1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* auditsc.c -- System-call auditing support
3 * Handles all system-call specific auditing features.
5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
7 * Copyright (C) 2005, 2006 IBM Corporation
10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
12 * Many of the ideas implemented here are from Stephen C. Tweedie,
13 * especially the idea of avoiding a copy by using getname.
15 * The method for actual interception of syscall entry and exit (not in
16 * this file -- see entry.S) is based on a GPL'd patch written by
17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
22 * The support of additional filter rules compares (>, <, >=, <=) was
23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
26 * filesystem information.
28 * Subject and object context labeling support added by <danjones@us.ibm.com>
29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/init.h>
35 #include <asm/types.h>
36 #include <linux/atomic.h>
38 #include <linux/namei.h>
40 #include <linux/export.h>
41 #include <linux/slab.h>
42 #include <linux/mount.h>
43 #include <linux/socket.h>
44 #include <linux/mqueue.h>
45 #include <linux/audit.h>
46 #include <linux/personality.h>
47 #include <linux/time.h>
48 #include <linux/netlink.h>
49 #include <linux/compiler.h>
50 #include <asm/unistd.h>
51 #include <linux/security.h>
52 #include <linux/list.h>
53 #include <linux/binfmts.h>
54 #include <linux/highmem.h>
55 #include <linux/syscalls.h>
56 #include <asm/syscall.h>
57 #include <linux/capability.h>
58 #include <linux/fs_struct.h>
59 #include <linux/compat.h>
60 #include <linux/ctype.h>
61 #include <linux/string.h>
62 #include <linux/uaccess.h>
63 #include <linux/fsnotify_backend.h>
64 #include <uapi/linux/limits.h>
65 #include <uapi/linux/netfilter/nf_tables.h>
66 #include <uapi/linux/openat2.h> // struct open_how
67 #include <uapi/linux/fanotify.h>
71 /* flags stating the success for a syscall */
72 #define AUDITSC_INVALID 0
73 #define AUDITSC_SUCCESS 1
74 #define AUDITSC_FAILURE 2
76 /* no execve audit message should be longer than this (userspace limits),
77 * see the note near the top of audit_log_execve_info() about this value */
78 #define MAX_EXECVE_AUDIT_LEN 7500
80 /* max length to print of cmdline/proctitle value during audit */
81 #define MAX_PROCTITLE_AUDIT_LEN 128
83 /* number of audit rules */
86 /* determines whether we collect data for signals sent */
89 struct audit_aux_data {
90 struct audit_aux_data *next;
94 /* Number of target pids per aux struct. */
95 #define AUDIT_AUX_PIDS 16
97 struct audit_aux_data_pids {
98 struct audit_aux_data d;
99 pid_t target_pid[AUDIT_AUX_PIDS];
100 kuid_t target_auid[AUDIT_AUX_PIDS];
101 kuid_t target_uid[AUDIT_AUX_PIDS];
102 unsigned int target_sessionid[AUDIT_AUX_PIDS];
103 struct lsm_prop target_ref[AUDIT_AUX_PIDS];
104 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
108 struct audit_aux_data_bprm_fcaps {
109 struct audit_aux_data d;
110 struct audit_cap_data fcap;
111 unsigned int fcap_ver;
112 struct audit_cap_data old_pcap;
113 struct audit_cap_data new_pcap;
116 struct audit_tree_refs {
117 struct audit_tree_refs *next;
118 struct audit_chunk *c[31];
121 struct audit_nfcfgop_tab {
122 enum audit_nfcfgop op;
126 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
127 { AUDIT_XT_OP_REGISTER, "xt_register" },
128 { AUDIT_XT_OP_REPLACE, "xt_replace" },
129 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
130 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
131 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
132 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
133 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
134 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
135 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
136 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
137 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
138 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
139 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
140 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
141 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
142 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
143 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
146 { AUDIT_NFT_OP_SETELEM_RESET, "nft_reset_setelem" },
147 { AUDIT_NFT_OP_RULE_RESET, "nft_reset_rule" },
148 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
151 static int audit_match_perm(struct audit_context *ctx, int mask)
159 switch (audit_classify_syscall(ctx->arch, n)) {
161 if ((mask & AUDIT_PERM_WRITE) &&
162 audit_match_class(AUDIT_CLASS_WRITE, n))
164 if ((mask & AUDIT_PERM_READ) &&
165 audit_match_class(AUDIT_CLASS_READ, n))
167 if ((mask & AUDIT_PERM_ATTR) &&
168 audit_match_class(AUDIT_CLASS_CHATTR, n))
171 case AUDITSC_COMPAT: /* 32bit on biarch */
172 if ((mask & AUDIT_PERM_WRITE) &&
173 audit_match_class(AUDIT_CLASS_WRITE_32, n))
175 if ((mask & AUDIT_PERM_READ) &&
176 audit_match_class(AUDIT_CLASS_READ_32, n))
178 if ((mask & AUDIT_PERM_ATTR) &&
179 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
183 return mask & ACC_MODE(ctx->argv[1]);
185 return mask & ACC_MODE(ctx->argv[2]);
186 case AUDITSC_SOCKETCALL:
187 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
189 return mask & AUDIT_PERM_EXEC;
190 case AUDITSC_OPENAT2:
191 return mask & ACC_MODE((u32)ctx->openat2.flags);
197 static int audit_match_filetype(struct audit_context *ctx, int val)
199 struct audit_names *n;
200 umode_t mode = (umode_t)val;
205 list_for_each_entry(n, &ctx->names_list, list) {
206 if ((n->ino != AUDIT_INO_UNSET) &&
207 ((n->mode & S_IFMT) == mode))
215 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
216 * ->first_trees points to its beginning, ->trees - to the current end of data.
217 * ->tree_count is the number of free entries in array pointed to by ->trees.
218 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
219 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
220 * it's going to remain 1-element for almost any setup) until we free context itself.
221 * References in it _are_ dropped - at the same time we free/drop aux stuff.
224 static void audit_set_auditable(struct audit_context *ctx)
228 ctx->current_state = AUDIT_STATE_RECORD;
232 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
234 struct audit_tree_refs *p = ctx->trees;
235 int left = ctx->tree_count;
238 p->c[--left] = chunk;
239 ctx->tree_count = left;
248 ctx->tree_count = 30;
254 static int grow_tree_refs(struct audit_context *ctx)
256 struct audit_tree_refs *p = ctx->trees;
258 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
264 p->next = ctx->trees;
266 ctx->first_trees = ctx->trees;
267 ctx->tree_count = 31;
271 static void unroll_tree_refs(struct audit_context *ctx,
272 struct audit_tree_refs *p, int count)
274 struct audit_tree_refs *q;
278 /* we started with empty chain */
279 p = ctx->first_trees;
281 /* if the very first allocation has failed, nothing to do */
286 for (q = p; q != ctx->trees; q = q->next, n = 31) {
288 audit_put_chunk(q->c[n]);
292 while (n-- > ctx->tree_count) {
293 audit_put_chunk(q->c[n]);
297 ctx->tree_count = count;
300 static void free_tree_refs(struct audit_context *ctx)
302 struct audit_tree_refs *p, *q;
304 for (p = ctx->first_trees; p; p = q) {
310 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
312 struct audit_tree_refs *p;
318 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
319 for (n = 0; n < 31; n++)
320 if (audit_tree_match(p->c[n], tree))
325 for (n = ctx->tree_count; n < 31; n++)
326 if (audit_tree_match(p->c[n], tree))
332 static int audit_compare_uid(kuid_t uid,
333 struct audit_names *name,
334 struct audit_field *f,
335 struct audit_context *ctx)
337 struct audit_names *n;
341 rc = audit_uid_comparator(uid, f->op, name->uid);
347 list_for_each_entry(n, &ctx->names_list, list) {
348 rc = audit_uid_comparator(uid, f->op, n->uid);
356 static int audit_compare_gid(kgid_t gid,
357 struct audit_names *name,
358 struct audit_field *f,
359 struct audit_context *ctx)
361 struct audit_names *n;
365 rc = audit_gid_comparator(gid, f->op, name->gid);
371 list_for_each_entry(n, &ctx->names_list, list) {
372 rc = audit_gid_comparator(gid, f->op, n->gid);
380 static int audit_field_compare(struct task_struct *tsk,
381 const struct cred *cred,
382 struct audit_field *f,
383 struct audit_context *ctx,
384 struct audit_names *name)
387 /* process to file object comparisons */
388 case AUDIT_COMPARE_UID_TO_OBJ_UID:
389 return audit_compare_uid(cred->uid, name, f, ctx);
390 case AUDIT_COMPARE_GID_TO_OBJ_GID:
391 return audit_compare_gid(cred->gid, name, f, ctx);
392 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
393 return audit_compare_uid(cred->euid, name, f, ctx);
394 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
395 return audit_compare_gid(cred->egid, name, f, ctx);
396 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
397 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
398 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
399 return audit_compare_uid(cred->suid, name, f, ctx);
400 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
401 return audit_compare_gid(cred->sgid, name, f, ctx);
402 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
403 return audit_compare_uid(cred->fsuid, name, f, ctx);
404 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
405 return audit_compare_gid(cred->fsgid, name, f, ctx);
406 /* uid comparisons */
407 case AUDIT_COMPARE_UID_TO_AUID:
408 return audit_uid_comparator(cred->uid, f->op,
409 audit_get_loginuid(tsk));
410 case AUDIT_COMPARE_UID_TO_EUID:
411 return audit_uid_comparator(cred->uid, f->op, cred->euid);
412 case AUDIT_COMPARE_UID_TO_SUID:
413 return audit_uid_comparator(cred->uid, f->op, cred->suid);
414 case AUDIT_COMPARE_UID_TO_FSUID:
415 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
416 /* auid comparisons */
417 case AUDIT_COMPARE_AUID_TO_EUID:
418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
420 case AUDIT_COMPARE_AUID_TO_SUID:
421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
423 case AUDIT_COMPARE_AUID_TO_FSUID:
424 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
426 /* euid comparisons */
427 case AUDIT_COMPARE_EUID_TO_SUID:
428 return audit_uid_comparator(cred->euid, f->op, cred->suid);
429 case AUDIT_COMPARE_EUID_TO_FSUID:
430 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
431 /* suid comparisons */
432 case AUDIT_COMPARE_SUID_TO_FSUID:
433 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
434 /* gid comparisons */
435 case AUDIT_COMPARE_GID_TO_EGID:
436 return audit_gid_comparator(cred->gid, f->op, cred->egid);
437 case AUDIT_COMPARE_GID_TO_SGID:
438 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
439 case AUDIT_COMPARE_GID_TO_FSGID:
440 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
441 /* egid comparisons */
442 case AUDIT_COMPARE_EGID_TO_SGID:
443 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
444 case AUDIT_COMPARE_EGID_TO_FSGID:
445 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
446 /* sgid comparison */
447 case AUDIT_COMPARE_SGID_TO_FSGID:
448 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
450 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
456 /* Determine if any context name data matches a rule's watch data */
457 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
460 * If task_creation is true, this is an explicit indication that we are
461 * filtering a task rule at task creation time. This and tsk == current are
462 * the only situations where tsk->cred may be accessed without an rcu read lock.
464 static int audit_filter_rules(struct task_struct *tsk,
465 struct audit_krule *rule,
466 struct audit_context *ctx,
467 struct audit_names *name,
468 enum audit_state *state,
471 const struct cred *cred;
473 struct lsm_prop prop = { };
474 unsigned int sessionid;
476 if (ctx && rule->prio <= ctx->prio)
479 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
481 for (i = 0; i < rule->field_count; i++) {
482 struct audit_field *f = &rule->fields[i];
483 struct audit_names *n;
489 pid = task_tgid_nr(tsk);
490 result = audit_comparator(pid, f->op, f->val);
495 ctx->ppid = task_ppid_nr(tsk);
496 result = audit_comparator(ctx->ppid, f->op, f->val);
500 result = audit_exe_compare(tsk, rule->exe);
501 if (f->op == Audit_not_equal)
505 result = audit_uid_comparator(cred->uid, f->op, f->uid);
508 result = audit_uid_comparator(cred->euid, f->op, f->uid);
511 result = audit_uid_comparator(cred->suid, f->op, f->uid);
514 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
517 result = audit_gid_comparator(cred->gid, f->op, f->gid);
518 if (f->op == Audit_equal) {
520 result = groups_search(cred->group_info, f->gid);
521 } else if (f->op == Audit_not_equal) {
523 result = !groups_search(cred->group_info, f->gid);
527 result = audit_gid_comparator(cred->egid, f->op, f->gid);
528 if (f->op == Audit_equal) {
530 result = groups_search(cred->group_info, f->gid);
531 } else if (f->op == Audit_not_equal) {
533 result = !groups_search(cred->group_info, f->gid);
537 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
540 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
542 case AUDIT_SESSIONID:
543 sessionid = audit_get_sessionid(tsk);
544 result = audit_comparator(sessionid, f->op, f->val);
547 result = audit_comparator(tsk->personality, f->op, f->val);
551 result = audit_comparator(ctx->arch, f->op, f->val);
555 if (ctx && ctx->return_valid != AUDITSC_INVALID)
556 result = audit_comparator(ctx->return_code, f->op, f->val);
559 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
563 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
568 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
569 audit_comparator(MAJOR(name->rdev), f->op, f->val))
572 list_for_each_entry(n, &ctx->names_list, list) {
573 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
574 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
583 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
584 audit_comparator(MINOR(name->rdev), f->op, f->val))
587 list_for_each_entry(n, &ctx->names_list, list) {
588 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
589 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
598 result = audit_comparator(name->ino, f->op, f->val);
600 list_for_each_entry(n, &ctx->names_list, list) {
601 if (audit_comparator(n->ino, f->op, f->val)) {
610 result = audit_uid_comparator(name->uid, f->op, f->uid);
612 list_for_each_entry(n, &ctx->names_list, list) {
613 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
622 result = audit_gid_comparator(name->gid, f->op, f->gid);
624 list_for_each_entry(n, &ctx->names_list, list) {
625 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
634 result = audit_watch_compare(rule->watch,
637 if (f->op == Audit_not_equal)
643 result = match_tree_refs(ctx, rule->tree);
644 if (f->op == Audit_not_equal)
649 result = audit_uid_comparator(audit_get_loginuid(tsk),
652 case AUDIT_LOGINUID_SET:
653 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
655 case AUDIT_SADDR_FAM:
656 if (ctx && ctx->sockaddr)
657 result = audit_comparator(ctx->sockaddr->ss_family,
660 case AUDIT_SUBJ_USER:
661 case AUDIT_SUBJ_ROLE:
662 case AUDIT_SUBJ_TYPE:
665 /* NOTE: this may return negative values indicating
666 a temporary error. We simply treat this as a
667 match for now to avoid losing information that
668 may be wanted. An error message will also be
672 /* @tsk should always be equal to
673 * @current with the exception of
674 * fork()/copy_process() in which case
675 * the new @tsk creds are still a dup
676 * of @current's creds so we can still
678 * security_current_getlsmprop_subj()
679 * here even though it always refs
682 security_current_getlsmprop_subj(&prop);
685 result = security_audit_rule_match(&prop,
694 case AUDIT_OBJ_LEV_LOW:
695 case AUDIT_OBJ_LEV_HIGH:
696 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
699 /* Find files that match */
701 result = security_audit_rule_match(
707 list_for_each_entry(n, &ctx->names_list, list) {
708 if (security_audit_rule_match(
718 /* Find ipc objects that match */
719 if (!ctx || ctx->type != AUDIT_IPC)
721 if (security_audit_rule_match(&ctx->ipc.oprop,
732 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
734 case AUDIT_FILTERKEY:
735 /* ignore this field for filtering */
739 result = audit_match_perm(ctx, f->val);
740 if (f->op == Audit_not_equal)
744 result = audit_match_filetype(ctx, f->val);
745 if (f->op == Audit_not_equal)
748 case AUDIT_FIELD_COMPARE:
749 result = audit_field_compare(tsk, cred, f, ctx, name);
757 if (rule->filterkey) {
758 kfree(ctx->filterkey);
759 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
761 ctx->prio = rule->prio;
763 switch (rule->action) {
765 *state = AUDIT_STATE_DISABLED;
768 *state = AUDIT_STATE_RECORD;
774 /* At process creation time, we can determine if system-call auditing is
775 * completely disabled for this task. Since we only have the task
776 * structure at this point, we can only check uid and gid.
778 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
780 struct audit_entry *e;
781 enum audit_state state;
784 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
785 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
787 if (state == AUDIT_STATE_RECORD)
788 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
794 return AUDIT_STATE_BUILD;
797 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
801 if (val > 0xffffffff)
804 word = AUDIT_WORD(val);
805 if (word >= AUDIT_BITMASK_SIZE)
808 bit = AUDIT_BIT(val);
810 return rule->mask[word] & bit;
814 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
815 * @tsk: associated task
816 * @ctx: audit context
817 * @list: audit filter list
818 * @name: audit_name (can be NULL)
819 * @op: current syscall/uring_op
821 * Run the udit filters specified in @list against @tsk using @ctx,
822 * @name, and @op, as necessary; the caller is responsible for ensuring
823 * that the call is made while the RCU read lock is held. The @name
824 * parameter can be NULL, but all others must be specified.
825 * Returns 1/true if the filter finds a match, 0/false if none are found.
827 static int __audit_filter_op(struct task_struct *tsk,
828 struct audit_context *ctx,
829 struct list_head *list,
830 struct audit_names *name,
833 struct audit_entry *e;
834 enum audit_state state;
836 list_for_each_entry_rcu(e, list, list) {
837 if (audit_in_mask(&e->rule, op) &&
838 audit_filter_rules(tsk, &e->rule, ctx, name,
840 ctx->current_state = state;
848 * audit_filter_uring - apply filters to an io_uring operation
849 * @tsk: associated task
850 * @ctx: audit context
852 static void audit_filter_uring(struct task_struct *tsk,
853 struct audit_context *ctx)
855 if (auditd_test_task(tsk))
859 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
860 NULL, ctx->uring_op);
864 /* At syscall exit time, this filter is called if the audit_state is
865 * not low enough that auditing cannot take place, but is also not
866 * high enough that we already know we have to write an audit record
867 * (i.e., the state is AUDIT_STATE_BUILD).
869 static void audit_filter_syscall(struct task_struct *tsk,
870 struct audit_context *ctx)
872 if (auditd_test_task(tsk))
876 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
882 * Given an audit_name check the inode hash table to see if they match.
883 * Called holding the rcu read lock to protect the use of audit_inode_hash
885 static int audit_filter_inode_name(struct task_struct *tsk,
886 struct audit_names *n,
887 struct audit_context *ctx)
889 int h = audit_hash_ino((u32)n->ino);
890 struct list_head *list = &audit_inode_hash[h];
892 return __audit_filter_op(tsk, ctx, list, n, ctx->major);
895 /* At syscall exit time, this filter is called if any audit_names have been
896 * collected during syscall processing. We only check rules in sublists at hash
897 * buckets applicable to the inode numbers in audit_names.
898 * Regarding audit_state, same rules apply as for audit_filter_syscall().
900 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
902 struct audit_names *n;
904 if (auditd_test_task(tsk))
909 list_for_each_entry(n, &ctx->names_list, list) {
910 if (audit_filter_inode_name(tsk, n, ctx))
916 static inline void audit_proctitle_free(struct audit_context *context)
918 kfree(context->proctitle.value);
919 context->proctitle.value = NULL;
920 context->proctitle.len = 0;
923 static inline void audit_free_module(struct audit_context *context)
925 if (context->type == AUDIT_KERN_MODULE) {
926 kfree(context->module.name);
927 context->module.name = NULL;
930 static inline void audit_free_names(struct audit_context *context)
932 struct audit_names *n, *next;
934 list_for_each_entry_safe(n, next, &context->names_list, list) {
941 context->name_count = 0;
942 path_put(&context->pwd);
943 context->pwd.dentry = NULL;
944 context->pwd.mnt = NULL;
947 static inline void audit_free_aux(struct audit_context *context)
949 struct audit_aux_data *aux;
951 while ((aux = context->aux)) {
952 context->aux = aux->next;
956 while ((aux = context->aux_pids)) {
957 context->aux_pids = aux->next;
960 context->aux_pids = NULL;
964 * audit_reset_context - reset a audit_context structure
965 * @ctx: the audit_context to reset
967 * All fields in the audit_context will be reset to an initial state, all
968 * references held by fields will be dropped, and private memory will be
969 * released. When this function returns the audit_context will be suitable
970 * for reuse, so long as the passed context is not NULL or a dummy context.
972 static void audit_reset_context(struct audit_context *ctx)
977 /* if ctx is non-null, reset the "ctx->context" regardless */
978 ctx->context = AUDIT_CTX_UNUSED;
983 * NOTE: It shouldn't matter in what order we release the fields, so
984 * release them in the order in which they appear in the struct;
985 * this gives us some hope of quickly making sure we are
986 * resetting the audit_context properly.
988 * Other things worth mentioning:
989 * - we don't reset "dummy"
990 * - we don't reset "state", we do reset "current_state"
991 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
992 * - much of this is likely overkill, but play it safe for now
993 * - we really need to work on improving the audit_context struct
996 ctx->current_state = ctx->state;
1000 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
1001 memset(ctx->argv, 0, sizeof(ctx->argv));
1002 ctx->return_code = 0;
1003 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
1004 ctx->return_valid = AUDITSC_INVALID;
1005 audit_free_names(ctx);
1006 if (ctx->state != AUDIT_STATE_RECORD) {
1007 kfree(ctx->filterkey);
1008 ctx->filterkey = NULL;
1010 audit_free_aux(ctx);
1011 kfree(ctx->sockaddr);
1012 ctx->sockaddr = NULL;
1013 ctx->sockaddr_len = 0;
1015 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1016 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1017 ctx->personality = 0;
1019 ctx->target_pid = 0;
1020 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1021 ctx->target_sessionid = 0;
1022 lsmprop_init(&ctx->target_ref);
1023 ctx->target_comm[0] = '\0';
1024 unroll_tree_refs(ctx, NULL, 0);
1025 WARN_ON(!list_empty(&ctx->killed_trees));
1026 audit_free_module(ctx);
1028 ctx->type = 0; /* reset last for audit_free_*() */
1031 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1033 struct audit_context *context;
1035 context = kzalloc(sizeof(*context), GFP_KERNEL);
1038 context->context = AUDIT_CTX_UNUSED;
1039 context->state = state;
1040 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1041 INIT_LIST_HEAD(&context->killed_trees);
1042 INIT_LIST_HEAD(&context->names_list);
1043 context->fds[0] = -1;
1044 context->return_valid = AUDITSC_INVALID;
1049 * audit_alloc - allocate an audit context block for a task
1052 * Filter on the task information and allocate a per-task audit context
1053 * if necessary. Doing so turns on system call auditing for the
1054 * specified task. This is called from copy_process, so no lock is
1057 int audit_alloc(struct task_struct *tsk)
1059 struct audit_context *context;
1060 enum audit_state state;
1063 if (likely(!audit_ever_enabled))
1066 state = audit_filter_task(tsk, &key);
1067 if (state == AUDIT_STATE_DISABLED) {
1068 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1072 context = audit_alloc_context(state);
1075 audit_log_lost("out of memory in audit_alloc");
1078 context->filterkey = key;
1080 audit_set_context(tsk, context);
1081 set_task_syscall_work(tsk, SYSCALL_AUDIT);
1085 static inline void audit_free_context(struct audit_context *context)
1087 /* resetting is extra work, but it is likely just noise */
1088 audit_reset_context(context);
1089 audit_proctitle_free(context);
1090 free_tree_refs(context);
1091 kfree(context->filterkey);
1095 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1096 kuid_t auid, kuid_t uid,
1097 unsigned int sessionid, struct lsm_prop *prop,
1100 struct audit_buffer *ab;
1101 struct lsm_context ctx;
1104 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1108 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1109 from_kuid(&init_user_ns, auid),
1110 from_kuid(&init_user_ns, uid), sessionid);
1111 if (lsmprop_is_set(prop)) {
1112 if (security_lsmprop_to_secctx(prop, &ctx) < 0) {
1113 audit_log_format(ab, " obj=(none)");
1116 audit_log_format(ab, " obj=%s", ctx.context);
1117 security_release_secctx(&ctx);
1120 audit_log_format(ab, " ocomm=");
1121 audit_log_untrustedstring(ab, comm);
1127 static void audit_log_execve_info(struct audit_context *context,
1128 struct audit_buffer **ab)
1142 const char __user *p = (const char __user *)current->mm->arg_start;
1144 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1145 * data we put in the audit record for this argument (see the
1146 * code below) ... at this point in time 96 is plenty */
1149 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1150 * current value of 7500 is not as important as the fact that it
1151 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1152 * room if we go over a little bit in the logging below */
1153 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1154 len_max = MAX_EXECVE_AUDIT_LEN;
1156 /* scratch buffer to hold the userspace args */
1157 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1159 audit_panic("out of memory for argv string");
1164 audit_log_format(*ab, "argc=%d", context->execve.argc);
1169 require_data = true;
1174 /* NOTE: we don't ever want to trust this value for anything
1175 * serious, but the audit record format insists we
1176 * provide an argument length for really long arguments,
1177 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1178 * to use strncpy_from_user() to obtain this value for
1179 * recording in the log, although we don't use it
1180 * anywhere here to avoid a double-fetch problem */
1182 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1184 /* read more data from userspace */
1186 /* can we make more room in the buffer? */
1187 if (buf != buf_head) {
1188 memmove(buf_head, buf, len_buf);
1192 /* fetch as much as we can of the argument */
1193 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1195 if (len_tmp == -EFAULT) {
1196 /* unable to copy from userspace */
1197 send_sig(SIGKILL, current, 0);
1199 } else if (len_tmp == (len_max - len_buf)) {
1200 /* buffer is not large enough */
1201 require_data = true;
1202 /* NOTE: if we are going to span multiple
1203 * buffers force the encoding so we stand
1204 * a chance at a sane len_full value and
1205 * consistent record encoding */
1207 len_full = len_full * 2;
1210 require_data = false;
1212 encode = audit_string_contains_control(
1214 /* try to use a trusted value for len_full */
1215 if (len_full < len_max)
1216 len_full = (encode ?
1217 len_tmp * 2 : len_tmp);
1221 buf_head[len_buf] = '\0';
1223 /* length of the buffer in the audit record? */
1224 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1227 /* write as much as we can to the audit log */
1229 /* NOTE: some magic numbers here - basically if we
1230 * can't fit a reasonable amount of data into the
1231 * existing audit buffer, flush it and start with
1233 if ((sizeof(abuf) + 8) > len_rem) {
1236 *ab = audit_log_start(context,
1237 GFP_KERNEL, AUDIT_EXECVE);
1242 /* create the non-arg portion of the arg record */
1244 if (require_data || (iter > 0) ||
1245 ((len_abuf + sizeof(abuf)) > len_rem)) {
1247 len_tmp += snprintf(&abuf[len_tmp],
1248 sizeof(abuf) - len_tmp,
1252 len_tmp += snprintf(&abuf[len_tmp],
1253 sizeof(abuf) - len_tmp,
1254 " a%d[%d]=", arg, iter++);
1256 len_tmp += snprintf(&abuf[len_tmp],
1257 sizeof(abuf) - len_tmp,
1259 WARN_ON(len_tmp >= sizeof(abuf));
1260 abuf[sizeof(abuf) - 1] = '\0';
1262 /* log the arg in the audit record */
1263 audit_log_format(*ab, "%s", abuf);
1267 if (len_abuf > len_rem)
1268 len_tmp = len_rem / 2; /* encoding */
1269 audit_log_n_hex(*ab, buf, len_tmp);
1270 len_rem -= len_tmp * 2;
1271 len_abuf -= len_tmp * 2;
1273 if (len_abuf > len_rem)
1274 len_tmp = len_rem - 2; /* quotes */
1275 audit_log_n_string(*ab, buf, len_tmp);
1276 len_rem -= len_tmp + 2;
1277 /* don't subtract the "2" because we still need
1278 * to add quotes to the remaining string */
1279 len_abuf -= len_tmp;
1285 /* ready to move to the next argument? */
1286 if ((len_buf == 0) && !require_data) {
1290 require_data = true;
1293 } while (arg < context->execve.argc);
1295 /* NOTE: the caller handles the final audit_log_end() call */
1301 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1304 if (cap_isclear(*cap)) {
1305 audit_log_format(ab, " %s=0", prefix);
1308 audit_log_format(ab, " %s=%016llx", prefix, cap->val);
1311 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1313 if (name->fcap_ver == -1) {
1314 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1317 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1318 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1319 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1320 name->fcap.fE, name->fcap_ver,
1321 from_kuid(&init_user_ns, name->fcap.rootid));
1324 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1326 const struct audit_ntp_data *ntp = &context->time.ntp_data;
1327 const struct timespec64 *tk = &context->time.tk_injoffset;
1328 static const char * const ntp_name[] = {
1338 if (context->type == AUDIT_TIME_ADJNTPVAL) {
1339 for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1340 if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1342 *ab = audit_log_start(context,
1344 AUDIT_TIME_ADJNTPVAL);
1348 audit_log_format(*ab, "op=%s old=%lli new=%lli",
1350 ntp->vals[type].oldval,
1351 ntp->vals[type].newval);
1357 if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1359 *ab = audit_log_start(context, GFP_KERNEL,
1360 AUDIT_TIME_INJOFFSET);
1364 audit_log_format(*ab, "sec=%lli nsec=%li",
1365 (long long)tk->tv_sec, tk->tv_nsec);
1371 static void show_special(struct audit_context *context, int *call_panic)
1373 struct audit_buffer *ab;
1376 ab = audit_log_start(context, GFP_KERNEL, context->type);
1380 switch (context->type) {
1381 case AUDIT_SOCKETCALL: {
1382 int nargs = context->socketcall.nargs;
1384 audit_log_format(ab, "nargs=%d", nargs);
1385 for (i = 0; i < nargs; i++)
1386 audit_log_format(ab, " a%d=%lx", i,
1387 context->socketcall.args[i]);
1390 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1391 from_kuid(&init_user_ns, context->ipc.uid),
1392 from_kgid(&init_user_ns, context->ipc.gid),
1394 if (lsmprop_is_set(&context->ipc.oprop)) {
1395 struct lsm_context lsmctx;
1397 if (security_lsmprop_to_secctx(&context->ipc.oprop,
1401 audit_log_format(ab, " obj=%s", lsmctx.context);
1402 security_release_secctx(&lsmctx);
1405 if (context->ipc.has_perm) {
1407 ab = audit_log_start(context, GFP_KERNEL,
1408 AUDIT_IPC_SET_PERM);
1411 audit_log_format(ab,
1412 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1413 context->ipc.qbytes,
1414 context->ipc.perm_uid,
1415 context->ipc.perm_gid,
1416 context->ipc.perm_mode);
1420 audit_log_format(ab,
1421 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1422 "mq_msgsize=%ld mq_curmsgs=%ld",
1423 context->mq_open.oflag, context->mq_open.mode,
1424 context->mq_open.attr.mq_flags,
1425 context->mq_open.attr.mq_maxmsg,
1426 context->mq_open.attr.mq_msgsize,
1427 context->mq_open.attr.mq_curmsgs);
1429 case AUDIT_MQ_SENDRECV:
1430 audit_log_format(ab,
1431 "mqdes=%d msg_len=%zd msg_prio=%u "
1432 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1433 context->mq_sendrecv.mqdes,
1434 context->mq_sendrecv.msg_len,
1435 context->mq_sendrecv.msg_prio,
1436 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1437 context->mq_sendrecv.abs_timeout.tv_nsec);
1439 case AUDIT_MQ_NOTIFY:
1440 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1441 context->mq_notify.mqdes,
1442 context->mq_notify.sigev_signo);
1444 case AUDIT_MQ_GETSETATTR: {
1445 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1447 audit_log_format(ab,
1448 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1450 context->mq_getsetattr.mqdes,
1451 attr->mq_flags, attr->mq_maxmsg,
1452 attr->mq_msgsize, attr->mq_curmsgs);
1455 audit_log_format(ab, "pid=%d", context->capset.pid);
1456 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1457 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1458 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1459 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1462 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1463 context->mmap.flags);
1466 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1467 context->openat2.flags,
1468 context->openat2.mode,
1469 context->openat2.resolve);
1472 audit_log_execve_info(context, &ab);
1474 case AUDIT_KERN_MODULE:
1475 audit_log_format(ab, "name=");
1476 if (context->module.name) {
1477 audit_log_untrustedstring(ab, context->module.name);
1479 audit_log_format(ab, "(null)");
1482 case AUDIT_TIME_ADJNTPVAL:
1483 case AUDIT_TIME_INJOFFSET:
1484 /* this call deviates from the rest, eating the buffer */
1485 audit_log_time(context, &ab);
1491 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1493 char *end = proctitle + len - 1;
1495 while (end > proctitle && !isprint(*end))
1498 /* catch the case where proctitle is only 1 non-print character */
1499 len = end - proctitle + 1;
1500 len -= isprint(proctitle[len-1]) == 0;
1505 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1506 * @context: audit_context for the task
1507 * @n: audit_names structure with reportable details
1508 * @path: optional path to report instead of audit_names->name
1509 * @record_num: record number to report when handling a list of names
1510 * @call_panic: optional pointer to int that will be updated if secid fails
1512 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1513 const struct path *path, int record_num, int *call_panic)
1515 struct audit_buffer *ab;
1517 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1521 audit_log_format(ab, "item=%d", record_num);
1524 audit_log_d_path(ab, " name=", path);
1526 switch (n->name_len) {
1527 case AUDIT_NAME_FULL:
1528 /* log the full path */
1529 audit_log_format(ab, " name=");
1530 audit_log_untrustedstring(ab, n->name->name);
1533 /* name was specified as a relative path and the
1534 * directory component is the cwd
1536 if (context->pwd.dentry && context->pwd.mnt)
1537 audit_log_d_path(ab, " name=", &context->pwd);
1539 audit_log_format(ab, " name=(null)");
1542 /* log the name's directory component */
1543 audit_log_format(ab, " name=");
1544 audit_log_n_untrustedstring(ab, n->name->name,
1548 audit_log_format(ab, " name=(null)");
1550 if (n->ino != AUDIT_INO_UNSET)
1551 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1556 from_kuid(&init_user_ns, n->uid),
1557 from_kgid(&init_user_ns, n->gid),
1560 if (lsmprop_is_set(&n->oprop)) {
1561 struct lsm_context ctx;
1563 if (security_lsmprop_to_secctx(&n->oprop, &ctx) < 0) {
1567 audit_log_format(ab, " obj=%s", ctx.context);
1568 security_release_secctx(&ctx);
1572 /* log the audit_names record type */
1574 case AUDIT_TYPE_NORMAL:
1575 audit_log_format(ab, " nametype=NORMAL");
1577 case AUDIT_TYPE_PARENT:
1578 audit_log_format(ab, " nametype=PARENT");
1580 case AUDIT_TYPE_CHILD_DELETE:
1581 audit_log_format(ab, " nametype=DELETE");
1583 case AUDIT_TYPE_CHILD_CREATE:
1584 audit_log_format(ab, " nametype=CREATE");
1587 audit_log_format(ab, " nametype=UNKNOWN");
1591 audit_log_fcaps(ab, n);
1595 static void audit_log_proctitle(void)
1599 char *msg = "(null)";
1600 int len = strlen(msg);
1601 struct audit_context *context = audit_context();
1602 struct audit_buffer *ab;
1604 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1606 return; /* audit_panic or being filtered */
1608 audit_log_format(ab, "proctitle=");
1611 if (!context->proctitle.value) {
1612 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1615 /* Historically called this from procfs naming */
1616 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1621 res = audit_proctitle_rtrim(buf, res);
1626 context->proctitle.value = buf;
1627 context->proctitle.len = res;
1629 msg = context->proctitle.value;
1630 len = context->proctitle.len;
1632 audit_log_n_untrustedstring(ab, msg, len);
1637 * audit_log_uring - generate a AUDIT_URINGOP record
1638 * @ctx: the audit context
1640 static void audit_log_uring(struct audit_context *ctx)
1642 struct audit_buffer *ab;
1643 const struct cred *cred;
1645 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1648 cred = current_cred();
1649 audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1650 if (ctx->return_valid != AUDITSC_INVALID)
1651 audit_log_format(ab, " success=%s exit=%ld",
1652 str_yes_no(ctx->return_valid ==
1655 audit_log_format(ab,
1657 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1658 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1660 task_ppid_nr(current), task_tgid_nr(current),
1661 from_kuid(&init_user_ns, cred->uid),
1662 from_kgid(&init_user_ns, cred->gid),
1663 from_kuid(&init_user_ns, cred->euid),
1664 from_kuid(&init_user_ns, cred->suid),
1665 from_kuid(&init_user_ns, cred->fsuid),
1666 from_kgid(&init_user_ns, cred->egid),
1667 from_kgid(&init_user_ns, cred->sgid),
1668 from_kgid(&init_user_ns, cred->fsgid));
1669 audit_log_task_context(ab);
1670 audit_log_key(ab, ctx->filterkey);
1674 static void audit_log_exit(void)
1676 int i, call_panic = 0;
1677 struct audit_context *context = audit_context();
1678 struct audit_buffer *ab;
1679 struct audit_aux_data *aux;
1680 struct audit_names *n;
1682 context->personality = current->personality;
1684 switch (context->context) {
1685 case AUDIT_CTX_SYSCALL:
1686 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1689 audit_log_format(ab, "arch=%x syscall=%d",
1690 context->arch, context->major);
1691 if (context->personality != PER_LINUX)
1692 audit_log_format(ab, " per=%lx", context->personality);
1693 if (context->return_valid != AUDITSC_INVALID)
1694 audit_log_format(ab, " success=%s exit=%ld",
1695 str_yes_no(context->return_valid ==
1697 context->return_code);
1698 audit_log_format(ab,
1699 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1704 context->name_count);
1705 audit_log_task_info(ab);
1706 audit_log_key(ab, context->filterkey);
1709 case AUDIT_CTX_URING:
1710 audit_log_uring(context);
1717 for (aux = context->aux; aux; aux = aux->next) {
1719 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1721 continue; /* audit_panic has been called */
1723 switch (aux->type) {
1725 case AUDIT_BPRM_FCAPS: {
1726 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1728 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1729 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1730 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1731 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1732 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1733 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1734 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1735 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1736 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1737 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1738 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1739 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1740 audit_log_format(ab, " frootid=%d",
1741 from_kuid(&init_user_ns,
1750 show_special(context, &call_panic);
1752 if (context->fds[0] >= 0) {
1753 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1755 audit_log_format(ab, "fd0=%d fd1=%d",
1756 context->fds[0], context->fds[1]);
1761 if (context->sockaddr_len) {
1762 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1764 audit_log_format(ab, "saddr=");
1765 audit_log_n_hex(ab, (void *)context->sockaddr,
1766 context->sockaddr_len);
1771 for (aux = context->aux_pids; aux; aux = aux->next) {
1772 struct audit_aux_data_pids *axs = (void *)aux;
1774 for (i = 0; i < axs->pid_count; i++)
1775 if (audit_log_pid_context(context, axs->target_pid[i],
1776 axs->target_auid[i],
1778 axs->target_sessionid[i],
1779 &axs->target_ref[i],
1780 axs->target_comm[i]))
1784 if (context->target_pid &&
1785 audit_log_pid_context(context, context->target_pid,
1786 context->target_auid, context->target_uid,
1787 context->target_sessionid,
1788 &context->target_ref, context->target_comm))
1791 if (context->pwd.dentry && context->pwd.mnt) {
1792 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1794 audit_log_d_path(ab, "cwd=", &context->pwd);
1800 list_for_each_entry(n, &context->names_list, list) {
1803 audit_log_name(context, n, NULL, i++, &call_panic);
1806 if (context->context == AUDIT_CTX_SYSCALL)
1807 audit_log_proctitle();
1809 /* Send end of event record to help user space know we are finished */
1810 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1814 audit_panic("error in audit_log_exit()");
1818 * __audit_free - free a per-task audit context
1819 * @tsk: task whose audit context block to free
1821 * Called from copy_process, do_exit, and the io_uring code
1823 void __audit_free(struct task_struct *tsk)
1825 struct audit_context *context = tsk->audit_context;
1830 /* this may generate CONFIG_CHANGE records */
1831 if (!list_empty(&context->killed_trees))
1832 audit_kill_trees(context);
1834 /* We are called either by do_exit() or the fork() error handling code;
1835 * in the former case tsk == current and in the latter tsk is a
1836 * random task_struct that doesn't have any meaningful data we
1837 * need to log via audit_log_exit().
1839 if (tsk == current && !context->dummy) {
1840 context->return_valid = AUDITSC_INVALID;
1841 context->return_code = 0;
1842 if (context->context == AUDIT_CTX_SYSCALL) {
1843 audit_filter_syscall(tsk, context);
1844 audit_filter_inodes(tsk, context);
1845 if (context->current_state == AUDIT_STATE_RECORD)
1847 } else if (context->context == AUDIT_CTX_URING) {
1848 /* TODO: verify this case is real and valid */
1849 audit_filter_uring(tsk, context);
1850 audit_filter_inodes(tsk, context);
1851 if (context->current_state == AUDIT_STATE_RECORD)
1852 audit_log_uring(context);
1856 audit_set_context(tsk, NULL);
1857 audit_free_context(context);
1861 * audit_return_fixup - fixup the return codes in the audit_context
1862 * @ctx: the audit_context
1863 * @success: true/false value to indicate if the operation succeeded or not
1864 * @code: operation return code
1866 * We need to fixup the return code in the audit logs if the actual return
1867 * codes are later going to be fixed by the arch specific signal handlers.
1869 static void audit_return_fixup(struct audit_context *ctx,
1870 int success, long code)
1873 * This is actually a test for:
1874 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1875 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1877 * but is faster than a bunch of ||
1879 if (unlikely(code <= -ERESTARTSYS) &&
1880 (code >= -ERESTART_RESTARTBLOCK) &&
1881 (code != -ENOIOCTLCMD))
1882 ctx->return_code = -EINTR;
1884 ctx->return_code = code;
1885 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1889 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1890 * @op: the io_uring opcode
1892 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1893 * operations. This function should only ever be called from
1894 * audit_uring_entry() as we rely on the audit context checking present in that
1897 void __audit_uring_entry(u8 op)
1899 struct audit_context *ctx = audit_context();
1901 if (ctx->state == AUDIT_STATE_DISABLED)
1905 * NOTE: It's possible that we can be called from the process' context
1906 * before it returns to userspace, and before audit_syscall_exit()
1907 * is called. In this case there is not much to do, just record
1908 * the io_uring details and return.
1911 if (ctx->context == AUDIT_CTX_SYSCALL)
1914 ctx->dummy = !audit_n_rules;
1915 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1918 ctx->context = AUDIT_CTX_URING;
1919 ctx->current_state = ctx->state;
1920 ktime_get_coarse_real_ts64(&ctx->ctime);
1924 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1925 * @success: true/false value to indicate if the operation succeeded or not
1926 * @code: operation return code
1928 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1929 * operations. This function should only ever be called from
1930 * audit_uring_exit() as we rely on the audit context checking present in that
1933 void __audit_uring_exit(int success, long code)
1935 struct audit_context *ctx = audit_context();
1938 if (ctx->context != AUDIT_CTX_URING)
1943 audit_return_fixup(ctx, success, code);
1944 if (ctx->context == AUDIT_CTX_SYSCALL) {
1946 * NOTE: See the note in __audit_uring_entry() about the case
1947 * where we may be called from process context before we
1948 * return to userspace via audit_syscall_exit(). In this
1949 * case we simply emit a URINGOP record and bail, the
1950 * normal syscall exit handling will take care of
1952 * It is also worth mentioning that when we are called,
1953 * the current process creds may differ from the creds
1954 * used during the normal syscall processing; keep that
1955 * in mind if/when we move the record generation code.
1959 * We need to filter on the syscall info here to decide if we
1960 * should emit a URINGOP record. I know it seems odd but this
1961 * solves the problem where users have a filter to block *all*
1962 * syscall records in the "exit" filter; we want to preserve
1963 * the behavior here.
1965 audit_filter_syscall(current, ctx);
1966 if (ctx->current_state != AUDIT_STATE_RECORD)
1967 audit_filter_uring(current, ctx);
1968 audit_filter_inodes(current, ctx);
1969 if (ctx->current_state != AUDIT_STATE_RECORD)
1972 audit_log_uring(ctx);
1976 /* this may generate CONFIG_CHANGE records */
1977 if (!list_empty(&ctx->killed_trees))
1978 audit_kill_trees(ctx);
1980 /* run through both filters to ensure we set the filterkey properly */
1981 audit_filter_uring(current, ctx);
1982 audit_filter_inodes(current, ctx);
1983 if (ctx->current_state != AUDIT_STATE_RECORD)
1988 audit_reset_context(ctx);
1992 * __audit_syscall_entry - fill in an audit record at syscall entry
1993 * @major: major syscall type (function)
1994 * @a1: additional syscall register 1
1995 * @a2: additional syscall register 2
1996 * @a3: additional syscall register 3
1997 * @a4: additional syscall register 4
1999 * Fill in audit context at syscall entry. This only happens if the
2000 * audit context was created when the task was created and the state or
2001 * filters demand the audit context be built. If the state from the
2002 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2003 * then the record will be written at syscall exit time (otherwise, it
2004 * will only be written if another part of the kernel requests that it
2007 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2008 unsigned long a3, unsigned long a4)
2010 struct audit_context *context = audit_context();
2011 enum audit_state state;
2013 if (!audit_enabled || !context)
2016 WARN_ON(context->context != AUDIT_CTX_UNUSED);
2017 WARN_ON(context->name_count);
2018 if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2019 audit_panic("unrecoverable error in audit_syscall_entry()");
2023 state = context->state;
2024 if (state == AUDIT_STATE_DISABLED)
2027 context->dummy = !audit_n_rules;
2028 if (!context->dummy && state == AUDIT_STATE_BUILD) {
2030 if (auditd_test_task(current))
2034 context->arch = syscall_get_arch(current);
2035 context->major = major;
2036 context->argv[0] = a1;
2037 context->argv[1] = a2;
2038 context->argv[2] = a3;
2039 context->argv[3] = a4;
2040 context->context = AUDIT_CTX_SYSCALL;
2041 context->current_state = state;
2042 ktime_get_coarse_real_ts64(&context->ctime);
2046 * __audit_syscall_exit - deallocate audit context after a system call
2047 * @success: success value of the syscall
2048 * @return_code: return value of the syscall
2050 * Tear down after system call. If the audit context has been marked as
2051 * auditable (either because of the AUDIT_STATE_RECORD state from
2052 * filtering, or because some other part of the kernel wrote an audit
2053 * message), then write out the syscall information. In call cases,
2054 * free the names stored from getname().
2056 void __audit_syscall_exit(int success, long return_code)
2058 struct audit_context *context = audit_context();
2060 if (!context || context->dummy ||
2061 context->context != AUDIT_CTX_SYSCALL)
2064 /* this may generate CONFIG_CHANGE records */
2065 if (!list_empty(&context->killed_trees))
2066 audit_kill_trees(context);
2068 audit_return_fixup(context, success, return_code);
2069 /* run through both filters to ensure we set the filterkey properly */
2070 audit_filter_syscall(current, context);
2071 audit_filter_inodes(current, context);
2072 if (context->current_state != AUDIT_STATE_RECORD)
2078 audit_reset_context(context);
2081 static inline void handle_one(const struct inode *inode)
2083 struct audit_context *context;
2084 struct audit_tree_refs *p;
2085 struct audit_chunk *chunk;
2088 if (likely(!inode->i_fsnotify_marks))
2090 context = audit_context();
2092 count = context->tree_count;
2094 chunk = audit_tree_lookup(inode);
2098 if (likely(put_tree_ref(context, chunk)))
2100 if (unlikely(!grow_tree_refs(context))) {
2101 pr_warn("out of memory, audit has lost a tree reference\n");
2102 audit_set_auditable(context);
2103 audit_put_chunk(chunk);
2104 unroll_tree_refs(context, p, count);
2107 put_tree_ref(context, chunk);
2110 static void handle_path(const struct dentry *dentry)
2112 struct audit_context *context;
2113 struct audit_tree_refs *p;
2114 const struct dentry *d, *parent;
2115 struct audit_chunk *drop;
2119 context = audit_context();
2121 count = context->tree_count;
2126 seq = read_seqbegin(&rename_lock);
2128 struct inode *inode = d_backing_inode(d);
2130 if (inode && unlikely(inode->i_fsnotify_marks)) {
2131 struct audit_chunk *chunk;
2133 chunk = audit_tree_lookup(inode);
2135 if (unlikely(!put_tree_ref(context, chunk))) {
2141 parent = d->d_parent;
2146 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
2149 /* just a race with rename */
2150 unroll_tree_refs(context, p, count);
2153 audit_put_chunk(drop);
2154 if (grow_tree_refs(context)) {
2155 /* OK, got more space */
2156 unroll_tree_refs(context, p, count);
2160 pr_warn("out of memory, audit has lost a tree reference\n");
2161 unroll_tree_refs(context, p, count);
2162 audit_set_auditable(context);
2168 static struct audit_names *audit_alloc_name(struct audit_context *context,
2171 struct audit_names *aname;
2173 if (context->name_count < AUDIT_NAMES) {
2174 aname = &context->preallocated_names[context->name_count];
2175 memset(aname, 0, sizeof(*aname));
2177 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2180 aname->should_free = true;
2183 aname->ino = AUDIT_INO_UNSET;
2185 list_add_tail(&aname->list, &context->names_list);
2187 context->name_count++;
2188 if (!context->pwd.dentry)
2189 get_fs_pwd(current->fs, &context->pwd);
2194 * __audit_reusename - fill out filename with info from existing entry
2195 * @uptr: userland ptr to pathname
2197 * Search the audit_names list for the current audit context. If there is an
2198 * existing entry with a matching "uptr" then return the filename
2199 * associated with that audit_name. If not, return NULL.
2202 __audit_reusename(const __user char *uptr)
2204 struct audit_context *context = audit_context();
2205 struct audit_names *n;
2207 list_for_each_entry(n, &context->names_list, list) {
2210 if (n->name->uptr == uptr)
2211 return refname(n->name);
2217 * __audit_getname - add a name to the list
2218 * @name: name to add
2220 * Add a name to the list of audit names for this context.
2221 * Called from fs/namei.c:getname().
2223 void __audit_getname(struct filename *name)
2225 struct audit_context *context = audit_context();
2226 struct audit_names *n;
2228 if (context->context == AUDIT_CTX_UNUSED)
2231 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2236 n->name_len = AUDIT_NAME_FULL;
2241 static inline int audit_copy_fcaps(struct audit_names *name,
2242 const struct dentry *dentry)
2244 struct cpu_vfs_cap_data caps;
2250 rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps);
2254 name->fcap.permitted = caps.permitted;
2255 name->fcap.inheritable = caps.inheritable;
2256 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2257 name->fcap.rootid = caps.rootid;
2258 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2259 VFS_CAP_REVISION_SHIFT;
2264 /* Copy inode data into an audit_names. */
2265 static void audit_copy_inode(struct audit_names *name,
2266 const struct dentry *dentry,
2267 struct inode *inode, unsigned int flags)
2269 name->ino = inode->i_ino;
2270 name->dev = inode->i_sb->s_dev;
2271 name->mode = inode->i_mode;
2272 name->uid = inode->i_uid;
2273 name->gid = inode->i_gid;
2274 name->rdev = inode->i_rdev;
2275 security_inode_getlsmprop(inode, &name->oprop);
2276 if (flags & AUDIT_INODE_NOEVAL) {
2277 name->fcap_ver = -1;
2280 audit_copy_fcaps(name, dentry);
2284 * __audit_inode - store the inode and device from a lookup
2285 * @name: name being audited
2286 * @dentry: dentry being audited
2287 * @flags: attributes for this particular entry
2289 void __audit_inode(struct filename *name, const struct dentry *dentry,
2292 struct audit_context *context = audit_context();
2293 struct inode *inode = d_backing_inode(dentry);
2294 struct audit_names *n;
2295 bool parent = flags & AUDIT_INODE_PARENT;
2296 struct audit_entry *e;
2297 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2300 if (context->context == AUDIT_CTX_UNUSED)
2304 list_for_each_entry_rcu(e, list, list) {
2305 for (i = 0; i < e->rule.field_count; i++) {
2306 struct audit_field *f = &e->rule.fields[i];
2308 if (f->type == AUDIT_FSTYPE
2309 && audit_comparator(inode->i_sb->s_magic,
2311 && e->rule.action == AUDIT_NEVER) {
2323 * If we have a pointer to an audit_names entry already, then we can
2324 * just use it directly if the type is correct.
2329 if (n->type == AUDIT_TYPE_PARENT ||
2330 n->type == AUDIT_TYPE_UNKNOWN)
2333 if (n->type != AUDIT_TYPE_PARENT)
2338 list_for_each_entry_reverse(n, &context->names_list, list) {
2340 /* valid inode number, use that for the comparison */
2341 if (n->ino != inode->i_ino ||
2342 n->dev != inode->i_sb->s_dev)
2344 } else if (n->name) {
2345 /* inode number has not been set, check the name */
2346 if (strcmp(n->name->name, name->name))
2349 /* no inode and no name (?!) ... this is odd ... */
2352 /* match the correct record type */
2354 if (n->type == AUDIT_TYPE_PARENT ||
2355 n->type == AUDIT_TYPE_UNKNOWN)
2358 if (n->type != AUDIT_TYPE_PARENT)
2364 /* unable to find an entry with both a matching name and type */
2365 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2375 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2376 n->type = AUDIT_TYPE_PARENT;
2377 if (flags & AUDIT_INODE_HIDDEN)
2380 n->name_len = AUDIT_NAME_FULL;
2381 n->type = AUDIT_TYPE_NORMAL;
2383 handle_path(dentry);
2384 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2387 void __audit_file(const struct file *file)
2389 __audit_inode(NULL, file->f_path.dentry, 0);
2393 * __audit_inode_child - collect inode info for created/removed objects
2394 * @parent: inode of dentry parent
2395 * @dentry: dentry being audited
2396 * @type: AUDIT_TYPE_* value that we're looking for
2398 * For syscalls that create or remove filesystem objects, audit_inode
2399 * can only collect information for the filesystem object's parent.
2400 * This call updates the audit context with the child's information.
2401 * Syscalls that create a new filesystem object must be hooked after
2402 * the object is created. Syscalls that remove a filesystem object
2403 * must be hooked prior, in order to capture the target inode during
2404 * unsuccessful attempts.
2406 void __audit_inode_child(struct inode *parent,
2407 const struct dentry *dentry,
2408 const unsigned char type)
2410 struct audit_context *context = audit_context();
2411 struct inode *inode = d_backing_inode(dentry);
2412 const struct qstr *dname = &dentry->d_name;
2413 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2414 struct audit_entry *e;
2415 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2418 if (context->context == AUDIT_CTX_UNUSED)
2422 list_for_each_entry_rcu(e, list, list) {
2423 for (i = 0; i < e->rule.field_count; i++) {
2424 struct audit_field *f = &e->rule.fields[i];
2426 if (f->type == AUDIT_FSTYPE
2427 && audit_comparator(parent->i_sb->s_magic,
2429 && e->rule.action == AUDIT_NEVER) {
2440 /* look for a parent entry first */
2441 list_for_each_entry(n, &context->names_list, list) {
2443 (n->type != AUDIT_TYPE_PARENT &&
2444 n->type != AUDIT_TYPE_UNKNOWN))
2447 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2448 !audit_compare_dname_path(dname,
2449 n->name->name, n->name_len)) {
2450 if (n->type == AUDIT_TYPE_UNKNOWN)
2451 n->type = AUDIT_TYPE_PARENT;
2459 /* is there a matching child entry? */
2460 list_for_each_entry(n, &context->names_list, list) {
2461 /* can only match entries that have a name */
2463 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2466 if (!strcmp(dname->name, n->name->name) ||
2467 !audit_compare_dname_path(dname, n->name->name,
2469 found_parent->name_len :
2471 if (n->type == AUDIT_TYPE_UNKNOWN)
2478 if (!found_parent) {
2479 /* create a new, "anonymous" parent record */
2480 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2483 audit_copy_inode(n, NULL, parent, 0);
2487 found_child = audit_alloc_name(context, type);
2491 /* Re-use the name belonging to the slot for a matching parent
2492 * directory. All names for this context are relinquished in
2493 * audit_free_names() */
2495 found_child->name = found_parent->name;
2496 found_child->name_len = AUDIT_NAME_FULL;
2497 refname(found_child->name);
2502 audit_copy_inode(found_child, dentry, inode, 0);
2504 found_child->ino = AUDIT_INO_UNSET;
2506 EXPORT_SYMBOL_GPL(__audit_inode_child);
2509 * auditsc_get_stamp - get local copies of audit_context values
2510 * @ctx: audit_context for the task
2511 * @t: timespec64 to store time recorded in the audit_context
2512 * @serial: serial value that is recorded in the audit_context
2514 * Also sets the context as auditable.
2516 int auditsc_get_stamp(struct audit_context *ctx,
2517 struct timespec64 *t, unsigned int *serial)
2519 if (ctx->context == AUDIT_CTX_UNUSED)
2522 ctx->serial = audit_serial();
2523 t->tv_sec = ctx->ctime.tv_sec;
2524 t->tv_nsec = ctx->ctime.tv_nsec;
2525 *serial = ctx->serial;
2528 ctx->current_state = AUDIT_STATE_RECORD;
2534 * __audit_mq_open - record audit data for a POSIX MQ open
2537 * @attr: queue attributes
2540 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2542 struct audit_context *context = audit_context();
2545 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2547 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2549 context->mq_open.oflag = oflag;
2550 context->mq_open.mode = mode;
2552 context->type = AUDIT_MQ_OPEN;
2556 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2557 * @mqdes: MQ descriptor
2558 * @msg_len: Message length
2559 * @msg_prio: Message priority
2560 * @abs_timeout: Message timeout in absolute time
2563 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2564 const struct timespec64 *abs_timeout)
2566 struct audit_context *context = audit_context();
2567 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2570 memcpy(p, abs_timeout, sizeof(*p));
2572 memset(p, 0, sizeof(*p));
2574 context->mq_sendrecv.mqdes = mqdes;
2575 context->mq_sendrecv.msg_len = msg_len;
2576 context->mq_sendrecv.msg_prio = msg_prio;
2578 context->type = AUDIT_MQ_SENDRECV;
2582 * __audit_mq_notify - record audit data for a POSIX MQ notify
2583 * @mqdes: MQ descriptor
2584 * @notification: Notification event
2588 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2590 struct audit_context *context = audit_context();
2593 context->mq_notify.sigev_signo = notification->sigev_signo;
2595 context->mq_notify.sigev_signo = 0;
2597 context->mq_notify.mqdes = mqdes;
2598 context->type = AUDIT_MQ_NOTIFY;
2602 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2603 * @mqdes: MQ descriptor
2607 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2609 struct audit_context *context = audit_context();
2611 context->mq_getsetattr.mqdes = mqdes;
2612 context->mq_getsetattr.mqstat = *mqstat;
2613 context->type = AUDIT_MQ_GETSETATTR;
2617 * __audit_ipc_obj - record audit data for ipc object
2618 * @ipcp: ipc permissions
2621 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2623 struct audit_context *context = audit_context();
2625 context->ipc.uid = ipcp->uid;
2626 context->ipc.gid = ipcp->gid;
2627 context->ipc.mode = ipcp->mode;
2628 context->ipc.has_perm = 0;
2629 security_ipc_getlsmprop(ipcp, &context->ipc.oprop);
2630 context->type = AUDIT_IPC;
2634 * __audit_ipc_set_perm - record audit data for new ipc permissions
2635 * @qbytes: msgq bytes
2636 * @uid: msgq user id
2637 * @gid: msgq group id
2638 * @mode: msgq mode (permissions)
2640 * Called only after audit_ipc_obj().
2642 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2644 struct audit_context *context = audit_context();
2646 context->ipc.qbytes = qbytes;
2647 context->ipc.perm_uid = uid;
2648 context->ipc.perm_gid = gid;
2649 context->ipc.perm_mode = mode;
2650 context->ipc.has_perm = 1;
2653 void __audit_bprm(struct linux_binprm *bprm)
2655 struct audit_context *context = audit_context();
2657 context->type = AUDIT_EXECVE;
2658 context->execve.argc = bprm->argc;
2663 * __audit_socketcall - record audit data for sys_socketcall
2664 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2668 int __audit_socketcall(int nargs, unsigned long *args)
2670 struct audit_context *context = audit_context();
2672 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2674 context->type = AUDIT_SOCKETCALL;
2675 context->socketcall.nargs = nargs;
2676 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2681 * __audit_fd_pair - record audit data for pipe and socketpair
2682 * @fd1: the first file descriptor
2683 * @fd2: the second file descriptor
2686 void __audit_fd_pair(int fd1, int fd2)
2688 struct audit_context *context = audit_context();
2690 context->fds[0] = fd1;
2691 context->fds[1] = fd2;
2695 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2696 * @len: data length in user space
2697 * @a: data address in kernel space
2699 * Returns 0 for success or NULL context or < 0 on error.
2701 int __audit_sockaddr(int len, void *a)
2703 struct audit_context *context = audit_context();
2705 if (!context->sockaddr) {
2706 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2710 context->sockaddr = p;
2713 context->sockaddr_len = len;
2714 memcpy(context->sockaddr, a, len);
2718 void __audit_ptrace(struct task_struct *t)
2720 struct audit_context *context = audit_context();
2722 context->target_pid = task_tgid_nr(t);
2723 context->target_auid = audit_get_loginuid(t);
2724 context->target_uid = task_uid(t);
2725 context->target_sessionid = audit_get_sessionid(t);
2726 strscpy(context->target_comm, t->comm);
2727 security_task_getlsmprop_obj(t, &context->target_ref);
2731 * audit_signal_info_syscall - record signal info for syscalls
2732 * @t: task being signaled
2734 * If the audit subsystem is being terminated, record the task (pid)
2735 * and uid that is doing that.
2737 int audit_signal_info_syscall(struct task_struct *t)
2739 struct audit_aux_data_pids *axp;
2740 struct audit_context *ctx = audit_context();
2741 kuid_t t_uid = task_uid(t);
2743 if (!audit_signals || audit_dummy_context())
2746 /* optimize the common case by putting first signal recipient directly
2747 * in audit_context */
2748 if (!ctx->target_pid) {
2749 ctx->target_pid = task_tgid_nr(t);
2750 ctx->target_auid = audit_get_loginuid(t);
2751 ctx->target_uid = t_uid;
2752 ctx->target_sessionid = audit_get_sessionid(t);
2753 strscpy(ctx->target_comm, t->comm);
2754 security_task_getlsmprop_obj(t, &ctx->target_ref);
2758 axp = (void *)ctx->aux_pids;
2759 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2760 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2764 axp->d.type = AUDIT_OBJ_PID;
2765 axp->d.next = ctx->aux_pids;
2766 ctx->aux_pids = (void *)axp;
2768 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2770 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2771 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2772 axp->target_uid[axp->pid_count] = t_uid;
2773 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2774 security_task_getlsmprop_obj(t, &axp->target_ref[axp->pid_count]);
2775 strscpy(axp->target_comm[axp->pid_count], t->comm);
2782 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2783 * @bprm: pointer to the bprm being processed
2784 * @new: the proposed new credentials
2785 * @old: the old credentials
2787 * Simply check if the proc already has the caps given by the file and if not
2788 * store the priv escalation info for later auditing at the end of the syscall
2792 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2793 const struct cred *new, const struct cred *old)
2795 struct audit_aux_data_bprm_fcaps *ax;
2796 struct audit_context *context = audit_context();
2797 struct cpu_vfs_cap_data vcaps;
2799 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2803 ax->d.type = AUDIT_BPRM_FCAPS;
2804 ax->d.next = context->aux;
2805 context->aux = (void *)ax;
2807 get_vfs_caps_from_disk(&nop_mnt_idmap,
2808 bprm->file->f_path.dentry, &vcaps);
2810 ax->fcap.permitted = vcaps.permitted;
2811 ax->fcap.inheritable = vcaps.inheritable;
2812 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2813 ax->fcap.rootid = vcaps.rootid;
2814 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2816 ax->old_pcap.permitted = old->cap_permitted;
2817 ax->old_pcap.inheritable = old->cap_inheritable;
2818 ax->old_pcap.effective = old->cap_effective;
2819 ax->old_pcap.ambient = old->cap_ambient;
2821 ax->new_pcap.permitted = new->cap_permitted;
2822 ax->new_pcap.inheritable = new->cap_inheritable;
2823 ax->new_pcap.effective = new->cap_effective;
2824 ax->new_pcap.ambient = new->cap_ambient;
2829 * __audit_log_capset - store information about the arguments to the capset syscall
2830 * @new: the new credentials
2831 * @old: the old (current) credentials
2833 * Record the arguments userspace sent to sys_capset for later printing by the
2834 * audit system if applicable
2836 void __audit_log_capset(const struct cred *new, const struct cred *old)
2838 struct audit_context *context = audit_context();
2840 context->capset.pid = task_tgid_nr(current);
2841 context->capset.cap.effective = new->cap_effective;
2842 context->capset.cap.inheritable = new->cap_effective;
2843 context->capset.cap.permitted = new->cap_permitted;
2844 context->capset.cap.ambient = new->cap_ambient;
2845 context->type = AUDIT_CAPSET;
2848 void __audit_mmap_fd(int fd, int flags)
2850 struct audit_context *context = audit_context();
2852 context->mmap.fd = fd;
2853 context->mmap.flags = flags;
2854 context->type = AUDIT_MMAP;
2857 void __audit_openat2_how(struct open_how *how)
2859 struct audit_context *context = audit_context();
2861 context->openat2.flags = how->flags;
2862 context->openat2.mode = how->mode;
2863 context->openat2.resolve = how->resolve;
2864 context->type = AUDIT_OPENAT2;
2867 void __audit_log_kern_module(char *name)
2869 struct audit_context *context = audit_context();
2871 context->module.name = kstrdup(name, GFP_KERNEL);
2872 if (!context->module.name)
2873 audit_log_lost("out of memory in __audit_log_kern_module");
2874 context->type = AUDIT_KERN_MODULE;
2877 void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar)
2879 /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */
2880 switch (friar->hdr.type) {
2881 case FAN_RESPONSE_INFO_NONE:
2882 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2883 "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2",
2884 response, FAN_RESPONSE_INFO_NONE);
2886 case FAN_RESPONSE_INFO_AUDIT_RULE:
2887 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2888 "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u",
2889 response, friar->hdr.type, friar->rule_number,
2890 friar->subj_trust, friar->obj_trust);
2894 void __audit_tk_injoffset(struct timespec64 offset)
2896 struct audit_context *context = audit_context();
2898 /* only set type if not already set by NTP */
2900 context->type = AUDIT_TIME_INJOFFSET;
2901 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2904 void __audit_ntp_log(const struct audit_ntp_data *ad)
2906 struct audit_context *context = audit_context();
2909 for (type = 0; type < AUDIT_NTP_NVALS; type++)
2910 if (ad->vals[type].newval != ad->vals[type].oldval) {
2911 /* unconditionally set type, overwriting TK */
2912 context->type = AUDIT_TIME_ADJNTPVAL;
2913 memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2918 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2919 enum audit_nfcfgop op, gfp_t gfp)
2921 struct audit_buffer *ab;
2922 char comm[sizeof(current->comm)];
2924 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2927 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2928 name, af, nentries, audit_nfcfgs[op].s);
2930 audit_log_format(ab, " pid=%u", task_tgid_nr(current));
2931 audit_log_task_context(ab); /* subj= */
2932 audit_log_format(ab, " comm=");
2933 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2936 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2938 static void audit_log_task(struct audit_buffer *ab)
2942 unsigned int sessionid;
2943 char comm[sizeof(current->comm)];
2945 auid = audit_get_loginuid(current);
2946 sessionid = audit_get_sessionid(current);
2947 current_uid_gid(&uid, &gid);
2949 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2950 from_kuid(&init_user_ns, auid),
2951 from_kuid(&init_user_ns, uid),
2952 from_kgid(&init_user_ns, gid),
2954 audit_log_task_context(ab);
2955 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2956 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2957 audit_log_d_path_exe(ab, current->mm);
2961 * audit_core_dumps - record information about processes that end abnormally
2962 * @signr: signal value
2964 * If a process ends with a core dump, something fishy is going on and we
2965 * should record the event for investigation.
2967 void audit_core_dumps(long signr)
2969 struct audit_buffer *ab;
2974 if (signr == SIGQUIT) /* don't care for those */
2977 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2981 audit_log_format(ab, " sig=%ld res=1", signr);
2986 * audit_seccomp - record information about a seccomp action
2987 * @syscall: syscall number
2988 * @signr: signal value
2989 * @code: the seccomp action
2991 * Record the information associated with a seccomp action. Event filtering for
2992 * seccomp actions that are not to be logged is done in seccomp_log().
2993 * Therefore, this function forces auditing independent of the audit_enabled
2994 * and dummy context state because seccomp actions should be logged even when
2995 * audit is not in use.
2997 void audit_seccomp(unsigned long syscall, long signr, int code)
2999 struct audit_buffer *ab;
3001 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
3005 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
3006 signr, syscall_get_arch(current), syscall,
3007 in_compat_syscall(), KSTK_EIP(current), code);
3011 void audit_seccomp_actions_logged(const char *names, const char *old_names,
3014 struct audit_buffer *ab;
3019 ab = audit_log_start(audit_context(), GFP_KERNEL,
3020 AUDIT_CONFIG_CHANGE);
3024 audit_log_format(ab,
3025 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3026 names, old_names, res);
3030 struct list_head *audit_killed_trees(void)
3032 struct audit_context *ctx = audit_context();
3033 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3035 return &ctx->killed_trees;