Merge tag 'selinux-pr-20230829' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
40
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
44
45 #include "smpboot.h"
46
47 /**
48  * struct cpuhp_cpu_state - Per cpu hotplug state storage
49  * @state:      The current cpu state
50  * @target:     The target state
51  * @fail:       Current CPU hotplug callback state
52  * @thread:     Pointer to the hotplug thread
53  * @should_run: Thread should execute
54  * @rollback:   Perform a rollback
55  * @single:     Single callback invocation
56  * @bringup:    Single callback bringup or teardown selector
57  * @cpu:        CPU number
58  * @node:       Remote CPU node; for multi-instance, do a
59  *              single entry callback for install/remove
60  * @last:       For multi-instance rollback, remember how far we got
61  * @cb_state:   The state for a single callback (install/uninstall)
62  * @result:     Result of the operation
63  * @ap_sync_state:      State for AP synchronization
64  * @done_up:    Signal completion to the issuer of the task for cpu-up
65  * @done_down:  Signal completion to the issuer of the task for cpu-down
66  */
67 struct cpuhp_cpu_state {
68         enum cpuhp_state        state;
69         enum cpuhp_state        target;
70         enum cpuhp_state        fail;
71 #ifdef CONFIG_SMP
72         struct task_struct      *thread;
73         bool                    should_run;
74         bool                    rollback;
75         bool                    single;
76         bool                    bringup;
77         struct hlist_node       *node;
78         struct hlist_node       *last;
79         enum cpuhp_state        cb_state;
80         int                     result;
81         atomic_t                ap_sync_state;
82         struct completion       done_up;
83         struct completion       done_down;
84 #endif
85 };
86
87 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
88         .fail = CPUHP_INVALID,
89 };
90
91 #ifdef CONFIG_SMP
92 cpumask_t cpus_booted_once_mask;
93 #endif
94
95 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
96 static struct lockdep_map cpuhp_state_up_map =
97         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
98 static struct lockdep_map cpuhp_state_down_map =
99         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
100
101
102 static inline void cpuhp_lock_acquire(bool bringup)
103 {
104         lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
105 }
106
107 static inline void cpuhp_lock_release(bool bringup)
108 {
109         lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
110 }
111 #else
112
113 static inline void cpuhp_lock_acquire(bool bringup) { }
114 static inline void cpuhp_lock_release(bool bringup) { }
115
116 #endif
117
118 /**
119  * struct cpuhp_step - Hotplug state machine step
120  * @name:       Name of the step
121  * @startup:    Startup function of the step
122  * @teardown:   Teardown function of the step
123  * @cant_stop:  Bringup/teardown can't be stopped at this step
124  * @multi_instance:     State has multiple instances which get added afterwards
125  */
126 struct cpuhp_step {
127         const char              *name;
128         union {
129                 int             (*single)(unsigned int cpu);
130                 int             (*multi)(unsigned int cpu,
131                                          struct hlist_node *node);
132         } startup;
133         union {
134                 int             (*single)(unsigned int cpu);
135                 int             (*multi)(unsigned int cpu,
136                                          struct hlist_node *node);
137         } teardown;
138         /* private: */
139         struct hlist_head       list;
140         /* public: */
141         bool                    cant_stop;
142         bool                    multi_instance;
143 };
144
145 static DEFINE_MUTEX(cpuhp_state_mutex);
146 static struct cpuhp_step cpuhp_hp_states[];
147
148 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
149 {
150         return cpuhp_hp_states + state;
151 }
152
153 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
154 {
155         return bringup ? !step->startup.single : !step->teardown.single;
156 }
157
158 /**
159  * cpuhp_invoke_callback - Invoke the callbacks for a given state
160  * @cpu:        The cpu for which the callback should be invoked
161  * @state:      The state to do callbacks for
162  * @bringup:    True if the bringup callback should be invoked
163  * @node:       For multi-instance, do a single entry callback for install/remove
164  * @lastp:      For multi-instance rollback, remember how far we got
165  *
166  * Called from cpu hotplug and from the state register machinery.
167  *
168  * Return: %0 on success or a negative errno code
169  */
170 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
171                                  bool bringup, struct hlist_node *node,
172                                  struct hlist_node **lastp)
173 {
174         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
175         struct cpuhp_step *step = cpuhp_get_step(state);
176         int (*cbm)(unsigned int cpu, struct hlist_node *node);
177         int (*cb)(unsigned int cpu);
178         int ret, cnt;
179
180         if (st->fail == state) {
181                 st->fail = CPUHP_INVALID;
182                 return -EAGAIN;
183         }
184
185         if (cpuhp_step_empty(bringup, step)) {
186                 WARN_ON_ONCE(1);
187                 return 0;
188         }
189
190         if (!step->multi_instance) {
191                 WARN_ON_ONCE(lastp && *lastp);
192                 cb = bringup ? step->startup.single : step->teardown.single;
193
194                 trace_cpuhp_enter(cpu, st->target, state, cb);
195                 ret = cb(cpu);
196                 trace_cpuhp_exit(cpu, st->state, state, ret);
197                 return ret;
198         }
199         cbm = bringup ? step->startup.multi : step->teardown.multi;
200
201         /* Single invocation for instance add/remove */
202         if (node) {
203                 WARN_ON_ONCE(lastp && *lastp);
204                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205                 ret = cbm(cpu, node);
206                 trace_cpuhp_exit(cpu, st->state, state, ret);
207                 return ret;
208         }
209
210         /* State transition. Invoke on all instances */
211         cnt = 0;
212         hlist_for_each(node, &step->list) {
213                 if (lastp && node == *lastp)
214                         break;
215
216                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217                 ret = cbm(cpu, node);
218                 trace_cpuhp_exit(cpu, st->state, state, ret);
219                 if (ret) {
220                         if (!lastp)
221                                 goto err;
222
223                         *lastp = node;
224                         return ret;
225                 }
226                 cnt++;
227         }
228         if (lastp)
229                 *lastp = NULL;
230         return 0;
231 err:
232         /* Rollback the instances if one failed */
233         cbm = !bringup ? step->startup.multi : step->teardown.multi;
234         if (!cbm)
235                 return ret;
236
237         hlist_for_each(node, &step->list) {
238                 if (!cnt--)
239                         break;
240
241                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
242                 ret = cbm(cpu, node);
243                 trace_cpuhp_exit(cpu, st->state, state, ret);
244                 /*
245                  * Rollback must not fail,
246                  */
247                 WARN_ON_ONCE(ret);
248         }
249         return ret;
250 }
251
252 #ifdef CONFIG_SMP
253 static bool cpuhp_is_ap_state(enum cpuhp_state state)
254 {
255         /*
256          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
257          * purposes as that state is handled explicitly in cpu_down.
258          */
259         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
260 }
261
262 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
263 {
264         struct completion *done = bringup ? &st->done_up : &st->done_down;
265         wait_for_completion(done);
266 }
267
268 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
269 {
270         struct completion *done = bringup ? &st->done_up : &st->done_down;
271         complete(done);
272 }
273
274 /*
275  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
276  */
277 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
278 {
279         return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
280 }
281
282 /* Synchronization state management */
283 enum cpuhp_sync_state {
284         SYNC_STATE_DEAD,
285         SYNC_STATE_KICKED,
286         SYNC_STATE_SHOULD_DIE,
287         SYNC_STATE_ALIVE,
288         SYNC_STATE_SHOULD_ONLINE,
289         SYNC_STATE_ONLINE,
290 };
291
292 #ifdef CONFIG_HOTPLUG_CORE_SYNC
293 /**
294  * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
295  * @state:      The synchronization state to set
296  *
297  * No synchronization point. Just update of the synchronization state, but implies
298  * a full barrier so that the AP changes are visible before the control CPU proceeds.
299  */
300 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
301 {
302         atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
303
304         (void)atomic_xchg(st, state);
305 }
306
307 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
308
309 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
310                                       enum cpuhp_sync_state next_state)
311 {
312         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
313         ktime_t now, end, start = ktime_get();
314         int sync;
315
316         end = start + 10ULL * NSEC_PER_SEC;
317
318         sync = atomic_read(st);
319         while (1) {
320                 if (sync == state) {
321                         if (!atomic_try_cmpxchg(st, &sync, next_state))
322                                 continue;
323                         return true;
324                 }
325
326                 now = ktime_get();
327                 if (now > end) {
328                         /* Timeout. Leave the state unchanged */
329                         return false;
330                 } else if (now - start < NSEC_PER_MSEC) {
331                         /* Poll for one millisecond */
332                         arch_cpuhp_sync_state_poll();
333                 } else {
334                         usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
335                 }
336                 sync = atomic_read(st);
337         }
338         return true;
339 }
340 #else  /* CONFIG_HOTPLUG_CORE_SYNC */
341 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
342 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
343
344 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
345 /**
346  * cpuhp_ap_report_dead - Update synchronization state to DEAD
347  *
348  * No synchronization point. Just update of the synchronization state.
349  */
350 void cpuhp_ap_report_dead(void)
351 {
352         cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
353 }
354
355 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
356
357 /*
358  * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
359  * because the AP cannot issue complete() at this stage.
360  */
361 static void cpuhp_bp_sync_dead(unsigned int cpu)
362 {
363         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
364         int sync = atomic_read(st);
365
366         do {
367                 /* CPU can have reported dead already. Don't overwrite that! */
368                 if (sync == SYNC_STATE_DEAD)
369                         break;
370         } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
371
372         if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
373                 /* CPU reached dead state. Invoke the cleanup function */
374                 arch_cpuhp_cleanup_dead_cpu(cpu);
375                 return;
376         }
377
378         /* No further action possible. Emit message and give up. */
379         pr_err("CPU%u failed to report dead state\n", cpu);
380 }
381 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
382 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
383 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
384
385 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
386 /**
387  * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
388  *
389  * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
390  * for the BP to release it.
391  */
392 void cpuhp_ap_sync_alive(void)
393 {
394         atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
395
396         cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
397
398         /* Wait for the control CPU to release it. */
399         while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
400                 cpu_relax();
401 }
402
403 static bool cpuhp_can_boot_ap(unsigned int cpu)
404 {
405         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
406         int sync = atomic_read(st);
407
408 again:
409         switch (sync) {
410         case SYNC_STATE_DEAD:
411                 /* CPU is properly dead */
412                 break;
413         case SYNC_STATE_KICKED:
414                 /* CPU did not come up in previous attempt */
415                 break;
416         case SYNC_STATE_ALIVE:
417                 /* CPU is stuck cpuhp_ap_sync_alive(). */
418                 break;
419         default:
420                 /* CPU failed to report online or dead and is in limbo state. */
421                 return false;
422         }
423
424         /* Prepare for booting */
425         if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
426                 goto again;
427
428         return true;
429 }
430
431 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
432
433 /*
434  * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
435  * because the AP cannot issue complete() so early in the bringup.
436  */
437 static int cpuhp_bp_sync_alive(unsigned int cpu)
438 {
439         int ret = 0;
440
441         if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
442                 return 0;
443
444         if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
445                 pr_err("CPU%u failed to report alive state\n", cpu);
446                 ret = -EIO;
447         }
448
449         /* Let the architecture cleanup the kick alive mechanics. */
450         arch_cpuhp_cleanup_kick_cpu(cpu);
451         return ret;
452 }
453 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
454 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
455 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
456 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
457
458 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
459 static DEFINE_MUTEX(cpu_add_remove_lock);
460 bool cpuhp_tasks_frozen;
461 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
462
463 /*
464  * The following two APIs (cpu_maps_update_begin/done) must be used when
465  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
466  */
467 void cpu_maps_update_begin(void)
468 {
469         mutex_lock(&cpu_add_remove_lock);
470 }
471
472 void cpu_maps_update_done(void)
473 {
474         mutex_unlock(&cpu_add_remove_lock);
475 }
476
477 /*
478  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
479  * Should always be manipulated under cpu_add_remove_lock
480  */
481 static int cpu_hotplug_disabled;
482
483 #ifdef CONFIG_HOTPLUG_CPU
484
485 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
486
487 void cpus_read_lock(void)
488 {
489         percpu_down_read(&cpu_hotplug_lock);
490 }
491 EXPORT_SYMBOL_GPL(cpus_read_lock);
492
493 int cpus_read_trylock(void)
494 {
495         return percpu_down_read_trylock(&cpu_hotplug_lock);
496 }
497 EXPORT_SYMBOL_GPL(cpus_read_trylock);
498
499 void cpus_read_unlock(void)
500 {
501         percpu_up_read(&cpu_hotplug_lock);
502 }
503 EXPORT_SYMBOL_GPL(cpus_read_unlock);
504
505 void cpus_write_lock(void)
506 {
507         percpu_down_write(&cpu_hotplug_lock);
508 }
509
510 void cpus_write_unlock(void)
511 {
512         percpu_up_write(&cpu_hotplug_lock);
513 }
514
515 void lockdep_assert_cpus_held(void)
516 {
517         /*
518          * We can't have hotplug operations before userspace starts running,
519          * and some init codepaths will knowingly not take the hotplug lock.
520          * This is all valid, so mute lockdep until it makes sense to report
521          * unheld locks.
522          */
523         if (system_state < SYSTEM_RUNNING)
524                 return;
525
526         percpu_rwsem_assert_held(&cpu_hotplug_lock);
527 }
528
529 #ifdef CONFIG_LOCKDEP
530 int lockdep_is_cpus_held(void)
531 {
532         return percpu_rwsem_is_held(&cpu_hotplug_lock);
533 }
534 #endif
535
536 static void lockdep_acquire_cpus_lock(void)
537 {
538         rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
539 }
540
541 static void lockdep_release_cpus_lock(void)
542 {
543         rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
544 }
545
546 /*
547  * Wait for currently running CPU hotplug operations to complete (if any) and
548  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
549  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
550  * hotplug path before performing hotplug operations. So acquiring that lock
551  * guarantees mutual exclusion from any currently running hotplug operations.
552  */
553 void cpu_hotplug_disable(void)
554 {
555         cpu_maps_update_begin();
556         cpu_hotplug_disabled++;
557         cpu_maps_update_done();
558 }
559 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
560
561 static void __cpu_hotplug_enable(void)
562 {
563         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
564                 return;
565         cpu_hotplug_disabled--;
566 }
567
568 void cpu_hotplug_enable(void)
569 {
570         cpu_maps_update_begin();
571         __cpu_hotplug_enable();
572         cpu_maps_update_done();
573 }
574 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
575
576 #else
577
578 static void lockdep_acquire_cpus_lock(void)
579 {
580 }
581
582 static void lockdep_release_cpus_lock(void)
583 {
584 }
585
586 #endif  /* CONFIG_HOTPLUG_CPU */
587
588 /*
589  * Architectures that need SMT-specific errata handling during SMT hotplug
590  * should override this.
591  */
592 void __weak arch_smt_update(void) { }
593
594 #ifdef CONFIG_HOTPLUG_SMT
595
596 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
597 static unsigned int cpu_smt_max_threads __ro_after_init;
598 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
599
600 void __init cpu_smt_disable(bool force)
601 {
602         if (!cpu_smt_possible())
603                 return;
604
605         if (force) {
606                 pr_info("SMT: Force disabled\n");
607                 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
608         } else {
609                 pr_info("SMT: disabled\n");
610                 cpu_smt_control = CPU_SMT_DISABLED;
611         }
612         cpu_smt_num_threads = 1;
613 }
614
615 /*
616  * The decision whether SMT is supported can only be done after the full
617  * CPU identification. Called from architecture code.
618  */
619 void __init cpu_smt_set_num_threads(unsigned int num_threads,
620                                     unsigned int max_threads)
621 {
622         WARN_ON(!num_threads || (num_threads > max_threads));
623
624         if (max_threads == 1)
625                 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
626
627         cpu_smt_max_threads = max_threads;
628
629         /*
630          * If SMT has been disabled via the kernel command line or SMT is
631          * not supported, set cpu_smt_num_threads to 1 for consistency.
632          * If enabled, take the architecture requested number of threads
633          * to bring up into account.
634          */
635         if (cpu_smt_control != CPU_SMT_ENABLED)
636                 cpu_smt_num_threads = 1;
637         else if (num_threads < cpu_smt_num_threads)
638                 cpu_smt_num_threads = num_threads;
639 }
640
641 static int __init smt_cmdline_disable(char *str)
642 {
643         cpu_smt_disable(str && !strcmp(str, "force"));
644         return 0;
645 }
646 early_param("nosmt", smt_cmdline_disable);
647
648 /*
649  * For Archicture supporting partial SMT states check if the thread is allowed.
650  * Otherwise this has already been checked through cpu_smt_max_threads when
651  * setting the SMT level.
652  */
653 static inline bool cpu_smt_thread_allowed(unsigned int cpu)
654 {
655 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
656         return topology_smt_thread_allowed(cpu);
657 #else
658         return true;
659 #endif
660 }
661
662 static inline bool cpu_smt_allowed(unsigned int cpu)
663 {
664         if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
665                 return true;
666
667         if (topology_is_primary_thread(cpu))
668                 return true;
669
670         /*
671          * On x86 it's required to boot all logical CPUs at least once so
672          * that the init code can get a chance to set CR4.MCE on each
673          * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
674          * core will shutdown the machine.
675          */
676         return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
677 }
678
679 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
680 bool cpu_smt_possible(void)
681 {
682         return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
683                 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
684 }
685 EXPORT_SYMBOL_GPL(cpu_smt_possible);
686
687 #else
688 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
689 #endif
690
691 static inline enum cpuhp_state
692 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
693 {
694         enum cpuhp_state prev_state = st->state;
695         bool bringup = st->state < target;
696
697         st->rollback = false;
698         st->last = NULL;
699
700         st->target = target;
701         st->single = false;
702         st->bringup = bringup;
703         if (cpu_dying(cpu) != !bringup)
704                 set_cpu_dying(cpu, !bringup);
705
706         return prev_state;
707 }
708
709 static inline void
710 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
711                   enum cpuhp_state prev_state)
712 {
713         bool bringup = !st->bringup;
714
715         st->target = prev_state;
716
717         /*
718          * Already rolling back. No need invert the bringup value or to change
719          * the current state.
720          */
721         if (st->rollback)
722                 return;
723
724         st->rollback = true;
725
726         /*
727          * If we have st->last we need to undo partial multi_instance of this
728          * state first. Otherwise start undo at the previous state.
729          */
730         if (!st->last) {
731                 if (st->bringup)
732                         st->state--;
733                 else
734                         st->state++;
735         }
736
737         st->bringup = bringup;
738         if (cpu_dying(cpu) != !bringup)
739                 set_cpu_dying(cpu, !bringup);
740 }
741
742 /* Regular hotplug invocation of the AP hotplug thread */
743 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
744 {
745         if (!st->single && st->state == st->target)
746                 return;
747
748         st->result = 0;
749         /*
750          * Make sure the above stores are visible before should_run becomes
751          * true. Paired with the mb() above in cpuhp_thread_fun()
752          */
753         smp_mb();
754         st->should_run = true;
755         wake_up_process(st->thread);
756         wait_for_ap_thread(st, st->bringup);
757 }
758
759 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
760                          enum cpuhp_state target)
761 {
762         enum cpuhp_state prev_state;
763         int ret;
764
765         prev_state = cpuhp_set_state(cpu, st, target);
766         __cpuhp_kick_ap(st);
767         if ((ret = st->result)) {
768                 cpuhp_reset_state(cpu, st, prev_state);
769                 __cpuhp_kick_ap(st);
770         }
771
772         return ret;
773 }
774
775 static int bringup_wait_for_ap_online(unsigned int cpu)
776 {
777         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
778
779         /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
780         wait_for_ap_thread(st, true);
781         if (WARN_ON_ONCE((!cpu_online(cpu))))
782                 return -ECANCELED;
783
784         /* Unpark the hotplug thread of the target cpu */
785         kthread_unpark(st->thread);
786
787         /*
788          * SMT soft disabling on X86 requires to bring the CPU out of the
789          * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
790          * CPU marked itself as booted_once in notify_cpu_starting() so the
791          * cpu_smt_allowed() check will now return false if this is not the
792          * primary sibling.
793          */
794         if (!cpu_smt_allowed(cpu))
795                 return -ECANCELED;
796         return 0;
797 }
798
799 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
800 static int cpuhp_kick_ap_alive(unsigned int cpu)
801 {
802         if (!cpuhp_can_boot_ap(cpu))
803                 return -EAGAIN;
804
805         return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
806 }
807
808 static int cpuhp_bringup_ap(unsigned int cpu)
809 {
810         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
811         int ret;
812
813         /*
814          * Some architectures have to walk the irq descriptors to
815          * setup the vector space for the cpu which comes online.
816          * Prevent irq alloc/free across the bringup.
817          */
818         irq_lock_sparse();
819
820         ret = cpuhp_bp_sync_alive(cpu);
821         if (ret)
822                 goto out_unlock;
823
824         ret = bringup_wait_for_ap_online(cpu);
825         if (ret)
826                 goto out_unlock;
827
828         irq_unlock_sparse();
829
830         if (st->target <= CPUHP_AP_ONLINE_IDLE)
831                 return 0;
832
833         return cpuhp_kick_ap(cpu, st, st->target);
834
835 out_unlock:
836         irq_unlock_sparse();
837         return ret;
838 }
839 #else
840 static int bringup_cpu(unsigned int cpu)
841 {
842         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
843         struct task_struct *idle = idle_thread_get(cpu);
844         int ret;
845
846         if (!cpuhp_can_boot_ap(cpu))
847                 return -EAGAIN;
848
849         /*
850          * Some architectures have to walk the irq descriptors to
851          * setup the vector space for the cpu which comes online.
852          *
853          * Prevent irq alloc/free across the bringup by acquiring the
854          * sparse irq lock. Hold it until the upcoming CPU completes the
855          * startup in cpuhp_online_idle() which allows to avoid
856          * intermediate synchronization points in the architecture code.
857          */
858         irq_lock_sparse();
859
860         ret = __cpu_up(cpu, idle);
861         if (ret)
862                 goto out_unlock;
863
864         ret = cpuhp_bp_sync_alive(cpu);
865         if (ret)
866                 goto out_unlock;
867
868         ret = bringup_wait_for_ap_online(cpu);
869         if (ret)
870                 goto out_unlock;
871
872         irq_unlock_sparse();
873
874         if (st->target <= CPUHP_AP_ONLINE_IDLE)
875                 return 0;
876
877         return cpuhp_kick_ap(cpu, st, st->target);
878
879 out_unlock:
880         irq_unlock_sparse();
881         return ret;
882 }
883 #endif
884
885 static int finish_cpu(unsigned int cpu)
886 {
887         struct task_struct *idle = idle_thread_get(cpu);
888         struct mm_struct *mm = idle->active_mm;
889
890         /*
891          * idle_task_exit() will have switched to &init_mm, now
892          * clean up any remaining active_mm state.
893          */
894         if (mm != &init_mm)
895                 idle->active_mm = &init_mm;
896         mmdrop_lazy_tlb(mm);
897         return 0;
898 }
899
900 /*
901  * Hotplug state machine related functions
902  */
903
904 /*
905  * Get the next state to run. Empty ones will be skipped. Returns true if a
906  * state must be run.
907  *
908  * st->state will be modified ahead of time, to match state_to_run, as if it
909  * has already ran.
910  */
911 static bool cpuhp_next_state(bool bringup,
912                              enum cpuhp_state *state_to_run,
913                              struct cpuhp_cpu_state *st,
914                              enum cpuhp_state target)
915 {
916         do {
917                 if (bringup) {
918                         if (st->state >= target)
919                                 return false;
920
921                         *state_to_run = ++st->state;
922                 } else {
923                         if (st->state <= target)
924                                 return false;
925
926                         *state_to_run = st->state--;
927                 }
928
929                 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
930                         break;
931         } while (true);
932
933         return true;
934 }
935
936 static int __cpuhp_invoke_callback_range(bool bringup,
937                                          unsigned int cpu,
938                                          struct cpuhp_cpu_state *st,
939                                          enum cpuhp_state target,
940                                          bool nofail)
941 {
942         enum cpuhp_state state;
943         int ret = 0;
944
945         while (cpuhp_next_state(bringup, &state, st, target)) {
946                 int err;
947
948                 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
949                 if (!err)
950                         continue;
951
952                 if (nofail) {
953                         pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
954                                 cpu, bringup ? "UP" : "DOWN",
955                                 cpuhp_get_step(st->state)->name,
956                                 st->state, err);
957                         ret = -1;
958                 } else {
959                         ret = err;
960                         break;
961                 }
962         }
963
964         return ret;
965 }
966
967 static inline int cpuhp_invoke_callback_range(bool bringup,
968                                               unsigned int cpu,
969                                               struct cpuhp_cpu_state *st,
970                                               enum cpuhp_state target)
971 {
972         return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
973 }
974
975 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
976                                                       unsigned int cpu,
977                                                       struct cpuhp_cpu_state *st,
978                                                       enum cpuhp_state target)
979 {
980         __cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
981 }
982
983 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
984 {
985         if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
986                 return true;
987         /*
988          * When CPU hotplug is disabled, then taking the CPU down is not
989          * possible because takedown_cpu() and the architecture and
990          * subsystem specific mechanisms are not available. So the CPU
991          * which would be completely unplugged again needs to stay around
992          * in the current state.
993          */
994         return st->state <= CPUHP_BRINGUP_CPU;
995 }
996
997 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
998                               enum cpuhp_state target)
999 {
1000         enum cpuhp_state prev_state = st->state;
1001         int ret = 0;
1002
1003         ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1004         if (ret) {
1005                 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1006                          ret, cpu, cpuhp_get_step(st->state)->name,
1007                          st->state);
1008
1009                 cpuhp_reset_state(cpu, st, prev_state);
1010                 if (can_rollback_cpu(st))
1011                         WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1012                                                             prev_state));
1013         }
1014         return ret;
1015 }
1016
1017 /*
1018  * The cpu hotplug threads manage the bringup and teardown of the cpus
1019  */
1020 static int cpuhp_should_run(unsigned int cpu)
1021 {
1022         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1023
1024         return st->should_run;
1025 }
1026
1027 /*
1028  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1029  * callbacks when a state gets [un]installed at runtime.
1030  *
1031  * Each invocation of this function by the smpboot thread does a single AP
1032  * state callback.
1033  *
1034  * It has 3 modes of operation:
1035  *  - single: runs st->cb_state
1036  *  - up:     runs ++st->state, while st->state < st->target
1037  *  - down:   runs st->state--, while st->state > st->target
1038  *
1039  * When complete or on error, should_run is cleared and the completion is fired.
1040  */
1041 static void cpuhp_thread_fun(unsigned int cpu)
1042 {
1043         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1044         bool bringup = st->bringup;
1045         enum cpuhp_state state;
1046
1047         if (WARN_ON_ONCE(!st->should_run))
1048                 return;
1049
1050         /*
1051          * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1052          * that if we see ->should_run we also see the rest of the state.
1053          */
1054         smp_mb();
1055
1056         /*
1057          * The BP holds the hotplug lock, but we're now running on the AP,
1058          * ensure that anybody asserting the lock is held, will actually find
1059          * it so.
1060          */
1061         lockdep_acquire_cpus_lock();
1062         cpuhp_lock_acquire(bringup);
1063
1064         if (st->single) {
1065                 state = st->cb_state;
1066                 st->should_run = false;
1067         } else {
1068                 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1069                 if (!st->should_run)
1070                         goto end;
1071         }
1072
1073         WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1074
1075         if (cpuhp_is_atomic_state(state)) {
1076                 local_irq_disable();
1077                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1078                 local_irq_enable();
1079
1080                 /*
1081                  * STARTING/DYING must not fail!
1082                  */
1083                 WARN_ON_ONCE(st->result);
1084         } else {
1085                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1086         }
1087
1088         if (st->result) {
1089                 /*
1090                  * If we fail on a rollback, we're up a creek without no
1091                  * paddle, no way forward, no way back. We loose, thanks for
1092                  * playing.
1093                  */
1094                 WARN_ON_ONCE(st->rollback);
1095                 st->should_run = false;
1096         }
1097
1098 end:
1099         cpuhp_lock_release(bringup);
1100         lockdep_release_cpus_lock();
1101
1102         if (!st->should_run)
1103                 complete_ap_thread(st, bringup);
1104 }
1105
1106 /* Invoke a single callback on a remote cpu */
1107 static int
1108 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1109                          struct hlist_node *node)
1110 {
1111         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1112         int ret;
1113
1114         if (!cpu_online(cpu))
1115                 return 0;
1116
1117         cpuhp_lock_acquire(false);
1118         cpuhp_lock_release(false);
1119
1120         cpuhp_lock_acquire(true);
1121         cpuhp_lock_release(true);
1122
1123         /*
1124          * If we are up and running, use the hotplug thread. For early calls
1125          * we invoke the thread function directly.
1126          */
1127         if (!st->thread)
1128                 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1129
1130         st->rollback = false;
1131         st->last = NULL;
1132
1133         st->node = node;
1134         st->bringup = bringup;
1135         st->cb_state = state;
1136         st->single = true;
1137
1138         __cpuhp_kick_ap(st);
1139
1140         /*
1141          * If we failed and did a partial, do a rollback.
1142          */
1143         if ((ret = st->result) && st->last) {
1144                 st->rollback = true;
1145                 st->bringup = !bringup;
1146
1147                 __cpuhp_kick_ap(st);
1148         }
1149
1150         /*
1151          * Clean up the leftovers so the next hotplug operation wont use stale
1152          * data.
1153          */
1154         st->node = st->last = NULL;
1155         return ret;
1156 }
1157
1158 static int cpuhp_kick_ap_work(unsigned int cpu)
1159 {
1160         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1161         enum cpuhp_state prev_state = st->state;
1162         int ret;
1163
1164         cpuhp_lock_acquire(false);
1165         cpuhp_lock_release(false);
1166
1167         cpuhp_lock_acquire(true);
1168         cpuhp_lock_release(true);
1169
1170         trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1171         ret = cpuhp_kick_ap(cpu, st, st->target);
1172         trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1173
1174         return ret;
1175 }
1176
1177 static struct smp_hotplug_thread cpuhp_threads = {
1178         .store                  = &cpuhp_state.thread,
1179         .thread_should_run      = cpuhp_should_run,
1180         .thread_fn              = cpuhp_thread_fun,
1181         .thread_comm            = "cpuhp/%u",
1182         .selfparking            = true,
1183 };
1184
1185 static __init void cpuhp_init_state(void)
1186 {
1187         struct cpuhp_cpu_state *st;
1188         int cpu;
1189
1190         for_each_possible_cpu(cpu) {
1191                 st = per_cpu_ptr(&cpuhp_state, cpu);
1192                 init_completion(&st->done_up);
1193                 init_completion(&st->done_down);
1194         }
1195 }
1196
1197 void __init cpuhp_threads_init(void)
1198 {
1199         cpuhp_init_state();
1200         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1201         kthread_unpark(this_cpu_read(cpuhp_state.thread));
1202 }
1203
1204 /*
1205  *
1206  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
1207  * protected region.
1208  *
1209  * The operation is still serialized against concurrent CPU hotplug via
1210  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
1211  * serialized against other hotplug related activity like adding or
1212  * removing of state callbacks and state instances, which invoke either the
1213  * startup or the teardown callback of the affected state.
1214  *
1215  * This is required for subsystems which are unfixable vs. CPU hotplug and
1216  * evade lock inversion problems by scheduling work which has to be
1217  * completed _before_ cpu_up()/_cpu_down() returns.
1218  *
1219  * Don't even think about adding anything to this for any new code or even
1220  * drivers. It's only purpose is to keep existing lock order trainwrecks
1221  * working.
1222  *
1223  * For cpu_down() there might be valid reasons to finish cleanups which are
1224  * not required to be done under cpu_hotplug_lock, but that's a different
1225  * story and would be not invoked via this.
1226  */
1227 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
1228 {
1229         /*
1230          * cpusets delegate hotplug operations to a worker to "solve" the
1231          * lock order problems. Wait for the worker, but only if tasks are
1232          * _not_ frozen (suspend, hibernate) as that would wait forever.
1233          *
1234          * The wait is required because otherwise the hotplug operation
1235          * returns with inconsistent state, which could even be observed in
1236          * user space when a new CPU is brought up. The CPU plug uevent
1237          * would be delivered and user space reacting on it would fail to
1238          * move tasks to the newly plugged CPU up to the point where the
1239          * work has finished because up to that point the newly plugged CPU
1240          * is not assignable in cpusets/cgroups. On unplug that's not
1241          * necessarily a visible issue, but it is still inconsistent state,
1242          * which is the real problem which needs to be "fixed". This can't
1243          * prevent the transient state between scheduling the work and
1244          * returning from waiting for it.
1245          */
1246         if (!tasks_frozen)
1247                 cpuset_wait_for_hotplug();
1248 }
1249
1250 #ifdef CONFIG_HOTPLUG_CPU
1251 #ifndef arch_clear_mm_cpumask_cpu
1252 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1253 #endif
1254
1255 /**
1256  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1257  * @cpu: a CPU id
1258  *
1259  * This function walks all processes, finds a valid mm struct for each one and
1260  * then clears a corresponding bit in mm's cpumask.  While this all sounds
1261  * trivial, there are various non-obvious corner cases, which this function
1262  * tries to solve in a safe manner.
1263  *
1264  * Also note that the function uses a somewhat relaxed locking scheme, so it may
1265  * be called only for an already offlined CPU.
1266  */
1267 void clear_tasks_mm_cpumask(int cpu)
1268 {
1269         struct task_struct *p;
1270
1271         /*
1272          * This function is called after the cpu is taken down and marked
1273          * offline, so its not like new tasks will ever get this cpu set in
1274          * their mm mask. -- Peter Zijlstra
1275          * Thus, we may use rcu_read_lock() here, instead of grabbing
1276          * full-fledged tasklist_lock.
1277          */
1278         WARN_ON(cpu_online(cpu));
1279         rcu_read_lock();
1280         for_each_process(p) {
1281                 struct task_struct *t;
1282
1283                 /*
1284                  * Main thread might exit, but other threads may still have
1285                  * a valid mm. Find one.
1286                  */
1287                 t = find_lock_task_mm(p);
1288                 if (!t)
1289                         continue;
1290                 arch_clear_mm_cpumask_cpu(cpu, t->mm);
1291                 task_unlock(t);
1292         }
1293         rcu_read_unlock();
1294 }
1295
1296 /* Take this CPU down. */
1297 static int take_cpu_down(void *_param)
1298 {
1299         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1300         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1301         int err, cpu = smp_processor_id();
1302
1303         /* Ensure this CPU doesn't handle any more interrupts. */
1304         err = __cpu_disable();
1305         if (err < 0)
1306                 return err;
1307
1308         /*
1309          * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1310          * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1311          */
1312         WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1313
1314         /*
1315          * Invoke the former CPU_DYING callbacks. DYING must not fail!
1316          */
1317         cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1318
1319         /* Give up timekeeping duties */
1320         tick_handover_do_timer();
1321         /* Remove CPU from timer broadcasting */
1322         tick_offline_cpu(cpu);
1323         /* Park the stopper thread */
1324         stop_machine_park(cpu);
1325         return 0;
1326 }
1327
1328 static int takedown_cpu(unsigned int cpu)
1329 {
1330         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1331         int err;
1332
1333         /* Park the smpboot threads */
1334         kthread_park(st->thread);
1335
1336         /*
1337          * Prevent irq alloc/free while the dying cpu reorganizes the
1338          * interrupt affinities.
1339          */
1340         irq_lock_sparse();
1341
1342         /*
1343          * So now all preempt/rcu users must observe !cpu_active().
1344          */
1345         err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1346         if (err) {
1347                 /* CPU refused to die */
1348                 irq_unlock_sparse();
1349                 /* Unpark the hotplug thread so we can rollback there */
1350                 kthread_unpark(st->thread);
1351                 return err;
1352         }
1353         BUG_ON(cpu_online(cpu));
1354
1355         /*
1356          * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1357          * all runnable tasks from the CPU, there's only the idle task left now
1358          * that the migration thread is done doing the stop_machine thing.
1359          *
1360          * Wait for the stop thread to go away.
1361          */
1362         wait_for_ap_thread(st, false);
1363         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1364
1365         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1366         irq_unlock_sparse();
1367
1368         hotplug_cpu__broadcast_tick_pull(cpu);
1369         /* This actually kills the CPU. */
1370         __cpu_die(cpu);
1371
1372         cpuhp_bp_sync_dead(cpu);
1373
1374         tick_cleanup_dead_cpu(cpu);
1375         rcutree_migrate_callbacks(cpu);
1376         return 0;
1377 }
1378
1379 static void cpuhp_complete_idle_dead(void *arg)
1380 {
1381         struct cpuhp_cpu_state *st = arg;
1382
1383         complete_ap_thread(st, false);
1384 }
1385
1386 void cpuhp_report_idle_dead(void)
1387 {
1388         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1389
1390         BUG_ON(st->state != CPUHP_AP_OFFLINE);
1391         rcu_report_dead(smp_processor_id());
1392         st->state = CPUHP_AP_IDLE_DEAD;
1393         /*
1394          * We cannot call complete after rcu_report_dead() so we delegate it
1395          * to an online cpu.
1396          */
1397         smp_call_function_single(cpumask_first(cpu_online_mask),
1398                                  cpuhp_complete_idle_dead, st, 0);
1399 }
1400
1401 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1402                                 enum cpuhp_state target)
1403 {
1404         enum cpuhp_state prev_state = st->state;
1405         int ret = 0;
1406
1407         ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1408         if (ret) {
1409                 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1410                          ret, cpu, cpuhp_get_step(st->state)->name,
1411                          st->state);
1412
1413                 cpuhp_reset_state(cpu, st, prev_state);
1414
1415                 if (st->state < prev_state)
1416                         WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1417                                                             prev_state));
1418         }
1419
1420         return ret;
1421 }
1422
1423 /* Requires cpu_add_remove_lock to be held */
1424 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1425                            enum cpuhp_state target)
1426 {
1427         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1428         int prev_state, ret = 0;
1429
1430         if (num_online_cpus() == 1)
1431                 return -EBUSY;
1432
1433         if (!cpu_present(cpu))
1434                 return -EINVAL;
1435
1436         cpus_write_lock();
1437
1438         cpuhp_tasks_frozen = tasks_frozen;
1439
1440         prev_state = cpuhp_set_state(cpu, st, target);
1441         /*
1442          * If the current CPU state is in the range of the AP hotplug thread,
1443          * then we need to kick the thread.
1444          */
1445         if (st->state > CPUHP_TEARDOWN_CPU) {
1446                 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1447                 ret = cpuhp_kick_ap_work(cpu);
1448                 /*
1449                  * The AP side has done the error rollback already. Just
1450                  * return the error code..
1451                  */
1452                 if (ret)
1453                         goto out;
1454
1455                 /*
1456                  * We might have stopped still in the range of the AP hotplug
1457                  * thread. Nothing to do anymore.
1458                  */
1459                 if (st->state > CPUHP_TEARDOWN_CPU)
1460                         goto out;
1461
1462                 st->target = target;
1463         }
1464         /*
1465          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1466          * to do the further cleanups.
1467          */
1468         ret = cpuhp_down_callbacks(cpu, st, target);
1469         if (ret && st->state < prev_state) {
1470                 if (st->state == CPUHP_TEARDOWN_CPU) {
1471                         cpuhp_reset_state(cpu, st, prev_state);
1472                         __cpuhp_kick_ap(st);
1473                 } else {
1474                         WARN(1, "DEAD callback error for CPU%d", cpu);
1475                 }
1476         }
1477
1478 out:
1479         cpus_write_unlock();
1480         /*
1481          * Do post unplug cleanup. This is still protected against
1482          * concurrent CPU hotplug via cpu_add_remove_lock.
1483          */
1484         lockup_detector_cleanup();
1485         arch_smt_update();
1486         cpu_up_down_serialize_trainwrecks(tasks_frozen);
1487         return ret;
1488 }
1489
1490 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1491 {
1492         /*
1493          * If the platform does not support hotplug, report it explicitly to
1494          * differentiate it from a transient offlining failure.
1495          */
1496         if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1497                 return -EOPNOTSUPP;
1498         if (cpu_hotplug_disabled)
1499                 return -EBUSY;
1500         return _cpu_down(cpu, 0, target);
1501 }
1502
1503 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1504 {
1505         int err;
1506
1507         cpu_maps_update_begin();
1508         err = cpu_down_maps_locked(cpu, target);
1509         cpu_maps_update_done();
1510         return err;
1511 }
1512
1513 /**
1514  * cpu_device_down - Bring down a cpu device
1515  * @dev: Pointer to the cpu device to offline
1516  *
1517  * This function is meant to be used by device core cpu subsystem only.
1518  *
1519  * Other subsystems should use remove_cpu() instead.
1520  *
1521  * Return: %0 on success or a negative errno code
1522  */
1523 int cpu_device_down(struct device *dev)
1524 {
1525         return cpu_down(dev->id, CPUHP_OFFLINE);
1526 }
1527
1528 int remove_cpu(unsigned int cpu)
1529 {
1530         int ret;
1531
1532         lock_device_hotplug();
1533         ret = device_offline(get_cpu_device(cpu));
1534         unlock_device_hotplug();
1535
1536         return ret;
1537 }
1538 EXPORT_SYMBOL_GPL(remove_cpu);
1539
1540 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1541 {
1542         unsigned int cpu;
1543         int error;
1544
1545         cpu_maps_update_begin();
1546
1547         /*
1548          * Make certain the cpu I'm about to reboot on is online.
1549          *
1550          * This is inline to what migrate_to_reboot_cpu() already do.
1551          */
1552         if (!cpu_online(primary_cpu))
1553                 primary_cpu = cpumask_first(cpu_online_mask);
1554
1555         for_each_online_cpu(cpu) {
1556                 if (cpu == primary_cpu)
1557                         continue;
1558
1559                 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1560                 if (error) {
1561                         pr_err("Failed to offline CPU%d - error=%d",
1562                                 cpu, error);
1563                         break;
1564                 }
1565         }
1566
1567         /*
1568          * Ensure all but the reboot CPU are offline.
1569          */
1570         BUG_ON(num_online_cpus() > 1);
1571
1572         /*
1573          * Make sure the CPUs won't be enabled by someone else after this
1574          * point. Kexec will reboot to a new kernel shortly resetting
1575          * everything along the way.
1576          */
1577         cpu_hotplug_disabled++;
1578
1579         cpu_maps_update_done();
1580 }
1581
1582 #else
1583 #define takedown_cpu            NULL
1584 #endif /*CONFIG_HOTPLUG_CPU*/
1585
1586 /**
1587  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1588  * @cpu: cpu that just started
1589  *
1590  * It must be called by the arch code on the new cpu, before the new cpu
1591  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1592  */
1593 void notify_cpu_starting(unsigned int cpu)
1594 {
1595         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1596         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1597
1598         rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
1599         cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1600
1601         /*
1602          * STARTING must not fail!
1603          */
1604         cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1605 }
1606
1607 /*
1608  * Called from the idle task. Wake up the controlling task which brings the
1609  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1610  * online bringup to the hotplug thread.
1611  */
1612 void cpuhp_online_idle(enum cpuhp_state state)
1613 {
1614         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1615
1616         /* Happens for the boot cpu */
1617         if (state != CPUHP_AP_ONLINE_IDLE)
1618                 return;
1619
1620         cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1621
1622         /*
1623          * Unpark the stopper thread before we start the idle loop (and start
1624          * scheduling); this ensures the stopper task is always available.
1625          */
1626         stop_machine_unpark(smp_processor_id());
1627
1628         st->state = CPUHP_AP_ONLINE_IDLE;
1629         complete_ap_thread(st, true);
1630 }
1631
1632 /* Requires cpu_add_remove_lock to be held */
1633 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1634 {
1635         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1636         struct task_struct *idle;
1637         int ret = 0;
1638
1639         cpus_write_lock();
1640
1641         if (!cpu_present(cpu)) {
1642                 ret = -EINVAL;
1643                 goto out;
1644         }
1645
1646         /*
1647          * The caller of cpu_up() might have raced with another
1648          * caller. Nothing to do.
1649          */
1650         if (st->state >= target)
1651                 goto out;
1652
1653         if (st->state == CPUHP_OFFLINE) {
1654                 /* Let it fail before we try to bring the cpu up */
1655                 idle = idle_thread_get(cpu);
1656                 if (IS_ERR(idle)) {
1657                         ret = PTR_ERR(idle);
1658                         goto out;
1659                 }
1660
1661                 /*
1662                  * Reset stale stack state from the last time this CPU was online.
1663                  */
1664                 scs_task_reset(idle);
1665                 kasan_unpoison_task_stack(idle);
1666         }
1667
1668         cpuhp_tasks_frozen = tasks_frozen;
1669
1670         cpuhp_set_state(cpu, st, target);
1671         /*
1672          * If the current CPU state is in the range of the AP hotplug thread,
1673          * then we need to kick the thread once more.
1674          */
1675         if (st->state > CPUHP_BRINGUP_CPU) {
1676                 ret = cpuhp_kick_ap_work(cpu);
1677                 /*
1678                  * The AP side has done the error rollback already. Just
1679                  * return the error code..
1680                  */
1681                 if (ret)
1682                         goto out;
1683         }
1684
1685         /*
1686          * Try to reach the target state. We max out on the BP at
1687          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1688          * responsible for bringing it up to the target state.
1689          */
1690         target = min((int)target, CPUHP_BRINGUP_CPU);
1691         ret = cpuhp_up_callbacks(cpu, st, target);
1692 out:
1693         cpus_write_unlock();
1694         arch_smt_update();
1695         cpu_up_down_serialize_trainwrecks(tasks_frozen);
1696         return ret;
1697 }
1698
1699 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1700 {
1701         int err = 0;
1702
1703         if (!cpu_possible(cpu)) {
1704                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1705                        cpu);
1706 #if defined(CONFIG_IA64)
1707                 pr_err("please check additional_cpus= boot parameter\n");
1708 #endif
1709                 return -EINVAL;
1710         }
1711
1712         err = try_online_node(cpu_to_node(cpu));
1713         if (err)
1714                 return err;
1715
1716         cpu_maps_update_begin();
1717
1718         if (cpu_hotplug_disabled) {
1719                 err = -EBUSY;
1720                 goto out;
1721         }
1722         if (!cpu_smt_allowed(cpu)) {
1723                 err = -EPERM;
1724                 goto out;
1725         }
1726
1727         err = _cpu_up(cpu, 0, target);
1728 out:
1729         cpu_maps_update_done();
1730         return err;
1731 }
1732
1733 /**
1734  * cpu_device_up - Bring up a cpu device
1735  * @dev: Pointer to the cpu device to online
1736  *
1737  * This function is meant to be used by device core cpu subsystem only.
1738  *
1739  * Other subsystems should use add_cpu() instead.
1740  *
1741  * Return: %0 on success or a negative errno code
1742  */
1743 int cpu_device_up(struct device *dev)
1744 {
1745         return cpu_up(dev->id, CPUHP_ONLINE);
1746 }
1747
1748 int add_cpu(unsigned int cpu)
1749 {
1750         int ret;
1751
1752         lock_device_hotplug();
1753         ret = device_online(get_cpu_device(cpu));
1754         unlock_device_hotplug();
1755
1756         return ret;
1757 }
1758 EXPORT_SYMBOL_GPL(add_cpu);
1759
1760 /**
1761  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1762  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1763  *
1764  * On some architectures like arm64, we can hibernate on any CPU, but on
1765  * wake up the CPU we hibernated on might be offline as a side effect of
1766  * using maxcpus= for example.
1767  *
1768  * Return: %0 on success or a negative errno code
1769  */
1770 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1771 {
1772         int ret;
1773
1774         if (!cpu_online(sleep_cpu)) {
1775                 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1776                 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1777                 if (ret) {
1778                         pr_err("Failed to bring hibernate-CPU up!\n");
1779                         return ret;
1780                 }
1781         }
1782         return 0;
1783 }
1784
1785 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1786                                       enum cpuhp_state target)
1787 {
1788         unsigned int cpu;
1789
1790         for_each_cpu(cpu, mask) {
1791                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1792
1793                 if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1794                         /*
1795                          * If this failed then cpu_up() might have only
1796                          * rolled back to CPUHP_BP_KICK_AP for the final
1797                          * online. Clean it up. NOOP if already rolled back.
1798                          */
1799                         WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1800                 }
1801
1802                 if (!--ncpus)
1803                         break;
1804         }
1805 }
1806
1807 #ifdef CONFIG_HOTPLUG_PARALLEL
1808 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1809
1810 static int __init parallel_bringup_parse_param(char *arg)
1811 {
1812         return kstrtobool(arg, &__cpuhp_parallel_bringup);
1813 }
1814 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1815
1816 static inline bool cpuhp_smt_aware(void)
1817 {
1818         return cpu_smt_max_threads > 1;
1819 }
1820
1821 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1822 {
1823         return cpu_primary_thread_mask;
1824 }
1825
1826 /*
1827  * On architectures which have enabled parallel bringup this invokes all BP
1828  * prepare states for each of the to be onlined APs first. The last state
1829  * sends the startup IPI to the APs. The APs proceed through the low level
1830  * bringup code in parallel and then wait for the control CPU to release
1831  * them one by one for the final onlining procedure.
1832  *
1833  * This avoids waiting for each AP to respond to the startup IPI in
1834  * CPUHP_BRINGUP_CPU.
1835  */
1836 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1837 {
1838         const struct cpumask *mask = cpu_present_mask;
1839
1840         if (__cpuhp_parallel_bringup)
1841                 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1842         if (!__cpuhp_parallel_bringup)
1843                 return false;
1844
1845         if (cpuhp_smt_aware()) {
1846                 const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1847                 static struct cpumask tmp_mask __initdata;
1848
1849                 /*
1850                  * X86 requires to prevent that SMT siblings stopped while
1851                  * the primary thread does a microcode update for various
1852                  * reasons. Bring the primary threads up first.
1853                  */
1854                 cpumask_and(&tmp_mask, mask, pmask);
1855                 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1856                 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1857                 /* Account for the online CPUs */
1858                 ncpus -= num_online_cpus();
1859                 if (!ncpus)
1860                         return true;
1861                 /* Create the mask for secondary CPUs */
1862                 cpumask_andnot(&tmp_mask, mask, pmask);
1863                 mask = &tmp_mask;
1864         }
1865
1866         /* Bring the not-yet started CPUs up */
1867         cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1868         cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1869         return true;
1870 }
1871 #else
1872 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1873 #endif /* CONFIG_HOTPLUG_PARALLEL */
1874
1875 void __init bringup_nonboot_cpus(unsigned int setup_max_cpus)
1876 {
1877         /* Try parallel bringup optimization if enabled */
1878         if (cpuhp_bringup_cpus_parallel(setup_max_cpus))
1879                 return;
1880
1881         /* Full per CPU serialized bringup */
1882         cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE);
1883 }
1884
1885 #ifdef CONFIG_PM_SLEEP_SMP
1886 static cpumask_var_t frozen_cpus;
1887
1888 int freeze_secondary_cpus(int primary)
1889 {
1890         int cpu, error = 0;
1891
1892         cpu_maps_update_begin();
1893         if (primary == -1) {
1894                 primary = cpumask_first(cpu_online_mask);
1895                 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1896                         primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1897         } else {
1898                 if (!cpu_online(primary))
1899                         primary = cpumask_first(cpu_online_mask);
1900         }
1901
1902         /*
1903          * We take down all of the non-boot CPUs in one shot to avoid races
1904          * with the userspace trying to use the CPU hotplug at the same time
1905          */
1906         cpumask_clear(frozen_cpus);
1907
1908         pr_info("Disabling non-boot CPUs ...\n");
1909         for_each_online_cpu(cpu) {
1910                 if (cpu == primary)
1911                         continue;
1912
1913                 if (pm_wakeup_pending()) {
1914                         pr_info("Wakeup pending. Abort CPU freeze\n");
1915                         error = -EBUSY;
1916                         break;
1917                 }
1918
1919                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1920                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1921                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1922                 if (!error)
1923                         cpumask_set_cpu(cpu, frozen_cpus);
1924                 else {
1925                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1926                         break;
1927                 }
1928         }
1929
1930         if (!error)
1931                 BUG_ON(num_online_cpus() > 1);
1932         else
1933                 pr_err("Non-boot CPUs are not disabled\n");
1934
1935         /*
1936          * Make sure the CPUs won't be enabled by someone else. We need to do
1937          * this even in case of failure as all freeze_secondary_cpus() users are
1938          * supposed to do thaw_secondary_cpus() on the failure path.
1939          */
1940         cpu_hotplug_disabled++;
1941
1942         cpu_maps_update_done();
1943         return error;
1944 }
1945
1946 void __weak arch_thaw_secondary_cpus_begin(void)
1947 {
1948 }
1949
1950 void __weak arch_thaw_secondary_cpus_end(void)
1951 {
1952 }
1953
1954 void thaw_secondary_cpus(void)
1955 {
1956         int cpu, error;
1957
1958         /* Allow everyone to use the CPU hotplug again */
1959         cpu_maps_update_begin();
1960         __cpu_hotplug_enable();
1961         if (cpumask_empty(frozen_cpus))
1962                 goto out;
1963
1964         pr_info("Enabling non-boot CPUs ...\n");
1965
1966         arch_thaw_secondary_cpus_begin();
1967
1968         for_each_cpu(cpu, frozen_cpus) {
1969                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1970                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1971                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1972                 if (!error) {
1973                         pr_info("CPU%d is up\n", cpu);
1974                         continue;
1975                 }
1976                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1977         }
1978
1979         arch_thaw_secondary_cpus_end();
1980
1981         cpumask_clear(frozen_cpus);
1982 out:
1983         cpu_maps_update_done();
1984 }
1985
1986 static int __init alloc_frozen_cpus(void)
1987 {
1988         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1989                 return -ENOMEM;
1990         return 0;
1991 }
1992 core_initcall(alloc_frozen_cpus);
1993
1994 /*
1995  * When callbacks for CPU hotplug notifications are being executed, we must
1996  * ensure that the state of the system with respect to the tasks being frozen
1997  * or not, as reported by the notification, remains unchanged *throughout the
1998  * duration* of the execution of the callbacks.
1999  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2000  *
2001  * This synchronization is implemented by mutually excluding regular CPU
2002  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2003  * Hibernate notifications.
2004  */
2005 static int
2006 cpu_hotplug_pm_callback(struct notifier_block *nb,
2007                         unsigned long action, void *ptr)
2008 {
2009         switch (action) {
2010
2011         case PM_SUSPEND_PREPARE:
2012         case PM_HIBERNATION_PREPARE:
2013                 cpu_hotplug_disable();
2014                 break;
2015
2016         case PM_POST_SUSPEND:
2017         case PM_POST_HIBERNATION:
2018                 cpu_hotplug_enable();
2019                 break;
2020
2021         default:
2022                 return NOTIFY_DONE;
2023         }
2024
2025         return NOTIFY_OK;
2026 }
2027
2028
2029 static int __init cpu_hotplug_pm_sync_init(void)
2030 {
2031         /*
2032          * cpu_hotplug_pm_callback has higher priority than x86
2033          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2034          * to disable cpu hotplug to avoid cpu hotplug race.
2035          */
2036         pm_notifier(cpu_hotplug_pm_callback, 0);
2037         return 0;
2038 }
2039 core_initcall(cpu_hotplug_pm_sync_init);
2040
2041 #endif /* CONFIG_PM_SLEEP_SMP */
2042
2043 int __boot_cpu_id;
2044
2045 #endif /* CONFIG_SMP */
2046
2047 /* Boot processor state steps */
2048 static struct cpuhp_step cpuhp_hp_states[] = {
2049         [CPUHP_OFFLINE] = {
2050                 .name                   = "offline",
2051                 .startup.single         = NULL,
2052                 .teardown.single        = NULL,
2053         },
2054 #ifdef CONFIG_SMP
2055         [CPUHP_CREATE_THREADS]= {
2056                 .name                   = "threads:prepare",
2057                 .startup.single         = smpboot_create_threads,
2058                 .teardown.single        = NULL,
2059                 .cant_stop              = true,
2060         },
2061         [CPUHP_PERF_PREPARE] = {
2062                 .name                   = "perf:prepare",
2063                 .startup.single         = perf_event_init_cpu,
2064                 .teardown.single        = perf_event_exit_cpu,
2065         },
2066         [CPUHP_RANDOM_PREPARE] = {
2067                 .name                   = "random:prepare",
2068                 .startup.single         = random_prepare_cpu,
2069                 .teardown.single        = NULL,
2070         },
2071         [CPUHP_WORKQUEUE_PREP] = {
2072                 .name                   = "workqueue:prepare",
2073                 .startup.single         = workqueue_prepare_cpu,
2074                 .teardown.single        = NULL,
2075         },
2076         [CPUHP_HRTIMERS_PREPARE] = {
2077                 .name                   = "hrtimers:prepare",
2078                 .startup.single         = hrtimers_prepare_cpu,
2079                 .teardown.single        = hrtimers_dead_cpu,
2080         },
2081         [CPUHP_SMPCFD_PREPARE] = {
2082                 .name                   = "smpcfd:prepare",
2083                 .startup.single         = smpcfd_prepare_cpu,
2084                 .teardown.single        = smpcfd_dead_cpu,
2085         },
2086         [CPUHP_RELAY_PREPARE] = {
2087                 .name                   = "relay:prepare",
2088                 .startup.single         = relay_prepare_cpu,
2089                 .teardown.single        = NULL,
2090         },
2091         [CPUHP_SLAB_PREPARE] = {
2092                 .name                   = "slab:prepare",
2093                 .startup.single         = slab_prepare_cpu,
2094                 .teardown.single        = slab_dead_cpu,
2095         },
2096         [CPUHP_RCUTREE_PREP] = {
2097                 .name                   = "RCU/tree:prepare",
2098                 .startup.single         = rcutree_prepare_cpu,
2099                 .teardown.single        = rcutree_dead_cpu,
2100         },
2101         /*
2102          * On the tear-down path, timers_dead_cpu() must be invoked
2103          * before blk_mq_queue_reinit_notify() from notify_dead(),
2104          * otherwise a RCU stall occurs.
2105          */
2106         [CPUHP_TIMERS_PREPARE] = {
2107                 .name                   = "timers:prepare",
2108                 .startup.single         = timers_prepare_cpu,
2109                 .teardown.single        = timers_dead_cpu,
2110         },
2111
2112 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2113         /*
2114          * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2115          * the next step will release it.
2116          */
2117         [CPUHP_BP_KICK_AP] = {
2118                 .name                   = "cpu:kick_ap",
2119                 .startup.single         = cpuhp_kick_ap_alive,
2120         },
2121
2122         /*
2123          * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2124          * releases it for the complete bringup.
2125          */
2126         [CPUHP_BRINGUP_CPU] = {
2127                 .name                   = "cpu:bringup",
2128                 .startup.single         = cpuhp_bringup_ap,
2129                 .teardown.single        = finish_cpu,
2130                 .cant_stop              = true,
2131         },
2132 #else
2133         /*
2134          * All-in-one CPU bringup state which includes the kick alive.
2135          */
2136         [CPUHP_BRINGUP_CPU] = {
2137                 .name                   = "cpu:bringup",
2138                 .startup.single         = bringup_cpu,
2139                 .teardown.single        = finish_cpu,
2140                 .cant_stop              = true,
2141         },
2142 #endif
2143         /* Final state before CPU kills itself */
2144         [CPUHP_AP_IDLE_DEAD] = {
2145                 .name                   = "idle:dead",
2146         },
2147         /*
2148          * Last state before CPU enters the idle loop to die. Transient state
2149          * for synchronization.
2150          */
2151         [CPUHP_AP_OFFLINE] = {
2152                 .name                   = "ap:offline",
2153                 .cant_stop              = true,
2154         },
2155         /* First state is scheduler control. Interrupts are disabled */
2156         [CPUHP_AP_SCHED_STARTING] = {
2157                 .name                   = "sched:starting",
2158                 .startup.single         = sched_cpu_starting,
2159                 .teardown.single        = sched_cpu_dying,
2160         },
2161         [CPUHP_AP_RCUTREE_DYING] = {
2162                 .name                   = "RCU/tree:dying",
2163                 .startup.single         = NULL,
2164                 .teardown.single        = rcutree_dying_cpu,
2165         },
2166         [CPUHP_AP_SMPCFD_DYING] = {
2167                 .name                   = "smpcfd:dying",
2168                 .startup.single         = NULL,
2169                 .teardown.single        = smpcfd_dying_cpu,
2170         },
2171         /* Entry state on starting. Interrupts enabled from here on. Transient
2172          * state for synchronsization */
2173         [CPUHP_AP_ONLINE] = {
2174                 .name                   = "ap:online",
2175         },
2176         /*
2177          * Handled on control processor until the plugged processor manages
2178          * this itself.
2179          */
2180         [CPUHP_TEARDOWN_CPU] = {
2181                 .name                   = "cpu:teardown",
2182                 .startup.single         = NULL,
2183                 .teardown.single        = takedown_cpu,
2184                 .cant_stop              = true,
2185         },
2186
2187         [CPUHP_AP_SCHED_WAIT_EMPTY] = {
2188                 .name                   = "sched:waitempty",
2189                 .startup.single         = NULL,
2190                 .teardown.single        = sched_cpu_wait_empty,
2191         },
2192
2193         /* Handle smpboot threads park/unpark */
2194         [CPUHP_AP_SMPBOOT_THREADS] = {
2195                 .name                   = "smpboot/threads:online",
2196                 .startup.single         = smpboot_unpark_threads,
2197                 .teardown.single        = smpboot_park_threads,
2198         },
2199         [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2200                 .name                   = "irq/affinity:online",
2201                 .startup.single         = irq_affinity_online_cpu,
2202                 .teardown.single        = NULL,
2203         },
2204         [CPUHP_AP_PERF_ONLINE] = {
2205                 .name                   = "perf:online",
2206                 .startup.single         = perf_event_init_cpu,
2207                 .teardown.single        = perf_event_exit_cpu,
2208         },
2209         [CPUHP_AP_WATCHDOG_ONLINE] = {
2210                 .name                   = "lockup_detector:online",
2211                 .startup.single         = lockup_detector_online_cpu,
2212                 .teardown.single        = lockup_detector_offline_cpu,
2213         },
2214         [CPUHP_AP_WORKQUEUE_ONLINE] = {
2215                 .name                   = "workqueue:online",
2216                 .startup.single         = workqueue_online_cpu,
2217                 .teardown.single        = workqueue_offline_cpu,
2218         },
2219         [CPUHP_AP_RANDOM_ONLINE] = {
2220                 .name                   = "random:online",
2221                 .startup.single         = random_online_cpu,
2222                 .teardown.single        = NULL,
2223         },
2224         [CPUHP_AP_RCUTREE_ONLINE] = {
2225                 .name                   = "RCU/tree:online",
2226                 .startup.single         = rcutree_online_cpu,
2227                 .teardown.single        = rcutree_offline_cpu,
2228         },
2229 #endif
2230         /*
2231          * The dynamically registered state space is here
2232          */
2233
2234 #ifdef CONFIG_SMP
2235         /* Last state is scheduler control setting the cpu active */
2236         [CPUHP_AP_ACTIVE] = {
2237                 .name                   = "sched:active",
2238                 .startup.single         = sched_cpu_activate,
2239                 .teardown.single        = sched_cpu_deactivate,
2240         },
2241 #endif
2242
2243         /* CPU is fully up and running. */
2244         [CPUHP_ONLINE] = {
2245                 .name                   = "online",
2246                 .startup.single         = NULL,
2247                 .teardown.single        = NULL,
2248         },
2249 };
2250
2251 /* Sanity check for callbacks */
2252 static int cpuhp_cb_check(enum cpuhp_state state)
2253 {
2254         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2255                 return -EINVAL;
2256         return 0;
2257 }
2258
2259 /*
2260  * Returns a free for dynamic slot assignment of the Online state. The states
2261  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2262  * by having no name assigned.
2263  */
2264 static int cpuhp_reserve_state(enum cpuhp_state state)
2265 {
2266         enum cpuhp_state i, end;
2267         struct cpuhp_step *step;
2268
2269         switch (state) {
2270         case CPUHP_AP_ONLINE_DYN:
2271                 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2272                 end = CPUHP_AP_ONLINE_DYN_END;
2273                 break;
2274         case CPUHP_BP_PREPARE_DYN:
2275                 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2276                 end = CPUHP_BP_PREPARE_DYN_END;
2277                 break;
2278         default:
2279                 return -EINVAL;
2280         }
2281
2282         for (i = state; i <= end; i++, step++) {
2283                 if (!step->name)
2284                         return i;
2285         }
2286         WARN(1, "No more dynamic states available for CPU hotplug\n");
2287         return -ENOSPC;
2288 }
2289
2290 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2291                                  int (*startup)(unsigned int cpu),
2292                                  int (*teardown)(unsigned int cpu),
2293                                  bool multi_instance)
2294 {
2295         /* (Un)Install the callbacks for further cpu hotplug operations */
2296         struct cpuhp_step *sp;
2297         int ret = 0;
2298
2299         /*
2300          * If name is NULL, then the state gets removed.
2301          *
2302          * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2303          * the first allocation from these dynamic ranges, so the removal
2304          * would trigger a new allocation and clear the wrong (already
2305          * empty) state, leaving the callbacks of the to be cleared state
2306          * dangling, which causes wreckage on the next hotplug operation.
2307          */
2308         if (name && (state == CPUHP_AP_ONLINE_DYN ||
2309                      state == CPUHP_BP_PREPARE_DYN)) {
2310                 ret = cpuhp_reserve_state(state);
2311                 if (ret < 0)
2312                         return ret;
2313                 state = ret;
2314         }
2315         sp = cpuhp_get_step(state);
2316         if (name && sp->name)
2317                 return -EBUSY;
2318
2319         sp->startup.single = startup;
2320         sp->teardown.single = teardown;
2321         sp->name = name;
2322         sp->multi_instance = multi_instance;
2323         INIT_HLIST_HEAD(&sp->list);
2324         return ret;
2325 }
2326
2327 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2328 {
2329         return cpuhp_get_step(state)->teardown.single;
2330 }
2331
2332 /*
2333  * Call the startup/teardown function for a step either on the AP or
2334  * on the current CPU.
2335  */
2336 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2337                             struct hlist_node *node)
2338 {
2339         struct cpuhp_step *sp = cpuhp_get_step(state);
2340         int ret;
2341
2342         /*
2343          * If there's nothing to do, we done.
2344          * Relies on the union for multi_instance.
2345          */
2346         if (cpuhp_step_empty(bringup, sp))
2347                 return 0;
2348         /*
2349          * The non AP bound callbacks can fail on bringup. On teardown
2350          * e.g. module removal we crash for now.
2351          */
2352 #ifdef CONFIG_SMP
2353         if (cpuhp_is_ap_state(state))
2354                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2355         else
2356                 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2357 #else
2358         ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2359 #endif
2360         BUG_ON(ret && !bringup);
2361         return ret;
2362 }
2363
2364 /*
2365  * Called from __cpuhp_setup_state on a recoverable failure.
2366  *
2367  * Note: The teardown callbacks for rollback are not allowed to fail!
2368  */
2369 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2370                                    struct hlist_node *node)
2371 {
2372         int cpu;
2373
2374         /* Roll back the already executed steps on the other cpus */
2375         for_each_present_cpu(cpu) {
2376                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2377                 int cpustate = st->state;
2378
2379                 if (cpu >= failedcpu)
2380                         break;
2381
2382                 /* Did we invoke the startup call on that cpu ? */
2383                 if (cpustate >= state)
2384                         cpuhp_issue_call(cpu, state, false, node);
2385         }
2386 }
2387
2388 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2389                                           struct hlist_node *node,
2390                                           bool invoke)
2391 {
2392         struct cpuhp_step *sp;
2393         int cpu;
2394         int ret;
2395
2396         lockdep_assert_cpus_held();
2397
2398         sp = cpuhp_get_step(state);
2399         if (sp->multi_instance == false)
2400                 return -EINVAL;
2401
2402         mutex_lock(&cpuhp_state_mutex);
2403
2404         if (!invoke || !sp->startup.multi)
2405                 goto add_node;
2406
2407         /*
2408          * Try to call the startup callback for each present cpu
2409          * depending on the hotplug state of the cpu.
2410          */
2411         for_each_present_cpu(cpu) {
2412                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2413                 int cpustate = st->state;
2414
2415                 if (cpustate < state)
2416                         continue;
2417
2418                 ret = cpuhp_issue_call(cpu, state, true, node);
2419                 if (ret) {
2420                         if (sp->teardown.multi)
2421                                 cpuhp_rollback_install(cpu, state, node);
2422                         goto unlock;
2423                 }
2424         }
2425 add_node:
2426         ret = 0;
2427         hlist_add_head(node, &sp->list);
2428 unlock:
2429         mutex_unlock(&cpuhp_state_mutex);
2430         return ret;
2431 }
2432
2433 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2434                                bool invoke)
2435 {
2436         int ret;
2437
2438         cpus_read_lock();
2439         ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2440         cpus_read_unlock();
2441         return ret;
2442 }
2443 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2444
2445 /**
2446  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2447  * @state:              The state to setup
2448  * @name:               Name of the step
2449  * @invoke:             If true, the startup function is invoked for cpus where
2450  *                      cpu state >= @state
2451  * @startup:            startup callback function
2452  * @teardown:           teardown callback function
2453  * @multi_instance:     State is set up for multiple instances which get
2454  *                      added afterwards.
2455  *
2456  * The caller needs to hold cpus read locked while calling this function.
2457  * Return:
2458  *   On success:
2459  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2460  *      0 for all other states
2461  *   On failure: proper (negative) error code
2462  */
2463 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2464                                    const char *name, bool invoke,
2465                                    int (*startup)(unsigned int cpu),
2466                                    int (*teardown)(unsigned int cpu),
2467                                    bool multi_instance)
2468 {
2469         int cpu, ret = 0;
2470         bool dynstate;
2471
2472         lockdep_assert_cpus_held();
2473
2474         if (cpuhp_cb_check(state) || !name)
2475                 return -EINVAL;
2476
2477         mutex_lock(&cpuhp_state_mutex);
2478
2479         ret = cpuhp_store_callbacks(state, name, startup, teardown,
2480                                     multi_instance);
2481
2482         dynstate = state == CPUHP_AP_ONLINE_DYN;
2483         if (ret > 0 && dynstate) {
2484                 state = ret;
2485                 ret = 0;
2486         }
2487
2488         if (ret || !invoke || !startup)
2489                 goto out;
2490
2491         /*
2492          * Try to call the startup callback for each present cpu
2493          * depending on the hotplug state of the cpu.
2494          */
2495         for_each_present_cpu(cpu) {
2496                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2497                 int cpustate = st->state;
2498
2499                 if (cpustate < state)
2500                         continue;
2501
2502                 ret = cpuhp_issue_call(cpu, state, true, NULL);
2503                 if (ret) {
2504                         if (teardown)
2505                                 cpuhp_rollback_install(cpu, state, NULL);
2506                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2507                         goto out;
2508                 }
2509         }
2510 out:
2511         mutex_unlock(&cpuhp_state_mutex);
2512         /*
2513          * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2514          * dynamically allocated state in case of success.
2515          */
2516         if (!ret && dynstate)
2517                 return state;
2518         return ret;
2519 }
2520 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2521
2522 int __cpuhp_setup_state(enum cpuhp_state state,
2523                         const char *name, bool invoke,
2524                         int (*startup)(unsigned int cpu),
2525                         int (*teardown)(unsigned int cpu),
2526                         bool multi_instance)
2527 {
2528         int ret;
2529
2530         cpus_read_lock();
2531         ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2532                                              teardown, multi_instance);
2533         cpus_read_unlock();
2534         return ret;
2535 }
2536 EXPORT_SYMBOL(__cpuhp_setup_state);
2537
2538 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2539                                   struct hlist_node *node, bool invoke)
2540 {
2541         struct cpuhp_step *sp = cpuhp_get_step(state);
2542         int cpu;
2543
2544         BUG_ON(cpuhp_cb_check(state));
2545
2546         if (!sp->multi_instance)
2547                 return -EINVAL;
2548
2549         cpus_read_lock();
2550         mutex_lock(&cpuhp_state_mutex);
2551
2552         if (!invoke || !cpuhp_get_teardown_cb(state))
2553                 goto remove;
2554         /*
2555          * Call the teardown callback for each present cpu depending
2556          * on the hotplug state of the cpu. This function is not
2557          * allowed to fail currently!
2558          */
2559         for_each_present_cpu(cpu) {
2560                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2561                 int cpustate = st->state;
2562
2563                 if (cpustate >= state)
2564                         cpuhp_issue_call(cpu, state, false, node);
2565         }
2566
2567 remove:
2568         hlist_del(node);
2569         mutex_unlock(&cpuhp_state_mutex);
2570         cpus_read_unlock();
2571
2572         return 0;
2573 }
2574 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2575
2576 /**
2577  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2578  * @state:      The state to remove
2579  * @invoke:     If true, the teardown function is invoked for cpus where
2580  *              cpu state >= @state
2581  *
2582  * The caller needs to hold cpus read locked while calling this function.
2583  * The teardown callback is currently not allowed to fail. Think
2584  * about module removal!
2585  */
2586 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2587 {
2588         struct cpuhp_step *sp = cpuhp_get_step(state);
2589         int cpu;
2590
2591         BUG_ON(cpuhp_cb_check(state));
2592
2593         lockdep_assert_cpus_held();
2594
2595         mutex_lock(&cpuhp_state_mutex);
2596         if (sp->multi_instance) {
2597                 WARN(!hlist_empty(&sp->list),
2598                      "Error: Removing state %d which has instances left.\n",
2599                      state);
2600                 goto remove;
2601         }
2602
2603         if (!invoke || !cpuhp_get_teardown_cb(state))
2604                 goto remove;
2605
2606         /*
2607          * Call the teardown callback for each present cpu depending
2608          * on the hotplug state of the cpu. This function is not
2609          * allowed to fail currently!
2610          */
2611         for_each_present_cpu(cpu) {
2612                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2613                 int cpustate = st->state;
2614
2615                 if (cpustate >= state)
2616                         cpuhp_issue_call(cpu, state, false, NULL);
2617         }
2618 remove:
2619         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2620         mutex_unlock(&cpuhp_state_mutex);
2621 }
2622 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2623
2624 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2625 {
2626         cpus_read_lock();
2627         __cpuhp_remove_state_cpuslocked(state, invoke);
2628         cpus_read_unlock();
2629 }
2630 EXPORT_SYMBOL(__cpuhp_remove_state);
2631
2632 #ifdef CONFIG_HOTPLUG_SMT
2633 static void cpuhp_offline_cpu_device(unsigned int cpu)
2634 {
2635         struct device *dev = get_cpu_device(cpu);
2636
2637         dev->offline = true;
2638         /* Tell user space about the state change */
2639         kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2640 }
2641
2642 static void cpuhp_online_cpu_device(unsigned int cpu)
2643 {
2644         struct device *dev = get_cpu_device(cpu);
2645
2646         dev->offline = false;
2647         /* Tell user space about the state change */
2648         kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2649 }
2650
2651 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2652 {
2653         int cpu, ret = 0;
2654
2655         cpu_maps_update_begin();
2656         for_each_online_cpu(cpu) {
2657                 if (topology_is_primary_thread(cpu))
2658                         continue;
2659                 /*
2660                  * Disable can be called with CPU_SMT_ENABLED when changing
2661                  * from a higher to lower number of SMT threads per core.
2662                  */
2663                 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2664                         continue;
2665                 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2666                 if (ret)
2667                         break;
2668                 /*
2669                  * As this needs to hold the cpu maps lock it's impossible
2670                  * to call device_offline() because that ends up calling
2671                  * cpu_down() which takes cpu maps lock. cpu maps lock
2672                  * needs to be held as this might race against in kernel
2673                  * abusers of the hotplug machinery (thermal management).
2674                  *
2675                  * So nothing would update device:offline state. That would
2676                  * leave the sysfs entry stale and prevent onlining after
2677                  * smt control has been changed to 'off' again. This is
2678                  * called under the sysfs hotplug lock, so it is properly
2679                  * serialized against the regular offline usage.
2680                  */
2681                 cpuhp_offline_cpu_device(cpu);
2682         }
2683         if (!ret)
2684                 cpu_smt_control = ctrlval;
2685         cpu_maps_update_done();
2686         return ret;
2687 }
2688
2689 int cpuhp_smt_enable(void)
2690 {
2691         int cpu, ret = 0;
2692
2693         cpu_maps_update_begin();
2694         cpu_smt_control = CPU_SMT_ENABLED;
2695         for_each_present_cpu(cpu) {
2696                 /* Skip online CPUs and CPUs on offline nodes */
2697                 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2698                         continue;
2699                 if (!cpu_smt_thread_allowed(cpu))
2700                         continue;
2701                 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2702                 if (ret)
2703                         break;
2704                 /* See comment in cpuhp_smt_disable() */
2705                 cpuhp_online_cpu_device(cpu);
2706         }
2707         cpu_maps_update_done();
2708         return ret;
2709 }
2710 #endif
2711
2712 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2713 static ssize_t state_show(struct device *dev,
2714                           struct device_attribute *attr, char *buf)
2715 {
2716         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2717
2718         return sprintf(buf, "%d\n", st->state);
2719 }
2720 static DEVICE_ATTR_RO(state);
2721
2722 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2723                             const char *buf, size_t count)
2724 {
2725         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2726         struct cpuhp_step *sp;
2727         int target, ret;
2728
2729         ret = kstrtoint(buf, 10, &target);
2730         if (ret)
2731                 return ret;
2732
2733 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2734         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2735                 return -EINVAL;
2736 #else
2737         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2738                 return -EINVAL;
2739 #endif
2740
2741         ret = lock_device_hotplug_sysfs();
2742         if (ret)
2743                 return ret;
2744
2745         mutex_lock(&cpuhp_state_mutex);
2746         sp = cpuhp_get_step(target);
2747         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2748         mutex_unlock(&cpuhp_state_mutex);
2749         if (ret)
2750                 goto out;
2751
2752         if (st->state < target)
2753                 ret = cpu_up(dev->id, target);
2754         else if (st->state > target)
2755                 ret = cpu_down(dev->id, target);
2756         else if (WARN_ON(st->target != target))
2757                 st->target = target;
2758 out:
2759         unlock_device_hotplug();
2760         return ret ? ret : count;
2761 }
2762
2763 static ssize_t target_show(struct device *dev,
2764                            struct device_attribute *attr, char *buf)
2765 {
2766         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2767
2768         return sprintf(buf, "%d\n", st->target);
2769 }
2770 static DEVICE_ATTR_RW(target);
2771
2772 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2773                           const char *buf, size_t count)
2774 {
2775         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2776         struct cpuhp_step *sp;
2777         int fail, ret;
2778
2779         ret = kstrtoint(buf, 10, &fail);
2780         if (ret)
2781                 return ret;
2782
2783         if (fail == CPUHP_INVALID) {
2784                 st->fail = fail;
2785                 return count;
2786         }
2787
2788         if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2789                 return -EINVAL;
2790
2791         /*
2792          * Cannot fail STARTING/DYING callbacks.
2793          */
2794         if (cpuhp_is_atomic_state(fail))
2795                 return -EINVAL;
2796
2797         /*
2798          * DEAD callbacks cannot fail...
2799          * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2800          * triggering STARTING callbacks, a failure in this state would
2801          * hinder rollback.
2802          */
2803         if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2804                 return -EINVAL;
2805
2806         /*
2807          * Cannot fail anything that doesn't have callbacks.
2808          */
2809         mutex_lock(&cpuhp_state_mutex);
2810         sp = cpuhp_get_step(fail);
2811         if (!sp->startup.single && !sp->teardown.single)
2812                 ret = -EINVAL;
2813         mutex_unlock(&cpuhp_state_mutex);
2814         if (ret)
2815                 return ret;
2816
2817         st->fail = fail;
2818
2819         return count;
2820 }
2821
2822 static ssize_t fail_show(struct device *dev,
2823                          struct device_attribute *attr, char *buf)
2824 {
2825         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2826
2827         return sprintf(buf, "%d\n", st->fail);
2828 }
2829
2830 static DEVICE_ATTR_RW(fail);
2831
2832 static struct attribute *cpuhp_cpu_attrs[] = {
2833         &dev_attr_state.attr,
2834         &dev_attr_target.attr,
2835         &dev_attr_fail.attr,
2836         NULL
2837 };
2838
2839 static const struct attribute_group cpuhp_cpu_attr_group = {
2840         .attrs = cpuhp_cpu_attrs,
2841         .name = "hotplug",
2842         NULL
2843 };
2844
2845 static ssize_t states_show(struct device *dev,
2846                                  struct device_attribute *attr, char *buf)
2847 {
2848         ssize_t cur, res = 0;
2849         int i;
2850
2851         mutex_lock(&cpuhp_state_mutex);
2852         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2853                 struct cpuhp_step *sp = cpuhp_get_step(i);
2854
2855                 if (sp->name) {
2856                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2857                         buf += cur;
2858                         res += cur;
2859                 }
2860         }
2861         mutex_unlock(&cpuhp_state_mutex);
2862         return res;
2863 }
2864 static DEVICE_ATTR_RO(states);
2865
2866 static struct attribute *cpuhp_cpu_root_attrs[] = {
2867         &dev_attr_states.attr,
2868         NULL
2869 };
2870
2871 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2872         .attrs = cpuhp_cpu_root_attrs,
2873         .name = "hotplug",
2874         NULL
2875 };
2876
2877 #ifdef CONFIG_HOTPLUG_SMT
2878
2879 static bool cpu_smt_num_threads_valid(unsigned int threads)
2880 {
2881         if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2882                 return threads >= 1 && threads <= cpu_smt_max_threads;
2883         return threads == 1 || threads == cpu_smt_max_threads;
2884 }
2885
2886 static ssize_t
2887 __store_smt_control(struct device *dev, struct device_attribute *attr,
2888                     const char *buf, size_t count)
2889 {
2890         int ctrlval, ret, num_threads, orig_threads;
2891         bool force_off;
2892
2893         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2894                 return -EPERM;
2895
2896         if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2897                 return -ENODEV;
2898
2899         if (sysfs_streq(buf, "on")) {
2900                 ctrlval = CPU_SMT_ENABLED;
2901                 num_threads = cpu_smt_max_threads;
2902         } else if (sysfs_streq(buf, "off")) {
2903                 ctrlval = CPU_SMT_DISABLED;
2904                 num_threads = 1;
2905         } else if (sysfs_streq(buf, "forceoff")) {
2906                 ctrlval = CPU_SMT_FORCE_DISABLED;
2907                 num_threads = 1;
2908         } else if (kstrtoint(buf, 10, &num_threads) == 0) {
2909                 if (num_threads == 1)
2910                         ctrlval = CPU_SMT_DISABLED;
2911                 else if (cpu_smt_num_threads_valid(num_threads))
2912                         ctrlval = CPU_SMT_ENABLED;
2913                 else
2914                         return -EINVAL;
2915         } else {
2916                 return -EINVAL;
2917         }
2918
2919         ret = lock_device_hotplug_sysfs();
2920         if (ret)
2921                 return ret;
2922
2923         orig_threads = cpu_smt_num_threads;
2924         cpu_smt_num_threads = num_threads;
2925
2926         force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2927
2928         if (num_threads > orig_threads)
2929                 ret = cpuhp_smt_enable();
2930         else if (num_threads < orig_threads || force_off)
2931                 ret = cpuhp_smt_disable(ctrlval);
2932
2933         unlock_device_hotplug();
2934         return ret ? ret : count;
2935 }
2936
2937 #else /* !CONFIG_HOTPLUG_SMT */
2938 static ssize_t
2939 __store_smt_control(struct device *dev, struct device_attribute *attr,
2940                     const char *buf, size_t count)
2941 {
2942         return -ENODEV;
2943 }
2944 #endif /* CONFIG_HOTPLUG_SMT */
2945
2946 static const char *smt_states[] = {
2947         [CPU_SMT_ENABLED]               = "on",
2948         [CPU_SMT_DISABLED]              = "off",
2949         [CPU_SMT_FORCE_DISABLED]        = "forceoff",
2950         [CPU_SMT_NOT_SUPPORTED]         = "notsupported",
2951         [CPU_SMT_NOT_IMPLEMENTED]       = "notimplemented",
2952 };
2953
2954 static ssize_t control_show(struct device *dev,
2955                             struct device_attribute *attr, char *buf)
2956 {
2957         const char *state = smt_states[cpu_smt_control];
2958
2959 #ifdef CONFIG_HOTPLUG_SMT
2960         /*
2961          * If SMT is enabled but not all threads are enabled then show the
2962          * number of threads. If all threads are enabled show "on". Otherwise
2963          * show the state name.
2964          */
2965         if (cpu_smt_control == CPU_SMT_ENABLED &&
2966             cpu_smt_num_threads != cpu_smt_max_threads)
2967                 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
2968 #endif
2969
2970         return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2971 }
2972
2973 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2974                              const char *buf, size_t count)
2975 {
2976         return __store_smt_control(dev, attr, buf, count);
2977 }
2978 static DEVICE_ATTR_RW(control);
2979
2980 static ssize_t active_show(struct device *dev,
2981                            struct device_attribute *attr, char *buf)
2982 {
2983         return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2984 }
2985 static DEVICE_ATTR_RO(active);
2986
2987 static struct attribute *cpuhp_smt_attrs[] = {
2988         &dev_attr_control.attr,
2989         &dev_attr_active.attr,
2990         NULL
2991 };
2992
2993 static const struct attribute_group cpuhp_smt_attr_group = {
2994         .attrs = cpuhp_smt_attrs,
2995         .name = "smt",
2996         NULL
2997 };
2998
2999 static int __init cpu_smt_sysfs_init(void)
3000 {
3001         struct device *dev_root;
3002         int ret = -ENODEV;
3003
3004         dev_root = bus_get_dev_root(&cpu_subsys);
3005         if (dev_root) {
3006                 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3007                 put_device(dev_root);
3008         }
3009         return ret;
3010 }
3011
3012 static int __init cpuhp_sysfs_init(void)
3013 {
3014         struct device *dev_root;
3015         int cpu, ret;
3016
3017         ret = cpu_smt_sysfs_init();
3018         if (ret)
3019                 return ret;
3020
3021         dev_root = bus_get_dev_root(&cpu_subsys);
3022         if (dev_root) {
3023                 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3024                 put_device(dev_root);
3025                 if (ret)
3026                         return ret;
3027         }
3028
3029         for_each_possible_cpu(cpu) {
3030                 struct device *dev = get_cpu_device(cpu);
3031
3032                 if (!dev)
3033                         continue;
3034                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3035                 if (ret)
3036                         return ret;
3037         }
3038         return 0;
3039 }
3040 device_initcall(cpuhp_sysfs_init);
3041 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3042
3043 /*
3044  * cpu_bit_bitmap[] is a special, "compressed" data structure that
3045  * represents all NR_CPUS bits binary values of 1<<nr.
3046  *
3047  * It is used by cpumask_of() to get a constant address to a CPU
3048  * mask value that has a single bit set only.
3049  */
3050
3051 /* cpu_bit_bitmap[0] is empty - so we can back into it */
3052 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
3053 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3054 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3055 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3056
3057 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3058
3059         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
3060         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
3061 #if BITS_PER_LONG > 32
3062         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
3063         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
3064 #endif
3065 };
3066 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3067
3068 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3069 EXPORT_SYMBOL(cpu_all_bits);
3070
3071 #ifdef CONFIG_INIT_ALL_POSSIBLE
3072 struct cpumask __cpu_possible_mask __read_mostly
3073         = {CPU_BITS_ALL};
3074 #else
3075 struct cpumask __cpu_possible_mask __read_mostly;
3076 #endif
3077 EXPORT_SYMBOL(__cpu_possible_mask);
3078
3079 struct cpumask __cpu_online_mask __read_mostly;
3080 EXPORT_SYMBOL(__cpu_online_mask);
3081
3082 struct cpumask __cpu_present_mask __read_mostly;
3083 EXPORT_SYMBOL(__cpu_present_mask);
3084
3085 struct cpumask __cpu_active_mask __read_mostly;
3086 EXPORT_SYMBOL(__cpu_active_mask);
3087
3088 struct cpumask __cpu_dying_mask __read_mostly;
3089 EXPORT_SYMBOL(__cpu_dying_mask);
3090
3091 atomic_t __num_online_cpus __read_mostly;
3092 EXPORT_SYMBOL(__num_online_cpus);
3093
3094 void init_cpu_present(const struct cpumask *src)
3095 {
3096         cpumask_copy(&__cpu_present_mask, src);
3097 }
3098
3099 void init_cpu_possible(const struct cpumask *src)
3100 {
3101         cpumask_copy(&__cpu_possible_mask, src);
3102 }
3103
3104 void init_cpu_online(const struct cpumask *src)
3105 {
3106         cpumask_copy(&__cpu_online_mask, src);
3107 }
3108
3109 void set_cpu_online(unsigned int cpu, bool online)
3110 {
3111         /*
3112          * atomic_inc/dec() is required to handle the horrid abuse of this
3113          * function by the reboot and kexec code which invoke it from
3114          * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3115          * regular CPU hotplug is properly serialized.
3116          *
3117          * Note, that the fact that __num_online_cpus is of type atomic_t
3118          * does not protect readers which are not serialized against
3119          * concurrent hotplug operations.
3120          */
3121         if (online) {
3122                 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3123                         atomic_inc(&__num_online_cpus);
3124         } else {
3125                 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3126                         atomic_dec(&__num_online_cpus);
3127         }
3128 }
3129
3130 /*
3131  * Activate the first processor.
3132  */
3133 void __init boot_cpu_init(void)
3134 {
3135         int cpu = smp_processor_id();
3136
3137         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
3138         set_cpu_online(cpu, true);
3139         set_cpu_active(cpu, true);
3140         set_cpu_present(cpu, true);
3141         set_cpu_possible(cpu, true);
3142
3143 #ifdef CONFIG_SMP
3144         __boot_cpu_id = cpu;
3145 #endif
3146 }
3147
3148 /*
3149  * Must be called _AFTER_ setting up the per_cpu areas
3150  */
3151 void __init boot_cpu_hotplug_init(void)
3152 {
3153 #ifdef CONFIG_SMP
3154         cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3155         atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3156 #endif
3157         this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3158         this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3159 }
3160
3161 /*
3162  * These are used for a global "mitigations=" cmdline option for toggling
3163  * optional CPU mitigations.
3164  */
3165 enum cpu_mitigations {
3166         CPU_MITIGATIONS_OFF,
3167         CPU_MITIGATIONS_AUTO,
3168         CPU_MITIGATIONS_AUTO_NOSMT,
3169 };
3170
3171 static enum cpu_mitigations cpu_mitigations __ro_after_init =
3172         CPU_MITIGATIONS_AUTO;
3173
3174 static int __init mitigations_parse_cmdline(char *arg)
3175 {
3176         if (!strcmp(arg, "off"))
3177                 cpu_mitigations = CPU_MITIGATIONS_OFF;
3178         else if (!strcmp(arg, "auto"))
3179                 cpu_mitigations = CPU_MITIGATIONS_AUTO;
3180         else if (!strcmp(arg, "auto,nosmt"))
3181                 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3182         else
3183                 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3184                         arg);
3185
3186         return 0;
3187 }
3188 early_param("mitigations", mitigations_parse_cmdline);
3189
3190 /* mitigations=off */
3191 bool cpu_mitigations_off(void)
3192 {
3193         return cpu_mitigations == CPU_MITIGATIONS_OFF;
3194 }
3195 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3196
3197 /* mitigations=auto,nosmt */
3198 bool cpu_mitigations_auto_nosmt(void)
3199 {
3200         return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3201 }
3202 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);