perf/core: Fix ctx_event_type in ctx_resched()
[linux-2.6-block.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         lockdep_assert_irqs_disabled();
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         lockdep_assert_irqs_disabled();
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441         if (ret || !write)
442                 return ret;
443
444         /*
445          * If throttling is disabled don't allow the write:
446          */
447         if (sysctl_perf_cpu_time_max_percent == 100 ||
448             sysctl_perf_cpu_time_max_percent == 0)
449                 return -EINVAL;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610         struct perf_event *leader = event->group_leader;
611
612         if (leader->state <= PERF_EVENT_STATE_OFF)
613                 return leader->state;
614
615         return event->state;
616 }
617
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621         enum perf_event_state state = __perf_effective_state(event);
622         u64 delta = now - event->tstamp;
623
624         *enabled = event->total_time_enabled;
625         if (state >= PERF_EVENT_STATE_INACTIVE)
626                 *enabled += delta;
627
628         *running = event->total_time_running;
629         if (state >= PERF_EVENT_STATE_ACTIVE)
630                 *running += delta;
631 }
632
633 static void perf_event_update_time(struct perf_event *event)
634 {
635         u64 now = perf_event_time(event);
636
637         __perf_update_times(event, now, &event->total_time_enabled,
638                                         &event->total_time_running);
639         event->tstamp = now;
640 }
641
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644         struct perf_event *sibling;
645
646         list_for_each_entry(sibling, &leader->sibling_list, group_entry)
647                 perf_event_update_time(sibling);
648 }
649
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653         if (event->state == state)
654                 return;
655
656         perf_event_update_time(event);
657         /*
658          * If a group leader gets enabled/disabled all its siblings
659          * are affected too.
660          */
661         if ((event->state < 0) ^ (state < 0))
662                 perf_event_update_sibling_time(event);
663
664         WRITE_ONCE(event->state, state);
665 }
666
667 #ifdef CONFIG_CGROUP_PERF
668
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672         struct perf_event_context *ctx = event->ctx;
673         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
675         /* @event doesn't care about cgroup */
676         if (!event->cgrp)
677                 return true;
678
679         /* wants specific cgroup scope but @cpuctx isn't associated with any */
680         if (!cpuctx->cgrp)
681                 return false;
682
683         /*
684          * Cgroup scoping is recursive.  An event enabled for a cgroup is
685          * also enabled for all its descendant cgroups.  If @cpuctx's
686          * cgroup is a descendant of @event's (the test covers identity
687          * case), it's a match.
688          */
689         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690                                     event->cgrp->css.cgroup);
691 }
692
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695         css_put(&event->cgrp->css);
696         event->cgrp = NULL;
697 }
698
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701         return event->cgrp != NULL;
702 }
703
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706         struct perf_cgroup_info *t;
707
708         t = per_cpu_ptr(event->cgrp->info, event->cpu);
709         return t->time;
710 }
711
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714         struct perf_cgroup_info *info;
715         u64 now;
716
717         now = perf_clock();
718
719         info = this_cpu_ptr(cgrp->info);
720
721         info->time += now - info->timestamp;
722         info->timestamp = now;
723 }
724
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
728         if (cgrp_out)
729                 __update_cgrp_time(cgrp_out);
730 }
731
732 static inline void update_cgrp_time_from_event(struct perf_event *event)
733 {
734         struct perf_cgroup *cgrp;
735
736         /*
737          * ensure we access cgroup data only when needed and
738          * when we know the cgroup is pinned (css_get)
739          */
740         if (!is_cgroup_event(event))
741                 return;
742
743         cgrp = perf_cgroup_from_task(current, event->ctx);
744         /*
745          * Do not update time when cgroup is not active
746          */
747        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
748                 __update_cgrp_time(event->cgrp);
749 }
750
751 static inline void
752 perf_cgroup_set_timestamp(struct task_struct *task,
753                           struct perf_event_context *ctx)
754 {
755         struct perf_cgroup *cgrp;
756         struct perf_cgroup_info *info;
757
758         /*
759          * ctx->lock held by caller
760          * ensure we do not access cgroup data
761          * unless we have the cgroup pinned (css_get)
762          */
763         if (!task || !ctx->nr_cgroups)
764                 return;
765
766         cgrp = perf_cgroup_from_task(task, ctx);
767         info = this_cpu_ptr(cgrp->info);
768         info->timestamp = ctx->timestamp;
769 }
770
771 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
772
773 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
774 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
775
776 /*
777  * reschedule events based on the cgroup constraint of task.
778  *
779  * mode SWOUT : schedule out everything
780  * mode SWIN : schedule in based on cgroup for next
781  */
782 static void perf_cgroup_switch(struct task_struct *task, int mode)
783 {
784         struct perf_cpu_context *cpuctx;
785         struct list_head *list;
786         unsigned long flags;
787
788         /*
789          * Disable interrupts and preemption to avoid this CPU's
790          * cgrp_cpuctx_entry to change under us.
791          */
792         local_irq_save(flags);
793
794         list = this_cpu_ptr(&cgrp_cpuctx_list);
795         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
796                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
797
798                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
799                 perf_pmu_disable(cpuctx->ctx.pmu);
800
801                 if (mode & PERF_CGROUP_SWOUT) {
802                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
803                         /*
804                          * must not be done before ctxswout due
805                          * to event_filter_match() in event_sched_out()
806                          */
807                         cpuctx->cgrp = NULL;
808                 }
809
810                 if (mode & PERF_CGROUP_SWIN) {
811                         WARN_ON_ONCE(cpuctx->cgrp);
812                         /*
813                          * set cgrp before ctxsw in to allow
814                          * event_filter_match() to not have to pass
815                          * task around
816                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
817                          * because cgorup events are only per-cpu
818                          */
819                         cpuctx->cgrp = perf_cgroup_from_task(task,
820                                                              &cpuctx->ctx);
821                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
822                 }
823                 perf_pmu_enable(cpuctx->ctx.pmu);
824                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
825         }
826
827         local_irq_restore(flags);
828 }
829
830 static inline void perf_cgroup_sched_out(struct task_struct *task,
831                                          struct task_struct *next)
832 {
833         struct perf_cgroup *cgrp1;
834         struct perf_cgroup *cgrp2 = NULL;
835
836         rcu_read_lock();
837         /*
838          * we come here when we know perf_cgroup_events > 0
839          * we do not need to pass the ctx here because we know
840          * we are holding the rcu lock
841          */
842         cgrp1 = perf_cgroup_from_task(task, NULL);
843         cgrp2 = perf_cgroup_from_task(next, NULL);
844
845         /*
846          * only schedule out current cgroup events if we know
847          * that we are switching to a different cgroup. Otherwise,
848          * do no touch the cgroup events.
849          */
850         if (cgrp1 != cgrp2)
851                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
852
853         rcu_read_unlock();
854 }
855
856 static inline void perf_cgroup_sched_in(struct task_struct *prev,
857                                         struct task_struct *task)
858 {
859         struct perf_cgroup *cgrp1;
860         struct perf_cgroup *cgrp2 = NULL;
861
862         rcu_read_lock();
863         /*
864          * we come here when we know perf_cgroup_events > 0
865          * we do not need to pass the ctx here because we know
866          * we are holding the rcu lock
867          */
868         cgrp1 = perf_cgroup_from_task(task, NULL);
869         cgrp2 = perf_cgroup_from_task(prev, NULL);
870
871         /*
872          * only need to schedule in cgroup events if we are changing
873          * cgroup during ctxsw. Cgroup events were not scheduled
874          * out of ctxsw out if that was not the case.
875          */
876         if (cgrp1 != cgrp2)
877                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
878
879         rcu_read_unlock();
880 }
881
882 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
883                                       struct perf_event_attr *attr,
884                                       struct perf_event *group_leader)
885 {
886         struct perf_cgroup *cgrp;
887         struct cgroup_subsys_state *css;
888         struct fd f = fdget(fd);
889         int ret = 0;
890
891         if (!f.file)
892                 return -EBADF;
893
894         css = css_tryget_online_from_dir(f.file->f_path.dentry,
895                                          &perf_event_cgrp_subsys);
896         if (IS_ERR(css)) {
897                 ret = PTR_ERR(css);
898                 goto out;
899         }
900
901         cgrp = container_of(css, struct perf_cgroup, css);
902         event->cgrp = cgrp;
903
904         /*
905          * all events in a group must monitor
906          * the same cgroup because a task belongs
907          * to only one perf cgroup at a time
908          */
909         if (group_leader && group_leader->cgrp != cgrp) {
910                 perf_detach_cgroup(event);
911                 ret = -EINVAL;
912         }
913 out:
914         fdput(f);
915         return ret;
916 }
917
918 static inline void
919 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
920 {
921         struct perf_cgroup_info *t;
922         t = per_cpu_ptr(event->cgrp->info, event->cpu);
923         event->shadow_ctx_time = now - t->timestamp;
924 }
925
926 /*
927  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
928  * cleared when last cgroup event is removed.
929  */
930 static inline void
931 list_update_cgroup_event(struct perf_event *event,
932                          struct perf_event_context *ctx, bool add)
933 {
934         struct perf_cpu_context *cpuctx;
935         struct list_head *cpuctx_entry;
936
937         if (!is_cgroup_event(event))
938                 return;
939
940         if (add && ctx->nr_cgroups++)
941                 return;
942         else if (!add && --ctx->nr_cgroups)
943                 return;
944         /*
945          * Because cgroup events are always per-cpu events,
946          * this will always be called from the right CPU.
947          */
948         cpuctx = __get_cpu_context(ctx);
949         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
950         /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
951         if (add) {
952                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
953
954                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
955                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
956                         cpuctx->cgrp = cgrp;
957         } else {
958                 list_del(cpuctx_entry);
959                 cpuctx->cgrp = NULL;
960         }
961 }
962
963 #else /* !CONFIG_CGROUP_PERF */
964
965 static inline bool
966 perf_cgroup_match(struct perf_event *event)
967 {
968         return true;
969 }
970
971 static inline void perf_detach_cgroup(struct perf_event *event)
972 {}
973
974 static inline int is_cgroup_event(struct perf_event *event)
975 {
976         return 0;
977 }
978
979 static inline void update_cgrp_time_from_event(struct perf_event *event)
980 {
981 }
982
983 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
984 {
985 }
986
987 static inline void perf_cgroup_sched_out(struct task_struct *task,
988                                          struct task_struct *next)
989 {
990 }
991
992 static inline void perf_cgroup_sched_in(struct task_struct *prev,
993                                         struct task_struct *task)
994 {
995 }
996
997 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
998                                       struct perf_event_attr *attr,
999                                       struct perf_event *group_leader)
1000 {
1001         return -EINVAL;
1002 }
1003
1004 static inline void
1005 perf_cgroup_set_timestamp(struct task_struct *task,
1006                           struct perf_event_context *ctx)
1007 {
1008 }
1009
1010 void
1011 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1012 {
1013 }
1014
1015 static inline void
1016 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1017 {
1018 }
1019
1020 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1021 {
1022         return 0;
1023 }
1024
1025 static inline void
1026 list_update_cgroup_event(struct perf_event *event,
1027                          struct perf_event_context *ctx, bool add)
1028 {
1029 }
1030
1031 #endif
1032
1033 /*
1034  * set default to be dependent on timer tick just
1035  * like original code
1036  */
1037 #define PERF_CPU_HRTIMER (1000 / HZ)
1038 /*
1039  * function must be called with interrupts disabled
1040  */
1041 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1042 {
1043         struct perf_cpu_context *cpuctx;
1044         int rotations = 0;
1045
1046         lockdep_assert_irqs_disabled();
1047
1048         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1049         rotations = perf_rotate_context(cpuctx);
1050
1051         raw_spin_lock(&cpuctx->hrtimer_lock);
1052         if (rotations)
1053                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1054         else
1055                 cpuctx->hrtimer_active = 0;
1056         raw_spin_unlock(&cpuctx->hrtimer_lock);
1057
1058         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1059 }
1060
1061 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1062 {
1063         struct hrtimer *timer = &cpuctx->hrtimer;
1064         struct pmu *pmu = cpuctx->ctx.pmu;
1065         u64 interval;
1066
1067         /* no multiplexing needed for SW PMU */
1068         if (pmu->task_ctx_nr == perf_sw_context)
1069                 return;
1070
1071         /*
1072          * check default is sane, if not set then force to
1073          * default interval (1/tick)
1074          */
1075         interval = pmu->hrtimer_interval_ms;
1076         if (interval < 1)
1077                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1078
1079         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1080
1081         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1082         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1083         timer->function = perf_mux_hrtimer_handler;
1084 }
1085
1086 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1087 {
1088         struct hrtimer *timer = &cpuctx->hrtimer;
1089         struct pmu *pmu = cpuctx->ctx.pmu;
1090         unsigned long flags;
1091
1092         /* not for SW PMU */
1093         if (pmu->task_ctx_nr == perf_sw_context)
1094                 return 0;
1095
1096         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1097         if (!cpuctx->hrtimer_active) {
1098                 cpuctx->hrtimer_active = 1;
1099                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1100                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1101         }
1102         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1103
1104         return 0;
1105 }
1106
1107 void perf_pmu_disable(struct pmu *pmu)
1108 {
1109         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1110         if (!(*count)++)
1111                 pmu->pmu_disable(pmu);
1112 }
1113
1114 void perf_pmu_enable(struct pmu *pmu)
1115 {
1116         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1117         if (!--(*count))
1118                 pmu->pmu_enable(pmu);
1119 }
1120
1121 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1122
1123 /*
1124  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1125  * perf_event_task_tick() are fully serialized because they're strictly cpu
1126  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1127  * disabled, while perf_event_task_tick is called from IRQ context.
1128  */
1129 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1130 {
1131         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1132
1133         lockdep_assert_irqs_disabled();
1134
1135         WARN_ON(!list_empty(&ctx->active_ctx_list));
1136
1137         list_add(&ctx->active_ctx_list, head);
1138 }
1139
1140 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1141 {
1142         lockdep_assert_irqs_disabled();
1143
1144         WARN_ON(list_empty(&ctx->active_ctx_list));
1145
1146         list_del_init(&ctx->active_ctx_list);
1147 }
1148
1149 static void get_ctx(struct perf_event_context *ctx)
1150 {
1151         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1152 }
1153
1154 static void free_ctx(struct rcu_head *head)
1155 {
1156         struct perf_event_context *ctx;
1157
1158         ctx = container_of(head, struct perf_event_context, rcu_head);
1159         kfree(ctx->task_ctx_data);
1160         kfree(ctx);
1161 }
1162
1163 static void put_ctx(struct perf_event_context *ctx)
1164 {
1165         if (atomic_dec_and_test(&ctx->refcount)) {
1166                 if (ctx->parent_ctx)
1167                         put_ctx(ctx->parent_ctx);
1168                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1169                         put_task_struct(ctx->task);
1170                 call_rcu(&ctx->rcu_head, free_ctx);
1171         }
1172 }
1173
1174 /*
1175  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1176  * perf_pmu_migrate_context() we need some magic.
1177  *
1178  * Those places that change perf_event::ctx will hold both
1179  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1180  *
1181  * Lock ordering is by mutex address. There are two other sites where
1182  * perf_event_context::mutex nests and those are:
1183  *
1184  *  - perf_event_exit_task_context()    [ child , 0 ]
1185  *      perf_event_exit_event()
1186  *        put_event()                   [ parent, 1 ]
1187  *
1188  *  - perf_event_init_context()         [ parent, 0 ]
1189  *      inherit_task_group()
1190  *        inherit_group()
1191  *          inherit_event()
1192  *            perf_event_alloc()
1193  *              perf_init_event()
1194  *                perf_try_init_event() [ child , 1 ]
1195  *
1196  * While it appears there is an obvious deadlock here -- the parent and child
1197  * nesting levels are inverted between the two. This is in fact safe because
1198  * life-time rules separate them. That is an exiting task cannot fork, and a
1199  * spawning task cannot (yet) exit.
1200  *
1201  * But remember that that these are parent<->child context relations, and
1202  * migration does not affect children, therefore these two orderings should not
1203  * interact.
1204  *
1205  * The change in perf_event::ctx does not affect children (as claimed above)
1206  * because the sys_perf_event_open() case will install a new event and break
1207  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1208  * concerned with cpuctx and that doesn't have children.
1209  *
1210  * The places that change perf_event::ctx will issue:
1211  *
1212  *   perf_remove_from_context();
1213  *   synchronize_rcu();
1214  *   perf_install_in_context();
1215  *
1216  * to affect the change. The remove_from_context() + synchronize_rcu() should
1217  * quiesce the event, after which we can install it in the new location. This
1218  * means that only external vectors (perf_fops, prctl) can perturb the event
1219  * while in transit. Therefore all such accessors should also acquire
1220  * perf_event_context::mutex to serialize against this.
1221  *
1222  * However; because event->ctx can change while we're waiting to acquire
1223  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1224  * function.
1225  *
1226  * Lock order:
1227  *    cred_guard_mutex
1228  *      task_struct::perf_event_mutex
1229  *        perf_event_context::mutex
1230  *          perf_event::child_mutex;
1231  *            perf_event_context::lock
1232  *          perf_event::mmap_mutex
1233  *          mmap_sem
1234  *
1235  *    cpu_hotplug_lock
1236  *      pmus_lock
1237  *        cpuctx->mutex / perf_event_context::mutex
1238  */
1239 static struct perf_event_context *
1240 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1241 {
1242         struct perf_event_context *ctx;
1243
1244 again:
1245         rcu_read_lock();
1246         ctx = READ_ONCE(event->ctx);
1247         if (!atomic_inc_not_zero(&ctx->refcount)) {
1248                 rcu_read_unlock();
1249                 goto again;
1250         }
1251         rcu_read_unlock();
1252
1253         mutex_lock_nested(&ctx->mutex, nesting);
1254         if (event->ctx != ctx) {
1255                 mutex_unlock(&ctx->mutex);
1256                 put_ctx(ctx);
1257                 goto again;
1258         }
1259
1260         return ctx;
1261 }
1262
1263 static inline struct perf_event_context *
1264 perf_event_ctx_lock(struct perf_event *event)
1265 {
1266         return perf_event_ctx_lock_nested(event, 0);
1267 }
1268
1269 static void perf_event_ctx_unlock(struct perf_event *event,
1270                                   struct perf_event_context *ctx)
1271 {
1272         mutex_unlock(&ctx->mutex);
1273         put_ctx(ctx);
1274 }
1275
1276 /*
1277  * This must be done under the ctx->lock, such as to serialize against
1278  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1279  * calling scheduler related locks and ctx->lock nests inside those.
1280  */
1281 static __must_check struct perf_event_context *
1282 unclone_ctx(struct perf_event_context *ctx)
1283 {
1284         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1285
1286         lockdep_assert_held(&ctx->lock);
1287
1288         if (parent_ctx)
1289                 ctx->parent_ctx = NULL;
1290         ctx->generation++;
1291
1292         return parent_ctx;
1293 }
1294
1295 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1296                                 enum pid_type type)
1297 {
1298         u32 nr;
1299         /*
1300          * only top level events have the pid namespace they were created in
1301          */
1302         if (event->parent)
1303                 event = event->parent;
1304
1305         nr = __task_pid_nr_ns(p, type, event->ns);
1306         /* avoid -1 if it is idle thread or runs in another ns */
1307         if (!nr && !pid_alive(p))
1308                 nr = -1;
1309         return nr;
1310 }
1311
1312 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1313 {
1314         return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1315 }
1316
1317 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1318 {
1319         return perf_event_pid_type(event, p, PIDTYPE_PID);
1320 }
1321
1322 /*
1323  * If we inherit events we want to return the parent event id
1324  * to userspace.
1325  */
1326 static u64 primary_event_id(struct perf_event *event)
1327 {
1328         u64 id = event->id;
1329
1330         if (event->parent)
1331                 id = event->parent->id;
1332
1333         return id;
1334 }
1335
1336 /*
1337  * Get the perf_event_context for a task and lock it.
1338  *
1339  * This has to cope with with the fact that until it is locked,
1340  * the context could get moved to another task.
1341  */
1342 static struct perf_event_context *
1343 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1344 {
1345         struct perf_event_context *ctx;
1346
1347 retry:
1348         /*
1349          * One of the few rules of preemptible RCU is that one cannot do
1350          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1351          * part of the read side critical section was irqs-enabled -- see
1352          * rcu_read_unlock_special().
1353          *
1354          * Since ctx->lock nests under rq->lock we must ensure the entire read
1355          * side critical section has interrupts disabled.
1356          */
1357         local_irq_save(*flags);
1358         rcu_read_lock();
1359         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1360         if (ctx) {
1361                 /*
1362                  * If this context is a clone of another, it might
1363                  * get swapped for another underneath us by
1364                  * perf_event_task_sched_out, though the
1365                  * rcu_read_lock() protects us from any context
1366                  * getting freed.  Lock the context and check if it
1367                  * got swapped before we could get the lock, and retry
1368                  * if so.  If we locked the right context, then it
1369                  * can't get swapped on us any more.
1370                  */
1371                 raw_spin_lock(&ctx->lock);
1372                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1373                         raw_spin_unlock(&ctx->lock);
1374                         rcu_read_unlock();
1375                         local_irq_restore(*flags);
1376                         goto retry;
1377                 }
1378
1379                 if (ctx->task == TASK_TOMBSTONE ||
1380                     !atomic_inc_not_zero(&ctx->refcount)) {
1381                         raw_spin_unlock(&ctx->lock);
1382                         ctx = NULL;
1383                 } else {
1384                         WARN_ON_ONCE(ctx->task != task);
1385                 }
1386         }
1387         rcu_read_unlock();
1388         if (!ctx)
1389                 local_irq_restore(*flags);
1390         return ctx;
1391 }
1392
1393 /*
1394  * Get the context for a task and increment its pin_count so it
1395  * can't get swapped to another task.  This also increments its
1396  * reference count so that the context can't get freed.
1397  */
1398 static struct perf_event_context *
1399 perf_pin_task_context(struct task_struct *task, int ctxn)
1400 {
1401         struct perf_event_context *ctx;
1402         unsigned long flags;
1403
1404         ctx = perf_lock_task_context(task, ctxn, &flags);
1405         if (ctx) {
1406                 ++ctx->pin_count;
1407                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1408         }
1409         return ctx;
1410 }
1411
1412 static void perf_unpin_context(struct perf_event_context *ctx)
1413 {
1414         unsigned long flags;
1415
1416         raw_spin_lock_irqsave(&ctx->lock, flags);
1417         --ctx->pin_count;
1418         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1419 }
1420
1421 /*
1422  * Update the record of the current time in a context.
1423  */
1424 static void update_context_time(struct perf_event_context *ctx)
1425 {
1426         u64 now = perf_clock();
1427
1428         ctx->time += now - ctx->timestamp;
1429         ctx->timestamp = now;
1430 }
1431
1432 static u64 perf_event_time(struct perf_event *event)
1433 {
1434         struct perf_event_context *ctx = event->ctx;
1435
1436         if (is_cgroup_event(event))
1437                 return perf_cgroup_event_time(event);
1438
1439         return ctx ? ctx->time : 0;
1440 }
1441
1442 static enum event_type_t get_event_type(struct perf_event *event)
1443 {
1444         struct perf_event_context *ctx = event->ctx;
1445         enum event_type_t event_type;
1446
1447         lockdep_assert_held(&ctx->lock);
1448
1449         /*
1450          * It's 'group type', really, because if our group leader is
1451          * pinned, so are we.
1452          */
1453         if (event->group_leader != event)
1454                 event = event->group_leader;
1455
1456         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1457         if (!ctx->task)
1458                 event_type |= EVENT_CPU;
1459
1460         return event_type;
1461 }
1462
1463 static struct list_head *
1464 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1465 {
1466         if (event->attr.pinned)
1467                 return &ctx->pinned_groups;
1468         else
1469                 return &ctx->flexible_groups;
1470 }
1471
1472 /*
1473  * Add a event from the lists for its context.
1474  * Must be called with ctx->mutex and ctx->lock held.
1475  */
1476 static void
1477 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1478 {
1479         lockdep_assert_held(&ctx->lock);
1480
1481         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1482         event->attach_state |= PERF_ATTACH_CONTEXT;
1483
1484         event->tstamp = perf_event_time(event);
1485
1486         /*
1487          * If we're a stand alone event or group leader, we go to the context
1488          * list, group events are kept attached to the group so that
1489          * perf_group_detach can, at all times, locate all siblings.
1490          */
1491         if (event->group_leader == event) {
1492                 struct list_head *list;
1493
1494                 event->group_caps = event->event_caps;
1495
1496                 list = ctx_group_list(event, ctx);
1497                 list_add_tail(&event->group_entry, list);
1498         }
1499
1500         list_update_cgroup_event(event, ctx, true);
1501
1502         list_add_rcu(&event->event_entry, &ctx->event_list);
1503         ctx->nr_events++;
1504         if (event->attr.inherit_stat)
1505                 ctx->nr_stat++;
1506
1507         ctx->generation++;
1508 }
1509
1510 /*
1511  * Initialize event state based on the perf_event_attr::disabled.
1512  */
1513 static inline void perf_event__state_init(struct perf_event *event)
1514 {
1515         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1516                                               PERF_EVENT_STATE_INACTIVE;
1517 }
1518
1519 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1520 {
1521         int entry = sizeof(u64); /* value */
1522         int size = 0;
1523         int nr = 1;
1524
1525         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1526                 size += sizeof(u64);
1527
1528         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1529                 size += sizeof(u64);
1530
1531         if (event->attr.read_format & PERF_FORMAT_ID)
1532                 entry += sizeof(u64);
1533
1534         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1535                 nr += nr_siblings;
1536                 size += sizeof(u64);
1537         }
1538
1539         size += entry * nr;
1540         event->read_size = size;
1541 }
1542
1543 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1544 {
1545         struct perf_sample_data *data;
1546         u16 size = 0;
1547
1548         if (sample_type & PERF_SAMPLE_IP)
1549                 size += sizeof(data->ip);
1550
1551         if (sample_type & PERF_SAMPLE_ADDR)
1552                 size += sizeof(data->addr);
1553
1554         if (sample_type & PERF_SAMPLE_PERIOD)
1555                 size += sizeof(data->period);
1556
1557         if (sample_type & PERF_SAMPLE_WEIGHT)
1558                 size += sizeof(data->weight);
1559
1560         if (sample_type & PERF_SAMPLE_READ)
1561                 size += event->read_size;
1562
1563         if (sample_type & PERF_SAMPLE_DATA_SRC)
1564                 size += sizeof(data->data_src.val);
1565
1566         if (sample_type & PERF_SAMPLE_TRANSACTION)
1567                 size += sizeof(data->txn);
1568
1569         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1570                 size += sizeof(data->phys_addr);
1571
1572         event->header_size = size;
1573 }
1574
1575 /*
1576  * Called at perf_event creation and when events are attached/detached from a
1577  * group.
1578  */
1579 static void perf_event__header_size(struct perf_event *event)
1580 {
1581         __perf_event_read_size(event,
1582                                event->group_leader->nr_siblings);
1583         __perf_event_header_size(event, event->attr.sample_type);
1584 }
1585
1586 static void perf_event__id_header_size(struct perf_event *event)
1587 {
1588         struct perf_sample_data *data;
1589         u64 sample_type = event->attr.sample_type;
1590         u16 size = 0;
1591
1592         if (sample_type & PERF_SAMPLE_TID)
1593                 size += sizeof(data->tid_entry);
1594
1595         if (sample_type & PERF_SAMPLE_TIME)
1596                 size += sizeof(data->time);
1597
1598         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1599                 size += sizeof(data->id);
1600
1601         if (sample_type & PERF_SAMPLE_ID)
1602                 size += sizeof(data->id);
1603
1604         if (sample_type & PERF_SAMPLE_STREAM_ID)
1605                 size += sizeof(data->stream_id);
1606
1607         if (sample_type & PERF_SAMPLE_CPU)
1608                 size += sizeof(data->cpu_entry);
1609
1610         event->id_header_size = size;
1611 }
1612
1613 static bool perf_event_validate_size(struct perf_event *event)
1614 {
1615         /*
1616          * The values computed here will be over-written when we actually
1617          * attach the event.
1618          */
1619         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1620         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1621         perf_event__id_header_size(event);
1622
1623         /*
1624          * Sum the lot; should not exceed the 64k limit we have on records.
1625          * Conservative limit to allow for callchains and other variable fields.
1626          */
1627         if (event->read_size + event->header_size +
1628             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1629                 return false;
1630
1631         return true;
1632 }
1633
1634 static void perf_group_attach(struct perf_event *event)
1635 {
1636         struct perf_event *group_leader = event->group_leader, *pos;
1637
1638         lockdep_assert_held(&event->ctx->lock);
1639
1640         /*
1641          * We can have double attach due to group movement in perf_event_open.
1642          */
1643         if (event->attach_state & PERF_ATTACH_GROUP)
1644                 return;
1645
1646         event->attach_state |= PERF_ATTACH_GROUP;
1647
1648         if (group_leader == event)
1649                 return;
1650
1651         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1652
1653         group_leader->group_caps &= event->event_caps;
1654
1655         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1656         group_leader->nr_siblings++;
1657
1658         perf_event__header_size(group_leader);
1659
1660         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1661                 perf_event__header_size(pos);
1662 }
1663
1664 /*
1665  * Remove a event from the lists for its context.
1666  * Must be called with ctx->mutex and ctx->lock held.
1667  */
1668 static void
1669 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1670 {
1671         WARN_ON_ONCE(event->ctx != ctx);
1672         lockdep_assert_held(&ctx->lock);
1673
1674         /*
1675          * We can have double detach due to exit/hot-unplug + close.
1676          */
1677         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1678                 return;
1679
1680         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1681
1682         list_update_cgroup_event(event, ctx, false);
1683
1684         ctx->nr_events--;
1685         if (event->attr.inherit_stat)
1686                 ctx->nr_stat--;
1687
1688         list_del_rcu(&event->event_entry);
1689
1690         if (event->group_leader == event)
1691                 list_del_init(&event->group_entry);
1692
1693         /*
1694          * If event was in error state, then keep it
1695          * that way, otherwise bogus counts will be
1696          * returned on read(). The only way to get out
1697          * of error state is by explicit re-enabling
1698          * of the event
1699          */
1700         if (event->state > PERF_EVENT_STATE_OFF)
1701                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1702
1703         ctx->generation++;
1704 }
1705
1706 static void perf_group_detach(struct perf_event *event)
1707 {
1708         struct perf_event *sibling, *tmp;
1709         struct list_head *list = NULL;
1710
1711         lockdep_assert_held(&event->ctx->lock);
1712
1713         /*
1714          * We can have double detach due to exit/hot-unplug + close.
1715          */
1716         if (!(event->attach_state & PERF_ATTACH_GROUP))
1717                 return;
1718
1719         event->attach_state &= ~PERF_ATTACH_GROUP;
1720
1721         /*
1722          * If this is a sibling, remove it from its group.
1723          */
1724         if (event->group_leader != event) {
1725                 list_del_init(&event->group_entry);
1726                 event->group_leader->nr_siblings--;
1727                 goto out;
1728         }
1729
1730         if (!list_empty(&event->group_entry))
1731                 list = &event->group_entry;
1732
1733         /*
1734          * If this was a group event with sibling events then
1735          * upgrade the siblings to singleton events by adding them
1736          * to whatever list we are on.
1737          */
1738         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1739                 if (list)
1740                         list_move_tail(&sibling->group_entry, list);
1741                 sibling->group_leader = sibling;
1742
1743                 /* Inherit group flags from the previous leader */
1744                 sibling->group_caps = event->group_caps;
1745
1746                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1747         }
1748
1749 out:
1750         perf_event__header_size(event->group_leader);
1751
1752         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1753                 perf_event__header_size(tmp);
1754 }
1755
1756 static bool is_orphaned_event(struct perf_event *event)
1757 {
1758         return event->state == PERF_EVENT_STATE_DEAD;
1759 }
1760
1761 static inline int __pmu_filter_match(struct perf_event *event)
1762 {
1763         struct pmu *pmu = event->pmu;
1764         return pmu->filter_match ? pmu->filter_match(event) : 1;
1765 }
1766
1767 /*
1768  * Check whether we should attempt to schedule an event group based on
1769  * PMU-specific filtering. An event group can consist of HW and SW events,
1770  * potentially with a SW leader, so we must check all the filters, to
1771  * determine whether a group is schedulable:
1772  */
1773 static inline int pmu_filter_match(struct perf_event *event)
1774 {
1775         struct perf_event *child;
1776
1777         if (!__pmu_filter_match(event))
1778                 return 0;
1779
1780         list_for_each_entry(child, &event->sibling_list, group_entry) {
1781                 if (!__pmu_filter_match(child))
1782                         return 0;
1783         }
1784
1785         return 1;
1786 }
1787
1788 static inline int
1789 event_filter_match(struct perf_event *event)
1790 {
1791         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1792                perf_cgroup_match(event) && pmu_filter_match(event);
1793 }
1794
1795 static void
1796 event_sched_out(struct perf_event *event,
1797                   struct perf_cpu_context *cpuctx,
1798                   struct perf_event_context *ctx)
1799 {
1800         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1801
1802         WARN_ON_ONCE(event->ctx != ctx);
1803         lockdep_assert_held(&ctx->lock);
1804
1805         if (event->state != PERF_EVENT_STATE_ACTIVE)
1806                 return;
1807
1808         perf_pmu_disable(event->pmu);
1809
1810         event->pmu->del(event, 0);
1811         event->oncpu = -1;
1812
1813         if (event->pending_disable) {
1814                 event->pending_disable = 0;
1815                 state = PERF_EVENT_STATE_OFF;
1816         }
1817         perf_event_set_state(event, state);
1818
1819         if (!is_software_event(event))
1820                 cpuctx->active_oncpu--;
1821         if (!--ctx->nr_active)
1822                 perf_event_ctx_deactivate(ctx);
1823         if (event->attr.freq && event->attr.sample_freq)
1824                 ctx->nr_freq--;
1825         if (event->attr.exclusive || !cpuctx->active_oncpu)
1826                 cpuctx->exclusive = 0;
1827
1828         perf_pmu_enable(event->pmu);
1829 }
1830
1831 static void
1832 group_sched_out(struct perf_event *group_event,
1833                 struct perf_cpu_context *cpuctx,
1834                 struct perf_event_context *ctx)
1835 {
1836         struct perf_event *event;
1837
1838         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1839                 return;
1840
1841         perf_pmu_disable(ctx->pmu);
1842
1843         event_sched_out(group_event, cpuctx, ctx);
1844
1845         /*
1846          * Schedule out siblings (if any):
1847          */
1848         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1849                 event_sched_out(event, cpuctx, ctx);
1850
1851         perf_pmu_enable(ctx->pmu);
1852
1853         if (group_event->attr.exclusive)
1854                 cpuctx->exclusive = 0;
1855 }
1856
1857 #define DETACH_GROUP    0x01UL
1858
1859 /*
1860  * Cross CPU call to remove a performance event
1861  *
1862  * We disable the event on the hardware level first. After that we
1863  * remove it from the context list.
1864  */
1865 static void
1866 __perf_remove_from_context(struct perf_event *event,
1867                            struct perf_cpu_context *cpuctx,
1868                            struct perf_event_context *ctx,
1869                            void *info)
1870 {
1871         unsigned long flags = (unsigned long)info;
1872
1873         if (ctx->is_active & EVENT_TIME) {
1874                 update_context_time(ctx);
1875                 update_cgrp_time_from_cpuctx(cpuctx);
1876         }
1877
1878         event_sched_out(event, cpuctx, ctx);
1879         if (flags & DETACH_GROUP)
1880                 perf_group_detach(event);
1881         list_del_event(event, ctx);
1882
1883         if (!ctx->nr_events && ctx->is_active) {
1884                 ctx->is_active = 0;
1885                 if (ctx->task) {
1886                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1887                         cpuctx->task_ctx = NULL;
1888                 }
1889         }
1890 }
1891
1892 /*
1893  * Remove the event from a task's (or a CPU's) list of events.
1894  *
1895  * If event->ctx is a cloned context, callers must make sure that
1896  * every task struct that event->ctx->task could possibly point to
1897  * remains valid.  This is OK when called from perf_release since
1898  * that only calls us on the top-level context, which can't be a clone.
1899  * When called from perf_event_exit_task, it's OK because the
1900  * context has been detached from its task.
1901  */
1902 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1903 {
1904         struct perf_event_context *ctx = event->ctx;
1905
1906         lockdep_assert_held(&ctx->mutex);
1907
1908         event_function_call(event, __perf_remove_from_context, (void *)flags);
1909
1910         /*
1911          * The above event_function_call() can NO-OP when it hits
1912          * TASK_TOMBSTONE. In that case we must already have been detached
1913          * from the context (by perf_event_exit_event()) but the grouping
1914          * might still be in-tact.
1915          */
1916         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1917         if ((flags & DETACH_GROUP) &&
1918             (event->attach_state & PERF_ATTACH_GROUP)) {
1919                 /*
1920                  * Since in that case we cannot possibly be scheduled, simply
1921                  * detach now.
1922                  */
1923                 raw_spin_lock_irq(&ctx->lock);
1924                 perf_group_detach(event);
1925                 raw_spin_unlock_irq(&ctx->lock);
1926         }
1927 }
1928
1929 /*
1930  * Cross CPU call to disable a performance event
1931  */
1932 static void __perf_event_disable(struct perf_event *event,
1933                                  struct perf_cpu_context *cpuctx,
1934                                  struct perf_event_context *ctx,
1935                                  void *info)
1936 {
1937         if (event->state < PERF_EVENT_STATE_INACTIVE)
1938                 return;
1939
1940         if (ctx->is_active & EVENT_TIME) {
1941                 update_context_time(ctx);
1942                 update_cgrp_time_from_event(event);
1943         }
1944
1945         if (event == event->group_leader)
1946                 group_sched_out(event, cpuctx, ctx);
1947         else
1948                 event_sched_out(event, cpuctx, ctx);
1949
1950         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1951 }
1952
1953 /*
1954  * Disable a event.
1955  *
1956  * If event->ctx is a cloned context, callers must make sure that
1957  * every task struct that event->ctx->task could possibly point to
1958  * remains valid.  This condition is satisifed when called through
1959  * perf_event_for_each_child or perf_event_for_each because they
1960  * hold the top-level event's child_mutex, so any descendant that
1961  * goes to exit will block in perf_event_exit_event().
1962  *
1963  * When called from perf_pending_event it's OK because event->ctx
1964  * is the current context on this CPU and preemption is disabled,
1965  * hence we can't get into perf_event_task_sched_out for this context.
1966  */
1967 static void _perf_event_disable(struct perf_event *event)
1968 {
1969         struct perf_event_context *ctx = event->ctx;
1970
1971         raw_spin_lock_irq(&ctx->lock);
1972         if (event->state <= PERF_EVENT_STATE_OFF) {
1973                 raw_spin_unlock_irq(&ctx->lock);
1974                 return;
1975         }
1976         raw_spin_unlock_irq(&ctx->lock);
1977
1978         event_function_call(event, __perf_event_disable, NULL);
1979 }
1980
1981 void perf_event_disable_local(struct perf_event *event)
1982 {
1983         event_function_local(event, __perf_event_disable, NULL);
1984 }
1985
1986 /*
1987  * Strictly speaking kernel users cannot create groups and therefore this
1988  * interface does not need the perf_event_ctx_lock() magic.
1989  */
1990 void perf_event_disable(struct perf_event *event)
1991 {
1992         struct perf_event_context *ctx;
1993
1994         ctx = perf_event_ctx_lock(event);
1995         _perf_event_disable(event);
1996         perf_event_ctx_unlock(event, ctx);
1997 }
1998 EXPORT_SYMBOL_GPL(perf_event_disable);
1999
2000 void perf_event_disable_inatomic(struct perf_event *event)
2001 {
2002         event->pending_disable = 1;
2003         irq_work_queue(&event->pending);
2004 }
2005
2006 static void perf_set_shadow_time(struct perf_event *event,
2007                                  struct perf_event_context *ctx)
2008 {
2009         /*
2010          * use the correct time source for the time snapshot
2011          *
2012          * We could get by without this by leveraging the
2013          * fact that to get to this function, the caller
2014          * has most likely already called update_context_time()
2015          * and update_cgrp_time_xx() and thus both timestamp
2016          * are identical (or very close). Given that tstamp is,
2017          * already adjusted for cgroup, we could say that:
2018          *    tstamp - ctx->timestamp
2019          * is equivalent to
2020          *    tstamp - cgrp->timestamp.
2021          *
2022          * Then, in perf_output_read(), the calculation would
2023          * work with no changes because:
2024          * - event is guaranteed scheduled in
2025          * - no scheduled out in between
2026          * - thus the timestamp would be the same
2027          *
2028          * But this is a bit hairy.
2029          *
2030          * So instead, we have an explicit cgroup call to remain
2031          * within the time time source all along. We believe it
2032          * is cleaner and simpler to understand.
2033          */
2034         if (is_cgroup_event(event))
2035                 perf_cgroup_set_shadow_time(event, event->tstamp);
2036         else
2037                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2038 }
2039
2040 #define MAX_INTERRUPTS (~0ULL)
2041
2042 static void perf_log_throttle(struct perf_event *event, int enable);
2043 static void perf_log_itrace_start(struct perf_event *event);
2044
2045 static int
2046 event_sched_in(struct perf_event *event,
2047                  struct perf_cpu_context *cpuctx,
2048                  struct perf_event_context *ctx)
2049 {
2050         int ret = 0;
2051
2052         lockdep_assert_held(&ctx->lock);
2053
2054         if (event->state <= PERF_EVENT_STATE_OFF)
2055                 return 0;
2056
2057         WRITE_ONCE(event->oncpu, smp_processor_id());
2058         /*
2059          * Order event::oncpu write to happen before the ACTIVE state is
2060          * visible. This allows perf_event_{stop,read}() to observe the correct
2061          * ->oncpu if it sees ACTIVE.
2062          */
2063         smp_wmb();
2064         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2065
2066         /*
2067          * Unthrottle events, since we scheduled we might have missed several
2068          * ticks already, also for a heavily scheduling task there is little
2069          * guarantee it'll get a tick in a timely manner.
2070          */
2071         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072                 perf_log_throttle(event, 1);
2073                 event->hw.interrupts = 0;
2074         }
2075
2076         perf_pmu_disable(event->pmu);
2077
2078         perf_set_shadow_time(event, ctx);
2079
2080         perf_log_itrace_start(event);
2081
2082         if (event->pmu->add(event, PERF_EF_START)) {
2083                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2084                 event->oncpu = -1;
2085                 ret = -EAGAIN;
2086                 goto out;
2087         }
2088
2089         if (!is_software_event(event))
2090                 cpuctx->active_oncpu++;
2091         if (!ctx->nr_active++)
2092                 perf_event_ctx_activate(ctx);
2093         if (event->attr.freq && event->attr.sample_freq)
2094                 ctx->nr_freq++;
2095
2096         if (event->attr.exclusive)
2097                 cpuctx->exclusive = 1;
2098
2099 out:
2100         perf_pmu_enable(event->pmu);
2101
2102         return ret;
2103 }
2104
2105 static int
2106 group_sched_in(struct perf_event *group_event,
2107                struct perf_cpu_context *cpuctx,
2108                struct perf_event_context *ctx)
2109 {
2110         struct perf_event *event, *partial_group = NULL;
2111         struct pmu *pmu = ctx->pmu;
2112
2113         if (group_event->state == PERF_EVENT_STATE_OFF)
2114                 return 0;
2115
2116         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2117
2118         if (event_sched_in(group_event, cpuctx, ctx)) {
2119                 pmu->cancel_txn(pmu);
2120                 perf_mux_hrtimer_restart(cpuctx);
2121                 return -EAGAIN;
2122         }
2123
2124         /*
2125          * Schedule in siblings as one group (if any):
2126          */
2127         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2128                 if (event_sched_in(event, cpuctx, ctx)) {
2129                         partial_group = event;
2130                         goto group_error;
2131                 }
2132         }
2133
2134         if (!pmu->commit_txn(pmu))
2135                 return 0;
2136
2137 group_error:
2138         /*
2139          * Groups can be scheduled in as one unit only, so undo any
2140          * partial group before returning:
2141          * The events up to the failed event are scheduled out normally.
2142          */
2143         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2144                 if (event == partial_group)
2145                         break;
2146
2147                 event_sched_out(event, cpuctx, ctx);
2148         }
2149         event_sched_out(group_event, cpuctx, ctx);
2150
2151         pmu->cancel_txn(pmu);
2152
2153         perf_mux_hrtimer_restart(cpuctx);
2154
2155         return -EAGAIN;
2156 }
2157
2158 /*
2159  * Work out whether we can put this event group on the CPU now.
2160  */
2161 static int group_can_go_on(struct perf_event *event,
2162                            struct perf_cpu_context *cpuctx,
2163                            int can_add_hw)
2164 {
2165         /*
2166          * Groups consisting entirely of software events can always go on.
2167          */
2168         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2169                 return 1;
2170         /*
2171          * If an exclusive group is already on, no other hardware
2172          * events can go on.
2173          */
2174         if (cpuctx->exclusive)
2175                 return 0;
2176         /*
2177          * If this group is exclusive and there are already
2178          * events on the CPU, it can't go on.
2179          */
2180         if (event->attr.exclusive && cpuctx->active_oncpu)
2181                 return 0;
2182         /*
2183          * Otherwise, try to add it if all previous groups were able
2184          * to go on.
2185          */
2186         return can_add_hw;
2187 }
2188
2189 static void add_event_to_ctx(struct perf_event *event,
2190                                struct perf_event_context *ctx)
2191 {
2192         list_add_event(event, ctx);
2193         perf_group_attach(event);
2194 }
2195
2196 static void ctx_sched_out(struct perf_event_context *ctx,
2197                           struct perf_cpu_context *cpuctx,
2198                           enum event_type_t event_type);
2199 static void
2200 ctx_sched_in(struct perf_event_context *ctx,
2201              struct perf_cpu_context *cpuctx,
2202              enum event_type_t event_type,
2203              struct task_struct *task);
2204
2205 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2206                                struct perf_event_context *ctx,
2207                                enum event_type_t event_type)
2208 {
2209         if (!cpuctx->task_ctx)
2210                 return;
2211
2212         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2213                 return;
2214
2215         ctx_sched_out(ctx, cpuctx, event_type);
2216 }
2217
2218 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2219                                 struct perf_event_context *ctx,
2220                                 struct task_struct *task)
2221 {
2222         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2223         if (ctx)
2224                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2225         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2226         if (ctx)
2227                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2228 }
2229
2230 /*
2231  * We want to maintain the following priority of scheduling:
2232  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2233  *  - task pinned (EVENT_PINNED)
2234  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2235  *  - task flexible (EVENT_FLEXIBLE).
2236  *
2237  * In order to avoid unscheduling and scheduling back in everything every
2238  * time an event is added, only do it for the groups of equal priority and
2239  * below.
2240  *
2241  * This can be called after a batch operation on task events, in which case
2242  * event_type is a bit mask of the types of events involved. For CPU events,
2243  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2244  */
2245 static void ctx_resched(struct perf_cpu_context *cpuctx,
2246                         struct perf_event_context *task_ctx,
2247                         enum event_type_t event_type)
2248 {
2249         enum event_type_t ctx_event_type;
2250         bool cpu_event = !!(event_type & EVENT_CPU);
2251
2252         /*
2253          * If pinned groups are involved, flexible groups also need to be
2254          * scheduled out.
2255          */
2256         if (event_type & EVENT_PINNED)
2257                 event_type |= EVENT_FLEXIBLE;
2258
2259         ctx_event_type = event_type & EVENT_ALL;
2260
2261         perf_pmu_disable(cpuctx->ctx.pmu);
2262         if (task_ctx)
2263                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2264
2265         /*
2266          * Decide which cpu ctx groups to schedule out based on the types
2267          * of events that caused rescheduling:
2268          *  - EVENT_CPU: schedule out corresponding groups;
2269          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2270          *  - otherwise, do nothing more.
2271          */
2272         if (cpu_event)
2273                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2274         else if (ctx_event_type & EVENT_PINNED)
2275                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2276
2277         perf_event_sched_in(cpuctx, task_ctx, current);
2278         perf_pmu_enable(cpuctx->ctx.pmu);
2279 }
2280
2281 /*
2282  * Cross CPU call to install and enable a performance event
2283  *
2284  * Very similar to remote_function() + event_function() but cannot assume that
2285  * things like ctx->is_active and cpuctx->task_ctx are set.
2286  */
2287 static int  __perf_install_in_context(void *info)
2288 {
2289         struct perf_event *event = info;
2290         struct perf_event_context *ctx = event->ctx;
2291         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2292         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2293         bool reprogram = true;
2294         int ret = 0;
2295
2296         raw_spin_lock(&cpuctx->ctx.lock);
2297         if (ctx->task) {
2298                 raw_spin_lock(&ctx->lock);
2299                 task_ctx = ctx;
2300
2301                 reprogram = (ctx->task == current);
2302
2303                 /*
2304                  * If the task is running, it must be running on this CPU,
2305                  * otherwise we cannot reprogram things.
2306                  *
2307                  * If its not running, we don't care, ctx->lock will
2308                  * serialize against it becoming runnable.
2309                  */
2310                 if (task_curr(ctx->task) && !reprogram) {
2311                         ret = -ESRCH;
2312                         goto unlock;
2313                 }
2314
2315                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2316         } else if (task_ctx) {
2317                 raw_spin_lock(&task_ctx->lock);
2318         }
2319
2320         if (reprogram) {
2321                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2322                 add_event_to_ctx(event, ctx);
2323                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2324         } else {
2325                 add_event_to_ctx(event, ctx);
2326         }
2327
2328 unlock:
2329         perf_ctx_unlock(cpuctx, task_ctx);
2330
2331         return ret;
2332 }
2333
2334 /*
2335  * Attach a performance event to a context.
2336  *
2337  * Very similar to event_function_call, see comment there.
2338  */
2339 static void
2340 perf_install_in_context(struct perf_event_context *ctx,
2341                         struct perf_event *event,
2342                         int cpu)
2343 {
2344         struct task_struct *task = READ_ONCE(ctx->task);
2345
2346         lockdep_assert_held(&ctx->mutex);
2347
2348         if (event->cpu != -1)
2349                 event->cpu = cpu;
2350
2351         /*
2352          * Ensures that if we can observe event->ctx, both the event and ctx
2353          * will be 'complete'. See perf_iterate_sb_cpu().
2354          */
2355         smp_store_release(&event->ctx, ctx);
2356
2357         if (!task) {
2358                 cpu_function_call(cpu, __perf_install_in_context, event);
2359                 return;
2360         }
2361
2362         /*
2363          * Should not happen, we validate the ctx is still alive before calling.
2364          */
2365         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2366                 return;
2367
2368         /*
2369          * Installing events is tricky because we cannot rely on ctx->is_active
2370          * to be set in case this is the nr_events 0 -> 1 transition.
2371          *
2372          * Instead we use task_curr(), which tells us if the task is running.
2373          * However, since we use task_curr() outside of rq::lock, we can race
2374          * against the actual state. This means the result can be wrong.
2375          *
2376          * If we get a false positive, we retry, this is harmless.
2377          *
2378          * If we get a false negative, things are complicated. If we are after
2379          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2380          * value must be correct. If we're before, it doesn't matter since
2381          * perf_event_context_sched_in() will program the counter.
2382          *
2383          * However, this hinges on the remote context switch having observed
2384          * our task->perf_event_ctxp[] store, such that it will in fact take
2385          * ctx::lock in perf_event_context_sched_in().
2386          *
2387          * We do this by task_function_call(), if the IPI fails to hit the task
2388          * we know any future context switch of task must see the
2389          * perf_event_ctpx[] store.
2390          */
2391
2392         /*
2393          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2394          * task_cpu() load, such that if the IPI then does not find the task
2395          * running, a future context switch of that task must observe the
2396          * store.
2397          */
2398         smp_mb();
2399 again:
2400         if (!task_function_call(task, __perf_install_in_context, event))
2401                 return;
2402
2403         raw_spin_lock_irq(&ctx->lock);
2404         task = ctx->task;
2405         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2406                 /*
2407                  * Cannot happen because we already checked above (which also
2408                  * cannot happen), and we hold ctx->mutex, which serializes us
2409                  * against perf_event_exit_task_context().
2410                  */
2411                 raw_spin_unlock_irq(&ctx->lock);
2412                 return;
2413         }
2414         /*
2415          * If the task is not running, ctx->lock will avoid it becoming so,
2416          * thus we can safely install the event.
2417          */
2418         if (task_curr(task)) {
2419                 raw_spin_unlock_irq(&ctx->lock);
2420                 goto again;
2421         }
2422         add_event_to_ctx(event, ctx);
2423         raw_spin_unlock_irq(&ctx->lock);
2424 }
2425
2426 /*
2427  * Cross CPU call to enable a performance event
2428  */
2429 static void __perf_event_enable(struct perf_event *event,
2430                                 struct perf_cpu_context *cpuctx,
2431                                 struct perf_event_context *ctx,
2432                                 void *info)
2433 {
2434         struct perf_event *leader = event->group_leader;
2435         struct perf_event_context *task_ctx;
2436
2437         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2438             event->state <= PERF_EVENT_STATE_ERROR)
2439                 return;
2440
2441         if (ctx->is_active)
2442                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2443
2444         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2445
2446         if (!ctx->is_active)
2447                 return;
2448
2449         if (!event_filter_match(event)) {
2450                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2451                 return;
2452         }
2453
2454         /*
2455          * If the event is in a group and isn't the group leader,
2456          * then don't put it on unless the group is on.
2457          */
2458         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2459                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2460                 return;
2461         }
2462
2463         task_ctx = cpuctx->task_ctx;
2464         if (ctx->task)
2465                 WARN_ON_ONCE(task_ctx != ctx);
2466
2467         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2468 }
2469
2470 /*
2471  * Enable a event.
2472  *
2473  * If event->ctx is a cloned context, callers must make sure that
2474  * every task struct that event->ctx->task could possibly point to
2475  * remains valid.  This condition is satisfied when called through
2476  * perf_event_for_each_child or perf_event_for_each as described
2477  * for perf_event_disable.
2478  */
2479 static void _perf_event_enable(struct perf_event *event)
2480 {
2481         struct perf_event_context *ctx = event->ctx;
2482
2483         raw_spin_lock_irq(&ctx->lock);
2484         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2485             event->state <  PERF_EVENT_STATE_ERROR) {
2486                 raw_spin_unlock_irq(&ctx->lock);
2487                 return;
2488         }
2489
2490         /*
2491          * If the event is in error state, clear that first.
2492          *
2493          * That way, if we see the event in error state below, we know that it
2494          * has gone back into error state, as distinct from the task having
2495          * been scheduled away before the cross-call arrived.
2496          */
2497         if (event->state == PERF_EVENT_STATE_ERROR)
2498                 event->state = PERF_EVENT_STATE_OFF;
2499         raw_spin_unlock_irq(&ctx->lock);
2500
2501         event_function_call(event, __perf_event_enable, NULL);
2502 }
2503
2504 /*
2505  * See perf_event_disable();
2506  */
2507 void perf_event_enable(struct perf_event *event)
2508 {
2509         struct perf_event_context *ctx;
2510
2511         ctx = perf_event_ctx_lock(event);
2512         _perf_event_enable(event);
2513         perf_event_ctx_unlock(event, ctx);
2514 }
2515 EXPORT_SYMBOL_GPL(perf_event_enable);
2516
2517 struct stop_event_data {
2518         struct perf_event       *event;
2519         unsigned int            restart;
2520 };
2521
2522 static int __perf_event_stop(void *info)
2523 {
2524         struct stop_event_data *sd = info;
2525         struct perf_event *event = sd->event;
2526
2527         /* if it's already INACTIVE, do nothing */
2528         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2529                 return 0;
2530
2531         /* matches smp_wmb() in event_sched_in() */
2532         smp_rmb();
2533
2534         /*
2535          * There is a window with interrupts enabled before we get here,
2536          * so we need to check again lest we try to stop another CPU's event.
2537          */
2538         if (READ_ONCE(event->oncpu) != smp_processor_id())
2539                 return -EAGAIN;
2540
2541         event->pmu->stop(event, PERF_EF_UPDATE);
2542
2543         /*
2544          * May race with the actual stop (through perf_pmu_output_stop()),
2545          * but it is only used for events with AUX ring buffer, and such
2546          * events will refuse to restart because of rb::aux_mmap_count==0,
2547          * see comments in perf_aux_output_begin().
2548          *
2549          * Since this is happening on a event-local CPU, no trace is lost
2550          * while restarting.
2551          */
2552         if (sd->restart)
2553                 event->pmu->start(event, 0);
2554
2555         return 0;
2556 }
2557
2558 static int perf_event_stop(struct perf_event *event, int restart)
2559 {
2560         struct stop_event_data sd = {
2561                 .event          = event,
2562                 .restart        = restart,
2563         };
2564         int ret = 0;
2565
2566         do {
2567                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2568                         return 0;
2569
2570                 /* matches smp_wmb() in event_sched_in() */
2571                 smp_rmb();
2572
2573                 /*
2574                  * We only want to restart ACTIVE events, so if the event goes
2575                  * inactive here (event->oncpu==-1), there's nothing more to do;
2576                  * fall through with ret==-ENXIO.
2577                  */
2578                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2579                                         __perf_event_stop, &sd);
2580         } while (ret == -EAGAIN);
2581
2582         return ret;
2583 }
2584
2585 /*
2586  * In order to contain the amount of racy and tricky in the address filter
2587  * configuration management, it is a two part process:
2588  *
2589  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2590  *      we update the addresses of corresponding vmas in
2591  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2592  * (p2) when an event is scheduled in (pmu::add), it calls
2593  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2594  *      if the generation has changed since the previous call.
2595  *
2596  * If (p1) happens while the event is active, we restart it to force (p2).
2597  *
2598  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2599  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2600  *     ioctl;
2601  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2602  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2603  *     for reading;
2604  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2605  *     of exec.
2606  */
2607 void perf_event_addr_filters_sync(struct perf_event *event)
2608 {
2609         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2610
2611         if (!has_addr_filter(event))
2612                 return;
2613
2614         raw_spin_lock(&ifh->lock);
2615         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2616                 event->pmu->addr_filters_sync(event);
2617                 event->hw.addr_filters_gen = event->addr_filters_gen;
2618         }
2619         raw_spin_unlock(&ifh->lock);
2620 }
2621 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2622
2623 static int _perf_event_refresh(struct perf_event *event, int refresh)
2624 {
2625         /*
2626          * not supported on inherited events
2627          */
2628         if (event->attr.inherit || !is_sampling_event(event))
2629                 return -EINVAL;
2630
2631         atomic_add(refresh, &event->event_limit);
2632         _perf_event_enable(event);
2633
2634         return 0;
2635 }
2636
2637 /*
2638  * See perf_event_disable()
2639  */
2640 int perf_event_refresh(struct perf_event *event, int refresh)
2641 {
2642         struct perf_event_context *ctx;
2643         int ret;
2644
2645         ctx = perf_event_ctx_lock(event);
2646         ret = _perf_event_refresh(event, refresh);
2647         perf_event_ctx_unlock(event, ctx);
2648
2649         return ret;
2650 }
2651 EXPORT_SYMBOL_GPL(perf_event_refresh);
2652
2653 static void ctx_sched_out(struct perf_event_context *ctx,
2654                           struct perf_cpu_context *cpuctx,
2655                           enum event_type_t event_type)
2656 {
2657         int is_active = ctx->is_active;
2658         struct perf_event *event;
2659
2660         lockdep_assert_held(&ctx->lock);
2661
2662         if (likely(!ctx->nr_events)) {
2663                 /*
2664                  * See __perf_remove_from_context().
2665                  */
2666                 WARN_ON_ONCE(ctx->is_active);
2667                 if (ctx->task)
2668                         WARN_ON_ONCE(cpuctx->task_ctx);
2669                 return;
2670         }
2671
2672         ctx->is_active &= ~event_type;
2673         if (!(ctx->is_active & EVENT_ALL))
2674                 ctx->is_active = 0;
2675
2676         if (ctx->task) {
2677                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2678                 if (!ctx->is_active)
2679                         cpuctx->task_ctx = NULL;
2680         }
2681
2682         /*
2683          * Always update time if it was set; not only when it changes.
2684          * Otherwise we can 'forget' to update time for any but the last
2685          * context we sched out. For example:
2686          *
2687          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2688          *   ctx_sched_out(.event_type = EVENT_PINNED)
2689          *
2690          * would only update time for the pinned events.
2691          */
2692         if (is_active & EVENT_TIME) {
2693                 /* update (and stop) ctx time */
2694                 update_context_time(ctx);
2695                 update_cgrp_time_from_cpuctx(cpuctx);
2696         }
2697
2698         is_active ^= ctx->is_active; /* changed bits */
2699
2700         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2701                 return;
2702
2703         perf_pmu_disable(ctx->pmu);
2704         if (is_active & EVENT_PINNED) {
2705                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2706                         group_sched_out(event, cpuctx, ctx);
2707         }
2708
2709         if (is_active & EVENT_FLEXIBLE) {
2710                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2711                         group_sched_out(event, cpuctx, ctx);
2712         }
2713         perf_pmu_enable(ctx->pmu);
2714 }
2715
2716 /*
2717  * Test whether two contexts are equivalent, i.e. whether they have both been
2718  * cloned from the same version of the same context.
2719  *
2720  * Equivalence is measured using a generation number in the context that is
2721  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2722  * and list_del_event().
2723  */
2724 static int context_equiv(struct perf_event_context *ctx1,
2725                          struct perf_event_context *ctx2)
2726 {
2727         lockdep_assert_held(&ctx1->lock);
2728         lockdep_assert_held(&ctx2->lock);
2729
2730         /* Pinning disables the swap optimization */
2731         if (ctx1->pin_count || ctx2->pin_count)
2732                 return 0;
2733
2734         /* If ctx1 is the parent of ctx2 */
2735         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2736                 return 1;
2737
2738         /* If ctx2 is the parent of ctx1 */
2739         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2740                 return 1;
2741
2742         /*
2743          * If ctx1 and ctx2 have the same parent; we flatten the parent
2744          * hierarchy, see perf_event_init_context().
2745          */
2746         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2747                         ctx1->parent_gen == ctx2->parent_gen)
2748                 return 1;
2749
2750         /* Unmatched */
2751         return 0;
2752 }
2753
2754 static void __perf_event_sync_stat(struct perf_event *event,
2755                                      struct perf_event *next_event)
2756 {
2757         u64 value;
2758
2759         if (!event->attr.inherit_stat)
2760                 return;
2761
2762         /*
2763          * Update the event value, we cannot use perf_event_read()
2764          * because we're in the middle of a context switch and have IRQs
2765          * disabled, which upsets smp_call_function_single(), however
2766          * we know the event must be on the current CPU, therefore we
2767          * don't need to use it.
2768          */
2769         if (event->state == PERF_EVENT_STATE_ACTIVE)
2770                 event->pmu->read(event);
2771
2772         perf_event_update_time(event);
2773
2774         /*
2775          * In order to keep per-task stats reliable we need to flip the event
2776          * values when we flip the contexts.
2777          */
2778         value = local64_read(&next_event->count);
2779         value = local64_xchg(&event->count, value);
2780         local64_set(&next_event->count, value);
2781
2782         swap(event->total_time_enabled, next_event->total_time_enabled);
2783         swap(event->total_time_running, next_event->total_time_running);
2784
2785         /*
2786          * Since we swizzled the values, update the user visible data too.
2787          */
2788         perf_event_update_userpage(event);
2789         perf_event_update_userpage(next_event);
2790 }
2791
2792 static void perf_event_sync_stat(struct perf_event_context *ctx,
2793                                    struct perf_event_context *next_ctx)
2794 {
2795         struct perf_event *event, *next_event;
2796
2797         if (!ctx->nr_stat)
2798                 return;
2799
2800         update_context_time(ctx);
2801
2802         event = list_first_entry(&ctx->event_list,
2803                                    struct perf_event, event_entry);
2804
2805         next_event = list_first_entry(&next_ctx->event_list,
2806                                         struct perf_event, event_entry);
2807
2808         while (&event->event_entry != &ctx->event_list &&
2809                &next_event->event_entry != &next_ctx->event_list) {
2810
2811                 __perf_event_sync_stat(event, next_event);
2812
2813                 event = list_next_entry(event, event_entry);
2814                 next_event = list_next_entry(next_event, event_entry);
2815         }
2816 }
2817
2818 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2819                                          struct task_struct *next)
2820 {
2821         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2822         struct perf_event_context *next_ctx;
2823         struct perf_event_context *parent, *next_parent;
2824         struct perf_cpu_context *cpuctx;
2825         int do_switch = 1;
2826
2827         if (likely(!ctx))
2828                 return;
2829
2830         cpuctx = __get_cpu_context(ctx);
2831         if (!cpuctx->task_ctx)
2832                 return;
2833
2834         rcu_read_lock();
2835         next_ctx = next->perf_event_ctxp[ctxn];
2836         if (!next_ctx)
2837                 goto unlock;
2838
2839         parent = rcu_dereference(ctx->parent_ctx);
2840         next_parent = rcu_dereference(next_ctx->parent_ctx);
2841
2842         /* If neither context have a parent context; they cannot be clones. */
2843         if (!parent && !next_parent)
2844                 goto unlock;
2845
2846         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2847                 /*
2848                  * Looks like the two contexts are clones, so we might be
2849                  * able to optimize the context switch.  We lock both
2850                  * contexts and check that they are clones under the
2851                  * lock (including re-checking that neither has been
2852                  * uncloned in the meantime).  It doesn't matter which
2853                  * order we take the locks because no other cpu could
2854                  * be trying to lock both of these tasks.
2855                  */
2856                 raw_spin_lock(&ctx->lock);
2857                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2858                 if (context_equiv(ctx, next_ctx)) {
2859                         WRITE_ONCE(ctx->task, next);
2860                         WRITE_ONCE(next_ctx->task, task);
2861
2862                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2863
2864                         /*
2865                          * RCU_INIT_POINTER here is safe because we've not
2866                          * modified the ctx and the above modification of
2867                          * ctx->task and ctx->task_ctx_data are immaterial
2868                          * since those values are always verified under
2869                          * ctx->lock which we're now holding.
2870                          */
2871                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2872                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2873
2874                         do_switch = 0;
2875
2876                         perf_event_sync_stat(ctx, next_ctx);
2877                 }
2878                 raw_spin_unlock(&next_ctx->lock);
2879                 raw_spin_unlock(&ctx->lock);
2880         }
2881 unlock:
2882         rcu_read_unlock();
2883
2884         if (do_switch) {
2885                 raw_spin_lock(&ctx->lock);
2886                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2887                 raw_spin_unlock(&ctx->lock);
2888         }
2889 }
2890
2891 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2892
2893 void perf_sched_cb_dec(struct pmu *pmu)
2894 {
2895         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2896
2897         this_cpu_dec(perf_sched_cb_usages);
2898
2899         if (!--cpuctx->sched_cb_usage)
2900                 list_del(&cpuctx->sched_cb_entry);
2901 }
2902
2903
2904 void perf_sched_cb_inc(struct pmu *pmu)
2905 {
2906         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2907
2908         if (!cpuctx->sched_cb_usage++)
2909                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2910
2911         this_cpu_inc(perf_sched_cb_usages);
2912 }
2913
2914 /*
2915  * This function provides the context switch callback to the lower code
2916  * layer. It is invoked ONLY when the context switch callback is enabled.
2917  *
2918  * This callback is relevant even to per-cpu events; for example multi event
2919  * PEBS requires this to provide PID/TID information. This requires we flush
2920  * all queued PEBS records before we context switch to a new task.
2921  */
2922 static void perf_pmu_sched_task(struct task_struct *prev,
2923                                 struct task_struct *next,
2924                                 bool sched_in)
2925 {
2926         struct perf_cpu_context *cpuctx;
2927         struct pmu *pmu;
2928
2929         if (prev == next)
2930                 return;
2931
2932         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2933                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2934
2935                 if (WARN_ON_ONCE(!pmu->sched_task))
2936                         continue;
2937
2938                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2939                 perf_pmu_disable(pmu);
2940
2941                 pmu->sched_task(cpuctx->task_ctx, sched_in);
2942
2943                 perf_pmu_enable(pmu);
2944                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2945         }
2946 }
2947
2948 static void perf_event_switch(struct task_struct *task,
2949                               struct task_struct *next_prev, bool sched_in);
2950
2951 #define for_each_task_context_nr(ctxn)                                  \
2952         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2953
2954 /*
2955  * Called from scheduler to remove the events of the current task,
2956  * with interrupts disabled.
2957  *
2958  * We stop each event and update the event value in event->count.
2959  *
2960  * This does not protect us against NMI, but disable()
2961  * sets the disabled bit in the control field of event _before_
2962  * accessing the event control register. If a NMI hits, then it will
2963  * not restart the event.
2964  */
2965 void __perf_event_task_sched_out(struct task_struct *task,
2966                                  struct task_struct *next)
2967 {
2968         int ctxn;
2969
2970         if (__this_cpu_read(perf_sched_cb_usages))
2971                 perf_pmu_sched_task(task, next, false);
2972
2973         if (atomic_read(&nr_switch_events))
2974                 perf_event_switch(task, next, false);
2975
2976         for_each_task_context_nr(ctxn)
2977                 perf_event_context_sched_out(task, ctxn, next);
2978
2979         /*
2980          * if cgroup events exist on this CPU, then we need
2981          * to check if we have to switch out PMU state.
2982          * cgroup event are system-wide mode only
2983          */
2984         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2985                 perf_cgroup_sched_out(task, next);
2986 }
2987
2988 /*
2989  * Called with IRQs disabled
2990  */
2991 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2992                               enum event_type_t event_type)
2993 {
2994         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2995 }
2996
2997 static void
2998 ctx_pinned_sched_in(struct perf_event_context *ctx,
2999                     struct perf_cpu_context *cpuctx)
3000 {
3001         struct perf_event *event;
3002
3003         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3004                 if (event->state <= PERF_EVENT_STATE_OFF)
3005                         continue;
3006                 if (!event_filter_match(event))
3007                         continue;
3008
3009                 if (group_can_go_on(event, cpuctx, 1))
3010                         group_sched_in(event, cpuctx, ctx);
3011
3012                 /*
3013                  * If this pinned group hasn't been scheduled,
3014                  * put it in error state.
3015                  */
3016                 if (event->state == PERF_EVENT_STATE_INACTIVE)
3017                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3018         }
3019 }
3020
3021 static void
3022 ctx_flexible_sched_in(struct perf_event_context *ctx,
3023                       struct perf_cpu_context *cpuctx)
3024 {
3025         struct perf_event *event;
3026         int can_add_hw = 1;
3027
3028         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3029                 /* Ignore events in OFF or ERROR state */
3030                 if (event->state <= PERF_EVENT_STATE_OFF)
3031                         continue;
3032                 /*
3033                  * Listen to the 'cpu' scheduling filter constraint
3034                  * of events:
3035                  */
3036                 if (!event_filter_match(event))
3037                         continue;
3038
3039                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3040                         if (group_sched_in(event, cpuctx, ctx))
3041                                 can_add_hw = 0;
3042                 }
3043         }
3044 }
3045
3046 static void
3047 ctx_sched_in(struct perf_event_context *ctx,
3048              struct perf_cpu_context *cpuctx,
3049              enum event_type_t event_type,
3050              struct task_struct *task)
3051 {
3052         int is_active = ctx->is_active;
3053         u64 now;
3054
3055         lockdep_assert_held(&ctx->lock);
3056
3057         if (likely(!ctx->nr_events))
3058                 return;
3059
3060         ctx->is_active |= (event_type | EVENT_TIME);
3061         if (ctx->task) {
3062                 if (!is_active)
3063                         cpuctx->task_ctx = ctx;
3064                 else
3065                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3066         }
3067
3068         is_active ^= ctx->is_active; /* changed bits */
3069
3070         if (is_active & EVENT_TIME) {
3071                 /* start ctx time */
3072                 now = perf_clock();
3073                 ctx->timestamp = now;
3074                 perf_cgroup_set_timestamp(task, ctx);
3075         }
3076
3077         /*
3078          * First go through the list and put on any pinned groups
3079          * in order to give them the best chance of going on.
3080          */
3081         if (is_active & EVENT_PINNED)
3082                 ctx_pinned_sched_in(ctx, cpuctx);
3083
3084         /* Then walk through the lower prio flexible groups */
3085         if (is_active & EVENT_FLEXIBLE)
3086                 ctx_flexible_sched_in(ctx, cpuctx);
3087 }
3088
3089 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3090                              enum event_type_t event_type,
3091                              struct task_struct *task)
3092 {
3093         struct perf_event_context *ctx = &cpuctx->ctx;
3094
3095         ctx_sched_in(ctx, cpuctx, event_type, task);
3096 }
3097
3098 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3099                                         struct task_struct *task)
3100 {
3101         struct perf_cpu_context *cpuctx;
3102
3103         cpuctx = __get_cpu_context(ctx);
3104         if (cpuctx->task_ctx == ctx)
3105                 return;
3106
3107         perf_ctx_lock(cpuctx, ctx);
3108         /*
3109          * We must check ctx->nr_events while holding ctx->lock, such
3110          * that we serialize against perf_install_in_context().
3111          */
3112         if (!ctx->nr_events)
3113                 goto unlock;
3114
3115         perf_pmu_disable(ctx->pmu);
3116         /*
3117          * We want to keep the following priority order:
3118          * cpu pinned (that don't need to move), task pinned,
3119          * cpu flexible, task flexible.
3120          *
3121          * However, if task's ctx is not carrying any pinned
3122          * events, no need to flip the cpuctx's events around.
3123          */
3124         if (!list_empty(&ctx->pinned_groups))
3125                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3126         perf_event_sched_in(cpuctx, ctx, task);
3127         perf_pmu_enable(ctx->pmu);
3128
3129 unlock:
3130         perf_ctx_unlock(cpuctx, ctx);
3131 }
3132
3133 /*
3134  * Called from scheduler to add the events of the current task
3135  * with interrupts disabled.
3136  *
3137  * We restore the event value and then enable it.
3138  *
3139  * This does not protect us against NMI, but enable()
3140  * sets the enabled bit in the control field of event _before_
3141  * accessing the event control register. If a NMI hits, then it will
3142  * keep the event running.
3143  */
3144 void __perf_event_task_sched_in(struct task_struct *prev,
3145                                 struct task_struct *task)
3146 {
3147         struct perf_event_context *ctx;
3148         int ctxn;
3149
3150         /*
3151          * If cgroup events exist on this CPU, then we need to check if we have
3152          * to switch in PMU state; cgroup event are system-wide mode only.
3153          *
3154          * Since cgroup events are CPU events, we must schedule these in before
3155          * we schedule in the task events.
3156          */
3157         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3158                 perf_cgroup_sched_in(prev, task);
3159
3160         for_each_task_context_nr(ctxn) {
3161                 ctx = task->perf_event_ctxp[ctxn];
3162                 if (likely(!ctx))
3163                         continue;
3164
3165                 perf_event_context_sched_in(ctx, task);
3166         }
3167
3168         if (atomic_read(&nr_switch_events))
3169                 perf_event_switch(task, prev, true);
3170
3171         if (__this_cpu_read(perf_sched_cb_usages))
3172                 perf_pmu_sched_task(prev, task, true);
3173 }
3174
3175 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3176 {
3177         u64 frequency = event->attr.sample_freq;
3178         u64 sec = NSEC_PER_SEC;
3179         u64 divisor, dividend;
3180
3181         int count_fls, nsec_fls, frequency_fls, sec_fls;
3182
3183         count_fls = fls64(count);
3184         nsec_fls = fls64(nsec);
3185         frequency_fls = fls64(frequency);
3186         sec_fls = 30;
3187
3188         /*
3189          * We got @count in @nsec, with a target of sample_freq HZ
3190          * the target period becomes:
3191          *
3192          *             @count * 10^9
3193          * period = -------------------
3194          *          @nsec * sample_freq
3195          *
3196          */
3197
3198         /*
3199          * Reduce accuracy by one bit such that @a and @b converge
3200          * to a similar magnitude.
3201          */
3202 #define REDUCE_FLS(a, b)                \
3203 do {                                    \
3204         if (a##_fls > b##_fls) {        \
3205                 a >>= 1;                \
3206                 a##_fls--;              \
3207         } else {                        \
3208                 b >>= 1;                \
3209                 b##_fls--;              \
3210         }                               \
3211 } while (0)
3212
3213         /*
3214          * Reduce accuracy until either term fits in a u64, then proceed with
3215          * the other, so that finally we can do a u64/u64 division.
3216          */
3217         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3218                 REDUCE_FLS(nsec, frequency);
3219                 REDUCE_FLS(sec, count);
3220         }
3221
3222         if (count_fls + sec_fls > 64) {
3223                 divisor = nsec * frequency;
3224
3225                 while (count_fls + sec_fls > 64) {
3226                         REDUCE_FLS(count, sec);
3227                         divisor >>= 1;
3228                 }
3229
3230                 dividend = count * sec;
3231         } else {
3232                 dividend = count * sec;
3233
3234                 while (nsec_fls + frequency_fls > 64) {
3235                         REDUCE_FLS(nsec, frequency);
3236                         dividend >>= 1;
3237                 }
3238
3239                 divisor = nsec * frequency;
3240         }
3241
3242         if (!divisor)
3243                 return dividend;
3244
3245         return div64_u64(dividend, divisor);
3246 }
3247
3248 static DEFINE_PER_CPU(int, perf_throttled_count);
3249 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3250
3251 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3252 {
3253         struct hw_perf_event *hwc = &event->hw;
3254         s64 period, sample_period;
3255         s64 delta;
3256
3257         period = perf_calculate_period(event, nsec, count);
3258
3259         delta = (s64)(period - hwc->sample_period);
3260         delta = (delta + 7) / 8; /* low pass filter */
3261
3262         sample_period = hwc->sample_period + delta;
3263
3264         if (!sample_period)
3265                 sample_period = 1;
3266
3267         hwc->sample_period = sample_period;
3268
3269         if (local64_read(&hwc->period_left) > 8*sample_period) {
3270                 if (disable)
3271                         event->pmu->stop(event, PERF_EF_UPDATE);
3272
3273                 local64_set(&hwc->period_left, 0);
3274
3275                 if (disable)
3276                         event->pmu->start(event, PERF_EF_RELOAD);
3277         }
3278 }
3279
3280 /*
3281  * combine freq adjustment with unthrottling to avoid two passes over the
3282  * events. At the same time, make sure, having freq events does not change
3283  * the rate of unthrottling as that would introduce bias.
3284  */
3285 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3286                                            int needs_unthr)
3287 {
3288         struct perf_event *event;
3289         struct hw_perf_event *hwc;
3290         u64 now, period = TICK_NSEC;
3291         s64 delta;
3292
3293         /*
3294          * only need to iterate over all events iff:
3295          * - context have events in frequency mode (needs freq adjust)
3296          * - there are events to unthrottle on this cpu
3297          */
3298         if (!(ctx->nr_freq || needs_unthr))
3299                 return;
3300
3301         raw_spin_lock(&ctx->lock);
3302         perf_pmu_disable(ctx->pmu);
3303
3304         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3305                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3306                         continue;
3307
3308                 if (!event_filter_match(event))
3309                         continue;
3310
3311                 perf_pmu_disable(event->pmu);
3312
3313                 hwc = &event->hw;
3314
3315                 if (hwc->interrupts == MAX_INTERRUPTS) {
3316                         hwc->interrupts = 0;
3317                         perf_log_throttle(event, 1);
3318                         event->pmu->start(event, 0);
3319                 }
3320
3321                 if (!event->attr.freq || !event->attr.sample_freq)
3322                         goto next;
3323
3324                 /*
3325                  * stop the event and update event->count
3326                  */
3327                 event->pmu->stop(event, PERF_EF_UPDATE);
3328
3329                 now = local64_read(&event->count);
3330                 delta = now - hwc->freq_count_stamp;
3331                 hwc->freq_count_stamp = now;
3332
3333                 /*
3334                  * restart the event
3335                  * reload only if value has changed
3336                  * we have stopped the event so tell that
3337                  * to perf_adjust_period() to avoid stopping it
3338                  * twice.
3339                  */
3340                 if (delta > 0)
3341                         perf_adjust_period(event, period, delta, false);
3342
3343                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3344         next:
3345                 perf_pmu_enable(event->pmu);
3346         }
3347
3348         perf_pmu_enable(ctx->pmu);
3349         raw_spin_unlock(&ctx->lock);
3350 }
3351
3352 /*
3353  * Round-robin a context's events:
3354  */
3355 static void rotate_ctx(struct perf_event_context *ctx)
3356 {
3357         /*
3358          * Rotate the first entry last of non-pinned groups. Rotation might be
3359          * disabled by the inheritance code.
3360          */
3361         if (!ctx->rotate_disable)
3362                 list_rotate_left(&ctx->flexible_groups);
3363 }
3364
3365 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3366 {
3367         struct perf_event_context *ctx = NULL;
3368         int rotate = 0;
3369
3370         if (cpuctx->ctx.nr_events) {
3371                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3372                         rotate = 1;
3373         }
3374
3375         ctx = cpuctx->task_ctx;
3376         if (ctx && ctx->nr_events) {
3377                 if (ctx->nr_events != ctx->nr_active)
3378                         rotate = 1;
3379         }
3380
3381         if (!rotate)
3382                 goto done;
3383
3384         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3385         perf_pmu_disable(cpuctx->ctx.pmu);
3386
3387         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3388         if (ctx)
3389                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3390
3391         rotate_ctx(&cpuctx->ctx);
3392         if (ctx)
3393                 rotate_ctx(ctx);
3394
3395         perf_event_sched_in(cpuctx, ctx, current);
3396
3397         perf_pmu_enable(cpuctx->ctx.pmu);
3398         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3399 done:
3400
3401         return rotate;
3402 }
3403
3404 void perf_event_task_tick(void)
3405 {
3406         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3407         struct perf_event_context *ctx, *tmp;
3408         int throttled;
3409
3410         lockdep_assert_irqs_disabled();
3411
3412         __this_cpu_inc(perf_throttled_seq);
3413         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3414         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3415
3416         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3417                 perf_adjust_freq_unthr_context(ctx, throttled);
3418 }
3419
3420 static int event_enable_on_exec(struct perf_event *event,
3421                                 struct perf_event_context *ctx)
3422 {
3423         if (!event->attr.enable_on_exec)
3424                 return 0;
3425
3426         event->attr.enable_on_exec = 0;
3427         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3428                 return 0;
3429
3430         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3431
3432         return 1;
3433 }
3434
3435 /*
3436  * Enable all of a task's events that have been marked enable-on-exec.
3437  * This expects task == current.
3438  */
3439 static void perf_event_enable_on_exec(int ctxn)
3440 {
3441         struct perf_event_context *ctx, *clone_ctx = NULL;
3442         enum event_type_t event_type = 0;
3443         struct perf_cpu_context *cpuctx;
3444         struct perf_event *event;
3445         unsigned long flags;
3446         int enabled = 0;
3447
3448         local_irq_save(flags);
3449         ctx = current->perf_event_ctxp[ctxn];
3450         if (!ctx || !ctx->nr_events)
3451                 goto out;
3452
3453         cpuctx = __get_cpu_context(ctx);
3454         perf_ctx_lock(cpuctx, ctx);
3455         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3456         list_for_each_entry(event, &ctx->event_list, event_entry) {
3457                 enabled |= event_enable_on_exec(event, ctx);
3458                 event_type |= get_event_type(event);
3459         }
3460
3461         /*
3462          * Unclone and reschedule this context if we enabled any event.
3463          */
3464         if (enabled) {
3465                 clone_ctx = unclone_ctx(ctx);
3466                 ctx_resched(cpuctx, ctx, event_type);
3467         } else {
3468                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3469         }
3470         perf_ctx_unlock(cpuctx, ctx);
3471
3472 out:
3473         local_irq_restore(flags);
3474
3475         if (clone_ctx)
3476                 put_ctx(clone_ctx);
3477 }
3478
3479 struct perf_read_data {
3480         struct perf_event *event;
3481         bool group;
3482         int ret;
3483 };
3484
3485 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3486 {
3487         u16 local_pkg, event_pkg;
3488
3489         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3490                 int local_cpu = smp_processor_id();
3491
3492                 event_pkg = topology_physical_package_id(event_cpu);
3493                 local_pkg = topology_physical_package_id(local_cpu);
3494
3495                 if (event_pkg == local_pkg)
3496                         return local_cpu;
3497         }
3498
3499         return event_cpu;
3500 }
3501
3502 /*
3503  * Cross CPU call to read the hardware event
3504  */
3505 static void __perf_event_read(void *info)
3506 {
3507         struct perf_read_data *data = info;
3508         struct perf_event *sub, *event = data->event;
3509         struct perf_event_context *ctx = event->ctx;
3510         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3511         struct pmu *pmu = event->pmu;
3512
3513         /*
3514          * If this is a task context, we need to check whether it is
3515          * the current task context of this cpu.  If not it has been
3516          * scheduled out before the smp call arrived.  In that case
3517          * event->count would have been updated to a recent sample
3518          * when the event was scheduled out.
3519          */
3520         if (ctx->task && cpuctx->task_ctx != ctx)
3521                 return;
3522
3523         raw_spin_lock(&ctx->lock);
3524         if (ctx->is_active & EVENT_TIME) {
3525                 update_context_time(ctx);
3526                 update_cgrp_time_from_event(event);
3527         }
3528
3529         perf_event_update_time(event);
3530         if (data->group)
3531                 perf_event_update_sibling_time(event);
3532
3533         if (event->state != PERF_EVENT_STATE_ACTIVE)
3534                 goto unlock;
3535
3536         if (!data->group) {
3537                 pmu->read(event);
3538                 data->ret = 0;
3539                 goto unlock;
3540         }
3541
3542         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3543
3544         pmu->read(event);
3545
3546         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3547                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3548                         /*
3549                          * Use sibling's PMU rather than @event's since
3550                          * sibling could be on different (eg: software) PMU.
3551                          */
3552                         sub->pmu->read(sub);
3553                 }
3554         }
3555
3556         data->ret = pmu->commit_txn(pmu);
3557
3558 unlock:
3559         raw_spin_unlock(&ctx->lock);
3560 }
3561
3562 static inline u64 perf_event_count(struct perf_event *event)
3563 {
3564         return local64_read(&event->count) + atomic64_read(&event->child_count);
3565 }
3566
3567 /*
3568  * NMI-safe method to read a local event, that is an event that
3569  * is:
3570  *   - either for the current task, or for this CPU
3571  *   - does not have inherit set, for inherited task events
3572  *     will not be local and we cannot read them atomically
3573  *   - must not have a pmu::count method
3574  */
3575 int perf_event_read_local(struct perf_event *event, u64 *value,
3576                           u64 *enabled, u64 *running)
3577 {
3578         unsigned long flags;
3579         int ret = 0;
3580
3581         /*
3582          * Disabling interrupts avoids all counter scheduling (context
3583          * switches, timer based rotation and IPIs).
3584          */
3585         local_irq_save(flags);
3586
3587         /*
3588          * It must not be an event with inherit set, we cannot read
3589          * all child counters from atomic context.
3590          */
3591         if (event->attr.inherit) {
3592                 ret = -EOPNOTSUPP;
3593                 goto out;
3594         }
3595
3596         /* If this is a per-task event, it must be for current */
3597         if ((event->attach_state & PERF_ATTACH_TASK) &&
3598             event->hw.target != current) {
3599                 ret = -EINVAL;
3600                 goto out;
3601         }
3602
3603         /* If this is a per-CPU event, it must be for this CPU */
3604         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3605             event->cpu != smp_processor_id()) {
3606                 ret = -EINVAL;
3607                 goto out;
3608         }
3609
3610         /*
3611          * If the event is currently on this CPU, its either a per-task event,
3612          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3613          * oncpu == -1).
3614          */
3615         if (event->oncpu == smp_processor_id())
3616                 event->pmu->read(event);
3617
3618         *value = local64_read(&event->count);
3619         if (enabled || running) {
3620                 u64 now = event->shadow_ctx_time + perf_clock();
3621                 u64 __enabled, __running;
3622
3623                 __perf_update_times(event, now, &__enabled, &__running);
3624                 if (enabled)
3625                         *enabled = __enabled;
3626                 if (running)
3627                         *running = __running;
3628         }
3629 out:
3630         local_irq_restore(flags);
3631
3632         return ret;
3633 }
3634
3635 static int perf_event_read(struct perf_event *event, bool group)
3636 {
3637         enum perf_event_state state = READ_ONCE(event->state);
3638         int event_cpu, ret = 0;
3639
3640         /*
3641          * If event is enabled and currently active on a CPU, update the
3642          * value in the event structure:
3643          */
3644 again:
3645         if (state == PERF_EVENT_STATE_ACTIVE) {
3646                 struct perf_read_data data;
3647
3648                 /*
3649                  * Orders the ->state and ->oncpu loads such that if we see
3650                  * ACTIVE we must also see the right ->oncpu.
3651                  *
3652                  * Matches the smp_wmb() from event_sched_in().
3653                  */
3654                 smp_rmb();
3655
3656                 event_cpu = READ_ONCE(event->oncpu);
3657                 if ((unsigned)event_cpu >= nr_cpu_ids)
3658                         return 0;
3659
3660                 data = (struct perf_read_data){
3661                         .event = event,
3662                         .group = group,
3663                         .ret = 0,
3664                 };
3665
3666                 preempt_disable();
3667                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3668
3669                 /*
3670                  * Purposely ignore the smp_call_function_single() return
3671                  * value.
3672                  *
3673                  * If event_cpu isn't a valid CPU it means the event got
3674                  * scheduled out and that will have updated the event count.
3675                  *
3676                  * Therefore, either way, we'll have an up-to-date event count
3677                  * after this.
3678                  */
3679                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3680                 preempt_enable();
3681                 ret = data.ret;
3682
3683         } else if (state == PERF_EVENT_STATE_INACTIVE) {
3684                 struct perf_event_context *ctx = event->ctx;
3685                 unsigned long flags;
3686
3687                 raw_spin_lock_irqsave(&ctx->lock, flags);
3688                 state = event->state;
3689                 if (state != PERF_EVENT_STATE_INACTIVE) {
3690                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
3691                         goto again;
3692                 }
3693
3694                 /*
3695                  * May read while context is not active (e.g., thread is
3696                  * blocked), in that case we cannot update context time
3697                  */
3698                 if (ctx->is_active & EVENT_TIME) {
3699                         update_context_time(ctx);
3700                         update_cgrp_time_from_event(event);
3701                 }
3702
3703                 perf_event_update_time(event);
3704                 if (group)
3705                         perf_event_update_sibling_time(event);
3706                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3707         }
3708
3709         return ret;
3710 }
3711
3712 /*
3713  * Initialize the perf_event context in a task_struct:
3714  */
3715 static void __perf_event_init_context(struct perf_event_context *ctx)
3716 {
3717         raw_spin_lock_init(&ctx->lock);
3718         mutex_init(&ctx->mutex);
3719         INIT_LIST_HEAD(&ctx->active_ctx_list);
3720         INIT_LIST_HEAD(&ctx->pinned_groups);
3721         INIT_LIST_HEAD(&ctx->flexible_groups);
3722         INIT_LIST_HEAD(&ctx->event_list);
3723         atomic_set(&ctx->refcount, 1);
3724 }
3725
3726 static struct perf_event_context *
3727 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3728 {
3729         struct perf_event_context *ctx;
3730
3731         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3732         if (!ctx)
3733                 return NULL;
3734
3735         __perf_event_init_context(ctx);
3736         if (task) {
3737                 ctx->task = task;
3738                 get_task_struct(task);
3739         }
3740         ctx->pmu = pmu;
3741
3742         return ctx;
3743 }
3744
3745 static struct task_struct *
3746 find_lively_task_by_vpid(pid_t vpid)
3747 {
3748         struct task_struct *task;
3749
3750         rcu_read_lock();
3751         if (!vpid)
3752                 task = current;
3753         else
3754                 task = find_task_by_vpid(vpid);
3755         if (task)
3756                 get_task_struct(task);
3757         rcu_read_unlock();
3758
3759         if (!task)
3760                 return ERR_PTR(-ESRCH);
3761
3762         return task;
3763 }
3764
3765 /*
3766  * Returns a matching context with refcount and pincount.
3767  */
3768 static struct perf_event_context *
3769 find_get_context(struct pmu *pmu, struct task_struct *task,
3770                 struct perf_event *event)
3771 {
3772         struct perf_event_context *ctx, *clone_ctx = NULL;
3773         struct perf_cpu_context *cpuctx;
3774         void *task_ctx_data = NULL;
3775         unsigned long flags;
3776         int ctxn, err;
3777         int cpu = event->cpu;
3778
3779         if (!task) {
3780                 /* Must be root to operate on a CPU event: */
3781                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3782                         return ERR_PTR(-EACCES);
3783
3784                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3785                 ctx = &cpuctx->ctx;
3786                 get_ctx(ctx);
3787                 ++ctx->pin_count;
3788
3789                 return ctx;
3790         }
3791
3792         err = -EINVAL;
3793         ctxn = pmu->task_ctx_nr;
3794         if (ctxn < 0)
3795                 goto errout;
3796
3797         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3798                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3799                 if (!task_ctx_data) {
3800                         err = -ENOMEM;
3801                         goto errout;
3802                 }
3803         }
3804
3805 retry:
3806         ctx = perf_lock_task_context(task, ctxn, &flags);
3807         if (ctx) {
3808                 clone_ctx = unclone_ctx(ctx);
3809                 ++ctx->pin_count;
3810
3811                 if (task_ctx_data && !ctx->task_ctx_data) {
3812                         ctx->task_ctx_data = task_ctx_data;
3813                         task_ctx_data = NULL;
3814                 }
3815                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3816
3817                 if (clone_ctx)
3818                         put_ctx(clone_ctx);
3819         } else {
3820                 ctx = alloc_perf_context(pmu, task);
3821                 err = -ENOMEM;
3822                 if (!ctx)
3823                         goto errout;
3824
3825                 if (task_ctx_data) {
3826                         ctx->task_ctx_data = task_ctx_data;
3827                         task_ctx_data = NULL;
3828                 }
3829
3830                 err = 0;
3831                 mutex_lock(&task->perf_event_mutex);
3832                 /*
3833                  * If it has already passed perf_event_exit_task().
3834                  * we must see PF_EXITING, it takes this mutex too.
3835                  */
3836                 if (task->flags & PF_EXITING)
3837                         err = -ESRCH;
3838                 else if (task->perf_event_ctxp[ctxn])
3839                         err = -EAGAIN;
3840                 else {
3841                         get_ctx(ctx);
3842                         ++ctx->pin_count;
3843                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3844                 }
3845                 mutex_unlock(&task->perf_event_mutex);
3846
3847                 if (unlikely(err)) {
3848                         put_ctx(ctx);
3849
3850                         if (err == -EAGAIN)
3851                                 goto retry;
3852                         goto errout;
3853                 }
3854         }
3855
3856         kfree(task_ctx_data);
3857         return ctx;
3858
3859 errout:
3860         kfree(task_ctx_data);
3861         return ERR_PTR(err);
3862 }
3863
3864 static void perf_event_free_filter(struct perf_event *event);
3865 static void perf_event_free_bpf_prog(struct perf_event *event);
3866
3867 static void free_event_rcu(struct rcu_head *head)
3868 {
3869         struct perf_event *event;
3870
3871         event = container_of(head, struct perf_event, rcu_head);
3872         if (event->ns)
3873                 put_pid_ns(event->ns);
3874         perf_event_free_filter(event);
3875         kfree(event);
3876 }
3877
3878 static void ring_buffer_attach(struct perf_event *event,
3879                                struct ring_buffer *rb);
3880
3881 static void detach_sb_event(struct perf_event *event)
3882 {
3883         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3884
3885         raw_spin_lock(&pel->lock);
3886         list_del_rcu(&event->sb_list);
3887         raw_spin_unlock(&pel->lock);
3888 }
3889
3890 static bool is_sb_event(struct perf_event *event)
3891 {
3892         struct perf_event_attr *attr = &event->attr;
3893
3894         if (event->parent)
3895                 return false;
3896
3897         if (event->attach_state & PERF_ATTACH_TASK)
3898                 return false;
3899
3900         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3901             attr->comm || attr->comm_exec ||
3902             attr->task ||
3903             attr->context_switch)
3904                 return true;
3905         return false;
3906 }
3907
3908 static void unaccount_pmu_sb_event(struct perf_event *event)
3909 {
3910         if (is_sb_event(event))
3911                 detach_sb_event(event);
3912 }
3913
3914 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3915 {
3916         if (event->parent)
3917                 return;
3918
3919         if (is_cgroup_event(event))
3920                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3921 }
3922
3923 #ifdef CONFIG_NO_HZ_FULL
3924 static DEFINE_SPINLOCK(nr_freq_lock);
3925 #endif
3926
3927 static void unaccount_freq_event_nohz(void)
3928 {
3929 #ifdef CONFIG_NO_HZ_FULL
3930         spin_lock(&nr_freq_lock);
3931         if (atomic_dec_and_test(&nr_freq_events))
3932                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3933         spin_unlock(&nr_freq_lock);
3934 #endif
3935 }
3936
3937 static void unaccount_freq_event(void)
3938 {
3939         if (tick_nohz_full_enabled())
3940                 unaccount_freq_event_nohz();
3941         else
3942                 atomic_dec(&nr_freq_events);
3943 }
3944
3945 static void unaccount_event(struct perf_event *event)
3946 {
3947         bool dec = false;
3948
3949         if (event->parent)
3950                 return;
3951
3952         if (event->attach_state & PERF_ATTACH_TASK)
3953                 dec = true;
3954         if (event->attr.mmap || event->attr.mmap_data)
3955                 atomic_dec(&nr_mmap_events);
3956         if (event->attr.comm)
3957                 atomic_dec(&nr_comm_events);
3958         if (event->attr.namespaces)
3959                 atomic_dec(&nr_namespaces_events);
3960         if (event->attr.task)
3961                 atomic_dec(&nr_task_events);
3962         if (event->attr.freq)
3963                 unaccount_freq_event();
3964         if (event->attr.context_switch) {
3965                 dec = true;
3966                 atomic_dec(&nr_switch_events);
3967         }
3968         if (is_cgroup_event(event))
3969                 dec = true;
3970         if (has_branch_stack(event))
3971                 dec = true;
3972
3973         if (dec) {
3974                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3975                         schedule_delayed_work(&perf_sched_work, HZ);
3976         }
3977
3978         unaccount_event_cpu(event, event->cpu);
3979
3980         unaccount_pmu_sb_event(event);
3981 }
3982
3983 static void perf_sched_delayed(struct work_struct *work)
3984 {
3985         mutex_lock(&perf_sched_mutex);
3986         if (atomic_dec_and_test(&perf_sched_count))
3987                 static_branch_disable(&perf_sched_events);
3988         mutex_unlock(&perf_sched_mutex);
3989 }
3990
3991 /*
3992  * The following implement mutual exclusion of events on "exclusive" pmus
3993  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3994  * at a time, so we disallow creating events that might conflict, namely:
3995  *
3996  *  1) cpu-wide events in the presence of per-task events,
3997  *  2) per-task events in the presence of cpu-wide events,
3998  *  3) two matching events on the same context.
3999  *
4000  * The former two cases are handled in the allocation path (perf_event_alloc(),
4001  * _free_event()), the latter -- before the first perf_install_in_context().
4002  */
4003 static int exclusive_event_init(struct perf_event *event)
4004 {
4005         struct pmu *pmu = event->pmu;
4006
4007         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4008                 return 0;
4009
4010         /*
4011          * Prevent co-existence of per-task and cpu-wide events on the
4012          * same exclusive pmu.
4013          *
4014          * Negative pmu::exclusive_cnt means there are cpu-wide
4015          * events on this "exclusive" pmu, positive means there are
4016          * per-task events.
4017          *
4018          * Since this is called in perf_event_alloc() path, event::ctx
4019          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4020          * to mean "per-task event", because unlike other attach states it
4021          * never gets cleared.
4022          */
4023         if (event->attach_state & PERF_ATTACH_TASK) {
4024                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4025                         return -EBUSY;
4026         } else {
4027                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4028                         return -EBUSY;
4029         }
4030
4031         return 0;
4032 }
4033
4034 static void exclusive_event_destroy(struct perf_event *event)
4035 {
4036         struct pmu *pmu = event->pmu;
4037
4038         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4039                 return;
4040
4041         /* see comment in exclusive_event_init() */
4042         if (event->attach_state & PERF_ATTACH_TASK)
4043                 atomic_dec(&pmu->exclusive_cnt);
4044         else
4045                 atomic_inc(&pmu->exclusive_cnt);
4046 }
4047
4048 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4049 {
4050         if ((e1->pmu == e2->pmu) &&
4051             (e1->cpu == e2->cpu ||
4052              e1->cpu == -1 ||
4053              e2->cpu == -1))
4054                 return true;
4055         return false;
4056 }
4057
4058 /* Called under the same ctx::mutex as perf_install_in_context() */
4059 static bool exclusive_event_installable(struct perf_event *event,
4060                                         struct perf_event_context *ctx)
4061 {
4062         struct perf_event *iter_event;
4063         struct pmu *pmu = event->pmu;
4064
4065         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4066                 return true;
4067
4068         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4069                 if (exclusive_event_match(iter_event, event))
4070                         return false;
4071         }
4072
4073         return true;
4074 }
4075
4076 static void perf_addr_filters_splice(struct perf_event *event,
4077                                        struct list_head *head);
4078
4079 static void _free_event(struct perf_event *event)
4080 {
4081         irq_work_sync(&event->pending);
4082
4083         unaccount_event(event);
4084
4085         if (event->rb) {
4086                 /*
4087                  * Can happen when we close an event with re-directed output.
4088                  *
4089                  * Since we have a 0 refcount, perf_mmap_close() will skip
4090                  * over us; possibly making our ring_buffer_put() the last.
4091                  */
4092                 mutex_lock(&event->mmap_mutex);
4093                 ring_buffer_attach(event, NULL);
4094                 mutex_unlock(&event->mmap_mutex);
4095         }
4096
4097         if (is_cgroup_event(event))
4098                 perf_detach_cgroup(event);
4099
4100         if (!event->parent) {
4101                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4102                         put_callchain_buffers();
4103         }
4104
4105         perf_event_free_bpf_prog(event);
4106         perf_addr_filters_splice(event, NULL);
4107         kfree(event->addr_filters_offs);
4108
4109         if (event->destroy)
4110                 event->destroy(event);
4111
4112         if (event->ctx)
4113                 put_ctx(event->ctx);
4114
4115         exclusive_event_destroy(event);
4116         module_put(event->pmu->module);
4117
4118         call_rcu(&event->rcu_head, free_event_rcu);
4119 }
4120
4121 /*
4122  * Used to free events which have a known refcount of 1, such as in error paths
4123  * where the event isn't exposed yet and inherited events.
4124  */
4125 static void free_event(struct perf_event *event)
4126 {
4127         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4128                                 "unexpected event refcount: %ld; ptr=%p\n",
4129                                 atomic_long_read(&event->refcount), event)) {
4130                 /* leak to avoid use-after-free */
4131                 return;
4132         }
4133
4134         _free_event(event);
4135 }
4136
4137 /*
4138  * Remove user event from the owner task.
4139  */
4140 static void perf_remove_from_owner(struct perf_event *event)
4141 {
4142         struct task_struct *owner;
4143
4144         rcu_read_lock();
4145         /*
4146          * Matches the smp_store_release() in perf_event_exit_task(). If we
4147          * observe !owner it means the list deletion is complete and we can
4148          * indeed free this event, otherwise we need to serialize on
4149          * owner->perf_event_mutex.
4150          */
4151         owner = READ_ONCE(event->owner);
4152         if (owner) {
4153                 /*
4154                  * Since delayed_put_task_struct() also drops the last
4155                  * task reference we can safely take a new reference
4156                  * while holding the rcu_read_lock().
4157                  */
4158                 get_task_struct(owner);
4159         }
4160         rcu_read_unlock();
4161
4162         if (owner) {
4163                 /*
4164                  * If we're here through perf_event_exit_task() we're already
4165                  * holding ctx->mutex which would be an inversion wrt. the
4166                  * normal lock order.
4167                  *
4168                  * However we can safely take this lock because its the child
4169                  * ctx->mutex.
4170                  */
4171                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4172
4173                 /*
4174                  * We have to re-check the event->owner field, if it is cleared
4175                  * we raced with perf_event_exit_task(), acquiring the mutex
4176                  * ensured they're done, and we can proceed with freeing the
4177                  * event.
4178                  */
4179                 if (event->owner) {
4180                         list_del_init(&event->owner_entry);
4181                         smp_store_release(&event->owner, NULL);
4182                 }
4183                 mutex_unlock(&owner->perf_event_mutex);
4184                 put_task_struct(owner);
4185         }
4186 }
4187
4188 static void put_event(struct perf_event *event)
4189 {
4190         if (!atomic_long_dec_and_test(&event->refcount))
4191                 return;
4192
4193         _free_event(event);
4194 }
4195
4196 /*
4197  * Kill an event dead; while event:refcount will preserve the event
4198  * object, it will not preserve its functionality. Once the last 'user'
4199  * gives up the object, we'll destroy the thing.
4200  */
4201 int perf_event_release_kernel(struct perf_event *event)
4202 {
4203         struct perf_event_context *ctx = event->ctx;
4204         struct perf_event *child, *tmp;
4205         LIST_HEAD(free_list);
4206
4207         /*
4208          * If we got here through err_file: fput(event_file); we will not have
4209          * attached to a context yet.
4210          */
4211         if (!ctx) {
4212                 WARN_ON_ONCE(event->attach_state &
4213                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4214                 goto no_ctx;
4215         }
4216
4217         if (!is_kernel_event(event))
4218                 perf_remove_from_owner(event);
4219
4220         ctx = perf_event_ctx_lock(event);
4221         WARN_ON_ONCE(ctx->parent_ctx);
4222         perf_remove_from_context(event, DETACH_GROUP);
4223
4224         raw_spin_lock_irq(&ctx->lock);
4225         /*
4226          * Mark this event as STATE_DEAD, there is no external reference to it
4227          * anymore.
4228          *
4229          * Anybody acquiring event->child_mutex after the below loop _must_
4230          * also see this, most importantly inherit_event() which will avoid
4231          * placing more children on the list.
4232          *
4233          * Thus this guarantees that we will in fact observe and kill _ALL_
4234          * child events.
4235          */
4236         event->state = PERF_EVENT_STATE_DEAD;
4237         raw_spin_unlock_irq(&ctx->lock);
4238
4239         perf_event_ctx_unlock(event, ctx);
4240
4241 again:
4242         mutex_lock(&event->child_mutex);
4243         list_for_each_entry(child, &event->child_list, child_list) {
4244
4245                 /*
4246                  * Cannot change, child events are not migrated, see the
4247                  * comment with perf_event_ctx_lock_nested().
4248                  */
4249                 ctx = READ_ONCE(child->ctx);
4250                 /*
4251                  * Since child_mutex nests inside ctx::mutex, we must jump
4252                  * through hoops. We start by grabbing a reference on the ctx.
4253                  *
4254                  * Since the event cannot get freed while we hold the
4255                  * child_mutex, the context must also exist and have a !0
4256                  * reference count.
4257                  */
4258                 get_ctx(ctx);
4259
4260                 /*
4261                  * Now that we have a ctx ref, we can drop child_mutex, and
4262                  * acquire ctx::mutex without fear of it going away. Then we
4263                  * can re-acquire child_mutex.
4264                  */
4265                 mutex_unlock(&event->child_mutex);
4266                 mutex_lock(&ctx->mutex);
4267                 mutex_lock(&event->child_mutex);
4268
4269                 /*
4270                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4271                  * state, if child is still the first entry, it didn't get freed
4272                  * and we can continue doing so.
4273                  */
4274                 tmp = list_first_entry_or_null(&event->child_list,
4275                                                struct perf_event, child_list);
4276                 if (tmp == child) {
4277                         perf_remove_from_context(child, DETACH_GROUP);
4278                         list_move(&child->child_list, &free_list);
4279                         /*
4280                          * This matches the refcount bump in inherit_event();
4281                          * this can't be the last reference.
4282                          */
4283                         put_event(event);
4284                 }
4285
4286                 mutex_unlock(&event->child_mutex);
4287                 mutex_unlock(&ctx->mutex);
4288                 put_ctx(ctx);
4289                 goto again;
4290         }
4291         mutex_unlock(&event->child_mutex);
4292
4293         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4294                 list_del(&child->child_list);
4295                 free_event(child);
4296         }
4297
4298 no_ctx:
4299         put_event(event); /* Must be the 'last' reference */
4300         return 0;
4301 }
4302 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4303
4304 /*
4305  * Called when the last reference to the file is gone.
4306  */
4307 static int perf_release(struct inode *inode, struct file *file)
4308 {
4309         perf_event_release_kernel(file->private_data);
4310         return 0;
4311 }
4312
4313 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4314 {
4315         struct perf_event *child;
4316         u64 total = 0;
4317
4318         *enabled = 0;
4319         *running = 0;
4320
4321         mutex_lock(&event->child_mutex);
4322
4323         (void)perf_event_read(event, false);
4324         total += perf_event_count(event);
4325
4326         *enabled += event->total_time_enabled +
4327                         atomic64_read(&event->child_total_time_enabled);
4328         *running += event->total_time_running +
4329                         atomic64_read(&event->child_total_time_running);
4330
4331         list_for_each_entry(child, &event->child_list, child_list) {
4332                 (void)perf_event_read(child, false);
4333                 total += perf_event_count(child);
4334                 *enabled += child->total_time_enabled;
4335                 *running += child->total_time_running;
4336         }
4337         mutex_unlock(&event->child_mutex);
4338
4339         return total;
4340 }
4341
4342 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4343 {
4344         struct perf_event_context *ctx;
4345         u64 count;
4346
4347         ctx = perf_event_ctx_lock(event);
4348         count = __perf_event_read_value(event, enabled, running);
4349         perf_event_ctx_unlock(event, ctx);
4350
4351         return count;
4352 }
4353 EXPORT_SYMBOL_GPL(perf_event_read_value);
4354
4355 static int __perf_read_group_add(struct perf_event *leader,
4356                                         u64 read_format, u64 *values)
4357 {
4358         struct perf_event_context *ctx = leader->ctx;
4359         struct perf_event *sub;
4360         unsigned long flags;
4361         int n = 1; /* skip @nr */
4362         int ret;
4363
4364         ret = perf_event_read(leader, true);
4365         if (ret)
4366                 return ret;
4367
4368         raw_spin_lock_irqsave(&ctx->lock, flags);
4369
4370         /*
4371          * Since we co-schedule groups, {enabled,running} times of siblings
4372          * will be identical to those of the leader, so we only publish one
4373          * set.
4374          */
4375         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4376                 values[n++] += leader->total_time_enabled +
4377                         atomic64_read(&leader->child_total_time_enabled);
4378         }
4379
4380         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4381                 values[n++] += leader->total_time_running +
4382                         atomic64_read(&leader->child_total_time_running);
4383         }
4384
4385         /*
4386          * Write {count,id} tuples for every sibling.
4387          */
4388         values[n++] += perf_event_count(leader);
4389         if (read_format & PERF_FORMAT_ID)
4390                 values[n++] = primary_event_id(leader);
4391
4392         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4393                 values[n++] += perf_event_count(sub);
4394                 if (read_format & PERF_FORMAT_ID)
4395                         values[n++] = primary_event_id(sub);
4396         }
4397
4398         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4399         return 0;
4400 }
4401
4402 static int perf_read_group(struct perf_event *event,
4403                                    u64 read_format, char __user *buf)
4404 {
4405         struct perf_event *leader = event->group_leader, *child;
4406         struct perf_event_context *ctx = leader->ctx;
4407         int ret;
4408         u64 *values;
4409
4410         lockdep_assert_held(&ctx->mutex);
4411
4412         values = kzalloc(event->read_size, GFP_KERNEL);
4413         if (!values)
4414                 return -ENOMEM;
4415
4416         values[0] = 1 + leader->nr_siblings;
4417
4418         /*
4419          * By locking the child_mutex of the leader we effectively
4420          * lock the child list of all siblings.. XXX explain how.
4421          */
4422         mutex_lock(&leader->child_mutex);
4423
4424         ret = __perf_read_group_add(leader, read_format, values);
4425         if (ret)
4426                 goto unlock;
4427
4428         list_for_each_entry(child, &leader->child_list, child_list) {
4429                 ret = __perf_read_group_add(child, read_format, values);
4430                 if (ret)
4431                         goto unlock;
4432         }
4433
4434         mutex_unlock(&leader->child_mutex);
4435
4436         ret = event->read_size;
4437         if (copy_to_user(buf, values, event->read_size))
4438                 ret = -EFAULT;
4439         goto out;
4440
4441 unlock:
4442         mutex_unlock(&leader->child_mutex);
4443 out:
4444         kfree(values);
4445         return ret;
4446 }
4447
4448 static int perf_read_one(struct perf_event *event,
4449                                  u64 read_format, char __user *buf)
4450 {
4451         u64 enabled, running;
4452         u64 values[4];
4453         int n = 0;
4454
4455         values[n++] = __perf_event_read_value(event, &enabled, &running);
4456         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4457                 values[n++] = enabled;
4458         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4459                 values[n++] = running;
4460         if (read_format & PERF_FORMAT_ID)
4461                 values[n++] = primary_event_id(event);
4462
4463         if (copy_to_user(buf, values, n * sizeof(u64)))
4464                 return -EFAULT;
4465
4466         return n * sizeof(u64);
4467 }
4468
4469 static bool is_event_hup(struct perf_event *event)
4470 {
4471         bool no_children;
4472
4473         if (event->state > PERF_EVENT_STATE_EXIT)
4474                 return false;
4475
4476         mutex_lock(&event->child_mutex);
4477         no_children = list_empty(&event->child_list);
4478         mutex_unlock(&event->child_mutex);
4479         return no_children;
4480 }
4481
4482 /*
4483  * Read the performance event - simple non blocking version for now
4484  */
4485 static ssize_t
4486 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4487 {
4488         u64 read_format = event->attr.read_format;
4489         int ret;
4490
4491         /*
4492          * Return end-of-file for a read on a event that is in
4493          * error state (i.e. because it was pinned but it couldn't be
4494          * scheduled on to the CPU at some point).
4495          */
4496         if (event->state == PERF_EVENT_STATE_ERROR)
4497                 return 0;
4498
4499         if (count < event->read_size)
4500                 return -ENOSPC;
4501
4502         WARN_ON_ONCE(event->ctx->parent_ctx);
4503         if (read_format & PERF_FORMAT_GROUP)
4504                 ret = perf_read_group(event, read_format, buf);
4505         else
4506                 ret = perf_read_one(event, read_format, buf);
4507
4508         return ret;
4509 }
4510
4511 static ssize_t
4512 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4513 {
4514         struct perf_event *event = file->private_data;
4515         struct perf_event_context *ctx;
4516         int ret;
4517
4518         ctx = perf_event_ctx_lock(event);
4519         ret = __perf_read(event, buf, count);
4520         perf_event_ctx_unlock(event, ctx);
4521
4522         return ret;
4523 }
4524
4525 static __poll_t perf_poll(struct file *file, poll_table *wait)
4526 {
4527         struct perf_event *event = file->private_data;
4528         struct ring_buffer *rb;
4529         __poll_t events = EPOLLHUP;
4530
4531         poll_wait(file, &event->waitq, wait);
4532
4533         if (is_event_hup(event))
4534                 return events;
4535
4536         /*
4537          * Pin the event->rb by taking event->mmap_mutex; otherwise
4538          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4539          */
4540         mutex_lock(&event->mmap_mutex);
4541         rb = event->rb;
4542         if (rb)
4543                 events = atomic_xchg(&rb->poll, 0);
4544         mutex_unlock(&event->mmap_mutex);
4545         return events;
4546 }
4547
4548 static void _perf_event_reset(struct perf_event *event)
4549 {
4550         (void)perf_event_read(event, false);
4551         local64_set(&event->count, 0);
4552         perf_event_update_userpage(event);
4553 }
4554
4555 /*
4556  * Holding the top-level event's child_mutex means that any
4557  * descendant process that has inherited this event will block
4558  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4559  * task existence requirements of perf_event_enable/disable.
4560  */
4561 static void perf_event_for_each_child(struct perf_event *event,
4562                                         void (*func)(struct perf_event *))
4563 {
4564         struct perf_event *child;
4565
4566         WARN_ON_ONCE(event->ctx->parent_ctx);
4567
4568         mutex_lock(&event->child_mutex);
4569         func(event);
4570         list_for_each_entry(child, &event->child_list, child_list)
4571                 func(child);
4572         mutex_unlock(&event->child_mutex);
4573 }
4574
4575 static void perf_event_for_each(struct perf_event *event,
4576                                   void (*func)(struct perf_event *))
4577 {
4578         struct perf_event_context *ctx = event->ctx;
4579         struct perf_event *sibling;
4580
4581         lockdep_assert_held(&ctx->mutex);
4582
4583         event = event->group_leader;
4584
4585         perf_event_for_each_child(event, func);
4586         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4587                 perf_event_for_each_child(sibling, func);
4588 }
4589
4590 static void __perf_event_period(struct perf_event *event,
4591                                 struct perf_cpu_context *cpuctx,
4592                                 struct perf_event_context *ctx,
4593                                 void *info)
4594 {
4595         u64 value = *((u64 *)info);
4596         bool active;
4597
4598         if (event->attr.freq) {
4599                 event->attr.sample_freq = value;
4600         } else {
4601                 event->attr.sample_period = value;
4602                 event->hw.sample_period = value;
4603         }
4604
4605         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4606         if (active) {
4607                 perf_pmu_disable(ctx->pmu);
4608                 /*
4609                  * We could be throttled; unthrottle now to avoid the tick
4610                  * trying to unthrottle while we already re-started the event.
4611                  */
4612                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4613                         event->hw.interrupts = 0;
4614                         perf_log_throttle(event, 1);
4615                 }
4616                 event->pmu->stop(event, PERF_EF_UPDATE);
4617         }
4618
4619         local64_set(&event->hw.period_left, 0);
4620
4621         if (active) {
4622                 event->pmu->start(event, PERF_EF_RELOAD);
4623                 perf_pmu_enable(ctx->pmu);
4624         }
4625 }
4626
4627 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4628 {
4629         u64 value;
4630
4631         if (!is_sampling_event(event))
4632                 return -EINVAL;
4633
4634         if (copy_from_user(&value, arg, sizeof(value)))
4635                 return -EFAULT;
4636
4637         if (!value)
4638                 return -EINVAL;
4639
4640         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4641                 return -EINVAL;
4642
4643         event_function_call(event, __perf_event_period, &value);
4644
4645         return 0;
4646 }
4647
4648 static const struct file_operations perf_fops;
4649
4650 static inline int perf_fget_light(int fd, struct fd *p)
4651 {
4652         struct fd f = fdget(fd);
4653         if (!f.file)
4654                 return -EBADF;
4655
4656         if (f.file->f_op != &perf_fops) {
4657                 fdput(f);
4658                 return -EBADF;
4659         }
4660         *p = f;
4661         return 0;
4662 }
4663
4664 static int perf_event_set_output(struct perf_event *event,
4665                                  struct perf_event *output_event);
4666 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4667 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4668
4669 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4670 {
4671         void (*func)(struct perf_event *);
4672         u32 flags = arg;
4673
4674         switch (cmd) {
4675         case PERF_EVENT_IOC_ENABLE:
4676                 func = _perf_event_enable;
4677                 break;
4678         case PERF_EVENT_IOC_DISABLE:
4679                 func = _perf_event_disable;
4680                 break;
4681         case PERF_EVENT_IOC_RESET:
4682                 func = _perf_event_reset;
4683                 break;
4684
4685         case PERF_EVENT_IOC_REFRESH:
4686                 return _perf_event_refresh(event, arg);
4687
4688         case PERF_EVENT_IOC_PERIOD:
4689                 return perf_event_period(event, (u64 __user *)arg);
4690
4691         case PERF_EVENT_IOC_ID:
4692         {
4693                 u64 id = primary_event_id(event);
4694
4695                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4696                         return -EFAULT;
4697                 return 0;
4698         }
4699
4700         case PERF_EVENT_IOC_SET_OUTPUT:
4701         {
4702                 int ret;
4703                 if (arg != -1) {
4704                         struct perf_event *output_event;
4705                         struct fd output;
4706                         ret = perf_fget_light(arg, &output);
4707                         if (ret)
4708                                 return ret;
4709                         output_event = output.file->private_data;
4710                         ret = perf_event_set_output(event, output_event);
4711                         fdput(output);
4712                 } else {
4713                         ret = perf_event_set_output(event, NULL);
4714                 }
4715                 return ret;
4716         }
4717
4718         case PERF_EVENT_IOC_SET_FILTER:
4719                 return perf_event_set_filter(event, (void __user *)arg);
4720
4721         case PERF_EVENT_IOC_SET_BPF:
4722                 return perf_event_set_bpf_prog(event, arg);
4723
4724         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4725                 struct ring_buffer *rb;
4726
4727                 rcu_read_lock();
4728                 rb = rcu_dereference(event->rb);
4729                 if (!rb || !rb->nr_pages) {
4730                         rcu_read_unlock();
4731                         return -EINVAL;
4732                 }
4733                 rb_toggle_paused(rb, !!arg);
4734                 rcu_read_unlock();
4735                 return 0;
4736         }
4737
4738         case PERF_EVENT_IOC_QUERY_BPF:
4739                 return perf_event_query_prog_array(event, (void __user *)arg);
4740         default:
4741                 return -ENOTTY;
4742         }
4743
4744         if (flags & PERF_IOC_FLAG_GROUP)
4745                 perf_event_for_each(event, func);
4746         else
4747                 perf_event_for_each_child(event, func);
4748
4749         return 0;
4750 }
4751
4752 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4753 {
4754         struct perf_event *event = file->private_data;
4755         struct perf_event_context *ctx;
4756         long ret;
4757
4758         ctx = perf_event_ctx_lock(event);
4759         ret = _perf_ioctl(event, cmd, arg);
4760         perf_event_ctx_unlock(event, ctx);
4761
4762         return ret;
4763 }
4764
4765 #ifdef CONFIG_COMPAT
4766 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4767                                 unsigned long arg)
4768 {
4769         switch (_IOC_NR(cmd)) {
4770         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4771         case _IOC_NR(PERF_EVENT_IOC_ID):
4772                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4773                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4774                         cmd &= ~IOCSIZE_MASK;
4775                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4776                 }
4777                 break;
4778         }
4779         return perf_ioctl(file, cmd, arg);
4780 }
4781 #else
4782 # define perf_compat_ioctl NULL
4783 #endif
4784
4785 int perf_event_task_enable(void)
4786 {
4787         struct perf_event_context *ctx;
4788         struct perf_event *event;
4789
4790         mutex_lock(&current->perf_event_mutex);
4791         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4792                 ctx = perf_event_ctx_lock(event);
4793                 perf_event_for_each_child(event, _perf_event_enable);
4794                 perf_event_ctx_unlock(event, ctx);
4795         }
4796         mutex_unlock(&current->perf_event_mutex);
4797
4798         return 0;
4799 }
4800
4801 int perf_event_task_disable(void)
4802 {
4803         struct perf_event_context *ctx;
4804         struct perf_event *event;
4805
4806         mutex_lock(&current->perf_event_mutex);
4807         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4808                 ctx = perf_event_ctx_lock(event);
4809                 perf_event_for_each_child(event, _perf_event_disable);
4810                 perf_event_ctx_unlock(event, ctx);
4811         }
4812         mutex_unlock(&current->perf_event_mutex);
4813
4814         return 0;
4815 }
4816
4817 static int perf_event_index(struct perf_event *event)
4818 {
4819         if (event->hw.state & PERF_HES_STOPPED)
4820                 return 0;
4821
4822         if (event->state != PERF_EVENT_STATE_ACTIVE)
4823                 return 0;
4824
4825         return event->pmu->event_idx(event);
4826 }
4827
4828 static void calc_timer_values(struct perf_event *event,
4829                                 u64 *now,
4830                                 u64 *enabled,
4831                                 u64 *running)
4832 {
4833         u64 ctx_time;
4834
4835         *now = perf_clock();
4836         ctx_time = event->shadow_ctx_time + *now;
4837         __perf_update_times(event, ctx_time, enabled, running);
4838 }
4839
4840 static void perf_event_init_userpage(struct perf_event *event)
4841 {
4842         struct perf_event_mmap_page *userpg;
4843         struct ring_buffer *rb;
4844
4845         rcu_read_lock();
4846         rb = rcu_dereference(event->rb);
4847         if (!rb)
4848                 goto unlock;
4849
4850         userpg = rb->user_page;
4851
4852         /* Allow new userspace to detect that bit 0 is deprecated */
4853         userpg->cap_bit0_is_deprecated = 1;
4854         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4855         userpg->data_offset = PAGE_SIZE;
4856         userpg->data_size = perf_data_size(rb);
4857
4858 unlock:
4859         rcu_read_unlock();
4860 }
4861
4862 void __weak arch_perf_update_userpage(
4863         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4864 {
4865 }
4866
4867 /*
4868  * Callers need to ensure there can be no nesting of this function, otherwise
4869  * the seqlock logic goes bad. We can not serialize this because the arch
4870  * code calls this from NMI context.
4871  */
4872 void perf_event_update_userpage(struct perf_event *event)
4873 {
4874         struct perf_event_mmap_page *userpg;
4875         struct ring_buffer *rb;
4876         u64 enabled, running, now;
4877
4878         rcu_read_lock();
4879         rb = rcu_dereference(event->rb);
4880         if (!rb)
4881                 goto unlock;
4882
4883         /*
4884          * compute total_time_enabled, total_time_running
4885          * based on snapshot values taken when the event
4886          * was last scheduled in.
4887          *
4888          * we cannot simply called update_context_time()
4889          * because of locking issue as we can be called in
4890          * NMI context
4891          */
4892         calc_timer_values(event, &now, &enabled, &running);
4893
4894         userpg = rb->user_page;
4895         /*
4896          * Disable preemption so as to not let the corresponding user-space
4897          * spin too long if we get preempted.
4898          */
4899         preempt_disable();
4900         ++userpg->lock;
4901         barrier();
4902         userpg->index = perf_event_index(event);
4903         userpg->offset = perf_event_count(event);
4904         if (userpg->index)
4905                 userpg->offset -= local64_read(&event->hw.prev_count);
4906
4907         userpg->time_enabled = enabled +
4908                         atomic64_read(&event->child_total_time_enabled);
4909
4910         userpg->time_running = running +
4911                         atomic64_read(&event->child_total_time_running);
4912
4913         arch_perf_update_userpage(event, userpg, now);
4914
4915         barrier();
4916         ++userpg->lock;
4917         preempt_enable();
4918 unlock:
4919         rcu_read_unlock();
4920 }
4921 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
4922
4923 static int perf_mmap_fault(struct vm_fault *vmf)
4924 {
4925         struct perf_event *event = vmf->vma->vm_file->private_data;
4926         struct ring_buffer *rb;
4927         int ret = VM_FAULT_SIGBUS;
4928
4929         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4930                 if (vmf->pgoff == 0)
4931                         ret = 0;
4932                 return ret;
4933         }
4934
4935         rcu_read_lock();
4936         rb = rcu_dereference(event->rb);
4937         if (!rb)
4938                 goto unlock;
4939
4940         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4941                 goto unlock;
4942
4943         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4944         if (!vmf->page)
4945                 goto unlock;
4946
4947         get_page(vmf->page);
4948         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4949         vmf->page->index   = vmf->pgoff;
4950
4951         ret = 0;
4952 unlock:
4953         rcu_read_unlock();
4954
4955         return ret;
4956 }
4957
4958 static void ring_buffer_attach(struct perf_event *event,
4959                                struct ring_buffer *rb)
4960 {
4961         struct ring_buffer *old_rb = NULL;
4962         unsigned long flags;
4963
4964         if (event->rb) {
4965                 /*
4966                  * Should be impossible, we set this when removing
4967                  * event->rb_entry and wait/clear when adding event->rb_entry.
4968                  */
4969                 WARN_ON_ONCE(event->rcu_pending);
4970
4971                 old_rb = event->rb;
4972                 spin_lock_irqsave(&old_rb->event_lock, flags);
4973                 list_del_rcu(&event->rb_entry);
4974                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4975
4976                 event->rcu_batches = get_state_synchronize_rcu();
4977                 event->rcu_pending = 1;
4978         }
4979
4980         if (rb) {
4981                 if (event->rcu_pending) {
4982                         cond_synchronize_rcu(event->rcu_batches);
4983                         event->rcu_pending = 0;
4984                 }
4985
4986                 spin_lock_irqsave(&rb->event_lock, flags);
4987                 list_add_rcu(&event->rb_entry, &rb->event_list);
4988                 spin_unlock_irqrestore(&rb->event_lock, flags);
4989         }
4990
4991         /*
4992          * Avoid racing with perf_mmap_close(AUX): stop the event
4993          * before swizzling the event::rb pointer; if it's getting
4994          * unmapped, its aux_mmap_count will be 0 and it won't
4995          * restart. See the comment in __perf_pmu_output_stop().
4996          *
4997          * Data will inevitably be lost when set_output is done in
4998          * mid-air, but then again, whoever does it like this is
4999          * not in for the data anyway.
5000          */
5001         if (has_aux(event))
5002                 perf_event_stop(event, 0);
5003
5004         rcu_assign_pointer(event->rb, rb);
5005
5006         if (old_rb) {
5007                 ring_buffer_put(old_rb);
5008                 /*
5009                  * Since we detached before setting the new rb, so that we
5010                  * could attach the new rb, we could have missed a wakeup.
5011                  * Provide it now.
5012                  */
5013                 wake_up_all(&event->waitq);
5014         }
5015 }
5016
5017 static void ring_buffer_wakeup(struct perf_event *event)
5018 {
5019         struct ring_buffer *rb;
5020
5021         rcu_read_lock();
5022         rb = rcu_dereference(event->rb);
5023         if (rb) {
5024                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5025                         wake_up_all(&event->waitq);
5026         }
5027         rcu_read_unlock();
5028 }
5029
5030 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5031 {
5032         struct ring_buffer *rb;
5033
5034         rcu_read_lock();
5035         rb = rcu_dereference(event->rb);
5036         if (rb) {
5037                 if (!atomic_inc_not_zero(&rb->refcount))
5038                         rb = NULL;
5039         }
5040         rcu_read_unlock();
5041
5042         return rb;
5043 }
5044
5045 void ring_buffer_put(struct ring_buffer *rb)
5046 {
5047         if (!atomic_dec_and_test(&rb->refcount))
5048                 return;
5049
5050         WARN_ON_ONCE(!list_empty(&rb->event_list));
5051
5052         call_rcu(&rb->rcu_head, rb_free_rcu);
5053 }
5054
5055 static void perf_mmap_open(struct vm_area_struct *vma)
5056 {
5057         struct perf_event *event = vma->vm_file->private_data;
5058
5059         atomic_inc(&event->mmap_count);
5060         atomic_inc(&event->rb->mmap_count);
5061
5062         if (vma->vm_pgoff)
5063                 atomic_inc(&event->rb->aux_mmap_count);
5064
5065         if (event->pmu->event_mapped)
5066                 event->pmu->event_mapped(event, vma->vm_mm);
5067 }
5068
5069 static void perf_pmu_output_stop(struct perf_event *event);
5070
5071 /*
5072  * A buffer can be mmap()ed multiple times; either directly through the same
5073  * event, or through other events by use of perf_event_set_output().
5074  *
5075  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5076  * the buffer here, where we still have a VM context. This means we need
5077  * to detach all events redirecting to us.
5078  */
5079 static void perf_mmap_close(struct vm_area_struct *vma)
5080 {
5081         struct perf_event *event = vma->vm_file->private_data;
5082
5083         struct ring_buffer *rb = ring_buffer_get(event);
5084         struct user_struct *mmap_user = rb->mmap_user;
5085         int mmap_locked = rb->mmap_locked;
5086         unsigned long size = perf_data_size(rb);
5087
5088         if (event->pmu->event_unmapped)
5089                 event->pmu->event_unmapped(event, vma->vm_mm);
5090
5091         /*
5092          * rb->aux_mmap_count will always drop before rb->mmap_count and
5093          * event->mmap_count, so it is ok to use event->mmap_mutex to
5094          * serialize with perf_mmap here.
5095          */
5096         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5097             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5098                 /*
5099                  * Stop all AUX events that are writing to this buffer,
5100                  * so that we can free its AUX pages and corresponding PMU
5101                  * data. Note that after rb::aux_mmap_count dropped to zero,
5102                  * they won't start any more (see perf_aux_output_begin()).
5103                  */
5104                 perf_pmu_output_stop(event);
5105
5106                 /* now it's safe to free the pages */
5107                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5108                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5109
5110                 /* this has to be the last one */
5111                 rb_free_aux(rb);
5112                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5113
5114                 mutex_unlock(&event->mmap_mutex);
5115         }
5116
5117         atomic_dec(&rb->mmap_count);
5118
5119         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5120                 goto out_put;
5121
5122         ring_buffer_attach(event, NULL);
5123         mutex_unlock(&event->mmap_mutex);
5124
5125         /* If there's still other mmap()s of this buffer, we're done. */
5126         if (atomic_read(&rb->mmap_count))
5127                 goto out_put;
5128
5129         /*
5130          * No other mmap()s, detach from all other events that might redirect
5131          * into the now unreachable buffer. Somewhat complicated by the
5132          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5133          */
5134 again:
5135         rcu_read_lock();
5136         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5137                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5138                         /*
5139                          * This event is en-route to free_event() which will
5140                          * detach it and remove it from the list.
5141                          */
5142                         continue;
5143                 }
5144                 rcu_read_unlock();
5145
5146                 mutex_lock(&event->mmap_mutex);
5147                 /*
5148                  * Check we didn't race with perf_event_set_output() which can
5149                  * swizzle the rb from under us while we were waiting to
5150                  * acquire mmap_mutex.
5151                  *
5152                  * If we find a different rb; ignore this event, a next
5153                  * iteration will no longer find it on the list. We have to
5154                  * still restart the iteration to make sure we're not now
5155                  * iterating the wrong list.
5156                  */
5157                 if (event->rb == rb)
5158                         ring_buffer_attach(event, NULL);
5159
5160                 mutex_unlock(&event->mmap_mutex);
5161                 put_event(event);
5162
5163                 /*
5164                  * Restart the iteration; either we're on the wrong list or
5165                  * destroyed its integrity by doing a deletion.
5166                  */
5167                 goto again;
5168         }
5169         rcu_read_unlock();
5170
5171         /*
5172          * It could be there's still a few 0-ref events on the list; they'll
5173          * get cleaned up by free_event() -- they'll also still have their
5174          * ref on the rb and will free it whenever they are done with it.
5175          *
5176          * Aside from that, this buffer is 'fully' detached and unmapped,
5177          * undo the VM accounting.
5178          */
5179
5180         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5181         vma->vm_mm->pinned_vm -= mmap_locked;
5182         free_uid(mmap_user);
5183
5184 out_put:
5185         ring_buffer_put(rb); /* could be last */
5186 }
5187
5188 static const struct vm_operations_struct perf_mmap_vmops = {
5189         .open           = perf_mmap_open,
5190         .close          = perf_mmap_close, /* non mergable */
5191         .fault          = perf_mmap_fault,
5192         .page_mkwrite   = perf_mmap_fault,
5193 };
5194
5195 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5196 {
5197         struct perf_event *event = file->private_data;
5198         unsigned long user_locked, user_lock_limit;
5199         struct user_struct *user = current_user();
5200         unsigned long locked, lock_limit;
5201         struct ring_buffer *rb = NULL;
5202         unsigned long vma_size;
5203         unsigned long nr_pages;
5204         long user_extra = 0, extra = 0;
5205         int ret = 0, flags = 0;
5206
5207         /*
5208          * Don't allow mmap() of inherited per-task counters. This would
5209          * create a performance issue due to all children writing to the
5210          * same rb.
5211          */
5212         if (event->cpu == -1 && event->attr.inherit)
5213                 return -EINVAL;
5214
5215         if (!(vma->vm_flags & VM_SHARED))
5216                 return -EINVAL;
5217
5218         vma_size = vma->vm_end - vma->vm_start;
5219
5220         if (vma->vm_pgoff == 0) {
5221                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5222         } else {
5223                 /*
5224                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5225                  * mapped, all subsequent mappings should have the same size
5226                  * and offset. Must be above the normal perf buffer.
5227                  */
5228                 u64 aux_offset, aux_size;
5229
5230                 if (!event->rb)
5231                         return -EINVAL;
5232
5233                 nr_pages = vma_size / PAGE_SIZE;
5234
5235                 mutex_lock(&event->mmap_mutex);
5236                 ret = -EINVAL;
5237
5238                 rb = event->rb;
5239                 if (!rb)
5240                         goto aux_unlock;
5241
5242                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5243                 aux_size = READ_ONCE(rb->user_page->aux_size);
5244
5245                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5246                         goto aux_unlock;
5247
5248                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5249                         goto aux_unlock;
5250
5251                 /* already mapped with a different offset */
5252                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5253                         goto aux_unlock;
5254
5255                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5256                         goto aux_unlock;
5257
5258                 /* already mapped with a different size */
5259                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5260                         goto aux_unlock;
5261
5262                 if (!is_power_of_2(nr_pages))
5263                         goto aux_unlock;
5264
5265                 if (!atomic_inc_not_zero(&rb->mmap_count))
5266                         goto aux_unlock;
5267
5268                 if (rb_has_aux(rb)) {
5269                         atomic_inc(&rb->aux_mmap_count);
5270                         ret = 0;
5271                         goto unlock;
5272                 }
5273
5274                 atomic_set(&rb->aux_mmap_count, 1);
5275                 user_extra = nr_pages;
5276
5277                 goto accounting;
5278         }
5279
5280         /*
5281          * If we have rb pages ensure they're a power-of-two number, so we
5282          * can do bitmasks instead of modulo.
5283          */
5284         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5285                 return -EINVAL;
5286
5287         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5288                 return -EINVAL;
5289
5290         WARN_ON_ONCE(event->ctx->parent_ctx);
5291 again:
5292         mutex_lock(&event->mmap_mutex);
5293         if (event->rb) {
5294                 if (event->rb->nr_pages != nr_pages) {
5295                         ret = -EINVAL;
5296                         goto unlock;
5297                 }
5298
5299                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5300                         /*
5301                          * Raced against perf_mmap_close() through
5302                          * perf_event_set_output(). Try again, hope for better
5303                          * luck.
5304                          */
5305                         mutex_unlock(&event->mmap_mutex);
5306                         goto again;
5307                 }
5308
5309                 goto unlock;
5310         }
5311
5312         user_extra = nr_pages + 1;
5313
5314 accounting:
5315         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5316
5317         /*
5318          * Increase the limit linearly with more CPUs:
5319          */
5320         user_lock_limit *= num_online_cpus();
5321
5322         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5323
5324         if (user_locked > user_lock_limit)
5325                 extra = user_locked - user_lock_limit;
5326
5327         lock_limit = rlimit(RLIMIT_MEMLOCK);
5328         lock_limit >>= PAGE_SHIFT;
5329         locked = vma->vm_mm->pinned_vm + extra;
5330
5331         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5332                 !capable(CAP_IPC_LOCK)) {
5333                 ret = -EPERM;
5334                 goto unlock;
5335         }
5336
5337         WARN_ON(!rb && event->rb);
5338
5339         if (vma->vm_flags & VM_WRITE)
5340                 flags |= RING_BUFFER_WRITABLE;
5341
5342         if (!rb) {
5343                 rb = rb_alloc(nr_pages,
5344                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5345                               event->cpu, flags);
5346
5347                 if (!rb) {
5348                         ret = -ENOMEM;
5349                         goto unlock;
5350                 }
5351
5352                 atomic_set(&rb->mmap_count, 1);
5353                 rb->mmap_user = get_current_user();
5354                 rb->mmap_locked = extra;
5355
5356                 ring_buffer_attach(event, rb);
5357
5358                 perf_event_init_userpage(event);
5359                 perf_event_update_userpage(event);
5360         } else {
5361                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5362                                    event->attr.aux_watermark, flags);
5363                 if (!ret)
5364                         rb->aux_mmap_locked = extra;
5365         }
5366
5367 unlock:
5368         if (!ret) {
5369                 atomic_long_add(user_extra, &user->locked_vm);
5370                 vma->vm_mm->pinned_vm += extra;
5371
5372                 atomic_inc(&event->mmap_count);
5373         } else if (rb) {
5374                 atomic_dec(&rb->mmap_count);
5375         }
5376 aux_unlock:
5377         mutex_unlock(&event->mmap_mutex);
5378
5379         /*
5380          * Since pinned accounting is per vm we cannot allow fork() to copy our
5381          * vma.
5382          */
5383         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5384         vma->vm_ops = &perf_mmap_vmops;
5385
5386         if (event->pmu->event_mapped)
5387                 event->pmu->event_mapped(event, vma->vm_mm);
5388
5389         return ret;
5390 }
5391
5392 static int perf_fasync(int fd, struct file *filp, int on)
5393 {
5394         struct inode *inode = file_inode(filp);
5395         struct perf_event *event = filp->private_data;
5396         int retval;
5397
5398         inode_lock(inode);
5399         retval = fasync_helper(fd, filp, on, &event->fasync);
5400         inode_unlock(inode);
5401
5402         if (retval < 0)
5403                 return retval;
5404
5405         return 0;
5406 }
5407
5408 static const struct file_operations perf_fops = {
5409         .llseek                 = no_llseek,
5410         .release                = perf_release,
5411         .read                   = perf_read,
5412         .poll                   = perf_poll,
5413         .unlocked_ioctl         = perf_ioctl,
5414         .compat_ioctl           = perf_compat_ioctl,
5415         .mmap                   = perf_mmap,
5416         .fasync                 = perf_fasync,
5417 };
5418
5419 /*
5420  * Perf event wakeup
5421  *
5422  * If there's data, ensure we set the poll() state and publish everything
5423  * to user-space before waking everybody up.
5424  */
5425
5426 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5427 {
5428         /* only the parent has fasync state */
5429         if (event->parent)
5430                 event = event->parent;
5431         return &event->fasync;
5432 }
5433
5434 void perf_event_wakeup(struct perf_event *event)
5435 {
5436         ring_buffer_wakeup(event);
5437
5438         if (event->pending_kill) {
5439                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5440                 event->pending_kill = 0;
5441         }
5442 }
5443
5444 static void perf_pending_event(struct irq_work *entry)
5445 {
5446         struct perf_event *event = container_of(entry,
5447                         struct perf_event, pending);
5448         int rctx;
5449
5450         rctx = perf_swevent_get_recursion_context();
5451         /*
5452          * If we 'fail' here, that's OK, it means recursion is already disabled
5453          * and we won't recurse 'further'.
5454          */
5455
5456         if (event->pending_disable) {
5457                 event->pending_disable = 0;
5458                 perf_event_disable_local(event);
5459         }
5460
5461         if (event->pending_wakeup) {
5462                 event->pending_wakeup = 0;
5463                 perf_event_wakeup(event);
5464         }
5465
5466         if (rctx >= 0)
5467                 perf_swevent_put_recursion_context(rctx);
5468 }
5469
5470 /*
5471  * We assume there is only KVM supporting the callbacks.
5472  * Later on, we might change it to a list if there is
5473  * another virtualization implementation supporting the callbacks.
5474  */
5475 struct perf_guest_info_callbacks *perf_guest_cbs;
5476
5477 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5478 {
5479         perf_guest_cbs = cbs;
5480         return 0;
5481 }
5482 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5483
5484 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5485 {
5486         perf_guest_cbs = NULL;
5487         return 0;
5488 }
5489 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5490
5491 static void
5492 perf_output_sample_regs(struct perf_output_handle *handle,
5493                         struct pt_regs *regs, u64 mask)
5494 {
5495         int bit;
5496         DECLARE_BITMAP(_mask, 64);
5497
5498         bitmap_from_u64(_mask, mask);
5499         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5500                 u64 val;
5501
5502                 val = perf_reg_value(regs, bit);
5503                 perf_output_put(handle, val);
5504         }
5505 }
5506
5507 static void perf_sample_regs_user(struct perf_regs *regs_user,
5508                                   struct pt_regs *regs,
5509                                   struct pt_regs *regs_user_copy)
5510 {
5511         if (user_mode(regs)) {
5512                 regs_user->abi = perf_reg_abi(current);
5513                 regs_user->regs = regs;
5514         } else if (current->mm) {
5515                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5516         } else {
5517                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5518                 regs_user->regs = NULL;
5519         }
5520 }
5521
5522 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5523                                   struct pt_regs *regs)
5524 {
5525         regs_intr->regs = regs;
5526         regs_intr->abi  = perf_reg_abi(current);
5527 }
5528
5529
5530 /*
5531  * Get remaining task size from user stack pointer.
5532  *
5533  * It'd be better to take stack vma map and limit this more
5534  * precisly, but there's no way to get it safely under interrupt,
5535  * so using TASK_SIZE as limit.
5536  */
5537 static u64 perf_ustack_task_size(struct pt_regs *regs)
5538 {
5539         unsigned long addr = perf_user_stack_pointer(regs);
5540
5541         if (!addr || addr >= TASK_SIZE)
5542                 return 0;
5543
5544         return TASK_SIZE - addr;
5545 }
5546
5547 static u16
5548 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5549                         struct pt_regs *regs)
5550 {
5551         u64 task_size;
5552
5553         /* No regs, no stack pointer, no dump. */
5554         if (!regs)
5555                 return 0;
5556
5557         /*
5558          * Check if we fit in with the requested stack size into the:
5559          * - TASK_SIZE
5560          *   If we don't, we limit the size to the TASK_SIZE.
5561          *
5562          * - remaining sample size
5563          *   If we don't, we customize the stack size to
5564          *   fit in to the remaining sample size.
5565          */
5566
5567         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5568         stack_size = min(stack_size, (u16) task_size);
5569
5570         /* Current header size plus static size and dynamic size. */
5571         header_size += 2 * sizeof(u64);
5572
5573         /* Do we fit in with the current stack dump size? */
5574         if ((u16) (header_size + stack_size) < header_size) {
5575                 /*
5576                  * If we overflow the maximum size for the sample,
5577                  * we customize the stack dump size to fit in.
5578                  */
5579                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5580                 stack_size = round_up(stack_size, sizeof(u64));
5581         }
5582
5583         return stack_size;
5584 }
5585
5586 static void
5587 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5588                           struct pt_regs *regs)
5589 {
5590         /* Case of a kernel thread, nothing to dump */
5591         if (!regs) {
5592                 u64 size = 0;
5593                 perf_output_put(handle, size);
5594         } else {
5595                 unsigned long sp;
5596                 unsigned int rem;
5597                 u64 dyn_size;
5598
5599                 /*
5600                  * We dump:
5601                  * static size
5602                  *   - the size requested by user or the best one we can fit
5603                  *     in to the sample max size
5604                  * data
5605                  *   - user stack dump data
5606                  * dynamic size
5607                  *   - the actual dumped size
5608                  */
5609
5610                 /* Static size. */
5611                 perf_output_put(handle, dump_size);
5612
5613                 /* Data. */
5614                 sp = perf_user_stack_pointer(regs);
5615                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5616                 dyn_size = dump_size - rem;
5617
5618                 perf_output_skip(handle, rem);
5619
5620                 /* Dynamic size. */
5621                 perf_output_put(handle, dyn_size);
5622         }
5623 }
5624
5625 static void __perf_event_header__init_id(struct perf_event_header *header,
5626                                          struct perf_sample_data *data,
5627                                          struct perf_event *event)
5628 {
5629         u64 sample_type = event->attr.sample_type;
5630
5631         data->type = sample_type;
5632         header->size += event->id_header_size;
5633
5634         if (sample_type & PERF_SAMPLE_TID) {
5635                 /* namespace issues */
5636                 data->tid_entry.pid = perf_event_pid(event, current);
5637                 data->tid_entry.tid = perf_event_tid(event, current);
5638         }
5639
5640         if (sample_type & PERF_SAMPLE_TIME)
5641                 data->time = perf_event_clock(event);
5642
5643         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5644                 data->id = primary_event_id(event);
5645
5646         if (sample_type & PERF_SAMPLE_STREAM_ID)
5647                 data->stream_id = event->id;
5648
5649         if (sample_type & PERF_SAMPLE_CPU) {
5650                 data->cpu_entry.cpu      = raw_smp_processor_id();
5651                 data->cpu_entry.reserved = 0;
5652         }
5653 }
5654
5655 void perf_event_header__init_id(struct perf_event_header *header,
5656                                 struct perf_sample_data *data,
5657                                 struct perf_event *event)
5658 {
5659         if (event->attr.sample_id_all)
5660                 __perf_event_header__init_id(header, data, event);
5661 }
5662
5663 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5664                                            struct perf_sample_data *data)
5665 {
5666         u64 sample_type = data->type;
5667
5668         if (sample_type & PERF_SAMPLE_TID)
5669                 perf_output_put(handle, data->tid_entry);
5670
5671         if (sample_type & PERF_SAMPLE_TIME)
5672                 perf_output_put(handle, data->time);
5673
5674         if (sample_type & PERF_SAMPLE_ID)
5675                 perf_output_put(handle, data->id);
5676
5677         if (sample_type & PERF_SAMPLE_STREAM_ID)
5678                 perf_output_put(handle, data->stream_id);
5679
5680         if (sample_type & PERF_SAMPLE_CPU)
5681                 perf_output_put(handle, data->cpu_entry);
5682
5683         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5684                 perf_output_put(handle, data->id);
5685 }
5686
5687 void perf_event__output_id_sample(struct perf_event *event,
5688                                   struct perf_output_handle *handle,
5689                                   struct perf_sample_data *sample)
5690 {
5691         if (event->attr.sample_id_all)
5692                 __perf_event__output_id_sample(handle, sample);
5693 }
5694
5695 static void perf_output_read_one(struct perf_output_handle *handle,
5696                                  struct perf_event *event,
5697                                  u64 enabled, u64 running)
5698 {
5699         u64 read_format = event->attr.read_format;
5700         u64 values[4];
5701         int n = 0;
5702
5703         values[n++] = perf_event_count(event);
5704         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5705                 values[n++] = enabled +
5706                         atomic64_read(&event->child_total_time_enabled);
5707         }
5708         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5709                 values[n++] = running +
5710                         atomic64_read(&event->child_total_time_running);
5711         }
5712         if (read_format & PERF_FORMAT_ID)
5713                 values[n++] = primary_event_id(event);
5714
5715         __output_copy(handle, values, n * sizeof(u64));
5716 }
5717
5718 static void perf_output_read_group(struct perf_output_handle *handle,
5719                             struct perf_event *event,
5720                             u64 enabled, u64 running)
5721 {
5722         struct perf_event *leader = event->group_leader, *sub;
5723         u64 read_format = event->attr.read_format;
5724         u64 values[5];
5725         int n = 0;
5726
5727         values[n++] = 1 + leader->nr_siblings;
5728
5729         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5730                 values[n++] = enabled;
5731
5732         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5733                 values[n++] = running;
5734
5735         if (leader != event)
5736                 leader->pmu->read(leader);
5737
5738         values[n++] = perf_event_count(leader);
5739         if (read_format & PERF_FORMAT_ID)
5740                 values[n++] = primary_event_id(leader);
5741
5742         __output_copy(handle, values, n * sizeof(u64));
5743
5744         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5745                 n = 0;
5746
5747                 if ((sub != event) &&
5748                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5749                         sub->pmu->read(sub);
5750
5751                 values[n++] = perf_event_count(sub);
5752                 if (read_format & PERF_FORMAT_ID)
5753                         values[n++] = primary_event_id(sub);
5754
5755                 __output_copy(handle, values, n * sizeof(u64));
5756         }
5757 }
5758
5759 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5760                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5761
5762 /*
5763  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5764  *
5765  * The problem is that its both hard and excessively expensive to iterate the
5766  * child list, not to mention that its impossible to IPI the children running
5767  * on another CPU, from interrupt/NMI context.
5768  */
5769 static void perf_output_read(struct perf_output_handle *handle,
5770                              struct perf_event *event)
5771 {
5772         u64 enabled = 0, running = 0, now;
5773         u64 read_format = event->attr.read_format;
5774
5775         /*
5776          * compute total_time_enabled, total_time_running
5777          * based on snapshot values taken when the event
5778          * was last scheduled in.
5779          *
5780          * we cannot simply called update_context_time()
5781          * because of locking issue as we are called in
5782          * NMI context
5783          */
5784         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5785                 calc_timer_values(event, &now, &enabled, &running);
5786
5787         if (event->attr.read_format & PERF_FORMAT_GROUP)
5788                 perf_output_read_group(handle, event, enabled, running);
5789         else
5790                 perf_output_read_one(handle, event, enabled, running);
5791 }
5792
5793 void perf_output_sample(struct perf_output_handle *handle,
5794                         struct perf_event_header *header,
5795                         struct perf_sample_data *data,
5796                         struct perf_event *event)
5797 {
5798         u64 sample_type = data->type;
5799
5800         perf_output_put(handle, *header);
5801
5802         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5803                 perf_output_put(handle, data->id);
5804
5805         if (sample_type & PERF_SAMPLE_IP)
5806                 perf_output_put(handle, data->ip);
5807
5808         if (sample_type & PERF_SAMPLE_TID)
5809                 perf_output_put(handle, data->tid_entry);
5810
5811         if (sample_type & PERF_SAMPLE_TIME)
5812                 perf_output_put(handle, data->time);
5813
5814         if (sample_type & PERF_SAMPLE_ADDR)
5815                 perf_output_put(handle, data->addr);
5816
5817         if (sample_type & PERF_SAMPLE_ID)
5818                 perf_output_put(handle, data->id);
5819
5820         if (sample_type & PERF_SAMPLE_STREAM_ID)
5821                 perf_output_put(handle, data->stream_id);
5822
5823         if (sample_type & PERF_SAMPLE_CPU)
5824                 perf_output_put(handle, data->cpu_entry);
5825
5826         if (sample_type & PERF_SAMPLE_PERIOD)
5827                 perf_output_put(handle, data->period);
5828
5829         if (sample_type & PERF_SAMPLE_READ)
5830                 perf_output_read(handle, event);
5831
5832         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5833                 int size = 1;
5834
5835                 size += data->callchain->nr;
5836                 size *= sizeof(u64);
5837                 __output_copy(handle, data->callchain, size);
5838         }
5839
5840         if (sample_type & PERF_SAMPLE_RAW) {
5841                 struct perf_raw_record *raw = data->raw;
5842
5843                 if (raw) {
5844                         struct perf_raw_frag *frag = &raw->frag;
5845
5846                         perf_output_put(handle, raw->size);
5847                         do {
5848                                 if (frag->copy) {
5849                                         __output_custom(handle, frag->copy,
5850                                                         frag->data, frag->size);
5851                                 } else {
5852                                         __output_copy(handle, frag->data,
5853                                                       frag->size);
5854                                 }
5855                                 if (perf_raw_frag_last(frag))
5856                                         break;
5857                                 frag = frag->next;
5858                         } while (1);
5859                         if (frag->pad)
5860                                 __output_skip(handle, NULL, frag->pad);
5861                 } else {
5862                         struct {
5863                                 u32     size;
5864                                 u32     data;
5865                         } raw = {
5866                                 .size = sizeof(u32),
5867                                 .data = 0,
5868                         };
5869                         perf_output_put(handle, raw);
5870                 }
5871         }
5872
5873         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5874                 if (data->br_stack) {
5875                         size_t size;
5876
5877                         size = data->br_stack->nr
5878                              * sizeof(struct perf_branch_entry);
5879
5880                         perf_output_put(handle, data->br_stack->nr);
5881                         perf_output_copy(handle, data->br_stack->entries, size);
5882                 } else {
5883                         /*
5884                          * we always store at least the value of nr
5885                          */
5886                         u64 nr = 0;
5887                         perf_output_put(handle, nr);
5888                 }
5889         }
5890
5891         if (sample_type & PERF_SAMPLE_REGS_USER) {
5892                 u64 abi = data->regs_user.abi;
5893
5894                 /*
5895                  * If there are no regs to dump, notice it through
5896                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5897                  */
5898                 perf_output_put(handle, abi);
5899
5900                 if (abi) {
5901                         u64 mask = event->attr.sample_regs_user;
5902                         perf_output_sample_regs(handle,
5903                                                 data->regs_user.regs,
5904                                                 mask);
5905                 }
5906         }
5907
5908         if (sample_type & PERF_SAMPLE_STACK_USER) {
5909                 perf_output_sample_ustack(handle,
5910                                           data->stack_user_size,
5911                                           data->regs_user.regs);
5912         }
5913
5914         if (sample_type & PERF_SAMPLE_WEIGHT)
5915                 perf_output_put(handle, data->weight);
5916
5917         if (sample_type & PERF_SAMPLE_DATA_SRC)
5918                 perf_output_put(handle, data->data_src.val);
5919
5920         if (sample_type & PERF_SAMPLE_TRANSACTION)
5921                 perf_output_put(handle, data->txn);
5922
5923         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5924                 u64 abi = data->regs_intr.abi;
5925                 /*
5926                  * If there are no regs to dump, notice it through
5927                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5928                  */
5929                 perf_output_put(handle, abi);
5930
5931                 if (abi) {
5932                         u64 mask = event->attr.sample_regs_intr;
5933
5934                         perf_output_sample_regs(handle,
5935                                                 data->regs_intr.regs,
5936                                                 mask);
5937                 }
5938         }
5939
5940         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5941                 perf_output_put(handle, data->phys_addr);
5942
5943         if (!event->attr.watermark) {
5944                 int wakeup_events = event->attr.wakeup_events;
5945
5946                 if (wakeup_events) {
5947                         struct ring_buffer *rb = handle->rb;
5948                         int events = local_inc_return(&rb->events);
5949
5950                         if (events >= wakeup_events) {
5951                                 local_sub(wakeup_events, &rb->events);
5952                                 local_inc(&rb->wakeup);
5953                         }
5954                 }
5955         }
5956 }
5957
5958 static u64 perf_virt_to_phys(u64 virt)
5959 {
5960         u64 phys_addr = 0;
5961         struct page *p = NULL;
5962
5963         if (!virt)
5964                 return 0;
5965
5966         if (virt >= TASK_SIZE) {
5967                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
5968                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
5969                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
5970                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
5971         } else {
5972                 /*
5973                  * Walking the pages tables for user address.
5974                  * Interrupts are disabled, so it prevents any tear down
5975                  * of the page tables.
5976                  * Try IRQ-safe __get_user_pages_fast first.
5977                  * If failed, leave phys_addr as 0.
5978                  */
5979                 if ((current->mm != NULL) &&
5980                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
5981                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
5982
5983                 if (p)
5984                         put_page(p);
5985         }
5986
5987         return phys_addr;
5988 }
5989
5990 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
5991
5992 static struct perf_callchain_entry *
5993 perf_callchain(struct perf_event *event, struct pt_regs *regs)
5994 {
5995         bool kernel = !event->attr.exclude_callchain_kernel;
5996         bool user   = !event->attr.exclude_callchain_user;
5997         /* Disallow cross-task user callchains. */
5998         bool crosstask = event->ctx->task && event->ctx->task != current;
5999         const u32 max_stack = event->attr.sample_max_stack;
6000         struct perf_callchain_entry *callchain;
6001
6002         if (!kernel && !user)
6003                 return &__empty_callchain;
6004
6005         callchain = get_perf_callchain(regs, 0, kernel, user,
6006                                        max_stack, crosstask, true);
6007         return callchain ?: &__empty_callchain;
6008 }
6009
6010 void perf_prepare_sample(struct perf_event_header *header,
6011                          struct perf_sample_data *data,
6012                          struct perf_event *event,
6013                          struct pt_regs *regs)
6014 {
6015         u64 sample_type = event->attr.sample_type;
6016
6017         header->type = PERF_RECORD_SAMPLE;
6018         header->size = sizeof(*header) + event->header_size;
6019
6020         header->misc = 0;
6021         header->misc |= perf_misc_flags(regs);
6022
6023         __perf_event_header__init_id(header, data, event);
6024
6025         if (sample_type & PERF_SAMPLE_IP)
6026                 data->ip = perf_instruction_pointer(regs);
6027
6028         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6029                 int size = 1;
6030
6031                 data->callchain = perf_callchain(event, regs);
6032                 size += data->callchain->nr;
6033
6034                 header->size += size * sizeof(u64);
6035         }
6036
6037         if (sample_type & PERF_SAMPLE_RAW) {
6038                 struct perf_raw_record *raw = data->raw;
6039                 int size;
6040
6041                 if (raw) {
6042                         struct perf_raw_frag *frag = &raw->frag;
6043                         u32 sum = 0;
6044
6045                         do {
6046                                 sum += frag->size;
6047                                 if (perf_raw_frag_last(frag))
6048                                         break;
6049                                 frag = frag->next;
6050                         } while (1);
6051
6052                         size = round_up(sum + sizeof(u32), sizeof(u64));
6053                         raw->size = size - sizeof(u32);
6054                         frag->pad = raw->size - sum;
6055                 } else {
6056                         size = sizeof(u64);
6057                 }
6058
6059                 header->size += size;
6060         }
6061
6062         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6063                 int size = sizeof(u64); /* nr */
6064                 if (data->br_stack) {
6065                         size += data->br_stack->nr
6066                               * sizeof(struct perf_branch_entry);
6067                 }
6068                 header->size += size;
6069         }
6070
6071         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6072                 perf_sample_regs_user(&data->regs_user, regs,
6073                                       &data->regs_user_copy);
6074
6075         if (sample_type & PERF_SAMPLE_REGS_USER) {
6076                 /* regs dump ABI info */
6077                 int size = sizeof(u64);
6078
6079                 if (data->regs_user.regs) {
6080                         u64 mask = event->attr.sample_regs_user;
6081                         size += hweight64(mask) * sizeof(u64);
6082                 }
6083
6084                 header->size += size;
6085         }
6086
6087         if (sample_type & PERF_SAMPLE_STACK_USER) {
6088                 /*
6089                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6090                  * processed as the last one or have additional check added
6091                  * in case new sample type is added, because we could eat
6092                  * up the rest of the sample size.
6093                  */
6094                 u16 stack_size = event->attr.sample_stack_user;
6095                 u16 size = sizeof(u64);
6096
6097                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6098                                                      data->regs_user.regs);
6099
6100                 /*
6101                  * If there is something to dump, add space for the dump
6102                  * itself and for the field that tells the dynamic size,
6103                  * which is how many have been actually dumped.
6104                  */
6105                 if (stack_size)
6106                         size += sizeof(u64) + stack_size;
6107
6108                 data->stack_user_size = stack_size;
6109                 header->size += size;
6110         }
6111
6112         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6113                 /* regs dump ABI info */
6114                 int size = sizeof(u64);
6115
6116                 perf_sample_regs_intr(&data->regs_intr, regs);
6117
6118                 if (data->regs_intr.regs) {
6119                         u64 mask = event->attr.sample_regs_intr;
6120
6121                         size += hweight64(mask) * sizeof(u64);
6122                 }
6123
6124                 header->size += size;
6125         }
6126
6127         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6128                 data->phys_addr = perf_virt_to_phys(data->addr);
6129 }
6130
6131 static void __always_inline
6132 __perf_event_output(struct perf_event *event,
6133                     struct perf_sample_data *data,
6134                     struct pt_regs *regs,
6135                     int (*output_begin)(struct perf_output_handle *,
6136                                         struct perf_event *,
6137                                         unsigned int))
6138 {
6139         struct perf_output_handle handle;
6140         struct perf_event_header header;
6141
6142         /* protect the callchain buffers */
6143         rcu_read_lock();
6144
6145         perf_prepare_sample(&header, data, event, regs);
6146
6147         if (output_begin(&handle, event, header.size))
6148                 goto exit;
6149
6150         perf_output_sample(&handle, &header, data, event);
6151
6152         perf_output_end(&handle);
6153
6154 exit:
6155         rcu_read_unlock();
6156 }
6157
6158 void
6159 perf_event_output_forward(struct perf_event *event,
6160                          struct perf_sample_data *data,
6161                          struct pt_regs *regs)
6162 {
6163         __perf_event_output(event, data, regs, perf_output_begin_forward);
6164 }
6165
6166 void
6167 perf_event_output_backward(struct perf_event *event,
6168                            struct perf_sample_data *data,
6169                            struct pt_regs *regs)
6170 {
6171         __perf_event_output(event, data, regs, perf_output_begin_backward);
6172 }
6173
6174 void
6175 perf_event_output(struct perf_event *event,
6176                   struct perf_sample_data *data,
6177                   struct pt_regs *regs)
6178 {
6179         __perf_event_output(event, data, regs, perf_output_begin);
6180 }
6181
6182 /*
6183  * read event_id
6184  */
6185
6186 struct perf_read_event {
6187         struct perf_event_header        header;
6188
6189         u32                             pid;
6190         u32                             tid;
6191 };
6192
6193 static void
6194 perf_event_read_event(struct perf_event *event,
6195                         struct task_struct *task)
6196 {
6197         struct perf_output_handle handle;
6198         struct perf_sample_data sample;
6199         struct perf_read_event read_event = {
6200                 .header = {
6201                         .type = PERF_RECORD_READ,
6202                         .misc = 0,
6203                         .size = sizeof(read_event) + event->read_size,
6204                 },
6205                 .pid = perf_event_pid(event, task),
6206                 .tid = perf_event_tid(event, task),
6207         };
6208         int ret;
6209
6210         perf_event_header__init_id(&read_event.header, &sample, event);
6211         ret = perf_output_begin(&handle, event, read_event.header.size);
6212         if (ret)
6213                 return;
6214
6215         perf_output_put(&handle, read_event);
6216         perf_output_read(&handle, event);
6217         perf_event__output_id_sample(event, &handle, &sample);
6218
6219         perf_output_end(&handle);
6220 }
6221
6222 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6223
6224 static void
6225 perf_iterate_ctx(struct perf_event_context *ctx,
6226                    perf_iterate_f output,
6227                    void *data, bool all)
6228 {
6229         struct perf_event *event;
6230
6231         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6232                 if (!all) {
6233                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6234                                 continue;
6235                         if (!event_filter_match(event))
6236                                 continue;
6237                 }
6238
6239                 output(event, data);
6240         }
6241 }
6242
6243 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6244 {
6245         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6246         struct perf_event *event;
6247
6248         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6249                 /*
6250                  * Skip events that are not fully formed yet; ensure that
6251                  * if we observe event->ctx, both event and ctx will be
6252                  * complete enough. See perf_install_in_context().
6253                  */
6254                 if (!smp_load_acquire(&event->ctx))
6255                         continue;
6256
6257                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6258                         continue;
6259                 if (!event_filter_match(event))
6260                         continue;
6261                 output(event, data);
6262         }
6263 }
6264
6265 /*
6266  * Iterate all events that need to receive side-band events.
6267  *
6268  * For new callers; ensure that account_pmu_sb_event() includes
6269  * your event, otherwise it might not get delivered.
6270  */
6271 static void
6272 perf_iterate_sb(perf_iterate_f output, void *data,
6273                struct perf_event_context *task_ctx)
6274 {
6275         struct perf_event_context *ctx;
6276         int ctxn;
6277
6278         rcu_read_lock();
6279         preempt_disable();
6280
6281         /*
6282          * If we have task_ctx != NULL we only notify the task context itself.
6283          * The task_ctx is set only for EXIT events before releasing task
6284          * context.
6285          */
6286         if (task_ctx) {
6287                 perf_iterate_ctx(task_ctx, output, data, false);
6288                 goto done;
6289         }
6290
6291         perf_iterate_sb_cpu(output, data);
6292
6293         for_each_task_context_nr(ctxn) {
6294                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6295                 if (ctx)
6296                         perf_iterate_ctx(ctx, output, data, false);
6297         }
6298 done:
6299         preempt_enable();
6300         rcu_read_unlock();
6301 }
6302
6303 /*
6304  * Clear all file-based filters at exec, they'll have to be
6305  * re-instated when/if these objects are mmapped again.
6306  */
6307 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6308 {
6309         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6310         struct perf_addr_filter *filter;
6311         unsigned int restart = 0, count = 0;
6312         unsigned long flags;
6313
6314         if (!has_addr_filter(event))
6315                 return;
6316
6317         raw_spin_lock_irqsave(&ifh->lock, flags);
6318         list_for_each_entry(filter, &ifh->list, entry) {
6319                 if (filter->inode) {
6320                         event->addr_filters_offs[count] = 0;
6321                         restart++;
6322                 }
6323
6324                 count++;
6325         }
6326
6327         if (restart)
6328                 event->addr_filters_gen++;
6329         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6330
6331         if (restart)
6332                 perf_event_stop(event, 1);
6333 }
6334
6335 void perf_event_exec(void)
6336 {
6337         struct perf_event_context *ctx;
6338         int ctxn;
6339
6340         rcu_read_lock();
6341         for_each_task_context_nr(ctxn) {
6342                 ctx = current->perf_event_ctxp[ctxn];
6343                 if (!ctx)
6344                         continue;
6345
6346                 perf_event_enable_on_exec(ctxn);
6347
6348                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6349                                    true);
6350         }
6351         rcu_read_unlock();
6352 }
6353
6354 struct remote_output {
6355         struct ring_buffer      *rb;
6356         int                     err;
6357 };
6358
6359 static void __perf_event_output_stop(struct perf_event *event, void *data)
6360 {
6361         struct perf_event *parent = event->parent;
6362         struct remote_output *ro = data;
6363         struct ring_buffer *rb = ro->rb;
6364         struct stop_event_data sd = {
6365                 .event  = event,
6366         };
6367
6368         if (!has_aux(event))
6369                 return;
6370
6371         if (!parent)
6372                 parent = event;
6373
6374         /*
6375          * In case of inheritance, it will be the parent that links to the
6376          * ring-buffer, but it will be the child that's actually using it.
6377          *
6378          * We are using event::rb to determine if the event should be stopped,
6379          * however this may race with ring_buffer_attach() (through set_output),
6380          * which will make us skip the event that actually needs to be stopped.
6381          * So ring_buffer_attach() has to stop an aux event before re-assigning
6382          * its rb pointer.
6383          */
6384         if (rcu_dereference(parent->rb) == rb)
6385                 ro->err = __perf_event_stop(&sd);
6386 }
6387
6388 static int __perf_pmu_output_stop(void *info)
6389 {
6390         struct perf_event *event = info;
6391         struct pmu *pmu = event->pmu;
6392         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6393         struct remote_output ro = {
6394                 .rb     = event->rb,
6395         };
6396
6397         rcu_read_lock();
6398         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6399         if (cpuctx->task_ctx)
6400                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6401                                    &ro, false);
6402         rcu_read_unlock();
6403
6404         return ro.err;
6405 }
6406
6407 static void perf_pmu_output_stop(struct perf_event *event)
6408 {
6409         struct perf_event *iter;
6410         int err, cpu;
6411
6412 restart:
6413         rcu_read_lock();
6414         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6415                 /*
6416                  * For per-CPU events, we need to make sure that neither they
6417                  * nor their children are running; for cpu==-1 events it's
6418                  * sufficient to stop the event itself if it's active, since
6419                  * it can't have children.
6420                  */
6421                 cpu = iter->cpu;
6422                 if (cpu == -1)
6423                         cpu = READ_ONCE(iter->oncpu);
6424
6425                 if (cpu == -1)
6426                         continue;
6427
6428                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6429                 if (err == -EAGAIN) {
6430                         rcu_read_unlock();
6431                         goto restart;
6432                 }
6433         }
6434         rcu_read_unlock();
6435 }
6436
6437 /*
6438  * task tracking -- fork/exit
6439  *
6440  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6441  */
6442
6443 struct perf_task_event {
6444         struct task_struct              *task;
6445         struct perf_event_context       *task_ctx;
6446
6447         struct {
6448                 struct perf_event_header        header;
6449
6450                 u32                             pid;
6451                 u32                             ppid;
6452                 u32                             tid;
6453                 u32                             ptid;
6454                 u64                             time;
6455         } event_id;
6456 };
6457
6458 static int perf_event_task_match(struct perf_event *event)
6459 {
6460         return event->attr.comm  || event->attr.mmap ||
6461                event->attr.mmap2 || event->attr.mmap_data ||
6462                event->attr.task;
6463 }
6464
6465 static void perf_event_task_output(struct perf_event *event,
6466                                    void *data)
6467 {
6468         struct perf_task_event *task_event = data;
6469         struct perf_output_handle handle;
6470         struct perf_sample_data sample;
6471         struct task_struct *task = task_event->task;
6472         int ret, size = task_event->event_id.header.size;
6473
6474         if (!perf_event_task_match(event))
6475                 return;
6476
6477         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6478
6479         ret = perf_output_begin(&handle, event,
6480                                 task_event->event_id.header.size);
6481         if (ret)
6482                 goto out;
6483
6484         task_event->event_id.pid = perf_event_pid(event, task);
6485         task_event->event_id.ppid = perf_event_pid(event, current);
6486
6487         task_event->event_id.tid = perf_event_tid(event, task);
6488         task_event->event_id.ptid = perf_event_tid(event, current);
6489
6490         task_event->event_id.time = perf_event_clock(event);
6491
6492         perf_output_put(&handle, task_event->event_id);
6493
6494         perf_event__output_id_sample(event, &handle, &sample);
6495
6496         perf_output_end(&handle);
6497 out:
6498         task_event->event_id.header.size = size;
6499 }
6500
6501 static void perf_event_task(struct task_struct *task,
6502                               struct perf_event_context *task_ctx,
6503                               int new)
6504 {
6505         struct perf_task_event task_event;
6506
6507         if (!atomic_read(&nr_comm_events) &&
6508             !atomic_read(&nr_mmap_events) &&
6509             !atomic_read(&nr_task_events))
6510                 return;
6511
6512         task_event = (struct perf_task_event){
6513                 .task     = task,
6514                 .task_ctx = task_ctx,
6515                 .event_id    = {
6516                         .header = {
6517                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6518                                 .misc = 0,
6519                                 .size = sizeof(task_event.event_id),
6520                         },
6521                         /* .pid  */
6522                         /* .ppid */
6523                         /* .tid  */
6524                         /* .ptid */
6525                         /* .time */
6526                 },
6527         };
6528
6529         perf_iterate_sb(perf_event_task_output,
6530                        &task_event,
6531                        task_ctx);
6532 }
6533
6534 void perf_event_fork(struct task_struct *task)
6535 {
6536         perf_event_task(task, NULL, 1);
6537         perf_event_namespaces(task);
6538 }
6539
6540 /*
6541  * comm tracking
6542  */
6543
6544 struct perf_comm_event {
6545         struct task_struct      *task;
6546         char                    *comm;
6547         int                     comm_size;
6548
6549         struct {
6550                 struct perf_event_header        header;
6551
6552                 u32                             pid;
6553                 u32                             tid;
6554         } event_id;
6555 };
6556
6557 static int perf_event_comm_match(struct perf_event *event)
6558 {
6559         return event->attr.comm;
6560 }
6561
6562 static void perf_event_comm_output(struct perf_event *event,
6563                                    void *data)
6564 {
6565         struct perf_comm_event *comm_event = data;
6566         struct perf_output_handle handle;
6567         struct perf_sample_data sample;
6568         int size = comm_event->event_id.header.size;
6569         int ret;
6570
6571         if (!perf_event_comm_match(event))
6572                 return;
6573
6574         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6575         ret = perf_output_begin(&handle, event,
6576                                 comm_event->event_id.header.size);
6577
6578         if (ret)
6579                 goto out;
6580
6581         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6582         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6583
6584         perf_output_put(&handle, comm_event->event_id);
6585         __output_copy(&handle, comm_event->comm,
6586                                    comm_event->comm_size);
6587
6588         perf_event__output_id_sample(event, &handle, &sample);
6589
6590         perf_output_end(&handle);
6591 out:
6592         comm_event->event_id.header.size = size;
6593 }
6594
6595 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6596 {
6597         char comm[TASK_COMM_LEN];
6598         unsigned int size;
6599
6600         memset(comm, 0, sizeof(comm));
6601         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6602         size = ALIGN(strlen(comm)+1, sizeof(u64));
6603
6604         comm_event->comm = comm;
6605         comm_event->comm_size = size;
6606
6607         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6608
6609         perf_iterate_sb(perf_event_comm_output,
6610                        comm_event,
6611                        NULL);
6612 }
6613
6614 void perf_event_comm(struct task_struct *task, bool exec)
6615 {
6616         struct perf_comm_event comm_event;
6617
6618         if (!atomic_read(&nr_comm_events))
6619                 return;
6620
6621         comm_event = (struct perf_comm_event){
6622                 .task   = task,
6623                 /* .comm      */
6624                 /* .comm_size */
6625                 .event_id  = {
6626                         .header = {
6627                                 .type = PERF_RECORD_COMM,
6628                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6629                                 /* .size */
6630                         },
6631                         /* .pid */
6632                         /* .tid */
6633                 },
6634         };
6635
6636         perf_event_comm_event(&comm_event);
6637 }
6638
6639 /*
6640  * namespaces tracking
6641  */
6642
6643 struct perf_namespaces_event {
6644         struct task_struct              *task;
6645
6646         struct {
6647                 struct perf_event_header        header;
6648
6649                 u32                             pid;
6650                 u32                             tid;
6651                 u64                             nr_namespaces;
6652                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
6653         } event_id;
6654 };
6655
6656 static int perf_event_namespaces_match(struct perf_event *event)
6657 {
6658         return event->attr.namespaces;
6659 }
6660
6661 static void perf_event_namespaces_output(struct perf_event *event,
6662                                          void *data)
6663 {
6664         struct perf_namespaces_event *namespaces_event = data;
6665         struct perf_output_handle handle;
6666         struct perf_sample_data sample;
6667         u16 header_size = namespaces_event->event_id.header.size;
6668         int ret;
6669
6670         if (!perf_event_namespaces_match(event))
6671                 return;
6672
6673         perf_event_header__init_id(&namespaces_event->event_id.header,
6674                                    &sample, event);
6675         ret = perf_output_begin(&handle, event,
6676                                 namespaces_event->event_id.header.size);
6677         if (ret)
6678                 goto out;
6679
6680         namespaces_event->event_id.pid = perf_event_pid(event,
6681                                                         namespaces_event->task);
6682         namespaces_event->event_id.tid = perf_event_tid(event,
6683                                                         namespaces_event->task);
6684
6685         perf_output_put(&handle, namespaces_event->event_id);
6686
6687         perf_event__output_id_sample(event, &handle, &sample);
6688
6689         perf_output_end(&handle);
6690 out:
6691         namespaces_event->event_id.header.size = header_size;
6692 }
6693
6694 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6695                                    struct task_struct *task,
6696                                    const struct proc_ns_operations *ns_ops)
6697 {
6698         struct path ns_path;
6699         struct inode *ns_inode;
6700         void *error;
6701
6702         error = ns_get_path(&ns_path, task, ns_ops);
6703         if (!error) {
6704                 ns_inode = ns_path.dentry->d_inode;
6705                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6706                 ns_link_info->ino = ns_inode->i_ino;
6707                 path_put(&ns_path);
6708         }
6709 }
6710
6711 void perf_event_namespaces(struct task_struct *task)
6712 {
6713         struct perf_namespaces_event namespaces_event;
6714         struct perf_ns_link_info *ns_link_info;
6715
6716         if (!atomic_read(&nr_namespaces_events))
6717                 return;
6718
6719         namespaces_event = (struct perf_namespaces_event){
6720                 .task   = task,
6721                 .event_id  = {
6722                         .header = {
6723                                 .type = PERF_RECORD_NAMESPACES,
6724                                 .misc = 0,
6725                                 .size = sizeof(namespaces_event.event_id),
6726                         },
6727                         /* .pid */
6728                         /* .tid */
6729                         .nr_namespaces = NR_NAMESPACES,
6730                         /* .link_info[NR_NAMESPACES] */
6731                 },
6732         };
6733
6734         ns_link_info = namespaces_event.event_id.link_info;
6735
6736         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6737                                task, &mntns_operations);
6738
6739 #ifdef CONFIG_USER_NS
6740         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6741                                task, &userns_operations);
6742 #endif
6743 #ifdef CONFIG_NET_NS
6744         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6745                                task, &netns_operations);
6746 #endif
6747 #ifdef CONFIG_UTS_NS
6748         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6749                                task, &utsns_operations);
6750 #endif
6751 #ifdef CONFIG_IPC_NS
6752         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6753                                task, &ipcns_operations);
6754 #endif
6755 #ifdef CONFIG_PID_NS
6756         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6757                                task, &pidns_operations);
6758 #endif
6759 #ifdef CONFIG_CGROUPS
6760         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6761                                task, &cgroupns_operations);
6762 #endif
6763
6764         perf_iterate_sb(perf_event_namespaces_output,
6765                         &namespaces_event,
6766                         NULL);
6767 }
6768
6769 /*
6770  * mmap tracking
6771  */
6772
6773 struct perf_mmap_event {
6774         struct vm_area_struct   *vma;
6775
6776         const char              *file_name;
6777         int                     file_size;
6778         int                     maj, min;
6779         u64                     ino;
6780         u64                     ino_generation;
6781         u32                     prot, flags;
6782
6783         struct {
6784                 struct perf_event_header        header;
6785
6786                 u32                             pid;
6787                 u32                             tid;
6788                 u64                             start;
6789                 u64                             len;
6790                 u64                             pgoff;
6791         } event_id;
6792 };
6793
6794 static int perf_event_mmap_match(struct perf_event *event,
6795                                  void *data)
6796 {
6797         struct perf_mmap_event *mmap_event = data;
6798         struct vm_area_struct *vma = mmap_event->vma;
6799         int executable = vma->vm_flags & VM_EXEC;
6800
6801         return (!executable && event->attr.mmap_data) ||
6802                (executable && (event->attr.mmap || event->attr.mmap2));
6803 }
6804
6805 static void perf_event_mmap_output(struct perf_event *event,
6806                                    void *data)
6807 {
6808         struct perf_mmap_event *mmap_event = data;
6809         struct perf_output_handle handle;
6810         struct perf_sample_data sample;
6811         int size = mmap_event->event_id.header.size;
6812         int ret;
6813
6814         if (!perf_event_mmap_match(event, data))
6815                 return;
6816
6817         if (event->attr.mmap2) {
6818                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6819                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6820                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6821                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6822                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6823                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6824                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6825         }
6826
6827         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6828         ret = perf_output_begin(&handle, event,
6829                                 mmap_event->event_id.header.size);
6830         if (ret)
6831                 goto out;
6832
6833         mmap_event->event_id.pid = perf_event_pid(event, current);
6834         mmap_event->event_id.tid = perf_event_tid(event, current);
6835
6836         perf_output_put(&handle, mmap_event->event_id);
6837
6838         if (event->attr.mmap2) {
6839                 perf_output_put(&handle, mmap_event->maj);
6840                 perf_output_put(&handle, mmap_event->min);
6841                 perf_output_put(&handle, mmap_event->ino);
6842                 perf_output_put(&handle, mmap_event->ino_generation);
6843                 perf_output_put(&handle, mmap_event->prot);
6844                 perf_output_put(&handle, mmap_event->flags);
6845         }
6846
6847         __output_copy(&handle, mmap_event->file_name,
6848                                    mmap_event->file_size);
6849
6850         perf_event__output_id_sample(event, &handle, &sample);
6851
6852         perf_output_end(&handle);
6853 out:
6854         mmap_event->event_id.header.size = size;
6855 }
6856
6857 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6858 {
6859         struct vm_area_struct *vma = mmap_event->vma;
6860         struct file *file = vma->vm_file;
6861         int maj = 0, min = 0;
6862         u64 ino = 0, gen = 0;
6863         u32 prot = 0, flags = 0;
6864         unsigned int size;
6865         char tmp[16];
6866         char *buf = NULL;
6867         char *name;
6868
6869         if (vma->vm_flags & VM_READ)
6870                 prot |= PROT_READ;
6871         if (vma->vm_flags & VM_WRITE)
6872                 prot |= PROT_WRITE;
6873         if (vma->vm_flags & VM_EXEC)
6874                 prot |= PROT_EXEC;
6875
6876         if (vma->vm_flags & VM_MAYSHARE)
6877                 flags = MAP_SHARED;
6878         else
6879                 flags = MAP_PRIVATE;
6880
6881         if (vma->vm_flags & VM_DENYWRITE)
6882                 flags |= MAP_DENYWRITE;
6883         if (vma->vm_flags & VM_MAYEXEC)
6884                 flags |= MAP_EXECUTABLE;
6885         if (vma->vm_flags & VM_LOCKED)
6886                 flags |= MAP_LOCKED;
6887         if (vma->vm_flags & VM_HUGETLB)
6888                 flags |= MAP_HUGETLB;
6889
6890         if (file) {
6891                 struct inode *inode;
6892                 dev_t dev;
6893
6894                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6895                 if (!buf) {
6896                         name = "//enomem";
6897                         goto cpy_name;
6898                 }
6899                 /*
6900                  * d_path() works from the end of the rb backwards, so we
6901                  * need to add enough zero bytes after the string to handle
6902                  * the 64bit alignment we do later.
6903                  */
6904                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6905                 if (IS_ERR(name)) {
6906                         name = "//toolong";
6907                         goto cpy_name;
6908                 }
6909                 inode = file_inode(vma->vm_file);
6910                 dev = inode->i_sb->s_dev;
6911                 ino = inode->i_ino;
6912                 gen = inode->i_generation;
6913                 maj = MAJOR(dev);
6914                 min = MINOR(dev);
6915
6916                 goto got_name;
6917         } else {
6918                 if (vma->vm_ops && vma->vm_ops->name) {
6919                         name = (char *) vma->vm_ops->name(vma);
6920                         if (name)
6921                                 goto cpy_name;
6922                 }
6923
6924                 name = (char *)arch_vma_name(vma);
6925                 if (name)
6926                         goto cpy_name;
6927
6928                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6929                                 vma->vm_end >= vma->vm_mm->brk) {
6930                         name = "[heap]";
6931                         goto cpy_name;
6932                 }
6933                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6934                                 vma->vm_end >= vma->vm_mm->start_stack) {
6935                         name = "[stack]";
6936                         goto cpy_name;
6937                 }
6938
6939                 name = "//anon";
6940                 goto cpy_name;
6941         }
6942
6943 cpy_name:
6944         strlcpy(tmp, name, sizeof(tmp));
6945         name = tmp;
6946 got_name:
6947         /*
6948          * Since our buffer works in 8 byte units we need to align our string
6949          * size to a multiple of 8. However, we must guarantee the tail end is
6950          * zero'd out to avoid leaking random bits to userspace.
6951          */
6952         size = strlen(name)+1;
6953         while (!IS_ALIGNED(size, sizeof(u64)))
6954                 name[size++] = '\0';
6955
6956         mmap_event->file_name = name;
6957         mmap_event->file_size = size;
6958         mmap_event->maj = maj;
6959         mmap_event->min = min;
6960         mmap_event->ino = ino;
6961         mmap_event->ino_generation = gen;
6962         mmap_event->prot = prot;
6963         mmap_event->flags = flags;
6964
6965         if (!(vma->vm_flags & VM_EXEC))
6966                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6967
6968         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6969
6970         perf_iterate_sb(perf_event_mmap_output,
6971                        mmap_event,
6972                        NULL);
6973
6974         kfree(buf);
6975 }
6976
6977 /*
6978  * Check whether inode and address range match filter criteria.
6979  */
6980 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6981                                      struct file *file, unsigned long offset,
6982                                      unsigned long size)
6983 {
6984         if (filter->inode != file_inode(file))
6985                 return false;
6986
6987         if (filter->offset > offset + size)
6988                 return false;
6989
6990         if (filter->offset + filter->size < offset)
6991                 return false;
6992
6993         return true;
6994 }
6995
6996 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6997 {
6998         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6999         struct vm_area_struct *vma = data;
7000         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7001         struct file *file = vma->vm_file;
7002         struct perf_addr_filter *filter;
7003         unsigned int restart = 0, count = 0;
7004
7005         if (!has_addr_filter(event))
7006                 return;
7007
7008         if (!file)
7009                 return;
7010
7011         raw_spin_lock_irqsave(&ifh->lock, flags);
7012         list_for_each_entry(filter, &ifh->list, entry) {
7013                 if (perf_addr_filter_match(filter, file, off,
7014                                              vma->vm_end - vma->vm_start)) {
7015                         event->addr_filters_offs[count] = vma->vm_start;
7016                         restart++;
7017                 }
7018
7019                 count++;
7020         }
7021
7022         if (restart)
7023                 event->addr_filters_gen++;
7024         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7025
7026         if (restart)
7027                 perf_event_stop(event, 1);
7028 }
7029
7030 /*
7031  * Adjust all task's events' filters to the new vma
7032  */
7033 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7034 {
7035         struct perf_event_context *ctx;
7036         int ctxn;
7037
7038         /*
7039          * Data tracing isn't supported yet and as such there is no need
7040          * to keep track of anything that isn't related to executable code:
7041          */
7042         if (!(vma->vm_flags & VM_EXEC))
7043                 return;
7044
7045         rcu_read_lock();
7046         for_each_task_context_nr(ctxn) {
7047                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7048                 if (!ctx)
7049                         continue;
7050
7051                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7052         }
7053         rcu_read_unlock();
7054 }
7055
7056 void perf_event_mmap(struct vm_area_struct *vma)
7057 {
7058         struct perf_mmap_event mmap_event;
7059
7060         if (!atomic_read(&nr_mmap_events))
7061                 return;
7062
7063         mmap_event = (struct perf_mmap_event){
7064                 .vma    = vma,
7065                 /* .file_name */
7066                 /* .file_size */
7067                 .event_id  = {
7068                         .header = {
7069                                 .type = PERF_RECORD_MMAP,
7070                                 .misc = PERF_RECORD_MISC_USER,
7071                                 /* .size */
7072                         },
7073                         /* .pid */
7074                         /* .tid */
7075                         .start  = vma->vm_start,
7076                         .len    = vma->vm_end - vma->vm_start,
7077                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7078                 },
7079                 /* .maj (attr_mmap2 only) */
7080                 /* .min (attr_mmap2 only) */
7081                 /* .ino (attr_mmap2 only) */
7082                 /* .ino_generation (attr_mmap2 only) */
7083                 /* .prot (attr_mmap2 only) */
7084                 /* .flags (attr_mmap2 only) */
7085         };
7086
7087         perf_addr_filters_adjust(vma);
7088         perf_event_mmap_event(&mmap_event);
7089 }
7090
7091 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7092                           unsigned long size, u64 flags)
7093 {
7094         struct perf_output_handle handle;
7095         struct perf_sample_data sample;
7096         struct perf_aux_event {
7097                 struct perf_event_header        header;
7098                 u64                             offset;
7099                 u64                             size;
7100                 u64                             flags;
7101         } rec = {
7102                 .header = {
7103                         .type = PERF_RECORD_AUX,
7104                         .misc = 0,
7105                         .size = sizeof(rec),
7106                 },
7107                 .offset         = head,
7108                 .size           = size,
7109                 .flags          = flags,
7110         };
7111         int ret;
7112
7113         perf_event_header__init_id(&rec.header, &sample, event);
7114         ret = perf_output_begin(&handle, event, rec.header.size);
7115
7116         if (ret)
7117                 return;
7118
7119         perf_output_put(&handle, rec);
7120         perf_event__output_id_sample(event, &handle, &sample);
7121
7122         perf_output_end(&handle);
7123 }
7124
7125 /*
7126  * Lost/dropped samples logging
7127  */
7128 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7129 {
7130         struct perf_output_handle handle;
7131         struct perf_sample_data sample;
7132         int ret;
7133
7134         struct {
7135                 struct perf_event_header        header;
7136                 u64                             lost;
7137         } lost_samples_event = {
7138                 .header = {
7139                         .type = PERF_RECORD_LOST_SAMPLES,
7140                         .misc = 0,
7141                         .size = sizeof(lost_samples_event),
7142                 },
7143                 .lost           = lost,
7144         };
7145
7146         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7147
7148         ret = perf_output_begin(&handle, event,
7149                                 lost_samples_event.header.size);
7150         if (ret)
7151                 return;
7152
7153         perf_output_put(&handle, lost_samples_event);
7154         perf_event__output_id_sample(event, &handle, &sample);
7155         perf_output_end(&handle);
7156 }
7157
7158 /*
7159  * context_switch tracking
7160  */
7161
7162 struct perf_switch_event {
7163         struct task_struct      *task;
7164         struct task_struct      *next_prev;
7165
7166         struct {
7167                 struct perf_event_header        header;
7168                 u32                             next_prev_pid;
7169                 u32                             next_prev_tid;
7170         } event_id;
7171 };
7172
7173 static int perf_event_switch_match(struct perf_event *event)
7174 {
7175         return event->attr.context_switch;
7176 }
7177
7178 static void perf_event_switch_output(struct perf_event *event, void *data)
7179 {
7180         struct perf_switch_event *se = data;
7181         struct perf_output_handle handle;
7182         struct perf_sample_data sample;
7183         int ret;
7184
7185         if (!perf_event_switch_match(event))
7186                 return;
7187
7188         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7189         if (event->ctx->task) {
7190                 se->event_id.header.type = PERF_RECORD_SWITCH;
7191                 se->event_id.header.size = sizeof(se->event_id.header);
7192         } else {
7193                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7194                 se->event_id.header.size = sizeof(se->event_id);
7195                 se->event_id.next_prev_pid =
7196                                         perf_event_pid(event, se->next_prev);
7197                 se->event_id.next_prev_tid =
7198                                         perf_event_tid(event, se->next_prev);
7199         }
7200
7201         perf_event_header__init_id(&se->event_id.header, &sample, event);
7202
7203         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7204         if (ret)
7205                 return;
7206
7207         if (event->ctx->task)
7208                 perf_output_put(&handle, se->event_id.header);
7209         else
7210                 perf_output_put(&handle, se->event_id);
7211
7212         perf_event__output_id_sample(event, &handle, &sample);
7213
7214         perf_output_end(&handle);
7215 }
7216
7217 static void perf_event_switch(struct task_struct *task,
7218                               struct task_struct *next_prev, bool sched_in)
7219 {
7220         struct perf_switch_event switch_event;
7221
7222         /* N.B. caller checks nr_switch_events != 0 */
7223
7224         switch_event = (struct perf_switch_event){
7225                 .task           = task,
7226                 .next_prev      = next_prev,
7227                 .event_id       = {
7228                         .header = {
7229                                 /* .type */
7230                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7231                                 /* .size */
7232                         },
7233                         /* .next_prev_pid */
7234                         /* .next_prev_tid */
7235                 },
7236         };
7237
7238         perf_iterate_sb(perf_event_switch_output,
7239                        &switch_event,
7240                        NULL);
7241 }
7242
7243 /*
7244  * IRQ throttle logging
7245  */
7246
7247 static void perf_log_throttle(struct perf_event *event, int enable)
7248 {
7249         struct perf_output_handle handle;
7250         struct perf_sample_data sample;
7251         int ret;
7252
7253         struct {
7254                 struct perf_event_header        header;
7255                 u64                             time;
7256                 u64                             id;
7257                 u64                             stream_id;
7258         } throttle_event = {
7259                 .header = {
7260                         .type = PERF_RECORD_THROTTLE,
7261                         .misc = 0,
7262                         .size = sizeof(throttle_event),
7263                 },
7264                 .time           = perf_event_clock(event),
7265                 .id             = primary_event_id(event),
7266                 .stream_id      = event->id,
7267         };
7268
7269         if (enable)
7270                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7271
7272         perf_event_header__init_id(&throttle_event.header, &sample, event);
7273
7274         ret = perf_output_begin(&handle, event,
7275                                 throttle_event.header.size);
7276         if (ret)
7277                 return;
7278
7279         perf_output_put(&handle, throttle_event);
7280         perf_event__output_id_sample(event, &handle, &sample);
7281         perf_output_end(&handle);
7282 }
7283
7284 void perf_event_itrace_started(struct perf_event *event)
7285 {
7286         event->attach_state |= PERF_ATTACH_ITRACE;
7287 }
7288
7289 static void perf_log_itrace_start(struct perf_event *event)
7290 {
7291         struct perf_output_handle handle;
7292         struct perf_sample_data sample;
7293         struct perf_aux_event {
7294                 struct perf_event_header        header;
7295                 u32                             pid;
7296                 u32                             tid;
7297         } rec;
7298         int ret;
7299
7300         if (event->parent)
7301                 event = event->parent;
7302
7303         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7304             event->attach_state & PERF_ATTACH_ITRACE)
7305                 return;
7306
7307         rec.header.type = PERF_RECORD_ITRACE_START;
7308         rec.header.misc = 0;
7309         rec.header.size = sizeof(rec);
7310         rec.pid = perf_event_pid(event, current);
7311         rec.tid = perf_event_tid(event, current);
7312
7313         perf_event_header__init_id(&rec.header, &sample, event);
7314         ret = perf_output_begin(&handle, event, rec.header.size);
7315
7316         if (ret)
7317                 return;
7318
7319         perf_output_put(&handle, rec);
7320         perf_event__output_id_sample(event, &handle, &sample);
7321
7322         perf_output_end(&handle);
7323 }
7324
7325 static int
7326 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7327 {
7328         struct hw_perf_event *hwc = &event->hw;
7329         int ret = 0;
7330         u64 seq;
7331
7332         seq = __this_cpu_read(perf_throttled_seq);
7333         if (seq != hwc->interrupts_seq) {
7334                 hwc->interrupts_seq = seq;
7335                 hwc->interrupts = 1;
7336         } else {
7337                 hwc->interrupts++;
7338                 if (unlikely(throttle
7339                              && hwc->interrupts >= max_samples_per_tick)) {
7340                         __this_cpu_inc(perf_throttled_count);
7341                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7342                         hwc->interrupts = MAX_INTERRUPTS;
7343                         perf_log_throttle(event, 0);
7344                         ret = 1;
7345                 }
7346         }
7347
7348         if (event->attr.freq) {
7349                 u64 now = perf_clock();
7350                 s64 delta = now - hwc->freq_time_stamp;
7351
7352                 hwc->freq_time_stamp = now;
7353
7354                 if (delta > 0 && delta < 2*TICK_NSEC)
7355                         perf_adjust_period(event, delta, hwc->last_period, true);
7356         }
7357
7358         return ret;
7359 }
7360
7361 int perf_event_account_interrupt(struct perf_event *event)
7362 {
7363         return __perf_event_account_interrupt(event, 1);
7364 }
7365
7366 /*
7367  * Generic event overflow handling, sampling.
7368  */
7369
7370 static int __perf_event_overflow(struct perf_event *event,
7371                                    int throttle, struct perf_sample_data *data,
7372                                    struct pt_regs *regs)
7373 {
7374         int events = atomic_read(&event->event_limit);
7375         int ret = 0;
7376
7377         /*
7378          * Non-sampling counters might still use the PMI to fold short
7379          * hardware counters, ignore those.
7380          */
7381         if (unlikely(!is_sampling_event(event)))
7382                 return 0;
7383
7384         ret = __perf_event_account_interrupt(event, throttle);
7385
7386         /*
7387          * XXX event_limit might not quite work as expected on inherited
7388          * events
7389          */
7390
7391         event->pending_kill = POLL_IN;
7392         if (events && atomic_dec_and_test(&event->event_limit)) {
7393                 ret = 1;
7394                 event->pending_kill = POLL_HUP;
7395
7396                 perf_event_disable_inatomic(event);
7397         }
7398
7399         READ_ONCE(event->overflow_handler)(event, data, regs);
7400
7401         if (*perf_event_fasync(event) && event->pending_kill) {
7402                 event->pending_wakeup = 1;
7403                 irq_work_queue(&event->pending);
7404         }
7405
7406         return ret;
7407 }
7408
7409 int perf_event_overflow(struct perf_event *event,
7410                           struct perf_sample_data *data,
7411                           struct pt_regs *regs)
7412 {
7413         return __perf_event_overflow(event, 1, data, regs);
7414 }
7415
7416 /*
7417  * Generic software event infrastructure
7418  */
7419
7420 struct swevent_htable {
7421         struct swevent_hlist            *swevent_hlist;
7422         struct mutex                    hlist_mutex;
7423         int                             hlist_refcount;
7424
7425         /* Recursion avoidance in each contexts */
7426         int                             recursion[PERF_NR_CONTEXTS];
7427 };
7428
7429 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7430
7431 /*
7432  * We directly increment event->count and keep a second value in
7433  * event->hw.period_left to count intervals. This period event
7434  * is kept in the range [-sample_period, 0] so that we can use the
7435  * sign as trigger.
7436  */
7437
7438 u64 perf_swevent_set_period(struct perf_event *event)
7439 {
7440         struct hw_perf_event *hwc = &event->hw;
7441         u64 period = hwc->last_period;
7442         u64 nr, offset;
7443         s64 old, val;
7444
7445         hwc->last_period = hwc->sample_period;
7446
7447 again:
7448         old = val = local64_read(&hwc->period_left);
7449         if (val < 0)
7450                 return 0;
7451
7452         nr = div64_u64(period + val, period);
7453         offset = nr * period;
7454         val -= offset;
7455         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7456                 goto again;
7457
7458         return nr;
7459 }
7460
7461 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7462                                     struct perf_sample_data *data,
7463                                     struct pt_regs *regs)
7464 {
7465         struct hw_perf_event *hwc = &event->hw;
7466         int throttle = 0;
7467
7468         if (!overflow)
7469                 overflow = perf_swevent_set_period(event);
7470
7471         if (hwc->interrupts == MAX_INTERRUPTS)
7472                 return;
7473
7474         for (; overflow; overflow--) {
7475                 if (__perf_event_overflow(event, throttle,
7476                                             data, regs)) {
7477                         /*
7478                          * We inhibit the overflow from happening when
7479                          * hwc->interrupts == MAX_INTERRUPTS.
7480                          */
7481                         break;
7482                 }
7483                 throttle = 1;
7484         }
7485 }
7486
7487 static void perf_swevent_event(struct perf_event *event, u64 nr,
7488                                struct perf_sample_data *data,
7489                                struct pt_regs *regs)
7490 {
7491         struct hw_perf_event *hwc = &event->hw;
7492
7493         local64_add(nr, &event->count);
7494
7495         if (!regs)
7496                 return;
7497
7498         if (!is_sampling_event(event))
7499                 return;
7500
7501         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7502                 data->period = nr;
7503                 return perf_swevent_overflow(event, 1, data, regs);
7504         } else
7505                 data->period = event->hw.last_period;
7506
7507         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7508                 return perf_swevent_overflow(event, 1, data, regs);
7509
7510         if (local64_add_negative(nr, &hwc->period_left))
7511                 return;
7512
7513         perf_swevent_overflow(event, 0, data, regs);
7514 }
7515
7516 static int perf_exclude_event(struct perf_event *event,
7517                               struct pt_regs *regs)
7518 {
7519         if (event->hw.state & PERF_HES_STOPPED)
7520                 return 1;
7521
7522         if (regs) {
7523                 if (event->attr.exclude_user && user_mode(regs))
7524                         return 1;
7525
7526                 if (event->attr.exclude_kernel && !user_mode(regs))
7527                         return 1;
7528         }
7529
7530         return 0;
7531 }
7532
7533 static int perf_swevent_match(struct perf_event *event,
7534                                 enum perf_type_id type,
7535                                 u32 event_id,
7536                                 struct perf_sample_data *data,
7537                                 struct pt_regs *regs)
7538 {
7539         if (event->attr.type != type)
7540                 return 0;
7541
7542         if (event->attr.config != event_id)
7543                 return 0;
7544
7545         if (perf_exclude_event(event, regs))
7546                 return 0;
7547
7548         return 1;
7549 }
7550
7551 static inline u64 swevent_hash(u64 type, u32 event_id)
7552 {
7553         u64 val = event_id | (type << 32);
7554
7555         return hash_64(val, SWEVENT_HLIST_BITS);
7556 }
7557
7558 static inline struct hlist_head *
7559 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7560 {
7561         u64 hash = swevent_hash(type, event_id);
7562
7563         return &hlist->heads[hash];
7564 }
7565
7566 /* For the read side: events when they trigger */
7567 static inline struct hlist_head *
7568 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7569 {
7570         struct swevent_hlist *hlist;
7571
7572         hlist = rcu_dereference(swhash->swevent_hlist);
7573         if (!hlist)
7574                 return NULL;
7575
7576         return __find_swevent_head(hlist, type, event_id);
7577 }
7578
7579 /* For the event head insertion and removal in the hlist */
7580 static inline struct hlist_head *
7581 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7582 {
7583         struct swevent_hlist *hlist;
7584         u32 event_id = event->attr.config;
7585         u64 type = event->attr.type;
7586
7587         /*
7588          * Event scheduling is always serialized against hlist allocation
7589          * and release. Which makes the protected version suitable here.
7590          * The context lock guarantees that.
7591          */
7592         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7593                                           lockdep_is_held(&event->ctx->lock));
7594         if (!hlist)
7595                 return NULL;
7596
7597         return __find_swevent_head(hlist, type, event_id);
7598 }
7599
7600 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7601                                     u64 nr,
7602                                     struct perf_sample_data *data,
7603                                     struct pt_regs *regs)
7604 {
7605         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7606         struct perf_event *event;
7607         struct hlist_head *head;
7608
7609         rcu_read_lock();
7610         head = find_swevent_head_rcu(swhash, type, event_id);
7611         if (!head)
7612                 goto end;
7613
7614         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7615                 if (perf_swevent_match(event, type, event_id, data, regs))
7616                         perf_swevent_event(event, nr, data, regs);
7617         }
7618 end:
7619         rcu_read_unlock();
7620 }
7621
7622 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7623
7624 int perf_swevent_get_recursion_context(void)
7625 {
7626         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7627
7628         return get_recursion_context(swhash->recursion);
7629 }
7630 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7631
7632 void perf_swevent_put_recursion_context(int rctx)
7633 {
7634         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7635
7636         put_recursion_context(swhash->recursion, rctx);
7637 }
7638
7639 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7640 {
7641         struct perf_sample_data data;
7642
7643         if (WARN_ON_ONCE(!regs))
7644                 return;
7645
7646         perf_sample_data_init(&data, addr, 0);
7647         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7648 }
7649
7650 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7651 {
7652         int rctx;
7653
7654         preempt_disable_notrace();
7655         rctx = perf_swevent_get_recursion_context();
7656         if (unlikely(rctx < 0))
7657                 goto fail;
7658
7659         ___perf_sw_event(event_id, nr, regs, addr);
7660
7661         perf_swevent_put_recursion_context(rctx);
7662 fail:
7663         preempt_enable_notrace();
7664 }
7665
7666 static void perf_swevent_read(struct perf_event *event)
7667 {
7668 }
7669
7670 static int perf_swevent_add(struct perf_event *event, int flags)
7671 {
7672         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7673         struct hw_perf_event *hwc = &event->hw;
7674         struct hlist_head *head;
7675
7676         if (is_sampling_event(event)) {
7677                 hwc->last_period = hwc->sample_period;
7678                 perf_swevent_set_period(event);
7679         }
7680
7681         hwc->state = !(flags & PERF_EF_START);
7682
7683         head = find_swevent_head(swhash, event);
7684         if (WARN_ON_ONCE(!head))
7685                 return -EINVAL;
7686
7687         hlist_add_head_rcu(&event->hlist_entry, head);
7688         perf_event_update_userpage(event);
7689
7690         return 0;
7691 }
7692
7693 static void perf_swevent_del(struct perf_event *event, int flags)
7694 {
7695         hlist_del_rcu(&event->hlist_entry);
7696 }
7697
7698 static void perf_swevent_start(struct perf_event *event, int flags)
7699 {
7700         event->hw.state = 0;
7701 }
7702
7703 static void perf_swevent_stop(struct perf_event *event, int flags)
7704 {
7705         event->hw.state = PERF_HES_STOPPED;
7706 }
7707
7708 /* Deref the hlist from the update side */
7709 static inline struct swevent_hlist *
7710 swevent_hlist_deref(struct swevent_htable *swhash)
7711 {
7712         return rcu_dereference_protected(swhash->swevent_hlist,
7713                                          lockdep_is_held(&swhash->hlist_mutex));
7714 }
7715
7716 static void swevent_hlist_release(struct swevent_htable *swhash)
7717 {
7718         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7719
7720         if (!hlist)
7721                 return;
7722
7723         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7724         kfree_rcu(hlist, rcu_head);
7725 }
7726
7727 static void swevent_hlist_put_cpu(int cpu)
7728 {
7729         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7730
7731         mutex_lock(&swhash->hlist_mutex);
7732
7733         if (!--swhash->hlist_refcount)
7734                 swevent_hlist_release(swhash);
7735
7736         mutex_unlock(&swhash->hlist_mutex);
7737 }
7738
7739 static void swevent_hlist_put(void)
7740 {
7741         int cpu;
7742
7743         for_each_possible_cpu(cpu)
7744                 swevent_hlist_put_cpu(cpu);
7745 }
7746
7747 static int swevent_hlist_get_cpu(int cpu)
7748 {
7749         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7750         int err = 0;
7751
7752         mutex_lock(&swhash->hlist_mutex);
7753         if (!swevent_hlist_deref(swhash) &&
7754             cpumask_test_cpu(cpu, perf_online_mask)) {
7755                 struct swevent_hlist *hlist;
7756
7757                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7758                 if (!hlist) {
7759                         err = -ENOMEM;
7760                         goto exit;
7761                 }
7762                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7763         }
7764         swhash->hlist_refcount++;
7765 exit:
7766         mutex_unlock(&swhash->hlist_mutex);
7767
7768         return err;
7769 }
7770
7771 static int swevent_hlist_get(void)
7772 {
7773         int err, cpu, failed_cpu;
7774
7775         mutex_lock(&pmus_lock);
7776         for_each_possible_cpu(cpu) {
7777                 err = swevent_hlist_get_cpu(cpu);
7778                 if (err) {
7779                         failed_cpu = cpu;
7780                         goto fail;
7781                 }
7782         }
7783         mutex_unlock(&pmus_lock);
7784         return 0;
7785 fail:
7786         for_each_possible_cpu(cpu) {
7787                 if (cpu == failed_cpu)
7788                         break;
7789                 swevent_hlist_put_cpu(cpu);
7790         }
7791         mutex_unlock(&pmus_lock);
7792         return err;
7793 }
7794
7795 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7796
7797 static void sw_perf_event_destroy(struct perf_event *event)
7798 {
7799         u64 event_id = event->attr.config;
7800
7801         WARN_ON(event->parent);
7802
7803         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7804         swevent_hlist_put();
7805 }
7806
7807 static int perf_swevent_init(struct perf_event *event)
7808 {
7809         u64 event_id = event->attr.config;
7810
7811         if (event->attr.type != PERF_TYPE_SOFTWARE)
7812                 return -ENOENT;
7813
7814         /*
7815          * no branch sampling for software events
7816          */
7817         if (has_branch_stack(event))
7818                 return -EOPNOTSUPP;
7819
7820         switch (event_id) {
7821         case PERF_COUNT_SW_CPU_CLOCK:
7822         case PERF_COUNT_SW_TASK_CLOCK:
7823                 return -ENOENT;
7824
7825         default:
7826                 break;
7827         }
7828
7829         if (event_id >= PERF_COUNT_SW_MAX)
7830                 return -ENOENT;
7831
7832         if (!event->parent) {
7833                 int err;
7834
7835                 err = swevent_hlist_get();
7836                 if (err)
7837                         return err;
7838
7839                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7840                 event->destroy = sw_perf_event_destroy;
7841         }
7842
7843         return 0;
7844 }
7845
7846 static struct pmu perf_swevent = {
7847         .task_ctx_nr    = perf_sw_context,
7848
7849         .capabilities   = PERF_PMU_CAP_NO_NMI,
7850
7851         .event_init     = perf_swevent_init,
7852         .add            = perf_swevent_add,
7853         .del            = perf_swevent_del,
7854         .start          = perf_swevent_start,
7855         .stop           = perf_swevent_stop,
7856         .read           = perf_swevent_read,
7857 };
7858
7859 #ifdef CONFIG_EVENT_TRACING
7860
7861 static int perf_tp_filter_match(struct perf_event *event,
7862                                 struct perf_sample_data *data)
7863 {
7864         void *record = data->raw->frag.data;
7865
7866         /* only top level events have filters set */
7867         if (event->parent)
7868                 event = event->parent;
7869
7870         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7871                 return 1;
7872         return 0;
7873 }
7874
7875 static int perf_tp_event_match(struct perf_event *event,
7876                                 struct perf_sample_data *data,
7877                                 struct pt_regs *regs)
7878 {
7879         if (event->hw.state & PERF_HES_STOPPED)
7880                 return 0;
7881         /*
7882          * All tracepoints are from kernel-space.
7883          */
7884         if (event->attr.exclude_kernel)
7885                 return 0;
7886
7887         if (!perf_tp_filter_match(event, data))
7888                 return 0;
7889
7890         return 1;
7891 }
7892
7893 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7894                                struct trace_event_call *call, u64 count,
7895                                struct pt_regs *regs, struct hlist_head *head,
7896                                struct task_struct *task)
7897 {
7898         if (bpf_prog_array_valid(call)) {
7899                 *(struct pt_regs **)raw_data = regs;
7900                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
7901                         perf_swevent_put_recursion_context(rctx);
7902                         return;
7903                 }
7904         }
7905         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7906                       rctx, task);
7907 }
7908 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7909
7910 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7911                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7912                    struct task_struct *task)
7913 {
7914         struct perf_sample_data data;
7915         struct perf_event *event;
7916
7917         struct perf_raw_record raw = {
7918                 .frag = {
7919                         .size = entry_size,
7920                         .data = record,
7921                 },
7922         };
7923
7924         perf_sample_data_init(&data, 0, 0);
7925         data.raw = &raw;
7926
7927         perf_trace_buf_update(record, event_type);
7928
7929         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7930                 if (perf_tp_event_match(event, &data, regs))
7931                         perf_swevent_event(event, count, &data, regs);
7932         }
7933
7934         /*
7935          * If we got specified a target task, also iterate its context and
7936          * deliver this event there too.
7937          */
7938         if (task && task != current) {
7939                 struct perf_event_context *ctx;
7940                 struct trace_entry *entry = record;
7941
7942                 rcu_read_lock();
7943                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7944                 if (!ctx)
7945                         goto unlock;
7946
7947                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7948                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7949                                 continue;
7950                         if (event->attr.config != entry->type)
7951                                 continue;
7952                         if (perf_tp_event_match(event, &data, regs))
7953                                 perf_swevent_event(event, count, &data, regs);
7954                 }
7955 unlock:
7956                 rcu_read_unlock();
7957         }
7958
7959         perf_swevent_put_recursion_context(rctx);
7960 }
7961 EXPORT_SYMBOL_GPL(perf_tp_event);
7962
7963 static void tp_perf_event_destroy(struct perf_event *event)
7964 {
7965         perf_trace_destroy(event);
7966 }
7967
7968 static int perf_tp_event_init(struct perf_event *event)
7969 {
7970         int err;
7971
7972         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7973                 return -ENOENT;
7974
7975         /*
7976          * no branch sampling for tracepoint events
7977          */
7978         if (has_branch_stack(event))
7979                 return -EOPNOTSUPP;
7980
7981         err = perf_trace_init(event);
7982         if (err)
7983                 return err;
7984
7985         event->destroy = tp_perf_event_destroy;
7986
7987         return 0;
7988 }
7989
7990 static struct pmu perf_tracepoint = {
7991         .task_ctx_nr    = perf_sw_context,
7992
7993         .event_init     = perf_tp_event_init,
7994         .add            = perf_trace_add,
7995         .del            = perf_trace_del,
7996         .start          = perf_swevent_start,
7997         .stop           = perf_swevent_stop,
7998         .read           = perf_swevent_read,
7999 };
8000
8001 static inline void perf_tp_register(void)
8002 {
8003         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8004 }
8005
8006 static void perf_event_free_filter(struct perf_event *event)
8007 {
8008         ftrace_profile_free_filter(event);
8009 }
8010
8011 #ifdef CONFIG_BPF_SYSCALL
8012 static void bpf_overflow_handler(struct perf_event *event,
8013                                  struct perf_sample_data *data,
8014                                  struct pt_regs *regs)
8015 {
8016         struct bpf_perf_event_data_kern ctx = {
8017                 .data = data,
8018                 .event = event,
8019         };
8020         int ret = 0;
8021
8022         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8023         preempt_disable();
8024         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8025                 goto out;
8026         rcu_read_lock();
8027         ret = BPF_PROG_RUN(event->prog, &ctx);
8028         rcu_read_unlock();
8029 out:
8030         __this_cpu_dec(bpf_prog_active);
8031         preempt_enable();
8032         if (!ret)
8033                 return;
8034
8035         event->orig_overflow_handler(event, data, regs);
8036 }
8037
8038 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8039 {
8040         struct bpf_prog *prog;
8041
8042         if (event->overflow_handler_context)
8043                 /* hw breakpoint or kernel counter */
8044                 return -EINVAL;
8045
8046         if (event->prog)
8047                 return -EEXIST;
8048
8049         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8050         if (IS_ERR(prog))
8051                 return PTR_ERR(prog);
8052
8053         event->prog = prog;
8054         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8055         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8056         return 0;
8057 }
8058
8059 static void perf_event_free_bpf_handler(struct perf_event *event)
8060 {
8061         struct bpf_prog *prog = event->prog;
8062
8063         if (!prog)
8064                 return;
8065
8066         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8067         event->prog = NULL;
8068         bpf_prog_put(prog);
8069 }
8070 #else
8071 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8072 {
8073         return -EOPNOTSUPP;
8074 }
8075 static void perf_event_free_bpf_handler(struct perf_event *event)
8076 {
8077 }
8078 #endif
8079
8080 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8081 {
8082         bool is_kprobe, is_tracepoint, is_syscall_tp;
8083         struct bpf_prog *prog;
8084         int ret;
8085
8086         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8087                 return perf_event_set_bpf_handler(event, prog_fd);
8088
8089         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8090         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8091         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8092         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8093                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8094                 return -EINVAL;
8095
8096         prog = bpf_prog_get(prog_fd);
8097         if (IS_ERR(prog))
8098                 return PTR_ERR(prog);
8099
8100         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8101             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8102             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8103                 /* valid fd, but invalid bpf program type */
8104                 bpf_prog_put(prog);
8105                 return -EINVAL;
8106         }
8107
8108         /* Kprobe override only works for kprobes, not uprobes. */
8109         if (prog->kprobe_override &&
8110             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8111                 bpf_prog_put(prog);
8112                 return -EINVAL;
8113         }
8114
8115         if (is_tracepoint || is_syscall_tp) {
8116                 int off = trace_event_get_offsets(event->tp_event);
8117
8118                 if (prog->aux->max_ctx_offset > off) {
8119                         bpf_prog_put(prog);
8120                         return -EACCES;
8121                 }
8122         }
8123
8124         ret = perf_event_attach_bpf_prog(event, prog);
8125         if (ret)
8126                 bpf_prog_put(prog);
8127         return ret;
8128 }
8129
8130 static void perf_event_free_bpf_prog(struct perf_event *event)
8131 {
8132         if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8133                 perf_event_free_bpf_handler(event);
8134                 return;
8135         }
8136         perf_event_detach_bpf_prog(event);
8137 }
8138
8139 #else
8140
8141 static inline void perf_tp_register(void)
8142 {
8143 }
8144
8145 static void perf_event_free_filter(struct perf_event *event)
8146 {
8147 }
8148
8149 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8150 {
8151         return -ENOENT;
8152 }
8153
8154 static void perf_event_free_bpf_prog(struct perf_event *event)
8155 {
8156 }
8157 #endif /* CONFIG_EVENT_TRACING */
8158
8159 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8160 void perf_bp_event(struct perf_event *bp, void *data)
8161 {
8162         struct perf_sample_data sample;
8163         struct pt_regs *regs = data;
8164
8165         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8166
8167         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8168                 perf_swevent_event(bp, 1, &sample, regs);
8169 }
8170 #endif
8171
8172 /*
8173  * Allocate a new address filter
8174  */
8175 static struct perf_addr_filter *
8176 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8177 {
8178         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8179         struct perf_addr_filter *filter;
8180
8181         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8182         if (!filter)
8183                 return NULL;
8184
8185         INIT_LIST_HEAD(&filter->entry);
8186         list_add_tail(&filter->entry, filters);
8187
8188         return filter;
8189 }
8190
8191 static void free_filters_list(struct list_head *filters)
8192 {
8193         struct perf_addr_filter *filter, *iter;
8194
8195         list_for_each_entry_safe(filter, iter, filters, entry) {
8196                 if (filter->inode)
8197                         iput(filter->inode);
8198                 list_del(&filter->entry);
8199                 kfree(filter);
8200         }
8201 }
8202
8203 /*
8204  * Free existing address filters and optionally install new ones
8205  */
8206 static void perf_addr_filters_splice(struct perf_event *event,
8207                                      struct list_head *head)
8208 {
8209         unsigned long flags;
8210         LIST_HEAD(list);
8211
8212         if (!has_addr_filter(event))
8213                 return;
8214
8215         /* don't bother with children, they don't have their own filters */
8216         if (event->parent)
8217                 return;
8218
8219         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8220
8221         list_splice_init(&event->addr_filters.list, &list);
8222         if (head)
8223                 list_splice(head, &event->addr_filters.list);
8224
8225         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8226
8227         free_filters_list(&list);
8228 }
8229
8230 /*
8231  * Scan through mm's vmas and see if one of them matches the
8232  * @filter; if so, adjust filter's address range.
8233  * Called with mm::mmap_sem down for reading.
8234  */
8235 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8236                                             struct mm_struct *mm)
8237 {
8238         struct vm_area_struct *vma;
8239
8240         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8241                 struct file *file = vma->vm_file;
8242                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8243                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8244
8245                 if (!file)
8246                         continue;
8247
8248                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8249                         continue;
8250
8251                 return vma->vm_start;
8252         }
8253
8254         return 0;
8255 }
8256
8257 /*
8258  * Update event's address range filters based on the
8259  * task's existing mappings, if any.
8260  */
8261 static void perf_event_addr_filters_apply(struct perf_event *event)
8262 {
8263         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8264         struct task_struct *task = READ_ONCE(event->ctx->task);
8265         struct perf_addr_filter *filter;
8266         struct mm_struct *mm = NULL;
8267         unsigned int count = 0;
8268         unsigned long flags;
8269
8270         /*
8271          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8272          * will stop on the parent's child_mutex that our caller is also holding
8273          */
8274         if (task == TASK_TOMBSTONE)
8275                 return;
8276
8277         if (!ifh->nr_file_filters)
8278                 return;
8279
8280         mm = get_task_mm(event->ctx->task);
8281         if (!mm)
8282                 goto restart;
8283
8284         down_read(&mm->mmap_sem);
8285
8286         raw_spin_lock_irqsave(&ifh->lock, flags);
8287         list_for_each_entry(filter, &ifh->list, entry) {
8288                 event->addr_filters_offs[count] = 0;
8289
8290                 /*
8291                  * Adjust base offset if the filter is associated to a binary
8292                  * that needs to be mapped:
8293                  */
8294                 if (filter->inode)
8295                         event->addr_filters_offs[count] =
8296                                 perf_addr_filter_apply(filter, mm);
8297
8298                 count++;
8299         }
8300
8301         event->addr_filters_gen++;
8302         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8303
8304         up_read(&mm->mmap_sem);
8305
8306         mmput(mm);
8307
8308 restart:
8309         perf_event_stop(event, 1);
8310 }
8311
8312 /*
8313  * Address range filtering: limiting the data to certain
8314  * instruction address ranges. Filters are ioctl()ed to us from
8315  * userspace as ascii strings.
8316  *
8317  * Filter string format:
8318  *
8319  * ACTION RANGE_SPEC
8320  * where ACTION is one of the
8321  *  * "filter": limit the trace to this region
8322  *  * "start": start tracing from this address
8323  *  * "stop": stop tracing at this address/region;
8324  * RANGE_SPEC is
8325  *  * for kernel addresses: <start address>[/<size>]
8326  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8327  *
8328  * if <size> is not specified, the range is treated as a single address.
8329  */
8330 enum {
8331         IF_ACT_NONE = -1,
8332         IF_ACT_FILTER,
8333         IF_ACT_START,
8334         IF_ACT_STOP,
8335         IF_SRC_FILE,
8336         IF_SRC_KERNEL,
8337         IF_SRC_FILEADDR,
8338         IF_SRC_KERNELADDR,
8339 };
8340
8341 enum {
8342         IF_STATE_ACTION = 0,
8343         IF_STATE_SOURCE,
8344         IF_STATE_END,
8345 };
8346
8347 static const match_table_t if_tokens = {
8348         { IF_ACT_FILTER,        "filter" },
8349         { IF_ACT_START,         "start" },
8350         { IF_ACT_STOP,          "stop" },
8351         { IF_SRC_FILE,          "%u/%u@%s" },
8352         { IF_SRC_KERNEL,        "%u/%u" },
8353         { IF_SRC_FILEADDR,      "%u@%s" },
8354         { IF_SRC_KERNELADDR,    "%u" },
8355         { IF_ACT_NONE,          NULL },
8356 };
8357
8358 /*
8359  * Address filter string parser
8360  */
8361 static int
8362 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8363                              struct list_head *filters)
8364 {
8365         struct perf_addr_filter *filter = NULL;
8366         char *start, *orig, *filename = NULL;
8367         struct path path;
8368         substring_t args[MAX_OPT_ARGS];
8369         int state = IF_STATE_ACTION, token;
8370         unsigned int kernel = 0;
8371         int ret = -EINVAL;
8372
8373         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8374         if (!fstr)
8375                 return -ENOMEM;
8376
8377         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8378                 ret = -EINVAL;
8379
8380                 if (!*start)
8381                         continue;
8382
8383                 /* filter definition begins */
8384                 if (state == IF_STATE_ACTION) {
8385                         filter = perf_addr_filter_new(event, filters);
8386                         if (!filter)
8387                                 goto fail;
8388                 }
8389
8390                 token = match_token(start, if_tokens, args);
8391                 switch (token) {
8392                 case IF_ACT_FILTER:
8393                 case IF_ACT_START:
8394                         filter->filter = 1;
8395
8396                 case IF_ACT_STOP:
8397                         if (state != IF_STATE_ACTION)
8398                                 goto fail;
8399
8400                         state = IF_STATE_SOURCE;
8401                         break;
8402
8403                 case IF_SRC_KERNELADDR:
8404                 case IF_SRC_KERNEL:
8405                         kernel = 1;
8406
8407                 case IF_SRC_FILEADDR:
8408                 case IF_SRC_FILE:
8409                         if (state != IF_STATE_SOURCE)
8410                                 goto fail;
8411
8412                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8413                                 filter->range = 1;
8414
8415                         *args[0].to = 0;
8416                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8417                         if (ret)
8418                                 goto fail;
8419
8420                         if (filter->range) {
8421                                 *args[1].to = 0;
8422                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8423                                 if (ret)
8424                                         goto fail;
8425                         }
8426
8427                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8428                                 int fpos = filter->range ? 2 : 1;
8429
8430                                 filename = match_strdup(&args[fpos]);
8431                                 if (!filename) {
8432                                         ret = -ENOMEM;
8433                                         goto fail;
8434                                 }
8435                         }
8436
8437                         state = IF_STATE_END;
8438                         break;
8439
8440                 default:
8441                         goto fail;
8442                 }
8443
8444                 /*
8445                  * Filter definition is fully parsed, validate and install it.
8446                  * Make sure that it doesn't contradict itself or the event's
8447                  * attribute.
8448                  */
8449                 if (state == IF_STATE_END) {
8450                         ret = -EINVAL;
8451                         if (kernel && event->attr.exclude_kernel)
8452                                 goto fail;
8453
8454                         if (!kernel) {
8455                                 if (!filename)
8456                                         goto fail;
8457
8458                                 /*
8459                                  * For now, we only support file-based filters
8460                                  * in per-task events; doing so for CPU-wide
8461                                  * events requires additional context switching
8462                                  * trickery, since same object code will be
8463                                  * mapped at different virtual addresses in
8464                                  * different processes.
8465                                  */
8466                                 ret = -EOPNOTSUPP;
8467                                 if (!event->ctx->task)
8468                                         goto fail_free_name;
8469
8470                                 /* look up the path and grab its inode */
8471                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8472                                 if (ret)
8473                                         goto fail_free_name;
8474
8475                                 filter->inode = igrab(d_inode(path.dentry));
8476                                 path_put(&path);
8477                                 kfree(filename);
8478                                 filename = NULL;
8479
8480                                 ret = -EINVAL;
8481                                 if (!filter->inode ||
8482                                     !S_ISREG(filter->inode->i_mode))
8483                                         /* free_filters_list() will iput() */
8484                                         goto fail;
8485
8486                                 event->addr_filters.nr_file_filters++;
8487                         }
8488
8489                         /* ready to consume more filters */
8490                         state = IF_STATE_ACTION;
8491                         filter = NULL;
8492                 }
8493         }
8494
8495         if (state != IF_STATE_ACTION)
8496                 goto fail;
8497
8498         kfree(orig);
8499
8500         return 0;
8501
8502 fail_free_name:
8503         kfree(filename);
8504 fail:
8505         free_filters_list(filters);
8506         kfree(orig);
8507
8508         return ret;
8509 }
8510
8511 static int
8512 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8513 {
8514         LIST_HEAD(filters);
8515         int ret;
8516
8517         /*
8518          * Since this is called in perf_ioctl() path, we're already holding
8519          * ctx::mutex.
8520          */
8521         lockdep_assert_held(&event->ctx->mutex);
8522
8523         if (WARN_ON_ONCE(event->parent))
8524                 return -EINVAL;
8525
8526         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8527         if (ret)
8528                 goto fail_clear_files;
8529
8530         ret = event->pmu->addr_filters_validate(&filters);
8531         if (ret)
8532                 goto fail_free_filters;
8533
8534         /* remove existing filters, if any */
8535         perf_addr_filters_splice(event, &filters);
8536
8537         /* install new filters */
8538         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8539
8540         return ret;
8541
8542 fail_free_filters:
8543         free_filters_list(&filters);
8544
8545 fail_clear_files:
8546         event->addr_filters.nr_file_filters = 0;
8547
8548         return ret;
8549 }
8550
8551 static int
8552 perf_tracepoint_set_filter(struct perf_event *event, char *filter_str)
8553 {
8554         struct perf_event_context *ctx = event->ctx;
8555         int ret;
8556
8557         /*
8558          * Beware, here be dragons!!
8559          *
8560          * the tracepoint muck will deadlock against ctx->mutex, but the tracepoint
8561          * stuff does not actually need it. So temporarily drop ctx->mutex. As per
8562          * perf_event_ctx_lock() we already have a reference on ctx.
8563          *
8564          * This can result in event getting moved to a different ctx, but that
8565          * does not affect the tracepoint state.
8566          */
8567         mutex_unlock(&ctx->mutex);
8568         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
8569         mutex_lock(&ctx->mutex);
8570
8571         return ret;
8572 }
8573
8574 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8575 {
8576         char *filter_str;
8577         int ret = -EINVAL;
8578
8579         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8580             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8581             !has_addr_filter(event))
8582                 return -EINVAL;
8583
8584         filter_str = strndup_user(arg, PAGE_SIZE);
8585         if (IS_ERR(filter_str))
8586                 return PTR_ERR(filter_str);
8587
8588         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8589             event->attr.type == PERF_TYPE_TRACEPOINT)
8590                 ret = perf_tracepoint_set_filter(event, filter_str);
8591         else if (has_addr_filter(event))
8592                 ret = perf_event_set_addr_filter(event, filter_str);
8593
8594         kfree(filter_str);
8595         return ret;
8596 }
8597
8598 /*
8599  * hrtimer based swevent callback
8600  */
8601
8602 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8603 {
8604         enum hrtimer_restart ret = HRTIMER_RESTART;
8605         struct perf_sample_data data;
8606         struct pt_regs *regs;
8607         struct perf_event *event;
8608         u64 period;
8609
8610         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8611
8612         if (event->state != PERF_EVENT_STATE_ACTIVE)
8613                 return HRTIMER_NORESTART;
8614
8615         event->pmu->read(event);
8616
8617         perf_sample_data_init(&data, 0, event->hw.last_period);
8618         regs = get_irq_regs();
8619
8620         if (regs && !perf_exclude_event(event, regs)) {
8621                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8622                         if (__perf_event_overflow(event, 1, &data, regs))
8623                                 ret = HRTIMER_NORESTART;
8624         }
8625
8626         period = max_t(u64, 10000, event->hw.sample_period);
8627         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8628
8629         return ret;
8630 }
8631
8632 static void perf_swevent_start_hrtimer(struct perf_event *event)
8633 {
8634         struct hw_perf_event *hwc = &event->hw;
8635         s64 period;
8636
8637         if (!is_sampling_event(event))
8638                 return;
8639
8640         period = local64_read(&hwc->period_left);
8641         if (period) {
8642                 if (period < 0)
8643                         period = 10000;
8644
8645                 local64_set(&hwc->period_left, 0);
8646         } else {
8647                 period = max_t(u64, 10000, hwc->sample_period);
8648         }
8649         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8650                       HRTIMER_MODE_REL_PINNED);
8651 }
8652
8653 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8654 {
8655         struct hw_perf_event *hwc = &event->hw;
8656
8657         if (is_sampling_event(event)) {
8658                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8659                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8660
8661                 hrtimer_cancel(&hwc->hrtimer);
8662         }
8663 }
8664
8665 static void perf_swevent_init_hrtimer(struct perf_event *event)
8666 {
8667         struct hw_perf_event *hwc = &event->hw;
8668
8669         if (!is_sampling_event(event))
8670                 return;
8671
8672         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8673         hwc->hrtimer.function = perf_swevent_hrtimer;
8674
8675         /*
8676          * Since hrtimers have a fixed rate, we can do a static freq->period
8677          * mapping and avoid the whole period adjust feedback stuff.
8678          */
8679         if (event->attr.freq) {
8680                 long freq = event->attr.sample_freq;
8681
8682                 event->attr.sample_period = NSEC_PER_SEC / freq;
8683                 hwc->sample_period = event->attr.sample_period;
8684                 local64_set(&hwc->period_left, hwc->sample_period);
8685                 hwc->last_period = hwc->sample_period;
8686                 event->attr.freq = 0;
8687         }
8688 }
8689
8690 /*
8691  * Software event: cpu wall time clock
8692  */
8693
8694 static void cpu_clock_event_update(struct perf_event *event)
8695 {
8696         s64 prev;
8697         u64 now;
8698
8699         now = local_clock();
8700         prev = local64_xchg(&event->hw.prev_count, now);
8701         local64_add(now - prev, &event->count);
8702 }
8703
8704 static void cpu_clock_event_start(struct perf_event *event, int flags)
8705 {
8706         local64_set(&event->hw.prev_count, local_clock());
8707         perf_swevent_start_hrtimer(event);
8708 }
8709
8710 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8711 {
8712         perf_swevent_cancel_hrtimer(event);
8713         cpu_clock_event_update(event);
8714 }
8715
8716 static int cpu_clock_event_add(struct perf_event *event, int flags)
8717 {
8718         if (flags & PERF_EF_START)
8719                 cpu_clock_event_start(event, flags);
8720         perf_event_update_userpage(event);
8721
8722         return 0;
8723 }
8724
8725 static void cpu_clock_event_del(struct perf_event *event, int flags)
8726 {
8727         cpu_clock_event_stop(event, flags);
8728 }
8729
8730 static void cpu_clock_event_read(struct perf_event *event)
8731 {
8732         cpu_clock_event_update(event);
8733 }
8734
8735 static int cpu_clock_event_init(struct perf_event *event)
8736 {
8737         if (event->attr.type != PERF_TYPE_SOFTWARE)
8738                 return -ENOENT;
8739
8740         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8741                 return -ENOENT;
8742
8743         /*
8744          * no branch sampling for software events
8745          */
8746         if (has_branch_stack(event))
8747                 return -EOPNOTSUPP;
8748
8749         perf_swevent_init_hrtimer(event);
8750
8751         return 0;
8752 }
8753
8754 static struct pmu perf_cpu_clock = {
8755         .task_ctx_nr    = perf_sw_context,
8756
8757         .capabilities   = PERF_PMU_CAP_NO_NMI,
8758
8759         .event_init     = cpu_clock_event_init,
8760         .add            = cpu_clock_event_add,
8761         .del            = cpu_clock_event_del,
8762         .start          = cpu_clock_event_start,
8763         .stop           = cpu_clock_event_stop,
8764         .read           = cpu_clock_event_read,
8765 };
8766
8767 /*
8768  * Software event: task time clock
8769  */
8770
8771 static void task_clock_event_update(struct perf_event *event, u64 now)
8772 {
8773         u64 prev;
8774         s64 delta;
8775
8776         prev = local64_xchg(&event->hw.prev_count, now);
8777         delta = now - prev;
8778         local64_add(delta, &event->count);
8779 }
8780
8781 static void task_clock_event_start(struct perf_event *event, int flags)
8782 {
8783         local64_set(&event->hw.prev_count, event->ctx->time);
8784         perf_swevent_start_hrtimer(event);
8785 }
8786
8787 static void task_clock_event_stop(struct perf_event *event, int flags)
8788 {
8789         perf_swevent_cancel_hrtimer(event);
8790         task_clock_event_update(event, event->ctx->time);
8791 }
8792
8793 static int task_clock_event_add(struct perf_event *event, int flags)
8794 {
8795         if (flags & PERF_EF_START)
8796                 task_clock_event_start(event, flags);
8797         perf_event_update_userpage(event);
8798
8799         return 0;
8800 }
8801
8802 static void task_clock_event_del(struct perf_event *event, int flags)
8803 {
8804         task_clock_event_stop(event, PERF_EF_UPDATE);
8805 }
8806
8807 static void task_clock_event_read(struct perf_event *event)
8808 {
8809         u64 now = perf_clock();
8810         u64 delta = now - event->ctx->timestamp;
8811         u64 time = event->ctx->time + delta;
8812
8813         task_clock_event_update(event, time);
8814 }
8815
8816 static int task_clock_event_init(struct perf_event *event)
8817 {
8818         if (event->attr.type != PERF_TYPE_SOFTWARE)
8819                 return -ENOENT;
8820
8821         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8822                 return -ENOENT;
8823
8824         /*
8825          * no branch sampling for software events
8826          */
8827         if (has_branch_stack(event))
8828                 return -EOPNOTSUPP;
8829
8830         perf_swevent_init_hrtimer(event);
8831
8832         return 0;
8833 }
8834
8835 static struct pmu perf_task_clock = {
8836         .task_ctx_nr    = perf_sw_context,
8837
8838         .capabilities   = PERF_PMU_CAP_NO_NMI,
8839
8840         .event_init     = task_clock_event_init,
8841         .add            = task_clock_event_add,
8842         .del            = task_clock_event_del,
8843         .start          = task_clock_event_start,
8844         .stop           = task_clock_event_stop,
8845         .read           = task_clock_event_read,
8846 };
8847
8848 static void perf_pmu_nop_void(struct pmu *pmu)
8849 {
8850 }
8851
8852 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8853 {
8854 }
8855
8856 static int perf_pmu_nop_int(struct pmu *pmu)
8857 {
8858         return 0;
8859 }
8860
8861 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8862
8863 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8864 {
8865         __this_cpu_write(nop_txn_flags, flags);
8866
8867         if (flags & ~PERF_PMU_TXN_ADD)
8868                 return;
8869
8870         perf_pmu_disable(pmu);
8871 }
8872
8873 static int perf_pmu_commit_txn(struct pmu *pmu)
8874 {
8875         unsigned int flags = __this_cpu_read(nop_txn_flags);
8876
8877         __this_cpu_write(nop_txn_flags, 0);
8878
8879         if (flags & ~PERF_PMU_TXN_ADD)
8880                 return 0;
8881
8882         perf_pmu_enable(pmu);
8883         return 0;
8884 }
8885
8886 static void perf_pmu_cancel_txn(struct pmu *pmu)
8887 {
8888         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8889
8890         __this_cpu_write(nop_txn_flags, 0);
8891
8892         if (flags & ~PERF_PMU_TXN_ADD)
8893                 return;
8894
8895         perf_pmu_enable(pmu);
8896 }
8897
8898 static int perf_event_idx_default(struct perf_event *event)
8899 {
8900         return 0;
8901 }
8902
8903 /*
8904  * Ensures all contexts with the same task_ctx_nr have the same
8905  * pmu_cpu_context too.
8906  */
8907 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8908 {
8909         struct pmu *pmu;
8910
8911         if (ctxn < 0)
8912                 return NULL;
8913
8914         list_for_each_entry(pmu, &pmus, entry) {
8915                 if (pmu->task_ctx_nr == ctxn)
8916                         return pmu->pmu_cpu_context;
8917         }
8918
8919         return NULL;
8920 }
8921
8922 static void free_pmu_context(struct pmu *pmu)
8923 {
8924         /*
8925          * Static contexts such as perf_sw_context have a global lifetime
8926          * and may be shared between different PMUs. Avoid freeing them
8927          * when a single PMU is going away.
8928          */
8929         if (pmu->task_ctx_nr > perf_invalid_context)
8930                 return;
8931
8932         mutex_lock(&pmus_lock);
8933         free_percpu(pmu->pmu_cpu_context);
8934         mutex_unlock(&pmus_lock);
8935 }
8936
8937 /*
8938  * Let userspace know that this PMU supports address range filtering:
8939  */
8940 static ssize_t nr_addr_filters_show(struct device *dev,
8941                                     struct device_attribute *attr,
8942                                     char *page)
8943 {
8944         struct pmu *pmu = dev_get_drvdata(dev);
8945
8946         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8947 }
8948 DEVICE_ATTR_RO(nr_addr_filters);
8949
8950 static struct idr pmu_idr;
8951
8952 static ssize_t
8953 type_show(struct device *dev, struct device_attribute *attr, char *page)
8954 {
8955         struct pmu *pmu = dev_get_drvdata(dev);
8956
8957         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8958 }
8959 static DEVICE_ATTR_RO(type);
8960
8961 static ssize_t
8962 perf_event_mux_interval_ms_show(struct device *dev,
8963                                 struct device_attribute *attr,
8964                                 char *page)
8965 {
8966         struct pmu *pmu = dev_get_drvdata(dev);
8967
8968         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8969 }
8970
8971 static DEFINE_MUTEX(mux_interval_mutex);
8972
8973 static ssize_t
8974 perf_event_mux_interval_ms_store(struct device *dev,
8975                                  struct device_attribute *attr,
8976                                  const char *buf, size_t count)
8977 {
8978         struct pmu *pmu = dev_get_drvdata(dev);
8979         int timer, cpu, ret;
8980
8981         ret = kstrtoint(buf, 0, &timer);
8982         if (ret)
8983                 return ret;
8984
8985         if (timer < 1)
8986                 return -EINVAL;
8987
8988         /* same value, noting to do */
8989         if (timer == pmu->hrtimer_interval_ms)
8990                 return count;
8991
8992         mutex_lock(&mux_interval_mutex);
8993         pmu->hrtimer_interval_ms = timer;
8994
8995         /* update all cpuctx for this PMU */
8996         cpus_read_lock();
8997         for_each_online_cpu(cpu) {
8998                 struct perf_cpu_context *cpuctx;
8999                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9000                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9001
9002                 cpu_function_call(cpu,
9003                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9004         }
9005         cpus_read_unlock();
9006         mutex_unlock(&mux_interval_mutex);
9007
9008         return count;
9009 }
9010 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9011
9012 static struct attribute *pmu_dev_attrs[] = {
9013         &dev_attr_type.attr,
9014         &dev_attr_perf_event_mux_interval_ms.attr,
9015         NULL,
9016 };
9017 ATTRIBUTE_GROUPS(pmu_dev);
9018
9019 static int pmu_bus_running;
9020 static struct bus_type pmu_bus = {
9021         .name           = "event_source",
9022         .dev_groups     = pmu_dev_groups,
9023 };
9024
9025 static void pmu_dev_release(struct device *dev)
9026 {
9027         kfree(dev);
9028 }
9029
9030 static int pmu_dev_alloc(struct pmu *pmu)
9031 {
9032         int ret = -ENOMEM;
9033
9034         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9035         if (!pmu->dev)
9036                 goto out;
9037
9038         pmu->dev->groups = pmu->attr_groups;
9039         device_initialize(pmu->dev);
9040         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9041         if (ret)
9042                 goto free_dev;
9043
9044         dev_set_drvdata(pmu->dev, pmu);
9045         pmu->dev->bus = &pmu_bus;
9046         pmu->dev->release = pmu_dev_release;
9047         ret = device_add(pmu->dev);
9048         if (ret)
9049                 goto free_dev;
9050
9051         /* For PMUs with address filters, throw in an extra attribute: */
9052         if (pmu->nr_addr_filters)
9053                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9054
9055         if (ret)
9056                 goto del_dev;
9057
9058 out:
9059         return ret;
9060
9061 del_dev:
9062         device_del(pmu->dev);
9063
9064 free_dev:
9065         put_device(pmu->dev);
9066         goto out;
9067 }
9068
9069 static struct lock_class_key cpuctx_mutex;
9070 static struct lock_class_key cpuctx_lock;
9071
9072 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9073 {
9074         int cpu, ret;
9075
9076         mutex_lock(&pmus_lock);
9077         ret = -ENOMEM;
9078         pmu->pmu_disable_count = alloc_percpu(int);
9079         if (!pmu->pmu_disable_count)
9080                 goto unlock;
9081
9082         pmu->type = -1;
9083         if (!name)
9084                 goto skip_type;
9085         pmu->name = name;
9086
9087         if (type < 0) {
9088                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9089                 if (type < 0) {
9090                         ret = type;
9091                         goto free_pdc;
9092                 }
9093         }
9094         pmu->type = type;
9095
9096         if (pmu_bus_running) {
9097                 ret = pmu_dev_alloc(pmu);
9098                 if (ret)
9099                         goto free_idr;
9100         }
9101
9102 skip_type:
9103         if (pmu->task_ctx_nr == perf_hw_context) {
9104                 static int hw_context_taken = 0;
9105
9106                 /*
9107                  * Other than systems with heterogeneous CPUs, it never makes
9108                  * sense for two PMUs to share perf_hw_context. PMUs which are
9109                  * uncore must use perf_invalid_context.
9110                  */
9111                 if (WARN_ON_ONCE(hw_context_taken &&
9112                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9113                         pmu->task_ctx_nr = perf_invalid_context;
9114
9115                 hw_context_taken = 1;
9116         }
9117
9118         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9119         if (pmu->pmu_cpu_context)
9120                 goto got_cpu_context;
9121
9122         ret = -ENOMEM;
9123         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9124         if (!pmu->pmu_cpu_context)
9125                 goto free_dev;
9126
9127         for_each_possible_cpu(cpu) {
9128                 struct perf_cpu_context *cpuctx;
9129
9130                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9131                 __perf_event_init_context(&cpuctx->ctx);
9132                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9133                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9134                 cpuctx->ctx.pmu = pmu;
9135                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9136
9137                 __perf_mux_hrtimer_init(cpuctx, cpu);
9138         }
9139
9140 got_cpu_context:
9141         if (!pmu->start_txn) {
9142                 if (pmu->pmu_enable) {
9143                         /*
9144                          * If we have pmu_enable/pmu_disable calls, install
9145                          * transaction stubs that use that to try and batch
9146                          * hardware accesses.
9147                          */
9148                         pmu->start_txn  = perf_pmu_start_txn;
9149                         pmu->commit_txn = perf_pmu_commit_txn;
9150                         pmu->cancel_txn = perf_pmu_cancel_txn;
9151                 } else {
9152                         pmu->start_txn  = perf_pmu_nop_txn;
9153                         pmu->commit_txn = perf_pmu_nop_int;
9154                         pmu->cancel_txn = perf_pmu_nop_void;
9155                 }
9156         }
9157
9158         if (!pmu->pmu_enable) {
9159                 pmu->pmu_enable  = perf_pmu_nop_void;
9160                 pmu->pmu_disable = perf_pmu_nop_void;
9161         }
9162
9163         if (!pmu->event_idx)
9164                 pmu->event_idx = perf_event_idx_default;
9165
9166         list_add_rcu(&pmu->entry, &pmus);
9167         atomic_set(&pmu->exclusive_cnt, 0);
9168         ret = 0;
9169 unlock:
9170         mutex_unlock(&pmus_lock);
9171
9172         return ret;
9173
9174 free_dev:
9175         device_del(pmu->dev);
9176         put_device(pmu->dev);
9177
9178 free_idr:
9179         if (pmu->type >= PERF_TYPE_MAX)
9180                 idr_remove(&pmu_idr, pmu->type);
9181
9182 free_pdc:
9183         free_percpu(pmu->pmu_disable_count);
9184         goto unlock;
9185 }
9186 EXPORT_SYMBOL_GPL(perf_pmu_register);
9187
9188 void perf_pmu_unregister(struct pmu *pmu)
9189 {
9190         int remove_device;
9191
9192         mutex_lock(&pmus_lock);
9193         remove_device = pmu_bus_running;
9194         list_del_rcu(&pmu->entry);
9195         mutex_unlock(&pmus_lock);
9196
9197         /*
9198          * We dereference the pmu list under both SRCU and regular RCU, so
9199          * synchronize against both of those.
9200          */
9201         synchronize_srcu(&pmus_srcu);
9202         synchronize_rcu();
9203
9204         free_percpu(pmu->pmu_disable_count);
9205         if (pmu->type >= PERF_TYPE_MAX)
9206                 idr_remove(&pmu_idr, pmu->type);
9207         if (remove_device) {
9208                 if (pmu->nr_addr_filters)
9209                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9210                 device_del(pmu->dev);
9211                 put_device(pmu->dev);
9212         }
9213         free_pmu_context(pmu);
9214 }
9215 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9216
9217 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9218 {
9219         struct perf_event_context *ctx = NULL;
9220         int ret;
9221
9222         if (!try_module_get(pmu->module))
9223                 return -ENODEV;
9224
9225         /*
9226          * A number of pmu->event_init() methods iterate the sibling_list to,
9227          * for example, validate if the group fits on the PMU. Therefore,
9228          * if this is a sibling event, acquire the ctx->mutex to protect
9229          * the sibling_list.
9230          */
9231         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9232                 /*
9233                  * This ctx->mutex can nest when we're called through
9234                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9235                  */
9236                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9237                                                  SINGLE_DEPTH_NESTING);
9238                 BUG_ON(!ctx);
9239         }
9240
9241         event->pmu = pmu;
9242         ret = pmu->event_init(event);
9243
9244         if (ctx)
9245                 perf_event_ctx_unlock(event->group_leader, ctx);
9246
9247         if (ret)
9248                 module_put(pmu->module);
9249
9250         return ret;
9251 }
9252
9253 static struct pmu *perf_init_event(struct perf_event *event)
9254 {
9255         struct pmu *pmu;
9256         int idx;
9257         int ret;
9258
9259         idx = srcu_read_lock(&pmus_srcu);
9260
9261         /* Try parent's PMU first: */
9262         if (event->parent && event->parent->pmu) {
9263                 pmu = event->parent->pmu;
9264                 ret = perf_try_init_event(pmu, event);
9265                 if (!ret)
9266                         goto unlock;
9267         }
9268
9269         rcu_read_lock();
9270         pmu = idr_find(&pmu_idr, event->attr.type);
9271         rcu_read_unlock();
9272         if (pmu) {
9273                 ret = perf_try_init_event(pmu, event);
9274                 if (ret)
9275                         pmu = ERR_PTR(ret);
9276                 goto unlock;
9277         }
9278
9279         list_for_each_entry_rcu(pmu, &pmus, entry) {
9280                 ret = perf_try_init_event(pmu, event);
9281                 if (!ret)
9282                         goto unlock;
9283
9284                 if (ret != -ENOENT) {
9285                         pmu = ERR_PTR(ret);
9286                         goto unlock;
9287                 }
9288         }
9289         pmu = ERR_PTR(-ENOENT);
9290 unlock:
9291         srcu_read_unlock(&pmus_srcu, idx);
9292
9293         return pmu;
9294 }
9295
9296 static void attach_sb_event(struct perf_event *event)
9297 {
9298         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9299
9300         raw_spin_lock(&pel->lock);
9301         list_add_rcu(&event->sb_list, &pel->list);
9302         raw_spin_unlock(&pel->lock);
9303 }
9304
9305 /*
9306  * We keep a list of all !task (and therefore per-cpu) events
9307  * that need to receive side-band records.
9308  *
9309  * This avoids having to scan all the various PMU per-cpu contexts
9310  * looking for them.
9311  */
9312 static void account_pmu_sb_event(struct perf_event *event)
9313 {
9314         if (is_sb_event(event))
9315                 attach_sb_event(event);
9316 }
9317
9318 static void account_event_cpu(struct perf_event *event, int cpu)
9319 {
9320         if (event->parent)
9321                 return;
9322
9323         if (is_cgroup_event(event))
9324                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9325 }
9326
9327 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9328 static void account_freq_event_nohz(void)
9329 {
9330 #ifdef CONFIG_NO_HZ_FULL
9331         /* Lock so we don't race with concurrent unaccount */
9332         spin_lock(&nr_freq_lock);
9333         if (atomic_inc_return(&nr_freq_events) == 1)
9334                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9335         spin_unlock(&nr_freq_lock);
9336 #endif
9337 }
9338
9339 static void account_freq_event(void)
9340 {
9341         if (tick_nohz_full_enabled())
9342                 account_freq_event_nohz();
9343         else
9344                 atomic_inc(&nr_freq_events);
9345 }
9346
9347
9348 static void account_event(struct perf_event *event)
9349 {
9350         bool inc = false;
9351
9352         if (event->parent)
9353                 return;
9354
9355         if (event->attach_state & PERF_ATTACH_TASK)
9356                 inc = true;
9357         if (event->attr.mmap || event->attr.mmap_data)
9358                 atomic_inc(&nr_mmap_events);
9359         if (event->attr.comm)
9360                 atomic_inc(&nr_comm_events);
9361         if (event->attr.namespaces)
9362                 atomic_inc(&nr_namespaces_events);
9363         if (event->attr.task)
9364                 atomic_inc(&nr_task_events);
9365         if (event->attr.freq)
9366                 account_freq_event();
9367         if (event->attr.context_switch) {
9368                 atomic_inc(&nr_switch_events);
9369                 inc = true;
9370         }
9371         if (has_branch_stack(event))
9372                 inc = true;
9373         if (is_cgroup_event(event))
9374                 inc = true;
9375
9376         if (inc) {
9377                 /*
9378                  * We need the mutex here because static_branch_enable()
9379                  * must complete *before* the perf_sched_count increment
9380                  * becomes visible.
9381                  */
9382                 if (atomic_inc_not_zero(&perf_sched_count))
9383                         goto enabled;
9384
9385                 mutex_lock(&perf_sched_mutex);
9386                 if (!atomic_read(&perf_sched_count)) {
9387                         static_branch_enable(&perf_sched_events);
9388                         /*
9389                          * Guarantee that all CPUs observe they key change and
9390                          * call the perf scheduling hooks before proceeding to
9391                          * install events that need them.
9392                          */
9393                         synchronize_sched();
9394                 }
9395                 /*
9396                  * Now that we have waited for the sync_sched(), allow further
9397                  * increments to by-pass the mutex.
9398                  */
9399                 atomic_inc(&perf_sched_count);
9400                 mutex_unlock(&perf_sched_mutex);
9401         }
9402 enabled:
9403
9404         account_event_cpu(event, event->cpu);
9405
9406         account_pmu_sb_event(event);
9407 }
9408
9409 /*
9410  * Allocate and initialize a event structure
9411  */
9412 static struct perf_event *
9413 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9414                  struct task_struct *task,
9415                  struct perf_event *group_leader,
9416                  struct perf_event *parent_event,
9417                  perf_overflow_handler_t overflow_handler,
9418                  void *context, int cgroup_fd)
9419 {
9420         struct pmu *pmu;
9421         struct perf_event *event;
9422         struct hw_perf_event *hwc;
9423         long err = -EINVAL;
9424
9425         if ((unsigned)cpu >= nr_cpu_ids) {
9426                 if (!task || cpu != -1)
9427                         return ERR_PTR(-EINVAL);
9428         }
9429
9430         event = kzalloc(sizeof(*event), GFP_KERNEL);
9431         if (!event)
9432                 return ERR_PTR(-ENOMEM);
9433
9434         /*
9435          * Single events are their own group leaders, with an
9436          * empty sibling list:
9437          */
9438         if (!group_leader)
9439                 group_leader = event;
9440
9441         mutex_init(&event->child_mutex);
9442         INIT_LIST_HEAD(&event->child_list);
9443
9444         INIT_LIST_HEAD(&event->group_entry);
9445         INIT_LIST_HEAD(&event->event_entry);
9446         INIT_LIST_HEAD(&event->sibling_list);
9447         INIT_LIST_HEAD(&event->rb_entry);
9448         INIT_LIST_HEAD(&event->active_entry);
9449         INIT_LIST_HEAD(&event->addr_filters.list);
9450         INIT_HLIST_NODE(&event->hlist_entry);
9451
9452
9453         init_waitqueue_head(&event->waitq);
9454         init_irq_work(&event->pending, perf_pending_event);
9455
9456         mutex_init(&event->mmap_mutex);
9457         raw_spin_lock_init(&event->addr_filters.lock);
9458
9459         atomic_long_set(&event->refcount, 1);
9460         event->cpu              = cpu;
9461         event->attr             = *attr;
9462         event->group_leader     = group_leader;
9463         event->pmu              = NULL;
9464         event->oncpu            = -1;
9465
9466         event->parent           = parent_event;
9467
9468         event->ns               = get_pid_ns(task_active_pid_ns(current));
9469         event->id               = atomic64_inc_return(&perf_event_id);
9470
9471         event->state            = PERF_EVENT_STATE_INACTIVE;
9472
9473         if (task) {
9474                 event->attach_state = PERF_ATTACH_TASK;
9475                 /*
9476                  * XXX pmu::event_init needs to know what task to account to
9477                  * and we cannot use the ctx information because we need the
9478                  * pmu before we get a ctx.
9479                  */
9480                 event->hw.target = task;
9481         }
9482
9483         event->clock = &local_clock;
9484         if (parent_event)
9485                 event->clock = parent_event->clock;
9486
9487         if (!overflow_handler && parent_event) {
9488                 overflow_handler = parent_event->overflow_handler;
9489                 context = parent_event->overflow_handler_context;
9490 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9491                 if (overflow_handler == bpf_overflow_handler) {
9492                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9493
9494                         if (IS_ERR(prog)) {
9495                                 err = PTR_ERR(prog);
9496                                 goto err_ns;
9497                         }
9498                         event->prog = prog;
9499                         event->orig_overflow_handler =
9500                                 parent_event->orig_overflow_handler;
9501                 }
9502 #endif
9503         }
9504
9505         if (overflow_handler) {
9506                 event->overflow_handler = overflow_handler;
9507                 event->overflow_handler_context = context;
9508         } else if (is_write_backward(event)){
9509                 event->overflow_handler = perf_event_output_backward;
9510                 event->overflow_handler_context = NULL;
9511         } else {
9512                 event->overflow_handler = perf_event_output_forward;
9513                 event->overflow_handler_context = NULL;
9514         }
9515
9516         perf_event__state_init(event);
9517
9518         pmu = NULL;
9519
9520         hwc = &event->hw;
9521         hwc->sample_period = attr->sample_period;
9522         if (attr->freq && attr->sample_freq)
9523                 hwc->sample_period = 1;
9524         hwc->last_period = hwc->sample_period;
9525
9526         local64_set(&hwc->period_left, hwc->sample_period);
9527
9528         /*
9529          * We currently do not support PERF_SAMPLE_READ on inherited events.
9530          * See perf_output_read().
9531          */
9532         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9533                 goto err_ns;
9534
9535         if (!has_branch_stack(event))
9536                 event->attr.branch_sample_type = 0;
9537
9538         if (cgroup_fd != -1) {
9539                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9540                 if (err)
9541                         goto err_ns;
9542         }
9543
9544         pmu = perf_init_event(event);
9545         if (IS_ERR(pmu)) {
9546                 err = PTR_ERR(pmu);
9547                 goto err_ns;
9548         }
9549
9550         err = exclusive_event_init(event);
9551         if (err)
9552                 goto err_pmu;
9553
9554         if (has_addr_filter(event)) {
9555                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9556                                                    sizeof(unsigned long),
9557                                                    GFP_KERNEL);
9558                 if (!event->addr_filters_offs) {
9559                         err = -ENOMEM;
9560                         goto err_per_task;
9561                 }
9562
9563                 /* force hw sync on the address filters */
9564                 event->addr_filters_gen = 1;
9565         }
9566
9567         if (!event->parent) {
9568                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9569                         err = get_callchain_buffers(attr->sample_max_stack);
9570                         if (err)
9571                                 goto err_addr_filters;
9572                 }
9573         }
9574
9575         /* symmetric to unaccount_event() in _free_event() */
9576         account_event(event);
9577
9578         return event;
9579
9580 err_addr_filters:
9581         kfree(event->addr_filters_offs);
9582
9583 err_per_task:
9584         exclusive_event_destroy(event);
9585
9586 err_pmu:
9587         if (event->destroy)
9588                 event->destroy(event);
9589         module_put(pmu->module);
9590 err_ns:
9591         if (is_cgroup_event(event))
9592                 perf_detach_cgroup(event);
9593         if (event->ns)
9594                 put_pid_ns(event->ns);
9595         kfree(event);
9596
9597         return ERR_PTR(err);
9598 }
9599
9600 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9601                           struct perf_event_attr *attr)
9602 {
9603         u32 size;
9604         int ret;
9605
9606         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9607                 return -EFAULT;
9608
9609         /*
9610          * zero the full structure, so that a short copy will be nice.
9611          */
9612         memset(attr, 0, sizeof(*attr));
9613
9614         ret = get_user(size, &uattr->size);
9615         if (ret)
9616                 return ret;
9617
9618         if (size > PAGE_SIZE)   /* silly large */
9619                 goto err_size;
9620
9621         if (!size)              /* abi compat */
9622                 size = PERF_ATTR_SIZE_VER0;
9623
9624         if (size < PERF_ATTR_SIZE_VER0)
9625                 goto err_size;
9626
9627         /*
9628          * If we're handed a bigger struct than we know of,
9629          * ensure all the unknown bits are 0 - i.e. new
9630          * user-space does not rely on any kernel feature
9631          * extensions we dont know about yet.
9632          */
9633         if (size > sizeof(*attr)) {
9634                 unsigned char __user *addr;
9635                 unsigned char __user *end;
9636                 unsigned char val;
9637
9638                 addr = (void __user *)uattr + sizeof(*attr);
9639                 end  = (void __user *)uattr + size;
9640
9641                 for (; addr < end; addr++) {
9642                         ret = get_user(val, addr);
9643                         if (ret)
9644                                 return ret;
9645                         if (val)
9646                                 goto err_size;
9647                 }
9648                 size = sizeof(*attr);
9649         }
9650
9651         ret = copy_from_user(attr, uattr, size);
9652         if (ret)
9653                 return -EFAULT;
9654
9655         attr->size = size;
9656
9657         if (attr->__reserved_1)
9658                 return -EINVAL;
9659
9660         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9661                 return -EINVAL;
9662
9663         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9664                 return -EINVAL;
9665
9666         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9667                 u64 mask = attr->branch_sample_type;
9668
9669                 /* only using defined bits */
9670                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9671                         return -EINVAL;
9672
9673                 /* at least one branch bit must be set */
9674                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9675                         return -EINVAL;
9676
9677                 /* propagate priv level, when not set for branch */
9678                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9679
9680                         /* exclude_kernel checked on syscall entry */
9681                         if (!attr->exclude_kernel)
9682                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9683
9684                         if (!attr->exclude_user)
9685                                 mask |= PERF_SAMPLE_BRANCH_USER;
9686
9687                         if (!attr->exclude_hv)
9688                                 mask |= PERF_SAMPLE_BRANCH_HV;
9689                         /*
9690                          * adjust user setting (for HW filter setup)
9691                          */
9692                         attr->branch_sample_type = mask;
9693                 }
9694                 /* privileged levels capture (kernel, hv): check permissions */
9695                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9696                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9697                         return -EACCES;
9698         }
9699
9700         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9701                 ret = perf_reg_validate(attr->sample_regs_user);
9702                 if (ret)
9703                         return ret;
9704         }
9705
9706         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9707                 if (!arch_perf_have_user_stack_dump())
9708                         return -ENOSYS;
9709
9710                 /*
9711                  * We have __u32 type for the size, but so far
9712                  * we can only use __u16 as maximum due to the
9713                  * __u16 sample size limit.
9714                  */
9715                 if (attr->sample_stack_user >= USHRT_MAX)
9716                         ret = -EINVAL;
9717                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9718                         ret = -EINVAL;
9719         }
9720
9721         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9722                 ret = perf_reg_validate(attr->sample_regs_intr);
9723 out:
9724         return ret;
9725
9726 err_size:
9727         put_user(sizeof(*attr), &uattr->size);
9728         ret = -E2BIG;
9729         goto out;
9730 }
9731
9732 static int
9733 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9734 {
9735         struct ring_buffer *rb = NULL;
9736         int ret = -EINVAL;
9737
9738         if (!output_event)
9739                 goto set;
9740
9741         /* don't allow circular references */
9742         if (event == output_event)
9743                 goto out;
9744
9745         /*
9746          * Don't allow cross-cpu buffers
9747          */
9748         if (output_event->cpu != event->cpu)
9749                 goto out;
9750
9751         /*
9752          * If its not a per-cpu rb, it must be the same task.
9753          */
9754         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9755                 goto out;
9756
9757         /*
9758          * Mixing clocks in the same buffer is trouble you don't need.
9759          */
9760         if (output_event->clock != event->clock)
9761                 goto out;
9762
9763         /*
9764          * Either writing ring buffer from beginning or from end.
9765          * Mixing is not allowed.
9766          */
9767         if (is_write_backward(output_event) != is_write_backward(event))
9768                 goto out;
9769
9770         /*
9771          * If both events generate aux data, they must be on the same PMU
9772          */
9773         if (has_aux(event) && has_aux(output_event) &&
9774             event->pmu != output_event->pmu)
9775                 goto out;
9776
9777 set:
9778         mutex_lock(&event->mmap_mutex);
9779         /* Can't redirect output if we've got an active mmap() */
9780         if (atomic_read(&event->mmap_count))
9781                 goto unlock;
9782
9783         if (output_event) {
9784                 /* get the rb we want to redirect to */
9785                 rb = ring_buffer_get(output_event);
9786                 if (!rb)
9787                         goto unlock;
9788         }
9789
9790         ring_buffer_attach(event, rb);
9791
9792         ret = 0;
9793 unlock:
9794         mutex_unlock(&event->mmap_mutex);
9795
9796 out:
9797         return ret;
9798 }
9799
9800 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9801 {
9802         if (b < a)
9803                 swap(a, b);
9804
9805         mutex_lock(a);
9806         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9807 }
9808
9809 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9810 {
9811         bool nmi_safe = false;
9812
9813         switch (clk_id) {
9814         case CLOCK_MONOTONIC:
9815                 event->clock = &ktime_get_mono_fast_ns;
9816                 nmi_safe = true;
9817                 break;
9818
9819         case CLOCK_MONOTONIC_RAW:
9820                 event->clock = &ktime_get_raw_fast_ns;
9821                 nmi_safe = true;
9822                 break;
9823
9824         case CLOCK_REALTIME:
9825                 event->clock = &ktime_get_real_ns;
9826                 break;
9827
9828         case CLOCK_BOOTTIME:
9829                 event->clock = &ktime_get_boot_ns;
9830                 break;
9831
9832         case CLOCK_TAI:
9833                 event->clock = &ktime_get_tai_ns;
9834                 break;
9835
9836         default:
9837                 return -EINVAL;
9838         }
9839
9840         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9841                 return -EINVAL;
9842
9843         return 0;
9844 }
9845
9846 /*
9847  * Variation on perf_event_ctx_lock_nested(), except we take two context
9848  * mutexes.
9849  */
9850 static struct perf_event_context *
9851 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9852                              struct perf_event_context *ctx)
9853 {
9854         struct perf_event_context *gctx;
9855
9856 again:
9857         rcu_read_lock();
9858         gctx = READ_ONCE(group_leader->ctx);
9859         if (!atomic_inc_not_zero(&gctx->refcount)) {
9860                 rcu_read_unlock();
9861                 goto again;
9862         }
9863         rcu_read_unlock();
9864
9865         mutex_lock_double(&gctx->mutex, &ctx->mutex);
9866
9867         if (group_leader->ctx != gctx) {
9868                 mutex_unlock(&ctx->mutex);
9869                 mutex_unlock(&gctx->mutex);
9870                 put_ctx(gctx);
9871                 goto again;
9872         }
9873
9874         return gctx;
9875 }
9876
9877 /**
9878  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9879  *
9880  * @attr_uptr:  event_id type attributes for monitoring/sampling
9881  * @pid:                target pid
9882  * @cpu:                target cpu
9883  * @group_fd:           group leader event fd
9884  */
9885 SYSCALL_DEFINE5(perf_event_open,
9886                 struct perf_event_attr __user *, attr_uptr,
9887                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9888 {
9889         struct perf_event *group_leader = NULL, *output_event = NULL;
9890         struct perf_event *event, *sibling;
9891         struct perf_event_attr attr;
9892         struct perf_event_context *ctx, *uninitialized_var(gctx);
9893         struct file *event_file = NULL;
9894         struct fd group = {NULL, 0};
9895         struct task_struct *task = NULL;
9896         struct pmu *pmu;
9897         int event_fd;
9898         int move_group = 0;
9899         int err;
9900         int f_flags = O_RDWR;
9901         int cgroup_fd = -1;
9902
9903         /* for future expandability... */
9904         if (flags & ~PERF_FLAG_ALL)
9905                 return -EINVAL;
9906
9907         err = perf_copy_attr(attr_uptr, &attr);
9908         if (err)
9909                 return err;
9910
9911         if (!attr.exclude_kernel) {
9912                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9913                         return -EACCES;
9914         }
9915
9916         if (attr.namespaces) {
9917                 if (!capable(CAP_SYS_ADMIN))
9918                         return -EACCES;
9919         }
9920
9921         if (attr.freq) {
9922                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9923                         return -EINVAL;
9924         } else {
9925                 if (attr.sample_period & (1ULL << 63))
9926                         return -EINVAL;
9927         }
9928
9929         /* Only privileged users can get physical addresses */
9930         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9931             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9932                 return -EACCES;
9933
9934         if (!attr.sample_max_stack)
9935                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9936
9937         /*
9938          * In cgroup mode, the pid argument is used to pass the fd
9939          * opened to the cgroup directory in cgroupfs. The cpu argument
9940          * designates the cpu on which to monitor threads from that
9941          * cgroup.
9942          */
9943         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9944                 return -EINVAL;
9945
9946         if (flags & PERF_FLAG_FD_CLOEXEC)
9947                 f_flags |= O_CLOEXEC;
9948
9949         event_fd = get_unused_fd_flags(f_flags);
9950         if (event_fd < 0)
9951                 return event_fd;
9952
9953         if (group_fd != -1) {
9954                 err = perf_fget_light(group_fd, &group);
9955                 if (err)
9956                         goto err_fd;
9957                 group_leader = group.file->private_data;
9958                 if (flags & PERF_FLAG_FD_OUTPUT)
9959                         output_event = group_leader;
9960                 if (flags & PERF_FLAG_FD_NO_GROUP)
9961                         group_leader = NULL;
9962         }
9963
9964         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9965                 task = find_lively_task_by_vpid(pid);
9966                 if (IS_ERR(task)) {
9967                         err = PTR_ERR(task);
9968                         goto err_group_fd;
9969                 }
9970         }
9971
9972         if (task && group_leader &&
9973             group_leader->attr.inherit != attr.inherit) {
9974                 err = -EINVAL;
9975                 goto err_task;
9976         }
9977
9978         if (task) {
9979                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9980                 if (err)
9981                         goto err_task;
9982
9983                 /*
9984                  * Reuse ptrace permission checks for now.
9985                  *
9986                  * We must hold cred_guard_mutex across this and any potential
9987                  * perf_install_in_context() call for this new event to
9988                  * serialize against exec() altering our credentials (and the
9989                  * perf_event_exit_task() that could imply).
9990                  */
9991                 err = -EACCES;
9992                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9993                         goto err_cred;
9994         }
9995
9996         if (flags & PERF_FLAG_PID_CGROUP)
9997                 cgroup_fd = pid;
9998
9999         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10000                                  NULL, NULL, cgroup_fd);
10001         if (IS_ERR(event)) {
10002                 err = PTR_ERR(event);
10003                 goto err_cred;
10004         }
10005
10006         if (is_sampling_event(event)) {
10007                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10008                         err = -EOPNOTSUPP;
10009                         goto err_alloc;
10010                 }
10011         }
10012
10013         /*
10014          * Special case software events and allow them to be part of
10015          * any hardware group.
10016          */
10017         pmu = event->pmu;
10018
10019         if (attr.use_clockid) {
10020                 err = perf_event_set_clock(event, attr.clockid);
10021                 if (err)
10022                         goto err_alloc;
10023         }
10024
10025         if (pmu->task_ctx_nr == perf_sw_context)
10026                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10027
10028         if (group_leader &&
10029             (is_software_event(event) != is_software_event(group_leader))) {
10030                 if (is_software_event(event)) {
10031                         /*
10032                          * If event and group_leader are not both a software
10033                          * event, and event is, then group leader is not.
10034                          *
10035                          * Allow the addition of software events to !software
10036                          * groups, this is safe because software events never
10037                          * fail to schedule.
10038                          */
10039                         pmu = group_leader->pmu;
10040                 } else if (is_software_event(group_leader) &&
10041                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10042                         /*
10043                          * In case the group is a pure software group, and we
10044                          * try to add a hardware event, move the whole group to
10045                          * the hardware context.
10046                          */
10047                         move_group = 1;
10048                 }
10049         }
10050
10051         /*
10052          * Get the target context (task or percpu):
10053          */
10054         ctx = find_get_context(pmu, task, event);
10055         if (IS_ERR(ctx)) {
10056                 err = PTR_ERR(ctx);
10057                 goto err_alloc;
10058         }
10059
10060         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10061                 err = -EBUSY;
10062                 goto err_context;
10063         }
10064
10065         /*
10066          * Look up the group leader (we will attach this event to it):
10067          */
10068         if (group_leader) {
10069                 err = -EINVAL;
10070
10071                 /*
10072                  * Do not allow a recursive hierarchy (this new sibling
10073                  * becoming part of another group-sibling):
10074                  */
10075                 if (group_leader->group_leader != group_leader)
10076                         goto err_context;
10077
10078                 /* All events in a group should have the same clock */
10079                 if (group_leader->clock != event->clock)
10080                         goto err_context;
10081
10082                 /*
10083                  * Make sure we're both events for the same CPU;
10084                  * grouping events for different CPUs is broken; since
10085                  * you can never concurrently schedule them anyhow.
10086                  */
10087                 if (group_leader->cpu != event->cpu)
10088                         goto err_context;
10089
10090                 /*
10091                  * Make sure we're both on the same task, or both
10092                  * per-CPU events.
10093                  */
10094                 if (group_leader->ctx->task != ctx->task)
10095                         goto err_context;
10096
10097                 /*
10098                  * Do not allow to attach to a group in a different task
10099                  * or CPU context. If we're moving SW events, we'll fix
10100                  * this up later, so allow that.
10101                  */
10102                 if (!move_group && group_leader->ctx != ctx)
10103                         goto err_context;
10104
10105                 /*
10106                  * Only a group leader can be exclusive or pinned
10107                  */
10108                 if (attr.exclusive || attr.pinned)
10109                         goto err_context;
10110         }
10111
10112         if (output_event) {
10113                 err = perf_event_set_output(event, output_event);
10114                 if (err)
10115                         goto err_context;
10116         }
10117
10118         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10119                                         f_flags);
10120         if (IS_ERR(event_file)) {
10121                 err = PTR_ERR(event_file);
10122                 event_file = NULL;
10123                 goto err_context;
10124         }
10125
10126         if (move_group) {
10127                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10128
10129                 if (gctx->task == TASK_TOMBSTONE) {
10130                         err = -ESRCH;
10131                         goto err_locked;
10132                 }
10133
10134                 /*
10135                  * Check if we raced against another sys_perf_event_open() call
10136                  * moving the software group underneath us.
10137                  */
10138                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10139                         /*
10140                          * If someone moved the group out from under us, check
10141                          * if this new event wound up on the same ctx, if so
10142                          * its the regular !move_group case, otherwise fail.
10143                          */
10144                         if (gctx != ctx) {
10145                                 err = -EINVAL;
10146                                 goto err_locked;
10147                         } else {
10148                                 perf_event_ctx_unlock(group_leader, gctx);
10149                                 move_group = 0;
10150                         }
10151                 }
10152         } else {
10153                 mutex_lock(&ctx->mutex);
10154         }
10155
10156         if (ctx->task == TASK_TOMBSTONE) {
10157                 err = -ESRCH;
10158                 goto err_locked;
10159         }
10160
10161         if (!perf_event_validate_size(event)) {
10162                 err = -E2BIG;
10163                 goto err_locked;
10164         }
10165
10166         if (!task) {
10167                 /*
10168                  * Check if the @cpu we're creating an event for is online.
10169                  *
10170                  * We use the perf_cpu_context::ctx::mutex to serialize against
10171                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10172                  */
10173                 struct perf_cpu_context *cpuctx =
10174                         container_of(ctx, struct perf_cpu_context, ctx);
10175
10176                 if (!cpuctx->online) {
10177                         err = -ENODEV;
10178                         goto err_locked;
10179                 }
10180         }
10181
10182
10183         /*
10184          * Must be under the same ctx::mutex as perf_install_in_context(),
10185          * because we need to serialize with concurrent event creation.
10186          */
10187         if (!exclusive_event_installable(event, ctx)) {
10188                 /* exclusive and group stuff are assumed mutually exclusive */
10189                 WARN_ON_ONCE(move_group);
10190
10191                 err = -EBUSY;
10192                 goto err_locked;
10193         }
10194
10195         WARN_ON_ONCE(ctx->parent_ctx);
10196
10197         /*
10198          * This is the point on no return; we cannot fail hereafter. This is
10199          * where we start modifying current state.
10200          */
10201
10202         if (move_group) {
10203                 /*
10204                  * See perf_event_ctx_lock() for comments on the details
10205                  * of swizzling perf_event::ctx.
10206                  */
10207                 perf_remove_from_context(group_leader, 0);
10208                 put_ctx(gctx);
10209
10210                 list_for_each_entry(sibling, &group_leader->sibling_list,
10211                                     group_entry) {
10212                         perf_remove_from_context(sibling, 0);
10213                         put_ctx(gctx);
10214                 }
10215
10216                 /*
10217                  * Wait for everybody to stop referencing the events through
10218                  * the old lists, before installing it on new lists.
10219                  */
10220                 synchronize_rcu();
10221
10222                 /*
10223                  * Install the group siblings before the group leader.
10224                  *
10225                  * Because a group leader will try and install the entire group
10226                  * (through the sibling list, which is still in-tact), we can
10227                  * end up with siblings installed in the wrong context.
10228                  *
10229                  * By installing siblings first we NO-OP because they're not
10230                  * reachable through the group lists.
10231                  */
10232                 list_for_each_entry(sibling, &group_leader->sibling_list,
10233                                     group_entry) {
10234                         perf_event__state_init(sibling);
10235                         perf_install_in_context(ctx, sibling, sibling->cpu);
10236                         get_ctx(ctx);
10237                 }
10238
10239                 /*
10240                  * Removing from the context ends up with disabled
10241                  * event. What we want here is event in the initial
10242                  * startup state, ready to be add into new context.
10243                  */
10244                 perf_event__state_init(group_leader);
10245                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10246                 get_ctx(ctx);
10247         }
10248
10249         /*
10250          * Precalculate sample_data sizes; do while holding ctx::mutex such
10251          * that we're serialized against further additions and before
10252          * perf_install_in_context() which is the point the event is active and
10253          * can use these values.
10254          */
10255         perf_event__header_size(event);
10256         perf_event__id_header_size(event);
10257
10258         event->owner = current;
10259
10260         perf_install_in_context(ctx, event, event->cpu);
10261         perf_unpin_context(ctx);
10262
10263         if (move_group)
10264                 perf_event_ctx_unlock(group_leader, gctx);
10265         mutex_unlock(&ctx->mutex);
10266
10267         if (task) {
10268                 mutex_unlock(&task->signal->cred_guard_mutex);
10269                 put_task_struct(task);
10270         }
10271
10272         mutex_lock(&current->perf_event_mutex);
10273         list_add_tail(&event->owner_entry, &current->perf_event_list);
10274         mutex_unlock(&current->perf_event_mutex);
10275
10276         /*
10277          * Drop the reference on the group_event after placing the
10278          * new event on the sibling_list. This ensures destruction
10279          * of the group leader will find the pointer to itself in
10280          * perf_group_detach().
10281          */
10282         fdput(group);
10283         fd_install(event_fd, event_file);
10284         return event_fd;
10285
10286 err_locked:
10287         if (move_group)
10288                 perf_event_ctx_unlock(group_leader, gctx);
10289         mutex_unlock(&ctx->mutex);
10290 /* err_file: */
10291         fput(event_file);
10292 err_context:
10293         perf_unpin_context(ctx);
10294         put_ctx(ctx);
10295 err_alloc:
10296         /*
10297          * If event_file is set, the fput() above will have called ->release()
10298          * and that will take care of freeing the event.
10299          */
10300         if (!event_file)
10301                 free_event(event);
10302 err_cred:
10303         if (task)
10304                 mutex_unlock(&task->signal->cred_guard_mutex);
10305 err_task:
10306         if (task)
10307                 put_task_struct(task);
10308 err_group_fd:
10309         fdput(group);
10310 err_fd:
10311         put_unused_fd(event_fd);
10312         return err;
10313 }
10314
10315 /**
10316  * perf_event_create_kernel_counter
10317  *
10318  * @attr: attributes of the counter to create
10319  * @cpu: cpu in which the counter is bound
10320  * @task: task to profile (NULL for percpu)
10321  */
10322 struct perf_event *
10323 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10324                                  struct task_struct *task,
10325                                  perf_overflow_handler_t overflow_handler,
10326                                  void *context)
10327 {
10328         struct perf_event_context *ctx;
10329         struct perf_event *event;
10330         int err;
10331
10332         /*
10333          * Get the target context (task or percpu):
10334          */
10335
10336         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10337                                  overflow_handler, context, -1);
10338         if (IS_ERR(event)) {
10339                 err = PTR_ERR(event);
10340                 goto err;
10341         }
10342
10343         /* Mark owner so we could distinguish it from user events. */
10344         event->owner = TASK_TOMBSTONE;
10345
10346         ctx = find_get_context(event->pmu, task, event);
10347         if (IS_ERR(ctx)) {
10348                 err = PTR_ERR(ctx);
10349                 goto err_free;
10350         }
10351
10352         WARN_ON_ONCE(ctx->parent_ctx);
10353         mutex_lock(&ctx->mutex);
10354         if (ctx->task == TASK_TOMBSTONE) {
10355                 err = -ESRCH;
10356                 goto err_unlock;
10357         }
10358
10359         if (!task) {
10360                 /*
10361                  * Check if the @cpu we're creating an event for is online.
10362                  *
10363                  * We use the perf_cpu_context::ctx::mutex to serialize against
10364                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10365                  */
10366                 struct perf_cpu_context *cpuctx =
10367                         container_of(ctx, struct perf_cpu_context, ctx);
10368                 if (!cpuctx->online) {
10369                         err = -ENODEV;
10370                         goto err_unlock;
10371                 }
10372         }
10373
10374         if (!exclusive_event_installable(event, ctx)) {
10375                 err = -EBUSY;
10376                 goto err_unlock;
10377         }
10378
10379         perf_install_in_context(ctx, event, cpu);
10380         perf_unpin_context(ctx);
10381         mutex_unlock(&ctx->mutex);
10382
10383         return event;
10384
10385 err_unlock:
10386         mutex_unlock(&ctx->mutex);
10387         perf_unpin_context(ctx);
10388         put_ctx(ctx);
10389 err_free:
10390         free_event(event);
10391 err:
10392         return ERR_PTR(err);
10393 }
10394 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10395
10396 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10397 {
10398         struct perf_event_context *src_ctx;
10399         struct perf_event_context *dst_ctx;
10400         struct perf_event *event, *tmp;
10401         LIST_HEAD(events);
10402
10403         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10404         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10405
10406         /*
10407          * See perf_event_ctx_lock() for comments on the details
10408          * of swizzling perf_event::ctx.
10409          */
10410         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10411         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10412                                  event_entry) {
10413                 perf_remove_from_context(event, 0);
10414                 unaccount_event_cpu(event, src_cpu);
10415                 put_ctx(src_ctx);
10416                 list_add(&event->migrate_entry, &events);
10417         }
10418
10419         /*
10420          * Wait for the events to quiesce before re-instating them.
10421          */
10422         synchronize_rcu();
10423
10424         /*
10425          * Re-instate events in 2 passes.
10426          *
10427          * Skip over group leaders and only install siblings on this first
10428          * pass, siblings will not get enabled without a leader, however a
10429          * leader will enable its siblings, even if those are still on the old
10430          * context.
10431          */
10432         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10433                 if (event->group_leader == event)
10434                         continue;
10435
10436                 list_del(&event->migrate_entry);
10437                 if (event->state >= PERF_EVENT_STATE_OFF)
10438                         event->state = PERF_EVENT_STATE_INACTIVE;
10439                 account_event_cpu(event, dst_cpu);
10440                 perf_install_in_context(dst_ctx, event, dst_cpu);
10441                 get_ctx(dst_ctx);
10442         }
10443
10444         /*
10445          * Once all the siblings are setup properly, install the group leaders
10446          * to make it go.
10447          */
10448         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10449                 list_del(&event->migrate_entry);
10450                 if (event->state >= PERF_EVENT_STATE_OFF)
10451                         event->state = PERF_EVENT_STATE_INACTIVE;
10452                 account_event_cpu(event, dst_cpu);
10453                 perf_install_in_context(dst_ctx, event, dst_cpu);
10454                 get_ctx(dst_ctx);
10455         }
10456         mutex_unlock(&dst_ctx->mutex);
10457         mutex_unlock(&src_ctx->mutex);
10458 }
10459 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10460
10461 static void sync_child_event(struct perf_event *child_event,
10462                                struct task_struct *child)
10463 {
10464         struct perf_event *parent_event = child_event->parent;
10465         u64 child_val;
10466
10467         if (child_event->attr.inherit_stat)
10468                 perf_event_read_event(child_event, child);
10469
10470         child_val = perf_event_count(child_event);
10471
10472         /*
10473          * Add back the child's count to the parent's count:
10474          */
10475         atomic64_add(child_val, &parent_event->child_count);
10476         atomic64_add(child_event->total_time_enabled,
10477                      &parent_event->child_total_time_enabled);
10478         atomic64_add(child_event->total_time_running,
10479                      &parent_event->child_total_time_running);
10480 }
10481
10482 static void
10483 perf_event_exit_event(struct perf_event *child_event,
10484                       struct perf_event_context *child_ctx,
10485                       struct task_struct *child)
10486 {
10487         struct perf_event *parent_event = child_event->parent;
10488
10489         /*
10490          * Do not destroy the 'original' grouping; because of the context
10491          * switch optimization the original events could've ended up in a
10492          * random child task.
10493          *
10494          * If we were to destroy the original group, all group related
10495          * operations would cease to function properly after this random
10496          * child dies.
10497          *
10498          * Do destroy all inherited groups, we don't care about those
10499          * and being thorough is better.
10500          */
10501         raw_spin_lock_irq(&child_ctx->lock);
10502         WARN_ON_ONCE(child_ctx->is_active);
10503
10504         if (parent_event)
10505                 perf_group_detach(child_event);
10506         list_del_event(child_event, child_ctx);
10507         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10508         raw_spin_unlock_irq(&child_ctx->lock);
10509
10510         /*
10511          * Parent events are governed by their filedesc, retain them.
10512          */
10513         if (!parent_event) {
10514                 perf_event_wakeup(child_event);
10515                 return;
10516         }
10517         /*
10518          * Child events can be cleaned up.
10519          */
10520
10521         sync_child_event(child_event, child);
10522
10523         /*
10524          * Remove this event from the parent's list
10525          */
10526         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10527         mutex_lock(&parent_event->child_mutex);
10528         list_del_init(&child_event->child_list);
10529         mutex_unlock(&parent_event->child_mutex);
10530
10531         /*
10532          * Kick perf_poll() for is_event_hup().
10533          */
10534         perf_event_wakeup(parent_event);
10535         free_event(child_event);
10536         put_event(parent_event);
10537 }
10538
10539 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10540 {
10541         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10542         struct perf_event *child_event, *next;
10543
10544         WARN_ON_ONCE(child != current);
10545
10546         child_ctx = perf_pin_task_context(child, ctxn);
10547         if (!child_ctx)
10548                 return;
10549
10550         /*
10551          * In order to reduce the amount of tricky in ctx tear-down, we hold
10552          * ctx::mutex over the entire thing. This serializes against almost
10553          * everything that wants to access the ctx.
10554          *
10555          * The exception is sys_perf_event_open() /
10556          * perf_event_create_kernel_count() which does find_get_context()
10557          * without ctx::mutex (it cannot because of the move_group double mutex
10558          * lock thing). See the comments in perf_install_in_context().
10559          */
10560         mutex_lock(&child_ctx->mutex);
10561
10562         /*
10563          * In a single ctx::lock section, de-schedule the events and detach the
10564          * context from the task such that we cannot ever get it scheduled back
10565          * in.
10566          */
10567         raw_spin_lock_irq(&child_ctx->lock);
10568         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10569
10570         /*
10571          * Now that the context is inactive, destroy the task <-> ctx relation
10572          * and mark the context dead.
10573          */
10574         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10575         put_ctx(child_ctx); /* cannot be last */
10576         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10577         put_task_struct(current); /* cannot be last */
10578
10579         clone_ctx = unclone_ctx(child_ctx);
10580         raw_spin_unlock_irq(&child_ctx->lock);
10581
10582         if (clone_ctx)
10583                 put_ctx(clone_ctx);
10584
10585         /*
10586          * Report the task dead after unscheduling the events so that we
10587          * won't get any samples after PERF_RECORD_EXIT. We can however still
10588          * get a few PERF_RECORD_READ events.
10589          */
10590         perf_event_task(child, child_ctx, 0);
10591
10592         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10593                 perf_event_exit_event(child_event, child_ctx, child);
10594
10595         mutex_unlock(&child_ctx->mutex);
10596
10597         put_ctx(child_ctx);
10598 }
10599
10600 /*
10601  * When a child task exits, feed back event values to parent events.
10602  *
10603  * Can be called with cred_guard_mutex held when called from
10604  * install_exec_creds().
10605  */
10606 void perf_event_exit_task(struct task_struct *child)
10607 {
10608         struct perf_event *event, *tmp;
10609         int ctxn;
10610
10611         mutex_lock(&child->perf_event_mutex);
10612         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10613                                  owner_entry) {
10614                 list_del_init(&event->owner_entry);
10615
10616                 /*
10617                  * Ensure the list deletion is visible before we clear
10618                  * the owner, closes a race against perf_release() where
10619                  * we need to serialize on the owner->perf_event_mutex.
10620                  */
10621                 smp_store_release(&event->owner, NULL);
10622         }
10623         mutex_unlock(&child->perf_event_mutex);
10624
10625         for_each_task_context_nr(ctxn)
10626                 perf_event_exit_task_context(child, ctxn);
10627
10628         /*
10629          * The perf_event_exit_task_context calls perf_event_task
10630          * with child's task_ctx, which generates EXIT events for
10631          * child contexts and sets child->perf_event_ctxp[] to NULL.
10632          * At this point we need to send EXIT events to cpu contexts.
10633          */
10634         perf_event_task(child, NULL, 0);
10635 }
10636
10637 static void perf_free_event(struct perf_event *event,
10638                             struct perf_event_context *ctx)
10639 {
10640         struct perf_event *parent = event->parent;
10641
10642         if (WARN_ON_ONCE(!parent))
10643                 return;
10644
10645         mutex_lock(&parent->child_mutex);
10646         list_del_init(&event->child_list);
10647         mutex_unlock(&parent->child_mutex);
10648
10649         put_event(parent);
10650
10651         raw_spin_lock_irq(&ctx->lock);
10652         perf_group_detach(event);
10653         list_del_event(event, ctx);
10654         raw_spin_unlock_irq(&ctx->lock);
10655         free_event(event);
10656 }
10657
10658 /*
10659  * Free an unexposed, unused context as created by inheritance by
10660  * perf_event_init_task below, used by fork() in case of fail.
10661  *
10662  * Not all locks are strictly required, but take them anyway to be nice and
10663  * help out with the lockdep assertions.
10664  */
10665 void perf_event_free_task(struct task_struct *task)
10666 {
10667         struct perf_event_context *ctx;
10668         struct perf_event *event, *tmp;
10669         int ctxn;
10670
10671         for_each_task_context_nr(ctxn) {
10672                 ctx = task->perf_event_ctxp[ctxn];
10673                 if (!ctx)
10674                         continue;
10675
10676                 mutex_lock(&ctx->mutex);
10677                 raw_spin_lock_irq(&ctx->lock);
10678                 /*
10679                  * Destroy the task <-> ctx relation and mark the context dead.
10680                  *
10681                  * This is important because even though the task hasn't been
10682                  * exposed yet the context has been (through child_list).
10683                  */
10684                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10685                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10686                 put_task_struct(task); /* cannot be last */
10687                 raw_spin_unlock_irq(&ctx->lock);
10688
10689                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10690                         perf_free_event(event, ctx);
10691
10692                 mutex_unlock(&ctx->mutex);
10693                 put_ctx(ctx);
10694         }
10695 }
10696
10697 void perf_event_delayed_put(struct task_struct *task)
10698 {
10699         int ctxn;
10700
10701         for_each_task_context_nr(ctxn)
10702                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10703 }
10704
10705 struct file *perf_event_get(unsigned int fd)
10706 {
10707         struct file *file;
10708
10709         file = fget_raw(fd);
10710         if (!file)
10711                 return ERR_PTR(-EBADF);
10712
10713         if (file->f_op != &perf_fops) {
10714                 fput(file);
10715                 return ERR_PTR(-EBADF);
10716         }
10717
10718         return file;
10719 }
10720
10721 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10722 {
10723         if (!event)
10724                 return ERR_PTR(-EINVAL);
10725
10726         return &event->attr;
10727 }
10728
10729 /*
10730  * Inherit a event from parent task to child task.
10731  *
10732  * Returns:
10733  *  - valid pointer on success
10734  *  - NULL for orphaned events
10735  *  - IS_ERR() on error
10736  */
10737 static struct perf_event *
10738 inherit_event(struct perf_event *parent_event,
10739               struct task_struct *parent,
10740               struct perf_event_context *parent_ctx,
10741               struct task_struct *child,
10742               struct perf_event *group_leader,
10743               struct perf_event_context *child_ctx)
10744 {
10745         enum perf_event_state parent_state = parent_event->state;
10746         struct perf_event *child_event;
10747         unsigned long flags;
10748
10749         /*
10750          * Instead of creating recursive hierarchies of events,
10751          * we link inherited events back to the original parent,
10752          * which has a filp for sure, which we use as the reference
10753          * count:
10754          */
10755         if (parent_event->parent)
10756                 parent_event = parent_event->parent;
10757
10758         child_event = perf_event_alloc(&parent_event->attr,
10759                                            parent_event->cpu,
10760                                            child,
10761                                            group_leader, parent_event,
10762                                            NULL, NULL, -1);
10763         if (IS_ERR(child_event))
10764                 return child_event;
10765
10766
10767         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
10768             !child_ctx->task_ctx_data) {
10769                 struct pmu *pmu = child_event->pmu;
10770
10771                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
10772                                                    GFP_KERNEL);
10773                 if (!child_ctx->task_ctx_data) {
10774                         free_event(child_event);
10775                         return NULL;
10776                 }
10777         }
10778
10779         /*
10780          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10781          * must be under the same lock in order to serialize against
10782          * perf_event_release_kernel(), such that either we must observe
10783          * is_orphaned_event() or they will observe us on the child_list.
10784          */
10785         mutex_lock(&parent_event->child_mutex);
10786         if (is_orphaned_event(parent_event) ||
10787             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10788                 mutex_unlock(&parent_event->child_mutex);
10789                 /* task_ctx_data is freed with child_ctx */
10790                 free_event(child_event);
10791                 return NULL;
10792         }
10793
10794         get_ctx(child_ctx);
10795
10796         /*
10797          * Make the child state follow the state of the parent event,
10798          * not its attr.disabled bit.  We hold the parent's mutex,
10799          * so we won't race with perf_event_{en, dis}able_family.
10800          */
10801         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10802                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10803         else
10804                 child_event->state = PERF_EVENT_STATE_OFF;
10805
10806         if (parent_event->attr.freq) {
10807                 u64 sample_period = parent_event->hw.sample_period;
10808                 struct hw_perf_event *hwc = &child_event->hw;
10809
10810                 hwc->sample_period = sample_period;
10811                 hwc->last_period   = sample_period;
10812
10813                 local64_set(&hwc->period_left, sample_period);
10814         }
10815
10816         child_event->ctx = child_ctx;
10817         child_event->overflow_handler = parent_event->overflow_handler;
10818         child_event->overflow_handler_context
10819                 = parent_event->overflow_handler_context;
10820
10821         /*
10822          * Precalculate sample_data sizes
10823          */
10824         perf_event__header_size(child_event);
10825         perf_event__id_header_size(child_event);
10826
10827         /*
10828          * Link it up in the child's context:
10829          */
10830         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10831         add_event_to_ctx(child_event, child_ctx);
10832         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10833
10834         /*
10835          * Link this into the parent event's child list
10836          */
10837         list_add_tail(&child_event->child_list, &parent_event->child_list);
10838         mutex_unlock(&parent_event->child_mutex);
10839
10840         return child_event;
10841 }
10842
10843 /*
10844  * Inherits an event group.
10845  *
10846  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10847  * This matches with perf_event_release_kernel() removing all child events.
10848  *
10849  * Returns:
10850  *  - 0 on success
10851  *  - <0 on error
10852  */
10853 static int inherit_group(struct perf_event *parent_event,
10854               struct task_struct *parent,
10855               struct perf_event_context *parent_ctx,
10856               struct task_struct *child,
10857               struct perf_event_context *child_ctx)
10858 {
10859         struct perf_event *leader;
10860         struct perf_event *sub;
10861         struct perf_event *child_ctr;
10862
10863         leader = inherit_event(parent_event, parent, parent_ctx,
10864                                  child, NULL, child_ctx);
10865         if (IS_ERR(leader))
10866                 return PTR_ERR(leader);
10867         /*
10868          * @leader can be NULL here because of is_orphaned_event(). In this
10869          * case inherit_event() will create individual events, similar to what
10870          * perf_group_detach() would do anyway.
10871          */
10872         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10873                 child_ctr = inherit_event(sub, parent, parent_ctx,
10874                                             child, leader, child_ctx);
10875                 if (IS_ERR(child_ctr))
10876                         return PTR_ERR(child_ctr);
10877         }
10878         return 0;
10879 }
10880
10881 /*
10882  * Creates the child task context and tries to inherit the event-group.
10883  *
10884  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10885  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10886  * consistent with perf_event_release_kernel() removing all child events.
10887  *
10888  * Returns:
10889  *  - 0 on success
10890  *  - <0 on error
10891  */
10892 static int
10893 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10894                    struct perf_event_context *parent_ctx,
10895                    struct task_struct *child, int ctxn,
10896                    int *inherited_all)
10897 {
10898         int ret;
10899         struct perf_event_context *child_ctx;
10900
10901         if (!event->attr.inherit) {
10902                 *inherited_all = 0;
10903                 return 0;
10904         }
10905
10906         child_ctx = child->perf_event_ctxp[ctxn];
10907         if (!child_ctx) {
10908                 /*
10909                  * This is executed from the parent task context, so
10910                  * inherit events that have been marked for cloning.
10911                  * First allocate and initialize a context for the
10912                  * child.
10913                  */
10914                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10915                 if (!child_ctx)
10916                         return -ENOMEM;
10917
10918                 child->perf_event_ctxp[ctxn] = child_ctx;
10919         }
10920
10921         ret = inherit_group(event, parent, parent_ctx,
10922                             child, child_ctx);
10923
10924         if (ret)
10925                 *inherited_all = 0;
10926
10927         return ret;
10928 }
10929
10930 /*
10931  * Initialize the perf_event context in task_struct
10932  */
10933 static int perf_event_init_context(struct task_struct *child, int ctxn)
10934 {
10935         struct perf_event_context *child_ctx, *parent_ctx;
10936         struct perf_event_context *cloned_ctx;
10937         struct perf_event *event;
10938         struct task_struct *parent = current;
10939         int inherited_all = 1;
10940         unsigned long flags;
10941         int ret = 0;
10942
10943         if (likely(!parent->perf_event_ctxp[ctxn]))
10944                 return 0;
10945
10946         /*
10947          * If the parent's context is a clone, pin it so it won't get
10948          * swapped under us.
10949          */
10950         parent_ctx = perf_pin_task_context(parent, ctxn);
10951         if (!parent_ctx)
10952                 return 0;
10953
10954         /*
10955          * No need to check if parent_ctx != NULL here; since we saw
10956          * it non-NULL earlier, the only reason for it to become NULL
10957          * is if we exit, and since we're currently in the middle of
10958          * a fork we can't be exiting at the same time.
10959          */
10960
10961         /*
10962          * Lock the parent list. No need to lock the child - not PID
10963          * hashed yet and not running, so nobody can access it.
10964          */
10965         mutex_lock(&parent_ctx->mutex);
10966
10967         /*
10968          * We dont have to disable NMIs - we are only looking at
10969          * the list, not manipulating it:
10970          */
10971         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10972                 ret = inherit_task_group(event, parent, parent_ctx,
10973                                          child, ctxn, &inherited_all);
10974                 if (ret)
10975                         goto out_unlock;
10976         }
10977
10978         /*
10979          * We can't hold ctx->lock when iterating the ->flexible_group list due
10980          * to allocations, but we need to prevent rotation because
10981          * rotate_ctx() will change the list from interrupt context.
10982          */
10983         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10984         parent_ctx->rotate_disable = 1;
10985         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10986
10987         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10988                 ret = inherit_task_group(event, parent, parent_ctx,
10989                                          child, ctxn, &inherited_all);
10990                 if (ret)
10991                         goto out_unlock;
10992         }
10993
10994         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10995         parent_ctx->rotate_disable = 0;
10996
10997         child_ctx = child->perf_event_ctxp[ctxn];
10998
10999         if (child_ctx && inherited_all) {
11000                 /*
11001                  * Mark the child context as a clone of the parent
11002                  * context, or of whatever the parent is a clone of.
11003                  *
11004                  * Note that if the parent is a clone, the holding of
11005                  * parent_ctx->lock avoids it from being uncloned.
11006                  */
11007                 cloned_ctx = parent_ctx->parent_ctx;
11008                 if (cloned_ctx) {
11009                         child_ctx->parent_ctx = cloned_ctx;
11010                         child_ctx->parent_gen = parent_ctx->parent_gen;
11011                 } else {
11012                         child_ctx->parent_ctx = parent_ctx;
11013                         child_ctx->parent_gen = parent_ctx->generation;
11014                 }
11015                 get_ctx(child_ctx->parent_ctx);
11016         }
11017
11018         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11019 out_unlock:
11020         mutex_unlock(&parent_ctx->mutex);
11021
11022         perf_unpin_context(parent_ctx);
11023         put_ctx(parent_ctx);
11024
11025         return ret;
11026 }
11027
11028 /*
11029  * Initialize the perf_event context in task_struct
11030  */
11031 int perf_event_init_task(struct task_struct *child)
11032 {
11033         int ctxn, ret;
11034
11035         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11036         mutex_init(&child->perf_event_mutex);
11037         INIT_LIST_HEAD(&child->perf_event_list);
11038
11039         for_each_task_context_nr(ctxn) {
11040                 ret = perf_event_init_context(child, ctxn);
11041                 if (ret) {
11042                         perf_event_free_task(child);
11043                         return ret;
11044                 }
11045         }
11046
11047         return 0;
11048 }
11049
11050 static void __init perf_event_init_all_cpus(void)
11051 {
11052         struct swevent_htable *swhash;
11053         int cpu;
11054
11055         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11056
11057         for_each_possible_cpu(cpu) {
11058                 swhash = &per_cpu(swevent_htable, cpu);
11059                 mutex_init(&swhash->hlist_mutex);
11060                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11061
11062                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11063                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11064
11065 #ifdef CONFIG_CGROUP_PERF
11066                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11067 #endif
11068                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11069         }
11070 }
11071
11072 void perf_swevent_init_cpu(unsigned int cpu)
11073 {
11074         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11075
11076         mutex_lock(&swhash->hlist_mutex);
11077         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11078                 struct swevent_hlist *hlist;
11079
11080                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11081                 WARN_ON(!hlist);
11082                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11083         }
11084         mutex_unlock(&swhash->hlist_mutex);
11085 }
11086
11087 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11088 static void __perf_event_exit_context(void *__info)
11089 {
11090         struct perf_event_context *ctx = __info;
11091         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11092         struct perf_event *event;
11093
11094         raw_spin_lock(&ctx->lock);
11095         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11096         list_for_each_entry(event, &ctx->event_list, event_entry)
11097                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11098         raw_spin_unlock(&ctx->lock);
11099 }
11100
11101 static void perf_event_exit_cpu_context(int cpu)
11102 {
11103         struct perf_cpu_context *cpuctx;
11104         struct perf_event_context *ctx;
11105         struct pmu *pmu;
11106
11107         mutex_lock(&pmus_lock);
11108         list_for_each_entry(pmu, &pmus, entry) {
11109                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11110                 ctx = &cpuctx->ctx;
11111
11112                 mutex_lock(&ctx->mutex);
11113                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11114                 cpuctx->online = 0;
11115                 mutex_unlock(&ctx->mutex);
11116         }
11117         cpumask_clear_cpu(cpu, perf_online_mask);
11118         mutex_unlock(&pmus_lock);
11119 }
11120 #else
11121
11122 static void perf_event_exit_cpu_context(int cpu) { }
11123
11124 #endif
11125
11126 int perf_event_init_cpu(unsigned int cpu)
11127 {
11128         struct perf_cpu_context *cpuctx;
11129         struct perf_event_context *ctx;
11130         struct pmu *pmu;
11131
11132         perf_swevent_init_cpu(cpu);
11133
11134         mutex_lock(&pmus_lock);
11135         cpumask_set_cpu(cpu, perf_online_mask);
11136         list_for_each_entry(pmu, &pmus, entry) {
11137                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11138                 ctx = &cpuctx->ctx;
11139
11140                 mutex_lock(&ctx->mutex);
11141                 cpuctx->online = 1;
11142                 mutex_unlock(&ctx->mutex);
11143         }
11144         mutex_unlock(&pmus_lock);
11145
11146         return 0;
11147 }
11148
11149 int perf_event_exit_cpu(unsigned int cpu)
11150 {
11151         perf_event_exit_cpu_context(cpu);
11152         return 0;
11153 }
11154
11155 static int
11156 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11157 {
11158         int cpu;
11159
11160         for_each_online_cpu(cpu)
11161                 perf_event_exit_cpu(cpu);
11162
11163         return NOTIFY_OK;
11164 }
11165
11166 /*
11167  * Run the perf reboot notifier at the very last possible moment so that
11168  * the generic watchdog code runs as long as possible.
11169  */
11170 static struct notifier_block perf_reboot_notifier = {
11171         .notifier_call = perf_reboot,
11172         .priority = INT_MIN,
11173 };
11174
11175 void __init perf_event_init(void)
11176 {
11177         int ret;
11178
11179         idr_init(&pmu_idr);
11180
11181         perf_event_init_all_cpus();
11182         init_srcu_struct(&pmus_srcu);
11183         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11184         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11185         perf_pmu_register(&perf_task_clock, NULL, -1);
11186         perf_tp_register();
11187         perf_event_init_cpu(smp_processor_id());
11188         register_reboot_notifier(&perf_reboot_notifier);
11189
11190         ret = init_hw_breakpoint();
11191         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11192
11193         /*
11194          * Build time assertion that we keep the data_head at the intended
11195          * location.  IOW, validation we got the __reserved[] size right.
11196          */
11197         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11198                      != 1024);
11199 }
11200
11201 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11202                               char *page)
11203 {
11204         struct perf_pmu_events_attr *pmu_attr =
11205                 container_of(attr, struct perf_pmu_events_attr, attr);
11206
11207         if (pmu_attr->event_str)
11208                 return sprintf(page, "%s\n", pmu_attr->event_str);
11209
11210         return 0;
11211 }
11212 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11213
11214 static int __init perf_event_sysfs_init(void)
11215 {
11216         struct pmu *pmu;
11217         int ret;
11218
11219         mutex_lock(&pmus_lock);
11220
11221         ret = bus_register(&pmu_bus);
11222         if (ret)
11223                 goto unlock;
11224
11225         list_for_each_entry(pmu, &pmus, entry) {
11226                 if (!pmu->name || pmu->type < 0)
11227                         continue;
11228
11229                 ret = pmu_dev_alloc(pmu);
11230                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11231         }
11232         pmu_bus_running = 1;
11233         ret = 0;
11234
11235 unlock:
11236         mutex_unlock(&pmus_lock);
11237
11238         return ret;
11239 }
11240 device_initcall(perf_event_sysfs_init);
11241
11242 #ifdef CONFIG_CGROUP_PERF
11243 static struct cgroup_subsys_state *
11244 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11245 {
11246         struct perf_cgroup *jc;
11247
11248         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11249         if (!jc)
11250                 return ERR_PTR(-ENOMEM);
11251
11252         jc->info = alloc_percpu(struct perf_cgroup_info);
11253         if (!jc->info) {
11254                 kfree(jc);
11255                 return ERR_PTR(-ENOMEM);
11256         }
11257
11258         return &jc->css;
11259 }
11260
11261 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11262 {
11263         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11264
11265         free_percpu(jc->info);
11266         kfree(jc);
11267 }
11268
11269 static int __perf_cgroup_move(void *info)
11270 {
11271         struct task_struct *task = info;
11272         rcu_read_lock();
11273         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11274         rcu_read_unlock();
11275         return 0;
11276 }
11277
11278 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11279 {
11280         struct task_struct *task;
11281         struct cgroup_subsys_state *css;
11282
11283         cgroup_taskset_for_each(task, css, tset)
11284                 task_function_call(task, __perf_cgroup_move, task);
11285 }
11286
11287 struct cgroup_subsys perf_event_cgrp_subsys = {
11288         .css_alloc      = perf_cgroup_css_alloc,
11289         .css_free       = perf_cgroup_css_free,
11290         .attach         = perf_cgroup_attach,
11291         /*
11292          * Implicitly enable on dfl hierarchy so that perf events can
11293          * always be filtered by cgroup2 path as long as perf_event
11294          * controller is not mounted on a legacy hierarchy.
11295          */
11296         .implicit_on_dfl = true,
11297         .threaded       = true,
11298 };
11299 #endif /* CONFIG_CGROUP_PERF */