin_unlock_irq(&ctx->lock);
2421                 return;
2422         }
2423         raw_spin_unlock_irq(&ctx->lock);
2424
2425         event_function_call(event, __perf_remove_from_context, (void *)flags);
2426 }
2427
2428 /*
2429  * Cross CPU call to disable a performance event
2430  */
2431 static void __perf_event_disable(struct perf_event *event,
2432                                  struct perf_cpu_context *cpuctx,
2433                                  struct perf_event_context *ctx,
2434                                  void *info)
2435 {
2436         if (event->state < PERF_EVENT_STATE_INACTIVE)
2437                 return;
2438
2439         if (ctx->is_active & EVENT_TIME) {
2440                 update_context_time(ctx);
2441                 update_cgrp_time_from_event(event);
2442         }
2443
2444         perf_pmu_disable(event->pmu_ctx->pmu);
2445
2446         if (event == event->group_leader)
2447                 group_sched_out(event, ctx);
2448         else
2449                 event_sched_out(event, ctx);
2450
2451         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2452         perf_cgroup_event_disable(event, ctx);
2453
2454         perf_pmu_enable(event->pmu_ctx->pmu);
2455 }
2456
2457 /*
2458  * Disable an event.
2459  *
2460  * If event->ctx is a cloned context, callers must make sure that
2461  * every task struct that event->ctx->task could possibly point to
2462  * remains valid.  This condition is satisfied when called through
2463  * perf_event_for_each_child or perf_event_for_each because they
2464  * hold the top-level event's child_mutex, so any descendant that
2465  * goes to exit will block in perf_event_exit_event().
2466  *
2467  * When called from perf_pending_irq it's OK because event->ctx
2468  * is the current context on this CPU and preemption is disabled,
2469  * hence we can't get into perf_event_task_sched_out for this context.
2470  */
2471 static void _perf_event_disable(struct perf_event *event)
2472 {
2473         struct perf_event_context *ctx = event->ctx;
2474
2475         raw_spin_lock_irq(&ctx->lock);
2476         if (event->state <= PERF_EVENT_STATE_OFF) {
2477                 raw_spin_unlock_irq(&ctx->lock);
2478                 return;
2479         }
2480         raw_spin_unlock_irq(&ctx->lock);
2481
2482         event_function_call(event, __perf_event_disable, NULL);
2483 }
2484
2485 void perf_event_disable_local(struct perf_event *event)
2486 {
2487         event_function_local(event, __perf_event_disable, NULL);
2488 }
2489
2490 /*
2491  * Strictly speaking kernel users cannot create groups and therefore this
2492  * interface does not need the perf_event_ctx_lock() magic.
2493  */
2494 void perf_event_disable(struct perf_event *event)
2495 {
2496         struct perf_event_context *ctx;
2497
2498         ctx = perf_event_ctx_lock(event);
2499         _perf_event_disable(event);
2500         perf_event_ctx_unlock(event, ctx);
2501 }
2502 EXPORT_SYMBOL_GPL(perf_event_disable);
2503
2504 void perf_event_disable_inatomic(struct perf_event *event)
2505 {
2506         event->pending_disable = 1;
2507         irq_work_queue(&event->pending_irq);
2508 }
2509
2510 #define MAX_INTERRUPTS (~0ULL)
2511
2512 static void perf_log_throttle(struct perf_event *event, int enable);
2513 static void perf_log_itrace_start(struct perf_event *event);
2514
2515 static int
2516 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2517 {
2518         struct perf_event_pmu_context *epc = event->pmu_ctx;
2519         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2520         int ret = 0;
2521
2522         WARN_ON_ONCE(event->ctx != ctx);
2523
2524         lockdep_assert_held(&ctx->lock);
2525
2526         if (event->state <= PERF_EVENT_STATE_OFF)
2527                 return 0;
2528
2529         WRITE_ONCE(event->oncpu, smp_processor_id());
2530         /*
2531          * Order event::oncpu write to happen before the ACTIVE state is
2532          * visible. This allows perf_event_{stop,read}() to observe the correct
2533          * ->oncpu if it sees ACTIVE.
2534          */
2535         smp_wmb();
2536         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2537
2538         /*
2539          * Unthrottle events, since we scheduled we might have missed several
2540          * ticks already, also for a heavily scheduling task there is little
2541          * guarantee it'll get a tick in a timely manner.
2542          */
2543         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2544                 perf_log_throttle(event, 1);
2545                 event->hw.interrupts = 0;
2546         }
2547
2548         perf_pmu_disable(event->pmu);
2549
2550         perf_log_itrace_start(event);
2551
2552         if (event->pmu->add(event, PERF_EF_START)) {
2553                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2554                 event->oncpu = -1;
2555                 ret = -EAGAIN;
2556                 goto out;
2557         }
2558
2559         if (!is_software_event(event))
2560                 cpc->active_oncpu++;
2561         if (event->attr.freq && event->attr.sample_freq)
2562                 ctx->nr_freq++;
2563
2564         if (event->attr.exclusive)
2565                 cpc->exclusive = 1;
2566
2567 out:
2568         perf_pmu_enable(event->pmu);
2569
2570         return ret;
2571 }
2572
2573 static int
2574 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2575 {
2576         struct perf_event *event, *partial_group = NULL;
2577         struct pmu *pmu = group_event->pmu_ctx->pmu;
2578
2579         if (group_event->state == PERF_EVENT_STATE_OFF)
2580                 return 0;
2581
2582         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2583
2584         if (event_sched_in(group_event, ctx))
2585                 goto error;
2586
2587         /*
2588          * Schedule in siblings as one group (if any):
2589          */
2590         for_each_sibling_event(event, group_event) {
2591                 if (event_sched_in(event, ctx)) {
2592                         partial_group = event;
2593                         goto group_error;
2594                 }
2595         }
2596
2597         if (!pmu->commit_txn(pmu))
2598                 return 0;
2599
2600 group_error:
2601         /*
2602          * Groups can be scheduled in as one unit only, so undo any
2603          * partial group before returning:
2604          * The events up to the failed event are scheduled out normally.
2605          */
2606         for_each_sibling_event(event, group_event) {
2607                 if (event == partial_group)
2608                         break;
2609
2610                 event_sched_out(event, ctx);
2611         }
2612         event_sched_out(group_event, ctx);
2613
2614 error:
2615         pmu->cancel_txn(pmu);
2616         return -EAGAIN;
2617 }
2618
2619 /*
2620  * Work out whether we can put this event group on the CPU now.
2621  */
2622 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2623 {
2624         struct perf_event_pmu_context *epc = event->pmu_ctx;
2625         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2626
2627         /*
2628          * Groups consisting entirely of software events can always go on.
2629          */
2630         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2631                 return 1;
2632         /*
2633          * If an exclusive group is already on, no other hardware
2634          * events can go on.
2635          */
2636         if (cpc->exclusive)
2637                 return 0;
2638         /*
2639          * If this group is exclusive and there are already
2640          * events on the CPU, it can't go on.
2641          */
2642         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2643                 return 0;
2644         /*
2645          * Otherwise, try to add it if all previous groups were able
2646          * to go on.
2647          */
2648         return can_add_hw;
2649 }
2650
2651 static void add_event_to_ctx(struct perf_event *event,
2652                                struct perf_event_context *ctx)
2653 {
2654         list_add_event(event, ctx);
2655         perf_group_attach(event);
2656 }
2657
2658 static void task_ctx_sched_out(struct perf_event_context *ctx,
2659                                 enum event_type_t event_type)
2660 {
2661         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2662
2663         if (!cpuctx->task_ctx)
2664                 return;
2665
2666         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2667                 return;
2668
2669         ctx_sched_out(ctx, event_type);
2670 }
2671
2672 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2673                                 struct perf_event_context *ctx)
2674 {
2675         ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2676         if (ctx)
2677                  ctx_sched_in(ctx, EVENT_PINNED);
2678         ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2679         if (ctx)
2680                  ctx_sched_in(ctx, EVENT_FLEXIBLE);
2681 }
2682
2683 /*
2684  * We want to maintain the following priority of scheduling:
2685  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2686  *  - task pinned (EVENT_PINNED)
2687  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2688  *  - task flexible (EVENT_FLEXIBLE).
2689  *
2690  * In order to avoid unscheduling and scheduling back in everything every
2691  * time an event is added, only do it for the groups of equal priority and
2692  * below.
2693  *
2694  * This can be called after a batch operation on task events, in which case
2695  * event_type is a bit mask of the types of events involved. For CPU events,
2696  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2697  */
2698 /*
2699  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2700  * event to the context or enabling existing event in the context. We can
2701  * probably optimize it by rescheduling only affected pmu_ctx.
2702  */
2703 static void ctx_resched(struct perf_cpu_context *cpuctx,
2704                         struct perf_event_context *task_ctx,
2705                         enum event_type_t event_type)
2706 {
2707         bool cpu_event = !!(event_type & EVENT_CPU);
2708
2709         /*
2710          * If pinned groups are involved, flexible groups also need to be
2711          * scheduled out.
2712          */
2713         if (event_type & EVENT_PINNED)
2714                 event_type |= EVENT_FLEXIBLE;
2715
2716         event_type &= EVENT_ALL;
2717
2718         perf_ctx_disable(&cpuctx->ctx, false);
2719         if (task_ctx) {
2720                 perf_ctx_disable(task_ctx, false);
2721                 task_ctx_sched_out(task_ctx, event_type);
2722         }
2723
2724         /*
2725          * Decide which cpu ctx groups to schedule out based on the types
2726          * of events that caused rescheduling:
2727          *  - EVENT_CPU: schedule out corresponding groups;
2728          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2729          *  - otherwise, do nothing more.
2730          */
2731         if (cpu_event)
2732                 ctx_sched_out(&cpuctx->ctx, event_type);
2733         else if (event_type & EVENT_PINNED)
2734                 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2735
2736         perf_event_sched_in(cpuctx, task_ctx);
2737
2738         perf_ctx_enable(&cpuctx->ctx, false);
2739         if (task_ctx)
2740                 perf_ctx_enable(task_ctx, false);
2741 }
2742
2743 void perf_pmu_resched(struct pmu *pmu)
2744 {
2745         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2746         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2747
2748         perf_ctx_lock(cpuctx, task_ctx);
2749         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2750         perf_ctx_unlock(cpuctx, task_ctx);
2751 }
2752
2753 /*
2754  * Cross CPU call to install and enable a performance event
2755  *
2756  * Very similar to remote_function() + event_function() but cannot assume that
2757  * things like ctx->is_active and cpuctx->task_ctx are set.
2758  */
2759 static int  __perf_install_in_context(void *info)
2760 {
2761         struct perf_event *event = info;
2762         struct perf_event_context *ctx = event->ctx;
2763         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2764         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2765         bool reprogram = true;
2766         int ret = 0;
2767
2768         raw_spin_lock(&cpuctx->ctx.lock);
2769         if (ctx->task) {
2770                 raw_spin_lock(&ctx->lock);
2771                 task_ctx = ctx;
2772
2773                 reprogram = (ctx->task == current);
2774
2775                 /*
2776                  * If the task is running, it must be running on this CPU,
2777                  * otherwise we cannot reprogram things.
2778                  *
2779                  * If its not running, we don't care, ctx->lock will
2780                  * serialize against it becoming runnable.
2781                  */
2782                 if (task_curr(ctx->task) && !reprogram) {
2783                         ret = -ESRCH;
2784                         goto unlock;
2785                 }
2786
2787                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2788         } else if (task_ctx) {
2789                 raw_spin_lock(&task_ctx->lock);
2790         }
2791
2792 #ifdef CONFIG_CGROUP_PERF
2793         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2794                 /*
2795                  * If the current cgroup doesn't match the event's
2796                  * cgroup, we should not try to schedule it.
2797                  */
2798                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2799                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2800                                         event->cgrp->css.cgroup);
2801         }
2802 #endif
2803
2804         if (reprogram) {
2805                 ctx_sched_out(ctx, EVENT_TIME);
2806                 add_event_to_ctx(event, ctx);
2807                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2808         } else {
2809                 add_event_to_ctx(event, ctx);
2810         }
2811
2812 unlock:
2813         perf_ctx_unlock(cpuctx, task_ctx);
2814
2815         return ret;
2816 }
2817
2818 static bool exclusive_event_installable(struct perf_event *event,
2819                                         struct perf_event_context *ctx);
2820
2821 /*
2822  * Attach a performance event to a context.
2823  *
2824  * Very similar to event_function_call, see comment there.
2825  */
2826 static void
2827 perf_install_in_context(struct perf_event_context *ctx,
2828                         struct perf_event *event,
2829                         int cpu)
2830 {
2831         struct task_struct *task = READ_ONCE(ctx->task);
2832
2833         lockdep_assert_held(&ctx->mutex);
2834
2835         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2836
2837         if (event->cpu != -1)
2838                 WARN_ON_ONCE(event->cpu != cpu);
2839
2840         /*
2841          * Ensures that if we can observe event->ctx, both the event and ctx
2842          * will be 'complete'. See perf_iterate_sb_cpu().
2843          */
2844         smp_store_release(&event->ctx, ctx);
2845
2846         /*
2847          * perf_event_attr::disabled events will not run and can be initialized
2848          * without IPI. Except when this is the first event for the context, in
2849          * that case we need the magic of the IPI to set ctx->is_active.
2850          *
2851          * The IOC_ENABLE that is sure to follow the creation of a disabled
2852          * event will issue the IPI and reprogram the hardware.
2853          */
2854         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2855             ctx->nr_events && !is_cgroup_event(event)) {
2856                 raw_spin_lock_irq(&ctx->lock);
2857                 if (ctx->task == TASK_TOMBSTONE) {
2858                         raw_spin_unlock_irq(&ctx->lock);
2859                         return;
2860                 }
2861                 add_event_to_ctx(event, ctx);
2862                 raw_spin_unlock_irq(&ctx->lock);
2863                 return;
2864         }
2865
2866         if (!task) {
2867                 cpu_function_call(cpu, __perf_install_in_context, event);
2868                 return;
2869         }
2870
2871         /*
2872          * Should not happen, we validate the ctx is still alive before calling.
2873          */
2874         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2875                 return;
2876
2877         /*
2878          * Installing events is tricky because we cannot rely on ctx->is_active
2879          * to be set in case this is the nr_events 0 -> 1 transition.
2880          *
2881          * Instead we use task_curr(), which tells us if the task is running.
2882          * However, since we use task_curr() outside of rq::lock, we can race
2883          * against the actual state. This means the result can be wrong.
2884          *
2885          * If we get a false positive, we retry, this is harmless.
2886          *
2887          * If we get a false negative, things are complicated. If we are after
2888          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2889          * value must be correct. If we're before, it doesn't matter since
2890          * perf_event_context_sched_in() will program the counter.
2891          *
2892          * However, this hinges on the remote context switch having observed
2893          * our task->perf_event_ctxp[] store, such that it will in fact take
2894          * ctx::lock in perf_event_context_sched_in().
2895          *
2896          * We do this by task_function_call(), if the IPI fails to hit the task
2897          * we know any future context switch of task must see the
2898          * perf_event_ctpx[] store.
2899          */
2900
2901         /*
2902          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2903          * task_cpu() load, such that if the IPI then does not find the task
2904          * running, a future context switch of that task must observe the
2905          * store.
2906          */
2907         smp_mb();
2908 again:
2909         if (!task_function_call(task, __perf_install_in_context, event))
2910                 return;
2911
2912         raw_spin_lock_irq(&ctx->lock);
2913         task = ctx->task;
2914         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2915                 /*
2916                  * Cannot happen because we already checked above (which also
2917                  * cannot happen), and we hold ctx->mutex, which serializes us
2918                  * against perf_event_exit_task_context().
2919                  */
2920                 raw_spin_unlock_irq(&ctx->lock);
2921                 return;
2922         }
2923         /*
2924          * If the task is not running, ctx->lock will avoid it becoming so,
2925          * thus we can safely install the event.
2926          */
2927         if (task_curr(task)) {
2928                 raw_spin_unlock_irq(&ctx->lock);
2929                 goto again;
2930         }
2931         add_event_to_ctx(event, ctx);
2932         raw_spin_unlock_irq(&ctx->lock);
2933 }
2934
2935 /*
2936  * Cross CPU call to enable a performance event
2937  */
2938 static void __perf_event_enable(struct perf_event *event,
2939                                 struct perf_cpu_context *cpuctx,
2940                                 struct perf_event_context *ctx,
2941                                 void *info)
2942 {
2943         struct perf_event *leader = event->group_leader;
2944         struct perf_event_context *task_ctx;
2945
2946         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2947             event->state <= PERF_EVENT_STATE_ERROR)
2948                 return;
2949
2950         if (ctx->is_active)
2951                 ctx_sched_out(ctx, EVENT_TIME);
2952
2953         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2954         perf_cgroup_event_enable(event, ctx);
2955
2956         if (!ctx->is_active)
2957                 return;
2958
2959         if (!event_filter_match(event)) {
2960                 ctx_sched_in(ctx, EVENT_TIME);
2961                 return;
2962         }
2963
2964         /*
2965          * If the event is in a group and isn't the group leader,
2966          * then don't put it on unless the group is on.
2967          */
2968         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2969                 ctx_sched_in(ctx, EVENT_TIME);
2970                 return;
2971         }
2972
2973         task_ctx = cpuctx->task_ctx;
2974         if (ctx->task)
2975                 WARN_ON_ONCE(task_ctx != ctx);
2976
2977         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2978 }
2979
2980 /*
2981  * Enable an event.
2982  *
2983  * If event->ctx is a cloned context, callers must make sure that
2984  * every task struct that event->ctx->task could possibly point to
2985  * remains valid.  This condition is satisfied when called through
2986  * perf_event_for_each_child or perf_event_for_each as described
2987  * for perf_event_disable.
2988  */
2989 static void _perf_event_enable(struct perf_event *event)
2990 {
2991         struct perf_event_context *ctx = event->ctx;
2992
2993         raw_spin_lock_irq(&ctx->lock);
2994         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2995             event->state <  PERF_EVENT_STATE_ERROR) {
2996 out:
2997                 raw_spin_unlock_irq(&ctx->lock);
2998                 return;
2999         }
3000
3001         /*
3002          * If the event is in error state, clear that first.
3003          *
3004          * That way, if we see the event in error state below, we know that it
3005          * has gone back into error state, as distinct from the task having
3006          * been scheduled away before the cross-call arrived.
3007          */
3008         if (event->state == PERF_EVENT_STATE_ERROR) {
3009                 /*
3010                  * Detached SIBLING events cannot leave ERROR state.
3011                  */
3012                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3013                     event->group_leader == event)
3014                         goto out;
3015
3016                 event->state = PERF_EVENT_STATE_OFF;
3017         }
3018         raw_spin_unlock_irq(&ctx->lock);
3019
3020         event_function_call(event, __perf_event_enable, NULL);
3021 }
3022
3023 /*
3024  * See perf_event_disable();
3025  */
3026 void perf_event_enable(struct perf_event *event)
3027 {
3028         struct perf_event_context *ctx;
3029
3030         ctx = perf_event_ctx_lock(event);
3031         _perf_event_enable(event);
3032         perf_event_ctx_unlock(event, ctx);
3033 }
3034 EXPORT_SYMBOL_GPL(perf_event_enable);
3035
3036 struct stop_event_data {
3037         struct perf_event       *event;
3038         unsigned int            restart;
3039 };
3040
3041 static int __perf_event_stop(void *info)
3042 {
3043         struct stop_event_data *sd = info;
3044         struct perf_event *event = sd->event;
3045
3046         /* if it's already INACTIVE, do nothing */
3047         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3048                 return 0;
3049
3050         /* matches smp_wmb() in event_sched_in() */
3051         smp_rmb();
3052
3053         /*
3054          * There is a window with interrupts enabled before we get here,
3055          * so we need to check again lest we try to stop another CPU's event.
3056          */
3057         if (READ_ONCE(event->oncpu) != smp_processor_id())
3058                 return -EAGAIN;
3059
3060         event->pmu->stop(event, PERF_EF_UPDATE);
3061
3062         /*
3063          * May race with the actual stop (through perf_pmu_output_stop()),
3064          * but it is only used for events with AUX ring buffer, and such
3065          * events will refuse to restart because of rb::aux_mmap_count==0,
3066          * see comments in perf_aux_output_begin().
3067          *
3068          * Since this is happening on an event-local CPU, no trace is lost
3069          * while restarting.
3070          */
3071         if (sd->restart)
3072                 event->pmu->start(event, 0);
3073
3074         return 0;
3075 }
3076
3077 static int perf_event_stop(struct perf_event *event, int restart)
3078 {
3079         struct stop_event_data sd = {
3080                 .event          = event,
3081                 .restart        = restart,
3082         };
3083         int ret = 0;
3084
3085         do {
3086                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3087                         return 0;
3088
3089                 /* matches smp_wmb() in event_sched_in() */
3090                 smp_rmb();
3091
3092                 /*
3093                  * We only want to restart ACTIVE events, so if the event goes
3094                  * inactive here (event->oncpu==-1), there's nothing more to do;
3095                  * fall through with ret==-ENXIO.
3096                  */
3097                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3098                                         __perf_event_stop, &sd);
3099         } while (ret == -EAGAIN);
3100
3101         return ret;
3102 }
3103
3104 /*
3105  * In order to contain the amount of racy and tricky in the address filter
3106  * configuration management, it is a two part process:
3107  *
3108  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3109  *      we update the addresses of corresponding vmas in
3110  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3111  * (p2) when an event is scheduled in (pmu::add), it calls
3112  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3113  *      if the generation has changed since the previous call.
3114  *
3115  * If (p1) happens while the event is active, we restart it to force (p2).
3116  *
3117  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3118  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3119  *     ioctl;
3120  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3121  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3122  *     for reading;
3123  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3124  *     of exec.
3125  */
3126 void perf_event_addr_filters_sync(struct perf_event *event)
3127 {
3128         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3129
3130         if (!has_addr_filter(event))
3131                 return;
3132
3133         raw_spin_lock(&ifh->lock);
3134         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3135                 event->pmu->addr_filters_sync(event);
3136                 event->hw.addr_filters_gen = event->addr_filters_gen;
3137         }
3138         raw_spin_unlock(&ifh->lock);
3139 }
3140 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3141
3142 static int _perf_event_refresh(struct perf_event *event, int refresh)
3143 {
3144         /*
3145          * not supported on inherited events
3146          */
3147         if (event->attr.inherit || !is_sampling_event(event))
3148                 return -EINVAL;
3149
3150         atomic_add(refresh, &event->event_limit);
3151         _perf_event_enable(event);
3152
3153         return 0;
3154 }
3155
3156 /*
3157  * See perf_event_disable()
3158  */
3159 int perf_event_refresh(struct perf_event *event, int refresh)
3160 {
3161         struct perf_event_context *ctx;
3162         int ret;
3163
3164         ctx = perf_event_ctx_lock(event);
3165         ret = _perf_event_refresh(event, refresh);
3166         perf_event_ctx_unlock(event, ctx);
3167
3168         return ret;
3169 }
3170 EXPORT_SYMBOL_GPL(perf_event_refresh);
3171
3172 static int perf_event_modify_breakpoint(struct perf_event *bp,
3173                                          struct perf_event_attr *attr)
3174 {
3175         int err;
3176
3177         _perf_event_disable(bp);
3178
3179         err = modify_user_hw_breakpoint_check(bp, attr, true);
3180
3181         if (!bp->attr.disabled)
3182                 _perf_event_enable(bp);
3183
3184         return err;
3185 }
3186
3187 /*
3188  * Copy event-type-independent attributes that may be modified.
3189  */
3190 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3191                                         const struct perf_event_attr *from)
3192 {
3193         to->sig_data = from->sig_data;
3194 }
3195
3196 static int perf_event_modify_attr(struct perf_event *event,
3197                                   struct perf_event_attr *attr)
3198 {
3199         int (*func)(struct perf_event *, struct perf_event_attr *);
3200         struct perf_event *child;
3201         int err;
3202
3203         if (event->attr.type != attr->type)
3204                 return -EINVAL;
3205
3206         switch (event->attr.type) {
3207         case PERF_TYPE_BREAKPOINT:
3208                 func = perf_event_modify_breakpoint;
3209                 break;
3210         default:
3211                 /* Place holder for future additions. */
3212                 return -EOPNOTSUPP;
3213         }
3214
3215         WARN_ON_ONCE(event->ctx->parent_ctx);
3216
3217         mutex_lock(&event->child_mutex);
3218         /*
3219          * Event-type-independent attributes must be copied before event-type
3220          * modification, which will validate that final attributes match the
3221          * source attributes after all relevant attributes have been copied.
3222          */
3223         perf_event_modify_copy_attr(&event->attr, attr);
3224         err = func(event, attr);
3225         if (err)
3226                 goto out;
3227         list_for_each_entry(child, &event->child_list, child_list) {
3228                 perf_event_modify_copy_attr(&child->attr, attr);
3229                 err = func(child, attr);
3230                 if (err)
3231                         goto out;
3232         }
3233 out:
3234         mutex_unlock(&event->child_mutex);
3235         return err;
3236 }
3237
3238 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3239                                 enum event_type_t event_type)
3240 {
3241         struct perf_event_context *ctx = pmu_ctx->ctx;
3242         struct perf_event *event, *tmp;
3243         struct pmu *pmu = pmu_ctx->pmu;
3244
3245         if (ctx->task && !ctx->is_active) {
3246                 struct perf_cpu_pmu_context *cpc;
3247
3248                 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3249                 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3250                 cpc->task_epc = NULL;
3251         }
3252
3253         if (!event_type)
3254                 return;
3255
3256         perf_pmu_disable(pmu);
3257         if (event_type & EVENT_PINNED) {
3258                 list_for_each_entry_safe(event, tmp,
3259                                          &pmu_ctx->pinned_active,
3260                                          active_list)
3261                         group_sched_out(event, ctx);
3262         }
3263
3264         if (event_type & EVENT_FLEXIBLE) {
3265                 list_for_each_entry_safe(event, tmp,
3266                                          &pmu_ctx->flexible_active,
3267                                          active_list)
3268                         group_sched_out(event, ctx);
3269                 /*
3270                  * Since we cleared EVENT_FLEXIBLE, also clear
3271                  * rotate_necessary, is will be reset by
3272                  * ctx_flexible_sched_in() when needed.
3273                  */
3274                 pmu_ctx->rotate_necessary = 0;
3275         }
3276         perf_pmu_enable(pmu);
3277 }
3278
3279 static void
3280 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3281 {
3282         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3283         struct perf_event_pmu_context *pmu_ctx;
3284         int is_active = ctx->is_active;
3285         bool cgroup = event_type & EVENT_CGROUP;
3286
3287         event_type &= ~EVENT_CGROUP;
3288
3289         lockdep_assert_held(&ctx->lock);
3290
3291         if (likely(!ctx->nr_events)) {
3292                 /*
3293                  * See __perf_remove_from_context().
3294                  */
3295                 WARN_ON_ONCE(ctx->is_active);
3296                 if (ctx->task)
3297                         WARN_ON_ONCE(cpuctx->task_ctx);
3298                 return;
3299         }
3300
3301         /*
3302          * Always update time if it was set; not only when it changes.
3303          * Otherwise we can 'forget' to update time for any but the last
3304          * context we sched out. For example:
3305          *
3306          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3307          *   ctx_sched_out(.event_type = EVENT_PINNED)
3308          *
3309          * would only update time for the pinned events.
3310          */
3311         if (is_active & EVENT_TIME) {
3312                 /* update (and stop) ctx time */
3313                 update_context_time(ctx);
3314                 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3315                 /*
3316                  * CPU-release for the below ->is_active store,
3317                  * see __load_acquire() in perf_event_time_now()
3318                  */
3319                 barrier();
3320         }
3321
3322         ctx->is_active &= ~event_type;
3323         if (!(ctx->is_active & EVENT_ALL))
3324                 ctx->is_active = 0;
3325
3326         if (ctx->task) {
3327                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3328                 if (!ctx->is_active)
3329                         cpuctx->task_ctx = NULL;
3330         }
3331
3332         is_active ^= ctx->is_active; /* changed bits */
3333
3334         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3335                 if (cgroup && !pmu_ctx->nr_cgroups)
3336                         continue;
3337                 __pmu_ctx_sched_out(pmu_ctx, is_active);
3338         }
3339 }
3340
3341 /*
3342  * Test whether two contexts are equivalent, i.e. whether they have both been
3343  * cloned from the same version of the same context.
3344  *
3345  * Equivalence is measured using a generation number in the context that is
3346  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3347  * and list_del_event().
3348  */
3349 static int context_equiv(struct perf_event_context *ctx1,
3350                          struct perf_event_context *ctx2)
3351 {
3352         lockdep_assert_held(&ctx1->lock);
3353         lockdep_assert_held(&ctx2->lock);
3354
3355         /* Pinning disables the swap optimization */
3356         if (ctx1->pin_count || ctx2->pin_count)
3357                 return 0;
3358
3359         /* If ctx1 is the parent of ctx2 */
3360         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3361                 return 1;
3362
3363         /* If ctx2 is the parent of ctx1 */
3364         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3365                 return 1;
3366
3367         /*
3368          * If ctx1 and ctx2 have the same parent; we flatten the parent
3369          * hierarchy, see perf_event_init_context().
3370          */
3371         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3372                         ctx1->parent_gen == ctx2->parent_gen)
3373                 return 1;
3374
3375         /* Unmatched */
3376         return 0;
3377 }
3378
3379 static void __perf_event_sync_stat(struct perf_event *event,
3380                                      struct perf_event *next_event)
3381 {
3382         u64 value;
3383
3384         if (!event->attr.inherit_stat)
3385                 return;
3386
3387         /*
3388          * Update the event value, we cannot use perf_event_read()
3389          * because we're in the middle of a context switch and have IRQs
3390          * disabled, which upsets smp_call_function_single(), however
3391          * we know the event must be on the current CPU, therefore we
3392          * don't need to use it.
3393          */
3394         if (event->state == PERF_EVENT_STATE_ACTIVE)
3395                 event->pmu->read(event);
3396
3397         perf_event_update_time(event);
3398
3399         /*
3400          * In order to keep per-task stats reliable we need to flip the event
3401          * values when we flip the contexts.
3402          */
3403         value = local64_read(&next_event->count);
3404         value = local64_xchg(&event->count, value);
3405         local64_set(&next_event->count, value);
3406
3407         swap(event->total_time_enabled, next_event->total_time_enabled);
3408         swap(event->total_time_running, next_event->total_time_running);
3409
3410         /*
3411          * Since we swizzled the values, update the user visible data too.
3412          */
3413         perf_event_update_userpage(event);
3414         perf_event_update_userpage(next_event);
3415 }
3416
3417 static void perf_event_sync_stat(struct perf_event_context *ctx,
3418                                    struct perf_event_context *next_ctx)
3419 {
3420         struct perf_event *event, *next_event;
3421
3422         if (!ctx->nr_stat)
3423                 return;
3424
3425         update_context_time(ctx);
3426
3427         event = list_first_entry(&ctx->event_list,
3428                                    struct perf_event, event_entry);
3429
3430         next_event = list_first_entry(&next_ctx->event_list,
3431                                         struct perf_event, event_entry);
3432
3433         while (&event->event_entry != &ctx->event_list &&
3434                &next_event->event_entry != &next_ctx->event_list) {
3435
3436                 __perf_event_sync_stat(event, next_event);
3437
3438                 event = list_next_entry(event, event_entry);
3439                 next_event = list_next_entry(next_event, event_entry);
3440         }
3441 }
3442
3443 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)    \
3444         for (pos1 = list_first_entry(head1, typeof(*pos1), member),     \
3445              pos2 = list_first_entry(head2, typeof(*pos2), member);     \
3446              !list_entry_is_head(pos1, head1, member) &&                \
3447              !list_entry_is_head(pos2, head2, member);                  \
3448              pos1 = list_next_entry(pos1, member),                      \
3449              pos2 = list_next_entry(pos2, member))
3450
3451 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3452                                           struct perf_event_context *next_ctx)
3453 {
3454         struct perf_event_pmu_context *prev_epc, *next_epc;
3455
3456         if (!prev_ctx->nr_task_data)
3457                 return;
3458
3459         double_list_for_each_entry(prev_epc, next_epc,
3460                                    &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3461                                    pmu_ctx_entry) {
3462
3463                 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3464                         continue;
3465
3466                 /*
3467                  * PMU specific parts of task perf context can require
3468                  * additional synchronization. As an example of such
3469                  * synchronization see implementation details of Intel
3470                  * LBR call stack data profiling;
3471                  */
3472                 if (prev_epc->pmu->swap_task_ctx)
3473                         prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3474                 else
3475                         swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3476         }
3477 }
3478
3479 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3480 {
3481         struct perf_event_pmu_context *pmu_ctx;
3482         struct perf_cpu_pmu_context *cpc;
3483
3484         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3485                 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3486
3487                 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3488                         pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3489         }
3490 }
3491
3492 static void
3493 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3494 {
3495         struct perf_event_context *ctx = task->perf_event_ctxp;
3496         struct perf_event_context *next_ctx;
3497         struct perf_event_context *parent, *next_parent;
3498         int do_switch = 1;
3499
3500         if (likely(!ctx))
3501                 return;
3502
3503         rcu_read_lock();
3504         next_ctx = rcu_dereference(next->perf_event_ctxp);
3505         if (!next_ctx)
3506                 goto unlock;
3507
3508         parent = rcu_dereference(ctx->parent_ctx);
3509         next_parent = rcu_dereference(next_ctx->parent_ctx);
3510
3511         /* If neither context have a parent context; they cannot be clones. */
3512         if (!parent && !next_parent)
3513                 goto unlock;
3514
3515         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3516                 /*
3517                  * Looks like the two contexts are clones, so we might be
3518                  * able to optimize the context switch.  We lock both
3519                  * contexts and check that they are clones under the
3520                  * lock (including re-checking that neither has been
3521                  * uncloned in the meantime).  It doesn't matter which
3522                  * order we take the locks because no other cpu could
3523                  * be trying to lock both of these tasks.
3524                  */
3525                 raw_spin_lock(&ctx->lock);
3526                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3527                 if (context_equiv(ctx, next_ctx)) {
3528
3529                         perf_ctx_disable(ctx, false);
3530
3531                         /* PMIs are disabled; ctx->nr_pending is stable. */
3532                         if (local_read(&ctx->nr_pending) ||
3533                             local_read(&next_ctx->nr_pending)) {
3534                                 /*
3535                                  * Must not swap out ctx when there's pending
3536                                  * events that rely on the ctx->task relation.
3537                                  */
3538                                 raw_spin_unlock(&next_ctx->lock);
3539                                 rcu_read_unlock();
3540                                 goto inside_switch;
3541                         }
3542
3543                         WRITE_ONCE(ctx->task, next);
3544                         WRITE_ONCE(next_ctx->task, task);
3545
3546                         perf_ctx_sched_task_cb(ctx, false);
3547                         perf_event_swap_task_ctx_data(ctx, next_ctx);
3548
3549                         perf_ctx_enable(ctx, false);
3550
3551                         /*
3552                          * RCU_INIT_POINTER here is safe because we've not
3553                          * modified the ctx and the above modification of
3554                          * ctx->task and ctx->task_ctx_data are immaterial
3555                          * since those values are always verified under
3556                          * ctx->lock which we're now holding.
3557                          */
3558                         RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3559                         RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3560
3561                         do_switch = 0;
3562
3563                         perf_event_sync_stat(ctx, next_ctx);
3564                 }
3565                 raw_spin_unlock(&next_ctx->lock);
3566                 raw_spin_unlock(&ctx->lock);
3567         }
3568 unlock:
3569         rcu_read_unlock();
3570
3571         if (do_switch) {
3572                 raw_spin_lock(&ctx->lock);
3573                 perf_ctx_disable(ctx, false);
3574
3575 inside_switch:
3576                 perf_ctx_sched_task_cb(ctx, false);
3577                 task_ctx_sched_out(ctx, EVENT_ALL);
3578
3579                 perf_ctx_enable(ctx, false);
3580                 raw_spin_unlock(&ctx->lock);
3581         }
3582 }
3583
3584 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3585 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3586
3587 void perf_sched_cb_dec(struct pmu *pmu)
3588 {
3589         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3590
3591         this_cpu_dec(perf_sched_cb_usages);
3592         barrier();
3593
3594         if (!--cpc->sched_cb_usage)
3595                 list_del(&cpc->sched_cb_entry);
3596 }
3597
3598
3599 void perf_sched_cb_inc(struct pmu *pmu)
3600 {
3601         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3602
3603         if (!cpc->sched_cb_usage++)
3604                 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3605
3606         barrier();
3607         this_cpu_inc(perf_sched_cb_usages);
3608 }
3609
3610 /*
3611  * This function provides the context switch callback to the lower code
3612  * layer. It is invoked ONLY when the context switch callback is enabled.
3613  *
3614  * This callback is relevant even to per-cpu events; for example multi event
3615  * PEBS requires this to provide PID/TID information. This requires we flush
3616  * all queued PEBS records before we context switch to a new task.
3617  */
3618 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3619 {
3620         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3621         struct pmu *pmu;
3622
3623         pmu = cpc->epc.pmu;
3624
3625         /* software PMUs will not have sched_task */
3626         if (WARN_ON_ONCE(!pmu->sched_task))
3627                 return;
3628
3629         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3630         perf_pmu_disable(pmu);
3631
3632         pmu->sched_task(cpc->task_epc, sched_in);
3633
3634         perf_pmu_enable(pmu);
3635         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3636 }
3637
3638 static void perf_pmu_sched_task(struct task_struct *prev,
3639                                 struct task_struct *next,
3640                                 bool sched_in)
3641 {
3642         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3643         struct perf_cpu_pmu_context *cpc;
3644
3645         /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3646         if (prev == next || cpuctx->task_ctx)
3647                 return;
3648
3649         list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3650                 __perf_pmu_sched_task(cpc, sched_in);
3651 }
3652
3653 static void perf_event_switch(struct task_struct *task,
3654                               struct task_struct *next_prev, bool sched_in);
3655
3656 /*
3657  * Called from scheduler to remove the events of the current task,
3658  * with interrupts disabled.
3659  *
3660  * We stop each event and update the event value in event->count.
3661  *
3662  * This does not protect us against NMI, but disable()
3663  * sets the disabled bit in the control field of event _before_
3664  * accessing the event control register. If a NMI hits, then it will
3665  * not restart the event.
3666  */
3667 void __perf_event_task_sched_out(struct task_struct *task,
3668                                  struct task_struct *next)
3669 {
3670         if (__this_cpu_read(perf_sched_cb_usages))
3671                 perf_pmu_sched_task(task, next, false);
3672
3673         if (atomic_read(&nr_switch_events))
3674                 perf_event_switch(task, next, false);
3675
3676         perf_event_context_sched_out(task, next);
3677
3678         /*
3679          * if cgroup events exist on this CPU, then we need
3680          * to check if we have to switch out PMU state.
3681          * cgroup event are system-wide mode only
3682          */
3683         perf_cgroup_switch(next);
3684 }
3685
3686 static bool perf_less_group_idx(const void *l, const void *r)
3687 {
3688         const struct perf_event *le = *(const struct perf_event **)l;
3689         const struct perf_event *re = *(const struct perf_event **)r;
3690
3691         return le->group_index < re->group_index;
3692 }
3693
3694 static void swap_ptr(void *l, void *r)
3695 {
3696         void **lp = l, **rp = r;
3697
3698         swap(*lp, *rp);
3699 }
3700
3701 static const struct min_heap_callbacks perf_min_heap = {
3702         .elem_size = sizeof(struct perf_event *),
3703         .less = perf_less_group_idx,
3704         .swp = swap_ptr,
3705 };
3706
3707 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3708 {
3709         struct perf_event **itrs = heap->data;
3710
3711         if (event) {
3712                 itrs[heap->nr] = event;
3713                 heap->nr++;
3714         }
3715 }
3716
3717 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3718 {
3719         struct perf_cpu_pmu_context *cpc;
3720
3721         if (!pmu_ctx->ctx->task)
3722                 return;
3723
3724         cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3725         WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3726         cpc->task_epc = pmu_ctx;
3727 }
3728
3729 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3730                                 struct perf_event_groups *groups, int cpu,
3731                                 struct pmu *pmu,
3732                                 int (*func)(struct perf_event *, void *),
3733                                 void *data)
3734 {
3735 #ifdef CONFIG_CGROUP_PERF
3736         struct cgroup_subsys_state *css = NULL;
3737 #endif
3738         struct perf_cpu_context *cpuctx = NULL;
3739         /* Space for per CPU and/or any CPU event iterators. */
3740         struct perf_event *itrs[2];
3741         struct min_heap event_heap;
3742         struct perf_event **evt;
3743         int ret;
3744
3745         if (pmu->filter && pmu->filter(pmu, cpu))
3746                 return 0;
3747
3748         if (!ctx->task) {
3749                 cpuctx = this_cpu_ptr(&perf_cpu_context);
3750                 event_heap = (struct min_heap){
3751                         .data = cpuctx->heap,
3752                         .nr = 0,
3753                         .size = cpuctx->heap_size,
3754                 };
3755
3756                 lockdep_assert_held(&cpuctx->ctx.lock);
3757
3758 #ifdef CONFIG_CGROUP_PERF
3759                 if (cpuctx->cgrp)
3760                         css = &cpuctx->cgrp->css;
3761 #endif
3762         } else {
3763                 event_heap = (struct min_heap){
3764                         .data = itrs,
3765                         .nr = 0,
3766                         .size = ARRAY_SIZE(itrs),
3767                 };
3768                 /* Events not within a CPU context may be on any CPU. */
3769                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3770         }
3771         evt = event_heap.data;
3772
3773         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3774
3775 #ifdef CONFIG_CGROUP_PERF
3776         for (; css; css = css->parent)
3777                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3778 #endif
3779
3780         if (event_heap.nr) {
3781                 __link_epc((*evt)->pmu_ctx);
3782                 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3783         }
3784
3785         min_heapify_all(&event_heap, &perf_min_heap);
3786
3787         while (event_heap.nr) {
3788                 ret = func(*evt, data);
3789                 if (ret)
3790                         return ret;
3791
3792                 *evt = perf_event_groups_next(*evt, pmu);
3793                 if (*evt)
3794                         min_heapify(&event_heap, 0, &perf_min_heap);
3795                 else
3796                         min_heap_pop(&event_heap, &perf_min_heap);
3797         }
3798
3799         return 0;
3800 }
3801
3802 /*
3803  * Because the userpage is strictly per-event (there is no concept of context,
3804  * so there cannot be a context indirection), every userpage must be updated
3805  * when context time starts :-(
3806  *
3807  * IOW, we must not miss EVENT_TIME edges.
3808  */
3809 static inline bool event_update_userpage(struct perf_event *event)
3810 {
3811         if (likely(!atomic_read(&event->mmap_count)))
3812                 return false;
3813
3814         perf_event_update_time(event);
3815         perf_event_update_userpage(event);
3816
3817         return true;
3818 }
3819
3820 static inline void group_update_userpage(struct perf_event *group_event)
3821 {
3822         struct perf_event *event;
3823
3824         if (!event_update_userpage(group_event))
3825                 return;
3826
3827         for_each_sibling_event(event, group_event)
3828                 event_update_userpage(event);
3829 }
3830
3831 static int merge_sched_in(struct perf_event *event, void *data)
3832 {
3833         struct perf_event_context *ctx = event->ctx;
3834         int *can_add_hw = data;
3835
3836         if (event->state <= PERF_EVENT_STATE_OFF)
3837                 return 0;
3838
3839         if (!event_filter_match(event))
3840                 return 0;
3841
3842         if (group_can_go_on(event, *can_add_hw)) {
3843                 if (!group_sched_in(event, ctx))
3844                         list_add_tail(&event->active_list, get_event_list(event));
3845         }
3846
3847         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3848                 *can_add_hw = 0;
3849                 if (event->attr.pinned) {
3850                         perf_cgroup_event_disable(event, ctx);
3851                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3852                 } else {
3853                         struct perf_cpu_pmu_context *cpc;
3854
3855                         event->pmu_ctx->rotate_necessary = 1;
3856                         cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3857                         perf_mux_hrtimer_restart(cpc);
3858                         group_update_userpage(event);
3859                 }
3860         }
3861
3862         return 0;
3863 }
3864
3865 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3866                                 struct perf_event_groups *groups,
3867                                 struct pmu *pmu)
3868 {
3869         int can_add_hw = 1;
3870         visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3871                            merge_sched_in, &can_add_hw);
3872 }
3873
3874 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3875                                 struct perf_event_groups *groups,
3876                                 bool cgroup)
3877 {
3878         struct perf_event_pmu_context *pmu_ctx;
3879
3880         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3881                 if (cgroup && !pmu_ctx->nr_cgroups)
3882                         continue;
3883                 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3884         }
3885 }
3886
3887 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3888                                struct pmu *pmu)
3889 {
3890         pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3891 }
3892
3893 static void
3894 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3895 {
3896         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3897         int is_active = ctx->is_active;
3898         bool cgroup = event_type & EVENT_CGROUP;
3899
3900         event_type &= ~EVENT_CGROUP;
3901
3902         lockdep_assert_held(&ctx->lock);
3903
3904         if (likely(!ctx->nr_events))
3905                 return;
3906
3907         if (!(is_active & EVENT_TIME)) {
3908                 /* start ctx time */
3909                 __update_context_time(ctx, false);
3910                 perf_cgroup_set_timestamp(cpuctx);
3911                 /*
3912                  * CPU-release for the below ->is_active store,
3913                  * see __load_acquire() in perf_event_time_now()
3914                  */
3915                 barrier();
3916         }
3917
3918         ctx->is_active |= (event_type | EVENT_TIME);
3919         if (ctx->task) {
3920                 if (!is_active)
3921                         cpuctx->task_ctx = ctx;
3922                 else
3923                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3924         }
3925
3926         is_active ^= ctx->is_active; /* changed bits */
3927
3928         /*
3929          * First go through the list and put on any pinned groups
3930          * in order to give them the best chance of going on.
3931          */
3932         if (is_active & EVENT_PINNED)
3933                 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3934
3935         /* Then walk through the lower prio flexible groups */
3936         if (is_active & EVENT_FLEXIBLE)
3937                 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3938 }
3939
3940 static void perf_event_context_sched_in(struct task_struct *task)
3941 {
3942         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3943         struct perf_event_context *ctx;
3944
3945         rcu_read_lock();
3946         ctx = rcu_dereference(task->perf_event_ctxp);
3947         if (!ctx)
3948                 goto rcu_unlock;
3949
3950         if (cpuctx->task_ctx == ctx) {
3951                 perf_ctx_lock(cpuctx, ctx);
3952                 perf_ctx_disable(ctx, false);
3953
3954                 perf_ctx_sched_task_cb(ctx, true);
3955
3956                 perf_ctx_enable(ctx, false);
3957                 perf_ctx_unlock(cpuctx, ctx);
3958                 goto rcu_unlock;
3959         }
3960
3961         perf_ctx_lock(cpuctx, ctx);
3962         /*
3963          * We must check ctx->nr_events while holding ctx->lock, such
3964          * that we serialize against perf_install_in_context().
3965          */
3966         if (!ctx->nr_events)
3967                 goto unlock;
3968
3969         perf_ctx_disable(ctx, false);
3970         /*
3971          * We want to keep the following priority order:
3972          * cpu pinned (that don't need to move), task pinned,
3973          * cpu flexible, task flexible.
3974          *
3975          * However, if task's ctx is not carrying any pinned
3976          * events, no need to flip the cpuctx's events around.
3977          */
3978         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3979                 perf_ctx_disable(&cpuctx->ctx, false);
3980                 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3981         }
3982
3983         perf_event_sched_in(cpuctx, ctx);
3984
3985         perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3986
3987         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3988                 perf_ctx_enable(&cpuctx->ctx, false);
3989
3990         perf_ctx_enable(ctx, false);
3991
3992 unlock:
3993         perf_ctx_unlock(cpuctx, ctx);
3994 rcu_unlock:
3995         rcu_read_unlock();
3996 }
3997
3998 /*
3999  * Called from scheduler to add the events of the current task
4000  * with interrupts disabled.
4001  *
4002  * We restore the event value and then enable it.
4003  *
4004  * This does not protect us against NMI, but enable()
4005  * sets the enabled bit in the control field of event _before_
4006  * accessing the event control register. If a NMI hits, then it will
4007  * keep the event running.
4008  */
4009 void __perf_event_task_sched_in(struct task_struct *prev,
4010                                 struct task_struct *task)
4011 {
4012         perf_event_context_sched_in(task);
4013
4014         if (atomic_read(&nr_switch_events))
4015                 perf_event_switch(task, prev, true);
4016
4017         if (__this_cpu_read(perf_sched_cb_usages))
4018                 perf_pmu_sched_task(prev, task, true);
4019 }
4020
4021 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4022 {
4023         u64 frequency = event->attr.sample_freq;
4024         u64 sec = NSEC_PER_SEC;
4025         u64 divisor, dividend;
4026
4027         int count_fls, nsec_fls, frequency_fls, sec_fls;
4028
4029         count_fls = fls64(count);
4030         nsec_fls = fls64(nsec);
4031         frequency_fls = fls64(frequency);
4032         sec_fls = 30;
4033
4034         /*
4035          * We got @count in @nsec, with a target of sample_freq HZ
4036          * the target period becomes:
4037          *
4038          *             @count * 10^9
4039          * period = -------------------
4040          *          @nsec * sample_freq
4041          *
4042          */
4043
4044         /*
4045          * Reduce accuracy by one bit such that @a and @b converge
4046          * to a similar magnitude.
4047          */
4048 #define REDUCE_FLS(a, b)                \
4049 do {                                    \
4050         if (a##_fls > b##_fls) {        \
4051                 a >>= 1;                \
4052                 a##_fls--;              \
4053         } else {                        \
4054                 b >>= 1;                \
4055                 b##_fls--;              \
4056         }                               \
4057 } while (0)
4058
4059         /*
4060          * Reduce accuracy until either term fits in a u64, then proceed with
4061          * the other, so that finally we can do a u64/u64 division.
4062          */
4063         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4064                 REDUCE_FLS(nsec, frequency);
4065                 REDUCE_FLS(sec, count);
4066         }
4067
4068         if (count_fls + sec_fls > 64) {
4069                 divisor = nsec * frequency;
4070
4071                 while (count_fls + sec_fls > 64) {
4072                         REDUCE_FLS(count, sec);
4073                         divisor >>= 1;
4074                 }
4075
4076                 dividend = count * sec;
4077         } else {
4078                 dividend = count * sec;
4079
4080                 while (nsec_fls + frequency_fls > 64) {
4081                         REDUCE_FLS(nsec, frequency);
4082                         dividend >>= 1;
4083                 }
4084
4085                 divisor = nsec * frequency;
4086         }
4087
4088         if (!divisor)
4089                 return dividend;
4090
4091         return div64_u64(dividend, divisor);
4092 }
4093
4094 static DEFINE_PER_CPU(int, perf_throttled_count);
4095 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4096
4097 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4098 {
4099         struct hw_perf_event *hwc = &event->hw;
4100         s64 period, sample_period;
4101         s64 delta;
4102
4103         period = perf_calculate_period(event, nsec, count);
4104
4105         delta = (s64)(period - hwc->sample_period);
4106         delta = (delta + 7) / 8; /* low pass filter */
4107
4108         sample_period = hwc->sample_period + delta;
4109
4110         if (!sample_period)
4111                 sample_period = 1;
4112
4113         hwc->sample_period = sample_period;
4114
4115         if (local64_read(&hwc->period_left) > 8*sample_period) {
4116                 if (disable)
4117                         event->pmu->stop(event, PERF_EF_UPDATE);
4118
4119                 local64_set(&hwc->period_left, 0);
4120
4121                 if (disable)
4122                         event->pmu->start(event, PERF_EF_RELOAD);
4123         }
4124 }
4125
4126 /*
4127  * combine freq adjustment with unthrottling to avoid two passes over the
4128  * events. At the same time, make sure, having freq events does not change
4129  * the rate of unthrottling as that would introduce bias.
4130  */
4131 static void
4132 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4133 {
4134         struct perf_event *event;
4135         struct hw_perf_event *hwc;
4136         u64 now, period = TICK_NSEC;
4137         s64 delta;
4138
4139         /*
4140          * only need to iterate over all events iff:
4141          * - context have events in frequency mode (needs freq adjust)
4142          * - there are events to unthrottle on this cpu
4143          */
4144         if (!(ctx->nr_freq || unthrottle))
4145                 return;
4146
4147         raw_spin_lock(&ctx->lock);
4148
4149         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4150                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4151                         continue;
4152
4153                 // XXX use visit thingy to avoid the -1,cpu match
4154                 if (!event_filter_match(event))
4155                         continue;
4156
4157                 perf_pmu_disable(event->pmu);
4158
4159                 hwc = &event->hw;
4160
4161                 if (hwc->interrupts == MAX_INTERRUPTS) {
4162                         hwc->interrupts = 0;
4163                         perf_log_throttle(event, 1);
4164                         event->pmu->start(event, 0);
4165                 }
4166
4167                 if (!event->attr.freq || !event->attr.sample_freq)
4168                         goto next;
4169
4170                 /*
4171                  * stop the event and update event->count
4172                  */
4173                 event->pmu->stop(event, PERF_EF_UPDATE);
4174
4175                 now = local64_read(&event->count);
4176                 delta = now - hwc->freq_count_stamp;
4177                 hwc->freq_count_stamp = now;
4178
4179                 /*
4180                  * restart the event
4181                  * reload only if value has changed
4182                  * we have stopped the event so tell that
4183                  * to perf_adjust_period() to avoid stopping it
4184                  * twice.
4185                  */
4186                 if (delta > 0)
4187                         perf_adjust_period(event, period, delta, false);
4188
4189                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4190         next:
4191                 perf_pmu_enable(event->pmu);
4192         }
4193
4194         raw_spin_unlock(&ctx->lock);
4195 }
4196
4197 /*
4198  * Move @event to the tail of the @ctx's elegible events.
4199  */
4200 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4201 {
4202         /*
4203          * Rotate the first entry last of non-pinned groups. Rotation might be
4204          * disabled by the inheritance code.
4205          */
4206         if (ctx->rotate_disable)
4207                 return;
4208
4209         perf_event_groups_delete(&ctx->flexible_groups, event);
4210         perf_event_groups_insert(&ctx->flexible_groups, event);
4211 }
4212
4213 /* pick an event from the flexible_groups to rotate */
4214 static inline struct perf_event *
4215 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4216 {
4217         struct perf_event *event;
4218         struct rb_node *node;
4219         struct rb_root *tree;
4220         struct __group_key key = {
4221                 .pmu = pmu_ctx->pmu,
4222         };
4223
4224         /* pick the first active flexible event */
4225         event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4226                                          struct perf_event, active_list);
4227         if (event)
4228                 goto out;
4229
4230         /* if no active flexible event, pick the first event */
4231         tree = &pmu_ctx->ctx->flexible_groups.tree;
4232
4233         if (!pmu_ctx->ctx->task) {
4234                 key.cpu = smp_processor_id();
4235
4236                 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4237                 if (node)
4238                         event = __node_2_pe(node);
4239                 goto out;
4240         }
4241
4242         key.cpu = -1;
4243         node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4244         if (node) {
4245                 event = __node_2_pe(node);
4246                 goto out;
4247         }
4248
4249         key.cpu = smp_processor_id();
4250         node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4251         if (node)
4252                 event = __node_2_pe(node);
4253
4254 out:
4255         /*
4256          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4257          * finds there are unschedulable events, it will set it again.
4258          */
4259         pmu_ctx->rotate_necessary = 0;
4260
4261         return event;
4262 }
4263
4264 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4265 {
4266         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4267         struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4268         struct perf_event *cpu_event = NULL, *task_event = NULL;
4269         int cpu_rotate, task_rotate;
4270         struct pmu *pmu;
4271
4272         /*
4273          * Since we run this from IRQ context, nobody can install new
4274          * events, thus the event count values are stable.
4275          */
4276
4277         cpu_epc = &cpc->epc;
4278         pmu = cpu_epc->pmu;
4279         task_epc = cpc->task_epc;
4280
4281         cpu_rotate = cpu_epc->rotate_necessary;
4282         task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4283
4284         if (!(cpu_rotate || task_rotate))
4285                 return false;
4286
4287         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4288         perf_pmu_disable(pmu);
4289
4290         if (task_rotate)
4291                 task_event = ctx_event_to_rotate(task_epc);
4292         if (cpu_rotate)
4293                 cpu_event = ctx_event_to_rotate(cpu_epc);
4294
4295         /*
4296          * As per the order given at ctx_resched() first 'pop' task flexible
4297          * and then, if needed CPU flexible.
4298          */
4299         if (task_event || (task_epc && cpu_event)) {
4300                 update_context_time(task_epc->ctx);
4301                 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4302         }
4303
4304         if (cpu_event) {
4305                 update_context_time(&cpuctx->ctx);
4306                 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4307                 rotate_ctx(&cpuctx->ctx, cpu_event);
4308                 __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4309         }
4310
4311         if (task_event)
4312                 rotate_ctx(task_epc->ctx, task_event);
4313
4314         if (task_event || (task_epc && cpu_event))
4315                 __pmu_ctx_sched_in(task_epc->ctx, pmu);
4316
4317         perf_pmu_enable(pmu);
4318         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4319
4320         return true;
4321 }
4322
4323 void perf_event_task_tick(void)
4324 {
4325         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4326         struct perf_event_context *ctx;
4327         int throttled;
4328
4329         lockdep_assert_irqs_disabled();
4330
4331         __this_cpu_inc(perf_throttled_seq);
4332         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4333         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4334
4335         perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4336
4337         rcu_read_lock();
4338         ctx = rcu_dereference(current->perf_event_ctxp);
4339         if (ctx)
4340                 perf_adjust_freq_unthr_context(ctx, !!throttled);
4341         rcu_read_unlock();
4342 }
4343
4344 static int event_enable_on_exec(struct perf_event *event,
4345                                 struct perf_event_context *ctx)
4346 {
4347         if (!event->attr.enable_on_exec)
4348                 return 0;
4349
4350         event->attr.enable_on_exec = 0;
4351         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4352                 return 0;
4353
4354         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4355
4356         return 1;
4357 }
4358
4359 /*
4360  * Enable all of a task's events that have been marked enable-on-exec.
4361  * This expects task == current.
4362  */
4363 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4364 {
4365         struct perf_event_context *clone_ctx = NULL;
4366         enum event_type_t event_type = 0;
4367         struct perf_cpu_context *cpuctx;
4368         struct perf_event *event;
4369         unsigned long flags;
4370         int enabled = 0;
4371
4372         local_irq_save(flags);
4373         if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4374                 goto out;
4375
4376         if (!ctx->nr_events)
4377                 goto out;
4378
4379         cpuctx = this_cpu_ptr(&perf_cpu_context);
4380         perf_ctx_lock(cpuctx, ctx);
4381         ctx_sched_out(ctx, EVENT_TIME);
4382
4383         list_for_each_entry(event, &ctx->event_list, event_entry) {
4384                 enabled |= event_enable_on_exec(event, ctx);
4385                 event_type |= get_event_type(event);
4386         }
4387
4388         /*
4389          * Unclone and reschedule this context if we enabled any event.
4390          */
4391         if (enabled) {
4392                 clone_ctx = unclone_ctx(ctx);
4393                 ctx_resched(cpuctx, ctx, event_type);
4394         } else {
4395                 ctx_sched_in(ctx, EVENT_TIME);
4396         }
4397         perf_ctx_unlock(cpuctx, ctx);
4398
4399 out:
4400         local_irq_restore(flags);
4401
4402         if (clone_ctx)
4403                 put_ctx(clone_ctx);
4404 }
4405
4406 static void perf_remove_from_owner(struct perf_event *event);
4407 static void perf_event_exit_event(struct perf_event *event,
4408                                   struct perf_event_context *ctx);
4409
4410 /*
4411  * Removes all events from the current task that have been marked
4412  * remove-on-exec, and feeds their values back to parent events.
4413  */
4414 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4415 {
4416         struct perf_event_context *clone_ctx = NULL;
4417         struct perf_event *event, *next;
4418         unsigned long flags;
4419         bool modified = false;
4420
4421         mutex_lock(&ctx->mutex);
4422
4423         if (WARN_ON_ONCE(ctx->task != current))
4424                 goto unlock;
4425
4426         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4427                 if (!event->attr.remove_on_exec)
4428                         continue;
4429
4430                 if (!is_kernel_event(event))
4431                         perf_remove_from_owner(event);
4432
4433                 modified = true;
4434
4435                 perf_event_exit_event(event, ctx);
4436         }
4437
4438         raw_spin_lock_irqsave(&ctx->lock, flags);
4439         if (modified)
4440                 clone_ctx = unclone_ctx(ctx);
4441         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4442
4443 unlock:
4444         mutex_unlock(&ctx->mutex);
4445
4446         if (clone_ctx)
4447                 put_ctx(clone_ctx);
4448 }
4449
4450 struct perf_read_data {
4451         struct perf_event *event;
4452         bool group;
4453         int ret;
4454 };
4455
4456 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4457 {
4458         u16 local_pkg, event_pkg;
4459
4460         if ((unsigned)event_cpu >= nr_cpu_ids)
4461                 return event_cpu;
4462
4463         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4464                 int local_cpu = smp_processor_id();
4465
4466                 event_pkg = topology_physical_package_id(event_cpu);
4467                 local_pkg = topology_physical_package_id(local_cpu);
4468
4469                 if (event_pkg == local_pkg)
4470                         return local_cpu;
4471         }
4472
4473         return event_cpu;
4474 }
4475
4476 /*
4477  * Cross CPU call to read the hardware event
4478  */
4479 static void __perf_event_read(void *info)
4480 {
4481         struct perf_read_data *data = info;
4482         struct perf_event *sub, *event = data->event;
4483         struct perf_event_context *ctx = event->ctx;
4484         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4485         struct pmu *pmu = event->pmu;
4486
4487         /*
4488          * If this is a task context, we need to check whether it is
4489          * the current task context of this cpu.  If not it has been
4490          * scheduled out before the smp call arrived.  In that case
4491          * event->count would have been updated to a recent sample
4492          * when the event was scheduled out.
4493          */
4494         if (ctx->task && cpuctx->task_ctx != ctx)
4495                 return;
4496
4497         raw_spin_lock(&ctx->lock);
4498         if (ctx->is_active & EVENT_TIME) {
4499                 update_context_time(ctx);
4500                 update_cgrp_time_from_event(event);
4501         }
4502
4503         perf_event_update_time(event);
4504         if (data->group)
4505                 perf_event_update_sibling_time(event);
4506
4507         if (event->state != PERF_EVENT_STATE_ACTIVE)
4508                 goto unlock;
4509
4510         if (!data->group) {
4511                 pmu->read(event);
4512                 data->ret = 0;
4513                 goto unlock;
4514         }
4515
4516         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4517
4518         pmu->read(event);
4519
4520         for_each_sibling_event(sub, event) {
4521                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4522                         /*
4523                          * Use sibling's PMU rather than @event's since
4524                          * sibling could be on different (eg: software) PMU.
4525                          */
4526                         sub->pmu->read(sub);
4527                 }
4528         }
4529
4530         data->ret = pmu->commit_txn(pmu);
4531
4532 unlock:
4533         raw_spin_unlock(&ctx->lock);
4534 }
4535
4536 static inline u64 perf_event_count(struct perf_event *event)
4537 {
4538         return local64_read(&event->count) + atomic64_read(&event->child_count);
4539 }
4540
4541 static void calc_timer_values(struct perf_event *event,
4542                                 u64 *now,
4543                                 u64 *enabled,
4544                                 u64 *running)
4545 {
4546         u64 ctx_time;
4547
4548         *now = perf_clock();
4549         ctx_time = perf_event_time_now(event, *now);
4550         __perf_update_times(event, ctx_time, enabled, running);
4551 }
4552
4553 /*
4554  * NMI-safe method to read a local event, that is an event that
4555  * is:
4556  *   - either for the current task, or for this CPU
4557  *   - does not have inherit set, for inherited task events
4558  *     will not be local and we cannot read them atomically
4559  *   - must not have a pmu::count method
4560  */
4561 int perf_event_read_local(struct perf_event *event, u64 *value,
4562                           u64 *enabled, u64 *running)
4563 {
4564         unsigned long flags;
4565         int event_oncpu;
4566         int event_cpu;
4567         int ret = 0;
4568
4569         /*
4570          * Disabling interrupts avoids all counter scheduling (context
4571          * switches, timer based rotation and IPIs).
4572          */
4573         local_irq_save(flags);
4574
4575         /*
4576          * It must not be an event with inherit set, we cannot read
4577          * all child counters from atomic context.
4578          */
4579         if (event->attr.inherit) {
4580                 ret = -EOPNOTSUPP;
4581                 goto out;
4582         }
4583
4584         /* If this is a per-task event, it must be for current */
4585         if ((event->attach_state & PERF_ATTACH_TASK) &&
4586             event->hw.target != current) {
4587                 ret = -EINVAL;
4588                 goto out;
4589         }
4590
4591         /*
4592          * Get the event CPU numbers, and adjust them to local if the event is
4593          * a per-package event that can be read locally
4594          */
4595         event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4596         event_cpu = __perf_event_read_cpu(event, event->cpu);
4597
4598         /* If this is a per-CPU event, it must be for this CPU */
4599         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4600             event_cpu != smp_processor_id()) {
4601                 ret = -EINVAL;
4602                 goto out;
4603         }
4604
4605         /* If this is a pinned event it must be running on this CPU */
4606         if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4607                 ret = -EBUSY;
4608                 goto out;
4609         }
4610
4611         /*
4612          * If the event is currently on this CPU, its either a per-task event,
4613          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4614          * oncpu == -1).
4615          */
4616         if (event_oncpu == smp_processor_id())
4617                 event->pmu->read(event);
4618
4619         *value = local64_read(&event->count);
4620         if (enabled || running) {
4621                 u64 __enabled, __running, __now;
4622
4623                 calc_timer_values(event, &__now, &__enabled, &__running);
4624                 if (enabled)
4625                         *enabled = __enabled;
4626                 if (running)
4627                         *running = __running;
4628         }
4629 out:
4630         local_irq_restore(flags);
4631
4632         return ret;
4633 }
4634
4635 static int perf_event_read(struct perf_event *event, bool group)
4636 {
4637         enum perf_event_state state = READ_ONCE(event->state);
4638         int event_cpu, ret = 0;
4639
4640         /*
4641          * If event is enabled and currently active on a CPU, update the
4642          * value in the event structure:
4643          */
4644 again:
4645         if (state == PERF_EVENT_STATE_ACTIVE) {
4646                 struct perf_read_data data;
4647
4648                 /*
4649                  * Orders the ->state and ->oncpu loads such that if we see
4650                  * ACTIVE we must also see the right ->oncpu.
4651                  *
4652                  * Matches the smp_wmb() from event_sched_in().
4653                  */
4654                 smp_rmb();
4655
4656                 event_cpu = READ_ONCE(event->oncpu);
4657                 if ((unsigned)event_cpu >= nr_cpu_ids)
4658                         return 0;
4659
4660                 data = (struct perf_read_data){
4661                         .event = event,
4662                         .group = group,
4663                         .ret = 0,
4664                 };
4665
4666                 preempt_disable();
4667                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4668
4669                 /*
4670                  * Purposely ignore the smp_call_function_single() return
4671                  * value.
4672                  *
4673                  * If event_cpu isn't a valid CPU it means the event got
4674                  * scheduled out and that will have updated the event count.
4675                  *
4676                  * Therefore, either way, we'll have an up-to-date event count
4677                  * after this.
4678                  */
4679                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4680                 preempt_enable();
4681                 ret = data.ret;
4682
4683         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4684                 struct perf_event_context *ctx = event->ctx;
4685                 unsigned long flags;
4686
4687                 raw_spin_lock_irqsave(&ctx->lock, flags);
4688                 state = event->state;
4689                 if (state != PERF_EVENT_STATE_INACTIVE) {
4690                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4691                         goto again;
4692                 }
4693
4694                 /*
4695                  * May read while context is not active (e.g., thread is
4696                  * blocked), in that case we cannot update context time
4697                  */
4698                 if (ctx->is_active & EVENT_TIME) {
4699                         update_context_time(ctx);
4700                         update_cgrp_time_from_event(event);
4701                 }
4702
4703                 perf_event_update_time(event);
4704                 if (group)
4705                         perf_event_update_sibling_time(event);
4706                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4707         }
4708
4709         return ret;
4710 }
4711
4712 /*
4713  * Initialize the perf_event context in a task_struct:
4714  */
4715 static void __perf_event_init_context(struct perf_event_context *ctx)
4716 {
4717         raw_spin_lock_init(&ctx->lock);
4718         mutex_init(&ctx->mutex);
4719         INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4720         perf_event_groups_init(&ctx->pinned_groups);
4721         perf_event_groups_init(&ctx->flexible_groups);
4722         INIT_LIST_HEAD(&ctx->event_list);
4723         refcount_set(&ctx->refcount, 1);
4724 }
4725
4726 static void
4727 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4728 {
4729         epc->pmu = pmu;
4730         INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4731         INIT_LIST_HEAD(&epc->pinned_active);
4732         INIT_LIST_HEAD(&epc->flexible_active);
4733         atomic_set(&epc->refcount, 1);
4734 }
4735
4736 static struct perf_event_context *
4737 alloc_perf_context(struct task_struct *task)
4738 {
4739         struct perf_event_context *ctx;
4740
4741         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4742         if (!ctx)
4743                 return NULL;
4744
4745         __perf_event_init_context(ctx);
4746         if (task)
4747                 ctx->task = get_task_struct(task);
4748
4749         return ctx;
4750 }
4751
4752 static struct task_struct *
4753 find_lively_task_by_vpid(pid_t vpid)
4754 {
4755         struct task_struct *task;
4756
4757         rcu_read_lock();
4758         if (!vpid)
4759                 task = current;
4760         else
4761                 task = find_task_by_vpid(vpid);
4762         if (task)
4763                 get_task_struct(task);
4764         rcu_read_unlock();
4765
4766         if (!task)
4767                 return ERR_PTR(-ESRCH);
4768
4769         return task;
4770 }
4771
4772 /*
4773  * Returns a matching context with refcount and pincount.
4774  */
4775 static struct perf_event_context *
4776 find_get_context(struct task_struct *task, struct perf_event *event)
4777 {
4778         struct perf_event_context *ctx, *clone_ctx = NULL;
4779         struct perf_cpu_context *cpuctx;
4780         unsigned long flags;
4781         int err;
4782
4783         if (!task) {
4784                 /* Must be root to operate on a CPU event: */
4785                 err = perf_allow_cpu(&event->attr);
4786                 if (err)
4787                         return ERR_PTR(err);
4788
4789                 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4790                 ctx = &cpuctx->ctx;
4791                 get_ctx(ctx);
4792                 raw_spin_lock_irqsave(&ctx->lock, flags);
4793                 ++ctx->pin_count;
4794                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4795
4796                 return ctx;
4797         }
4798
4799         err = -EINVAL;
4800 retry:
4801         ctx = perf_lock_task_context(task, &flags);
4802         if (ctx) {
4803                 clone_ctx = unclone_ctx(ctx);
4804                 ++ctx->pin_count;
4805
4806                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4807
4808                 if (clone_ctx)
4809                         put_ctx(clone_ctx);
4810         } else {
4811                 ctx = alloc_perf_context(task);
4812                 err = -ENOMEM;
4813                 if (!ctx)
4814                         goto errout;
4815
4816                 err = 0;
4817                 mutex_lock(&task->perf_event_mutex);
4818                 /*
4819                  * If it has already passed perf_event_exit_task().
4820                  * we must see PF_EXITING, it takes this mutex too.
4821                  */
4822                 if (task->flags & PF_EXITING)
4823                         err = -ESRCH;
4824                 else if (task->perf_event_ctxp)
4825                         err = -EAGAIN;
4826                 else {
4827                         get_ctx(ctx);
4828                         ++ctx->pin_count;
4829                         rcu_assign_pointer(task->perf_event_ctxp, ctx);
4830                 }
4831                 mutex_unlock(&task->perf_event_mutex);
4832
4833                 if (unlikely(err)) {
4834                         put_ctx(ctx);
4835
4836                         if (err == -EAGAIN)
4837                                 goto retry;
4838                         goto errout;
4839                 }
4840         }
4841
4842         return ctx;
4843
4844 errout:
4845         return ERR_PTR(err);
4846 }
4847
4848 static struct perf_event_pmu_context *
4849 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4850                      struct perf_event *event)
4851 {
4852         struct perf_event_pmu_context *new = NULL, *epc;
4853         void *task_ctx_data = NULL;
4854
4855         if (!ctx->task) {
4856                 /*
4857                  * perf_pmu_migrate_context() / __perf_pmu_install_event()
4858                  * relies on the fact that find_get_pmu_context() cannot fail
4859                  * for CPU contexts.
4860                  */
4861                 struct perf_cpu_pmu_context *cpc;
4862
4863                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4864                 epc = &cpc->epc;
4865                 raw_spin_lock_irq(&ctx->lock);
4866                 if (!epc->ctx) {
4867                         atomic_set(&epc->refcount, 1);
4868                         epc->embedded = 1;
4869                         list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4870                         epc->ctx = ctx;
4871                 } else {
4872                         WARN_ON_ONCE(epc->ctx != ctx);
4873                         atomic_inc(&epc->refcount);
4874                 }
4875                 raw_spin_unlock_irq(&ctx->lock);
4876                 return epc;
4877         }
4878
4879         new = kzalloc(sizeof(*epc), GFP_KERNEL);
4880         if (!new)
4881                 return ERR_PTR(-ENOMEM);
4882
4883         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4884                 task_ctx_data = alloc_task_ctx_data(pmu);
4885                 if (!task_ctx_data) {
4886                         kfree(new);
4887                         return ERR_PTR(-ENOMEM);
4888                 }
4889         }
4890
4891         __perf_init_event_pmu_context(new, pmu);
4892
4893         /*
4894          * XXX
4895          *
4896          * lockdep_assert_held(&ctx->mutex);
4897          *
4898          * can't because perf_event_init_task() doesn't actually hold the
4899          * child_ctx->mutex.
4900          */
4901
4902         raw_spin_lock_irq(&ctx->lock);
4903         list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4904                 if (epc->pmu == pmu) {
4905                         WARN_ON_ONCE(epc->ctx != ctx);
4906                         atomic_inc(&epc->refcount);
4907                         goto found_epc;
4908                 }
4909         }
4910
4911         epc = new;
4912         new = NULL;
4913
4914         list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4915         epc->ctx = ctx;
4916
4917 found_epc:
4918         if (task_ctx_data && !epc->task_ctx_data) {
4919                 epc->task_ctx_data = task_ctx_data;
4920                 task_ctx_data = NULL;
4921                 ctx->nr_task_data++;
4922         }
4923         raw_spin_unlock_irq(&ctx->lock);
4924
4925         free_task_ctx_data(pmu, task_ctx_data);
4926         kfree(new);
4927
4928         return epc;
4929 }
4930
4931 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4932 {
4933         WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4934 }
4935
4936 static void free_epc_rcu(struct rcu_head *head)
4937 {
4938         struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4939
4940         kfree(epc->task_ctx_data);
4941         kfree(epc);
4942 }
4943
4944 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4945 {
4946         struct perf_event_context *ctx = epc->ctx;
4947         unsigned long flags;
4948
4949         /*
4950          * XXX
4951          *
4952          * lockdep_assert_held(&ctx->mutex);
4953          *
4954          * can't because of the call-site in _free_event()/put_event()
4955          * which isn't always called under ctx->mutex.
4956          */
4957         if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4958                 return;
4959
4960         WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4961
4962         list_del_init(&epc->pmu_ctx_entry);
4963         epc->ctx = NULL;
4964
4965         WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4966         WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4967
4968         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4969
4970         if (epc->embedded)
4971                 return;
4972
4973         call_rcu(&epc->rcu_head, free_epc_rcu);
4974 }
4975
4976 static void perf_event_free_filter(struct perf_event *event);
4977
4978 static void free_event_rcu(struct rcu_head *head)
4979 {
4980         struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4981
4982         if (event->ns)
4983                 put_pid_ns(event->ns);
4984         perf_event_free_filter(event);
4985         kmem_cache_free(perf_event_cache, event);
4986 }
4987
4988 static void ring_buffer_attach(struct perf_event *event,
4989                                struct perf_buffer *rb);
4990
4991 static void detach_sb_event(struct perf_event *event)
4992 {
4993         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4994
4995         raw_spin_lock(&pel->lock);
4996         list_del_rcu(&event->sb_list);
4997         raw_spin_unlock(&pel->lock);
4998 }
4999
5000 static bool is_sb_event(struct perf_event *event)
5001 {
5002         struct perf_event_attr *attr = &event->attr;
5003
5004         if (event->parent)
5005                 return false;
5006
5007         if (event->attach_state & PERF_ATTACH_TASK)
5008                 return false;
5009
5010         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5011             attr->comm || attr->comm_exec ||
5012             attr->task || attr->ksymbol ||
5013             attr->context_switch || attr->text_poke ||
5014             attr->bpf_event)
5015                 return true;
5016         return false;
5017 }
5018
5019 static void unaccount_pmu_sb_event(struct perf_event *event)
5020 {
5021         if (is_sb_event(event))
5022                 detach_sb_event(event);
5023 }
5024
5025 #ifdef CONFIG_NO_HZ_FULL
5026 static DEFINE_SPINLOCK(nr_freq_lock);
5027 #endif
5028
5029 static void unaccount_freq_event_nohz(void)
5030 {
5031 #ifdef CONFIG_NO_HZ_FULL
5032         spin_lock(&nr_freq_lock);
5033         if (atomic_dec_and_test(&nr_freq_events))
5034                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5035         spin_unlock(&nr_freq_lock);
5036 #endif
5037 }
5038
5039 static void unaccount_freq_event(void)
5040 {
5041         if (tick_nohz_full_enabled())
5042                 unaccount_freq_event_nohz();
5043         else
5044                 atomic_dec(&nr_freq_events);
5045 }
5046
5047 static void unaccount_event(struct perf_event *event)
5048 {
5049         bool dec = false;
5050
5051         if (event->parent)
5052                 return;
5053
5054         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5055                 dec = true;
5056         if (event->attr.mmap || event->attr.mmap_data)
5057                 atomic_dec(&nr_mmap_events);
5058         if (event->attr.build_id)
5059                 atomic_dec(&nr_build_id_events);
5060         if (event->attr.comm)
5061                 atomic_dec(&nr_comm_events);
5062         if (event->attr.namespaces)
5063                 atomic_dec(&nr_namespaces_events);
5064         if (event->attr.cgroup)
5065                 atomic_dec(&nr_cgroup_events);
5066         if (event->attr.task)
5067                 atomic_dec(&nr_task_events);
5068         if (event->attr.freq)
5069                 unaccount_freq_event();
5070         if (event->attr.context_switch) {
5071                 dec = true;
5072                 atomic_dec(&nr_switch_events);
5073         }
5074         if (is_cgroup_event(event))
5075                 dec = true;
5076         if (has_branch_stack(event))
5077                 dec = true;
5078         if (event->attr.ksymbol)
5079                 atomic_dec(&nr_ksymbol_events);
5080         if (event->attr.bpf_event)
5081                 atomic_dec(&nr_bpf_events);
5082         if (event->attr.text_poke)
5083                 atomic_dec(&nr_text_poke_events);
5084
5085         if (dec) {
5086                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5087                         schedule_delayed_work(&perf_sched_work, HZ);
5088         }
5089
5090         unaccount_pmu_sb_event(event);
5091 }
5092
5093 static void perf_sched_delayed(struct work_struct *work)
5094 {
5095         mutex_lock(&perf_sched_mutex);
5096         if (atomic_dec_and_test(&perf_sched_count))
5097                 static_branch_disable(&perf_sched_events);
5098         mutex_unlock(&perf_sched_mutex);
5099 }
5100
5101 /*
5102  * The following implement mutual exclusion of events on "exclusive" pmus
5103  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5104  * at a time, so we disallow creating events that might conflict, namely:
5105  *
5106  *  1) cpu-wide events in the presence of per-task events,
5107  *  2) per-task events in the presence of cpu-wide events,
5108  *  3) two matching events on the same perf_event_context.
5109  *
5110  * The former two cases are handled in the allocation path (perf_event_alloc(),
5111  * _free_event()), the latter -- before the first perf_install_in_context().
5112  */
5113 static int exclusive_event_init(struct perf_event *event)
5114 {
5115         struct pmu *pmu = event->pmu;
5116
5117         if (!is_exclusive_pmu(pmu))
5118                 return 0;
5119
5120         /*
5121          * Prevent co-existence of per-task and cpu-wide events on the
5122          * same exclusive pmu.
5123          *
5124          * Negative pmu::exclusive_cnt means there are cpu-wide
5125          * events on this "exclusive" pmu, positive means there are
5126          * per-task events.
5127          *
5128          * Since this is called in perf_event_alloc() path, event::ctx
5129          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5130          * to mean "per-task event", because unlike other attach states it
5131          * never gets cleared.
5132          */
5133         if (event->attach_state & PERF_ATTACH_TASK) {
5134                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5135                         return -EBUSY;
5136         } else {
5137                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5138                         return -EBUSY;
5139         }
5140
5141         return 0;
5142 }
5143
5144 static void exclusive_event_destroy(struct perf_event *event)
5145 {
5146         struct pmu *pmu = event->pmu;
5147
5148         if (!is_exclusive_pmu(pmu))
5149                 return;
5150
5151         /* see comment in exclusive_event_init() */
5152         if (event->attach_state & PERF_ATTACH_TASK)
5153                 atomic_dec(&pmu->exclusive_cnt);
5154         else
5155                 atomic_inc(&pmu->exclusive_cnt);
5156 }
5157
5158 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5159 {
5160         if ((e1->pmu == e2->pmu) &&
5161             (e1->cpu == e2->cpu ||
5162              e1->cpu == -1 ||
5163              e2->cpu == -1))
5164                 return true;
5165         return false;
5166 }
5167
5168 static bool exclusive_event_installable(struct perf_event *event,
5169                                         struct perf_event_context *ctx)
5170 {
5171         struct perf_event *iter_event;
5172         struct pmu *pmu = event->pmu;
5173
5174         lockdep_assert_held(&ctx->mutex);
5175
5176         if (!is_exclusive_pmu(pmu))
5177                 return true;
5178
5179         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5180                 if (exclusive_event_match(iter_event, event))
5181                         return false;
5182         }
5183
5184         return true;
5185 }
5186
5187 static void perf_addr_filters_splice(struct perf_event *event,
5188                                        struct list_head *head);
5189
5190 static void _free_event(struct perf_event *event)
5191 {
5192         irq_work_sync(&event->pending_irq);
5193
5194         unaccount_event(event);
5195
5196         security_perf_event_free(event);
5197
5198         if (event->rb) {
5199                 /*
5200                  * Can happen when we close an event with re-directed output.
5201                  *
5202                  * Since we have a 0 refcount, perf_mmap_close() will skip
5203                  * over us; possibly making our ring_buffer_put() the last.
5204                  */
5205                 mutex_lock(&event->mmap_mutex);
5206                 ring_buffer_attach(event, NULL);
5207                 mutex_unlock(&event->mmap_mutex);
5208         }
5209
5210         if (is_cgroup_event(event))
5211                 perf_detach_cgroup(event);
5212
5213         if (!event->parent) {
5214                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5215                         put_callchain_buffers();
5216         }
5217
5218         perf_event_free_bpf_prog(event);
5219         perf_addr_filters_splice(event, NULL);
5220         kfree(event->addr_filter_ranges);
5221
5222         if (event->destroy)
5223                 event->destroy(event);
5224
5225         /*
5226          * Must be after ->destroy(), due to uprobe_perf_close() using
5227          * hw.target.
5228          */
5229         if (event->hw.target)
5230                 put_task_struct(event->hw.target);
5231
5232         if (event->pmu_ctx)
5233                 put_pmu_ctx(event->pmu_ctx);
5234
5235         /*
5236          * perf_event_free_task() relies on put_ctx() being 'last', in particular
5237          * all task references must be cleaned up.
5238          */
5239         if (event->ctx)
5240                 put_ctx(event->ctx);
5241
5242         exclusive_event_destroy(event);
5243         module_put(event->pmu->module);
5244
5245         call_rcu(&event->rcu_head, free_event_rcu);
5246 }
5247
5248 /*
5249  * Used to free events which have a known refcount of 1, such as in error paths
5250  * where the event isn't exposed yet and inherited events.
5251  */
5252 static void free_event(struct perf_event *event)
5253 {
5254         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5255                                 "unexpected event refcount: %ld; ptr=%p\n",
5256                                 atomic_long_read(&event->refcount), event)) {
5257                 /* leak to avoid use-after-free */
5258                 return;
5259         }
5260
5261         _free_event(event);
5262 }
5263
5264 /*
5265  * Remove user event from the owner task.
5266  */
5267 static void perf_remove_from_owner(struct perf_event *event)
5268 {
5269         struct task_struct *owner;
5270
5271         rcu_read_lock();
5272         /*
5273          * Matches the smp_store_release() in perf_event_exit_task(). If we
5274          * observe !owner it means the list deletion is complete and we can
5275          * indeed free this event, otherwise we need to serialize on
5276          * owner->perf_event_mutex.
5277          */
5278         owner = READ_ONCE(event->owner);
5279         if (owner) {
5280                 /*
5281                  * Since delayed_put_task_struct() also drops the last
5282                  * task reference we can safely take a new reference
5283                  * while holding the rcu_read_lock().
5284                  */
5285                 get_task_struct(owner);
5286         }
5287         rcu_read_unlock();
5288
5289         if (owner) {
5290                 /*
5291                  * If we're here through perf_event_exit_task() we're already
5292                  * holding ctx->mutex which would be an inversion wrt. the
5293                  * normal lock order.
5294                  *
5295                  * However we can safely take this lock because its the child
5296                  * ctx->mutex.
5297                  */
5298                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5299
5300                 /*
5301                  * We have to re-check the event->owner field, if it is cleared
5302                  * we raced with perf_event_exit_task(), acquiring the mutex
5303                  * ensured they're done, and we can proceed with freeing the
5304                  * event.
5305                  */
5306                 if (event->owner) {
5307                         list_del_init(&event->owner_entry);
5308                         smp_store_release(&event->owner, NULL);
5309                 }
5310                 mutex_unlock(&owner->perf_event_mutex);
5311                 put_task_struct(owner);
5312         }
5313 }
5314
5315 static void put_event(struct perf_event *event)
5316 {
5317         if (!atomic_long_dec_and_test(&event->refcount))
5318                 return;
5319
5320         _free_event(event);
5321 }
5322
5323 /*
5324  * Kill an event dead; while event:refcount will preserve the event
5325  * object, it will not preserve its functionality. Once the last 'user'
5326  * gives up the object, we'll destroy the thing.
5327  */
5328 int perf_event_release_kernel(struct perf_event *event)
5329 {
5330         struct perf_event_context *ctx = event->ctx;
5331         struct perf_event *child, *tmp;
5332         LIST_HEAD(free_list);
5333
5334         /*
5335          * If we got here through err_alloc: free_event(event); we will not
5336          * have attached to a context yet.
5337          */
5338         if (!ctx) {
5339                 WARN_ON_ONCE(event->attach_state &
5340                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5341                 goto no_ctx;
5342         }
5343
5344         if (!is_kernel_event(event))
5345                 perf_remove_from_owner(event);
5346
5347         ctx = perf_event_ctx_lock(event);
5348         WARN_ON_ONCE(ctx->parent_ctx);
5349
5350         /*
5351          * Mark this event as STATE_DEAD, there is no external reference to it
5352          * anymore.
5353          *
5354          * Anybody acquiring event->child_mutex after the below loop _must_
5355          * also see this, most importantly inherit_event() which will avoid
5356          * placing more children on the list.
5357          *
5358          * Thus this guarantees that we will in fact observe and kill _ALL_
5359          * child events.
5360          */
5361         perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5362
5363         perf_event_ctx_unlock(event, ctx);
5364
5365 again:
5366         mutex_lock(&event->child_mutex);
5367         list_for_each_entry(child, &event->child_list, child_list) {
5368
5369                 /*
5370                  * Cannot change, child events are not migrated, see the
5371                  * comment with perf_event_ctx_lock_nested().
5372                  */
5373                 ctx = READ_ONCE(child->ctx);
5374                 /*
5375                  * Since child_mutex nests inside ctx::mutex, we must jump
5376                  * through hoops. We start by grabbing a reference on the ctx.
5377                  *
5378                  * Since the event cannot get freed while we hold the
5379                  * child_mutex, the context must also exist and have a !0
5380                  * reference count.
5381                  */
5382                 get_ctx(ctx);
5383
5384                 /*
5385                  * Now that we have a ctx ref, we can drop child_mutex, and
5386                  * acquire ctx::mutex without fear of it going away. Then we
5387                  * can re-acquire child_mutex.
5388                  */
5389                 mutex_unlock(&event->child_mutex);
5390                 mutex_lock(&ctx->mutex);
5391                 mutex_lock(&event->child_mutex);
5392
5393                 /*
5394                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5395                  * state, if child is still the first entry, it didn't get freed
5396                  * and we can continue doing so.
5397                  */
5398                 tmp = list_first_entry_or_null(&event->child_list,
5399                                                struct perf_event, child_list);
5400                 if (tmp == child) {
5401                         perf_remove_from_context(child, DETACH_GROUP);
5402                         list_move(&child->child_list, &free_list);
5403                         /*
5404                          * This matches the refcount bump in inherit_event();
5405                          * this can't be the last reference.
5406                          */
5407                         put_event(event);
5408                 }
5409
5410                 mutex_unlock(&event->child_mutex);
5411                 mutex_unlock(&ctx->mutex);
5412                 put_ctx(ctx);
5413                 goto again;
5414         }
5415         mutex_unlock(&event->child_mutex);
5416
5417         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5418                 void *var = &child->ctx->refcount;
5419
5420                 list_del(&child->child_list);
5421                 free_event(child);
5422
5423                 /*
5424                  * Wake any perf_event_free_task() waiting for this event to be
5425                  * freed.
5426                  */
5427                 smp_mb(); /* pairs with wait_var_event() */
5428                 wake_up_var(var);
5429         }
5430
5431 no_ctx:
5432         put_event(event); /* Must be the 'last' reference */
5433         return 0;
5434 }
5435 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5436
5437 /*
5438  * Called when the last reference to the file is gone.
5439  */
5440 static int perf_release(struct inode *inode, struct file *file)
5441 {
5442         perf_event_release_kernel(file->private_data);
5443         return 0;
5444 }
5445
5446 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5447 {
5448         struct perf_event *child;
5449         u64 total = 0;
5450
5451         *enabled = 0;
5452         *running = 0;
5453
5454         mutex_lock(&event->child_mutex);
5455
5456         (void)perf_event_read(event, false);
5457         total += perf_event_count(event);
5458
5459         *enabled += event->total_time_enabled +
5460                         atomic64_read(&event->child_total_time_enabled);
5461         *running += event->total_time_running +
5462                         atomic64_read(&event->child_total_time_running);
5463
5464         list_for_each_entry(child, &event->child_list, child_list) {
5465                 (void)perf_event_read(child, false);
5466                 total += perf_event_count(child);
5467                 *enabled += child->total_time_enabled;
5468                 *running += child->total_time_running;
5469         }
5470         mutex_unlock(&event->child_mutex);
5471
5472         return total;
5473 }
5474
5475 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5476 {
5477         struct perf_event_context *ctx;
5478         u64 count;
5479
5480         ctx = perf_event_ctx_lock(event);
5481         count = __perf_event_read_value(event, enabled, running);
5482         perf_event_ctx_unlock(event, ctx);
5483
5484         return count;
5485 }
5486 EXPORT_SYMBOL_GPL(perf_event_read_value);
5487
5488 static int __perf_read_group_add(struct perf_event *leader,
5489                                         u64 read_format, u64 *values)
5490 {
5491         struct perf_event_context *ctx = leader->ctx;
5492         struct perf_event *sub, *parent;
5493         unsigned long flags;
5494         int n = 1; /* skip @nr */
5495         int ret;
5496
5497         ret = perf_event_read(leader, true);
5498         if (ret)
5499                 return ret;
5500
5501         raw_spin_lock_irqsave(&ctx->lock, flags);
5502         /*
5503          * Verify the grouping between the parent and child (inherited)
5504          * events is still in tact.
5505          *
5506          * Specifically:
5507          *  - leader->ctx->lock pins leader->sibling_list
5508          *  - parent->child_mutex pins parent->child_list
5509          *  - parent->ctx->mutex pins parent->sibling_list
5510          *
5511          * Because parent->ctx != leader->ctx (and child_list nests inside
5512          * ctx->mutex), group destruction is not atomic between children, also
5513          * see perf_event_release_kernel(). Additionally, parent can grow the
5514          * group.
5515          *
5516          * Therefore it is possible to have parent and child groups in a
5517          * different configuration and summing over such a beast makes no sense
5518          * what so ever.
5519          *
5520          * Reject this.
5521          */
5522         parent = leader->parent;
5523         if (parent &&
5524             (parent->group_generation != leader->group_generation ||
5525              parent->nr_siblings != leader->nr_siblings)) {
5526                 ret = -ECHILD;
5527                 goto unlock;
5528         }
5529
5530         /*
5531          * Since we co-schedule groups, {enabled,running} times of siblings
5532          * will be identical to those of the leader, so we only publish one
5533          * set.
5534          */
5535         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5536                 values[n++] += leader->total_time_enabled +
5537                         atomic64_read(&leader->child_total_time_enabled);
5538         }
5539
5540         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5541                 values[n++] += leader->total_time_running +
5542                         atomic64_read(&leader->child_total_time_running);
5543         }
5544
5545         /*
5546          * Write {count,id} tuples for every sibling.
5547          */
5548         values[n++] += perf_event_count(leader);
5549         if (read_format & PERF_FORMAT_ID)
5550                 values[n++] = primary_event_id(leader);
5551         if (read_format & PERF_FORMAT_LOST)
5552                 values[n++] = atomic64_read(&leader->lost_samples);
5553
5554         for_each_sibling_event(sub, leader) {
5555                 values[n++] += perf_event_count(sub);
5556                 if (read_format & PERF_FORMAT_ID)
5557                         values[n++] = primary_event_id(sub);
5558                 if (read_format & PERF_FORMAT_LOST)
5559                         values[n++] = atomic64_read(&sub->lost_samples);
5560         }
5561
5562 unlock:
5563         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5564         return ret;
5565 }
5566
5567 static int perf_read_group(struct perf_event *event,
5568                                    u64 read_format, char __user *buf)
5569 {
5570         struct perf_event *leader = event->group_leader, *child;
5571         struct perf_event_context *ctx = leader->ctx;
5572         int ret;
5573         u64 *values;
5574
5575         lockdep_assert_held(&ctx->mutex);
5576
5577         values = kzalloc(event->read_size, GFP_KERNEL);
5578         if (!values)
5579                 return -ENOMEM;
5580
5581         values[0] = 1 + leader->nr_siblings;
5582
5583         mutex_lock(&leader->child_mutex);
5584
5585         ret = __perf_read_group_add(leader, read_format, values);
5586         if (ret)
5587                 goto unlock;
5588
5589         list_for_each_entry(child, &leader->child_list, child_list) {
5590                 ret = __perf_read_group_add(child, read_format, values);
5591                 if (ret)
5592                         goto unlock;
5593         }
5594
5595         mutex_unlock(&leader->child_mutex);
5596
5597         ret = event->read_size;
5598         if (copy_to_user(buf, values, event->read_size))
5599                 ret = -EFAULT;
5600         goto out;
5601
5602 unlock:
5603         mutex_unlock(&leader->child_mutex);
5604 out:
5605         kfree(values);
5606         return ret;
5607 }
5608
5609 static int perf_read_one(struct perf_event *event,
5610                                  u64 read_format, char __user *buf)
5611 {
5612         u64 enabled, running;
5613         u64 values[5];
5614         int n = 0;
5615
5616         values[n++] = __perf_event_read_value(event, &enabled, &running);
5617         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5618                 values[n++] = enabled;
5619         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5620                 values[n++] = running;
5621         if (read_format & PERF_FORMAT_ID)
5622                 values[n++] = primary_event_id(event);
5623         if (read_format & PERF_FORMAT_LOST)
5624                 values[n++] = atomic64_read(&event->lost_samples);
5625
5626         if (copy_to_user(buf, values, n * sizeof(u64)))
5627                 return -EFAULT;
5628
5629         return n * sizeof(u64);
5630 }
5631
5632 static bool is_event_hup(struct perf_event *event)
5633 {
5634         bool no_children;
5635
5636         if (event->state > PERF_EVENT_STATE_EXIT)
5637                 return false;
5638
5639         mutex_lock(&event->child_mutex);
5640         no_children = list_empty(&event->child_list);
5641         mutex_unlock(&event->child_mutex);
5642         return no_children;
5643 }
5644
5645 /*
5646  * Read the performance event - simple non blocking version for now
5647  */
5648 static ssize_t
5649 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5650 {
5651         u64 read_format = event->attr.read_format;
5652         int ret;
5653
5654         /*
5655          * Return end-of-file for a read on an event that is in
5656          * error state (i.e. because it was pinned but it couldn't be
5657          * scheduled on to the CPU at some point).
5658          */
5659         if (event->state == PERF_EVENT_STATE_ERROR)
5660                 return 0;
5661
5662         if (count < event->read_size)
5663                 return -ENOSPC;
5664
5665         WARN_ON_ONCE(event->ctx->parent_ctx);
5666         if (read_format & PERF_FORMAT_GROUP)
5667                 ret = perf_read_group(event, read_format, buf);
5668         else
5669                 ret = perf_read_one(event, read_format, buf);
5670
5671         return ret;
5672 }
5673
5674 static ssize_t
5675 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5676 {
5677         struct perf_event *event = file->private_data;
5678         struct perf_event_context *ctx;
5679         int ret;
5680
5681         ret = security_perf_event_read(event);
5682         if (ret)
5683                 return ret;
5684
5685         ctx = perf_event_ctx_lock(event);
5686         ret = __perf_read(event, buf, count);
5687         perf_event_ctx_unlock(event, ctx);
5688
5689         return ret;
5690 }
5691
5692 static __poll_t perf_poll(struct file *file, poll_table *wait)
5693 {
5694         struct perf_event *event = file->private_data;
5695         struct perf_buffer *rb;
5696         __poll_t events = EPOLLHUP;
5697
5698         poll_wait(file, &event->waitq, wait);
5699
5700         if (is_event_hup(event))
5701                 return events;
5702
5703         /*
5704          * Pin the event->rb by taking event->mmap_mutex; otherwise
5705          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5706          */
5707         mutex_lock(&event->mmap_mutex);
5708         rb = event->rb;
5709         if (rb)
5710                 events = atomic_xchg(&rb->poll, 0);
5711         mutex_unlock(&event->mmap_mutex);
5712         return events;
5713 }
5714
5715 static void _perf_event_reset(struct perf_event *event)
5716 {
5717         (void)perf_event_read(event, false);
5718         local64_set(&event->count, 0);
5719         perf_event_update_userpage(event);
5720 }
5721
5722 /* Assume it's not an event with inherit set. */
5723 u64 perf_event_pause(struct perf_event *event, bool reset)
5724 {
5725         struct perf_event_context *ctx;
5726         u64 count;
5727
5728         ctx = perf_event_ctx_lock(event);
5729         WARN_ON_ONCE(event->attr.inherit);
5730         _perf_event_disable(event);
5731         count = local64_read(&event->count);
5732         if (reset)
5733                 local64_set(&event->count, 0);
5734         perf_event_ctx_unlock(event, ctx);
5735
5736         return count;
5737 }
5738 EXPORT_SYMBOL_GPL(perf_event_pause);
5739
5740 /*
5741  * Holding the top-level event's child_mutex means that any
5742  * descendant process that has inherited this event will block
5743  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5744  * task existence requirements of perf_event_enable/disable.
5745  */
5746 static void perf_event_for_each_child(struct perf_event *event,
5747                                         void (*func)(struct perf_event *))
5748 {
5749         struct perf_event *child;
5750
5751         WARN_ON_ONCE(event->ctx->parent_ctx);
5752
5753         mutex_lock(&event->child_mutex);
5754         func(event);
5755         list_for_each_entry(child, &event->child_list, child_list)
5756                 func(child);
5757         mutex_unlock(&event->child_mutex);
5758 }
5759
5760 static void perf_event_for_each(struct perf_event *event,
5761                                   void (*func)(struct perf_event *))
5762 {
5763         struct perf_event_context *ctx = event->ctx;
5764         struct perf_event *sibling;
5765
5766         lockdep_assert_held(&ctx->mutex);
5767
5768         event = event->group_leader;
5769
5770         perf_event_for_each_child(event, func);
5771         for_each_sibling_event(sibling, event)
5772                 perf_event_for_each_child(sibling, func);
5773 }
5774
5775 static void __perf_event_period(struct perf_event *event,
5776                                 struct perf_cpu_context *cpuctx,
5777                                 struct perf_event_context *ctx,
5778                                 void *info)
5779 {
5780         u64 value = *((u64 *)info);
5781         bool active;
5782
5783         if (event->attr.freq) {
5784                 event->attr.sample_freq = value;
5785         } else {
5786                 event->attr.sample_period = value;
5787                 event->hw.sample_period = value;
5788         }
5789
5790         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5791         if (active) {
5792                 perf_pmu_disable(event->pmu);
5793                 /*
5794                  * We could be throttled; unthrottle now to avoid the tick
5795                  * trying to unthrottle while we already re-started the event.
5796                  */
5797                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5798                         event->hw.interrupts = 0;
5799                         perf_log_throttle(event, 1);
5800                 }
5801                 event->pmu->stop(event, PERF_EF_UPDATE);
5802         }
5803
5804         local64_set(&event->hw.period_left, 0);
5805
5806         if (active) {
5807                 event->pmu->start(event, PERF_EF_RELOAD);
5808                 perf_pmu_enable(event->pmu);
5809         }
5810 }
5811
5812 static int perf_event_check_period(struct perf_event *event, u64 value)
5813 {
5814         return event->pmu->check_period(event, value);
5815 }
5816
5817 static int _perf_event_period(struct perf_event *event, u64 value)
5818 {
5819         if (!is_sampling_event(event))
5820                 return -EINVAL;
5821
5822         if (!value)
5823                 return -EINVAL;
5824
5825         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5826                 return -EINVAL;
5827
5828         if (perf_event_check_period(event, value))
5829                 return -EINVAL;
5830
5831         if (!event->attr.freq && (value & (1ULL << 63)))
5832                 return -EINVAL;
5833
5834         event_function_call(event, __perf_event_period, &value);
5835
5836         return 0;
5837 }
5838
5839 int perf_event_period(struct perf_event *event, u64 value)
5840 {
5841         struct perf_event_context *ctx;
5842         int ret;
5843
5844         ctx = perf_event_ctx_lock(event);
5845         ret = _perf_event_period(event, value);
5846         perf_event_ctx_unlock(event, ctx);
5847
5848         return ret;
5849 }
5850 EXPORT_SYMBOL_GPL(perf_event_period);
5851
5852 static const struct file_operations perf_fops;
5853
5854 static inline int perf_fget_light(int fd, struct fd *p)
5855 {
5856         struct fd f = fdget(fd);
5857         if (!f.file)
5858                 return -EBADF;
5859
5860         if (f.file->f_op != &perf_fops) {
5861                 fdput(f);
5862                 return -EBADF;
5863         }
5864         *p = f;
5865         return 0;
5866 }
5867
5868 static int perf_event_set_output(struct perf_event *event,
5869                                  struct perf_event *output_event);
5870 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5871 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5872                           struct perf_event_attr *attr);
5873
5874 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5875 {
5876         void (*func)(struct perf_event *);
5877         u32 flags = arg;
5878
5879         switch (cmd) {
5880         case PERF_EVENT_IOC_ENABLE:
5881                 func = _perf_event_enable;
5882                 break;
5883         case PERF_EVENT_IOC_DISABLE:
5884                 func = _perf_event_disable;
5885                 break;
5886         case PERF_EVENT_IOC_RESET:
5887                 func = _perf_event_reset;
5888                 break;
5889
5890         case PERF_EVENT_IOC_REFRESH:
5891                 return _perf_event_refresh(event, arg);
5892
5893         case PERF_EVENT_IOC_PERIOD:
5894         {
5895                 u64 value;
5896
5897                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5898                         return -EFAULT;
5899
5900                 return _perf_event_period(event, value);
5901         }
5902         case PERF_EVENT_IOC_ID:
5903         {
5904                 u64 id = primary_event_id(event);
5905
5906                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5907                         return -EFAULT;
5908                 return 0;
5909         }
5910
5911         case PERF_EVENT_IOC_SET_OUTPUT:
5912         {
5913                 int ret;
5914                 if (arg != -1) {
5915                         struct perf_event *output_event;
5916                         struct fd output;
5917                         ret = perf_fget_light(arg, &output);
5918                         if (ret)
5919                                 return ret;
5920                         output_event = output.file->private_data;
5921                         ret = perf_event_set_output(event, output_event);
5922                         fdput(output);
5923                 } else {
5924                         ret = perf_event_set_output(event, NULL);
5925                 }
5926                 return ret;
5927         }
5928
5929         case PERF_EVENT_IOC_SET_FILTER:
5930                 return perf_event_set_filter(event, (void __user *)arg);
5931
5932         case PERF_EVENT_IOC_SET_BPF:
5933         {
5934                 struct bpf_prog *prog;
5935                 int err;
5936
5937                 prog = bpf_prog_get(arg);
5938                 if (IS_ERR(prog))
5939                         return PTR_ERR(prog);
5940
5941                 err = perf_event_set_bpf_prog(event, prog, 0);
5942                 if (err) {
5943                         bpf_prog_put(prog);
5944                         return err;
5945                 }
5946
5947                 return 0;
5948         }
5949
5950         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5951                 struct perf_buffer *rb;
5952
5953                 rcu_read_lock();
5954                 rb = rcu_dereference(event->rb);
5955                 if (!rb || !rb->nr_pages) {
5956                         rcu_read_unlock();
5957                         return -EINVAL;
5958                 }
5959                 rb_toggle_paused(rb, !!arg);
5960                 rcu_read_unlock();
5961                 return 0;
5962         }
5963
5964         case PERF_EVENT_IOC_QUERY_BPF:
5965                 return perf_event_query_prog_array(event, (void __user *)arg);
5966
5967         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5968                 struct perf_event_attr new_attr;
5969                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5970                                          &new_attr);
5971
5972                 if (err)
5973                         return err;
5974
5975                 return perf_event_modify_attr(event,  &new_attr);
5976         }
5977         default:
5978                 return -ENOTTY;
5979         }
5980
5981         if (flags & PERF_IOC_FLAG_GROUP)
5982                 perf_event_for_each(event, func);
5983         else
5984                 perf_event_for_each_child(event, func);
5985
5986         return 0;
5987 }
5988
5989 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5990 {
5991         struct perf_event *event = file->private_data;
5992         struct perf_event_context *ctx;
5993         long ret;
5994
5995         /* Treat ioctl like writes as it is likely a mutating operation. */
5996         ret = security_perf_event_write(event);
5997         if (ret)
5998                 return ret;
5999
6000         ctx = perf_event_ctx_lock(event);
6001         ret = _perf_ioctl(event, cmd, arg);
6002         perf_event_ctx_unlock(event, ctx);
6003
6004         return ret;
6005 }
6006
6007 #ifdef CONFIG_COMPAT
6008 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6009                                 unsigned long arg)
6010 {
6011         switch (_IOC_NR(cmd)) {
6012         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6013         case _IOC_NR(PERF_EVENT_IOC_ID):
6014         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6015         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6016                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6017                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6018                         cmd &= ~IOCSIZE_MASK;
6019                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6020                 }
6021                 break;
6022         }
6023         return perf_ioctl(file, cmd, arg);
6024 }
6025 #else
6026 # define perf_compat_ioctl NULL
6027 #endif
6028
6029 int perf_event_task_enable(void)
6030 {
6031         struct perf_event_context *ctx;
6032         struct perf_event *event;
6033
6034         mutex_lock(&current->perf_event_mutex);
6035         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6036                 ctx = perf_event_ctx_lock(event);
6037                 perf_event_for_each_child(event, _perf_event_enable);
6038                 perf_event_ctx_unlock(event, ctx);
6039         }
6040         mutex_unlock(&current->perf_event_mutex);
6041
6042         return 0;
6043 }
6044
6045 int perf_event_task_disable(void)
6046 {
6047         struct perf_event_context *ctx;
6048         struct perf_event *event;
6049
6050         mutex_lock(&current->perf_event_mutex);
6051         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6052                 ctx = perf_event_ctx_lock(event);
6053                 perf_event_for_each_child(event, _perf_event_disable);
6054                 perf_event_ctx_unlock(event, ctx);
6055         }
6056         mutex_unlock(&current->perf_event_mutex);
6057
6058         return 0;
6059 }
6060
6061 static int perf_event_index(struct perf_event *event)
6062 {
6063         if (event->hw.state & PERF_HES_STOPPED)
6064                 return 0;
6065
6066         if (event->state != PERF_EVENT_STATE_ACTIVE)
6067                 return 0;
6068
6069         return event->pmu->event_idx(event);
6070 }
6071
6072 static void perf_event_init_userpage(struct perf_event *event)
6073 {
6074         struct perf_event_mmap_page *userpg;
6075         struct perf_buffer *rb;
6076
6077         rcu_read_lock();
6078         rb = rcu_dereference(event->rb);
6079         if (!rb)
6080                 goto unlock;
6081
6082         userpg = rb->user_page;
6083
6084         /* Allow new userspace to detect that bit 0 is deprecated */
6085         userpg->cap_bit0_is_deprecated = 1;
6086         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6087         userpg->data_offset = PAGE_SIZE;
6088         userpg->data_size = perf_data_size(rb);
6089
6090 unlock:
6091         rcu_read_unlock();
6092 }
6093
6094 void __weak arch_perf_update_userpage(
6095         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6096 {
6097 }
6098
6099 /*
6100  * Callers need to ensure there can be no nesting of this function, otherwise
6101  * the seqlock logic goes bad. We can not serialize this because the arch
6102  * code calls this from NMI context.
6103  */
6104 void perf_event_update_userpage(struct perf_event *event)
6105 {
6106         struct perf_event_mmap_page *userpg;
6107         struct perf_buffer *rb;
6108         u64 enabled, running, now;
6109
6110         rcu_read_lock();
6111         rb = rcu_dereference(event->rb);
6112         if (!rb)
6113                 goto unlock;
6114
6115         /*
6116          * compute total_time_enabled, total_time_running
6117          * based on snapshot values taken when the event
6118          * was last scheduled in.
6119          *
6120          * we cannot simply called update_context_time()
6121          * because of locking issue as we can be called in
6122          * NMI context
6123          */
6124         calc_timer_values(event, &now, &enabled, &running);
6125
6126         userpg = rb->user_page;
6127         /*
6128          * Disable preemption to guarantee consistent time stamps are stored to
6129          * the user page.
6130          */
6131         preempt_disable();
6132         ++userpg->lock;
6133         barrier();
6134         userpg->index = perf_event_index(event);
6135         userpg->offset = perf_event_count(event);
6136         if (userpg->index)
6137                 userpg->offset -= local64_read(&event->hw.prev_count);
6138
6139         userpg->time_enabled = enabled +
6140                         atomic64_read(&event->child_total_time_enabled);
6141
6142         userpg->time_running = running +
6143                         atomic64_read(&event->child_total_time_running);
6144
6145         arch_perf_update_userpage(event, userpg, now);
6146
6147         barrier();
6148         ++userpg->lock;
6149         preempt_enable();
6150 unlock:
6151         rcu_read_unlock();
6152 }
6153 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6154
6155 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6156 {
6157         struct perf_event *event = vmf->vma->vm_file->private_data;
6158         struct perf_buffer *rb;
6159         vm_fault_t ret = VM_FAULT_SIGBUS;
6160
6161         if (vmf->flags & FAULT_FLAG_MKWRITE) {
6162                 if (vmf->pgoff == 0)
6163                         ret = 0;
6164                 return ret;
6165         }
6166
6167         rcu_read_lock();
6168         rb = rcu_dereference(event->rb);
6169         if (!rb)
6170                 goto unlock;
6171
6172         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6173                 goto unlock;
6174
6175         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6176         if (!vmf->page)
6177                 goto unlock;
6178
6179         get_page(vmf->page);
6180         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6181         vmf->page->index   = vmf->pgoff;
6182
6183         ret = 0;
6184 unlock:
6185         rcu_read_unlock();
6186
6187         return ret;
6188 }
6189
6190 static void ring_buffer_attach(struct perf_event *event,
6191                                struct perf_buffer *rb)
6192 {
6193         struct perf_buffer *old_rb = NULL;
6194         unsigned long flags;
6195
6196         WARN_ON_ONCE(event->parent);
6197
6198         if (event->rb) {
6199                 /*
6200                  * Should be impossible, we set this when removing
6201                  * event->rb_entry and wait/clear when adding event->rb_entry.
6202                  */
6203                 WARN_ON_ONCE(event->rcu_pending);
6204
6205                 old_rb = event->rb;
6206                 spin_lock_irqsave(&old_rb->event_lock, flags);
6207                 list_del_rcu(&event->rb_entry);
6208                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6209
6210                 event->rcu_batches = get_state_synchronize_rcu();
6211                 event->rcu_pending = 1;
6212         }
6213
6214         if (rb) {
6215                 if (event->rcu_pending) {
6216                         cond_synchronize_rcu(event->rcu_batches);
6217                         event->rcu_pending = 0;
6218                 }
6219
6220                 spin_lock_irqsave(&rb->event_lock, flags);
6221                 list_add_rcu(&event->rb_entry, &rb->event_list);
6222                 spin_unlock_irqrestore(&rb->event_lock, flags);
6223         }
6224
6225         /*
6226          * Avoid racing with perf_mmap_close(AUX): stop the event
6227          * before swizzling the event::rb pointer; if it's getting
6228          * unmapped, its aux_mmap_count will be 0 and it won't
6229          * restart. See the comment in __perf_pmu_output_stop().
6230          *
6231          * Data will inevitably be lost when set_output is done in
6232          * mid-air, but then again, whoever does it like this is
6233          * not in for the data anyway.
6234          */
6235         if (has_aux(event))
6236                 perf_event_stop(event, 0);
6237
6238         rcu_assign_pointer(event->rb, rb);
6239
6240         if (old_rb) {
6241                 ring_buffer_put(old_rb);
6242                 /*
6243                  * Since we detached before setting the new rb, so that we
6244                  * could attach the new rb, we could have missed a wakeup.
6245                  * Provide it now.
6246                  */
6247                 wake_up_all(&event->waitq);
6248         }
6249 }
6250
6251 static void ring_buffer_wakeup(struct perf_event *event)
6252 {
6253         struct perf_buffer *rb;
6254
6255         if (event->parent)
6256                 event = event->parent;
6257
6258         rcu_read_lock();
6259         rb = rcu_dereference(event->rb);
6260         if (rb) {
6261                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6262                         wake_up_all(&event->waitq);
6263         }
6264         rcu_read_unlock();
6265 }
6266
6267 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6268 {
6269         struct perf_buffer *rb;
6270
6271         if (event->parent)
6272                 event = event->parent;
6273
6274         rcu_read_lock();
6275         rb = rcu_dereference(event->rb);
6276         if (rb) {
6277                 if (!refcount_inc_not_zero(&rb->refcount))
6278                         rb = NULL;
6279         }
6280         rcu_read_unlock();
6281
6282         return rb;
6283 }
6284
6285 void ring_buffer_put(struct perf_buffer *rb)
6286 {
6287         if (!refcount_dec_and_test(&rb->refcount))
6288                 return;
6289
6290         WARN_ON_ONCE(!list_empty(&rb->event_list));
6291
6292         call_rcu(&rb->rcu_head, rb_free_rcu);
6293 }
6294
6295 static void perf_mmap_open(struct vm_area_struct *vma)
6296 {
6297         struct perf_event *event = vma->vm_file->private_data;
6298
6299         atomic_inc(&event->mmap_count);
6300         atomic_inc(&event->rb->mmap_count);
6301
6302         if (vma->vm_pgoff)
6303                 atomic_inc(&event->rb->aux_mmap_count);
6304
6305         if (event->pmu->event_mapped)
6306                 event->pmu->event_mapped(event, vma->vm_mm);
6307 }
6308
6309 static void perf_pmu_output_stop(struct perf_event *event);
6310
6311 /*
6312  * A buffer can be mmap()ed multiple times; either directly through the same
6313  * event, or through other events by use of perf_event_set_output().
6314  *
6315  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6316  * the buffer here, where we still have a VM context. This means we need
6317  * to detach all events redirecting to us.
6318  */
6319 static void perf_mmap_close(struct vm_area_struct *vma)
6320 {
6321         struct perf_event *event = vma->vm_file->private_data;
6322         struct perf_buffer *rb = ring_buffer_get(event);
6323         struct user_struct *mmap_user = rb->mmap_user;
6324         int mmap_locked = rb->mmap_locked;
6325         unsigned long size = perf_data_size(rb);
6326         bool detach_rest = false;
6327
6328         if (event->pmu->event_unmapped)
6329                 event->pmu->event_unmapped(event, vma->vm_mm);
6330
6331         /*
6332          * rb->aux_mmap_count will always drop before rb->mmap_count and
6333          * event->mmap_count, so it is ok to use event->mmap_mutex to
6334          * serialize with perf_mmap here.
6335          */
6336         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6337             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6338                 /*
6339                  * Stop all AUX events that are writing to this buffer,
6340                  * so that we can free its AUX pages and corresponding PMU
6341                  * data. Note that after rb::aux_mmap_count dropped to zero,
6342                  * they won't start any more (see perf_aux_output_begin()).
6343                  */
6344                 perf_pmu_output_stop(event);
6345
6346                 /* now it's safe to free the pages */
6347                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6348                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6349
6350                 /* this has to be the last one */
6351                 rb_free_aux(rb);
6352                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6353
6354                 mutex_unlock(&event->mmap_mutex);
6355         }
6356
6357         if (atomic_dec_and_test(&rb->mmap_count))
6358                 detach_rest = true;
6359
6360         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6361                 goto out_put;
6362
6363         ring_buffer_attach(event, NULL);
6364         mutex_unlock(&event->mmap_mutex);
6365
6366         /* If there's still other mmap()s of this buffer, we're done. */
6367         if (!detach_rest)
6368                 goto out_put;
6369
6370         /*
6371          * No other mmap()s, detach from all other events that might redirect
6372          * into the now unreachable buffer. Somewhat complicated by the
6373          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6374          */
6375 again:
6376         rcu_read_lock();
6377         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6378                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6379                         /*
6380                          * This event is en-route to free_event() which will
6381                          * detach it and remove it from the list.
6382                          */
6383                         continue;
6384                 }
6385                 rcu_read_unlock();
6386
6387                 mutex_lock(&event->mmap_mutex);
6388                 /*
6389                  * Check we didn't race with perf_event_set_output() which can
6390                  * swizzle the rb from under us while we were waiting to
6391                  * acquire mmap_mutex.
6392                  *
6393                  * If we find a different rb; ignore this event, a next
6394                  * iteration will no longer find it on the list. We have to
6395                  * still restart the iteration to make sure we're not now
6396                  * iterating the wrong list.
6397                  */
6398                 if (event->rb == rb)
6399                         ring_buffer_attach(event, NULL);
6400
6401                 mutex_unlock(&event->mmap_mutex);
6402                 put_event(event);
6403
6404                 /*
6405                  * Restart the iteration; either we're on the wrong list or
6406                  * destroyed its integrity by doing a deletion.
6407                  */
6408                 goto again;
6409         }
6410         rcu_read_unlock();
6411
6412         /*
6413          * It could be there's still a few 0-ref events on the list; they'll
6414          * get cleaned up by free_event() -- they'll also still have their
6415          * ref on the rb and will free it whenever they are done with it.
6416          *
6417          * Aside from that, this buffer is 'fully' detached and unmapped,
6418          * undo the VM accounting.
6419          */
6420
6421         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6422                         &mmap_user->locked_vm);
6423         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6424         free_uid(mmap_user);
6425
6426 out_put:
6427         ring_buffer_put(rb); /* could be last */
6428 }
6429
6430 static const struct vm_operations_struct perf_mmap_vmops = {
6431         .open           = perf_mmap_open,
6432         .close          = perf_mmap_close, /* non mergeable */
6433         .fault          = perf_mmap_fault,
6434         .page_mkwrite   = perf_mmap_fault,
6435 };
6436
6437 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6438 {
6439         struct perf_event *event = file->private_data;
6440         unsigned long user_locked, user_lock_limit;
6441         struct user_struct *user = current_user();
6442         struct perf_buffer *rb = NULL;
6443         unsigned long locked, lock_limit;
6444         unsigned long vma_size;
6445         unsigned long nr_pages;
6446         long user_extra = 0, extra = 0;
6447         int ret = 0, flags = 0;
6448
6449         /*
6450          * Don't allow mmap() of inherited per-task counters. This would
6451          * create a performance issue due to all children writing to the
6452          * same rb.
6453          */
6454         if (event->cpu == -1 && event->attr.inherit)
6455                 return -EINVAL;
6456
6457         if (!(vma->vm_flags & VM_SHARED))
6458                 return -EINVAL;
6459
6460         ret = security_perf_event_read(event);
6461         if (ret)
6462                 return ret;
6463
6464         vma_size = vma->vm_end - vma->vm_start;
6465
6466         if (vma->vm_pgoff == 0) {
6467                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6468         } else {
6469                 /*
6470                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6471                  * mapped, all subsequent mappings should have the same size
6472                  * and offset. Must be above the normal perf buffer.
6473                  */
6474                 u64 aux_offset, aux_size;
6475
6476                 if (!event->rb)
6477                         return -EINVAL;
6478
6479                 nr_pages = vma_size / PAGE_SIZE;
6480
6481                 mutex_lock(&event->mmap_mutex);
6482                 ret = -EINVAL;
6483
6484                 rb = event->rb;
6485                 if (!rb)
6486                         goto aux_unlock;
6487
6488                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6489                 aux_size = READ_ONCE(rb->user_page->aux_size);
6490
6491                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6492                         goto aux_unlock;
6493
6494                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6495                         goto aux_unlock;
6496
6497                 /* already mapped with a different offset */
6498                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6499                         goto aux_unlock;
6500
6501                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6502                         goto aux_unlock;
6503
6504                 /* already mapped with a different size */
6505                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6506                         goto aux_unlock;
6507
6508                 if (!is_power_of_2(nr_pages))
6509                         goto aux_unlock;
6510
6511                 if (!atomic_inc_not_zero(&rb->mmap_count))
6512                         goto aux_unlock;
6513
6514                 if (rb_has_aux(rb)) {
6515                         atomic_inc(&rb->aux_mmap_count);
6516                         ret = 0;
6517                         goto unlock;
6518                 }
6519
6520                 atomic_set(&rb->aux_mmap_count, 1);
6521                 user_extra = nr_pages;
6522
6523                 goto accounting;
6524         }
6525
6526         /*
6527          * If we have rb pages ensure they're a power-of-two number, so we
6528          * can do bitmasks instead of modulo.
6529          */
6530         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6531                 return -EINVAL;
6532
6533         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6534                 return -EINVAL;
6535
6536         WARN_ON_ONCE(event->ctx->parent_ctx);
6537 again:
6538         mutex_lock(&event->mmap_mutex);
6539         if (event->rb) {
6540                 if (data_page_nr(event->rb) != nr_pages) {
6541                         ret = -EINVAL;
6542                         goto unlock;
6543                 }
6544
6545                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6546                         /*
6547                          * Raced against perf_mmap_close(); remove the
6548                          * event and try again.
6549                          */
6550                         ring_buffer_attach(event, NULL);
6551                         mutex_unlock(&event->mmap_mutex);
6552                         goto again;
6553                 }
6554
6555                 goto unlock;
6556         }
6557
6558         user_extra = nr_pages + 1;
6559
6560 accounting:
6561         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6562
6563         /*
6564          * Increase the limit linearly with more CPUs:
6565          */
6566         user_lock_limit *= num_online_cpus();
6567
6568         user_locked = atomic_long_read(&user->locked_vm);
6569
6570         /*
6571          * sysctl_perf_event_mlock may have changed, so that
6572          *     user->locked_vm > user_lock_limit
6573          */
6574         if (user_locked > user_lock_limit)
6575                 user_locked = user_lock_limit;
6576         user_locked += user_extra;
6577
6578         if (user_locked > user_lock_limit) {
6579                 /*
6580                  * charge locked_vm until it hits user_lock_limit;
6581                  * charge the rest from pinned_vm
6582                  */
6583                 extra = user_locked - user_lock_limit;
6584                 user_extra -= extra;
6585         }
6586
6587         lock_limit = rlimit(RLIMIT_MEMLOCK);
6588         lock_limit >>= PAGE_SHIFT;
6589         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6590
6591         if ((locked > lock_limit) && perf_is_paranoid() &&
6592                 !capable(CAP_IPC_LOCK)) {
6593                 ret = -EPERM;
6594                 goto unlock;
6595         }
6596
6597         WARN_ON(!rb && event->rb);
6598
6599         if (vma->vm_flags & VM_WRITE)
6600                 flags |= RING_BUFFER_WRITABLE;
6601
6602         if (!rb) {
6603                 rb = rb_alloc(nr_pages,
6604                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6605                               event->cpu, flags);
6606
6607                 if (!rb) {
6608                         ret = -ENOMEM;
6609                         goto unlock;
6610                 }
6611
6612                 atomic_set(&rb->mmap_count, 1);
6613                 rb->mmap_user = get_current_user();
6614                 rb->mmap_locked = extra;
6615
6616                 ring_buffer_attach(event, rb);
6617
6618                 perf_event_update_time(event);
6619                 perf_event_init_userpage(event);
6620                 perf_event_update_userpage(event);
6621         } else {
6622                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6623                                    event->attr.aux_watermark, flags);
6624                 if (!ret)
6625                         rb->aux_mmap_locked = extra;
6626         }
6627
6628 unlock:
6629         if (!ret) {
6630                 atomic_long_add(user_extra, &user->locked_vm);
6631                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6632
6633                 atomic_inc(&event->mmap_count);
6634         } else if (rb) {
6635                 atomic_dec(&rb->mmap_count);
6636         }
6637 aux_unlock:
6638         mutex_unlock(&event->mmap_mutex);
6639
6640         /*
6641          * Since pinned accounting is per vm we cannot allow fork() to copy our
6642          * vma.
6643          */
6644         vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6645         vma->vm_ops = &perf_mmap_vmops;
6646
6647         if (event->pmu->event_mapped)
6648                 event->pmu->event_mapped(event, vma->vm_mm);
6649
6650         return ret;
6651 }
6652
6653 static int perf_fasync(int fd, struct file *filp, int on)
6654 {
6655         struct inode *inode = file_inode(filp);
6656         struct perf_event *event = filp->private_data;
6657         int retval;
6658
6659         inode_lock(inode);
6660         retval = fasync_helper(fd, filp, on, &event->fasync);
6661         inode_unlock(inode);
6662
6663         if (retval < 0)
6664                 return retval;
6665
6666         return 0;
6667 }
6668
6669 static const struct file_operations perf_fops = {
6670         .llseek                 = no_llseek,
6671         .release                = perf_release,
6672         .read                   = perf_read,
6673         .poll                   = perf_poll,
6674         .unlocked_ioctl         = perf_ioctl,
6675         .compat_ioctl           = perf_compat_ioctl,
6676         .mmap                   = perf_mmap,
6677         .fasync                 = perf_fasync,
6678 };
6679
6680 /*
6681  * Perf event wakeup
6682  *
6683  * If there's data, ensure we set the poll() state and publish everything
6684  * to user-space before waking everybody up.
6685  */
6686
6687 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6688 {
6689         /* only the parent has fasync state */
6690         if (event->parent)
6691                 event = event->parent;
6692         return &event->fasync;
6693 }
6694
6695 void perf_event_wakeup(struct perf_event *event)
6696 {
6697         ring_buffer_wakeup(event);
6698
6699         if (event->pending_kill) {
6700                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6701                 event->pending_kill = 0;
6702         }
6703 }
6704
6705 static void perf_sigtrap(struct perf_event *event)
6706 {
6707         /*
6708          * We'd expect this to only occur if the irq_work is delayed and either
6709          * ctx->task or current has changed in the meantime. This can be the
6710          * case on architectures that do not implement arch_irq_work_raise().
6711          */
6712         if (WARN_ON_ONCE(event->ctx->task != current))
6713                 return;
6714
6715         /*
6716          * Both perf_pending_task() and perf_pending_irq() can race with the
6717          * task exiting.
6718          */
6719         if (current->flags & PF_EXITING)
6720                 return;
6721
6722         send_sig_perf((void __user *)event->pending_addr,
6723                       event->orig_type, event->attr.sig_data);
6724 }
6725
6726 /*
6727  * Deliver the pending work in-event-context or follow the context.
6728  */
6729 static void __perf_pending_irq(struct perf_event *event)
6730 {
6731         int cpu = READ_ONCE(event->oncpu);
6732
6733         /*
6734          * If the event isn't running; we done. event_sched_out() will have
6735          * taken care of things.
6736          */
6737         if (cpu < 0)
6738                 return;
6739
6740         /*
6741          * Yay, we hit home and are in the context of the event.
6742          */
6743         if (cpu == smp_processor_id()) {
6744                 if (event->pending_sigtrap) {
6745                         event->pending_sigtrap = 0;
6746                         perf_sigtrap(event);
6747                         local_dec(&event->ctx->nr_pending);
6748                 }
6749                 if (event->pending_disable) {
6750                         event->pending_disable = 0;
6751                         perf_event_disable_local(event);
6752                 }
6753                 return;
6754         }
6755
6756         /*
6757          *  CPU-A                       CPU-B
6758          *
6759          *  perf_event_disable_inatomic()
6760          *    @pending_disable = CPU-A;
6761          *    irq_work_queue();
6762          *
6763          *  sched-out
6764          *    @pending_disable = -1;
6765          *
6766          *                              sched-in
6767          *                              perf_event_disable_inatomic()
6768          *                                @pending_disable = CPU-B;
6769          *                                irq_work_queue(); // FAILS
6770          *
6771          *  irq_work_run()
6772          *    perf_pending_irq()
6773          *
6774          * But the event runs on CPU-B and wants disabling there.
6775          */
6776         irq_work_queue_on(&event->pending_irq, cpu);
6777 }
6778
6779 static void perf_pending_irq(struct irq_work *entry)
6780 {
6781         struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6782         int rctx;
6783
6784         /*
6785          * If we 'fail' here, that's OK, it means recursion is already disabled
6786          * and we won't recurse 'further'.
6787          */
6788         rctx = perf_swevent_get_recursion_context();
6789
6790         /*
6791          * The wakeup isn't bound to the context of the event -- it can happen
6792          * irrespective of where the event is.
6793          */
6794         if (event->pending_wakeup) {
6795                 event->pending_wakeup = 0;
6796                 perf_event_wakeup(event);
6797         }
6798
6799         __perf_pending_irq(event);
6800
6801         if (rctx >= 0)
6802                 perf_swevent_put_recursion_context(rctx);
6803 }
6804
6805 static void perf_pending_task(struct callback_head *head)
6806 {
6807         struct perf_event *event = container_of(head, struct perf_event, pending_task);
6808         int rctx;
6809
6810         /*
6811          * If we 'fail' here, that's OK, it means recursion is already disabled
6812          * and we won't recurse 'further'.
6813          */
6814         preempt_disable_notrace();
6815         rctx = perf_swevent_get_recursion_context();
6816
6817         if (event->pending_work) {
6818                 event->pending_work = 0;
6819                 perf_sigtrap(event);
6820                 local_dec(&event->ctx->nr_pending);
6821         }
6822
6823         if (rctx >= 0)
6824                 perf_swevent_put_recursion_context(rctx);
6825         preempt_enable_notrace();
6826
6827         put_event(event);
6828 }
6829
6830 #ifdef CONFIG_GUEST_PERF_EVENTS
6831 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6832
6833 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6834 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6835 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6836
6837 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6838 {
6839         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6840                 return;
6841
6842         rcu_assign_pointer(perf_guest_cbs, cbs);
6843         static_call_update(__perf_guest_state, cbs->state);
6844         static_call_update(__perf_guest_get_ip, cbs->get_ip);
6845
6846         /* Implementing ->handle_intel_pt_intr is optional. */
6847         if (cbs->handle_intel_pt_intr)
6848                 static_call_update(__perf_guest_handle_intel_pt_intr,
6849                                    cbs->handle_intel_pt_intr);
6850 }
6851 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6852
6853 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6854 {
6855         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6856                 return;
6857
6858         rcu_assign_pointer(perf_guest_cbs, NULL);
6859         static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6860         static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6861         static_call_update(__perf_guest_handle_intel_pt_intr,
6862                            (void *)&__static_call_return0);
6863         synchronize_rcu();
6864 }
6865 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6866 #endif
6867
6868 static void
6869 perf_output_sample_regs(struct perf_output_handle *handle,
6870                         struct pt_regs *regs, u64 mask)
6871 {
6872         int bit;
6873         DECLARE_BITMAP(_mask, 64);
6874
6875         bitmap_from_u64(_mask, mask);
6876         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6877                 u64 val;
6878
6879                 val = perf_reg_value(regs, bit);
6880                 perf_output_put(handle, val);
6881         }
6882 }
6883
6884 static void perf_sample_regs_user(struct perf_regs *regs_user,
6885                                   struct pt_regs *regs)
6886 {
6887         if (user_mode(regs)) {
6888                 regs_user->abi = perf_reg_abi(current);
6889                 regs_user->regs = regs;
6890         } else if (!(current->flags & PF_KTHREAD)) {
6891                 perf_get_regs_user(regs_user, regs);
6892         } else {
6893                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6894                 regs_user->regs = NULL;
6895         }
6896 }
6897
6898 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6899                                   struct pt_regs *regs)
6900 {
6901         regs_intr->regs = regs;
6902         regs_intr->abi  = perf_reg_abi(current);
6903 }
6904
6905
6906 /*
6907  * Get remaining task size from user stack pointer.
6908  *
6909  * It'd be better to take stack vma map and limit this more
6910  * precisely, but there's no way to get it safely under interrupt,
6911  * so using TASK_SIZE as limit.
6912  */
6913 static u64 perf_ustack_task_size(struct pt_regs *regs)
6914 {
6915         unsigned long addr = perf_user_stack_pointer(regs);
6916
6917         if (!addr || addr >= TASK_SIZE)
6918                 return 0;
6919
6920         return TASK_SIZE - addr;
6921 }
6922
6923 static u16
6924 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6925                         struct pt_regs *regs)
6926 {
6927         u64 task_size;
6928
6929         /* No regs, no stack pointer, no dump. */
6930         if (!regs)
6931                 return 0;
6932
6933         /*
6934          * Check if we fit in with the requested stack size into the:
6935          * - TASK_SIZE
6936          *   If we don't, we limit the size to the TASK_SIZE.
6937          *
6938          * - remaining sample size
6939          *   If we don't, we customize the stack size to
6940          *   fit in to the remaining sample size.
6941          */
6942
6943         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6944         stack_size = min(stack_size, (u16) task_size);
6945
6946         /* Current header size plus static size and dynamic size. */
6947         header_size += 2 * sizeof(u64);
6948
6949         /* Do we fit in with the current stack dump size? */
6950         if ((u16) (header_size + stack_size) < header_size) {
6951                 /*
6952                  * If we overflow the maximum size for the sample,
6953                  * we customize the stack dump size to fit in.
6954                  */
6955                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6956                 stack_size = round_up(stack_size, sizeof(u64));
6957         }
6958
6959         return stack_size;
6960 }
6961
6962 static void
6963 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6964                           struct pt_regs *regs)
6965 {
6966         /* Case of a kernel thread, nothing to dump */
6967         if (!regs) {
6968                 u64 size = 0;
6969                 perf_output_put(handle, size);
6970         } else {
6971                 unsigned long sp;
6972                 unsigned int rem;
6973                 u64 dyn_size;
6974
6975                 /*
6976                  * We dump:
6977                  * static size
6978                  *   - the size requested by user or the best one we can fit
6979                  *     in to the sample max size
6980                  * data
6981                  *   - user stack dump data
6982                  * dynamic size
6983                  *   - the actual dumped size
6984                  */
6985
6986                 /* Static size. */
6987                 perf_output_put(handle, dump_size);
6988
6989                 /* Data. */
6990                 sp = perf_user_stack_pointer(regs);
6991                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6992                 dyn_size = dump_size - rem;
6993
6994                 perf_output_skip(handle, rem);
6995
6996                 /* Dynamic size. */
6997                 perf_output_put(handle, dyn_size);
6998         }
6999 }
7000
7001 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7002                                           struct perf_sample_data *data,
7003                                           size_t size)
7004 {
7005         struct perf_event *sampler = event->aux_event;
7006         struct perf_buffer *rb;
7007
7008         data->aux_size = 0;
7009
7010         if (!sampler)
7011                 goto out;
7012
7013         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7014                 goto out;
7015
7016         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7017                 goto out;
7018
7019         rb = ring_buffer_get(sampler);
7020         if (!rb)
7021                 goto out;
7022
7023         /*
7024          * If this is an NMI hit inside sampling code, don't take
7025          * the sample. See also perf_aux_sample_output().
7026          */
7027         if (READ_ONCE(rb->aux_in_sampling)) {
7028                 data->aux_size = 0;
7029         } else {
7030                 size = min_t(size_t, size, perf_aux_size(rb));
7031                 data->aux_size = ALIGN(size, sizeof(u64));
7032         }
7033         ring_buffer_put(rb);
7034
7035 out:
7036         return data->aux_size;
7037 }
7038
7039 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7040                                  struct perf_event *event,
7041                                  struct perf_output_handle *handle,
7042                                  unsigned long size)
7043 {
7044         unsigned long flags;
7045         long ret;
7046
7047         /*
7048          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7049          * paths. If we start calling them in NMI context, they may race with
7050          * the IRQ ones, that is, for example, re-starting an event that's just
7051          * been stopped, which is why we're using a separate callback that
7052          * doesn't change the event state.
7053          *
7054          * IRQs need to be disabled to prevent IPIs from racing with us.
7055          */
7056         local_irq_save(flags);
7057         /*
7058          * Guard against NMI hits inside the critical section;
7059          * see also perf_prepare_sample_aux().
7060          */
7061         WRITE_ONCE(rb->aux_in_sampling, 1);
7062         barrier();
7063
7064         ret = event->pmu->snapshot_aux(event, handle, size);
7065
7066         barrier();
7067         WRITE_ONCE(rb->aux_in_sampling, 0);
7068         local_irq_restore(flags);
7069
7070         return ret;
7071 }
7072
7073 static void perf_aux_sample_output(struct perf_event *event,
7074                                    struct perf_output_handle *handle,
7075                                    struct perf_sample_data *data)
7076 {
7077         struct perf_event *sampler = event->aux_event;
7078         struct perf_buffer *rb;
7079         unsigned long pad;
7080         long size;
7081
7082         if (WARN_ON_ONCE(!sampler || !data->aux_size))
7083                 return;
7084
7085         rb = ring_buffer_get(sampler);
7086         if (!rb)
7087                 return;
7088
7089         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7090
7091         /*
7092          * An error here means that perf_output_copy() failed (returned a
7093          * non-zero surplus that it didn't copy), which in its current
7094          * enlightened implementation is not possible. If that changes, we'd
7095          * like to know.
7096          */
7097         if (WARN_ON_ONCE(size < 0))
7098                 goto out_put;
7099
7100         /*
7101          * The pad comes from ALIGN()ing data->aux_size up to u64 in
7102          * perf_prepare_sample_aux(), so should not be more than that.
7103          */
7104         pad = data->aux_size - size;
7105         if (WARN_ON_ONCE(pad >= sizeof(u64)))
7106                 pad = 8;
7107
7108         if (pad) {
7109                 u64 zero = 0;
7110                 perf_output_copy(handle, &zero, pad);
7111         }
7112
7113 out_put:
7114         ring_buffer_put(rb);
7115 }
7116
7117 /*
7118  * A set of common sample data types saved even for non-sample records
7119  * when event->attr.sample_id_all is set.
7120  */
7121 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |       \
7122                              PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |   \
7123                              PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7124
7125 static void __perf_event_header__init_id(struct perf_sample_data *data,
7126                                          struct perf_event *event,
7127                                          u64 sample_type)
7128 {
7129         data->type = event->attr.sample_type;
7130         data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7131
7132         if (sample_type & PERF_SAMPLE_TID) {
7133                 /* namespace issues */
7134                 data->tid_entry.pid = perf_event_pid(event, current);
7135                 data->tid_entry.tid = perf_event_tid(event, current);
7136         }
7137
7138         if (sample_type & PERF_SAMPLE_TIME)
7139                 data->time = perf_event_clock(event);
7140
7141         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7142                 data->id = primary_event_id(event);
7143
7144         if (sample_type & PERF_SAMPLE_STREAM_ID)
7145                 data->stream_id = event->id;
7146
7147         if (sample_type & PERF_SAMPLE_CPU) {
7148                 data->cpu_entry.cpu      = raw_smp_processor_id();
7149                 data->cpu_entry.reserved = 0;
7150         }
7151 }
7152
7153 void perf_event_header__init_id(struct perf_event_header *header,
7154                                 struct perf_sample_data *data,
7155                                 struct perf_event *event)
7156 {
7157         if (event->attr.sample_id_all) {
7158                 header->size += event->id_header_size;
7159                 __perf_event_header__init_id(data, event, event->attr.sample_type);
7160         }
7161 }
7162
7163 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7164                                            struct perf_sample_data *data)
7165 {
7166         u64 sample_type = data->type;
7167
7168         if (sample_type & PERF_SAMPLE_TID)
7169                 perf_output_put(handle, data->tid_entry);
7170
7171         if (sample_type & PERF_SAMPLE_TIME)
7172                 perf_output_put(handle, data->time);
7173
7174         if (sample_type & PERF_SAMPLE_ID)
7175                 perf_output_put(handle, data->id);
7176
7177         if (sample_type & PERF_SAMPLE_STREAM_ID)
7178                 perf_output_put(handle, data->stream_id);
7179
7180         if (sample_type & PERF_SAMPLE_CPU)
7181                 perf_output_put(handle, data->cpu_entry);
7182
7183         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7184                 perf_output_put(handle, data->id);
7185 }
7186
7187 void perf_event__output_id_sample(struct perf_event *event,
7188                                   struct perf_output_handle *handle,
7189                                   struct perf_sample_data *sample)
7190 {
7191         if (event->attr.sample_id_all)
7192                 __perf_event__output_id_sample(handle, sample);
7193 }
7194
7195 static void perf_output_read_one(struct perf_output_handle *handle,
7196                                  struct perf_event *event,
7197                                  u64 enabled, u64 running)
7198 {
7199         u64 read_format = event->attr.read_format;
7200         u64 values[5];
7201         int n = 0;
7202
7203         values[n++] = perf_event_count(event);
7204         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7205                 values[n++] = enabled +
7206                         atomic64_read(&event->child_total_time_enabled);
7207         }
7208         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7209                 values[n++] = running +
7210                         atomic64_read(&event->child_total_time_running);
7211         }
7212         if (read_format & PERF_FORMAT_ID)
7213                 values[n++] = primary_event_id(event);
7214         if (read_format & PERF_FORMAT_LOST)
7215                 values[n++] = atomic64_read(&event->lost_samples);
7216
7217         __output_copy(handle, values, n * sizeof(u64));
7218 }
7219
7220 static void perf_output_read_group(struct perf_output_handle *handle,
7221                             struct perf_event *event,
7222                             u64 enabled, u64 running)
7223 {
7224         struct perf_event *leader = event->group_leader, *sub;
7225         u64 read_format = event->attr.read_format;
7226         unsigned long flags;
7227         u64 values[6];
7228         int n = 0;
7229
7230         /*
7231          * Disabling interrupts avoids all counter scheduling
7232          * (context switches, timer based rotation and IPIs).
7233          */
7234         local_irq_save(flags);
7235
7236         values[n++] = 1 + leader->nr_siblings;
7237
7238         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7239                 values[n++] = enabled;
7240
7241         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7242                 values[n++] = running;
7243
7244         if ((leader != event) &&
7245             (leader->state == PERF_EVENT_STATE_ACTIVE))
7246                 leader->pmu->read(leader);
7247
7248         values[n++] = perf_event_count(leader);
7249         if (read_format & PERF_FORMAT_ID)
7250                 values[n++] = primary_event_id(leader);
7251         if (read_format & PERF_FORMAT_LOST)
7252                 values[n++] = atomic64_read(&leader->lost_samples);
7253
7254         __output_copy(handle, values, n * sizeof(u64));
7255
7256         for_each_sibling_event(sub, leader) {
7257                 n = 0;
7258
7259                 if ((sub != event) &&
7260                     (sub->state == PERF_EVENT_STATE_ACTIVE))
7261                         sub->pmu->read(sub);
7262
7263                 values[n++] = perf_event_count(sub);
7264                 if (read_format & PERF_FORMAT_ID)
7265                         values[n++] = primary_event_id(sub);
7266                 if (read_format & PERF_FORMAT_LOST)
7267                         values[n++] = atomic64_read(&sub->lost_samples);
7268
7269                 __output_copy(handle, values, n * sizeof(u64));
7270         }
7271
7272         local_irq_restore(flags);
7273 }
7274
7275 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7276                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
7277
7278 /*
7279  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7280  *
7281  * The problem is that its both hard and excessively expensive to iterate the
7282  * child list, not to mention that its impossible to IPI the children running
7283  * on another CPU, from interrupt/NMI context.
7284  */
7285 static void perf_output_read(struct perf_output_handle *handle,
7286                              struct perf_event *event)
7287 {
7288         u64 enabled = 0, running = 0, now;
7289         u64 read_format = event->attr.read_format;
7290
7291         /*
7292          * compute total_time_enabled, total_time_running
7293          * based on snapshot values taken when the event
7294          * was last scheduled in.
7295          *
7296          * we cannot simply called update_context_time()
7297          * because of locking issue as we are called in
7298          * NMI context
7299          */
7300         if (read_format & PERF_FORMAT_TOTAL_TIMES)
7301                 calc_timer_values(event, &now, &enabled, &running);
7302
7303         if (event->attr.read_format & PERF_FORMAT_GROUP)
7304                 perf_output_read_group(handle, event, enabled, running);
7305         else
7306                 perf_output_read_one(handle, event, enabled, running);
7307 }
7308
7309 void perf_output_sample(struct perf_output_handle *handle,
7310                         struct perf_event_header *header,
7311                         struct perf_sample_data *data,
7312                         struct perf_event *event)
7313 {
7314         u64 sample_type = data->type;
7315
7316         perf_output_put(handle, *header);
7317
7318         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7319                 perf_output_put(handle, data->id);
7320
7321         if (sample_type & PERF_SAMPLE_IP)
7322                 perf_output_put(handle, data->ip);
7323
7324         if (sample_type & PERF_SAMPLE_TID)
7325                 perf_output_put(handle, data->tid_entry);
7326
7327         if (sample_type & PERF_SAMPLE_TIME)
7328                 perf_output_put(handle, data->time);
7329
7330         if (sample_type & PERF_SAMPLE_ADDR)
7331                 perf_output_put(handle, data->addr);
7332
7333         if (sample_type & PERF_SAMPLE_ID)
7334                 perf_output_put(handle, data->id);
7335
7336         if (sample_type & PERF_SAMPLE_STREAM_ID)
7337                 perf_output_put(handle, data->stream_id);
7338
7339         if (sample_type & PERF_SAMPLE_CPU)
7340                 perf_output_put(handle, data->cpu_entry);
7341
7342         if (sample_type & PERF_SAMPLE_PERIOD)
7343                 perf_output_put(handle, data->period);
7344
7345         if (sample_type & PERF_SAMPLE_READ)
7346                 perf_output_read(handle, event);
7347
7348         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7349                 int size = 1;
7350
7351                 size += data->callchain->nr;
7352                 size *= sizeof(u64);
7353                 __output_copy(handle, data->callchain, size);
7354         }
7355
7356         if (sample_type & PERF_SAMPLE_RAW) {
7357                 struct perf_raw_record *raw = data->raw;
7358
7359                 if (raw) {
7360                         struct perf_raw_frag *frag = &raw->frag;
7361
7362                         perf_output_put(handle, raw->size);
7363                         do {
7364                                 if (frag->copy) {
7365                                         __output_custom(handle, frag->copy,
7366                                                         frag->data, frag->size);
7367                                 } else {
7368                                         __output_copy(handle, frag->data,
7369                                                       frag->size);
7370                                 }
7371                                 if (perf_raw_frag_last(frag))
7372                                         break;
7373                                 frag = frag->next;
7374                         } while (1);
7375                         if (frag->pad)
7376                                 __output_skip(handle, NULL, frag->pad);
7377                 } else {
7378                         struct {
7379                                 u32     size;
7380                                 u32     data;
7381                         } raw = {
7382                                 .size = sizeof(u32),
7383                                 .data = 0,
7384                         };
7385                         perf_output_put(handle, raw);
7386                 }
7387         }
7388
7389         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7390                 if (data->br_stack) {
7391                         size_t size;
7392
7393                         size = data->br_stack->nr
7394                              * sizeof(struct perf_branch_entry);
7395
7396                         perf_output_put(handle, data->br_stack->nr);
7397                         if (branch_sample_hw_index(event))
7398                                 perf_output_put(handle, data->br_stack->hw_idx);
7399                         perf_output_copy(handle, data->br_stack->entries, size);
7400                         /*
7401                          * Add the extension space which is appended
7402                          * right after the struct perf_branch_stack.
7403                          */
7404                         if (data->br_stack_cntr) {
7405                                 size = data->br_stack->nr * sizeof(u64);
7406                                 perf_output_copy(handle, data->br_stack_cntr, size);
7407                         }
7408                 } else {
7409                         /*
7410                          * we always store at least the value of nr
7411                          */
7412                         u64 nr = 0;
7413                         perf_output_put(handle, nr);
7414                 }
7415         }
7416
7417         if (sample_type & PERF_SAMPLE_REGS_USER) {
7418                 u64 abi = data->regs_user.abi;
7419
7420                 /*
7421                  * If there are no regs to dump, notice it through
7422                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7423                  */
7424                 perf_output_put(handle, abi);
7425
7426                 if (abi) {
7427                         u64 mask = event->attr.sample_regs_user;
7428                         perf_output_sample_regs(handle,
7429                                                 data->regs_user.regs,
7430                                                 mask);
7431                 }
7432         }
7433
7434         if (sample_type & PERF_SAMPLE_STACK_USER) {
7435                 perf_output_sample_ustack(handle,
7436                                           data->stack_user_size,
7437                                           data->regs_user.regs);
7438         }
7439
7440         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7441                 perf_output_put(handle, data->weight.full);
7442
7443         if (sample_type & PERF_SAMPLE_DATA_SRC)
7444                 perf_output_put(handle, data->data_src.val);
7445
7446         if (sample_type & PERF_SAMPLE_TRANSACTION)
7447                 perf_output_put(handle, data->txn);
7448
7449         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7450                 u64 abi = data->regs_intr.abi;
7451                 /*
7452                  * If there are no regs to dump, notice it through
7453                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7454                  */
7455                 perf_output_put(handle, abi);
7456
7457                 if (abi) {
7458                         u64 mask = event->attr.sample_regs_intr;
7459
7460                         perf_output_sample_regs(handle,
7461                                                 data->regs_intr.regs,
7462                                                 mask);
7463                 }
7464         }
7465
7466         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7467                 perf_output_put(handle, data->phys_addr);
7468
7469         if (sample_type & PERF_SAMPLE_CGROUP)
7470                 perf_output_put(handle, data->cgroup);
7471
7472         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7473                 perf_output_put(handle, data->data_page_size);
7474
7475         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7476                 perf_output_put(handle, data->code_page_size);
7477
7478         if (sample_type & PERF_SAMPLE_AUX) {
7479                 perf_output_put(handle, data->aux_size);
7480
7481                 if (data->aux_size)
7482                         perf_aux_sample_output(event, handle, data);
7483         }
7484
7485         if (!event->attr.watermark) {
7486                 int wakeup_events = event->attr.wakeup_events;
7487
7488                 if (wakeup_events) {
7489                         struct perf_buffer *rb = handle->rb;
7490                         int events = local_inc_return(&rb->events);
7491
7492                         if (events >= wakeup_events) {
7493                                 local_sub(wakeup_events, &rb->events);
7494                                 local_inc(&rb->wakeup);
7495                         }
7496                 }
7497         }
7498 }
7499
7500 static u64 perf_virt_to_phys(u64 virt)
7501 {
7502         u64 phys_addr = 0;
7503
7504         if (!virt)
7505                 return 0;
7506
7507         if (virt >= TASK_SIZE) {
7508                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7509                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7510                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7511                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7512         } else {
7513                 /*
7514                  * Walking the pages tables for user address.
7515                  * Interrupts are disabled, so it prevents any tear down
7516                  * of the page tables.
7517                  * Try IRQ-safe get_user_page_fast_only first.
7518                  * If failed, leave phys_addr as 0.
7519                  */
7520                 if (current->mm != NULL) {
7521                         struct page *p;
7522
7523                         pagefault_disable();
7524                         if (get_user_page_fast_only(virt, 0, &p)) {
7525                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7526                                 put_page(p);
7527                         }
7528                         pagefault_enable();
7529                 }
7530         }
7531
7532         return phys_addr;
7533 }
7534
7535 /*
7536  * Return the pagetable size of a given virtual address.
7537  */
7538 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7539 {
7540         u64 size = 0;
7541
7542 #ifdef CONFIG_HAVE_FAST_GUP
7543         pgd_t *pgdp, pgd;
7544         p4d_t *p4dp, p4d;
7545         pud_t *pudp, pud;
7546         pmd_t *pmdp, pmd;
7547         pte_t *ptep, pte;
7548
7549         pgdp = pgd_offset(mm, addr);
7550         pgd = READ_ONCE(*pgdp);
7551         if (pgd_none(pgd))
7552                 return 0;
7553
7554         if (pgd_leaf(pgd))
7555                 return pgd_leaf_size(pgd);
7556
7557         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7558         p4d = READ_ONCE(*p4dp);
7559         if (!p4d_present(p4d))
7560                 return 0;
7561
7562         if (p4d_leaf(p4d))
7563                 return p4d_leaf_size(p4d);
7564
7565         pudp = pud_offset_lockless(p4dp, p4d, addr);
7566         pud = READ_ONCE(*pudp);
7567         if (!pud_present(pud))
7568                 return 0;
7569
7570         if (pud_leaf(pud))
7571                 return pud_leaf_size(pud);
7572
7573         pmdp = pmd_offset_lockless(pudp, pud, addr);
7574 again:
7575         pmd = pmdp_get_lockless(pmdp);
7576         if (!pmd_present(pmd))
7577                 return 0;
7578
7579         if (pmd_leaf(pmd))
7580                 return pmd_leaf_size(pmd);
7581
7582         ptep = pte_offset_map(&pmd, addr);
7583         if (!ptep)
7584                 goto again;
7585
7586         pte = ptep_get_lockless(ptep);
7587         if (pte_present(pte))
7588                 size = pte_leaf_size(pte);
7589         pte_unmap(ptep);
7590 #endif /* CONFIG_HAVE_FAST_GUP */
7591
7592         return size;
7593 }
7594
7595 static u64 perf_get_page_size(unsigned long addr)
7596 {
7597         struct mm_struct *mm;
7598         unsigned long flags;
7599         u64 size;
7600
7601         if (!addr)
7602                 return 0;
7603
7604         /*
7605          * Software page-table walkers must disable IRQs,
7606          * which prevents any tear down of the page tables.
7607          */
7608         local_irq_save(flags);
7609
7610         mm = current->mm;
7611         if (!mm) {
7612                 /*
7613                  * For kernel threads and the like, use init_mm so that
7614                  * we can find kernel memory.
7615                  */
7616                 mm = &init_mm;
7617         }
7618
7619         size = perf_get_pgtable_size(mm, addr);
7620
7621         local_irq_restore(flags);
7622
7623         return size;
7624 }
7625
7626 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7627
7628 struct perf_callchain_entry *
7629 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7630 {
7631         bool kernel = !event->attr.exclude_callchain_kernel;
7632         bool user   = !event->attr.exclude_callchain_user;
7633         /* Disallow cross-task user callchains. */
7634         bool crosstask = event->ctx->task && event->ctx->task != current;
7635         const u32 max_stack = event->attr.sample_max_stack;
7636         struct perf_callchain_entry *callchain;
7637
7638         if (!kernel && !user)
7639                 return &__empty_callchain;
7640
7641         callchain = get_perf_callchain(regs, 0, kernel, user,
7642                                        max_stack, crosstask, true);
7643         return callchain ?: &__empty_callchain;
7644 }
7645
7646 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7647 {
7648         return d * !!(flags & s);
7649 }
7650
7651 void perf_prepare_sample(struct perf_sample_data *data,
7652                          struct perf_event *event,
7653                          struct pt_regs *regs)
7654 {
7655         u64 sample_type = event->attr.sample_type;
7656         u64 filtered_sample_type;
7657
7658         /*
7659          * Add the sample flags that are dependent to others.  And clear the
7660          * sample flags that have already been done by the PMU driver.
7661          */
7662         filtered_sample_type = sample_type;
7663         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7664                                            PERF_SAMPLE_IP);
7665         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7666                                            PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7667         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7668                                            PERF_SAMPLE_REGS_USER);
7669         filtered_sample_type &= ~data->sample_flags;
7670
7671         if (filtered_sample_type == 0) {
7672                 /* Make sure it has the correct data->type for output */
7673                 data->type = event->attr.sample_type;
7674                 return;
7675         }
7676
7677         __perf_event_header__init_id(data, event, filtered_sample_type);
7678
7679         if (filtered_sample_type & PERF_SAMPLE_IP) {
7680                 data->ip = perf_instruction_pointer(regs);
7681                 data->sample_flags |= PERF_SAMPLE_IP;
7682         }
7683
7684         if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7685                 perf_sample_save_callchain(data, event, regs);
7686
7687         if (filtered_sample_type & PERF_SAMPLE_RAW) {
7688                 data->raw = NULL;
7689                 data->dyn_size += sizeof(u64);
7690                 data->sample_flags |= PERF_SAMPLE_RAW;
7691         }
7692
7693         if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7694                 data->br_stack = NULL;
7695                 data->dyn_size += sizeof(u64);
7696                 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7697         }
7698
7699         if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7700                 perf_sample_regs_user(&data->regs_user, regs);
7701
7702         /*
7703          * It cannot use the filtered_sample_type here as REGS_USER can be set
7704          * by STACK_USER (using __cond_set() above) and we don't want to update
7705          * the dyn_size if it's not requested by users.
7706          */
7707         if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7708                 /* regs dump ABI info */
7709                 int size = sizeof(u64);
7710
7711                 if (data->regs_user.regs) {
7712                         u64 mask = event->attr.sample_regs_user;
7713                         size += hweight64(mask) * sizeof(u64);
7714                 }
7715
7716                 data->dyn_size += size;
7717                 data->sample_flags |= PERF_SAMPLE_REGS_USER;
7718         }
7719
7720         if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7721                 /*
7722                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7723                  * processed as the last one or have additional check added
7724                  * in case new sample type is added, because we could eat
7725                  * up the rest of the sample size.
7726                  */
7727                 u16 stack_size = event->attr.sample_stack_user;
7728                 u16 header_size = perf_sample_data_size(data, event);
7729                 u16 size = sizeof(u64);
7730
7731                 stack_size = perf_sample_ustack_size(stack_size, header_size,
7732                                                      data->regs_user.regs);
7733
7734                 /*
7735                  * If there is something to dump, add space for the dump
7736                  * itself and for the field that tells the dynamic size,
7737                  * which is how many have been actually dumped.
7738                  */
7739                 if (stack_size)
7740                         size += sizeof(u64) + stack_size;
7741
7742                 data->stack_user_size = stack_size;
7743                 data->dyn_size += size;
7744                 data->sample_flags |= PERF_SAMPLE_STACK_USER;
7745         }
7746
7747         if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7748                 data->weight.full = 0;
7749                 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7750         }
7751
7752         if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7753                 data->data_src.val = PERF_MEM_NA;
7754                 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7755         }
7756
7757         if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7758                 data->txn = 0;
7759                 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7760         }
7761
7762         if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7763                 data->addr = 0;
7764                 data->sample_flags |= PERF_SAMPLE_ADDR;
7765         }
7766
7767         if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7768                 /* regs dump ABI info */
7769                 int size = sizeof(u64);
7770
7771                 perf_sample_regs_intr(&data->regs_intr, regs);
7772
7773                 if (data->regs_intr.regs) {
7774                         u64 mask = event->attr.sample_regs_intr;
7775
7776                         size += hweight64(mask) * sizeof(u64);
7777                 }
7778
7779                 data->dyn_size += size;
7780                 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7781         }
7782
7783         if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7784                 data->phys_addr = perf_virt_to_phys(data->addr);
7785                 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7786         }
7787
7788 #ifdef CONFIG_CGROUP_PERF
7789         if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7790                 struct cgroup *cgrp;
7791
7792                 /* protected by RCU */
7793                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7794                 data->cgroup = cgroup_id(cgrp);
7795                 data->sample_flags |= PERF_SAMPLE_CGROUP;
7796         }
7797 #endif
7798
7799         /*
7800          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7801          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7802          * but the value will not dump to the userspace.
7803          */
7804         if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7805                 data->data_page_size = perf_get_page_size(data->addr);
7806                 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7807         }
7808
7809         if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7810                 data->code_page_size = perf_get_page_size(data->ip);
7811                 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7812         }
7813
7814         if (filtered_sample_type & PERF_SAMPLE_AUX) {
7815                 u64 size;
7816                 u16 header_size = perf_sample_data_size(data, event);
7817
7818                 header_size += sizeof(u64); /* size */
7819
7820                 /*
7821                  * Given the 16bit nature of header::size, an AUX sample can
7822                  * easily overflow it, what with all the preceding sample bits.
7823                  * Make sure this doesn't happen by using up to U16_MAX bytes
7824                  * per sample in total (rounded down to 8 byte boundary).
7825                  */
7826                 size = min_t(size_t, U16_MAX - header_size,
7827                              event->attr.aux_sample_size);
7828                 size = rounddown(size, 8);
7829                 size = perf_prepare_sample_aux(event, data, size);
7830
7831                 WARN_ON_ONCE(size + header_size > U16_MAX);
7832                 data->dyn_size += size + sizeof(u64); /* size above */
7833                 data->sample_flags |= PERF_SAMPLE_AUX;
7834         }
7835 }
7836
7837 void perf_prepare_header(struct perf_event_header *header,
7838                          struct perf_sample_data *data,
7839                          struct perf_event *event,
7840                          struct pt_regs *regs)
7841 {
7842         header->type = PERF_RECORD_SAMPLE;
7843         header->size = perf_sample_data_size(data, event);
7844         header->misc = perf_misc_flags(regs);
7845
7846         /*
7847          * If you're adding more sample types here, you likely need to do
7848          * something about the overflowing header::size, like repurpose the
7849          * lowest 3 bits of size, which should be always zero at the moment.
7850          * This raises a more important question, do we really need 512k sized
7851          * samples and why, so good argumentation is in order for whatever you
7852          * do here next.
7853          */
7854         WARN_ON_ONCE(header->size & 7);
7855 }
7856
7857 static __always_inline int
7858 __perf_event_output(struct perf_event *event,
7859                     struct perf_sample_data *data,
7860                     struct pt_regs *regs,
7861                     int (*output_begin)(struct perf_output_handle *,
7862                                         struct perf_sample_data *,
7863                                         struct perf_event *,
7864                                         unsigned int))
7865 {
7866         struct perf_output_handle handle;
7867         struct perf_event_header header;
7868         int err;
7869
7870         /* protect the callchain buffers */
7871         rcu_read_lock();
7872
7873         perf_prepare_sample(data, event, regs);
7874         perf_prepare_header(&header, data, event, regs);
7875
7876         err = output_begin(&handle, data, event, header.size);
7877         if (err)
7878                 goto exit;
7879
7880         perf_output_sample(&handle, &header, data, event);
7881
7882         perf_output_end(&handle);
7883
7884 exit:
7885         rcu_read_unlock();
7886         return err;
7887 }
7888
7889 void
7890 perf_event_output_forward(struct perf_event *event,
7891                          struct perf_sample_data *data,
7892                          struct pt_regs *regs)
7893 {
7894         __perf_event_output(event, data, regs, perf_output_begin_forward);
7895 }
7896
7897 void
7898 perf_event_output_backward(struct perf_event *event,
7899                            struct perf_sample_data *data,
7900                            struct pt_regs *regs)
7901 {
7902         __perf_event_output(event, data, regs, perf_output_begin_backward);
7903 }
7904
7905 int
7906 perf_event_output(struct perf_event *event,
7907                   struct perf_sample_data *data,
7908                   struct pt_regs *regs)
7909 {
7910         return __perf_event_output(event, data, regs, perf_output_begin);
7911 }
7912
7913 /*
7914  * read event_id
7915  */
7916
7917 struct perf_read_event {
7918         struct perf_event_header        header;
7919
7920         u32                             pid;
7921         u32                             tid;
7922 };
7923
7924 static void
7925 perf_event_read_event(struct perf_event *event,
7926                         struct task_struct *task)
7927 {
7928         struct perf_output_handle handle;
7929         struct perf_sample_data sample;
7930         struct perf_read_event read_event = {
7931                 .header = {
7932                         .type = PERF_RECORD_READ,
7933                         .misc = 0,
7934                         .size = sizeof(read_event) + event->read_size,
7935                 },
7936                 .pid = perf_event_pid(event, task),
7937                 .tid = perf_event_tid(event, task),
7938         };
7939         int ret;
7940
7941         perf_event_header__init_id(&read_event.header, &sample, event);
7942         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7943         if (ret)
7944                 return;
7945
7946         perf_output_put(&handle, read_event);
7947         perf_output_read(&handle, event);
7948         perf_event__output_id_sample(event, &handle, &sample);
7949
7950         perf_output_end(&handle);
7951 }
7952
7953 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7954
7955 static void
7956 perf_iterate_ctx(struct perf_event_context *ctx,
7957                    perf_iterate_f output,
7958                    void *data, bool all)
7959 {
7960         struct perf_event *event;
7961
7962         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7963                 if (!all) {
7964                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7965                                 continue;
7966                         if (!event_filter_match(event))
7967                                 continue;
7968                 }
7969
7970                 output(event, data);
7971         }
7972 }
7973
7974 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7975 {
7976         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7977         struct perf_event *event;
7978
7979         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7980                 /*
7981                  * Skip events that are not fully formed yet; ensure that
7982                  * if we observe event->ctx, both event and ctx will be
7983                  * complete enough. See perf_install_in_context().
7984                  */
7985                 if (!smp_load_acquire(&event->ctx))
7986                         continue;
7987
7988                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7989                         continue;
7990                 if (!event_filter_match(event))
7991                         continue;
7992                 output(event, data);
7993         }
7994 }
7995
7996 /*
7997  * Iterate all events that need to receive side-band events.
7998  *
7999  * For new callers; ensure that account_pmu_sb_event() includes
8000  * your event, otherwise it might not get delivered.
8001  */
8002 static void
8003 perf_iterate_sb(perf_iterate_f output, void *data,
8004                struct perf_event_context *task_ctx)
8005 {
8006         struct perf_event_context *ctx;
8007
8008         rcu_read_lock();
8009         preempt_disable();
8010
8011         /*
8012          * If we have task_ctx != NULL we only notify the task context itself.
8013          * The task_ctx is set only for EXIT events before releasing task
8014          * context.
8015          */
8016         if (task_ctx) {
8017                 perf_iterate_ctx(task_ctx, output, data, false);
8018                 goto done;
8019         }
8020
8021         perf_iterate_sb_cpu(output, data);
8022
8023         ctx = rcu_dereference(current->perf_event_ctxp);
8024         if (ctx)
8025                 perf_iterate_ctx(ctx, output, data, false);
8026 done:
8027         preempt_enable();
8028         rcu_read_unlock();
8029 }
8030
8031 /*
8032  * Clear all file-based filters at exec, they'll have to be
8033  * re-instated when/if these objects are mmapped again.
8034  */
8035 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8036 {
8037         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8038         struct perf_addr_filter *filter;
8039         unsigned int restart = 0, count = 0;
8040         unsigned long flags;
8041
8042         if (!has_addr_filter(event))
8043                 return;
8044
8045         raw_spin_lock_irqsave(&ifh->lock, flags);
8046         list_for_each_entry(filter, &ifh->list, entry) {
8047                 if (filter->path.dentry) {
8048                         event->addr_filter_ranges[count].start = 0;
8049                         event->addr_filter_ranges[count].size = 0;
8050                         restart++;
8051                 }
8052
8053                 count++;
8054         }
8055
8056         if (restart)
8057                 event->addr_filters_gen++;
8058         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8059
8060         if (restart)
8061                 perf_event_stop(event, 1);
8062 }
8063
8064 void perf_event_exec(void)
8065 {
8066         struct perf_event_context *ctx;
8067
8068         ctx = perf_pin_task_context(current);
8069         if (!ctx)
8070                 return;
8071
8072         perf_event_enable_on_exec(ctx);
8073         perf_event_remove_on_exec(ctx);
8074         perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8075
8076         perf_unpin_context(ctx);
8077         put_ctx(ctx);
8078 }
8079
8080 struct remote_output {
8081         struct perf_buffer      *rb;
8082         int                     err;
8083 };
8084
8085 static void __perf_event_output_stop(struct perf_event *event, void *data)
8086 {
8087         struct perf_event *parent = event->parent;
8088         struct remote_output *ro = data;
8089         struct perf_buffer *rb = ro->rb;
8090         struct stop_event_data sd = {
8091                 .event  = event,
8092         };
8093
8094         if (!has_aux(event))
8095                 return;
8096
8097         if (!parent)
8098                 parent = event;
8099
8100         /*
8101          * In case of inheritance, it will be the parent that links to the
8102          * ring-buffer, but it will be the child that's actually using it.
8103          *
8104          * We are using event::rb to determine if the event should be stopped,
8105          * however this may race with ring_buffer_attach() (through set_output),
8106          * which will make us skip the event that actually needs to be stopped.
8107          * So ring_buffer_attach() has to stop an aux event before re-assigning
8108          * its rb pointer.
8109          */
8110         if (rcu_dereference(parent->rb) == rb)
8111                 ro->err = __perf_event_stop(&sd);
8112 }
8113
8114 static int __perf_pmu_output_stop(void *info)
8115 {
8116         struct perf_event *event = info;
8117         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8118         struct remote_output ro = {
8119                 .rb     = event->rb,
8120         };
8121
8122         rcu_read_lock();
8123         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8124         if (cpuctx->task_ctx)
8125                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8126                                    &ro, false);
8127         rcu_read_unlock();
8128
8129         return ro.err;
8130 }
8131
8132 static void perf_pmu_output_stop(struct perf_event *event)
8133 {
8134         struct perf_event *iter;
8135         int err, cpu;
8136
8137 restart:
8138         rcu_read_lock();
8139         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8140                 /*
8141                  * For per-CPU events, we need to make sure that neither they
8142                  * nor their children are running; for cpu==-1 events it's
8143                  * sufficient to stop the event itself if it's active, since
8144                  * it can't have children.
8145                  */
8146                 cpu = iter->cpu;
8147                 if (cpu == -1)
8148                         cpu = READ_ONCE(iter->oncpu);
8149
8150                 if (cpu == -1)
8151                         continue;
8152
8153                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8154                 if (err == -EAGAIN) {
8155                         rcu_read_unlock();
8156                         goto restart;
8157                 }
8158         }
8159         rcu_read_unlock();
8160 }
8161
8162 /*
8163  * task tracking -- fork/exit
8164  *
8165  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8166  */
8167
8168 struct perf_task_event {
8169         struct task_struct              *task;
8170         struct perf_event_context       *task_ctx;
8171
8172         struct {
8173                 struct perf_event_header        header;
8174
8175                 u32                             pid;
8176                 u32                             ppid;
8177                 u32                             tid;
8178                 u32                             ptid;
8179                 u64                             time;
8180         } event_id;
8181 };
8182
8183 static int perf_event_task_match(struct perf_event *event)
8184 {
8185         return event->attr.comm  || event->attr.mmap ||
8186                event->attr.mmap2 || event->attr.mmap_data ||
8187                event->attr.task;
8188 }
8189
8190 static void perf_event_task_output(struct perf_event *event,
8191                                    void *data)
8192 {
8193         struct perf_task_event *task_event = data;
8194         struct perf_output_handle handle;
8195         struct perf_sample_data sample;
8196         struct task_struct *task = task_event->task;
8197         int ret, size = task_event->event_id.header.size;
8198
8199         if (!perf_event_task_match(event))
8200                 return;
8201
8202         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8203
8204         ret = perf_output_begin(&handle, &sample, event,
8205                                 task_event->event_id.header.size);
8206         if (ret)
8207                 goto out;
8208
8209         task_event->event_id.pid = perf_event_pid(event, task);
8210         task_event->event_id.tid = perf_event_tid(event, task);
8211
8212         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8213                 task_event->event_id.ppid = perf_event_pid(event,
8214                                                         task->real_parent);
8215                 task_event->event_id.ptid = perf_event_pid(event,
8216                                                         task->real_parent);
8217         } else {  /* PERF_RECORD_FORK */
8218                 task_event->event_id.ppid = perf_event_pid(event, current);
8219                 task_event->event_id.ptid = perf_event_tid(event, current);
8220         }
8221
8222         task_event->event_id.time = perf_event_clock(event);
8223
8224         perf_output_put(&handle, task_event->event_id);
8225
8226         perf_event__output_id_sample(event, &handle, &sample);
8227
8228         perf_output_end(&handle);
8229 out:
8230         task_event->event_id.header.size = size;
8231 }
8232
8233 static void perf_event_task(struct task_struct *task,
8234                               struct perf_event_context *task_ctx,
8235                               int new)
8236 {
8237         struct perf_task_event task_event;
8238
8239         if (!atomic_read(&nr_comm_events) &&
8240             !atomic_read(&nr_mmap_events) &&
8241             !atomic_read(&nr_task_events))
8242                 return;
8243
8244         task_event = (struct perf_task_event){
8245                 .task     = task,
8246                 .task_ctx = task_ctx,
8247                 .event_id    = {
8248                         .header = {
8249                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8250                                 .misc = 0,
8251                                 .size = sizeof(task_event.event_id),
8252                         },
8253                         /* .pid  */
8254                         /* .ppid */
8255                         /* .tid  */
8256                         /* .ptid */
8257                         /* .time */
8258                 },
8259         };
8260
8261         perf_iterate_sb(perf_event_task_output,
8262                        &task_event,
8263                        task_ctx);
8264 }
8265
8266 void perf_event_fork(struct task_struct *task)
8267 {
8268         perf_event_task(task, NULL, 1);
8269         perf_event_namespaces(task);
8270 }
8271
8272 /*
8273  * comm tracking
8274  */
8275
8276 struct perf_comm_event {
8277         struct task_struct      *task;
8278         char                    *comm;
8279         int                     comm_size;
8280
8281         struct {
8282                 struct perf_event_header        header;
8283
8284                 u32                             pid;
8285                 u32                             tid;
8286         } event_id;
8287 };
8288
8289 static int perf_event_comm_match(struct perf_event *event)
8290 {
8291         return event->attr.comm;
8292 }
8293
8294 static void perf_event_comm_output(struct perf_event *event,
8295                                    void *data)
8296 {
8297         struct perf_comm_event *comm_event = data;
8298         struct perf_output_handle handle;
8299         struct perf_sample_data sample;
8300         int size = comm_event->event_id.header.size;
8301         int ret;
8302
8303         if (!perf_event_comm_match(event))
8304                 return;
8305
8306         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8307         ret = perf_output_begin(&handle, &sample, event,
8308                                 comm_event->event_id.header.size);
8309
8310         if (ret)
8311                 goto out;
8312
8313         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8314         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8315
8316         perf_output_put(&handle, comm_event->event_id);
8317         __output_copy(&handle, comm_event->comm,
8318                                    comm_event->comm_size);
8319
8320         perf_event__output_id_sample(event, &handle, &sample);
8321
8322         perf_output_end(&handle);
8323 out:
8324         comm_event->event_id.header.size = size;
8325 }
8326
8327 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8328 {
8329         char comm[TASK_COMM_LEN];
8330         unsigned int size;
8331
8332         memset(comm, 0, sizeof(comm));
8333         strscpy(comm, comm_event->task->comm, sizeof(comm));
8334         size = ALIGN(strlen(comm)+1, sizeof(u64));
8335
8336         comm_event->comm = comm;
8337         comm_event->comm_size = size;
8338
8339         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8340
8341         perf_iterate_sb(perf_event_comm_output,
8342                        comm_event,
8343                        NULL);
8344 }
8345
8346 void perf_event_comm(struct task_struct *task, bool exec)
8347 {
8348         struct perf_comm_event comm_event;
8349
8350         if (!atomic_read(&nr_comm_events))
8351                 return;
8352
8353         comm_event = (struct perf_comm_event){
8354                 .task   = task,
8355                 /* .comm      */
8356                 /* .comm_size */
8357                 .event_id  = {
8358                         .header = {
8359                                 .type = PERF_RECORD_COMM,
8360                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8361                                 /* .size */
8362                         },
8363                         /* .pid */
8364                         /* .tid */
8365                 },
8366         };
8367
8368         perf_event_comm_event(&comm_event);
8369 }
8370
8371 /*
8372  * namespaces tracking
8373  */
8374
8375 struct perf_namespaces_event {
8376         struct task_struct              *task;
8377
8378         struct {
8379                 struct perf_event_header        header;
8380
8381                 u32                             pid;
8382                 u32                             tid;
8383                 u64                             nr_namespaces;
8384                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
8385         } event_id;
8386 };
8387
8388 static int perf_event_namespaces_match(struct perf_event *event)
8389 {
8390         return event->attr.namespaces;
8391 }
8392
8393 static void perf_event_namespaces_output(struct perf_event *event,
8394                                          void *data)
8395 {
8396         struct perf_namespaces_event *namespaces_event = data;
8397         struct perf_output_handle handle;
8398         struct perf_sample_data sample;
8399         u16 header_size = namespaces_event->event_id.header.size;
8400         int ret;
8401
8402         if (!perf_event_namespaces_match(event))
8403                 return;
8404
8405         perf_event_header__init_id(&namespaces_event->event_id.header,
8406                                    &sample, event);
8407         ret = perf_output_begin(&handle, &sample, event,
8408                                 namespaces_event->event_id.header.size);
8409         if (ret)
8410                 goto out;
8411
8412         namespaces_event->event_id.pid = perf_event_pid(event,
8413                                                         namespaces_event->task);
8414         namespaces_event->event_id.tid = perf_event_tid(event,
8415                                                         namespaces_event->task);
8416
8417         perf_output_put(&handle, namespaces_event->event_id);
8418
8419         perf_event__output_id_sample(event, &handle, &sample);
8420
8421         perf_output_end(&handle);
8422 out:
8423         namespaces_event->event_id.header.size = header_size;
8424 }
8425
8426 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8427                                    struct task_struct *task,
8428                                    const struct proc_ns_operations *ns_ops)
8429 {
8430         struct path ns_path;
8431         struct inode *ns_inode;
8432         int error;
8433
8434         error = ns_get_path(&ns_path, task, ns_ops);
8435         if (!error) {
8436                 ns_inode = ns_path.dentry->d_inode;
8437                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8438                 ns_link_info->ino = ns_inode->i_ino;
8439                 path_put(&ns_path);
8440         }
8441 }
8442
8443 void perf_event_namespaces(struct task_struct *task)
8444 {
8445         struct perf_namespaces_event namespaces_event;
8446         struct perf_ns_link_info *ns_link_info;
8447
8448         if (!atomic_read(&nr_namespaces_events))
8449                 return;
8450
8451         namespaces_event = (struct perf_namespaces_event){
8452                 .task   = task,
8453                 .event_id  = {
8454                         .header = {
8455                                 .type = PERF_RECORD_NAMESPACES,
8456                                 .misc = 0,
8457                                 .size = sizeof(namespaces_event.event_id),
8458                         },
8459                         /* .pid */
8460                         /* .tid */
8461                         .nr_namespaces = NR_NAMESPACES,
8462                         /* .link_info[NR_NAMESPACES] */
8463                 },
8464         };
8465
8466         ns_link_info = namespaces_event.event_id.link_info;
8467
8468         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8469                                task, &mntns_operations);
8470
8471 #ifdef CONFIG_USER_NS
8472         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8473                                task, &userns_operations);
8474 #endif
8475 #ifdef CONFIG_NET_NS
8476         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8477                                task, &netns_operations);
8478 #endif
8479 #ifdef CONFIG_UTS_NS
8480         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8481                                task, &utsns_operations);
8482 #endif
8483 #ifdef CONFIG_IPC_NS
8484         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8485                                task, &ipcns_operations);
8486 #endif
8487 #ifdef CONFIG_PID_NS
8488         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8489                                task, &pidns_operations);
8490 #endif
8491 #ifdef CONFIG_CGROUPS
8492         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8493                                task, &cgroupns_operations);
8494 #endif
8495
8496         perf_iterate_sb(perf_event_namespaces_output,
8497                         &namespaces_event,
8498                         NULL);
8499 }
8500
8501 /*
8502  * cgroup tracking
8503  */
8504 #ifdef CONFIG_CGROUP_PERF
8505
8506 struct perf_cgroup_event {
8507         char                            *path;
8508         int                             path_size;
8509         struct {
8510                 struct perf_event_header        header;
8511                 u64                             id;
8512                 char                            path[];
8513         } event_id;
8514 };
8515
8516 static int perf_event_cgroup_match(struct perf_event *event)
8517 {
8518         return event->attr.cgroup;
8519 }
8520
8521 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8522 {
8523         struct perf_cgroup_event *cgroup_event = data;
8524         struct perf_output_handle handle;
8525         struct perf_sample_data sample;
8526         u16 header_size = cgroup_event->event_id.header.size;
8527         int ret;
8528
8529         if (!perf_event_cgroup_match(event))
8530                 return;
8531
8532         perf_event_header__init_id(&cgroup_event->event_id.header,
8533                                    &sample, event);
8534         ret = perf_output_begin(&handle, &sample, event,
8535                                 cgroup_event->event_id.header.size);
8536         if (ret)
8537                 goto out;
8538
8539         perf_output_put(&handle, cgroup_event->event_id);
8540         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8541
8542         perf_event__output_id_sample(event, &handle, &sample);
8543
8544         perf_output_end(&handle);
8545 out:
8546         cgroup_event->event_id.header.size = header_size;
8547 }
8548
8549 static void perf_event_cgroup(struct cgroup *cgrp)
8550 {
8551         struct perf_cgroup_event cgroup_event;
8552         char path_enomem[16] = "//enomem";
8553         char *pathname;
8554         size_t size;
8555
8556         if (!atomic_read(&nr_cgroup_events))
8557                 return;
8558
8559         cgroup_event = (struct perf_cgroup_event){
8560                 .event_id  = {
8561                         .header = {
8562                                 .type = PERF_RECORD_CGROUP,
8563                                 .misc = 0,
8564                                 .size = sizeof(cgroup_event.event_id),
8565                         },
8566                         .id = cgroup_id(cgrp),
8567                 },
8568         };
8569
8570         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8571         if (pathname == NULL) {
8572                 cgroup_event.path = path_enomem;
8573         } else {
8574                 /* just to be sure to have enough space for alignment */
8575                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8576                 cgroup_event.path = pathname;
8577         }
8578
8579         /*
8580          * Since our buffer works in 8 byte units we need to align our string
8581          * size to a multiple of 8. However, we must guarantee the tail end is
8582          * zero'd out to avoid leaking random bits to userspace.
8583          */
8584         size = strlen(cgroup_event.path) + 1;
8585         while (!IS_ALIGNED(size, sizeof(u64)))
8586                 cgroup_event.path[size++] = '\0';
8587
8588         cgroup_event.event_id.header.size += size;
8589         cgroup_event.path_size = size;
8590
8591         perf_iterate_sb(perf_event_cgroup_output,
8592                         &cgroup_event,
8593                         NULL);
8594
8595         kfree(pathname);
8596 }
8597
8598 #endif
8599
8600 /*
8601  * mmap tracking
8602  */
8603
8604 struct perf_mmap_event {
8605         struct vm_area_struct   *vma;
8606
8607         const char              *file_name;
8608         int                     file_size;
8609         int                     maj, min;
8610         u64                     ino;
8611         u64                     ino_generation;
8612         u32                     prot, flags;
8613         u8                      build_id[BUILD_ID_SIZE_MAX];
8614         u32                     build_id_size;
8615
8616         struct {
8617                 struct perf_event_header        header;
8618
8619                 u32                             pid;
8620                 u32                             tid;
8621                 u64                             start;
8622                 u64                             len;
8623                 u64                             pgoff;
8624         } event_id;
8625 };
8626
8627 static int perf_event_mmap_match(struct perf_event *event,
8628                                  void *data)
8629 {
8630         struct perf_mmap_event *mmap_event = data;
8631         struct vm_area_struct *vma = mmap_event->vma;
8632         int executable = vma->vm_flags & VM_EXEC;
8633
8634         return (!executable && event->attr.mmap_data) ||
8635                (executable && (event->attr.mmap || event->attr.mmap2));
8636 }
8637
8638 static void perf_event_mmap_output(struct perf_event *event,
8639                                    void *data)
8640 {
8641         struct perf_mmap_event *mmap_event = data;
8642         struct perf_output_handle handle;
8643         struct perf_sample_data sample;
8644         int size = mmap_event->event_id.header.size;
8645         u32 type = mmap_event->event_id.header.type;
8646         bool use_build_id;
8647         int ret;
8648
8649         if (!perf_event_mmap_match(event, data))
8650                 return;
8651
8652         if (event->attr.mmap2) {
8653                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8654                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8655                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8656                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8657                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8658                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8659                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8660         }
8661
8662         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8663         ret = perf_output_begin(&handle, &sample, event,
8664                                 mmap_event->event_id.header.size);
8665         if (ret)
8666                 goto out;
8667
8668         mmap_event->event_id.pid = perf_event_pid(event, current);
8669         mmap_event->event_id.tid = perf_event_tid(event, current);
8670
8671         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8672
8673         if (event->attr.mmap2 && use_build_id)
8674                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8675
8676         perf_output_put(&handle, mmap_event->event_id);
8677
8678         if (event->attr.mmap2) {
8679                 if (use_build_id) {
8680                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8681
8682                         __output_copy(&handle, size, 4);
8683                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8684                 } else {
8685                         perf_output_put(&handle, mmap_event->maj);
8686                         perf_output_put(&handle, mmap_event->min);
8687                         perf_output_put(&handle, mmap_event->ino);
8688                         perf_output_put(&handle, mmap_event->ino_generation);
8689                 }
8690                 perf_output_put(&handle, mmap_event->prot);
8691                 perf_output_put(&handle, mmap_event->flags);
8692         }
8693
8694         __output_copy(&handle, mmap_event->file_name,
8695                                    mmap_event->file_size);
8696
8697         perf_event__output_id_sample(event, &handle, &sample);
8698
8699         perf_output_end(&handle);
8700 out:
8701         mmap_event->event_id.header.size = size;
8702         mmap_event->event_id.header.type = type;
8703 }
8704
8705 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8706 {
8707         struct vm_area_struct *vma = mmap_event->vma;
8708         struct file *file = vma->vm_file;
8709         int maj = 0, min = 0;
8710         u64 ino = 0, gen = 0;
8711         u32 prot = 0, flags = 0;
8712         unsigned int size;
8713         char tmp[16];
8714         char *buf = NULL;
8715         char *name = NULL;
8716
8717         if (vma->vm_flags & VM_READ)
8718                 prot |= PROT_READ;
8719         if (vma->vm_flags & VM_WRITE)
8720                 prot |= PROT_WRITE;
8721         if (vma->vm_flags & VM_EXEC)
8722                 prot |= PROT_EXEC;
8723
8724         if (vma->vm_flags & VM_MAYSHARE)
8725                 flags = MAP_SHARED;
8726         else
8727                 flags = MAP_PRIVATE;
8728
8729         if (vma->vm_flags & VM_LOCKED)
8730                 flags |= MAP_LOCKED;
8731         if (is_vm_hugetlb_page(vma))
8732                 flags |= MAP_HUGETLB;
8733
8734         if (file) {
8735                 struct inode *inode;
8736                 dev_t dev;
8737
8738                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8739                 if (!buf) {
8740                         name = "//enomem";
8741                         goto cpy_name;
8742                 }
8743                 /*
8744                  * d_path() works from the end of the rb backwards, so we
8745                  * need to add enough zero bytes after the string to handle
8746                  * the 64bit alignment we do later.
8747                  */
8748                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8749                 if (IS_ERR(name)) {
8750                         name = "//toolong";
8751                         goto cpy_name;
8752                 }
8753                 inode = file_inode(vma->vm_file);
8754                 dev = inode->i_sb->s_dev;
8755                 ino = inode->i_ino;
8756                 gen = inode->i_generation;
8757                 maj = MAJOR(dev);
8758                 min = MINOR(dev);
8759
8760                 goto got_name;
8761         } else {
8762                 if (vma->vm_ops && vma->vm_ops->name)
8763                         name = (char *) vma->vm_ops->name(vma);
8764                 if (!name)
8765                         name = (char *)arch_vma_name(vma);
8766                 if (!name) {
8767                         if (vma_is_initial_heap(vma))
8768                                 name = "[heap]";
8769                         else if (vma_is_initial_stack(vma))
8770                                 name = "[stack]";
8771                         else
8772                                 name = "//anon";
8773                 }
8774         }
8775
8776 cpy_name:
8777         strscpy(tmp, name, sizeof(tmp));
8778         name = tmp;
8779 got_name:
8780         /*
8781          * Since our buffer works in 8 byte units we need to align our string
8782          * size to a multiple of 8. However, we must guarantee the tail end is
8783          * zero'd out to avoid leaking random bits to userspace.
8784          */
8785         size = strlen(name)+1;
8786         while (!IS_ALIGNED(size, sizeof(u64)))
8787                 name[size++] = '\0';
8788
8789         mmap_event->file_name = name;
8790         mmap_event->file_size = size;
8791         mmap_event->maj = maj;
8792         mmap_event->min = min;
8793         mmap_event->ino = ino;
8794         mmap_event->ino_generation = gen;
8795         mmap_event->prot = prot;
8796         mmap_event->flags = flags;
8797
8798         if (!(vma->vm_flags & VM_EXEC))
8799                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8800
8801         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8802
8803         if (atomic_read(&nr_build_id_events))
8804                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8805
8806         perf_iterate_sb(perf_event_mmap_output,
8807                        mmap_event,
8808                        NULL);
8809
8810         kfree(buf);
8811 }
8812
8813 /*
8814  * Check whether inode and address range match filter criteria.
8815  */
8816 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8817                                      struct file *file, unsigned long offset,
8818                                      unsigned long size)
8819 {
8820         /* d_inode(NULL) won't be equal to any mapped user-space file */
8821         if (!filter->path.dentry)
8822                 return false;
8823
8824         if (d_inode(filter->path.dentry) != file_inode(file))
8825                 return false;
8826
8827         if (filter->offset > offset + size)
8828                 return false;
8829
8830         if (filter->offset + filter->size < offset)
8831                 return false;
8832
8833         return true;
8834 }
8835
8836 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8837                                         struct vm_area_struct *vma,
8838                                         struct perf_addr_filter_range *fr)
8839 {
8840         unsigned long vma_size = vma->vm_end - vma->vm_start;
8841         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8842         struct file *file = vma->vm_file;
8843
8844         if (!perf_addr_filter_match(filter, file, off, vma_size))
8845                 return false;
8846
8847         if (filter->offset < off) {
8848                 fr->start = vma->vm_start;
8849                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8850         } else {
8851                 fr->start = vma->vm_start + filter->offset - off;
8852                 fr->size = min(vma->vm_end - fr->start, filter->size);
8853         }
8854
8855         return true;
8856 }
8857
8858 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8859 {
8860         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8861         struct vm_area_struct *vma = data;
8862         struct perf_addr_filter *filter;
8863         unsigned int restart = 0, count = 0;
8864         unsigned long flags;
8865
8866         if (!has_addr_filter(event))
8867                 return;
8868
8869         if (!vma->vm_file)
8870                 return;
8871
8872         raw_spin_lock_irqsave(&ifh->lock, flags);
8873         list_for_each_entry(filter, &ifh->list, entry) {
8874                 if (perf_addr_filter_vma_adjust(filter, vma,
8875                                                 &event->addr_filter_ranges[count]))
8876                         restart++;
8877
8878                 count++;
8879         }
8880
8881         if (restart)
8882                 event->addr_filters_gen++;
8883         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8884
8885         if (restart)
8886                 perf_event_stop(event, 1);
8887 }
8888
8889 /*
8890  * Adjust all task's events' filters to the new vma
8891  */
8892 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8893 {
8894         struct perf_event_context *ctx;
8895
8896         /*
8897          * Data tracing isn't supported yet and as such there is no need
8898          * to keep track of anything that isn't related to executable code:
8899          */
8900         if (!(vma->vm_flags & VM_EXEC))
8901                 return;
8902
8903         rcu_read_lock();
8904         ctx = rcu_dereference(current->perf_event_ctxp);
8905         if (ctx)
8906                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8907         rcu_read_unlock();
8908 }
8909
8910 void perf_event_mmap(struct vm_area_struct *vma)
8911 {
8912         struct perf_mmap_event mmap_event;
8913
8914         if (!atomic_read(&nr_mmap_events))
8915                 return;
8916
8917         mmap_event = (struct perf_mmap_event){
8918                 .vma    = vma,
8919                 /* .file_name */
8920                 /* .file_size */
8921                 .event_id  = {
8922                         .header = {
8923                                 .type = PERF_RECORD_MMAP,
8924                                 .misc = PERF_RECORD_MISC_USER,
8925                                 /* .size */
8926                         },
8927                         /* .pid */
8928                         /* .tid */
8929                         .start  = vma->vm_start,
8930                         .len    = vma->vm_end - vma->vm_start,
8931                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8932                 },
8933                 /* .maj (attr_mmap2 only) */
8934                 /* .min (attr_mmap2 only) */
8935                 /* .ino (attr_mmap2 only) */
8936                 /* .ino_generation (attr_mmap2 only) */
8937                 /* .prot (attr_mmap2 only) */
8938                 /* .flags (attr_mmap2 only) */
8939         };
8940
8941         perf_addr_filters_adjust(vma);
8942         perf_event_mmap_event(&mmap_event);
8943 }
8944
8945 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8946                           unsigned long size, u64 flags)
8947 {
8948         struct perf_output_handle handle;
8949         struct perf_sample_data sample;
8950         struct perf_aux_event {
8951                 struct perf_event_header        header;
8952                 u64                             offset;
8953                 u64                             size;
8954                 u64                             flags;
8955         } rec = {
8956                 .header = {
8957                         .type = PERF_RECORD_AUX,
8958                         .misc = 0,
8959                         .size = sizeof(rec),
8960                 },
8961                 .offset         = head,
8962                 .size           = size,
8963                 .flags          = flags,
8964         };
8965         int ret;
8966
8967         perf_event_header__init_id(&rec.header, &sample, event);
8968         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8969
8970         if (ret)
8971                 return;
8972
8973         perf_output_put(&handle, rec);
8974         perf_event__output_id_sample(event, &handle, &sample);
8975
8976         perf_output_end(&handle);
8977 }
8978
8979 /*
8980  * Lost/dropped samples logging
8981  */
8982 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8983 {
8984         struct perf_output_handle handle;
8985         struct perf_sample_data sample;
8986         int ret;
8987
8988         struct {
8989                 struct perf_event_header        header;
8990                 u64                             lost;
8991         } lost_samples_event = {
8992                 .header = {
8993                         .type = PERF_RECORD_LOST_SAMPLES,
8994                         .misc = 0,
8995                         .size = sizeof(lost_samples_event),
8996                 },
8997                 .lost           = lost,
8998         };
8999
9000         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9001
9002         ret = perf_output_begin(&handle, &sample, event,
9003                                 lost_samples_event.header.size);
9004         if (ret)
9005                 return;
9006
9007         perf_output_put(&handle, lost_samples_event);
9008         perf_event__output_id_sample(event, &handle, &sample);
9009         perf_output_end(&handle);
9010 }
9011
9012 /*
9013  * context_switch tracking
9014  */
9015
9016 struct perf_switch_event {
9017         struct task_struct      *task;
9018         struct task_struct      *next_prev;
9019
9020         struct {
9021                 struct perf_event_header        header;
9022                 u32                             next_prev_pid;
9023                 u32                             next_prev_tid;
9024         } event_id;
9025 };
9026
9027 static int perf_event_switch_match(struct perf_event *event)
9028 {
9029         return event->attr.context_switch;
9030 }
9031
9032 static void perf_event_switch_output(struct perf_event *event, void *data)
9033 {
9034         struct perf_switch_event *se = data;
9035         struct perf_output_handle handle;
9036         struct perf_sample_data sample;
9037         int ret;
9038
9039         if (!perf_event_switch_match(event))
9040                 return;
9041
9042         /* Only CPU-wide events are allowed to see next/prev pid/tid */
9043         if (event->ctx->task) {
9044                 se->event_id.header.type = PERF_RECORD_SWITCH;
9045                 se->event_id.header.size = sizeof(se->event_id.header);
9046         } else {
9047                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9048                 se->event_id.header.size = sizeof(se->event_id);
9049                 se->event_id.next_prev_pid =
9050                                         perf_event_pid(event, se->next_prev);
9051                 se->event_id.next_prev_tid =
9052                                         perf_event_tid(event, se->next_prev);
9053         }
9054
9055         perf_event_header__init_id(&se->event_id.header, &sample, event);
9056
9057         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9058         if (ret)
9059                 return;
9060
9061         if (event->ctx->task)
9062                 perf_output_put(&handle, se->event_id.header);
9063         else
9064                 perf_output_put(&handle, se->event_id);
9065
9066         perf_event__output_id_sample(event, &handle, &sample);
9067
9068         perf_output_end(&handle);
9069 }
9070
9071 static void perf_event_switch(struct task_struct *task,
9072                               struct task_struct *next_prev, bool sched_in)
9073 {
9074         struct perf_switch_event switch_event;
9075
9076         /* N.B. caller checks nr_switch_events != 0 */
9077
9078         switch_event = (struct perf_switch_event){
9079                 .task           = task,
9080                 .next_prev      = next_prev,
9081                 .event_id       = {
9082                         .header = {
9083                                 /* .type */
9084                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9085                                 /* .size */
9086                         },
9087                         /* .next_prev_pid */
9088                         /* .next_prev_tid */
9089                 },
9090         };
9091
9092         if (!sched_in && task->on_rq) {
9093                 switch_event.event_id.header.misc |=
9094                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9095         }
9096
9097         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9098 }
9099
9100 /*
9101  * IRQ throttle logging
9102  */
9103
9104 static void perf_log_throttle(struct perf_event *event, int enable)
9105 {
9106         struct perf_output_handle handle;
9107         struct perf_sample_data sample;
9108         int ret;
9109
9110         struct {
9111                 struct perf_event_header        header;
9112                 u64                             time;
9113                 u64                             id;
9114                 u64                             stream_id;
9115         } throttle_event = {
9116                 .header = {
9117                         .type = PERF_RECORD_THROTTLE,
9118                         .misc = 0,
9119                         .size = sizeof(throttle_event),
9120                 },
9121                 .time           = perf_event_clock(event),
9122                 .id             = primary_event_id(event),
9123                 .stream_id      = event->id,
9124         };
9125
9126         if (enable)
9127                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9128
9129         perf_event_header__init_id(&throttle_event.header, &sample, event);
9130
9131         ret = perf_output_begin(&handle, &sample, event,
9132                                 throttle_event.header.size);
9133         if (ret)
9134                 return;
9135
9136         perf_output_put(&handle, throttle_event);
9137         perf_event__output_id_sample(event, &handle, &sample);
9138         perf_output_end(&handle);
9139 }
9140
9141 /*
9142  * ksymbol register/unregister tracking
9143  */
9144
9145 struct perf_ksymbol_event {
9146         const char      *name;
9147         int             name_len;
9148         struct {
9149                 struct perf_event_header        header;
9150                 u64                             addr;
9151                 u32                             len;
9152                 u16                             ksym_type;
9153                 u16                             flags;
9154         } event_id;
9155 };
9156
9157 static int perf_event_ksymbol_match(struct perf_event *event)
9158 {
9159         return event->attr.ksymbol;
9160 }
9161
9162 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9163 {
9164         struct perf_ksymbol_event *ksymbol_event = data;
9165         struct perf_output_handle handle;
9166         struct perf_sample_data sample;
9167         int ret;
9168
9169         if (!perf_event_ksymbol_match(event))
9170                 return;
9171
9172         perf_event_header__init_id(&ksymbol_event->event_id.header,
9173                                    &sample, event);
9174         ret = perf_output_begin(&handle, &sample, event,
9175                                 ksymbol_event->event_id.header.size);
9176         if (ret)
9177                 return;
9178
9179         perf_output_put(&handle, ksymbol_event->event_id);
9180         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9181         perf_event__output_id_sample(event, &handle, &sample);
9182
9183         perf_output_end(&handle);
9184 }
9185
9186 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9187                         const char *sym)
9188 {
9189         struct perf_ksymbol_event ksymbol_event;
9190         char name[KSYM_NAME_LEN];
9191         u16 flags = 0;
9192         int name_len;
9193
9194         if (!atomic_read(&nr_ksymbol_events))
9195                 return;
9196
9197         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9198             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9199                 goto err;
9200
9201         strscpy(name, sym, KSYM_NAME_LEN);
9202         name_len = strlen(name) + 1;
9203         while (!IS_ALIGNED(name_len, sizeof(u64)))
9204                 name[name_len++] = '\0';
9205         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9206
9207         if (unregister)
9208                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9209
9210         ksymbol_event = (struct perf_ksymbol_event){
9211                 .name = name,
9212                 .name_len = name_len,
9213                 .event_id = {
9214                         .header = {
9215                                 .type = PERF_RECORD_KSYMBOL,
9216                                 .size = sizeof(ksymbol_event.event_id) +
9217                                         name_len,
9218                         },
9219                         .addr = addr,
9220                         .len = len,
9221                         .ksym_type = ksym_type,
9222                         .flags = flags,
9223                 },
9224         };
9225
9226         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9227         return;
9228 err:
9229         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9230 }
9231
9232 /*
9233  * bpf program load/unload tracking
9234  */
9235
9236 struct perf_bpf_event {
9237         struct bpf_prog *prog;
9238         struct {
9239                 struct perf_event_header        header;
9240                 u16                             type;
9241                 u16                             flags;
9242                 u32                             id;
9243                 u8                              tag[BPF_TAG_SIZE];
9244         } event_id;
9245 };
9246
9247 static int perf_event_bpf_match(struct perf_event *event)
9248 {
9249         return event->attr.bpf_event;
9250 }
9251
9252 static void perf_event_bpf_output(struct perf_event *event, void *data)
9253 {
9254         struct perf_bpf_event *bpf_event = data;
9255         struct perf_output_handle handle;
9256         struct perf_sample_data sample;
9257         int ret;
9258
9259         if (!perf_event_bpf_match(event))
9260                 return;
9261
9262         perf_event_header__init_id(&bpf_event->event_id.header,
9263                                    &sample, event);
9264         ret = perf_output_begin(&handle, &sample, event,
9265                                 bpf_event->event_id.header.size);
9266         if (ret)
9267                 return;
9268
9269         perf_output_put(&handle, bpf_event->event_id);
9270         perf_event__output_id_sample(event, &handle, &sample);
9271
9272         perf_output_end(&handle);
9273 }
9274
9275 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9276                                          enum perf_bpf_event_type type)
9277 {
9278         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9279         int i;
9280
9281         if (prog->aux->func_cnt == 0) {
9282                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9283                                    (u64)(unsigned long)prog->bpf_func,
9284                                    prog->jited_len, unregister,
9285                                    prog->aux->ksym.name);
9286         } else {
9287                 for (i = 0; i < prog->aux->func_cnt; i++) {
9288                         struct bpf_prog *subprog = prog->aux->func[i];
9289
9290                         perf_event_ksymbol(
9291                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
9292                                 (u64)(unsigned long)subprog->bpf_func,
9293                                 subprog->jited_len, unregister,
9294                                 subprog->aux->ksym.name);
9295                 }
9296         }
9297 }
9298
9299 void perf_event_bpf_event(struct bpf_prog *prog,
9300                           enum perf_bpf_event_type type,
9301                           u16 flags)
9302 {
9303         struct perf_bpf_event bpf_event;
9304
9305         switch (type) {
9306         case PERF_BPF_EVENT_PROG_LOAD:
9307         case PERF_BPF_EVENT_PROG_UNLOAD:
9308                 if (atomic_read(&nr_ksymbol_events))
9309                         perf_event_bpf_emit_ksymbols(prog, type);
9310                 break;
9311         default:
9312                 return;
9313         }
9314
9315         if (!atomic_read(&nr_bpf_events))
9316                 return;
9317
9318         bpf_event = (struct perf_bpf_event){
9319                 .prog = prog,
9320                 .event_id = {
9321                         .header = {
9322                                 .type = PERF_RECORD_BPF_EVENT,
9323                                 .size = sizeof(bpf_event.event_id),
9324                         },
9325                         .type = type,
9326                         .flags = flags,
9327                         .id = prog->aux->id,
9328                 },
9329         };
9330
9331         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9332
9333         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9334         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9335 }
9336
9337 struct perf_text_poke_event {
9338         const void              *old_bytes;
9339         const void              *new_bytes;
9340         size_t                  pad;
9341         u16                     old_len;
9342         u16                     new_len;
9343
9344         struct {
9345                 struct perf_event_header        header;
9346
9347                 u64                             addr;
9348         } event_id;
9349 };
9350
9351 static int perf_event_text_poke_match(struct perf_event *event)
9352 {
9353         return event->attr.text_poke;
9354 }
9355
9356 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9357 {
9358         struct perf_text_poke_event *text_poke_event = data;
9359         struct perf_output_handle handle;
9360         struct perf_sample_data sample;
9361         u64 padding = 0;
9362         int ret;
9363
9364         if (!perf_event_text_poke_match(event))
9365                 return;
9366
9367         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9368
9369         ret = perf_output_begin(&handle, &sample, event,
9370                                 text_poke_event->event_id.header.size);
9371         if (ret)
9372                 return;
9373
9374         perf_output_put(&handle, text_poke_event->event_id);
9375         perf_output_put(&handle, text_poke_event->old_len);
9376         perf_output_put(&handle, text_poke_event->new_len);
9377
9378         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9379         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9380
9381         if (text_poke_event->pad)
9382                 __output_copy(&handle, &padding, text_poke_event->pad);
9383
9384         perf_event__output_id_sample(event, &handle, &sample);
9385
9386         perf_output_end(&handle);
9387 }
9388
9389 void perf_event_text_poke(const void *addr, const void *old_bytes,
9390                           size_t old_len, const void *new_bytes, size_t new_len)
9391 {
9392         struct perf_text_poke_event text_poke_event;
9393         size_t tot, pad;
9394
9395         if (!atomic_read(&nr_text_poke_events))
9396                 return;
9397
9398         tot  = sizeof(text_poke_event.old_len) + old_len;
9399         tot += sizeof(text_poke_event.new_len) + new_len;
9400         pad  = ALIGN(tot, sizeof(u64)) - tot;
9401
9402         text_poke_event = (struct perf_text_poke_event){
9403                 .old_bytes    = old_bytes,
9404                 .new_bytes    = new_bytes,
9405                 .pad          = pad,
9406                 .old_len      = old_len,
9407                 .new_len      = new_len,
9408                 .event_id  = {
9409                         .header = {
9410                                 .type = PERF_RECORD_TEXT_POKE,
9411                                 .misc = PERF_RECORD_MISC_KERNEL,
9412                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9413                         },
9414                         .addr = (unsigned long)addr,
9415                 },
9416         };
9417
9418         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9419 }
9420
9421 void perf_event_itrace_started(struct perf_event *event)
9422 {
9423         event->attach_state |= PERF_ATTACH_ITRACE;
9424 }
9425
9426 static void perf_log_itrace_start(struct perf_event *event)
9427 {
9428         struct perf_output_handle handle;
9429         struct perf_sample_data sample;
9430         struct perf_aux_event {
9431                 struct perf_event_header        header;
9432                 u32                             pid;
9433                 u32                             tid;
9434         } rec;
9435         int ret;
9436
9437         if (event->parent)
9438                 event = event->parent;
9439
9440         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9441             event->attach_state & PERF_ATTACH_ITRACE)
9442                 return;
9443
9444         rec.header.type = PERF_RECORD_ITRACE_START;
9445         rec.header.misc = 0;
9446         rec.header.size = sizeof(rec);
9447         rec.pid = perf_event_pid(event, current);
9448         rec.tid = perf_event_tid(event, current);
9449
9450         perf_event_header__init_id(&rec.header, &sample, event);
9451         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9452
9453         if (ret)
9454                 return;
9455
9456         perf_output_put(&handle, rec);
9457         perf_event__output_id_sample(event, &handle, &sample);
9458
9459         perf_output_end(&handle);
9460 }
9461
9462 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9463 {
9464         struct perf_output_handle handle;
9465         struct perf_sample_data sample;
9466         struct perf_aux_event {
9467                 struct perf_event_header        header;
9468                 u64                             hw_id;
9469         } rec;
9470         int ret;
9471
9472         if (event->parent)
9473                 event = event->parent;
9474
9475         rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9476         rec.header.misc = 0;
9477         rec.header.size = sizeof(rec);
9478         rec.hw_id       = hw_id;
9479
9480         perf_event_header__init_id(&rec.header, &sample, event);
9481         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9482
9483         if (ret)
9484                 return;
9485
9486         perf_output_put(&handle, rec);
9487         perf_event__output_id_sample(event, &handle, &sample);
9488
9489         perf_output_end(&handle);
9490 }
9491 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9492
9493 static int
9494 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9495 {
9496         struct hw_perf_event *hwc = &event->hw;
9497         int ret = 0;
9498         u64 seq;
9499
9500         seq = __this_cpu_read(perf_throttled_seq);
9501         if (seq != hwc->interrupts_seq) {
9502                 hwc->interrupts_seq = seq;
9503                 hwc->interrupts = 1;
9504         } else {
9505                 hwc->interrupts++;
9506                 if (unlikely(throttle &&
9507                              hwc->interrupts > max_samples_per_tick)) {
9508                         __this_cpu_inc(perf_throttled_count);
9509                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9510                         hwc->interrupts = MAX_INTERRUPTS;
9511                         perf_log_throttle(event, 0);
9512                         ret = 1;
9513                 }
9514         }
9515
9516         if (event->attr.freq) {
9517                 u64 now = perf_clock();
9518                 s64 delta = now - hwc->freq_time_stamp;
9519
9520                 hwc->freq_time_stamp = now;
9521
9522                 if (delta > 0 && delta < 2*TICK_NSEC)
9523                         perf_adjust_period(event, delta, hwc->last_period, true);
9524         }
9525
9526         return ret;
9527 }
9528
9529 int perf_event_account_interrupt(struct perf_event *event)
9530 {
9531         return __perf_event_account_interrupt(event, 1);
9532 }
9533
9534 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9535 {
9536         /*
9537          * Due to interrupt latency (AKA "skid"), we may enter the
9538          * kernel before taking an overflow, even if the PMU is only
9539          * counting user events.
9540          */
9541         if (event->attr.exclude_kernel && !user_mode(regs))
9542                 return false;
9543
9544         return true;
9545 }
9546
9547 /*
9548  * Generic event overflow handling, sampling.
9549  */
9550
9551 static int __perf_event_overflow(struct perf_event *event,
9552                                  int throttle, struct perf_sample_data *data,
9553                                  struct pt_regs *regs)
9554 {
9555         int events = atomic_read(&event->event_limit);
9556         int ret = 0;
9557
9558         /*
9559          * Non-sampling counters might still use the PMI to fold short
9560          * hardware counters, ignore those.
9561          */
9562         if (unlikely(!is_sampling_event(event)))
9563                 return 0;
9564
9565         ret = __perf_event_account_interrupt(event, throttle);
9566
9567         /*
9568          * XXX event_limit might not quite work as expected on inherited
9569          * events
9570          */
9571
9572         event->pending_kill = POLL_IN;
9573         if (events && atomic_dec_and_test(&event->event_limit)) {
9574                 ret = 1;
9575                 event->pending_kill = POLL_HUP;
9576                 perf_event_disable_inatomic(event);
9577         }
9578
9579         if (event->attr.sigtrap) {
9580                 /*
9581                  * The desired behaviour of sigtrap vs invalid samples is a bit
9582                  * tricky; on the one hand, one should not loose the SIGTRAP if
9583                  * it is the first event, on the other hand, we should also not
9584                  * trigger the WARN or override the data address.
9585                  */
9586                 bool valid_sample = sample_is_allowed(event, regs);
9587                 unsigned int pending_id = 1;
9588
9589                 if (regs)
9590                         pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9591                 if (!event->pending_sigtrap) {
9592                         event->pending_sigtrap = pending_id;
9593                         local_inc(&event->ctx->nr_pending);
9594                 } else if (event->attr.exclude_kernel && valid_sample) {
9595                         /*
9596                          * Should not be able to return to user space without
9597                          * consuming pending_sigtrap; with exceptions:
9598                          *
9599                          *  1. Where !exclude_kernel, events can overflow again
9600                          *     in the kernel without returning to user space.
9601                          *
9602                          *  2. Events that can overflow again before the IRQ-
9603                          *     work without user space progress (e.g. hrtimer).
9604                          *     To approximate progress (with false negatives),
9605                          *     check 32-bit hash of the current IP.
9606                          */
9607                         WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9608                 }
9609
9610                 event->pending_addr = 0;
9611                 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9612                         event->pending_addr = data->addr;
9613                 irq_work_queue(&event->pending_irq);
9614         }
9615
9616         READ_ONCE(event->overflow_handler)(event, data, regs);
9617
9618         if (*perf_event_fasync(event) && event->pending_kill) {
9619                 event->pending_wakeup = 1;
9620                 irq_work_queue(&event->pending_irq);
9621         }
9622
9623         return ret;
9624 }
9625
9626 int perf_event_overflow(struct perf_event *event,
9627                         struct perf_sample_data *data,
9628                         struct pt_regs *regs)
9629 {
9630         return __perf_event_overflow(event, 1, data, regs);
9631 }
9632
9633 /*
9634  * Generic software event infrastructure
9635  */
9636
9637 struct swevent_htable {
9638         struct swevent_hlist            *swevent_hlist;
9639         struct mutex                    hlist_mutex;
9640         int                             hlist_refcount;
9641
9642         /* Recursion avoidance in each contexts */
9643         int                             recursion[PERF_NR_CONTEXTS];
9644 };
9645
9646 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9647
9648 /*
9649  * We directly increment event->count and keep a second value in
9650  * event->hw.period_left to count intervals. This period event
9651  * is kept in the range [-sample_period, 0] so that we can use the
9652  * sign as trigger.
9653  */
9654
9655 u64 perf_swevent_set_period(struct perf_event *event)
9656 {
9657         struct hw_perf_event *hwc = &event->hw;
9658         u64 period = hwc->last_period;
9659         u64 nr, offset;
9660         s64 old, val;
9661
9662         hwc->last_period = hwc->sample_period;
9663
9664         old = local64_read(&hwc->period_left);
9665         do {
9666                 val = old;
9667                 if (val < 0)
9668                         return 0;
9669
9670                 nr = div64_u64(period + val, period);
9671                 offset = nr * period;
9672                 val -= offset;
9673         } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9674
9675         return nr;
9676 }
9677
9678 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9679                                     struct perf_sample_data *data,
9680                                     struct pt_regs *regs)
9681 {
9682         struct hw_perf_event *hwc = &event->hw;
9683         int throttle = 0;
9684
9685         if (!overflow)
9686                 overflow = perf_swevent_set_period(event);
9687
9688         if (hwc->interrupts == MAX_INTERRUPTS)
9689                 return;
9690
9691         for (; overflow; overflow--) {
9692                 if (__perf_event_overflow(event, throttle,
9693                                             data, regs)) {
9694                         /*
9695                          * We inhibit the overflow from happening when
9696                          * hwc->interrupts == MAX_INTERRUPTS.
9697                          */
9698                         break;
9699                 }
9700                 throttle = 1;
9701         }
9702 }
9703
9704 static void perf_swevent_event(struct perf_event *event, u64 nr,
9705                                struct perf_sample_data *data,
9706                                struct pt_regs *regs)
9707 {
9708         struct hw_perf_event *hwc = &event->hw;
9709
9710         local64_add(nr, &event->count);
9711
9712         if (!regs)
9713                 return;
9714
9715         if (!is_sampling_event(event))
9716                 return;
9717
9718         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9719                 data->period = nr;
9720                 return perf_swevent_overflow(event, 1, data, regs);
9721         } else
9722                 data->period = event->hw.last_period;
9723
9724         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9725                 return perf_swevent_overflow(event, 1, data, regs);
9726
9727         if (local64_add_negative(nr, &hwc->period_left))
9728                 return;
9729
9730         perf_swevent_overflow(event, 0, data, regs);
9731 }
9732
9733 static int perf_exclude_event(struct perf_event *event,
9734                               struct pt_regs *regs)
9735 {
9736         if (event->hw.state & PERF_HES_STOPPED)
9737                 return 1;
9738
9739         if (regs) {
9740                 if (event->attr.exclude_user && user_mode(regs))
9741                         return 1;
9742
9743                 if (event->attr.exclude_kernel && !user_mode(regs))
9744                         return 1;
9745         }
9746
9747         return 0;
9748 }
9749
9750 static int perf_swevent_match(struct perf_event *event,
9751                                 enum perf_type_id type,
9752                                 u32 event_id,
9753                                 struct perf_sample_data *data,
9754                                 struct pt_regs *regs)
9755 {
9756         if (event->attr.type != type)
9757                 return 0;
9758
9759         if (event->attr.config != event_id)
9760                 return 0;
9761
9762         if (perf_exclude_event(event, regs))
9763                 return 0;
9764
9765         return 1;
9766 }
9767
9768 static inline u64 swevent_hash(u64 type, u32 event_id)
9769 {
9770         u64 val = event_id | (type << 32);
9771
9772         return hash_64(val, SWEVENT_HLIST_BITS);
9773 }
9774
9775 static inline struct hlist_head *
9776 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9777 {
9778         u64 hash = swevent_hash(type, event_id);
9779
9780         return &hlist->heads[hash];
9781 }
9782
9783 /* For the read side: events when they trigger */
9784 static inline struct hlist_head *
9785 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9786 {
9787         struct swevent_hlist *hlist;
9788
9789         hlist = rcu_dereference(swhash->swevent_hlist);
9790         if (!hlist)
9791                 return NULL;
9792
9793         return __find_swevent_head(hlist, type, event_id);
9794 }
9795
9796 /* For the event head insertion and removal in the hlist */
9797 static inline struct hlist_head *
9798 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9799 {
9800         struct swevent_hlist *hlist;
9801         u32 event_id = event->attr.config;
9802         u64 type = event->attr.type;
9803
9804         /*
9805          * Event scheduling is always serialized against hlist allocation
9806          * and release. Which makes the protected version suitable here.
9807          * The context lock guarantees that.
9808          */
9809         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9810                                           lockdep_is_held(&event->ctx->lock));
9811         if (!hlist)
9812                 return NULL;
9813
9814         return __find_swevent_head(hlist, type, event_id);
9815 }
9816
9817 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9818                                     u64 nr,
9819                                     struct perf_sample_data *data,
9820                                     struct pt_regs *regs)
9821 {
9822         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9823         struct perf_event *event;
9824         struct hlist_head *head;
9825
9826         rcu_read_lock();
9827         head = find_swevent_head_rcu(swhash, type, event_id);
9828         if (!head)
9829                 goto end;
9830
9831         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9832                 if (perf_swevent_match(event, type, event_id, data, regs))
9833                         perf_swevent_event(event, nr, data, regs);
9834         }
9835 end:
9836         rcu_read_unlock();
9837 }
9838
9839 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9840
9841 int perf_swevent_get_recursion_context(void)
9842 {
9843         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9844
9845         return get_recursion_context(swhash->recursion);
9846 }
9847 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9848
9849 void perf_swevent_put_recursion_context(int rctx)
9850 {
9851         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9852
9853         put_recursion_context(swhash->recursion, rctx);
9854 }
9855
9856 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9857 {
9858         struct perf_sample_data data;
9859
9860         if (WARN_ON_ONCE(!regs))
9861                 return;
9862
9863         perf_sample_data_init(&data, addr, 0);
9864         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9865 }
9866
9867 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9868 {
9869         int rctx;
9870
9871         preempt_disable_notrace();
9872         rctx = perf_swevent_get_recursion_context();
9873         if (unlikely(rctx < 0))
9874                 goto fail;
9875
9876         ___perf_sw_event(event_id, nr, regs, addr);
9877
9878         perf_swevent_put_recursion_context(rctx);
9879 fail:
9880         preempt_enable_notrace();
9881 }
9882
9883 static void perf_swevent_read(struct perf_event *event)
9884 {
9885 }
9886
9887 static int perf_swevent_add(struct perf_event *event, int flags)
9888 {
9889         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9890         struct hw_perf_event *hwc = &event->hw;
9891         struct hlist_head *head;
9892
9893         if (is_sampling_event(event)) {
9894                 hwc->last_period = hwc->sample_period;
9895                 perf_swevent_set_period(event);
9896         }
9897
9898         hwc->state = !(flags & PERF_EF_START);
9899
9900         head = find_swevent_head(swhash, event);
9901         if (WARN_ON_ONCE(!head))
9902                 return -EINVAL;
9903
9904         hlist_add_head_rcu(&event->hlist_entry, head);
9905         perf_event_update_userpage(event);
9906
9907         return 0;
9908 }
9909
9910 static void perf_swevent_del(struct perf_event *event, int flags)
9911 {
9912         hlist_del_rcu(&event->hlist_entry);
9913 }
9914
9915 static void perf_swevent_start(struct perf_event *event, int flags)
9916 {
9917         event->hw.state = 0;
9918 }
9919
9920 static void perf_swevent_stop(struct perf_event *event, int flags)
9921 {
9922         event->hw.state = PERF_HES_STOPPED;
9923 }
9924
9925 /* Deref the hlist from the update side */
9926 static inline struct swevent_hlist *
9927 swevent_hlist_deref(struct swevent_htable *swhash)
9928 {
9929         return rcu_dereference_protected(swhash->swevent_hlist,
9930                                          lockdep_is_held(&swhash->hlist_mutex));
9931 }
9932
9933 static void swevent_hlist_release(struct swevent_htable *swhash)
9934 {
9935         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9936
9937         if (!hlist)
9938                 return;
9939
9940         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9941         kfree_rcu(hlist, rcu_head);
9942 }
9943
9944 static void swevent_hlist_put_cpu(int cpu)
9945 {
9946         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9947
9948         mutex_lock(&swhash->hlist_mutex);
9949
9950         if (!--swhash->hlist_refcount)
9951                 swevent_hlist_release(swhash);
9952
9953         mutex_unlock(&swhash->hlist_mutex);
9954 }
9955
9956 static void swevent_hlist_put(void)
9957 {
9958         int cpu;
9959
9960         for_each_possible_cpu(cpu)
9961                 swevent_hlist_put_cpu(cpu);
9962 }
9963
9964 static int swevent_hlist_get_cpu(int cpu)
9965 {
9966         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9967         int err = 0;
9968
9969         mutex_lock(&swhash->hlist_mutex);
9970         if (!swevent_hlist_deref(swhash) &&
9971             cpumask_test_cpu(cpu, perf_online_mask)) {
9972                 struct swevent_hlist *hlist;
9973
9974                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9975                 if (!hlist) {
9976                         err = -ENOMEM;
9977                         goto exit;
9978                 }
9979                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9980         }
9981         swhash->hlist_refcount++;
9982 exit:
9983         mutex_unlock(&swhash->hlist_mutex);
9984
9985         return err;
9986 }
9987
9988 static int swevent_hlist_get(void)
9989 {
9990         int err, cpu, failed_cpu;
9991
9992         mutex_lock(&pmus_lock);
9993         for_each_possible_cpu(cpu) {
9994                 err = swevent_hlist_get_cpu(cpu);
9995                 if (err) {
9996                         failed_cpu = cpu;
9997                         goto fail;
9998                 }
9999         }
10000         mutex_unlock(&pmus_lock);
10001         return 0;
10002 fail:
10003         for_each_possible_cpu(cpu) {
10004                 if (cpu == failed_cpu)
10005                         break;
10006                 swevent_hlist_put_cpu(cpu);
10007         }
10008         mutex_unlock(&pmus_lock);
10009         return err;
10010 }
10011
10012 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10013
10014 static void sw_perf_event_destroy(struct perf_event *event)
10015 {
10016         u64 event_id = event->attr.config;
10017
10018         WARN_ON(event->parent);
10019
10020         static_key_slow_dec(&perf_swevent_enabled[event_id]);
10021         swevent_hlist_put();
10022 }
10023
10024 static struct pmu perf_cpu_clock; /* fwd declaration */
10025 static struct pmu perf_task_clock;
10026
10027 static int perf_swevent_init(struct perf_event *event)
10028 {
10029         u64 event_id = event->attr.config;
10030
10031         if (event->attr.type != PERF_TYPE_SOFTWARE)
10032                 return -ENOENT;
10033
10034         /*
10035          * no branch sampling for software events
10036          */
10037         if (has_branch_stack(event))
10038                 return -EOPNOTSUPP;
10039
10040         switch (event_id) {
10041         case PERF_COUNT_SW_CPU_CLOCK:
10042                 event->attr.type = perf_cpu_clock.type;
10043                 return -ENOENT;
10044         case PERF_COUNT_SW_TASK_CLOCK:
10045                 event->attr.type = perf_task_clock.type;
10046                 return -ENOENT;
10047
10048         default:
10049                 break;
10050         }
10051
10052         if (event_id >= PERF_COUNT_SW_MAX)
10053                 return -ENOENT;
10054
10055         if (!event->parent) {
10056                 int err;
10057
10058                 err = swevent_hlist_get();
10059                 if (err)
10060                         return err;
10061
10062                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
10063                 event->destroy = sw_perf_event_destroy;
10064         }
10065
10066         return 0;
10067 }
10068
10069 static struct pmu perf_swevent = {
10070         .task_ctx_nr    = perf_sw_context,
10071
10072         .capabilities   = PERF_PMU_CAP_NO_NMI,
10073
10074         .event_init     = perf_swevent_init,
10075         .add            = perf_swevent_add,
10076         .del            = perf_swevent_del,
10077         .start          = perf_swevent_start,
10078         .stop           = perf_swevent_stop,
10079         .read           = perf_swevent_read,
10080 };
10081
10082 #ifdef CONFIG_EVENT_TRACING
10083
10084 static void tp_perf_event_destroy(struct perf_event *event)
10085 {
10086         perf_trace_destroy(event);
10087 }
10088
10089 static int perf_tp_event_init(struct perf_event *event)
10090 {
10091         int err;
10092
10093         if (event->attr.type != PERF_TYPE_TRACEPOINT)
10094                 return -ENOENT;
10095
10096         /*
10097          * no branch sampling for tracepoint events
10098          */
10099         if (has_branch_stack(event))
10100                 return -EOPNOTSUPP;
10101
10102         err = perf_trace_init(event);
10103         if (err)
10104                 return err;
10105
10106         event->destroy = tp_perf_event_destroy;
10107
10108         return 0;
10109 }
10110
10111 static struct pmu perf_tracepoint = {
10112         .task_ctx_nr    = perf_sw_context,
10113
10114         .event_init     = perf_tp_event_init,
10115         .add            = perf_trace_add,
10116         .del            = perf_trace_del,
10117         .start          = perf_swevent_start,
10118         .stop           = perf_swevent_stop,
10119         .read           = perf_swevent_read,
10120 };
10121
10122 static int perf_tp_filter_match(struct perf_event *event,
10123                                 struct perf_sample_data *data)
10124 {
10125         void *record = data->raw->frag.data;
10126
10127         /* only top level events have filters set */
10128         if (event->parent)
10129                 event = event->parent;
10130
10131         if (likely(!event->filter) || filter_match_preds(event->filter, record))
10132                 return 1;
10133         return 0;
10134 }
10135
10136 static int perf_tp_event_match(struct perf_event *event,
10137                                 struct perf_sample_data *data,
10138                                 struct pt_regs *regs)
10139 {
10140         if (event->hw.state & PERF_HES_STOPPED)
10141                 return 0;
10142         /*
10143          * If exclude_kernel, only trace user-space tracepoints (uprobes)
10144          */
10145         if (event->attr.exclude_kernel && !user_mode(regs))
10146                 return 0;
10147
10148         if (!perf_tp_filter_match(event, data))
10149                 return 0;
10150
10151         return 1;
10152 }
10153
10154 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10155                                struct trace_event_call *call, u64 count,
10156                                struct pt_regs *regs, struct hlist_head *head,
10157                                struct task_struct *task)
10158 {
10159         if (bpf_prog_array_valid(call)) {
10160                 *(struct pt_regs **)raw_data = regs;
10161                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10162                         perf_swevent_put_recursion_context(rctx);
10163                         return;
10164                 }
10165         }
10166         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10167                       rctx, task);
10168 }
10169 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10170
10171 static void __perf_tp_event_target_task(u64 count, void *record,
10172                                         struct pt_regs *regs,
10173                                         struct perf_sample_data *data,
10174                                         struct perf_event *event)
10175 {
10176         struct trace_entry *entry = record;
10177
10178         if (event->attr.config != entry->type)
10179                 return;
10180         /* Cannot deliver synchronous signal to other task. */
10181         if (event->attr.sigtrap)
10182                 return;
10183         if (perf_tp_event_match(event, data, regs))
10184                 perf_swevent_event(event, count, data, regs);
10185 }
10186
10187 static void perf_tp_event_target_task(u64 count, void *record,
10188                                       struct pt_regs *regs,
10189                                       struct perf_sample_data *data,
10190                                       struct perf_event_context *ctx)
10191 {
10192         unsigned int cpu = smp_processor_id();
10193         struct pmu *pmu = &perf_tracepoint;
10194         struct perf_event *event, *sibling;
10195
10196         perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10197                 __perf_tp_event_target_task(count, record, regs, data, event);
10198                 for_each_sibling_event(sibling, event)
10199                         __perf_tp_event_target_task(count, record, regs, data, sibling);
10200         }
10201
10202         perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10203                 __perf_tp_event_target_task(count, record, regs, data, event);
10204                 for_each_sibling_event(sibling, event)
10205                         __perf_tp_event_target_task(count, record, regs, data, sibling);
10206         }
10207 }
10208
10209 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10210                    struct pt_regs *regs, struct hlist_head *head, int rctx,
10211                    struct task_struct *task)
10212 {
10213         struct perf_sample_data data;
10214         struct perf_event *event;
10215
10216         struct perf_raw_record raw = {
10217                 .frag = {
10218                         .size = entry_size,
10219                         .data = record,
10220                 },
10221         };
10222
10223         perf_sample_data_init(&data, 0, 0);
10224         perf_sample_save_raw_data(&data, &raw);
10225
10226         perf_trace_buf_update(record, event_type);
10227
10228         hlist_for_each_entry_rcu(event, head, hlist_entry) {
10229                 if (perf_tp_event_match(event, &data, regs)) {
10230                         perf_swevent_event(event, count, &data, regs);
10231
10232                         /*
10233                          * Here use the same on-stack perf_sample_data,
10234                          * some members in data are event-specific and
10235                          * need to be re-computed for different sweveents.
10236                          * Re-initialize data->sample_flags safely to avoid
10237                          * the problem that next event skips preparing data
10238                          * because data->sample_flags is set.
10239                          */
10240                         perf_sample_data_init(&data, 0, 0);
10241                         perf_sample_save_raw_data(&data, &raw);
10242                 }
10243         }
10244
10245         /*
10246          * If we got specified a target task, also iterate its context and
10247          * deliver this event there too.
10248          */
10249         if (task && task != current) {
10250                 struct perf_event_context *ctx;
10251
10252                 rcu_read_lock();
10253                 ctx = rcu_dereference(task->perf_event_ctxp);
10254                 if (!ctx)
10255                         goto unlock;
10256
10257                 raw_spin_lock(&ctx->lock);
10258                 perf_tp_event_target_task(count, record, regs, &data, ctx);
10259                 raw_spin_unlock(&ctx->lock);
10260 unlock:
10261                 rcu_read_unlock();
10262         }
10263
10264         perf_swevent_put_recursion_context(rctx);
10265 }
10266 EXPORT_SYMBOL_GPL(perf_tp_event);
10267
10268 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10269 /*
10270  * Flags in config, used by dynamic PMU kprobe and uprobe
10271  * The flags should match following PMU_FORMAT_ATTR().
10272  *
10273  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10274  *                               if not set, create kprobe/uprobe
10275  *
10276  * The following values specify a reference counter (or semaphore in the
10277  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10278  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10279  *
10280  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
10281  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
10282  */
10283 enum perf_probe_config {
10284         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10285         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10286         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10287 };
10288
10289 PMU_FORMAT_ATTR(retprobe, "config:0");
10290 #endif
10291
10292 #ifdef CONFIG_KPROBE_EVENTS
10293 static struct attribute *kprobe_attrs[] = {
10294         &format_attr_retprobe.attr,
10295         NULL,
10296 };
10297
10298 static struct attribute_group kprobe_format_group = {
10299         .name = "format",
10300         .attrs = kprobe_attrs,
10301 };
10302
10303 static const struct attribute_group *kprobe_attr_groups[] = {
10304         &kprobe_format_group,
10305         NULL,
10306 };
10307
10308 static int perf_kprobe_event_init(struct perf_event *event);
10309 static struct pmu perf_kprobe = {
10310         .task_ctx_nr    = perf_sw_context,
10311         .event_init     = perf_kprobe_event_init,
10312         .add            = perf_trace_add,
10313         .del            = perf_trace_del,
10314         .start          = perf_swevent_start,
10315         .stop           = perf_swevent_stop,
10316         .read           = perf_swevent_read,
10317         .attr_groups    = kprobe_attr_groups,
10318 };
10319
10320 static int perf_kprobe_event_init(struct perf_event *event)
10321 {
10322         int err;
10323         bool is_retprobe;
10324
10325         if (event->attr.type != perf_kprobe.type)
10326                 return -ENOENT;
10327
10328         if (!perfmon_capable())
10329                 return -EACCES;
10330
10331         /*
10332          * no branch sampling for probe events
10333          */
10334         if (has_branch_stack(event))
10335                 return -EOPNOTSUPP;
10336
10337         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10338         err = perf_kprobe_init(event, is_retprobe);
10339         if (err)
10340                 return err;
10341
10342         event->destroy = perf_kprobe_destroy;
10343
10344         return 0;
10345 }
10346 #endif /* CONFIG_KPROBE_EVENTS */
10347
10348 #ifdef CONFIG_UPROBE_EVENTS
10349 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10350
10351 static struct attribute *uprobe_attrs[] = {
10352         &format_attr_retprobe.attr,
10353         &format_attr_ref_ctr_offset.attr,
10354         NULL,
10355 };
10356
10357 static struct attribute_group uprobe_format_group = {
10358         .name = "format",
10359         .attrs = uprobe_attrs,
10360 };
10361
10362 static const struct attribute_group *uprobe_attr_groups[] = {
10363         &uprobe_format_group,
10364         NULL,
10365 };
10366
10367 static int perf_uprobe_event_init(struct perf_event *event);
10368 static struct pmu perf_uprobe = {
10369         .task_ctx_nr    = perf_sw_context,
10370         .event_init     = perf_uprobe_event_init,
10371         .add            = perf_trace_add,
10372         .del            = perf_trace_del,
10373         .start          = perf_swevent_start,
10374         .stop           = perf_swevent_stop,
10375         .read           = perf_swevent_read,
10376         .attr_groups    = uprobe_attr_groups,
10377 };
10378
10379 static int perf_uprobe_event_init(struct perf_event *event)
10380 {
10381         int err;
10382         unsigned long ref_ctr_offset;
10383         bool is_retprobe;
10384
10385         if (event->attr.type != perf_uprobe.type)
10386                 return -ENOENT;
10387
10388         if (!perfmon_capable())
10389                 return -EACCES;
10390
10391         /*
10392          * no branch sampling for probe events
10393          */
10394         if (has_branch_stack(event))
10395                 return -EOPNOTSUPP;
10396
10397         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10398         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10399         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10400         if (err)
10401                 return err;
10402
10403         event->destroy = perf_uprobe_destroy;
10404
10405         return 0;
10406 }
10407 #endif /* CONFIG_UPROBE_EVENTS */
10408
10409 static inline void perf_tp_register(void)
10410 {
10411         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10412 #ifdef CONFIG_KPROBE_EVENTS
10413         perf_pmu_register(&perf_kprobe, "kprobe", -1);
10414 #endif
10415 #ifdef CONFIG_UPROBE_EVENTS
10416         perf_pmu_register(&perf_uprobe, "uprobe", -1);
10417 #endif
10418 }
10419
10420 static void perf_event_free_filter(struct perf_event *event)
10421 {
10422         ftrace_profile_free_filter(event);
10423 }
10424
10425 #ifdef CONFIG_BPF_SYSCALL
10426 static void bpf_overflow_handler(struct perf_event *event,
10427                                  struct perf_sample_data *data,
10428                                  struct pt_regs *regs)
10429 {
10430         struct bpf_perf_event_data_kern ctx = {
10431                 .data = data,
10432                 .event = event,
10433         };
10434         struct bpf_prog *prog;
10435         int ret = 0;
10436
10437         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10438         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10439                 goto out;
10440         rcu_read_lock();
10441         prog = READ_ONCE(event->prog);
10442         if (prog) {
10443                 perf_prepare_sample(data, event, regs);
10444                 ret = bpf_prog_run(prog, &ctx);
10445         }
10446         rcu_read_unlock();
10447 out:
10448         __this_cpu_dec(bpf_prog_active);
10449         if (!ret)
10450                 return;
10451
10452         event->orig_overflow_handler(event, data, regs);
10453 }
10454
10455 static int perf_event_set_bpf_handler(struct perf_event *event,
10456                                       struct bpf_prog *prog,
10457                                       u64 bpf_cookie)
10458 {
10459         if (event->overflow_handler_context)
10460                 /* hw breakpoint or kernel counter */
10461                 return -EINVAL;
10462
10463         if (event->prog)
10464                 return -EEXIST;
10465
10466         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10467                 return -EINVAL;
10468
10469         if (event->attr.precise_ip &&
10470             prog->call_get_stack &&
10471             (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10472              event->attr.exclude_callchain_kernel ||
10473              event->attr.exclude_callchain_user)) {
10474                 /*
10475                  * On perf_event with precise_ip, calling bpf_get_stack()
10476                  * may trigger unwinder warnings and occasional crashes.
10477                  * bpf_get_[stack|stackid] works around this issue by using
10478                  * callchain attached to perf_sample_data. If the
10479                  * perf_event does not full (kernel and user) callchain
10480                  * attached to perf_sample_data, do not allow attaching BPF
10481                  * program that calls bpf_get_[stack|stackid].
10482                  */
10483                 return -EPROTO;
10484         }
10485
10486         event->prog = prog;
10487         event->bpf_cookie = bpf_cookie;
10488         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10489         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10490         return 0;
10491 }
10492
10493 static void perf_event_free_bpf_handler(struct perf_event *event)
10494 {
10495         struct bpf_prog *prog = event->prog;
10496
10497         if (!prog)
10498                 return;
10499
10500         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10501         event->prog = NULL;
10502         bpf_prog_put(prog);
10503 }
10504 #else
10505 static int perf_event_set_bpf_handler(struct perf_event *event,
10506                                       struct bpf_prog *prog,
10507                                       u64 bpf_cookie)
10508 {
10509         return -EOPNOTSUPP;
10510 }
10511 static void perf_event_free_bpf_handler(struct perf_event *event)
10512 {
10513 }
10514 #endif
10515
10516 /*
10517  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10518  * with perf_event_open()
10519  */
10520 static inline bool perf_event_is_tracing(struct perf_event *event)
10521 {
10522         if (event->pmu == &perf_tracepoint)
10523                 return true;
10524 #ifdef CONFIG_KPROBE_EVENTS
10525         if (event->pmu == &perf_kprobe)
10526                 return true;
10527 #endif
10528 #ifdef CONFIG_UPROBE_EVENTS
10529         if (event->pmu == &perf_uprobe)
10530                 return true;
10531 #endif
10532         return false;
10533 }
10534
10535 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10536                             u64 bpf_cookie)
10537 {
10538         bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10539
10540         if (!perf_event_is_tracing(event))
10541                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10542
10543         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10544         is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10545         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10546         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10547         if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10548                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10549                 return -EINVAL;
10550
10551         if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10552             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10553             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10554                 return -EINVAL;
10555
10556         if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
10557                 /* only uprobe programs are allowed to be sleepable */
10558                 return -EINVAL;
10559
10560         /* Kprobe override only works for kprobes, not uprobes. */
10561         if (prog->kprobe_override && !is_kprobe)
10562                 return -EINVAL;
10563
10564         if (is_tracepoint || is_syscall_tp) {
10565                 int off = trace_event_get_offsets(event->tp_event);
10566
10567                 if (prog->aux->max_ctx_offset > off)
10568                         return -EACCES;
10569         }
10570
10571         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10572 }
10573
10574 void perf_event_free_bpf_prog(struct perf_event *event)
10575 {
10576         if (!perf_event_is_tracing(event)) {
10577                 perf_event_free_bpf_handler(event);
10578                 return;
10579         }
10580         perf_event_detach_bpf_prog(event);
10581 }
10582
10583 #else
10584
10585 static inline void perf_tp_register(void)
10586 {
10587 }
10588
10589 static void perf_event_free_filter(struct perf_event *event)
10590 {
10591 }
10592
10593 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10594                             u64 bpf_cookie)
10595 {
10596         return -ENOENT;
10597 }
10598
10599 void perf_event_free_bpf_prog(struct perf_event *event)
10600 {
10601 }
10602 #endif /* CONFIG_EVENT_TRACING */
10603
10604 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10605 void perf_bp_event(struct perf_event *bp, void *data)
10606 {
10607         struct perf_sample_data sample;
10608         struct pt_regs *regs = data;
10609
10610         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10611
10612         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10613                 perf_swevent_event(bp, 1, &sample, regs);
10614 }
10615 #endif
10616
10617 /*
10618  * Allocate a new address filter
10619  */
10620 static struct perf_addr_filter *
10621 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10622 {
10623         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10624         struct perf_addr_filter *filter;
10625
10626         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10627         if (!filter)
10628                 return NULL;
10629
10630         INIT_LIST_HEAD(&filter->entry);
10631         list_add_tail(&filter->entry, filters);
10632
10633         return filter;
10634 }
10635
10636 static void free_filters_list(struct list_head *filters)
10637 {
10638         struct perf_addr_filter *filter, *iter;
10639
10640         list_for_each_entry_safe(filter, iter, filters, entry) {
10641                 path_put(&filter->path);
10642                 list_del(&filter->entry);
10643                 kfree(filter);
10644         }
10645 }
10646
10647 /*
10648  * Free existing address filters and optionally install new ones
10649  */
10650 static void perf_addr_filters_splice(struct perf_event *event,
10651                                      struct list_head *head)
10652 {
10653         unsigned long flags;
10654         LIST_HEAD(list);
10655
10656         if (!has_addr_filter(event))
10657                 return;
10658
10659         /* don't bother with children, they don't have their own filters */
10660         if (event->parent)
10661                 return;
10662
10663         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10664
10665         list_splice_init(&event->addr_filters.list, &list);
10666         if (head)
10667                 list_splice(head, &event->addr_filters.list);
10668
10669         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10670
10671         free_filters_list(&list);
10672 }
10673
10674 /*
10675  * Scan through mm's vmas and see if one of them matches the
10676  * @filter; if so, adjust filter's address range.
10677  * Called with mm::mmap_lock down for reading.
10678  */
10679 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10680                                    struct mm_struct *mm,
10681                                    struct perf_addr_filter_range *fr)
10682 {
10683         struct vm_area_struct *vma;
10684         VMA_ITERATOR(vmi, mm, 0);
10685
10686         for_each_vma(vmi, vma) {
10687                 if (!vma->vm_file)
10688                         continue;
10689
10690                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10691                         return;
10692         }
10693 }
10694
10695 /*
10696  * Update event's address range filters based on the
10697  * task's existing mappings, if any.
10698  */
10699 static void perf_event_addr_filters_apply(struct perf_event *event)
10700 {
10701         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10702         struct task_struct *task = READ_ONCE(event->ctx->task);
10703         struct perf_addr_filter *filter;
10704         struct mm_struct *mm = NULL;
10705         unsigned int count = 0;
10706         unsigned long flags;
10707
10708         /*
10709          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10710          * will stop on the parent's child_mutex that our caller is also holding
10711          */
10712         if (task == TASK_TOMBSTONE)
10713                 return;
10714
10715         if (ifh->nr_file_filters) {
10716                 mm = get_task_mm(task);
10717                 if (!mm)
10718                         goto restart;
10719
10720                 mmap_read_lock(mm);
10721         }
10722
10723         raw_spin_lock_irqsave(&ifh->lock, flags);
10724         list_for_each_entry(filter, &ifh->list, entry) {
10725                 if (filter->path.dentry) {
10726                         /*
10727                          * Adjust base offset if the filter is associated to a
10728                          * binary that needs to be mapped:
10729                          */
10730                         event->addr_filter_ranges[count].start = 0;
10731                         event->addr_filter_ranges[count].size = 0;
10732
10733                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10734                 } else {
10735                         event->addr_filter_ranges[count].start = filter->offset;
10736                         event->addr_filter_ranges[count].size  = filter->size;
10737                 }
10738
10739                 count++;
10740         }
10741
10742         event->addr_filters_gen++;
10743         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10744
10745         if (ifh->nr_file_filters) {
10746                 mmap_read_unlock(mm);
10747
10748                 mmput(mm);
10749         }
10750
10751 restart:
10752         perf_event_stop(event, 1);
10753 }
10754
10755 /*
10756  * Address range filtering: limiting the data to certain
10757  * instruction address ranges. Filters are ioctl()ed to us from
10758  * userspace as ascii strings.
10759  *
10760  * Filter string format:
10761  *
10762  * ACTION RANGE_SPEC
10763  * where ACTION is one of the
10764  *  * "filter": limit the trace to this region
10765  *  * "start": start tracing from this address
10766  *  * "stop": stop tracing at this address/region;
10767  * RANGE_SPEC is
10768  *  * for kernel addresses: <start address>[/<size>]
10769  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10770  *
10771  * if <size> is not specified or is zero, the range is treated as a single
10772  * address; not valid for ACTION=="filter".
10773  */
10774 enum {
10775         IF_ACT_NONE = -1,
10776         IF_ACT_FILTER,
10777         IF_ACT_START,
10778         IF_ACT_STOP,
10779         IF_SRC_FILE,
10780         IF_SRC_KERNEL,
10781         IF_SRC_FILEADDR,
10782         IF_SRC_KERNELADDR,
10783 };
10784
10785 enum {
10786         IF_STATE_ACTION = 0,
10787         IF_STATE_SOURCE,
10788         IF_STATE_END,
10789 };
10790
10791 static const match_table_t if_tokens = {
10792         { IF_ACT_FILTER,        "filter" },
10793         { IF_ACT_START,         "start" },
10794         { IF_ACT_STOP,          "stop" },
10795         { IF_SRC_FILE,          "%u/%u@%s" },
10796         { IF_SRC_KERNEL,        "%u/%u" },
10797         { IF_SRC_FILEADDR,      "%u@%s" },
10798         { IF_SRC_KERNELADDR,    "%u" },
10799         { IF_ACT_NONE,          NULL },
10800 };
10801
10802 /*
10803  * Address filter string parser
10804  */
10805 static int
10806 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10807                              struct list_head *filters)
10808 {
10809         struct perf_addr_filter *filter = NULL;
10810         char *start, *orig, *filename = NULL;
10811         substring_t args[MAX_OPT_ARGS];
10812         int state = IF_STATE_ACTION, token;
10813         unsigned int kernel = 0;
10814         int ret = -EINVAL;
10815
10816         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10817         if (!fstr)
10818                 return -ENOMEM;
10819
10820         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10821                 static const enum perf_addr_filter_action_t actions[] = {
10822                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10823                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10824                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10825                 };
10826                 ret = -EINVAL;
10827
10828                 if (!*start)
10829                         continue;
10830
10831                 /* filter definition begins */
10832                 if (state == IF_STATE_ACTION) {
10833                         filter = perf_addr_filter_new(event, filters);
10834                         if (!filter)
10835                                 goto fail;
10836                 }
10837
10838                 token = match_token(start, if_tokens, args);
10839                 switch (token) {
10840                 case IF_ACT_FILTER:
10841                 case IF_ACT_START:
10842                 case IF_ACT_STOP:
10843                         if (state != IF_STATE_ACTION)
10844                                 goto fail;
10845
10846                         filter->action = actions[token];
10847                         state = IF_STATE_SOURCE;
10848                         break;
10849
10850                 case IF_SRC_KERNELADDR:
10851                 case IF_SRC_KERNEL:
10852                         kernel = 1;
10853                         fallthrough;
10854
10855                 case IF_SRC_FILEADDR:
10856                 case IF_SRC_FILE:
10857                         if (state != IF_STATE_SOURCE)
10858                                 goto fail;
10859
10860                         *args[0].to = 0;
10861                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10862                         if (ret)
10863                                 goto fail;
10864
10865                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10866                                 *args[1].to = 0;
10867                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10868                                 if (ret)
10869                                         goto fail;
10870                         }
10871
10872                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10873                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10874
10875                                 kfree(filename);
10876                                 filename = match_strdup(&args[fpos]);
10877                                 if (!filename) {
10878                                         ret = -ENOMEM;
10879                                         goto fail;
10880                                 }
10881                         }
10882
10883                         state = IF_STATE_END;
10884                         break;
10885
10886                 default:
10887                         goto fail;
10888                 }
10889
10890                 /*
10891                  * Filter definition is fully parsed, validate and install it.
10892                  * Make sure that it doesn't contradict itself or the event's
10893                  * attribute.
10894                  */
10895                 if (state == IF_STATE_END) {
10896                         ret = -EINVAL;
10897
10898                         /*
10899                          * ACTION "filter" must have a non-zero length region
10900                          * specified.
10901                          */
10902                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10903                             !filter->size)
10904                                 goto fail;
10905
10906                         if (!kernel) {
10907                                 if (!filename)
10908                                         goto fail;
10909
10910                                 /*
10911                                  * For now, we only support file-based filters
10912                                  * in per-task events; doing so for CPU-wide
10913                                  * events requires additional context switching
10914                                  * trickery, since same object code will be
10915                                  * mapped at different virtual addresses in
10916                                  * different processes.
10917                                  */
10918                                 ret = -EOPNOTSUPP;
10919                                 if (!event->ctx->task)
10920                                         goto fail;
10921
10922                                 /* look up the path and grab its inode */
10923                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10924                                                 &filter->path);
10925                                 if (ret)
10926                                         goto fail;
10927
10928                                 ret = -EINVAL;
10929                                 if (!filter->path.dentry ||
10930                                     !S_ISREG(d_inode(filter->path.dentry)
10931                                              ->i_mode))
10932                                         goto fail;
10933
10934                                 event->addr_filters.nr_file_filters++;
10935                         }
10936
10937                         /* ready to consume more filters */
10938                         kfree(filename);
10939                         filename = NULL;
10940                         state = IF_STATE_ACTION;
10941                         filter = NULL;
10942                         kernel = 0;
10943                 }
10944         }
10945
10946         if (state != IF_STATE_ACTION)
10947                 goto fail;
10948
10949         kfree(filename);
10950         kfree(orig);
10951
10952         return 0;
10953
10954 fail:
10955         kfree(filename);
10956         free_filters_list(filters);
10957         kfree(orig);
10958
10959         return ret;
10960 }
10961
10962 static int
10963 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10964 {
10965         LIST_HEAD(filters);
10966         int ret;
10967
10968         /*
10969          * Since this is called in perf_ioctl() path, we're already holding
10970          * ctx::mutex.
10971          */
10972         lockdep_assert_held(&event->ctx->mutex);
10973
10974         if (WARN_ON_ONCE(event->parent))
10975                 return -EINVAL;
10976
10977         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10978         if (ret)
10979                 goto fail_clear_files;
10980
10981         ret = event->pmu->addr_filters_validate(&filters);
10982         if (ret)
10983                 goto fail_free_filters;
10984
10985         /* remove existing filters, if any */
10986         perf_addr_filters_splice(event, &filters);
10987
10988         /* install new filters */
10989         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10990
10991         return ret;
10992
10993 fail_free_filters:
10994         free_filters_list(&filters);
10995
10996 fail_clear_files:
10997         event->addr_filters.nr_file_filters = 0;
10998
10999         return ret;
11000 }
11001
11002 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11003 {
11004         int ret = -EINVAL;
11005         char *filter_str;
11006
11007         filter_str = strndup_user(arg, PAGE_SIZE);
11008         if (IS_ERR(filter_str))
11009                 return PTR_ERR(filter_str);
11010
11011 #ifdef CONFIG_EVENT_TRACING
11012         if (perf_event_is_tracing(event)) {
11013                 struct perf_event_context *ctx = event->ctx;
11014
11015                 /*
11016                  * Beware, here be dragons!!
11017                  *
11018                  * the tracepoint muck will deadlock against ctx->mutex, but
11019                  * the tracepoint stuff does not actually need it. So
11020                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11021                  * already have a reference on ctx.
11022                  *
11023                  * This can result in event getting moved to a different ctx,
11024                  * but that does not affect the tracepoint state.
11025                  */
11026                 mutex_unlock(&ctx->mutex);
11027                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11028                 mutex_lock(&ctx->mutex);
11029         } else
11030 #endif
11031         if (has_addr_filter(event))
11032                 ret = perf_event_set_addr_filter(event, filter_str);
11033
11034         kfree(filter_str);
11035         return ret;
11036 }
11037
11038 /*
11039  * hrtimer based swevent callback
11040  */
11041
11042 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11043 {
11044         enum hrtimer_restart ret = HRTIMER_RESTART;
11045         struct perf_sample_data data;
11046         struct pt_regs *regs;
11047         struct perf_event *event;
11048         u64 period;
11049
11050         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11051
11052         if (event->state != PERF_EVENT_STATE_ACTIVE)
11053                 return HRTIMER_NORESTART;
11054
11055         event->pmu->read(event);
11056
11057         perf_sample_data_init(&data, 0, event->hw.last_period);
11058         regs = get_irq_regs();
11059
11060         if (regs && !perf_exclude_event(event, regs)) {
11061                 if (!(event->attr.exclude_idle && is_idle_task(current)))
11062                         if (__perf_event_overflow(event, 1, &data, regs))
11063                                 ret = HRTIMER_NORESTART;
11064         }
11065
11066         period = max_t(u64, 10000, event->hw.sample_period);
11067         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11068
11069         return ret;
11070 }
11071
11072 static void perf_swevent_start_hrtimer(struct perf_event *event)
11073 {
11074         struct hw_perf_event *hwc = &event->hw;
11075         s64 period;
11076
11077         if (!is_sampling_event(event))
11078                 return;
11079
11080         period = local64_read(&hwc->period_left);
11081         if (period) {
11082                 if (period < 0)
11083                         period = 10000;
11084
11085                 local64_set(&hwc->period_left, 0);
11086         } else {
11087                 period = max_t(u64, 10000, hwc->sample_period);
11088         }
11089         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11090                       HRTIMER_MODE_REL_PINNED_HARD);
11091 }
11092
11093 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11094 {
11095         struct hw_perf_event *hwc = &event->hw;
11096
11097         if (is_sampling_event(event)) {
11098                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11099                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11100
11101                 hrtimer_cancel(&hwc->hrtimer);
11102         }
11103 }
11104
11105 static void perf_swevent_init_hrtimer(struct perf_event *event)
11106 {
11107         struct hw_perf_event *hwc = &event->hw;
11108
11109         if (!is_sampling_event(event))
11110                 return;
11111
11112         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11113         hwc->hrtimer.function = perf_swevent_hrtimer;
11114
11115         /*
11116          * Since hrtimers have a fixed rate, we can do a static freq->period
11117          * mapping and avoid the whole period adjust feedback stuff.
11118          */
11119         if (event->attr.freq) {
11120                 long freq = event->attr.sample_freq;
11121
11122                 event->attr.sample_period = NSEC_PER_SEC / freq;
11123                 hwc->sample_period = event->attr.sample_period;
11124                 local64_set(&hwc->period_left, hwc->sample_period);
11125                 hwc->last_period = hwc->sample_period;
11126                 event->attr.freq = 0;
11127         }
11128 }
11129
11130 /*
11131  * Software event: cpu wall time clock
11132  */
11133
11134 static void cpu_clock_event_update(struct perf_event *event)
11135 {
11136         s64 prev;
11137         u64 now;
11138
11139         now = local_clock();
11140         prev = local64_xchg(&event->hw.prev_count, now);
11141         local64_add(now - prev, &event->count);
11142 }
11143
11144 static void cpu_clock_event_start(struct perf_event *event, int flags)
11145 {
11146         local64_set(&event->hw.prev_count, local_clock());
11147         perf_swevent_start_hrtimer(event);
11148 }
11149
11150 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11151 {
11152         perf_swevent_cancel_hrtimer(event);
11153         cpu_clock_event_update(event);
11154 }
11155
11156 static int cpu_clock_event_add(struct perf_event *event, int flags)
11157 {
11158         if (flags & PERF_EF_START)
11159                 cpu_clock_event_start(event, flags);
11160         perf_event_update_userpage(event);
11161
11162         return 0;
11163 }
11164
11165 static void cpu_clock_event_del(struct perf_event *event, int flags)
11166 {
11167         cpu_clock_event_stop(event, flags);
11168 }
11169
11170 static void cpu_clock_event_read(struct perf_event *event)
11171 {
11172         cpu_clock_event_update(event);
11173 }
11174
11175 static int cpu_clock_event_init(struct perf_event *event)
11176 {
11177         if (event->attr.type != perf_cpu_clock.type)
11178                 return -ENOENT;
11179
11180         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11181                 return -ENOENT;
11182
11183         /*
11184          * no branch sampling for software events
11185          */
11186         if (has_branch_stack(event))
11187                 return -EOPNOTSUPP;
11188
11189         perf_swevent_init_hrtimer(event);
11190
11191         return 0;
11192 }
11193
11194 static struct pmu perf_cpu_clock = {
11195         .task_ctx_nr    = perf_sw_context,
11196
11197         .capabilities   = PERF_PMU_CAP_NO_NMI,
11198         .dev            = PMU_NULL_DEV,
11199
11200         .event_init     = cpu_clock_event_init,
11201         .add            = cpu_clock_event_add,
11202         .del            = cpu_clock_event_del,
11203         .start          = cpu_clock_event_start,
11204         .stop           = cpu_clock_event_stop,
11205         .read           = cpu_clock_event_read,
11206 };
11207
11208 /*
11209  * Software event: task time clock
11210  */
11211
11212 static void task_clock_event_update(struct perf_event *event, u64 now)
11213 {
11214         u64 prev;
11215         s64 delta;
11216
11217         prev = local64_xchg(&event->hw.prev_count, now);
11218         delta = now - prev;
11219         local64_add(delta, &event->count);
11220 }
11221
11222 static void task_clock_event_start(struct perf_event *event, int flags)
11223 {
11224         local64_set(&event->hw.prev_count, event->ctx->time);
11225         perf_swevent_start_hrtimer(event);
11226 }
11227
11228 static void task_clock_event_stop(struct perf_event *event, int flags)
11229 {
11230         perf_swevent_cancel_hrtimer(event);
11231         task_clock_event_update(event, event->ctx->time);
11232 }
11233
11234 static int task_clock_event_add(struct perf_event *event, int flags)
11235 {
11236         if (flags & PERF_EF_START)
11237                 task_clock_event_start(event, flags);
11238         perf_event_update_userpage(event);
11239
11240         return 0;
11241 }
11242
11243 static void task_clock_event_del(struct perf_event *event, int flags)
11244 {
11245         task_clock_event_stop(event, PERF_EF_UPDATE);
11246 }
11247
11248 static void task_clock_event_read(struct perf_event *event)
11249 {
11250         u64 now = perf_clock();
11251         u64 delta = now - event->ctx->timestamp;
11252         u64 time = event->ctx->time + delta;
11253
11254         task_clock_event_update(event, time);
11255 }
11256
11257 static int task_clock_event_init(struct perf_event *event)
11258 {
11259         if (event->attr.type != perf_task_clock.type)
11260                 return -ENOENT;
11261
11262         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11263                 return -ENOENT;
11264
11265         /*
11266          * no branch sampling for software events
11267          */
11268         if (has_branch_stack(event))
11269                 return -EOPNOTSUPP;
11270
11271         perf_swevent_init_hrtimer(event);
11272
11273         return 0;
11274 }
11275
11276 static struct pmu perf_task_clock = {
11277         .task_ctx_nr    = perf_sw_context,
11278
11279         .capabilities   = PERF_PMU_CAP_NO_NMI,
11280         .dev            = PMU_NULL_DEV,
11281
11282         .event_init     = task_clock_event_init,
11283         .add            = task_clock_event_add,
11284         .del            = task_clock_event_del,
11285         .start          = task_clock_event_start,
11286         .stop           = task_clock_event_stop,
11287         .read           = task_clock_event_read,
11288 };
11289
11290 static void perf_pmu_nop_void(struct pmu *pmu)
11291 {
11292 }
11293
11294 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11295 {
11296 }
11297
11298 static int perf_pmu_nop_int(struct pmu *pmu)
11299 {
11300         return 0;
11301 }
11302
11303 static int perf_event_nop_int(struct perf_event *event, u64 value)
11304 {
11305         return 0;
11306 }
11307
11308 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11309
11310 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11311 {
11312         __this_cpu_write(nop_txn_flags, flags);
11313
11314         if (flags & ~PERF_PMU_TXN_ADD)
11315                 return;
11316
11317         perf_pmu_disable(pmu);
11318 }
11319
11320 static int perf_pmu_commit_txn(struct pmu *pmu)
11321 {
11322         unsigned int flags = __this_cpu_read(nop_txn_flags);
11323
11324         __this_cpu_write(nop_txn_flags, 0);
11325
11326         if (flags & ~PERF_PMU_TXN_ADD)
11327                 return 0;
11328
11329         perf_pmu_enable(pmu);
11330         return 0;
11331 }
11332
11333 static void perf_pmu_cancel_txn(struct pmu *pmu)
11334 {
11335         unsigned int flags =  __this_cpu_read(nop_txn_flags);
11336
11337         __this_cpu_write(nop_txn_flags, 0);
11338
11339         if (flags & ~PERF_PMU_TXN_ADD)
11340                 return;
11341
11342         perf_pmu_enable(pmu);
11343 }
11344
11345 static int perf_event_idx_default(struct perf_event *event)
11346 {
11347         return 0;
11348 }
11349
11350 static void free_pmu_context(struct pmu *pmu)
11351 {
11352         free_percpu(pmu->cpu_pmu_context);
11353 }
11354
11355 /*
11356  * Let userspace know that this PMU supports address range filtering:
11357  */
11358 static ssize_t nr_addr_filters_show(struct device *dev,
11359                                     struct device_attribute *attr,
11360                                     char *page)
11361 {
11362         struct pmu *pmu = dev_get_drvdata(dev);
11363
11364         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11365 }
11366 DEVICE_ATTR_RO(nr_addr_filters);
11367
11368 static struct idr pmu_idr;
11369
11370 static ssize_t
11371 type_show(struct device *dev, struct device_attribute *attr, char *page)
11372 {
11373         struct pmu *pmu = dev_get_drvdata(dev);
11374
11375         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11376 }
11377 static DEVICE_ATTR_RO(type);
11378
11379 static ssize_t
11380 perf_event_mux_interval_ms_show(struct device *dev,
11381                                 struct device_attribute *attr,
11382                                 char *page)
11383 {
11384         struct pmu *pmu = dev_get_drvdata(dev);
11385
11386         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11387 }
11388
11389 static DEFINE_MUTEX(mux_interval_mutex);
11390
11391 static ssize_t
11392 perf_event_mux_interval_ms_store(struct device *dev,
11393                                  struct device_attribute *attr,
11394                                  const char *buf, size_t count)
11395 {
11396         struct pmu *pmu = dev_get_drvdata(dev);
11397         int timer, cpu, ret;
11398
11399         ret = kstrtoint(buf, 0, &timer);
11400         if (ret)
11401                 return ret;
11402
11403         if (timer < 1)
11404                 return -EINVAL;
11405
11406         /* same value, noting to do */
11407         if (timer == pmu->hrtimer_interval_ms)
11408                 return count;
11409
11410         mutex_lock(&mux_interval_mutex);
11411         pmu->hrtimer_interval_ms = timer;
11412
11413         /* update all cpuctx for this PMU */
11414         cpus_read_lock();
11415         for_each_online_cpu(cpu) {
11416                 struct perf_cpu_pmu_context *cpc;
11417                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11418                 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11419
11420                 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11421         }
11422         cpus_read_unlock();
11423         mutex_unlock(&mux_interval_mutex);
11424
11425         return count;
11426 }
11427 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11428
11429 static struct attribute *pmu_dev_attrs[] = {
11430         &dev_attr_type.attr,
11431         &dev_attr_perf_event_mux_interval_ms.attr,
11432         &dev_attr_nr_addr_filters.attr,
11433         NULL,
11434 };
11435
11436 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11437 {
11438         struct device *dev = kobj_to_dev(kobj);
11439         struct pmu *pmu = dev_get_drvdata(dev);
11440
11441         if (n == 2 && !pmu->nr_addr_filters)
11442                 return 0;
11443
11444         return a->mode;
11445 }
11446
11447 static struct attribute_group pmu_dev_attr_group = {
11448         .is_visible = pmu_dev_is_visible,
11449         .attrs = pmu_dev_attrs,
11450 };
11451
11452 static const struct attribute_group *pmu_dev_groups[] = {
11453         &pmu_dev_attr_group,
11454         NULL,
11455 };
11456
11457 static int pmu_bus_running;
11458 static struct bus_type pmu_bus = {
11459         .name           = "event_source",
11460         .dev_groups     = pmu_dev_groups,
11461 };
11462
11463 static void pmu_dev_release(struct device *dev)
11464 {
11465         kfree(dev);
11466 }
11467
11468 static int pmu_dev_alloc(struct pmu *pmu)
11469 {
11470         int ret = -ENOMEM;
11471
11472         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11473         if (!pmu->dev)
11474                 goto out;
11475
11476         pmu->dev->groups = pmu->attr_groups;
11477         device_initialize(pmu->dev);
11478
11479         dev_set_drvdata(pmu->dev, pmu);
11480         pmu->dev->bus = &pmu_bus;
11481         pmu->dev->parent = pmu->parent;
11482         pmu->dev->release = pmu_dev_release;
11483
11484         ret = dev_set_name(pmu->dev, "%s", pmu->name);
11485         if (ret)
11486                 goto free_dev;
11487
11488         ret = device_add(pmu->dev);
11489         if (ret)
11490                 goto free_dev;
11491
11492         if (pmu->attr_update) {
11493                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11494                 if (ret)
11495                         goto del_dev;
11496         }
11497
11498 out:
11499         return ret;
11500
11501 del_dev:
11502         device_del(pmu->dev);
11503
11504 free_dev:
11505         put_device(pmu->dev);
11506         goto out;
11507 }
11508
11509 static struct lock_class_key cpuctx_mutex;
11510 static struct lock_class_key cpuctx_lock;
11511
11512 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11513 {
11514         int cpu, ret, max = PERF_TYPE_MAX;
11515
11516         mutex_lock(&pmus_lock);
11517         ret = -ENOMEM;
11518         pmu->pmu_disable_count = alloc_percpu(int);
11519         if (!pmu->pmu_disable_count)
11520                 goto unlock;
11521
11522         pmu->type = -1;
11523         if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11524                 ret = -EINVAL;
11525                 goto free_pdc;
11526         }
11527
11528         pmu->name = name;
11529
11530         if (type >= 0)
11531                 max = type;
11532
11533         ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11534         if (ret < 0)
11535                 goto free_pdc;
11536
11537         WARN_ON(type >= 0 && ret != type);
11538
11539         type = ret;
11540         pmu->type = type;
11541
11542         if (pmu_bus_running && !pmu->dev) {
11543                 ret = pmu_dev_alloc(pmu);
11544                 if (ret)
11545                         goto free_idr;
11546         }
11547
11548         ret = -ENOMEM;
11549         pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11550         if (!pmu->cpu_pmu_context)
11551                 goto free_dev;
11552
11553         for_each_possible_cpu(cpu) {
11554                 struct perf_cpu_pmu_context *cpc;
11555
11556                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11557                 __perf_init_event_pmu_context(&cpc->epc, pmu);
11558                 __perf_mux_hrtimer_init(cpc, cpu);
11559         }
11560
11561         if (!pmu->start_txn) {
11562                 if (pmu->pmu_enable) {
11563                         /*
11564                          * If we have pmu_enable/pmu_disable calls, install
11565                          * transaction stubs that use that to try and batch
11566                          * hardware accesses.
11567                          */
11568                         pmu->start_txn  = perf_pmu_start_txn;
11569                         pmu->commit_txn = perf_pmu_commit_txn;
11570                         pmu->cancel_txn = perf_pmu_cancel_txn;
11571                 } else {
11572                         pmu->start_txn  = perf_pmu_nop_txn;
11573                         pmu->commit_txn = perf_pmu_nop_int;
11574                         pmu->cancel_txn = perf_pmu_nop_void;
11575                 }
11576         }
11577
11578         if (!pmu->pmu_enable) {
11579                 pmu->pmu_enable  = perf_pmu_nop_void;
11580                 pmu->pmu_disable = perf_pmu_nop_void;
11581         }
11582
11583         if (!pmu->check_period)
11584                 pmu->check_period = perf_event_nop_int;
11585
11586         if (!pmu->event_idx)
11587                 pmu->event_idx = perf_event_idx_default;
11588
11589         list_add_rcu(&pmu->entry, &pmus);
11590         atomic_set(&pmu->exclusive_cnt, 0);
11591         ret = 0;
11592 unlock:
11593         mutex_unlock(&pmus_lock);
11594
11595         return ret;
11596
11597 free_dev:
11598         if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11599                 device_del(pmu->dev);
11600                 put_device(pmu->dev);
11601         }
11602
11603 free_idr:
11604         idr_remove(&pmu_idr, pmu->type);
11605
11606 free_pdc:
11607         free_percpu(pmu->pmu_disable_count);
11608         goto unlock;
11609 }
11610 EXPORT_SYMBOL_GPL(perf_pmu_register);
11611
11612 void perf_pmu_unregister(struct pmu *pmu)
11613 {
11614         mutex_lock(&pmus_lock);
11615         list_del_rcu(&pmu->entry);
11616
11617         /*
11618          * We dereference the pmu list under both SRCU and regular RCU, so
11619          * synchronize against both of those.
11620          */
11621         synchronize_srcu(&pmus_srcu);
11622         synchronize_rcu();
11623
11624         free_percpu(pmu->pmu_disable_count);
11625         idr_remove(&pmu_idr, pmu->type);
11626         if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11627                 if (pmu->nr_addr_filters)
11628                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11629                 device_del(pmu->dev);
11630                 put_device(pmu->dev);
11631         }
11632         free_pmu_context(pmu);
11633         mutex_unlock(&pmus_lock);
11634 }
11635 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11636
11637 static inline bool has_extended_regs(struct perf_event *event)
11638 {
11639         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11640                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11641 }
11642
11643 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11644 {
11645         struct perf_event_context *ctx = NULL;
11646         int ret;
11647
11648         if (!try_module_get(pmu->module))
11649                 return -ENODEV;
11650
11651         /*
11652          * A number of pmu->event_init() methods iterate the sibling_list to,
11653          * for example, validate if the group fits on the PMU. Therefore,
11654          * if this is a sibling event, acquire the ctx->mutex to protect
11655          * the sibling_list.
11656          */
11657         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11658                 /*
11659                  * This ctx->mutex can nest when we're called through
11660                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11661                  */
11662                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11663                                                  SINGLE_DEPTH_NESTING);
11664                 BUG_ON(!ctx);
11665         }
11666
11667         event->pmu = pmu;
11668         ret = pmu->event_init(event);
11669
11670         if (ctx)
11671                 perf_event_ctx_unlock(event->group_leader, ctx);
11672
11673         if (!ret) {
11674                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11675                     has_extended_regs(event))
11676                         ret = -EOPNOTSUPP;
11677
11678                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11679                     event_has_any_exclude_flag(event))
11680                         ret = -EINVAL;
11681
11682                 if (ret && event->destroy)
11683                         event->destroy(event);
11684         }
11685
11686         if (ret)
11687                 module_put(pmu->module);
11688
11689         return ret;
11690 }
11691
11692 static struct pmu *perf_init_event(struct perf_event *event)
11693 {
11694         bool extended_type = false;
11695         int idx, type, ret;
11696         struct pmu *pmu;
11697
11698         idx = srcu_read_lock(&pmus_srcu);
11699
11700         /*
11701          * Save original type before calling pmu->event_init() since certain
11702          * pmus overwrites event->attr.type to forward event to another pmu.
11703          */
11704         event->orig_type = event->attr.type;
11705
11706         /* Try parent's PMU first: */
11707         if (event->parent && event->parent->pmu) {
11708                 pmu = event->parent->pmu;
11709                 ret = perf_try_init_event(pmu, event);
11710                 if (!ret)
11711                         goto unlock;
11712         }
11713
11714         /*
11715          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11716          * are often aliases for PERF_TYPE_RAW.
11717          */
11718         type = event->attr.type;
11719         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11720                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11721                 if (!type) {
11722                         type = PERF_TYPE_RAW;
11723                 } else {
11724                         extended_type = true;
11725                         event->attr.config &= PERF_HW_EVENT_MASK;
11726                 }
11727         }
11728
11729 again:
11730         rcu_read_lock();
11731         pmu = idr_find(&pmu_idr, type);
11732         rcu_read_unlock();
11733         if (pmu) {
11734                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11735                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11736                         goto fail;
11737
11738                 ret = perf_try_init_event(pmu, event);
11739                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11740                         type = event->attr.type;
11741                         goto again;
11742                 }
11743
11744                 if (ret)
11745                         pmu = ERR_PTR(ret);
11746
11747                 goto unlock;
11748         }
11749
11750         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11751                 ret = perf_try_init_event(pmu, event);
11752                 if (!ret)
11753                         goto unlock;
11754
11755                 if (ret != -ENOENT) {
11756                         pmu = ERR_PTR(ret);
11757                         goto unlock;
11758                 }
11759         }
11760 fail:
11761         pmu = ERR_PTR(-ENOENT);
11762 unlock:
11763         srcu_read_unlock(&pmus_srcu, idx);
11764
11765         return pmu;
11766 }
11767
11768 static void attach_sb_event(struct perf_event *event)
11769 {
11770         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11771
11772         raw_spin_lock(&pel->lock);
11773         list_add_rcu(&event->sb_list, &pel->list);
11774         raw_spin_unlock(&pel->lock);
11775 }
11776
11777 /*
11778  * We keep a list of all !task (and therefore per-cpu) events
11779  * that need to receive side-band records.
11780  *
11781  * This avoids having to scan all the various PMU per-cpu contexts
11782  * looking for them.
11783  */
11784 static void account_pmu_sb_event(struct perf_event *event)
11785 {
11786         if (is_sb_event(event))
11787                 attach_sb_event(event);
11788 }
11789
11790 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11791 static void account_freq_event_nohz(void)
11792 {
11793 #ifdef CONFIG_NO_HZ_FULL
11794         /* Lock so we don't race with concurrent unaccount */
11795         spin_lock(&nr_freq_lock);
11796         if (atomic_inc_return(&nr_freq_events) == 1)
11797                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11798         spin_unlock(&nr_freq_lock);
11799 #endif
11800 }
11801
11802 static void account_freq_event(void)
11803 {
11804         if (tick_nohz_full_enabled())
11805                 account_freq_event_nohz();
11806         else
11807                 atomic_inc(&nr_freq_events);
11808 }
11809
11810
11811 static void account_event(struct perf_event *event)
11812 {
11813         bool inc = false;
11814
11815         if (event->parent)
11816                 return;
11817
11818         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11819                 inc = true;
11820         if (event->attr.mmap || event->attr.mmap_data)
11821                 atomic_inc(&nr_mmap_events);
11822         if (event->attr.build_id)
11823                 atomic_inc(&nr_build_id_events);
11824         if (event->attr.comm)
11825                 atomic_inc(&nr_comm_events);
11826         if (event->attr.namespaces)
11827                 atomic_inc(&nr_namespaces_events);
11828         if (event->attr.cgroup)
11829                 atomic_inc(&nr_cgroup_events);
11830         if (event->attr.task)
11831                 atomic_inc(&nr_task_events);
11832         if (event->attr.freq)
11833                 account_freq_event();
11834         if (event->attr.context_switch) {
11835                 atomic_inc(&nr_switch_events);
11836                 inc = true;
11837         }
11838         if (has_branch_stack(event))
11839                 inc = true;
11840         if (is_cgroup_event(event))
11841                 inc = true;
11842         if (event->attr.ksymbol)
11843                 atomic_inc(&nr_ksymbol_events);
11844         if (event->attr.bpf_event)
11845                 atomic_inc(&nr_bpf_events);
11846         if (event->attr.text_poke)
11847                 atomic_inc(&nr_text_poke_events);
11848
11849         if (inc) {
11850                 /*
11851                  * We need the mutex here because static_branch_enable()
11852                  * must complete *before* the perf_sched_count increment
11853                  * becomes visible.
11854                  */
11855                 if (atomic_inc_not_zero(&perf_sched_count))
11856                         goto enabled;
11857
11858                 mutex_lock(&perf_sched_mutex);
11859                 if (!atomic_read(&perf_sched_count)) {
11860                         static_branch_enable(&perf_sched_events);
11861                         /*
11862                          * Guarantee that all CPUs observe they key change and
11863                          * call the perf scheduling hooks before proceeding to
11864                          * install events that need them.
11865                          */
11866                         synchronize_rcu();
11867                 }
11868                 /*
11869                  * Now that we have waited for the sync_sched(), allow further
11870                  * increments to by-pass the mutex.
11871                  */
11872                 atomic_inc(&perf_sched_count);
11873                 mutex_unlock(&perf_sched_mutex);
11874         }
11875 enabled:
11876
11877         account_pmu_sb_event(event);
11878 }
11879
11880 /*
11881  * Allocate and initialize an event structure
11882  */
11883 static struct perf_event *
11884 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11885                  struct task_struct *task,
11886                  struct perf_event *group_leader,
11887                  struct perf_event *parent_event,
11888                  perf_overflow_handler_t overflow_handler,
11889                  void *context, int cgroup_fd)
11890 {
11891         struct pmu *pmu;
11892         struct perf_event *event;
11893         struct hw_perf_event *hwc;
11894         long err = -EINVAL;
11895         int node;
11896
11897         if ((unsigned)cpu >= nr_cpu_ids) {
11898                 if (!task || cpu != -1)
11899                         return ERR_PTR(-EINVAL);
11900         }
11901         if (attr->sigtrap && !task) {
11902                 /* Requires a task: avoid signalling random tasks. */
11903                 return ERR_PTR(-EINVAL);
11904         }
11905
11906         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11907         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11908                                       node);
11909         if (!event)
11910                 return ERR_PTR(-ENOMEM);
11911
11912         /*
11913          * Single events are their own group leaders, with an
11914          * empty sibling list:
11915          */
11916         if (!group_leader)
11917                 group_leader = event;
11918
11919         mutex_init(&event->child_mutex);
11920         INIT_LIST_HEAD(&event->child_list);
11921
11922         INIT_LIST_HEAD(&event->event_entry);
11923         INIT_LIST_HEAD(&event->sibling_list);
11924         INIT_LIST_HEAD(&event->active_list);
11925         init_event_group(event);
11926         INIT_LIST_HEAD(&event->rb_entry);
11927         INIT_LIST_HEAD(&event->active_entry);
11928         INIT_LIST_HEAD(&event->addr_filters.list);
11929         INIT_HLIST_NODE(&event->hlist_entry);
11930
11931
11932         init_waitqueue_head(&event->waitq);
11933         init_irq_work(&event->pending_irq, perf_pending_irq);
11934         init_task_work(&event->pending_task, perf_pending_task);
11935
11936         mutex_init(&event->mmap_mutex);
11937         raw_spin_lock_init(&event->addr_filters.lock);
11938
11939         atomic_long_set(&event->refcount, 1);
11940         event->cpu              = cpu;
11941         event->attr             = *attr;
11942         event->group_leader     = group_leader;
11943         event->pmu              = NULL;
11944         event->oncpu            = -1;
11945
11946         event->parent           = parent_event;
11947
11948         event->ns               = get_pid_ns(task_active_pid_ns(current));
11949         event->id               = atomic64_inc_return(&perf_event_id);
11950
11951         event->state            = PERF_EVENT_STATE_INACTIVE;
11952
11953         if (parent_event)
11954                 event->event_caps = parent_event->event_caps;
11955
11956         if (task) {
11957                 event->attach_state = PERF_ATTACH_TASK;
11958                 /*
11959                  * XXX pmu::event_init needs to know what task to account to
11960                  * and we cannot use the ctx information because we need the
11961                  * pmu before we get a ctx.
11962                  */
11963                 event->hw.target = get_task_struct(task);
11964         }
11965
11966         event->clock = &local_clock;
11967         if (parent_event)
11968                 event->clock = parent_event->clock;
11969
11970         if (!overflow_handler && parent_event) {
11971                 overflow_handler = parent_event->overflow_handler;
11972                 context = parent_event->overflow_handler_context;
11973 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11974                 if (overflow_handler == bpf_overflow_handler) {
11975                         struct bpf_prog *prog = parent_event->prog;
11976
11977                         bpf_prog_inc(prog);
11978                         event->prog = prog;
11979                         event->orig_overflow_handler =
11980                                 parent_event->orig_overflow_handler;
11981                 }
11982 #endif
11983         }
11984
11985         if (overflow_handler) {
11986                 event->overflow_handler = overflow_handler;
11987                 event->overflow_handler_context = context;
11988         } else if (is_write_backward(event)){
11989                 event->overflow_handler = perf_event_output_backward;
11990                 event->overflow_handler_context = NULL;
11991         } else {
11992                 event->overflow_handler = perf_event_output_forward;
11993                 event->overflow_handler_context = NULL;
11994         }
11995
11996         perf_event__state_init(event);
11997
11998         pmu = NULL;
11999
12000         hwc = &event->hw;
12001         hwc->sample_period = attr->sample_period;
12002         if (attr->freq && attr->sample_freq)
12003                 hwc->sample_period = 1;
12004         hwc->last_period = hwc->sample_period;
12005
12006         local64_set(&hwc->period_left, hwc->sample_period);
12007
12008         /*
12009          * We currently do not support PERF_SAMPLE_READ on inherited events.
12010          * See perf_output_read().
12011          */
12012         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
12013                 goto err_ns;
12014
12015         if (!has_branch_stack(event))
12016                 event->attr.branch_sample_type = 0;
12017
12018         pmu = perf_init_event(event);
12019         if (IS_ERR(pmu)) {
12020                 err = PTR_ERR(pmu);
12021                 goto err_ns;
12022         }
12023
12024         /*
12025          * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12026          * events (they don't make sense as the cgroup will be different
12027          * on other CPUs in the uncore mask).
12028          */
12029         if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12030                 err = -EINVAL;
12031                 goto err_pmu;
12032         }
12033
12034         if (event->attr.aux_output &&
12035             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12036                 err = -EOPNOTSUPP;
12037                 goto err_pmu;
12038         }
12039
12040         if (cgroup_fd != -1) {
12041                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12042                 if (err)
12043                         goto err_pmu;
12044         }
12045
12046         err = exclusive_event_init(event);
12047         if (err)
12048                 goto err_pmu;
12049
12050         if (has_addr_filter(event)) {
12051                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12052                                                     sizeof(struct perf_addr_filter_range),
12053                                                     GFP_KERNEL);
12054                 if (!event->addr_filter_ranges) {
12055                         err = -ENOMEM;
12056                         goto err_per_task;
12057                 }
12058
12059                 /*
12060                  * Clone the parent's vma offsets: they are valid until exec()
12061                  * even if the mm is not shared with the parent.
12062                  */
12063                 if (event->parent) {
12064                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12065
12066                         raw_spin_lock_irq(&ifh->lock);
12067                         memcpy(event->addr_filter_ranges,
12068                                event->parent->addr_filter_ranges,
12069                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12070                         raw_spin_unlock_irq(&ifh->lock);
12071                 }
12072
12073                 /* force hw sync on the address filters */
12074                 event->addr_filters_gen = 1;
12075         }
12076
12077         if (!event->parent) {
12078                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12079                         err = get_callchain_buffers(attr->sample_max_stack);
12080                         if (err)
12081                                 goto err_addr_filters;
12082                 }
12083         }
12084
12085         err = security_perf_event_alloc(event);
12086         if (err)
12087                 goto err_callchain_buffer;
12088
12089         /* symmetric to unaccount_event() in _free_event() */
12090         account_event(event);
12091
12092         return event;
12093
12094 err_callchain_buffer:
12095         if (!event->parent) {
12096                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12097                         put_callchain_buffers();
12098         }
12099 err_addr_filters:
12100         kfree(event->addr_filter_ranges);
12101
12102 err_per_task:
12103         exclusive_event_destroy(event);
12104
12105 err_pmu:
12106         if (is_cgroup_event(event))
12107                 perf_detach_cgroup(event);
12108         if (event->destroy)
12109                 event->destroy(event);
12110         module_put(pmu->module);
12111 err_ns:
12112         if (event->hw.target)
12113                 put_task_struct(event->hw.target);
12114         call_rcu(&event->rcu_head, free_event_rcu);
12115
12116         return ERR_PTR(err);
12117 }
12118
12119 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12120                           struct perf_event_attr *attr)
12121 {
12122         u32 size;
12123         int ret;
12124
12125         /* Zero the full structure, so that a short copy will be nice. */
12126         memset(attr, 0, sizeof(*attr));
12127
12128         ret = get_user(size, &uattr->size);
12129         if (ret)
12130                 return ret;
12131
12132         /* ABI compatibility quirk: */
12133         if (!size)
12134                 size = PERF_ATTR_SIZE_VER0;
12135         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12136                 goto err_size;
12137
12138         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12139         if (ret) {
12140                 if (ret == -E2BIG)
12141                         goto err_size;
12142                 return ret;
12143         }
12144
12145         attr->size = size;
12146
12147         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12148                 return -EINVAL;
12149
12150         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12151                 return -EINVAL;
12152
12153         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12154                 return -EINVAL;
12155
12156         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12157                 u64 mask = attr->branch_sample_type;
12158
12159                 /* only using defined bits */
12160                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12161                         return -EINVAL;
12162
12163                 /* at least one branch bit must be set */
12164                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12165                         return -EINVAL;
12166
12167                 /* propagate priv level, when not set for branch */
12168                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12169
12170                         /* exclude_kernel checked on syscall entry */
12171                         if (!attr->exclude_kernel)
12172                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12173
12174                         if (!attr->exclude_user)
12175                                 mask |= PERF_SAMPLE_BRANCH_USER;
12176
12177                         if (!attr->exclude_hv)
12178                                 mask |= PERF_SAMPLE_BRANCH_HV;
12179                         /*
12180                          * adjust user setting (for HW filter setup)
12181                          */
12182                         attr->branch_sample_type = mask;
12183                 }
12184                 /* privileged levels capture (kernel, hv): check permissions */
12185                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12186                         ret = perf_allow_kernel(attr);
12187                         if (ret)
12188                                 return ret;
12189                 }
12190         }
12191
12192         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12193                 ret = perf_reg_validate(attr->sample_regs_user);
12194                 if (ret)
12195                         return ret;
12196         }
12197
12198         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12199                 if (!arch_perf_have_user_stack_dump())
12200                         return -ENOSYS;
12201
12202                 /*
12203                  * We have __u32 type for the size, but so far
12204                  * we can only use __u16 as maximum due to the
12205                  * __u16 sample size limit.
12206                  */
12207                 if (attr->sample_stack_user >= USHRT_MAX)
12208                         return -EINVAL;
12209                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12210                         return -EINVAL;
12211         }
12212
12213         if (!attr->sample_max_stack)
12214                 attr->sample_max_stack = sysctl_perf_event_max_stack;
12215
12216         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12217                 ret = perf_reg_validate(attr->sample_regs_intr);
12218
12219 #ifndef CONFIG_CGROUP_PERF
12220         if (attr->sample_type & PERF_SAMPLE_CGROUP)
12221                 return -EINVAL;
12222 #endif
12223         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12224             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12225                 return -EINVAL;
12226
12227         if (!attr->inherit && attr->inherit_thread)
12228                 return -EINVAL;
12229
12230         if (attr->remove_on_exec && attr->enable_on_exec)
12231                 return -EINVAL;
12232
12233         if (attr->sigtrap && !attr->remove_on_exec)
12234                 return -EINVAL;
12235
12236 out:
12237         return ret;
12238
12239 err_size:
12240         put_user(sizeof(*attr), &uattr->size);
12241         ret = -E2BIG;
12242         goto out;
12243 }
12244
12245 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12246 {
12247         if (b < a)
12248                 swap(a, b);
12249
12250         mutex_lock(a);
12251         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12252 }
12253
12254 static int
12255 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12256 {
12257         struct perf_buffer *rb = NULL;
12258         int ret = -EINVAL;
12259
12260         if (!output_event) {
12261                 mutex_lock(&event->mmap_mutex);
12262                 goto set;
12263         }
12264
12265         /* don't allow circular references */
12266         if (event == output_event)
12267                 goto out;
12268
12269         /*
12270          * Don't allow cross-cpu buffers
12271          */
12272         if (output_event->cpu != event->cpu)
12273                 goto out;
12274
12275         /*
12276          * If its not a per-cpu rb, it must be the same task.
12277          */
12278         if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12279                 goto out;
12280
12281         /*
12282          * Mixing clocks in the same buffer is trouble you don't need.
12283          */
12284         if (output_event->clock != event->clock)
12285                 goto out;
12286
12287         /*
12288          * Either writing ring buffer from beginning or from end.
12289          * Mixing is not allowed.
12290          */
12291         if (is_write_backward(output_event) != is_write_backward(event))
12292                 goto out;
12293
12294         /*
12295          * If both events generate aux data, they must be on the same PMU
12296          */
12297         if (has_aux(event) && has_aux(output_event) &&
12298             event->pmu != output_event->pmu)
12299                 goto out;
12300
12301         /*
12302          * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12303          * output_event is already on rb->event_list, and the list iteration
12304          * restarts after every removal, it is guaranteed this new event is
12305          * observed *OR* if output_event is already removed, it's guaranteed we
12306          * observe !rb->mmap_count.
12307          */
12308         mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12309 set:
12310         /* Can't redirect output if we've got an active mmap() */
12311         if (atomic_read(&event->mmap_count))
12312                 goto unlock;
12313
12314         if (output_event) {
12315                 /* get the rb we want to redirect to */
12316                 rb = ring_buffer_get(output_event);
12317                 if (!rb)
12318                         goto unlock;
12319
12320                 /* did we race against perf_mmap_close() */
12321                 if (!atomic_read(&rb->mmap_count)) {
12322                         ring_buffer_put(rb);
12323                         goto unlock;
12324                 }
12325         }
12326
12327         ring_buffer_attach(event, rb);
12328
12329         ret = 0;
12330 unlock:
12331         mutex_unlock(&event->mmap_mutex);
12332         if (output_event)
12333                 mutex_unlock(&output_event->mmap_mutex);
12334
12335 out:
12336         return ret;
12337 }
12338
12339 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12340 {
12341         bool nmi_safe = false;
12342
12343         switch (clk_id) {
12344         case CLOCK_MONOTONIC:
12345                 event->clock = &ktime_get_mono_fast_ns;
12346                 nmi_safe = true;
12347                 break;
12348
12349         case CLOCK_MONOTONIC_RAW:
12350                 event->clock = &ktime_get_raw_fast_ns;
12351                 nmi_safe = true;
12352                 break;
12353
12354         case CLOCK_REALTIME:
12355                 event->clock = &ktime_get_real_ns;
12356                 break;
12357
12358         case CLOCK_BOOTTIME:
12359                 event->clock = &ktime_get_boottime_ns;
12360                 break;
12361
12362         case CLOCK_TAI:
12363                 event->clock = &ktime_get_clocktai_ns;
12364                 break;
12365
12366         default:
12367                 return -EINVAL;
12368         }
12369
12370         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12371                 return -EINVAL;
12372
12373         return 0;
12374 }
12375
12376 static bool
12377 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12378 {
12379         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12380         bool is_capable = perfmon_capable();
12381
12382         if (attr->sigtrap) {
12383                 /*
12384                  * perf_event_attr::sigtrap sends signals to the other task.
12385                  * Require the current task to also have CAP_KILL.
12386                  */
12387                 rcu_read_lock();
12388                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12389                 rcu_read_unlock();
12390
12391                 /*
12392                  * If the required capabilities aren't available, checks for
12393                  * ptrace permissions: upgrade to ATTACH, since sending signals
12394                  * can effectively change the target task.
12395                  */
12396                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12397         }
12398
12399         /*
12400          * Preserve ptrace permission check for backwards compatibility. The
12401          * ptrace check also includes checks that the current task and other
12402          * task have matching uids, and is therefore not done here explicitly.
12403          */
12404         return is_capable || ptrace_may_access(task, ptrace_mode);
12405 }
12406
12407 /**
12408  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12409  *
12410  * @attr_uptr:  event_id type attributes for monitoring/sampling
12411  * @pid:                target pid
12412  * @cpu:                target cpu
12413  * @group_fd:           group leader event fd
12414  * @flags:              perf event open flags
12415  */
12416 SYSCALL_DEFINE5(perf_event_open,
12417                 struct perf_event_attr __user *, attr_uptr,
12418                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12419 {
12420         struct perf_event *group_leader = NULL, *output_event = NULL;
12421         struct perf_event_pmu_context *pmu_ctx;
12422         struct perf_event *event, *sibling;
12423         struct perf_event_attr attr;
12424         struct perf_event_context *ctx;
12425         struct file *event_file = NULL;
12426         struct fd group = {NULL, 0};
12427         struct task_struct *task = NULL;
12428         struct pmu *pmu;
12429         int event_fd;
12430         int move_group = 0;
12431         int err;
12432         int f_flags = O_RDWR;
12433         int cgroup_fd = -1;
12434
12435         /* for future expandability... */
12436         if (flags & ~PERF_FLAG_ALL)
12437                 return -EINVAL;
12438
12439         err = perf_copy_attr(attr_uptr, &attr);
12440         if (err)
12441                 return err;
12442
12443         /* Do we allow access to perf_event_open(2) ? */
12444         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12445         if (err)
12446                 return err;
12447
12448         if (!attr.exclude_kernel) {
12449                 err = perf_allow_kernel(&attr);
12450                 if (err)
12451                         return err;
12452         }
12453
12454         if (attr.namespaces) {
12455                 if (!perfmon_capable())
12456                         return -EACCES;
12457         }
12458
12459         if (attr.freq) {
12460                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12461                         return -EINVAL;
12462         } else {
12463                 if (attr.sample_period & (1ULL << 63))
12464                         return -EINVAL;
12465         }
12466
12467         /* Only privileged users can get physical addresses */
12468         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12469                 err = perf_allow_kernel(&attr);
12470                 if (err)
12471                         return err;
12472         }
12473
12474         /* REGS_INTR can leak data, lockdown must prevent this */
12475         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12476                 err = security_locked_down(LOCKDOWN_PERF);
12477                 if (err)
12478                         return err;
12479         }
12480
12481         /*
12482          * In cgroup mode, the pid argument is used to pass the fd
12483          * opened to the cgroup directory in cgroupfs. The cpu argument
12484          * designates the cpu on which to monitor threads from that
12485          * cgroup.
12486          */
12487         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12488                 return -EINVAL;
12489
12490         if (flags & PERF_FLAG_FD_CLOEXEC)
12491                 f_flags |= O_CLOEXEC;
12492
12493         event_fd = get_unused_fd_flags(f_flags);
12494         if (event_fd < 0)
12495                 return event_fd;
12496
12497         if (group_fd != -1) {
12498                 err = perf_fget_light(group_fd, &group);
12499                 if (err)
12500                         goto err_fd;
12501                 group_leader = group.file->private_data;
12502                 if (flags & PERF_FLAG_FD_OUTPUT)
12503                         output_event = group_leader;
12504                 if (flags & PERF_FLAG_FD_NO_GROUP)
12505                         group_leader = NULL;
12506         }
12507
12508         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12509                 task = find_lively_task_by_vpid(pid);
12510                 if (IS_ERR(task)) {
12511                         err = PTR_ERR(task);
12512                         goto err_group_fd;
12513                 }
12514         }
12515
12516         if (task && group_leader &&
12517             group_leader->attr.inherit != attr.inherit) {
12518                 err = -EINVAL;
12519                 goto err_task;
12520         }
12521
12522         if (flags & PERF_FLAG_PID_CGROUP)
12523                 cgroup_fd = pid;
12524
12525         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12526                                  NULL, NULL, cgroup_fd);
12527         if (IS_ERR(event)) {
12528                 err = PTR_ERR(event);
12529                 goto err_task;
12530         }
12531
12532         if (is_sampling_event(event)) {
12533                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12534                         err = -EOPNOTSUPP;
12535                         goto err_alloc;
12536                 }
12537         }
12538
12539         /*
12540          * Special case software events and allow them to be part of
12541          * any hardware group.
12542          */
12543         pmu = event->pmu;
12544
12545         if (attr.use_clockid) {
12546                 err = perf_event_set_clock(event, attr.clockid);
12547                 if (err)
12548                         goto err_alloc;
12549         }
12550
12551         if (pmu->task_ctx_nr == perf_sw_context)
12552                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12553
12554         if (task) {
12555                 err = down_read_interruptible(&task->signal->exec_update_lock);
12556                 if (err)
12557                         goto err_alloc;
12558
12559                 /*
12560                  * We must hold exec_update_lock across this and any potential
12561                  * perf_install_in_context() call for this new event to
12562                  * serialize against exec() altering our credentials (and the
12563                  * perf_event_exit_task() that could imply).
12564                  */
12565                 err = -EACCES;
12566                 if (!perf_check_permission(&attr, task))
12567                         goto err_cred;
12568         }
12569
12570         /*
12571          * Get the target context (task or percpu):
12572          */
12573         ctx = find_get_context(task, event);
12574         if (IS_ERR(ctx)) {
12575                 err = PTR_ERR(ctx);
12576                 goto err_cred;
12577         }
12578
12579         mutex_lock(&ctx->mutex);
12580
12581         if (ctx->task == TASK_TOMBSTONE) {
12582                 err = -ESRCH;
12583                 goto err_locked;
12584         }
12585
12586         if (!task) {
12587                 /*
12588                  * Check if the @cpu we're creating an event for is online.
12589                  *
12590                  * We use the perf_cpu_context::ctx::mutex to serialize against
12591                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12592                  */
12593                 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12594
12595                 if (!cpuctx->online) {
12596                         err = -ENODEV;
12597                         goto err_locked;
12598                 }
12599         }
12600
12601         if (group_leader) {
12602                 err = -EINVAL;
12603
12604                 /*
12605                  * Do not allow a recursive hierarchy (this new sibling
12606                  * becoming part of another group-sibling):
12607                  */
12608                 if (group_leader->group_leader != group_leader)
12609                         goto err_locked;
12610
12611                 /* All events in a group should have the same clock */
12612                 if (group_leader->clock != event->clock)
12613                         goto err_locked;
12614
12615                 /*
12616                  * Make sure we're both events for the same CPU;
12617                  * grouping events for different CPUs is broken; since
12618                  * you can never concurrently schedule them anyhow.
12619                  */
12620                 if (group_leader->cpu != event->cpu)
12621                         goto err_locked;
12622
12623                 /*
12624                  * Make sure we're both on the same context; either task or cpu.
12625                  */
12626                 if (group_leader->ctx != ctx)
12627                         goto err_locked;
12628
12629                 /*
12630                  * Only a group leader can be exclusive or pinned
12631                  */
12632                 if (attr.exclusive || attr.pinned)
12633                         goto err_locked;
12634
12635                 if (is_software_event(event) &&
12636                     !in_software_context(group_leader)) {
12637                         /*
12638                          * If the event is a sw event, but the group_leader
12639                          * is on hw context.
12640                          *
12641                          * Allow the addition of software events to hw
12642                          * groups, this is safe because software events
12643                          * never fail to schedule.
12644                          *
12645                          * Note the comment that goes with struct
12646                          * perf_event_pmu_context.
12647                          */
12648                         pmu = group_leader->pmu_ctx->pmu;
12649                 } else if (!is_software_event(event)) {
12650                         if (is_software_event(group_leader) &&
12651                             (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12652                                 /*
12653                                  * In case the group is a pure software group, and we
12654                                  * try to add a hardware event, move the whole group to
12655                                  * the hardware context.
12656                                  */
12657                                 move_group = 1;
12658                         }
12659
12660                         /* Don't allow group of multiple hw events from different pmus */
12661                         if (!in_software_context(group_leader) &&
12662                             group_leader->pmu_ctx->pmu != pmu)
12663                                 goto err_locked;
12664                 }
12665         }
12666
12667         /*
12668          * Now that we're certain of the pmu; find the pmu_ctx.
12669          */
12670         pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12671         if (IS_ERR(pmu_ctx)) {
12672                 err = PTR_ERR(pmu_ctx);
12673                 goto err_locked;
12674         }
12675         event->pmu_ctx = pmu_ctx;
12676
12677         if (output_event) {
12678                 err = perf_event_set_output(event, output_event);
12679                 if (err)
12680                         goto err_context;
12681         }
12682
12683         if (!perf_event_validate_size(event)) {
12684                 err = -E2BIG;
12685                 goto err_context;
12686         }
12687
12688         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12689                 err = -EINVAL;
12690                 goto err_context;
12691         }
12692
12693         /*
12694          * Must be under the same ctx::mutex as perf_install_in_context(),
12695          * because we need to serialize with concurrent event creation.
12696          */
12697         if (!exclusive_event_installable(event, ctx)) {
12698                 err = -EBUSY;
12699                 goto err_context;
12700         }
12701
12702         WARN_ON_ONCE(ctx->parent_ctx);
12703
12704         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12705         if (IS_ERR(event_file)) {
12706                 err = PTR_ERR(event_file);
12707                 event_file = NULL;
12708                 goto err_context;
12709         }
12710
12711         /*
12712          * This is the point on no return; we cannot fail hereafter. This is
12713          * where we start modifying current state.
12714          */
12715
12716         if (move_group) {
12717                 perf_remove_from_context(group_leader, 0);
12718                 put_pmu_ctx(group_leader->pmu_ctx);
12719
12720                 for_each_sibling_event(sibling, group_leader) {
12721                         perf_remove_from_context(sibling, 0);
12722                         put_pmu_ctx(sibling->pmu_ctx);
12723                 }
12724
12725                 /*
12726                  * Install the group siblings before the group leader.
12727                  *
12728                  * Because a group leader will try and install the entire group
12729                  * (through the sibling list, which is still in-tact), we can
12730                  * end up with siblings installed in the wrong context.
12731                  *
12732                  * By installing siblings first we NO-OP because they're not
12733                  * reachable through the group lists.
12734                  */
12735                 for_each_sibling_event(sibling, group_leader) {
12736                         sibling->pmu_ctx = pmu_ctx;
12737                         get_pmu_ctx(pmu_ctx);
12738                         perf_event__state_init(sibling);
12739                         perf_install_in_context(ctx, sibling, sibling->cpu);
12740                 }
12741
12742                 /*
12743                  * Removing from the context ends up with disabled
12744                  * event. What we want here is event in the initial
12745                  * startup state, ready to be add into new context.
12746                  */
12747                 group_leader->pmu_ctx = pmu_ctx;
12748                 get_pmu_ctx(pmu_ctx);
12749                 perf_event__state_init(group_leader);
12750                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12751         }
12752
12753         /*
12754          * Precalculate sample_data sizes; do while holding ctx::mutex such
12755          * that we're serialized against further additions and before
12756          * perf_install_in_context() which is the point the event is active and
12757          * can use these values.
12758          */
12759         perf_event__header_size(event);
12760         perf_event__id_header_size(event);
12761
12762         event->owner = current;
12763
12764         perf_install_in_context(ctx, event, event->cpu);
12765         perf_unpin_context(ctx);
12766
12767         mutex_unlock(&ctx->mutex);
12768
12769         if (task) {
12770                 up_read(&task->signal->exec_update_lock);
12771                 put_task_struct(task);
12772         }
12773
12774         mutex_lock(&current->perf_event_mutex);
12775         list_add_tail(&event->owner_entry, &current->perf_event_list);
12776         mutex_unlock(&current->perf_event_mutex);
12777
12778         /*
12779          * Drop the reference on the group_event after placing the
12780          * new event on the sibling_list. This ensures destruction
12781          * of the group leader will find the pointer to itself in
12782          * perf_group_detach().
12783          */
12784         fdput(group);
12785         fd_install(event_fd, event_file);
12786         return event_fd;
12787
12788 err_context:
12789         put_pmu_ctx(event->pmu_ctx);
12790         event->pmu_ctx = NULL; /* _free_event() */
12791 err_locked:
12792         mutex_unlock(&ctx->mutex);
12793         perf_unpin_context(ctx);
12794         put_ctx(ctx);
12795 err_cred:
12796         if (task)
12797                 up_read(&task->signal->exec_update_lock);
12798 err_alloc:
12799         free_event(event);
12800 err_task:
12801         if (task)
12802                 put_task_struct(task);
12803 err_group_fd:
12804         fdput(group);
12805 err_fd:
12806         put_unused_fd(event_fd);
12807         return err;
12808 }
12809
12810 /**
12811  * perf_event_create_kernel_counter
12812  *
12813  * @attr: attributes of the counter to create
12814  * @cpu: cpu in which the counter is bound
12815  * @task: task to profile (NULL for percpu)
12816  * @overflow_handler: callback to trigger when we hit the event
12817  * @context: context data could be used in overflow_handler callback
12818  */
12819 struct perf_event *
12820 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12821                                  struct task_struct *task,
12822                                  perf_overflow_handler_t overflow_handler,
12823                                  void *context)
12824 {
12825         struct perf_event_pmu_context *pmu_ctx;
12826         struct perf_event_context *ctx;
12827         struct perf_event *event;
12828         struct pmu *pmu;
12829         int err;
12830
12831         /*
12832          * Grouping is not supported for kernel events, neither is 'AUX',
12833          * make sure the caller's intentions are adjusted.
12834          */
12835         if (attr->aux_output)
12836                 return ERR_PTR(-EINVAL);
12837
12838         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12839                                  overflow_handler, context, -1);
12840         if (IS_ERR(event)) {
12841                 err = PTR_ERR(event);
12842                 goto err;
12843         }
12844
12845         /* Mark owner so we could distinguish it from user events. */
12846         event->owner = TASK_TOMBSTONE;
12847         pmu = event->pmu;
12848
12849         if (pmu->task_ctx_nr == perf_sw_context)
12850                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12851
12852         /*
12853          * Get the target context (task or percpu):
12854          */
12855         ctx = find_get_context(task, event);
12856         if (IS_ERR(ctx)) {
12857                 err = PTR_ERR(ctx);
12858                 goto err_alloc;
12859         }
12860
12861         WARN_ON_ONCE(ctx->parent_ctx);
12862         mutex_lock(&ctx->mutex);
12863         if (ctx->task == TASK_TOMBSTONE) {
12864                 err = -ESRCH;
12865                 goto err_unlock;
12866         }
12867
12868         pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12869         if (IS_ERR(pmu_ctx)) {
12870                 err = PTR_ERR(pmu_ctx);
12871                 goto err_unlock;
12872         }
12873         event->pmu_ctx = pmu_ctx;
12874
12875         if (!task) {
12876                 /*
12877                  * Check if the @cpu we're creating an event for is online.
12878                  *
12879                  * We use the perf_cpu_context::ctx::mutex to serialize against
12880                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12881                  */
12882                 struct perf_cpu_context *cpuctx =
12883                         container_of(ctx, struct perf_cpu_context, ctx);
12884                 if (!cpuctx->online) {
12885                         err = -ENODEV;
12886                         goto err_pmu_ctx;
12887                 }
12888         }
12889
12890         if (!exclusive_event_installable(event, ctx)) {
12891                 err = -EBUSY;
12892                 goto err_pmu_ctx;
12893         }
12894
12895         perf_install_in_context(ctx, event, event->cpu);
12896         perf_unpin_context(ctx);
12897         mutex_unlock(&ctx->mutex);
12898
12899         return event;
12900
12901 err_pmu_ctx:
12902         put_pmu_ctx(pmu_ctx);
12903         event->pmu_ctx = NULL; /* _free_event() */
12904 err_unlock:
12905         mutex_unlock(&ctx->mutex);
12906         perf_unpin_context(ctx);
12907         put_ctx(ctx);
12908 err_alloc:
12909         free_event(event);
12910 err:
12911         return ERR_PTR(err);
12912 }
12913 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12914
12915 static void __perf_pmu_remove(struct perf_event_context *ctx,
12916                               int cpu, struct pmu *pmu,
12917                               struct perf_event_groups *groups,
12918                               struct list_head *events)
12919 {
12920         struct perf_event *event, *sibling;
12921
12922         perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12923                 perf_remove_from_context(event, 0);
12924                 put_pmu_ctx(event->pmu_ctx);
12925                 list_add(&event->migrate_entry, events);
12926
12927                 for_each_sibling_event(sibling, event) {
12928                         perf_remove_from_context(sibling, 0);
12929                         put_pmu_ctx(sibling->pmu_ctx);
12930                         list_add(&sibling->migrate_entry, events);
12931                 }
12932         }
12933 }
12934
12935 static void __perf_pmu_install_event(struct pmu *pmu,
12936                                      struct perf_event_context *ctx,
12937                                      int cpu, struct perf_event *event)
12938 {
12939         struct perf_event_pmu_context *epc;
12940         struct perf_event_context *old_ctx = event->ctx;
12941
12942         get_ctx(ctx); /* normally find_get_context() */
12943
12944         event->cpu = cpu;
12945         epc = find_get_pmu_context(pmu, ctx, event);
12946         event->pmu_ctx = epc;
12947
12948         if (event->state >= PERF_EVENT_STATE_OFF)
12949                 event->state = PERF_EVENT_STATE_INACTIVE;
12950         perf_install_in_context(ctx, event, cpu);
12951
12952         /*
12953          * Now that event->ctx is updated and visible, put the old ctx.
12954          */
12955         put_ctx(old_ctx);
12956 }
12957
12958 static void __perf_pmu_install(struct perf_event_context *ctx,
12959                                int cpu, struct pmu *pmu, struct list_head *events)
12960 {
12961         struct perf_event *event, *tmp;
12962
12963         /*
12964          * Re-instate events in 2 passes.
12965          *
12966          * Skip over group leaders and only install siblings on this first
12967          * pass, siblings will not get enabled without a leader, however a
12968          * leader will enable its siblings, even if those are still on the old
12969          * context.
12970          */
12971         list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12972                 if (event->group_leader == event)
12973                         continue;
12974
12975                 list_del(&event->migrate_entry);
12976                 __perf_pmu_install_event(pmu, ctx, cpu, event);
12977         }
12978
12979         /*
12980          * Once all the siblings are setup properly, install the group leaders
12981          * to make it go.
12982          */
12983         list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12984                 list_del(&event->migrate_entry);
12985                 __perf_pmu_install_event(pmu, ctx, cpu, event);
12986         }
12987 }
12988
12989 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12990 {
12991         struct perf_event_context *src_ctx, *dst_ctx;
12992         LIST_HEAD(events);
12993
12994         /*
12995          * Since per-cpu context is persistent, no need to grab an extra
12996          * reference.
12997          */
12998         src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
12999         dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13000
13001         /*
13002          * See perf_event_ctx_lock() for comments on the details
13003          * of swizzling perf_event::ctx.
13004          */
13005         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13006
13007         __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13008         __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13009
13010         if (!list_empty(&events)) {
13011                 /*
13012                  * Wait for the events to quiesce before re-instating them.
13013                  */
13014                 synchronize_rcu();
13015
13016                 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13017         }
13018
13019         mutex_unlock(&dst_ctx->mutex);
13020         mutex_unlock(&src_ctx->mutex);
13021 }
13022 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13023
13024 static void sync_child_event(struct perf_event *child_event)
13025 {
13026         struct perf_event *parent_event = child_event->parent;
13027         u64 child_val;
13028
13029         if (child_event->attr.inherit_stat) {
13030                 struct task_struct *task = child_event->ctx->task;
13031
13032                 if (task && task != TASK_TOMBSTONE)
13033                         perf_event_read_event(child_event, task);
13034         }
13035
13036         child_val = perf_event_count(child_event);
13037
13038         /*
13039          * Add back the child's count to the parent's count:
13040          */
13041         atomic64_add(child_val, &parent_event->child_count);
13042         atomic64_add(child_event->total_time_enabled,
13043                      &parent_event->child_total_time_enabled);
13044         atomic64_add(child_event->total_time_running,
13045                      &parent_event->child_total_time_running);
13046 }
13047
13048 static void
13049 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13050 {
13051         struct perf_event *parent_event = event->parent;
13052         unsigned long detach_flags = 0;
13053
13054         if (parent_event) {
13055                 /*
13056                  * Do not destroy the 'original' grouping; because of the
13057                  * context switch optimization the original events could've
13058                  * ended up in a random child task.
13059                  *
13060                  * If we were to destroy the original group, all group related
13061                  * operations would cease to function properly after this
13062                  * random child dies.
13063                  *
13064                  * Do destroy all inherited groups, we don't care about those
13065                  * and being thorough is better.
13066                  */
13067                 detach_flags = DETACH_GROUP | DETACH_CHILD;
13068                 mutex_lock(&parent_event->child_mutex);
13069         }
13070
13071         perf_remove_from_context(event, detach_flags);
13072
13073         raw_spin_lock_irq(&ctx->lock);
13074         if (event->state > PERF_EVENT_STATE_EXIT)
13075                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13076         raw_spin_unlock_irq(&ctx->lock);
13077
13078         /*
13079          * Child events can be freed.
13080          */
13081         if (parent_event) {
13082                 mutex_unlock(&parent_event->child_mutex);
13083                 /*
13084                  * Kick perf_poll() for is_event_hup();
13085                  */
13086                 perf_event_wakeup(parent_event);
13087                 free_event(event);
13088                 put_event(parent_event);
13089                 return;
13090         }
13091
13092         /*
13093          * Parent events are governed by their filedesc, retain them.
13094          */
13095         perf_event_wakeup(event);
13096 }
13097
13098 static void perf_event_exit_task_context(struct task_struct *child)
13099 {
13100         struct perf_event_context *child_ctx, *clone_ctx = NULL;
13101         struct perf_event *child_event, *next;
13102
13103         WARN_ON_ONCE(child != current);
13104
13105         child_ctx = perf_pin_task_context(child);
13106         if (!child_ctx)
13107                 return;
13108
13109         /*
13110          * In order to reduce the amount of tricky in ctx tear-down, we hold
13111          * ctx::mutex over the entire thing. This serializes against almost
13112          * everything that wants to access the ctx.
13113          *
13114          * The exception is sys_perf_event_open() /
13115          * perf_event_create_kernel_count() which does find_get_context()
13116          * without ctx::mutex (it cannot because of the move_group double mutex
13117          * lock thing). See the comments in perf_install_in_context().
13118          */
13119         mutex_lock(&child_ctx->mutex);
13120
13121         /*
13122          * In a single ctx::lock section, de-schedule the events and detach the
13123          * context from the task such that we cannot ever get it scheduled back
13124          * in.
13125          */
13126         raw_spin_lock_irq(&child_ctx->lock);
13127         task_ctx_sched_out(child_ctx, EVENT_ALL);
13128
13129         /*
13130          * Now that the context is inactive, destroy the task <-> ctx relation
13131          * and mark the context dead.
13132          */
13133         RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13134         put_ctx(child_ctx); /* cannot be last */
13135         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13136         put_task_struct(current); /* cannot be last */
13137
13138         clone_ctx = unclone_ctx(child_ctx);
13139         raw_spin_unlock_irq(&child_ctx->lock);
13140
13141         if (clone_ctx)
13142                 put_ctx(clone_ctx);
13143
13144         /*
13145          * Report the task dead after unscheduling the events so that we
13146          * won't get any samples after PERF_RECORD_EXIT. We can however still
13147          * get a few PERF_RECORD_READ events.
13148          */
13149         perf_event_task(child, child_ctx, 0);
13150
13151         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13152                 perf_event_exit_event(child_event, child_ctx);
13153
13154         mutex_unlock(&child_ctx->mutex);
13155
13156         put_ctx(child_ctx);
13157 }
13158
13159 /*
13160  * When a child task exits, feed back event values to parent events.
13161  *
13162  * Can be called with exec_update_lock held when called from
13163  * setup_new_exec().
13164  */
13165 void perf_event_exit_task(struct task_struct *child)
13166 {
13167         struct perf_event *event, *tmp;
13168
13169         mutex_lock(&child->perf_event_mutex);
13170         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13171                                  owner_entry) {
13172                 list_del_init(&event->owner_entry);
13173
13174                 /*
13175                  * Ensure the list deletion is visible before we clear
13176                  * the owner, closes a race against perf_release() where
13177                  * we need to serialize on the owner->perf_event_mutex.
13178                  */
13179                 smp_store_release(&event->owner, NULL);
13180         }
13181         mutex_unlock(&child->perf_event_mutex);
13182
13183         perf_event_exit_task_context(child);
13184
13185         /*
13186          * The perf_event_exit_task_context calls perf_event_task
13187          * with child's task_ctx, which generates EXIT events for
13188          * child contexts and sets child->perf_event_ctxp[] to NULL.
13189          * At this point we need to send EXIT events to cpu contexts.
13190          */
13191         perf_event_task(child, NULL, 0);
13192 }
13193
13194 static void perf_free_event(struct perf_event *event,
13195                             struct perf_event_context *ctx)
13196 {
13197         struct perf_event *parent = event->parent;
13198
13199         if (WARN_ON_ONCE(!parent))
13200                 return;
13201
13202         mutex_lock(&parent->child_mutex);
13203         list_del_init(&event->child_list);
13204         mutex_unlock(&parent->child_mutex);
13205
13206         put_event(parent);
13207
13208         raw_spin_lock_irq(&ctx->lock);
13209         perf_group_detach(event);
13210         list_del_event(event, ctx);
13211         raw_spin_unlock_irq(&ctx->lock);
13212         free_event(event);
13213 }
13214
13215 /*
13216  * Free a context as created by inheritance by perf_event_init_task() below,
13217  * used by fork() in case of fail.
13218  *
13219  * Even though the task has never lived, the context and events have been
13220  * exposed through the child_list, so we must take care tearing it all down.
13221  */
13222 void perf_event_free_task(struct task_struct *task)
13223 {
13224         struct perf_event_context *ctx;
13225         struct perf_event *event, *tmp;
13226
13227         ctx = rcu_access_pointer(task->perf_event_ctxp);
13228         if (!ctx)
13229                 return;
13230
13231         mutex_lock(&ctx->mutex);
13232         raw_spin_lock_irq(&ctx->lock);
13233         /*
13234          * Destroy the task <-> ctx relation and mark the context dead.
13235          *
13236          * This is important because even though the task hasn't been
13237          * exposed yet the context has been (through child_list).
13238          */
13239         RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13240         WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13241         put_task_struct(task); /* cannot be last */
13242         raw_spin_unlock_irq(&ctx->lock);
13243
13244
13245         list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13246                 perf_free_event(event, ctx);
13247
13248         mutex_unlock(&ctx->mutex);
13249
13250         /*
13251          * perf_event_release_kernel() could've stolen some of our
13252          * child events and still have them on its free_list. In that
13253          * case we must wait for these events to have been freed (in
13254          * particular all their references to this task must've been
13255          * dropped).
13256          *
13257          * Without this copy_process() will unconditionally free this
13258          * task (irrespective of its reference count) and
13259          * _free_event()'s put_task_struct(event->hw.target) will be a
13260          * use-after-free.
13261          *
13262          * Wait for all events to drop their context reference.
13263          */
13264         wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13265         put_ctx(ctx); /* must be last */
13266 }
13267
13268 void perf_event_delayed_put(struct task_struct *task)
13269 {
13270         WARN_ON_ONCE(task->perf_event_ctxp);
13271 }
13272
13273 struct file *perf_event_get(unsigned int fd)
13274 {
13275         struct file *file = fget(fd);
13276         if (!file)
13277                 return ERR_PTR(-EBADF);
13278
13279         if (file->f_op != &perf_fops) {
13280                 fput(file);
13281                 return ERR_PTR(-EBADF);
13282         }
13283
13284         return file;
13285 }
13286
13287 const struct perf_event *perf_get_event(struct file *file)
13288 {
13289         if (file->f_op != &perf_fops)
13290                 return ERR_PTR(-EINVAL);
13291
13292         return file->private_data;
13293 }
13294
13295 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13296 {
13297         if (!event)
13298                 return ERR_PTR(-EINVAL);
13299
13300         return &event->attr;
13301 }
13302
13303 /*
13304  * Inherit an event from parent task to child task.
13305  *
13306  * Returns:
13307  *  - valid pointer on success
13308  *  - NULL for orphaned events
13309  *  - IS_ERR() on error
13310  */
13311 static struct perf_event *
13312 inherit_event(struct perf_event *parent_event,
13313               struct task_struct *parent,
13314               struct perf_event_context *parent_ctx,
13315               struct task_struct *child,
13316               struct perf_event *group_leader,
13317               struct perf_event_context *child_ctx)
13318 {
13319         enum perf_event_state parent_state = parent_event->state;
13320         struct perf_event_pmu_context *pmu_ctx;
13321         struct perf_event *child_event;
13322         unsigned long flags;
13323
13324         /*
13325          * Instead of creating recursive hierarchies of events,
13326          * we link inherited events back to the original parent,
13327          * which has a filp for sure, which we use as the reference
13328          * count:
13329          */
13330         if (parent_event->parent)
13331                 parent_event = parent_event->parent;
13332
13333         child_event = perf_event_alloc(&parent_event->attr,
13334                                            parent_event->cpu,
13335                                            child,
13336                                            group_leader, parent_event,
13337                                            NULL, NULL, -1);
13338         if (IS_ERR(child_event))
13339                 return child_event;
13340
13341         pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13342         if (IS_ERR(pmu_ctx)) {
13343                 free_event(child_event);
13344                 return ERR_CAST(pmu_ctx);
13345         }
13346         child_event->pmu_ctx = pmu_ctx;
13347
13348         /*
13349          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13350          * must be under the same lock in order to serialize against
13351          * perf_event_release_kernel(), such that either we must observe
13352          * is_orphaned_event() or they will observe us on the child_list.
13353          */
13354         mutex_lock(&parent_event->child_mutex);
13355         if (is_orphaned_event(parent_event) ||
13356             !atomic_long_inc_not_zero(&parent_event->refcount)) {
13357                 mutex_unlock(&parent_event->child_mutex);
13358                 /* task_ctx_data is freed with child_ctx */
13359                 free_event(child_event);
13360                 return NULL;
13361         }
13362
13363         get_ctx(child_ctx);
13364
13365         /*
13366          * Make the child state follow the state of the parent event,
13367          * not its attr.disabled bit.  We hold the parent's mutex,
13368          * so we won't race with perf_event_{en, dis}able_family.
13369          */
13370         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13371                 child_event->state = PERF_EVENT_STATE_INACTIVE;
13372         else
13373                 child_event->state = PERF_EVENT_STATE_OFF;
13374
13375         if (parent_event->attr.freq) {
13376                 u64 sample_period = parent_event->hw.sample_period;
13377                 struct hw_perf_event *hwc = &child_event->hw;
13378
13379                 hwc->sample_period = sample_period;
13380                 hwc->last_period   = sample_period;
13381
13382                 local64_set(&hwc->period_left, sample_period);
13383         }
13384
13385         child_event->ctx = child_ctx;
13386         child_event->overflow_handler = parent_event->overflow_handler;
13387         child_event->overflow_handler_context
13388                 = parent_event->overflow_handler_context;
13389
13390         /*
13391          * Precalculate sample_data sizes
13392          */
13393         perf_event__header_size(child_event);
13394         perf_event__id_header_size(child_event);
13395
13396         /*
13397          * Link it up in the child's context:
13398          */
13399         raw_spin_lock_irqsave(&child_ctx->lock, flags);
13400         add_event_to_ctx(child_event, child_ctx);
13401         child_event->attach_state |= PERF_ATTACH_CHILD;
13402         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13403
13404         /*
13405          * Link this into the parent event's child list
13406          */
13407         list_add_tail(&child_event->child_list, &parent_event->child_list);
13408         mutex_unlock(&parent_event->child_mutex);
13409
13410         return child_event;
13411 }
13412
13413 /*
13414  * Inherits an event group.
13415  *
13416  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13417  * This matches with perf_event_release_kernel() removing all child events.
13418  *
13419  * Returns:
13420  *  - 0 on success
13421  *  - <0 on error
13422  */
13423 static int inherit_group(struct perf_event *parent_event,
13424               struct task_struct *parent,
13425               struct perf_event_context *parent_ctx,
13426               struct task_struct *child,
13427               struct perf_event_context *child_ctx)
13428 {
13429         struct perf_event *leader;
13430         struct perf_event *sub;
13431         struct perf_event *child_ctr;
13432
13433         leader = inherit_event(parent_event, parent, parent_ctx,
13434                                  child, NULL, child_ctx);
13435         if (IS_ERR(leader))
13436                 return PTR_ERR(leader);
13437         /*
13438          * @leader can be NULL here because of is_orphaned_event(). In this
13439          * case inherit_event() will create individual events, similar to what
13440          * perf_group_detach() would do anyway.
13441          */
13442         for_each_sibling_event(sub, parent_event) {
13443                 child_ctr = inherit_event(sub, parent, parent_ctx,
13444                                             child, leader, child_ctx);
13445                 if (IS_ERR(child_ctr))
13446                         return PTR_ERR(child_ctr);
13447
13448                 if (sub->aux_event == parent_event && child_ctr &&
13449                     !perf_get_aux_event(child_ctr, leader))
13450                         return -EINVAL;
13451         }
13452         if (leader)
13453                 leader->group_generation = parent_event->group_generation;
13454         return 0;
13455 }
13456
13457 /*
13458  * Creates the child task context and tries to inherit the event-group.
13459  *
13460  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13461  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13462  * consistent with perf_event_release_kernel() removing all child events.
13463  *
13464  * Returns:
13465  *  - 0 on success
13466  *  - <0 on error
13467  */
13468 static int
13469 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13470                    struct perf_event_context *parent_ctx,
13471                    struct task_struct *child,
13472                    u64 clone_flags, int *inherited_all)
13473 {
13474         struct perf_event_context *child_ctx;
13475         int ret;
13476
13477         if (!event->attr.inherit ||
13478             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13479             /* Do not inherit if sigtrap and signal handlers were cleared. */
13480             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13481                 *inherited_all = 0;
13482                 return 0;
13483         }
13484
13485         child_ctx = child->perf_event_ctxp;
13486         if (!child_ctx) {
13487                 /*
13488                  * This is executed from the parent task context, so
13489                  * inherit events that have been marked for cloning.
13490                  * First allocate and initialize a context for the
13491                  * child.
13492                  */
13493                 child_ctx = alloc_perf_context(child);
13494                 if (!child_ctx)
13495                         return -ENOMEM;
13496
13497                 child->perf_event_ctxp = child_ctx;
13498         }
13499
13500         ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13501         if (ret)
13502                 *inherited_all = 0;
13503
13504         return ret;
13505 }
13506
13507 /*
13508  * Initialize the perf_event context in task_struct
13509  */
13510 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13511 {
13512         struct perf_event_context *child_ctx, *parent_ctx;
13513         struct perf_event_context *cloned_ctx;
13514         struct perf_event *event;
13515         struct task_struct *parent = current;
13516         int inherited_all = 1;
13517         unsigned long flags;
13518         int ret = 0;
13519
13520         if (likely(!parent->perf_event_ctxp))
13521                 return 0;
13522
13523         /*
13524          * If the parent's context is a clone, pin it so it won't get
13525          * swapped under us.
13526          */
13527         parent_ctx = perf_pin_task_context(parent);
13528         if (!parent_ctx)
13529                 return 0;
13530
13531         /*
13532          * No need to check if parent_ctx != NULL here; since we saw
13533          * it non-NULL earlier, the only reason for it to become NULL
13534          * is if we exit, and since we're currently in the middle of
13535          * a fork we can't be exiting at the same time.
13536          */
13537
13538         /*
13539          * Lock the parent list. No need to lock the child - not PID
13540          * hashed yet and not running, so nobody can access it.
13541          */
13542         mutex_lock(&parent_ctx->mutex);
13543
13544         /*
13545          * We dont have to disable NMIs - we are only looking at
13546          * the list, not manipulating it:
13547          */
13548         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13549                 ret = inherit_task_group(event, parent, parent_ctx,
13550                                          child, clone_flags, &inherited_all);
13551                 if (ret)
13552                         goto out_unlock;
13553         }
13554
13555         /*
13556          * We can't hold ctx->lock when iterating the ->flexible_group list due
13557          * to allocations, but we need to prevent rotation because
13558          * rotate_ctx() will change the list from interrupt context.
13559          */
13560         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13561         parent_ctx->rotate_disable = 1;
13562         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13563
13564         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13565                 ret = inherit_task_group(event, parent, parent_ctx,
13566                                          child, clone_flags, &inherited_all);
13567                 if (ret)
13568                         goto out_unlock;
13569         }
13570
13571         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13572         parent_ctx->rotate_disable = 0;
13573
13574         child_ctx = child->perf_event_ctxp;
13575
13576         if (child_ctx && inherited_all) {
13577                 /*
13578                  * Mark the child context as a clone of the parent
13579                  * context, or of whatever the parent is a clone of.
13580                  *
13581                  * Note that if the parent is a clone, the holding of
13582                  * parent_ctx->lock avoids it from being uncloned.
13583                  */
13584                 cloned_ctx = parent_ctx->parent_ctx;
13585                 if (cloned_ctx) {
13586                         child_ctx->parent_ctx = cloned_ctx;
13587                         child_ctx->parent_gen = parent_ctx->parent_gen;
13588                 } else {
13589                         child_ctx->parent_ctx = parent_ctx;
13590                         child_ctx->parent_gen = parent_ctx->generation;
13591                 }
13592                 get_ctx(child_ctx->parent_ctx);
13593         }
13594
13595         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13596 out_unlock:
13597         mutex_unlock(&parent_ctx->mutex);
13598
13599         perf_unpin_context(parent_ctx);
13600         put_ctx(parent_ctx);
13601
13602         return ret;
13603 }
13604
13605 /*
13606  * Initialize the perf_event context in task_struct
13607  */
13608 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13609 {
13610         int ret;
13611
13612         child->perf_event_ctxp = NULL;
13613         mutex_init(&child->perf_event_mutex);
13614         INIT_LIST_HEAD(&child->perf_event_list);
13615
13616         ret = perf_event_init_context(child, clone_flags);
13617         if (ret) {
13618                 perf_event_free_task(child);
13619                 return ret;
13620         }
13621
13622         return 0;
13623 }
13624
13625 static void __init perf_event_init_all_cpus(void)
13626 {
13627         struct swevent_htable *swhash;
13628         struct perf_cpu_context *cpuctx;
13629         int cpu;
13630
13631         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13632
13633         for_each_possible_cpu(cpu) {
13634                 swhash = &per_cpu(swevent_htable, cpu);
13635                 mutex_init(&swhash->hlist_mutex);
13636
13637                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13638                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13639
13640                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13641
13642                 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13643                 __perf_event_init_context(&cpuctx->ctx);
13644                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13645                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13646                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13647                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13648                 cpuctx->heap = cpuctx->heap_default;
13649         }
13650 }
13651
13652 static void perf_swevent_init_cpu(unsigned int cpu)
13653 {
13654         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13655
13656         mutex_lock(&swhash->hlist_mutex);
13657         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13658                 struct swevent_hlist *hlist;
13659
13660                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13661                 WARN_ON(!hlist);
13662                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13663         }
13664         mutex_unlock(&swhash->hlist_mutex);
13665 }
13666
13667 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13668 static void __perf_event_exit_context(void *__info)
13669 {
13670         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13671         struct perf_event_context *ctx = __info;
13672         struct perf_event *event;
13673
13674         raw_spin_lock(&ctx->lock);
13675         ctx_sched_out(ctx, EVENT_TIME);
13676         list_for_each_entry(event, &ctx->event_list, event_entry)
13677                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13678         raw_spin_unlock(&ctx->lock);
13679 }
13680
13681 static void perf_event_exit_cpu_context(int cpu)
13682 {
13683         struct perf_cpu_context *cpuctx;
13684         struct perf_event_context *ctx;
13685
13686         // XXX simplify cpuctx->online
13687         mutex_lock(&pmus_lock);
13688         cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13689         ctx = &cpuctx->ctx;
13690
13691         mutex_lock(&ctx->mutex);
13692         smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13693         cpuctx->online = 0;
13694         mutex_unlock(&ctx->mutex);
13695         cpumask_clear_cpu(cpu, perf_online_mask);
13696         mutex_unlock(&pmus_lock);
13697 }
13698 #else
13699
13700 static void perf_event_exit_cpu_context(int cpu) { }
13701
13702 #endif
13703
13704 int perf_event_init_cpu(unsigned int cpu)
13705 {
13706         struct perf_cpu_context *cpuctx;
13707         struct perf_event_context *ctx;
13708
13709         perf_swevent_init_cpu(cpu);
13710
13711         mutex_lock(&pmus_lock);
13712         cpumask_set_cpu(cpu, perf_online_mask);
13713         cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13714         ctx = &cpuctx->ctx;
13715
13716         mutex_lock(&ctx->mutex);
13717         cpuctx->online = 1;
13718         mutex_unlock(&ctx->mutex);
13719         mutex_unlock(&pmus_lock);
13720
13721         return 0;
13722 }
13723
13724 int perf_event_exit_cpu(unsigned int cpu)
13725 {
13726         perf_event_exit_cpu_context(cpu);
13727         return 0;
13728 }
13729
13730 static int
13731 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13732 {
13733         int cpu;
13734
13735         for_each_online_cpu(cpu)
13736                 perf_event_exit_cpu(cpu);
13737
13738         return NOTIFY_OK;
13739 }
13740
13741 /*
13742  * Run the perf reboot notifier at the very last possible moment so that
13743  * the generic watchdog code runs as long as possible.
13744  */
13745 static struct notifier_block perf_reboot_notifier = {
13746         .notifier_call = perf_reboot,
13747         .priority = INT_MIN,
13748 };
13749
13750 void __init perf_event_init(void)
13751 {
13752         int ret;
13753
13754         idr_init(&pmu_idr);
13755
13756         perf_event_init_all_cpus();
13757         init_srcu_struct(&pmus_srcu);
13758         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13759         perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13760         perf_pmu_register(&perf_task_clock, "task_clock", -1);
13761         perf_tp_register();
13762         perf_event_init_cpu(smp_processor_id());
13763         register_reboot_notifier(&perf_reboot_notifier);
13764
13765         ret = init_hw_breakpoint();
13766         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13767
13768         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13769
13770         /*
13771          * Build time assertion that we keep the data_head at the intended
13772          * location.  IOW, validation we got the __reserved[] size right.
13773          */
13774         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13775                      != 1024);
13776 }
13777
13778 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13779                               char *page)
13780 {
13781         struct perf_pmu_events_attr *pmu_attr =
13782                 container_of(attr, struct perf_pmu_events_attr, attr);
13783
13784         if (pmu_attr->event_str)
13785                 return sprintf(page, "%s\n", pmu_attr->event_str);
13786
13787         return 0;
13788 }
13789 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13790
13791 static int __init perf_event_sysfs_init(void)
13792 {
13793         struct pmu *pmu;
13794         int ret;
13795
13796         mutex_lock(&pmus_lock);
13797
13798         ret = bus_register(&pmu_bus);
13799         if (ret)
13800                 goto unlock;
13801
13802         list_for_each_entry(pmu, &pmus, entry) {
13803                 if (pmu->dev)
13804                         continue;
13805
13806                 ret = pmu_dev_alloc(pmu);
13807                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13808         }
13809         pmu_bus_running = 1;
13810         ret = 0;
13811
13812 unlock:
13813         mutex_unlock(&pmus_lock);
13814
13815         return ret;
13816 }
13817 device_initcall(perf_event_sysfs_init);
13818
13819 #ifdef CONFIG_CGROUP_PERF
13820 static struct cgroup_subsys_state *
13821 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13822 {
13823         struct perf_cgroup *jc;
13824
13825         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13826         if (!jc)
13827                 return ERR_PTR(-ENOMEM);
13828
13829         jc->info = alloc_percpu(struct perf_cgroup_info);
13830         if (!jc->info) {
13831                 kfree(jc);
13832                 return ERR_PTR(-ENOMEM);
13833         }
13834
13835         return &jc->css;
13836 }
13837
13838 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13839 {
13840         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13841
13842         free_percpu(jc->info);
13843         kfree(jc);
13844 }
13845
13846 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13847 {
13848         perf_event_cgroup(css->cgroup);
13849         return 0;
13850 }
13851
13852 static int __perf_cgroup_move(void *info)
13853 {
13854         struct task_struct *task = info;
13855
13856         preempt_disable();
13857         perf_cgroup_switch(task);
13858         preempt_enable();
13859
13860         return 0;
13861 }
13862
13863 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13864 {
13865         struct task_struct *task;
13866         struct cgroup_subsys_state *css;
13867
13868         cgroup_taskset_for_each(task, css, tset)
13869                 task_function_call(task, __perf_cgroup_move, task);
13870 }
13871
13872 struct cgroup_subsys perf_event_cgrp_subsys = {
13873         .css_alloc      = perf_cgroup_css_alloc,
13874         .css_free       = perf_cgroup_css_free,
13875         .css_online     = perf_cgroup_css_online,
13876         .attach         = perf_cgroup_attach,
13877         /*
13878          * Implicitly enable on dfl hierarchy so that perf events can
13879          * always be filtered by cgroup2 path as long as perf_event
13880          * controller is not mounted on a legacy hierarchy.
13881          */
13882         .implicit_on_dfl = true,
13883         .threaded       = true,
13884 };
13885 #endif /* CONFIG_CGROUP_PERF */
13886
13887 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);