Merge tag 'iio-fixes-for-5.4a' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/dma-noncoherent.h>
14 #include <linux/pfn.h>
15 #include <linux/set_memory.h>
16 #include <linux/swiotlb.h>
17
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but
20  * some use it for entirely different regions:
21  */
22 #ifndef ARCH_ZONE_DMA_BITS
23 #define ARCH_ZONE_DMA_BITS 24
24 #endif
25
26 static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
27 {
28         if (!dev->dma_mask) {
29                 dev_err_once(dev, "DMA map on device without dma_mask\n");
30         } else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
31                 dev_err_once(dev,
32                         "overflow %pad+%zu of DMA mask %llx bus mask %llx\n",
33                         &dma_addr, size, *dev->dma_mask, dev->bus_dma_mask);
34         }
35         WARN_ON_ONCE(1);
36 }
37
38 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
39                 phys_addr_t phys)
40 {
41         if (force_dma_unencrypted(dev))
42                 return __phys_to_dma(dev, phys);
43         return phys_to_dma(dev, phys);
44 }
45
46 u64 dma_direct_get_required_mask(struct device *dev)
47 {
48         u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
49
50         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
51 }
52
53 static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
54                 u64 *phys_mask)
55 {
56         if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
57                 dma_mask = dev->bus_dma_mask;
58
59         if (force_dma_unencrypted(dev))
60                 *phys_mask = __dma_to_phys(dev, dma_mask);
61         else
62                 *phys_mask = dma_to_phys(dev, dma_mask);
63
64         /*
65          * Optimistically try the zone that the physical address mask falls
66          * into first.  If that returns memory that isn't actually addressable
67          * we will fallback to the next lower zone and try again.
68          *
69          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
70          * zones.
71          */
72         if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
73                 return GFP_DMA;
74         if (*phys_mask <= DMA_BIT_MASK(32))
75                 return GFP_DMA32;
76         return 0;
77 }
78
79 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
80 {
81         return phys_to_dma_direct(dev, phys) + size - 1 <=
82                         min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
83 }
84
85 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
86                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
87 {
88         size_t alloc_size = PAGE_ALIGN(size);
89         int node = dev_to_node(dev);
90         struct page *page = NULL;
91         u64 phys_mask;
92
93         if (attrs & DMA_ATTR_NO_WARN)
94                 gfp |= __GFP_NOWARN;
95
96         /* we always manually zero the memory once we are done: */
97         gfp &= ~__GFP_ZERO;
98         gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
99                         &phys_mask);
100         page = dma_alloc_contiguous(dev, alloc_size, gfp);
101         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
102                 dma_free_contiguous(dev, page, alloc_size);
103                 page = NULL;
104         }
105 again:
106         if (!page)
107                 page = alloc_pages_node(node, gfp, get_order(alloc_size));
108         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
109                 dma_free_contiguous(dev, page, size);
110                 page = NULL;
111
112                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
113                     phys_mask < DMA_BIT_MASK(64) &&
114                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
115                         gfp |= GFP_DMA32;
116                         goto again;
117                 }
118
119                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
120                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
121                         goto again;
122                 }
123         }
124
125         return page;
126 }
127
128 void *dma_direct_alloc_pages(struct device *dev, size_t size,
129                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
130 {
131         struct page *page;
132         void *ret;
133
134         page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
135         if (!page)
136                 return NULL;
137
138         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
139             !force_dma_unencrypted(dev)) {
140                 /* remove any dirty cache lines on the kernel alias */
141                 if (!PageHighMem(page))
142                         arch_dma_prep_coherent(page, size);
143                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
144                 /* return the page pointer as the opaque cookie */
145                 return page;
146         }
147
148         if (PageHighMem(page)) {
149                 /*
150                  * Depending on the cma= arguments and per-arch setup
151                  * dma_alloc_contiguous could return highmem pages.
152                  * Without remapping there is no way to return them here,
153                  * so log an error and fail.
154                  */
155                 dev_info(dev, "Rejecting highmem page from CMA.\n");
156                 __dma_direct_free_pages(dev, size, page);
157                 return NULL;
158         }
159
160         ret = page_address(page);
161         if (force_dma_unencrypted(dev)) {
162                 set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
163                 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
164         } else {
165                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
166         }
167         memset(ret, 0, size);
168
169         if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
170             dma_alloc_need_uncached(dev, attrs)) {
171                 arch_dma_prep_coherent(page, size);
172                 ret = uncached_kernel_address(ret);
173         }
174
175         return ret;
176 }
177
178 void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page)
179 {
180         dma_free_contiguous(dev, page, size);
181 }
182
183 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
184                 dma_addr_t dma_addr, unsigned long attrs)
185 {
186         unsigned int page_order = get_order(size);
187
188         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
189             !force_dma_unencrypted(dev)) {
190                 /* cpu_addr is a struct page cookie, not a kernel address */
191                 __dma_direct_free_pages(dev, size, cpu_addr);
192                 return;
193         }
194
195         if (force_dma_unencrypted(dev))
196                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
197
198         if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
199             dma_alloc_need_uncached(dev, attrs))
200                 cpu_addr = cached_kernel_address(cpu_addr);
201         __dma_direct_free_pages(dev, size, virt_to_page(cpu_addr));
202 }
203
204 void *dma_direct_alloc(struct device *dev, size_t size,
205                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
206 {
207         if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
208             dma_alloc_need_uncached(dev, attrs))
209                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
210         return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
211 }
212
213 void dma_direct_free(struct device *dev, size_t size,
214                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
215 {
216         if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
217             dma_alloc_need_uncached(dev, attrs))
218                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
219         else
220                 dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
221 }
222
223 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
224     defined(CONFIG_SWIOTLB)
225 void dma_direct_sync_single_for_device(struct device *dev,
226                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
227 {
228         phys_addr_t paddr = dma_to_phys(dev, addr);
229
230         if (unlikely(is_swiotlb_buffer(paddr)))
231                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
232
233         if (!dev_is_dma_coherent(dev))
234                 arch_sync_dma_for_device(dev, paddr, size, dir);
235 }
236 EXPORT_SYMBOL(dma_direct_sync_single_for_device);
237
238 void dma_direct_sync_sg_for_device(struct device *dev,
239                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
240 {
241         struct scatterlist *sg;
242         int i;
243
244         for_each_sg(sgl, sg, nents, i) {
245                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
246
247                 if (unlikely(is_swiotlb_buffer(paddr)))
248                         swiotlb_tbl_sync_single(dev, paddr, sg->length,
249                                         dir, SYNC_FOR_DEVICE);
250
251                 if (!dev_is_dma_coherent(dev))
252                         arch_sync_dma_for_device(dev, paddr, sg->length,
253                                         dir);
254         }
255 }
256 EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
257 #endif
258
259 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
260     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
261     defined(CONFIG_SWIOTLB)
262 void dma_direct_sync_single_for_cpu(struct device *dev,
263                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
264 {
265         phys_addr_t paddr = dma_to_phys(dev, addr);
266
267         if (!dev_is_dma_coherent(dev)) {
268                 arch_sync_dma_for_cpu(dev, paddr, size, dir);
269                 arch_sync_dma_for_cpu_all(dev);
270         }
271
272         if (unlikely(is_swiotlb_buffer(paddr)))
273                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
274 }
275 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
276
277 void dma_direct_sync_sg_for_cpu(struct device *dev,
278                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
279 {
280         struct scatterlist *sg;
281         int i;
282
283         for_each_sg(sgl, sg, nents, i) {
284                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
285
286                 if (!dev_is_dma_coherent(dev))
287                         arch_sync_dma_for_cpu(dev, paddr, sg->length, dir);
288
289                 if (unlikely(is_swiotlb_buffer(paddr)))
290                         swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
291                                         SYNC_FOR_CPU);
292         }
293
294         if (!dev_is_dma_coherent(dev))
295                 arch_sync_dma_for_cpu_all(dev);
296 }
297 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
298
299 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
300                 size_t size, enum dma_data_direction dir, unsigned long attrs)
301 {
302         phys_addr_t phys = dma_to_phys(dev, addr);
303
304         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
305                 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
306
307         if (unlikely(is_swiotlb_buffer(phys)))
308                 swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs);
309 }
310 EXPORT_SYMBOL(dma_direct_unmap_page);
311
312 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
313                 int nents, enum dma_data_direction dir, unsigned long attrs)
314 {
315         struct scatterlist *sg;
316         int i;
317
318         for_each_sg(sgl, sg, nents, i)
319                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
320                              attrs);
321 }
322 EXPORT_SYMBOL(dma_direct_unmap_sg);
323 #endif
324
325 static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
326                 size_t size)
327 {
328         return swiotlb_force != SWIOTLB_FORCE &&
329                 dma_capable(dev, dma_addr, size);
330 }
331
332 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
333                 unsigned long offset, size_t size, enum dma_data_direction dir,
334                 unsigned long attrs)
335 {
336         phys_addr_t phys = page_to_phys(page) + offset;
337         dma_addr_t dma_addr = phys_to_dma(dev, phys);
338
339         if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
340             !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
341                 report_addr(dev, dma_addr, size);
342                 return DMA_MAPPING_ERROR;
343         }
344
345         if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
346                 arch_sync_dma_for_device(dev, phys, size, dir);
347         return dma_addr;
348 }
349 EXPORT_SYMBOL(dma_direct_map_page);
350
351 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
352                 enum dma_data_direction dir, unsigned long attrs)
353 {
354         int i;
355         struct scatterlist *sg;
356
357         for_each_sg(sgl, sg, nents, i) {
358                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
359                                 sg->offset, sg->length, dir, attrs);
360                 if (sg->dma_address == DMA_MAPPING_ERROR)
361                         goto out_unmap;
362                 sg_dma_len(sg) = sg->length;
363         }
364
365         return nents;
366
367 out_unmap:
368         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
369         return 0;
370 }
371 EXPORT_SYMBOL(dma_direct_map_sg);
372
373 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
374                 size_t size, enum dma_data_direction dir, unsigned long attrs)
375 {
376         dma_addr_t dma_addr = paddr;
377
378         if (unlikely(!dma_direct_possible(dev, dma_addr, size))) {
379                 report_addr(dev, dma_addr, size);
380                 return DMA_MAPPING_ERROR;
381         }
382
383         return dma_addr;
384 }
385 EXPORT_SYMBOL(dma_direct_map_resource);
386
387 /*
388  * Because 32-bit DMA masks are so common we expect every architecture to be
389  * able to satisfy them - either by not supporting more physical memory, or by
390  * providing a ZONE_DMA32.  If neither is the case, the architecture needs to
391  * use an IOMMU instead of the direct mapping.
392  */
393 int dma_direct_supported(struct device *dev, u64 mask)
394 {
395         u64 min_mask;
396
397         if (IS_ENABLED(CONFIG_ZONE_DMA))
398                 min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
399         else
400                 min_mask = DMA_BIT_MASK(32);
401
402         min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
403
404         /*
405          * This check needs to be against the actual bit mask value, so
406          * use __phys_to_dma() here so that the SME encryption mask isn't
407          * part of the check.
408          */
409         return mask >= __phys_to_dma(dev, min_mask);
410 }
411
412 size_t dma_direct_max_mapping_size(struct device *dev)
413 {
414         /* If SWIOTLB is active, use its maximum mapping size */
415         if (is_swiotlb_active() &&
416             (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
417                 return swiotlb_max_mapping_size(dev);
418         return SIZE_MAX;
419 }