bpf: Revert bpf_overrid_function() helper changes.
[linux-block.git] / kernel / bpf / core.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <jschlst@samba.org>
12  *      Alexei Starovoitov <ast@plumgrid.com>
13  *      Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31 #include <linux/rbtree_latch.h>
32 #include <linux/kallsyms.h>
33 #include <linux/rcupdate.h>
34
35 #include <asm/unaligned.h>
36
37 /* Registers */
38 #define BPF_R0  regs[BPF_REG_0]
39 #define BPF_R1  regs[BPF_REG_1]
40 #define BPF_R2  regs[BPF_REG_2]
41 #define BPF_R3  regs[BPF_REG_3]
42 #define BPF_R4  regs[BPF_REG_4]
43 #define BPF_R5  regs[BPF_REG_5]
44 #define BPF_R6  regs[BPF_REG_6]
45 #define BPF_R7  regs[BPF_REG_7]
46 #define BPF_R8  regs[BPF_REG_8]
47 #define BPF_R9  regs[BPF_REG_9]
48 #define BPF_R10 regs[BPF_REG_10]
49
50 /* Named registers */
51 #define DST     regs[insn->dst_reg]
52 #define SRC     regs[insn->src_reg]
53 #define FP      regs[BPF_REG_FP]
54 #define ARG1    regs[BPF_REG_ARG1]
55 #define CTX     regs[BPF_REG_CTX]
56 #define IMM     insn->imm
57
58 /* No hurry in this branch
59  *
60  * Exported for the bpf jit load helper.
61  */
62 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
63 {
64         u8 *ptr = NULL;
65
66         if (k >= SKF_NET_OFF)
67                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
68         else if (k >= SKF_LL_OFF)
69                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
70
71         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
72                 return ptr;
73
74         return NULL;
75 }
76
77 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
78 {
79         gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
80         struct bpf_prog_aux *aux;
81         struct bpf_prog *fp;
82
83         size = round_up(size, PAGE_SIZE);
84         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
85         if (fp == NULL)
86                 return NULL;
87
88         kmemcheck_annotate_bitfield(fp, meta);
89
90         aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
91         if (aux == NULL) {
92                 vfree(fp);
93                 return NULL;
94         }
95
96         fp->pages = size / PAGE_SIZE;
97         fp->aux = aux;
98         fp->aux->prog = fp;
99
100         INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
101
102         return fp;
103 }
104 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
105
106 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
107                                   gfp_t gfp_extra_flags)
108 {
109         gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
110         struct bpf_prog *fp;
111         u32 pages, delta;
112         int ret;
113
114         BUG_ON(fp_old == NULL);
115
116         size = round_up(size, PAGE_SIZE);
117         pages = size / PAGE_SIZE;
118         if (pages <= fp_old->pages)
119                 return fp_old;
120
121         delta = pages - fp_old->pages;
122         ret = __bpf_prog_charge(fp_old->aux->user, delta);
123         if (ret)
124                 return NULL;
125
126         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
127         if (fp == NULL) {
128                 __bpf_prog_uncharge(fp_old->aux->user, delta);
129         } else {
130                 kmemcheck_annotate_bitfield(fp, meta);
131
132                 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
133                 fp->pages = pages;
134                 fp->aux->prog = fp;
135
136                 /* We keep fp->aux from fp_old around in the new
137                  * reallocated structure.
138                  */
139                 fp_old->aux = NULL;
140                 __bpf_prog_free(fp_old);
141         }
142
143         return fp;
144 }
145
146 void __bpf_prog_free(struct bpf_prog *fp)
147 {
148         kfree(fp->aux);
149         vfree(fp);
150 }
151
152 int bpf_prog_calc_tag(struct bpf_prog *fp)
153 {
154         const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
155         u32 raw_size = bpf_prog_tag_scratch_size(fp);
156         u32 digest[SHA_DIGEST_WORDS];
157         u32 ws[SHA_WORKSPACE_WORDS];
158         u32 i, bsize, psize, blocks;
159         struct bpf_insn *dst;
160         bool was_ld_map;
161         u8 *raw, *todo;
162         __be32 *result;
163         __be64 *bits;
164
165         raw = vmalloc(raw_size);
166         if (!raw)
167                 return -ENOMEM;
168
169         sha_init(digest);
170         memset(ws, 0, sizeof(ws));
171
172         /* We need to take out the map fd for the digest calculation
173          * since they are unstable from user space side.
174          */
175         dst = (void *)raw;
176         for (i = 0, was_ld_map = false; i < fp->len; i++) {
177                 dst[i] = fp->insnsi[i];
178                 if (!was_ld_map &&
179                     dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
180                     dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
181                         was_ld_map = true;
182                         dst[i].imm = 0;
183                 } else if (was_ld_map &&
184                            dst[i].code == 0 &&
185                            dst[i].dst_reg == 0 &&
186                            dst[i].src_reg == 0 &&
187                            dst[i].off == 0) {
188                         was_ld_map = false;
189                         dst[i].imm = 0;
190                 } else {
191                         was_ld_map = false;
192                 }
193         }
194
195         psize = bpf_prog_insn_size(fp);
196         memset(&raw[psize], 0, raw_size - psize);
197         raw[psize++] = 0x80;
198
199         bsize  = round_up(psize, SHA_MESSAGE_BYTES);
200         blocks = bsize / SHA_MESSAGE_BYTES;
201         todo   = raw;
202         if (bsize - psize >= sizeof(__be64)) {
203                 bits = (__be64 *)(todo + bsize - sizeof(__be64));
204         } else {
205                 bits = (__be64 *)(todo + bsize + bits_offset);
206                 blocks++;
207         }
208         *bits = cpu_to_be64((psize - 1) << 3);
209
210         while (blocks--) {
211                 sha_transform(digest, todo, ws);
212                 todo += SHA_MESSAGE_BYTES;
213         }
214
215         result = (__force __be32 *)digest;
216         for (i = 0; i < SHA_DIGEST_WORDS; i++)
217                 result[i] = cpu_to_be32(digest[i]);
218         memcpy(fp->tag, result, sizeof(fp->tag));
219
220         vfree(raw);
221         return 0;
222 }
223
224 static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
225 {
226         return BPF_CLASS(insn->code) == BPF_JMP  &&
227                /* Call and Exit are both special jumps with no
228                 * target inside the BPF instruction image.
229                 */
230                BPF_OP(insn->code) != BPF_CALL &&
231                BPF_OP(insn->code) != BPF_EXIT;
232 }
233
234 static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
235 {
236         struct bpf_insn *insn = prog->insnsi;
237         u32 i, insn_cnt = prog->len;
238
239         for (i = 0; i < insn_cnt; i++, insn++) {
240                 if (!bpf_is_jmp_and_has_target(insn))
241                         continue;
242
243                 /* Adjust offset of jmps if we cross boundaries. */
244                 if (i < pos && i + insn->off + 1 > pos)
245                         insn->off += delta;
246                 else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
247                         insn->off -= delta;
248         }
249 }
250
251 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
252                                        const struct bpf_insn *patch, u32 len)
253 {
254         u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
255         struct bpf_prog *prog_adj;
256
257         /* Since our patchlet doesn't expand the image, we're done. */
258         if (insn_delta == 0) {
259                 memcpy(prog->insnsi + off, patch, sizeof(*patch));
260                 return prog;
261         }
262
263         insn_adj_cnt = prog->len + insn_delta;
264
265         /* Several new instructions need to be inserted. Make room
266          * for them. Likely, there's no need for a new allocation as
267          * last page could have large enough tailroom.
268          */
269         prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
270                                     GFP_USER);
271         if (!prog_adj)
272                 return NULL;
273
274         prog_adj->len = insn_adj_cnt;
275
276         /* Patching happens in 3 steps:
277          *
278          * 1) Move over tail of insnsi from next instruction onwards,
279          *    so we can patch the single target insn with one or more
280          *    new ones (patching is always from 1 to n insns, n > 0).
281          * 2) Inject new instructions at the target location.
282          * 3) Adjust branch offsets if necessary.
283          */
284         insn_rest = insn_adj_cnt - off - len;
285
286         memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
287                 sizeof(*patch) * insn_rest);
288         memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
289
290         bpf_adj_branches(prog_adj, off, insn_delta);
291
292         return prog_adj;
293 }
294
295 #ifdef CONFIG_BPF_JIT
296 static __always_inline void
297 bpf_get_prog_addr_region(const struct bpf_prog *prog,
298                          unsigned long *symbol_start,
299                          unsigned long *symbol_end)
300 {
301         const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
302         unsigned long addr = (unsigned long)hdr;
303
304         WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
305
306         *symbol_start = addr;
307         *symbol_end   = addr + hdr->pages * PAGE_SIZE;
308 }
309
310 static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
311 {
312         const char *end = sym + KSYM_NAME_LEN;
313
314         BUILD_BUG_ON(sizeof("bpf_prog_") +
315                      sizeof(prog->tag) * 2 +
316                      /* name has been null terminated.
317                       * We should need +1 for the '_' preceding
318                       * the name.  However, the null character
319                       * is double counted between the name and the
320                       * sizeof("bpf_prog_") above, so we omit
321                       * the +1 here.
322                       */
323                      sizeof(prog->aux->name) > KSYM_NAME_LEN);
324
325         sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
326         sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
327         if (prog->aux->name[0])
328                 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
329         else
330                 *sym = 0;
331 }
332
333 static __always_inline unsigned long
334 bpf_get_prog_addr_start(struct latch_tree_node *n)
335 {
336         unsigned long symbol_start, symbol_end;
337         const struct bpf_prog_aux *aux;
338
339         aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
340         bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
341
342         return symbol_start;
343 }
344
345 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
346                                           struct latch_tree_node *b)
347 {
348         return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
349 }
350
351 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
352 {
353         unsigned long val = (unsigned long)key;
354         unsigned long symbol_start, symbol_end;
355         const struct bpf_prog_aux *aux;
356
357         aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
358         bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
359
360         if (val < symbol_start)
361                 return -1;
362         if (val >= symbol_end)
363                 return  1;
364
365         return 0;
366 }
367
368 static const struct latch_tree_ops bpf_tree_ops = {
369         .less   = bpf_tree_less,
370         .comp   = bpf_tree_comp,
371 };
372
373 static DEFINE_SPINLOCK(bpf_lock);
374 static LIST_HEAD(bpf_kallsyms);
375 static struct latch_tree_root bpf_tree __cacheline_aligned;
376
377 int bpf_jit_kallsyms __read_mostly;
378
379 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
380 {
381         WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
382         list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
383         latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
384 }
385
386 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
387 {
388         if (list_empty(&aux->ksym_lnode))
389                 return;
390
391         latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
392         list_del_rcu(&aux->ksym_lnode);
393 }
394
395 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
396 {
397         return fp->jited && !bpf_prog_was_classic(fp);
398 }
399
400 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
401 {
402         return list_empty(&fp->aux->ksym_lnode) ||
403                fp->aux->ksym_lnode.prev == LIST_POISON2;
404 }
405
406 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
407 {
408         if (!bpf_prog_kallsyms_candidate(fp) ||
409             !capable(CAP_SYS_ADMIN))
410                 return;
411
412         spin_lock_bh(&bpf_lock);
413         bpf_prog_ksym_node_add(fp->aux);
414         spin_unlock_bh(&bpf_lock);
415 }
416
417 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
418 {
419         if (!bpf_prog_kallsyms_candidate(fp))
420                 return;
421
422         spin_lock_bh(&bpf_lock);
423         bpf_prog_ksym_node_del(fp->aux);
424         spin_unlock_bh(&bpf_lock);
425 }
426
427 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
428 {
429         struct latch_tree_node *n;
430
431         if (!bpf_jit_kallsyms_enabled())
432                 return NULL;
433
434         n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
435         return n ?
436                container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
437                NULL;
438 }
439
440 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
441                                  unsigned long *off, char *sym)
442 {
443         unsigned long symbol_start, symbol_end;
444         struct bpf_prog *prog;
445         char *ret = NULL;
446
447         rcu_read_lock();
448         prog = bpf_prog_kallsyms_find(addr);
449         if (prog) {
450                 bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
451                 bpf_get_prog_name(prog, sym);
452
453                 ret = sym;
454                 if (size)
455                         *size = symbol_end - symbol_start;
456                 if (off)
457                         *off  = addr - symbol_start;
458         }
459         rcu_read_unlock();
460
461         return ret;
462 }
463
464 bool is_bpf_text_address(unsigned long addr)
465 {
466         bool ret;
467
468         rcu_read_lock();
469         ret = bpf_prog_kallsyms_find(addr) != NULL;
470         rcu_read_unlock();
471
472         return ret;
473 }
474
475 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
476                     char *sym)
477 {
478         unsigned long symbol_start, symbol_end;
479         struct bpf_prog_aux *aux;
480         unsigned int it = 0;
481         int ret = -ERANGE;
482
483         if (!bpf_jit_kallsyms_enabled())
484                 return ret;
485
486         rcu_read_lock();
487         list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
488                 if (it++ != symnum)
489                         continue;
490
491                 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
492                 bpf_get_prog_name(aux->prog, sym);
493
494                 *value = symbol_start;
495                 *type  = BPF_SYM_ELF_TYPE;
496
497                 ret = 0;
498                 break;
499         }
500         rcu_read_unlock();
501
502         return ret;
503 }
504
505 struct bpf_binary_header *
506 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
507                      unsigned int alignment,
508                      bpf_jit_fill_hole_t bpf_fill_ill_insns)
509 {
510         struct bpf_binary_header *hdr;
511         unsigned int size, hole, start;
512
513         /* Most of BPF filters are really small, but if some of them
514          * fill a page, allow at least 128 extra bytes to insert a
515          * random section of illegal instructions.
516          */
517         size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
518         hdr = module_alloc(size);
519         if (hdr == NULL)
520                 return NULL;
521
522         /* Fill space with illegal/arch-dep instructions. */
523         bpf_fill_ill_insns(hdr, size);
524
525         hdr->pages = size / PAGE_SIZE;
526         hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
527                      PAGE_SIZE - sizeof(*hdr));
528         start = (get_random_int() % hole) & ~(alignment - 1);
529
530         /* Leave a random number of instructions before BPF code. */
531         *image_ptr = &hdr->image[start];
532
533         return hdr;
534 }
535
536 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
537 {
538         module_memfree(hdr);
539 }
540
541 /* This symbol is only overridden by archs that have different
542  * requirements than the usual eBPF JITs, f.e. when they only
543  * implement cBPF JIT, do not set images read-only, etc.
544  */
545 void __weak bpf_jit_free(struct bpf_prog *fp)
546 {
547         if (fp->jited) {
548                 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
549
550                 bpf_jit_binary_unlock_ro(hdr);
551                 bpf_jit_binary_free(hdr);
552
553                 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
554         }
555
556         bpf_prog_unlock_free(fp);
557 }
558
559 int bpf_jit_harden __read_mostly;
560
561 static int bpf_jit_blind_insn(const struct bpf_insn *from,
562                               const struct bpf_insn *aux,
563                               struct bpf_insn *to_buff)
564 {
565         struct bpf_insn *to = to_buff;
566         u32 imm_rnd = get_random_int();
567         s16 off;
568
569         BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
570         BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
571
572         if (from->imm == 0 &&
573             (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
574              from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
575                 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
576                 goto out;
577         }
578
579         switch (from->code) {
580         case BPF_ALU | BPF_ADD | BPF_K:
581         case BPF_ALU | BPF_SUB | BPF_K:
582         case BPF_ALU | BPF_AND | BPF_K:
583         case BPF_ALU | BPF_OR  | BPF_K:
584         case BPF_ALU | BPF_XOR | BPF_K:
585         case BPF_ALU | BPF_MUL | BPF_K:
586         case BPF_ALU | BPF_MOV | BPF_K:
587         case BPF_ALU | BPF_DIV | BPF_K:
588         case BPF_ALU | BPF_MOD | BPF_K:
589                 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
590                 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
591                 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
592                 break;
593
594         case BPF_ALU64 | BPF_ADD | BPF_K:
595         case BPF_ALU64 | BPF_SUB | BPF_K:
596         case BPF_ALU64 | BPF_AND | BPF_K:
597         case BPF_ALU64 | BPF_OR  | BPF_K:
598         case BPF_ALU64 | BPF_XOR | BPF_K:
599         case BPF_ALU64 | BPF_MUL | BPF_K:
600         case BPF_ALU64 | BPF_MOV | BPF_K:
601         case BPF_ALU64 | BPF_DIV | BPF_K:
602         case BPF_ALU64 | BPF_MOD | BPF_K:
603                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
604                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
605                 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
606                 break;
607
608         case BPF_JMP | BPF_JEQ  | BPF_K:
609         case BPF_JMP | BPF_JNE  | BPF_K:
610         case BPF_JMP | BPF_JGT  | BPF_K:
611         case BPF_JMP | BPF_JLT  | BPF_K:
612         case BPF_JMP | BPF_JGE  | BPF_K:
613         case BPF_JMP | BPF_JLE  | BPF_K:
614         case BPF_JMP | BPF_JSGT | BPF_K:
615         case BPF_JMP | BPF_JSLT | BPF_K:
616         case BPF_JMP | BPF_JSGE | BPF_K:
617         case BPF_JMP | BPF_JSLE | BPF_K:
618         case BPF_JMP | BPF_JSET | BPF_K:
619                 /* Accommodate for extra offset in case of a backjump. */
620                 off = from->off;
621                 if (off < 0)
622                         off -= 2;
623                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
624                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
625                 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
626                 break;
627
628         case BPF_LD | BPF_ABS | BPF_W:
629         case BPF_LD | BPF_ABS | BPF_H:
630         case BPF_LD | BPF_ABS | BPF_B:
631                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
632                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
633                 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
634                 break;
635
636         case BPF_LD | BPF_IND | BPF_W:
637         case BPF_LD | BPF_IND | BPF_H:
638         case BPF_LD | BPF_IND | BPF_B:
639                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
640                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
641                 *to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
642                 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
643                 break;
644
645         case BPF_LD | BPF_IMM | BPF_DW:
646                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
647                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
648                 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
649                 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
650                 break;
651         case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
652                 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
653                 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
654                 *to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
655                 break;
656
657         case BPF_ST | BPF_MEM | BPF_DW:
658         case BPF_ST | BPF_MEM | BPF_W:
659         case BPF_ST | BPF_MEM | BPF_H:
660         case BPF_ST | BPF_MEM | BPF_B:
661                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
662                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
663                 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
664                 break;
665         }
666 out:
667         return to - to_buff;
668 }
669
670 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
671                                               gfp_t gfp_extra_flags)
672 {
673         gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
674         struct bpf_prog *fp;
675
676         fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
677         if (fp != NULL) {
678                 kmemcheck_annotate_bitfield(fp, meta);
679
680                 /* aux->prog still points to the fp_other one, so
681                  * when promoting the clone to the real program,
682                  * this still needs to be adapted.
683                  */
684                 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
685         }
686
687         return fp;
688 }
689
690 static void bpf_prog_clone_free(struct bpf_prog *fp)
691 {
692         /* aux was stolen by the other clone, so we cannot free
693          * it from this path! It will be freed eventually by the
694          * other program on release.
695          *
696          * At this point, we don't need a deferred release since
697          * clone is guaranteed to not be locked.
698          */
699         fp->aux = NULL;
700         __bpf_prog_free(fp);
701 }
702
703 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
704 {
705         /* We have to repoint aux->prog to self, as we don't
706          * know whether fp here is the clone or the original.
707          */
708         fp->aux->prog = fp;
709         bpf_prog_clone_free(fp_other);
710 }
711
712 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
713 {
714         struct bpf_insn insn_buff[16], aux[2];
715         struct bpf_prog *clone, *tmp;
716         int insn_delta, insn_cnt;
717         struct bpf_insn *insn;
718         int i, rewritten;
719
720         if (!bpf_jit_blinding_enabled())
721                 return prog;
722
723         clone = bpf_prog_clone_create(prog, GFP_USER);
724         if (!clone)
725                 return ERR_PTR(-ENOMEM);
726
727         insn_cnt = clone->len;
728         insn = clone->insnsi;
729
730         for (i = 0; i < insn_cnt; i++, insn++) {
731                 /* We temporarily need to hold the original ld64 insn
732                  * so that we can still access the first part in the
733                  * second blinding run.
734                  */
735                 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
736                     insn[1].code == 0)
737                         memcpy(aux, insn, sizeof(aux));
738
739                 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
740                 if (!rewritten)
741                         continue;
742
743                 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
744                 if (!tmp) {
745                         /* Patching may have repointed aux->prog during
746                          * realloc from the original one, so we need to
747                          * fix it up here on error.
748                          */
749                         bpf_jit_prog_release_other(prog, clone);
750                         return ERR_PTR(-ENOMEM);
751                 }
752
753                 clone = tmp;
754                 insn_delta = rewritten - 1;
755
756                 /* Walk new program and skip insns we just inserted. */
757                 insn = clone->insnsi + i + insn_delta;
758                 insn_cnt += insn_delta;
759                 i        += insn_delta;
760         }
761
762         return clone;
763 }
764 #endif /* CONFIG_BPF_JIT */
765
766 /* Base function for offset calculation. Needs to go into .text section,
767  * therefore keeping it non-static as well; will also be used by JITs
768  * anyway later on, so do not let the compiler omit it.
769  */
770 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
771 {
772         return 0;
773 }
774 EXPORT_SYMBOL_GPL(__bpf_call_base);
775
776 /**
777  *      __bpf_prog_run - run eBPF program on a given context
778  *      @ctx: is the data we are operating on
779  *      @insn: is the array of eBPF instructions
780  *
781  * Decode and execute eBPF instructions.
782  */
783 static unsigned int ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn,
784                                     u64 *stack)
785 {
786         u64 tmp;
787         static const void *jumptable[256] = {
788                 [0 ... 255] = &&default_label,
789                 /* Now overwrite non-defaults ... */
790                 /* 32 bit ALU operations */
791                 [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
792                 [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
793                 [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
794                 [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
795                 [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
796                 [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
797                 [BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
798                 [BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
799                 [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
800                 [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
801                 [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
802                 [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
803                 [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
804                 [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
805                 [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
806                 [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
807                 [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
808                 [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
809                 [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
810                 [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
811                 [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
812                 [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
813                 [BPF_ALU | BPF_NEG] = &&ALU_NEG,
814                 [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
815                 [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
816                 /* 64 bit ALU operations */
817                 [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
818                 [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
819                 [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
820                 [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
821                 [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
822                 [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
823                 [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
824                 [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
825                 [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
826                 [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
827                 [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
828                 [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
829                 [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
830                 [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
831                 [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
832                 [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
833                 [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
834                 [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
835                 [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
836                 [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
837                 [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
838                 [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
839                 [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
840                 [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
841                 [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
842                 /* Call instruction */
843                 [BPF_JMP | BPF_CALL] = &&JMP_CALL,
844                 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
845                 /* Jumps */
846                 [BPF_JMP | BPF_JA] = &&JMP_JA,
847                 [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
848                 [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
849                 [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
850                 [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
851                 [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
852                 [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
853                 [BPF_JMP | BPF_JLT | BPF_X] = &&JMP_JLT_X,
854                 [BPF_JMP | BPF_JLT | BPF_K] = &&JMP_JLT_K,
855                 [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
856                 [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
857                 [BPF_JMP | BPF_JLE | BPF_X] = &&JMP_JLE_X,
858                 [BPF_JMP | BPF_JLE | BPF_K] = &&JMP_JLE_K,
859                 [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
860                 [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
861                 [BPF_JMP | BPF_JSLT | BPF_X] = &&JMP_JSLT_X,
862                 [BPF_JMP | BPF_JSLT | BPF_K] = &&JMP_JSLT_K,
863                 [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
864                 [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
865                 [BPF_JMP | BPF_JSLE | BPF_X] = &&JMP_JSLE_X,
866                 [BPF_JMP | BPF_JSLE | BPF_K] = &&JMP_JSLE_K,
867                 [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
868                 [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
869                 /* Program return */
870                 [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
871                 /* Store instructions */
872                 [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
873                 [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
874                 [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
875                 [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
876                 [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
877                 [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
878                 [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
879                 [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
880                 [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
881                 [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
882                 /* Load instructions */
883                 [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
884                 [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
885                 [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
886                 [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
887                 [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
888                 [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
889                 [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
890                 [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
891                 [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
892                 [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
893                 [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
894         };
895         u32 tail_call_cnt = 0;
896         void *ptr;
897         int off;
898
899 #define CONT     ({ insn++; goto select_insn; })
900 #define CONT_JMP ({ insn++; goto select_insn; })
901
902 select_insn:
903         goto *jumptable[insn->code];
904
905         /* ALU */
906 #define ALU(OPCODE, OP)                 \
907         ALU64_##OPCODE##_X:             \
908                 DST = DST OP SRC;       \
909                 CONT;                   \
910         ALU_##OPCODE##_X:               \
911                 DST = (u32) DST OP (u32) SRC;   \
912                 CONT;                   \
913         ALU64_##OPCODE##_K:             \
914                 DST = DST OP IMM;               \
915                 CONT;                   \
916         ALU_##OPCODE##_K:               \
917                 DST = (u32) DST OP (u32) IMM;   \
918                 CONT;
919
920         ALU(ADD,  +)
921         ALU(SUB,  -)
922         ALU(AND,  &)
923         ALU(OR,   |)
924         ALU(LSH, <<)
925         ALU(RSH, >>)
926         ALU(XOR,  ^)
927         ALU(MUL,  *)
928 #undef ALU
929         ALU_NEG:
930                 DST = (u32) -DST;
931                 CONT;
932         ALU64_NEG:
933                 DST = -DST;
934                 CONT;
935         ALU_MOV_X:
936                 DST = (u32) SRC;
937                 CONT;
938         ALU_MOV_K:
939                 DST = (u32) IMM;
940                 CONT;
941         ALU64_MOV_X:
942                 DST = SRC;
943                 CONT;
944         ALU64_MOV_K:
945                 DST = IMM;
946                 CONT;
947         LD_IMM_DW:
948                 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
949                 insn++;
950                 CONT;
951         ALU64_ARSH_X:
952                 (*(s64 *) &DST) >>= SRC;
953                 CONT;
954         ALU64_ARSH_K:
955                 (*(s64 *) &DST) >>= IMM;
956                 CONT;
957         ALU64_MOD_X:
958                 if (unlikely(SRC == 0))
959                         return 0;
960                 div64_u64_rem(DST, SRC, &tmp);
961                 DST = tmp;
962                 CONT;
963         ALU_MOD_X:
964                 if (unlikely(SRC == 0))
965                         return 0;
966                 tmp = (u32) DST;
967                 DST = do_div(tmp, (u32) SRC);
968                 CONT;
969         ALU64_MOD_K:
970                 div64_u64_rem(DST, IMM, &tmp);
971                 DST = tmp;
972                 CONT;
973         ALU_MOD_K:
974                 tmp = (u32) DST;
975                 DST = do_div(tmp, (u32) IMM);
976                 CONT;
977         ALU64_DIV_X:
978                 if (unlikely(SRC == 0))
979                         return 0;
980                 DST = div64_u64(DST, SRC);
981                 CONT;
982         ALU_DIV_X:
983                 if (unlikely(SRC == 0))
984                         return 0;
985                 tmp = (u32) DST;
986                 do_div(tmp, (u32) SRC);
987                 DST = (u32) tmp;
988                 CONT;
989         ALU64_DIV_K:
990                 DST = div64_u64(DST, IMM);
991                 CONT;
992         ALU_DIV_K:
993                 tmp = (u32) DST;
994                 do_div(tmp, (u32) IMM);
995                 DST = (u32) tmp;
996                 CONT;
997         ALU_END_TO_BE:
998                 switch (IMM) {
999                 case 16:
1000                         DST = (__force u16) cpu_to_be16(DST);
1001                         break;
1002                 case 32:
1003                         DST = (__force u32) cpu_to_be32(DST);
1004                         break;
1005                 case 64:
1006                         DST = (__force u64) cpu_to_be64(DST);
1007                         break;
1008                 }
1009                 CONT;
1010         ALU_END_TO_LE:
1011                 switch (IMM) {
1012                 case 16:
1013                         DST = (__force u16) cpu_to_le16(DST);
1014                         break;
1015                 case 32:
1016                         DST = (__force u32) cpu_to_le32(DST);
1017                         break;
1018                 case 64:
1019                         DST = (__force u64) cpu_to_le64(DST);
1020                         break;
1021                 }
1022                 CONT;
1023
1024         /* CALL */
1025         JMP_CALL:
1026                 /* Function call scratches BPF_R1-BPF_R5 registers,
1027                  * preserves BPF_R6-BPF_R9, and stores return value
1028                  * into BPF_R0.
1029                  */
1030                 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1031                                                        BPF_R4, BPF_R5);
1032                 CONT;
1033
1034         JMP_TAIL_CALL: {
1035                 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1036                 struct bpf_array *array = container_of(map, struct bpf_array, map);
1037                 struct bpf_prog *prog;
1038                 u32 index = BPF_R3;
1039
1040                 if (unlikely(index >= array->map.max_entries))
1041                         goto out;
1042                 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1043                         goto out;
1044
1045                 tail_call_cnt++;
1046
1047                 prog = READ_ONCE(array->ptrs[index]);
1048                 if (!prog)
1049                         goto out;
1050
1051                 /* ARG1 at this point is guaranteed to point to CTX from
1052                  * the verifier side due to the fact that the tail call is
1053                  * handeled like a helper, that is, bpf_tail_call_proto,
1054                  * where arg1_type is ARG_PTR_TO_CTX.
1055                  */
1056                 insn = prog->insnsi;
1057                 goto select_insn;
1058 out:
1059                 CONT;
1060         }
1061         /* JMP */
1062         JMP_JA:
1063                 insn += insn->off;
1064                 CONT;
1065         JMP_JEQ_X:
1066                 if (DST == SRC) {
1067                         insn += insn->off;
1068                         CONT_JMP;
1069                 }
1070                 CONT;
1071         JMP_JEQ_K:
1072                 if (DST == IMM) {
1073                         insn += insn->off;
1074                         CONT_JMP;
1075                 }
1076                 CONT;
1077         JMP_JNE_X:
1078                 if (DST != SRC) {
1079                         insn += insn->off;
1080                         CONT_JMP;
1081                 }
1082                 CONT;
1083         JMP_JNE_K:
1084                 if (DST != IMM) {
1085                         insn += insn->off;
1086                         CONT_JMP;
1087                 }
1088                 CONT;
1089         JMP_JGT_X:
1090                 if (DST > SRC) {
1091                         insn += insn->off;
1092                         CONT_JMP;
1093                 }
1094                 CONT;
1095         JMP_JGT_K:
1096                 if (DST > IMM) {
1097                         insn += insn->off;
1098                         CONT_JMP;
1099                 }
1100                 CONT;
1101         JMP_JLT_X:
1102                 if (DST < SRC) {
1103                         insn += insn->off;
1104                         CONT_JMP;
1105                 }
1106                 CONT;
1107         JMP_JLT_K:
1108                 if (DST < IMM) {
1109                         insn += insn->off;
1110                         CONT_JMP;
1111                 }
1112                 CONT;
1113         JMP_JGE_X:
1114                 if (DST >= SRC) {
1115                         insn += insn->off;
1116                         CONT_JMP;
1117                 }
1118                 CONT;
1119         JMP_JGE_K:
1120                 if (DST >= IMM) {
1121                         insn += insn->off;
1122                         CONT_JMP;
1123                 }
1124                 CONT;
1125         JMP_JLE_X:
1126                 if (DST <= SRC) {
1127                         insn += insn->off;
1128                         CONT_JMP;
1129                 }
1130                 CONT;
1131         JMP_JLE_K:
1132                 if (DST <= IMM) {
1133                         insn += insn->off;
1134                         CONT_JMP;
1135                 }
1136                 CONT;
1137         JMP_JSGT_X:
1138                 if (((s64) DST) > ((s64) SRC)) {
1139                         insn += insn->off;
1140                         CONT_JMP;
1141                 }
1142                 CONT;
1143         JMP_JSGT_K:
1144                 if (((s64) DST) > ((s64) IMM)) {
1145                         insn += insn->off;
1146                         CONT_JMP;
1147                 }
1148                 CONT;
1149         JMP_JSLT_X:
1150                 if (((s64) DST) < ((s64) SRC)) {
1151                         insn += insn->off;
1152                         CONT_JMP;
1153                 }
1154                 CONT;
1155         JMP_JSLT_K:
1156                 if (((s64) DST) < ((s64) IMM)) {
1157                         insn += insn->off;
1158                         CONT_JMP;
1159                 }
1160                 CONT;
1161         JMP_JSGE_X:
1162                 if (((s64) DST) >= ((s64) SRC)) {
1163                         insn += insn->off;
1164                         CONT_JMP;
1165                 }
1166                 CONT;
1167         JMP_JSGE_K:
1168                 if (((s64) DST) >= ((s64) IMM)) {
1169                         insn += insn->off;
1170                         CONT_JMP;
1171                 }
1172                 CONT;
1173         JMP_JSLE_X:
1174                 if (((s64) DST) <= ((s64) SRC)) {
1175                         insn += insn->off;
1176                         CONT_JMP;
1177                 }
1178                 CONT;
1179         JMP_JSLE_K:
1180                 if (((s64) DST) <= ((s64) IMM)) {
1181                         insn += insn->off;
1182                         CONT_JMP;
1183                 }
1184                 CONT;
1185         JMP_JSET_X:
1186                 if (DST & SRC) {
1187                         insn += insn->off;
1188                         CONT_JMP;
1189                 }
1190                 CONT;
1191         JMP_JSET_K:
1192                 if (DST & IMM) {
1193                         insn += insn->off;
1194                         CONT_JMP;
1195                 }
1196                 CONT;
1197         JMP_EXIT:
1198                 return BPF_R0;
1199
1200         /* STX and ST and LDX*/
1201 #define LDST(SIZEOP, SIZE)                                              \
1202         STX_MEM_##SIZEOP:                                               \
1203                 *(SIZE *)(unsigned long) (DST + insn->off) = SRC;       \
1204                 CONT;                                                   \
1205         ST_MEM_##SIZEOP:                                                \
1206                 *(SIZE *)(unsigned long) (DST + insn->off) = IMM;       \
1207                 CONT;                                                   \
1208         LDX_MEM_##SIZEOP:                                               \
1209                 DST = *(SIZE *)(unsigned long) (SRC + insn->off);       \
1210                 CONT;
1211
1212         LDST(B,   u8)
1213         LDST(H,  u16)
1214         LDST(W,  u32)
1215         LDST(DW, u64)
1216 #undef LDST
1217         STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1218                 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1219                            (DST + insn->off));
1220                 CONT;
1221         STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1222                 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1223                              (DST + insn->off));
1224                 CONT;
1225         LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
1226                 off = IMM;
1227 load_word:
1228                 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
1229                  * appearing in the programs where ctx == skb
1230                  * (see may_access_skb() in the verifier). All programs
1231                  * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
1232                  * bpf_convert_filter() saves it in BPF_R6, internal BPF
1233                  * verifier will check that BPF_R6 == ctx.
1234                  *
1235                  * BPF_ABS and BPF_IND are wrappers of function calls,
1236                  * so they scratch BPF_R1-BPF_R5 registers, preserve
1237                  * BPF_R6-BPF_R9, and store return value into BPF_R0.
1238                  *
1239                  * Implicit input:
1240                  *   ctx == skb == BPF_R6 == CTX
1241                  *
1242                  * Explicit input:
1243                  *   SRC == any register
1244                  *   IMM == 32-bit immediate
1245                  *
1246                  * Output:
1247                  *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
1248                  */
1249
1250                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
1251                 if (likely(ptr != NULL)) {
1252                         BPF_R0 = get_unaligned_be32(ptr);
1253                         CONT;
1254                 }
1255
1256                 return 0;
1257         LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
1258                 off = IMM;
1259 load_half:
1260                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
1261                 if (likely(ptr != NULL)) {
1262                         BPF_R0 = get_unaligned_be16(ptr);
1263                         CONT;
1264                 }
1265
1266                 return 0;
1267         LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
1268                 off = IMM;
1269 load_byte:
1270                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
1271                 if (likely(ptr != NULL)) {
1272                         BPF_R0 = *(u8 *)ptr;
1273                         CONT;
1274                 }
1275
1276                 return 0;
1277         LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
1278                 off = IMM + SRC;
1279                 goto load_word;
1280         LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
1281                 off = IMM + SRC;
1282                 goto load_half;
1283         LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
1284                 off = IMM + SRC;
1285                 goto load_byte;
1286
1287         default_label:
1288                 /* If we ever reach this, we have a bug somewhere. */
1289                 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
1290                 return 0;
1291 }
1292 STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1293
1294 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1295 #define DEFINE_BPF_PROG_RUN(stack_size) \
1296 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1297 { \
1298         u64 stack[stack_size / sizeof(u64)]; \
1299         u64 regs[MAX_BPF_REG]; \
1300 \
1301         FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1302         ARG1 = (u64) (unsigned long) ctx; \
1303         return ___bpf_prog_run(regs, insn, stack); \
1304 }
1305
1306 #define EVAL1(FN, X) FN(X)
1307 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1308 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1309 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1310 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1311 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1312
1313 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1314 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1315 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1316
1317 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1318
1319 static unsigned int (*interpreters[])(const void *ctx,
1320                                       const struct bpf_insn *insn) = {
1321 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1322 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1323 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1324 };
1325
1326 bool bpf_prog_array_compatible(struct bpf_array *array,
1327                                const struct bpf_prog *fp)
1328 {
1329         if (!array->owner_prog_type) {
1330                 /* There's no owner yet where we could check for
1331                  * compatibility.
1332                  */
1333                 array->owner_prog_type = fp->type;
1334                 array->owner_jited = fp->jited;
1335
1336                 return true;
1337         }
1338
1339         return array->owner_prog_type == fp->type &&
1340                array->owner_jited == fp->jited;
1341 }
1342
1343 static int bpf_check_tail_call(const struct bpf_prog *fp)
1344 {
1345         struct bpf_prog_aux *aux = fp->aux;
1346         int i;
1347
1348         for (i = 0; i < aux->used_map_cnt; i++) {
1349                 struct bpf_map *map = aux->used_maps[i];
1350                 struct bpf_array *array;
1351
1352                 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1353                         continue;
1354
1355                 array = container_of(map, struct bpf_array, map);
1356                 if (!bpf_prog_array_compatible(array, fp))
1357                         return -EINVAL;
1358         }
1359
1360         return 0;
1361 }
1362
1363 /**
1364  *      bpf_prog_select_runtime - select exec runtime for BPF program
1365  *      @fp: bpf_prog populated with internal BPF program
1366  *      @err: pointer to error variable
1367  *
1368  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1369  * The BPF program will be executed via BPF_PROG_RUN() macro.
1370  */
1371 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1372 {
1373         u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1374
1375         fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1376
1377         /* eBPF JITs can rewrite the program in case constant
1378          * blinding is active. However, in case of error during
1379          * blinding, bpf_int_jit_compile() must always return a
1380          * valid program, which in this case would simply not
1381          * be JITed, but falls back to the interpreter.
1382          */
1383         if (!bpf_prog_is_dev_bound(fp->aux)) {
1384                 fp = bpf_int_jit_compile(fp);
1385         } else {
1386                 *err = bpf_prog_offload_compile(fp);
1387                 if (*err)
1388                         return fp;
1389         }
1390         bpf_prog_lock_ro(fp);
1391
1392         /* The tail call compatibility check can only be done at
1393          * this late stage as we need to determine, if we deal
1394          * with JITed or non JITed program concatenations and not
1395          * all eBPF JITs might immediately support all features.
1396          */
1397         *err = bpf_check_tail_call(fp);
1398
1399         return fp;
1400 }
1401 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1402
1403 static unsigned int __bpf_prog_ret1(const void *ctx,
1404                                     const struct bpf_insn *insn)
1405 {
1406         return 1;
1407 }
1408
1409 static struct bpf_prog_dummy {
1410         struct bpf_prog prog;
1411 } dummy_bpf_prog = {
1412         .prog = {
1413                 .bpf_func = __bpf_prog_ret1,
1414         },
1415 };
1416
1417 /* to avoid allocating empty bpf_prog_array for cgroups that
1418  * don't have bpf program attached use one global 'empty_prog_array'
1419  * It will not be modified the caller of bpf_prog_array_alloc()
1420  * (since caller requested prog_cnt == 0)
1421  * that pointer should be 'freed' by bpf_prog_array_free()
1422  */
1423 static struct {
1424         struct bpf_prog_array hdr;
1425         struct bpf_prog *null_prog;
1426 } empty_prog_array = {
1427         .null_prog = NULL,
1428 };
1429
1430 struct bpf_prog_array __rcu *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1431 {
1432         if (prog_cnt)
1433                 return kzalloc(sizeof(struct bpf_prog_array) +
1434                                sizeof(struct bpf_prog *) * (prog_cnt + 1),
1435                                flags);
1436
1437         return &empty_prog_array.hdr;
1438 }
1439
1440 void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
1441 {
1442         if (!progs ||
1443             progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
1444                 return;
1445         kfree_rcu(progs, rcu);
1446 }
1447
1448 int bpf_prog_array_length(struct bpf_prog_array __rcu *progs)
1449 {
1450         struct bpf_prog **prog;
1451         u32 cnt = 0;
1452
1453         rcu_read_lock();
1454         prog = rcu_dereference(progs)->progs;
1455         for (; *prog; prog++)
1456                 cnt++;
1457         rcu_read_unlock();
1458         return cnt;
1459 }
1460
1461 int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
1462                                 __u32 __user *prog_ids, u32 cnt)
1463 {
1464         struct bpf_prog **prog;
1465         u32 i = 0, id;
1466
1467         rcu_read_lock();
1468         prog = rcu_dereference(progs)->progs;
1469         for (; *prog; prog++) {
1470                 id = (*prog)->aux->id;
1471                 if (copy_to_user(prog_ids + i, &id, sizeof(id))) {
1472                         rcu_read_unlock();
1473                         return -EFAULT;
1474                 }
1475                 if (++i == cnt) {
1476                         prog++;
1477                         break;
1478                 }
1479         }
1480         rcu_read_unlock();
1481         if (*prog)
1482                 return -ENOSPC;
1483         return 0;
1484 }
1485
1486 void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *progs,
1487                                 struct bpf_prog *old_prog)
1488 {
1489         struct bpf_prog **prog = progs->progs;
1490
1491         for (; *prog; prog++)
1492                 if (*prog == old_prog) {
1493                         WRITE_ONCE(*prog, &dummy_bpf_prog.prog);
1494                         break;
1495                 }
1496 }
1497
1498 int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
1499                         struct bpf_prog *exclude_prog,
1500                         struct bpf_prog *include_prog,
1501                         struct bpf_prog_array **new_array)
1502 {
1503         int new_prog_cnt, carry_prog_cnt = 0;
1504         struct bpf_prog **existing_prog;
1505         struct bpf_prog_array *array;
1506         int new_prog_idx = 0;
1507
1508         /* Figure out how many existing progs we need to carry over to
1509          * the new array.
1510          */
1511         if (old_array) {
1512                 existing_prog = old_array->progs;
1513                 for (; *existing_prog; existing_prog++) {
1514                         if (*existing_prog != exclude_prog &&
1515                             *existing_prog != &dummy_bpf_prog.prog)
1516                                 carry_prog_cnt++;
1517                         if (*existing_prog == include_prog)
1518                                 return -EEXIST;
1519                 }
1520         }
1521
1522         /* How many progs (not NULL) will be in the new array? */
1523         new_prog_cnt = carry_prog_cnt;
1524         if (include_prog)
1525                 new_prog_cnt += 1;
1526
1527         /* Do we have any prog (not NULL) in the new array? */
1528         if (!new_prog_cnt) {
1529                 *new_array = NULL;
1530                 return 0;
1531         }
1532
1533         /* +1 as the end of prog_array is marked with NULL */
1534         array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1535         if (!array)
1536                 return -ENOMEM;
1537
1538         /* Fill in the new prog array */
1539         if (carry_prog_cnt) {
1540                 existing_prog = old_array->progs;
1541                 for (; *existing_prog; existing_prog++)
1542                         if (*existing_prog != exclude_prog &&
1543                             *existing_prog != &dummy_bpf_prog.prog)
1544                                 array->progs[new_prog_idx++] = *existing_prog;
1545         }
1546         if (include_prog)
1547                 array->progs[new_prog_idx++] = include_prog;
1548         array->progs[new_prog_idx] = NULL;
1549         *new_array = array;
1550         return 0;
1551 }
1552
1553 static void bpf_prog_free_deferred(struct work_struct *work)
1554 {
1555         struct bpf_prog_aux *aux;
1556
1557         aux = container_of(work, struct bpf_prog_aux, work);
1558         if (bpf_prog_is_dev_bound(aux))
1559                 bpf_prog_offload_destroy(aux->prog);
1560         bpf_jit_free(aux->prog);
1561 }
1562
1563 /* Free internal BPF program */
1564 void bpf_prog_free(struct bpf_prog *fp)
1565 {
1566         struct bpf_prog_aux *aux = fp->aux;
1567
1568         INIT_WORK(&aux->work, bpf_prog_free_deferred);
1569         schedule_work(&aux->work);
1570 }
1571 EXPORT_SYMBOL_GPL(bpf_prog_free);
1572
1573 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1574 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1575
1576 void bpf_user_rnd_init_once(void)
1577 {
1578         prandom_init_once(&bpf_user_rnd_state);
1579 }
1580
1581 BPF_CALL_0(bpf_user_rnd_u32)
1582 {
1583         /* Should someone ever have the rather unwise idea to use some
1584          * of the registers passed into this function, then note that
1585          * this function is called from native eBPF and classic-to-eBPF
1586          * transformations. Register assignments from both sides are
1587          * different, f.e. classic always sets fn(ctx, A, X) here.
1588          */
1589         struct rnd_state *state;
1590         u32 res;
1591
1592         state = &get_cpu_var(bpf_user_rnd_state);
1593         res = prandom_u32_state(state);
1594         put_cpu_var(bpf_user_rnd_state);
1595
1596         return res;
1597 }
1598
1599 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1600 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1601 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1602 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1603
1604 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1605 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1606 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1607 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1608
1609 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1610 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1611 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1612 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
1613
1614 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1615 {
1616         return NULL;
1617 }
1618
1619 u64 __weak
1620 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1621                  void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1622 {
1623         return -ENOTSUPP;
1624 }
1625
1626 /* Always built-in helper functions. */
1627 const struct bpf_func_proto bpf_tail_call_proto = {
1628         .func           = NULL,
1629         .gpl_only       = false,
1630         .ret_type       = RET_VOID,
1631         .arg1_type      = ARG_PTR_TO_CTX,
1632         .arg2_type      = ARG_CONST_MAP_PTR,
1633         .arg3_type      = ARG_ANYTHING,
1634 };
1635
1636 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1637  * It is encouraged to implement bpf_int_jit_compile() instead, so that
1638  * eBPF and implicitly also cBPF can get JITed!
1639  */
1640 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1641 {
1642         return prog;
1643 }
1644
1645 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
1646  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1647  */
1648 void __weak bpf_jit_compile(struct bpf_prog *prog)
1649 {
1650 }
1651
1652 bool __weak bpf_helper_changes_pkt_data(void *func)
1653 {
1654         return false;
1655 }
1656
1657 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1658  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1659  */
1660 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1661                          int len)
1662 {
1663         return -EFAULT;
1664 }
1665
1666 /* All definitions of tracepoints related to BPF. */
1667 #define CREATE_TRACE_POINTS
1668 #include <linux/bpf_trace.h>
1669
1670 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
1671
1672 /* These are only used within the BPF_SYSCALL code */
1673 #ifdef CONFIG_BPF_SYSCALL
1674 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type);
1675 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu);
1676 #endif