1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2018-2020 Christoph Hellwig.
5 * DMA operations that map physical memory directly without using an IOMMU.
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include <linux/pci-p2pdma.h>
20 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
21 * it for entirely different regions. In that case the arch code needs to
22 * override the variable below for dma-direct to work properly.
24 u64 zone_dma_limit __ro_after_init = DMA_BIT_MASK(24);
26 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
29 if (force_dma_unencrypted(dev))
30 return phys_to_dma_unencrypted(dev, phys);
31 return phys_to_dma(dev, phys);
34 static inline struct page *dma_direct_to_page(struct device *dev,
37 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
40 u64 dma_direct_get_required_mask(struct device *dev)
42 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
43 u64 max_dma = phys_to_dma_direct(dev, phys);
45 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
48 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit)
50 u64 dma_limit = min_not_zero(
51 dev->coherent_dma_mask,
55 * Optimistically try the zone that the physical address mask falls
56 * into first. If that returns memory that isn't actually addressable
57 * we will fallback to the next lower zone and try again.
59 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
62 *phys_limit = dma_to_phys(dev, dma_limit);
63 if (*phys_limit <= zone_dma_limit)
65 if (*phys_limit <= DMA_BIT_MASK(32))
70 bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
72 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
74 if (dma_addr == DMA_MAPPING_ERROR)
76 return dma_addr + size - 1 <=
77 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
80 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
82 if (!force_dma_unencrypted(dev))
84 return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
87 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
91 if (!force_dma_unencrypted(dev))
93 ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
95 pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
99 static void __dma_direct_free_pages(struct device *dev, struct page *page,
102 if (swiotlb_free(dev, page, size))
104 dma_free_contiguous(dev, page, size);
107 static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
109 struct page *page = swiotlb_alloc(dev, size);
111 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
112 swiotlb_free(dev, page, size);
119 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
120 gfp_t gfp, bool allow_highmem)
122 int node = dev_to_node(dev);
123 struct page *page = NULL;
126 WARN_ON_ONCE(!PAGE_ALIGNED(size));
128 if (is_swiotlb_for_alloc(dev))
129 return dma_direct_alloc_swiotlb(dev, size);
131 gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
132 page = dma_alloc_contiguous(dev, size, gfp);
134 if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
135 (!allow_highmem && PageHighMem(page))) {
136 dma_free_contiguous(dev, page, size);
142 page = alloc_pages_node(node, gfp, get_order(size));
143 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
144 __free_pages(page, get_order(size));
147 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
148 phys_limit < DMA_BIT_MASK(64) &&
149 !(gfp & (GFP_DMA32 | GFP_DMA))) {
154 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
155 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
164 * Check if a potentially blocking operations needs to dip into the atomic
165 * pools for the given device/gfp.
167 static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
169 return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
172 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
173 dma_addr_t *dma_handle, gfp_t gfp)
179 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
182 gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
183 page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
186 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
190 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
191 dma_addr_t *dma_handle, gfp_t gfp)
195 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
199 /* remove any dirty cache lines on the kernel alias */
200 if (!PageHighMem(page))
201 arch_dma_prep_coherent(page, size);
203 /* return the page pointer as the opaque cookie */
204 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
208 void *dma_direct_alloc(struct device *dev, size_t size,
209 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
211 bool remap = false, set_uncached = false;
215 size = PAGE_ALIGN(size);
216 if (attrs & DMA_ATTR_NO_WARN)
219 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
220 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
221 return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
223 if (!dev_is_dma_coherent(dev)) {
224 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
225 !is_swiotlb_for_alloc(dev))
226 return arch_dma_alloc(dev, size, dma_handle, gfp,
230 * If there is a global pool, always allocate from it for
231 * non-coherent devices.
233 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
234 return dma_alloc_from_global_coherent(dev, size,
238 * Otherwise we require the architecture to either be able to
239 * mark arbitrary parts of the kernel direct mapping uncached,
240 * or remapped it uncached.
242 set_uncached = IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED);
243 remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
244 if (!set_uncached && !remap) {
245 pr_warn_once("coherent DMA allocations not supported on this platform.\n");
251 * Remapping or decrypting memory may block, allocate the memory from
252 * the atomic pools instead if we aren't allowed block.
254 if ((remap || force_dma_unencrypted(dev)) &&
255 dma_direct_use_pool(dev, gfp))
256 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
258 /* we always manually zero the memory once we are done */
259 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
264 * dma_alloc_contiguous can return highmem pages depending on a
265 * combination the cma= arguments and per-arch setup. These need to be
266 * remapped to return a kernel virtual address.
268 if (PageHighMem(page)) {
270 set_uncached = false;
274 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
276 if (force_dma_unencrypted(dev))
277 prot = pgprot_decrypted(prot);
279 /* remove any dirty cache lines on the kernel alias */
280 arch_dma_prep_coherent(page, size);
282 /* create a coherent mapping */
283 ret = dma_common_contiguous_remap(page, size, prot,
284 __builtin_return_address(0));
288 ret = page_address(page);
289 if (dma_set_decrypted(dev, ret, size))
293 memset(ret, 0, size);
296 arch_dma_prep_coherent(page, size);
297 ret = arch_dma_set_uncached(ret, size);
299 goto out_encrypt_pages;
302 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
306 if (dma_set_encrypted(dev, page_address(page), size))
309 __dma_direct_free_pages(dev, page, size);
315 void dma_direct_free(struct device *dev, size_t size,
316 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
318 unsigned int page_order = get_order(size);
320 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
321 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
322 /* cpu_addr is a struct page cookie, not a kernel address */
323 dma_free_contiguous(dev, cpu_addr, size);
327 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
328 !dev_is_dma_coherent(dev) &&
329 !is_swiotlb_for_alloc(dev)) {
330 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
334 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
335 !dev_is_dma_coherent(dev)) {
336 if (!dma_release_from_global_coherent(page_order, cpu_addr))
341 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
342 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
343 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
346 if (is_vmalloc_addr(cpu_addr)) {
349 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
350 arch_dma_clear_uncached(cpu_addr, size);
351 if (dma_set_encrypted(dev, cpu_addr, size))
355 __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
358 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
359 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
364 if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
365 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
367 page = __dma_direct_alloc_pages(dev, size, gfp, false);
371 ret = page_address(page);
372 if (dma_set_decrypted(dev, ret, size))
374 memset(ret, 0, size);
375 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
381 void dma_direct_free_pages(struct device *dev, size_t size,
382 struct page *page, dma_addr_t dma_addr,
383 enum dma_data_direction dir)
385 void *vaddr = page_address(page);
387 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
388 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
389 dma_free_from_pool(dev, vaddr, size))
392 if (dma_set_encrypted(dev, vaddr, size))
394 __dma_direct_free_pages(dev, page, size);
397 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
398 defined(CONFIG_SWIOTLB)
399 void dma_direct_sync_sg_for_device(struct device *dev,
400 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
402 struct scatterlist *sg;
405 for_each_sg(sgl, sg, nents, i) {
406 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
408 swiotlb_sync_single_for_device(dev, paddr, sg->length, dir);
410 if (!dev_is_dma_coherent(dev))
411 arch_sync_dma_for_device(paddr, sg->length,
417 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
418 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
419 defined(CONFIG_SWIOTLB)
420 void dma_direct_sync_sg_for_cpu(struct device *dev,
421 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
423 struct scatterlist *sg;
426 for_each_sg(sgl, sg, nents, i) {
427 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
429 if (!dev_is_dma_coherent(dev))
430 arch_sync_dma_for_cpu(paddr, sg->length, dir);
432 swiotlb_sync_single_for_cpu(dev, paddr, sg->length, dir);
434 if (dir == DMA_FROM_DEVICE)
435 arch_dma_mark_clean(paddr, sg->length);
438 if (!dev_is_dma_coherent(dev))
439 arch_sync_dma_for_cpu_all();
443 * Unmaps segments, except for ones marked as pci_p2pdma which do not
444 * require any further action as they contain a bus address.
446 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
447 int nents, enum dma_data_direction dir, unsigned long attrs)
449 struct scatterlist *sg;
452 for_each_sg(sgl, sg, nents, i) {
453 if (sg_dma_is_bus_address(sg))
454 sg_dma_unmark_bus_address(sg);
456 dma_direct_unmap_page(dev, sg->dma_address,
457 sg_dma_len(sg), dir, attrs);
462 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
463 enum dma_data_direction dir, unsigned long attrs)
465 struct pci_p2pdma_map_state p2pdma_state = {};
466 struct scatterlist *sg;
469 for_each_sg(sgl, sg, nents, i) {
470 switch (pci_p2pdma_state(&p2pdma_state, dev, sg_page(sg))) {
471 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
473 * Any P2P mapping that traverses the PCI host bridge
474 * must be mapped with CPU physical address and not PCI
478 case PCI_P2PDMA_MAP_NONE:
479 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
480 sg->offset, sg->length, dir, attrs);
481 if (sg->dma_address == DMA_MAPPING_ERROR) {
486 case PCI_P2PDMA_MAP_BUS_ADDR:
487 sg->dma_address = pci_p2pdma_bus_addr_map(&p2pdma_state,
489 sg_dma_mark_bus_address(sg);
495 sg_dma_len(sg) = sg->length;
501 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
505 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
506 size_t size, enum dma_data_direction dir, unsigned long attrs)
508 dma_addr_t dma_addr = paddr;
510 if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
512 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
513 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
515 return DMA_MAPPING_ERROR;
521 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
522 void *cpu_addr, dma_addr_t dma_addr, size_t size,
525 struct page *page = dma_direct_to_page(dev, dma_addr);
528 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
530 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
534 bool dma_direct_can_mmap(struct device *dev)
536 return dev_is_dma_coherent(dev) ||
537 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
540 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
541 void *cpu_addr, dma_addr_t dma_addr, size_t size,
544 unsigned long user_count = vma_pages(vma);
545 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
546 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
549 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
550 if (force_dma_unencrypted(dev))
551 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
553 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
555 if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
558 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
560 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
561 user_count << PAGE_SHIFT, vma->vm_page_prot);
564 int dma_direct_supported(struct device *dev, u64 mask)
566 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
569 * Because 32-bit DMA masks are so common we expect every architecture
570 * to be able to satisfy them - either by not supporting more physical
571 * memory, or by providing a ZONE_DMA32. If neither is the case, the
572 * architecture needs to use an IOMMU instead of the direct mapping.
574 if (mask >= DMA_BIT_MASK(32))
578 * This check needs to be against the actual bit mask value, so use
579 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
582 if (IS_ENABLED(CONFIG_ZONE_DMA))
583 min_mask = min_t(u64, min_mask, zone_dma_limit);
584 return mask >= phys_to_dma_unencrypted(dev, min_mask);
587 static const struct bus_dma_region *dma_find_range(struct device *dev,
588 unsigned long start_pfn)
590 const struct bus_dma_region *m;
592 for (m = dev->dma_range_map; PFN_DOWN(m->size); m++) {
593 unsigned long cpu_start_pfn = PFN_DOWN(m->cpu_start);
595 if (start_pfn >= cpu_start_pfn &&
596 start_pfn - cpu_start_pfn < PFN_DOWN(m->size))
604 * To check whether all ram resource ranges are covered by dma range map
605 * Returns 0 when further check is needed
606 * Returns 1 if there is some RAM range can't be covered by dma_range_map
608 static int check_ram_in_range_map(unsigned long start_pfn,
609 unsigned long nr_pages, void *data)
611 unsigned long end_pfn = start_pfn + nr_pages;
612 struct device *dev = data;
614 while (start_pfn < end_pfn) {
615 const struct bus_dma_region *bdr;
617 bdr = dma_find_range(dev, start_pfn);
621 start_pfn = PFN_DOWN(bdr->cpu_start) + PFN_DOWN(bdr->size);
627 bool dma_direct_all_ram_mapped(struct device *dev)
629 if (!dev->dma_range_map)
631 return !walk_system_ram_range(0, PFN_DOWN(ULONG_MAX) + 1, dev,
632 check_ram_in_range_map);
635 size_t dma_direct_max_mapping_size(struct device *dev)
637 /* If SWIOTLB is active, use its maximum mapping size */
638 if (is_swiotlb_active(dev) &&
639 (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
640 return swiotlb_max_mapping_size(dev);
644 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
646 return !dev_is_dma_coherent(dev) ||
647 swiotlb_find_pool(dev, dma_to_phys(dev, dma_addr));
651 * dma_direct_set_offset - Assign scalar offset for a single DMA range.
652 * @dev: device pointer; needed to "own" the alloced memory.
653 * @cpu_start: beginning of memory region covered by this offset.
654 * @dma_start: beginning of DMA/PCI region covered by this offset.
655 * @size: size of the region.
657 * This is for the simple case of a uniform offset which cannot
658 * be discovered by "dma-ranges".
660 * It returns -ENOMEM if out of memory, -EINVAL if a map
661 * already exists, 0 otherwise.
663 * Note: any call to this from a driver is a bug. The mapping needs
664 * to be described by the device tree or other firmware interfaces.
666 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
667 dma_addr_t dma_start, u64 size)
669 struct bus_dma_region *map;
670 u64 offset = (u64)cpu_start - (u64)dma_start;
672 if (dev->dma_range_map) {
673 dev_err(dev, "attempt to add DMA range to existing map\n");
680 map = kcalloc(2, sizeof(*map), GFP_KERNEL);
683 map[0].cpu_start = cpu_start;
684 map[0].dma_start = dma_start;
686 dev->dma_range_map = map;