Merge drm/drm-next into drm-misc-next
[linux-block.git] / include / uapi / drm / drm_fourcc.h
1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26
27 #include "drm.h"
28
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32
33 /**
34  * DOC: overview
35  *
36  * In the DRM subsystem, framebuffer pixel formats are described using the
37  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38  * fourcc code, a Format Modifier may optionally be provided, in order to
39  * further describe the buffer's format - for example tiling or compression.
40  *
41  * Format Modifiers
42  * ----------------
43  *
44  * Format modifiers are used in conjunction with a fourcc code, forming a
45  * unique fourcc:modifier pair. This format:modifier pair must fully define the
46  * format and data layout of the buffer, and should be the only way to describe
47  * that particular buffer.
48  *
49  * Having multiple fourcc:modifier pairs which describe the same layout should
50  * be avoided, as such aliases run the risk of different drivers exposing
51  * different names for the same data format, forcing userspace to understand
52  * that they are aliases.
53  *
54  * Format modifiers may change any property of the buffer, including the number
55  * of planes and/or the required allocation size. Format modifiers are
56  * vendor-namespaced, and as such the relationship between a fourcc code and a
57  * modifier is specific to the modifer being used. For example, some modifiers
58  * may preserve meaning - such as number of planes - from the fourcc code,
59  * whereas others may not.
60  *
61  * Vendors should document their modifier usage in as much detail as
62  * possible, to ensure maximum compatibility across devices, drivers and
63  * applications.
64  *
65  * The authoritative list of format modifier codes is found in
66  * `include/uapi/drm/drm_fourcc.h`
67  */
68
69 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
70                                  ((__u32)(c) << 16) | ((__u32)(d) << 24))
71
72 #define DRM_FORMAT_BIG_ENDIAN (1<<31) /* format is big endian instead of little endian */
73
74 /* color index */
75 #define DRM_FORMAT_C8           fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
76
77 /* 8 bpp Red */
78 #define DRM_FORMAT_R8           fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
79
80 /* 16 bpp Red */
81 #define DRM_FORMAT_R16          fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
82
83 /* 16 bpp RG */
84 #define DRM_FORMAT_RG88         fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
85 #define DRM_FORMAT_GR88         fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
86
87 /* 32 bpp RG */
88 #define DRM_FORMAT_RG1616       fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
89 #define DRM_FORMAT_GR1616       fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
90
91 /* 8 bpp RGB */
92 #define DRM_FORMAT_RGB332       fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
93 #define DRM_FORMAT_BGR233       fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
94
95 /* 16 bpp RGB */
96 #define DRM_FORMAT_XRGB4444     fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
97 #define DRM_FORMAT_XBGR4444     fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
98 #define DRM_FORMAT_RGBX4444     fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
99 #define DRM_FORMAT_BGRX4444     fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
100
101 #define DRM_FORMAT_ARGB4444     fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
102 #define DRM_FORMAT_ABGR4444     fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
103 #define DRM_FORMAT_RGBA4444     fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
104 #define DRM_FORMAT_BGRA4444     fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
105
106 #define DRM_FORMAT_XRGB1555     fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
107 #define DRM_FORMAT_XBGR1555     fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
108 #define DRM_FORMAT_RGBX5551     fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
109 #define DRM_FORMAT_BGRX5551     fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
110
111 #define DRM_FORMAT_ARGB1555     fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
112 #define DRM_FORMAT_ABGR1555     fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
113 #define DRM_FORMAT_RGBA5551     fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
114 #define DRM_FORMAT_BGRA5551     fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
115
116 #define DRM_FORMAT_RGB565       fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
117 #define DRM_FORMAT_BGR565       fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
118
119 /* 24 bpp RGB */
120 #define DRM_FORMAT_RGB888       fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
121 #define DRM_FORMAT_BGR888       fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
122
123 /* 32 bpp RGB */
124 #define DRM_FORMAT_XRGB8888     fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
125 #define DRM_FORMAT_XBGR8888     fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
126 #define DRM_FORMAT_RGBX8888     fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
127 #define DRM_FORMAT_BGRX8888     fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
128
129 #define DRM_FORMAT_ARGB8888     fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
130 #define DRM_FORMAT_ABGR8888     fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
131 #define DRM_FORMAT_RGBA8888     fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
132 #define DRM_FORMAT_BGRA8888     fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
133
134 #define DRM_FORMAT_XRGB2101010  fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
135 #define DRM_FORMAT_XBGR2101010  fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
136 #define DRM_FORMAT_RGBX1010102  fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
137 #define DRM_FORMAT_BGRX1010102  fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
138
139 #define DRM_FORMAT_ARGB2101010  fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
140 #define DRM_FORMAT_ABGR2101010  fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
141 #define DRM_FORMAT_RGBA1010102  fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
142 #define DRM_FORMAT_BGRA1010102  fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
143
144 /* packed YCbCr */
145 #define DRM_FORMAT_YUYV         fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
146 #define DRM_FORMAT_YVYU         fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
147 #define DRM_FORMAT_UYVY         fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
148 #define DRM_FORMAT_VYUY         fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
149
150 #define DRM_FORMAT_AYUV         fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
151
152 /*
153  * 2 plane RGB + A
154  * index 0 = RGB plane, same format as the corresponding non _A8 format has
155  * index 1 = A plane, [7:0] A
156  */
157 #define DRM_FORMAT_XRGB8888_A8  fourcc_code('X', 'R', 'A', '8')
158 #define DRM_FORMAT_XBGR8888_A8  fourcc_code('X', 'B', 'A', '8')
159 #define DRM_FORMAT_RGBX8888_A8  fourcc_code('R', 'X', 'A', '8')
160 #define DRM_FORMAT_BGRX8888_A8  fourcc_code('B', 'X', 'A', '8')
161 #define DRM_FORMAT_RGB888_A8    fourcc_code('R', '8', 'A', '8')
162 #define DRM_FORMAT_BGR888_A8    fourcc_code('B', '8', 'A', '8')
163 #define DRM_FORMAT_RGB565_A8    fourcc_code('R', '5', 'A', '8')
164 #define DRM_FORMAT_BGR565_A8    fourcc_code('B', '5', 'A', '8')
165
166 /*
167  * 2 plane YCbCr
168  * index 0 = Y plane, [7:0] Y
169  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
170  * or
171  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
172  */
173 #define DRM_FORMAT_NV12         fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
174 #define DRM_FORMAT_NV21         fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
175 #define DRM_FORMAT_NV16         fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
176 #define DRM_FORMAT_NV61         fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
177 #define DRM_FORMAT_NV24         fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
178 #define DRM_FORMAT_NV42         fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
179
180 /*
181  * 3 plane YCbCr
182  * index 0: Y plane, [7:0] Y
183  * index 1: Cb plane, [7:0] Cb
184  * index 2: Cr plane, [7:0] Cr
185  * or
186  * index 1: Cr plane, [7:0] Cr
187  * index 2: Cb plane, [7:0] Cb
188  */
189 #define DRM_FORMAT_YUV410       fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
190 #define DRM_FORMAT_YVU410       fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
191 #define DRM_FORMAT_YUV411       fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
192 #define DRM_FORMAT_YVU411       fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
193 #define DRM_FORMAT_YUV420       fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
194 #define DRM_FORMAT_YVU420       fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
195 #define DRM_FORMAT_YUV422       fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
196 #define DRM_FORMAT_YVU422       fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
197 #define DRM_FORMAT_YUV444       fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
198 #define DRM_FORMAT_YVU444       fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
199
200
201 /*
202  * Format Modifiers:
203  *
204  * Format modifiers describe, typically, a re-ordering or modification
205  * of the data in a plane of an FB.  This can be used to express tiled/
206  * swizzled formats, or compression, or a combination of the two.
207  *
208  * The upper 8 bits of the format modifier are a vendor-id as assigned
209  * below.  The lower 56 bits are assigned as vendor sees fit.
210  */
211
212 /* Vendor Ids: */
213 #define DRM_FORMAT_MOD_NONE           0
214 #define DRM_FORMAT_MOD_VENDOR_NONE    0
215 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
216 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
217 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
218 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
219 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
220 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
221 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
222 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
223 /* add more to the end as needed */
224
225 #define DRM_FORMAT_RESERVED           ((1ULL << 56) - 1)
226
227 #define fourcc_mod_code(vendor, val) \
228         ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
229
230 /*
231  * Format Modifier tokens:
232  *
233  * When adding a new token please document the layout with a code comment,
234  * similar to the fourcc codes above. drm_fourcc.h is considered the
235  * authoritative source for all of these.
236  */
237
238 /*
239  * Invalid Modifier
240  *
241  * This modifier can be used as a sentinel to terminate the format modifiers
242  * list, or to initialize a variable with an invalid modifier. It might also be
243  * used to report an error back to userspace for certain APIs.
244  */
245 #define DRM_FORMAT_MOD_INVALID  fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
246
247 /*
248  * Linear Layout
249  *
250  * Just plain linear layout. Note that this is different from no specifying any
251  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
252  * which tells the driver to also take driver-internal information into account
253  * and so might actually result in a tiled framebuffer.
254  */
255 #define DRM_FORMAT_MOD_LINEAR   fourcc_mod_code(NONE, 0)
256
257 /* Intel framebuffer modifiers */
258
259 /*
260  * Intel X-tiling layout
261  *
262  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
263  * in row-major layout. Within the tile bytes are laid out row-major, with
264  * a platform-dependent stride. On top of that the memory can apply
265  * platform-depending swizzling of some higher address bits into bit6.
266  *
267  * This format is highly platforms specific and not useful for cross-driver
268  * sharing. It exists since on a given platform it does uniquely identify the
269  * layout in a simple way for i915-specific userspace.
270  */
271 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
272
273 /*
274  * Intel Y-tiling layout
275  *
276  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
277  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
278  * chunks column-major, with a platform-dependent height. On top of that the
279  * memory can apply platform-depending swizzling of some higher address bits
280  * into bit6.
281  *
282  * This format is highly platforms specific and not useful for cross-driver
283  * sharing. It exists since on a given platform it does uniquely identify the
284  * layout in a simple way for i915-specific userspace.
285  */
286 #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
287
288 /*
289  * Intel Yf-tiling layout
290  *
291  * This is a tiled layout using 4Kb tiles in row-major layout.
292  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
293  * are arranged in four groups (two wide, two high) with column-major layout.
294  * Each group therefore consits out of four 256 byte units, which are also laid
295  * out as 2x2 column-major.
296  * 256 byte units are made out of four 64 byte blocks of pixels, producing
297  * either a square block or a 2:1 unit.
298  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
299  * in pixel depends on the pixel depth.
300  */
301 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
302
303 /*
304  * Intel color control surface (CCS) for render compression
305  *
306  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
307  * The main surface will be plane index 0 and must be Y/Yf-tiled,
308  * the CCS will be plane index 1.
309  *
310  * Each CCS tile matches a 1024x512 pixel area of the main surface.
311  * To match certain aspects of the 3D hardware the CCS is
312  * considered to be made up of normal 128Bx32 Y tiles, Thus
313  * the CCS pitch must be specified in multiples of 128 bytes.
314  *
315  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
316  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
317  * But that fact is not relevant unless the memory is accessed
318  * directly.
319  */
320 #define I915_FORMAT_MOD_Y_TILED_CCS     fourcc_mod_code(INTEL, 4)
321 #define I915_FORMAT_MOD_Yf_TILED_CCS    fourcc_mod_code(INTEL, 5)
322
323 /*
324  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
325  *
326  * Macroblocks are laid in a Z-shape, and each pixel data is following the
327  * standard NV12 style.
328  * As for NV12, an image is the result of two frame buffers: one for Y,
329  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
330  * Alignment requirements are (for each buffer):
331  * - multiple of 128 pixels for the width
332  * - multiple of  32 pixels for the height
333  *
334  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
335  */
336 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE       fourcc_mod_code(SAMSUNG, 1)
337
338 /*
339  * Qualcomm Compressed Format
340  *
341  * Refers to a compressed variant of the base format that is compressed.
342  * Implementation may be platform and base-format specific.
343  *
344  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
345  * Pixel data pitch/stride is aligned with macrotile width.
346  * Pixel data height is aligned with macrotile height.
347  * Entire pixel data buffer is aligned with 4k(bytes).
348  */
349 #define DRM_FORMAT_MOD_QCOM_COMPRESSED  fourcc_mod_code(QCOM, 1)
350
351 /* Vivante framebuffer modifiers */
352
353 /*
354  * Vivante 4x4 tiling layout
355  *
356  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
357  * layout.
358  */
359 #define DRM_FORMAT_MOD_VIVANTE_TILED            fourcc_mod_code(VIVANTE, 1)
360
361 /*
362  * Vivante 64x64 super-tiling layout
363  *
364  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
365  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
366  * major layout.
367  *
368  * For more information: see
369  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
370  */
371 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED      fourcc_mod_code(VIVANTE, 2)
372
373 /*
374  * Vivante 4x4 tiling layout for dual-pipe
375  *
376  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
377  * different base address. Offsets from the base addresses are therefore halved
378  * compared to the non-split tiled layout.
379  */
380 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED      fourcc_mod_code(VIVANTE, 3)
381
382 /*
383  * Vivante 64x64 super-tiling layout for dual-pipe
384  *
385  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
386  * starts at a different base address. Offsets from the base addresses are
387  * therefore halved compared to the non-split super-tiled layout.
388  */
389 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
390
391 /* NVIDIA frame buffer modifiers */
392
393 /*
394  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
395  *
396  * Pixels are arranged in simple tiles of 16 x 16 bytes.
397  */
398 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
399
400 /*
401  * 16Bx2 Block Linear layout, used by desktop GPUs, and Tegra K1 and later
402  *
403  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
404  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
405  *
406  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
407  *
408  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
409  * Valid values are:
410  *
411  * 0 == ONE_GOB
412  * 1 == TWO_GOBS
413  * 2 == FOUR_GOBS
414  * 3 == EIGHT_GOBS
415  * 4 == SIXTEEN_GOBS
416  * 5 == THIRTYTWO_GOBS
417  *
418  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
419  * in full detail.
420  */
421 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
422         fourcc_mod_code(NVIDIA, 0x10 | ((v) & 0xf))
423
424 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
425         fourcc_mod_code(NVIDIA, 0x10)
426 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
427         fourcc_mod_code(NVIDIA, 0x11)
428 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
429         fourcc_mod_code(NVIDIA, 0x12)
430 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
431         fourcc_mod_code(NVIDIA, 0x13)
432 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
433         fourcc_mod_code(NVIDIA, 0x14)
434 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
435         fourcc_mod_code(NVIDIA, 0x15)
436
437 /*
438  * Some Broadcom modifiers take parameters, for example the number of
439  * vertical lines in the image. Reserve the lower 32 bits for modifier
440  * type, and the next 24 bits for parameters. Top 8 bits are the
441  * vendor code.
442  */
443 #define __fourcc_mod_broadcom_param_shift 8
444 #define __fourcc_mod_broadcom_param_bits 48
445 #define fourcc_mod_broadcom_code(val, params) \
446         fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
447 #define fourcc_mod_broadcom_param(m) \
448         ((int)(((m) >> __fourcc_mod_broadcom_param_shift) &     \
449                ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
450 #define fourcc_mod_broadcom_mod(m) \
451         ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<    \
452                  __fourcc_mod_broadcom_param_shift))
453
454 /*
455  * Broadcom VC4 "T" format
456  *
457  * This is the primary layout that the V3D GPU can texture from (it
458  * can't do linear).  The T format has:
459  *
460  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
461  *   pixels at 32 bit depth.
462  *
463  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
464  *   16x16 pixels).
465  *
466  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
467  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
468  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
469  *
470  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
471  *   tiles) or right-to-left (odd rows of 4k tiles).
472  */
473 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
474
475 /*
476  * Broadcom SAND format
477  *
478  * This is the native format that the H.264 codec block uses.  For VC4
479  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
480  *
481  * The image can be considered to be split into columns, and the
482  * columns are placed consecutively into memory.  The width of those
483  * columns can be either 32, 64, 128, or 256 pixels, but in practice
484  * only 128 pixel columns are used.
485  *
486  * The pitch between the start of each column is set to optimally
487  * switch between SDRAM banks. This is passed as the number of lines
488  * of column width in the modifier (we can't use the stride value due
489  * to various core checks that look at it , so you should set the
490  * stride to width*cpp).
491  *
492  * Note that the column height for this format modifier is the same
493  * for all of the planes, assuming that each column contains both Y
494  * and UV.  Some SAND-using hardware stores UV in a separate tiled
495  * image from Y to reduce the column height, which is not supported
496  * with these modifiers.
497  */
498
499 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
500         fourcc_mod_broadcom_code(2, v)
501 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
502         fourcc_mod_broadcom_code(3, v)
503 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
504         fourcc_mod_broadcom_code(4, v)
505 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
506         fourcc_mod_broadcom_code(5, v)
507
508 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
509         DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
510 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
511         DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
512 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
513         DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
514 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
515         DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
516
517 /* Broadcom UIF format
518  *
519  * This is the common format for the current Broadcom multimedia
520  * blocks, including V3D 3.x and newer, newer video codecs, and
521  * displays.
522  *
523  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
524  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
525  * stored in columns, with padding between the columns to ensure that
526  * moving from one column to the next doesn't hit the same SDRAM page
527  * bank.
528  *
529  * To calculate the padding, it is assumed that each hardware block
530  * and the software driving it knows the platform's SDRAM page size,
531  * number of banks, and XOR address, and that it's identical between
532  * all blocks using the format.  This tiling modifier will use XOR as
533  * necessary to reduce the padding.  If a hardware block can't do XOR,
534  * the assumption is that a no-XOR tiling modifier will be created.
535  */
536 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
537
538 /*
539  * Arm Framebuffer Compression (AFBC) modifiers
540  *
541  * AFBC is a proprietary lossless image compression protocol and format.
542  * It provides fine-grained random access and minimizes the amount of data
543  * transferred between IP blocks.
544  *
545  * AFBC has several features which may be supported and/or used, which are
546  * represented using bits in the modifier. Not all combinations are valid,
547  * and different devices or use-cases may support different combinations.
548  */
549 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode)    fourcc_mod_code(ARM, __afbc_mode)
550
551 /*
552  * AFBC superblock size
553  *
554  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
555  * size (in pixels) must be aligned to a multiple of the superblock size.
556  * Four lowest significant bits(LSBs) are reserved for block size.
557  */
558 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
559 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
560 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
561
562 /*
563  * AFBC lossless colorspace transform
564  *
565  * Indicates that the buffer makes use of the AFBC lossless colorspace
566  * transform.
567  */
568 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
569
570 /*
571  * AFBC block-split
572  *
573  * Indicates that the payload of each superblock is split. The second
574  * half of the payload is positioned at a predefined offset from the start
575  * of the superblock payload.
576  */
577 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
578
579 /*
580  * AFBC sparse layout
581  *
582  * This flag indicates that the payload of each superblock must be stored at a
583  * predefined position relative to the other superblocks in the same AFBC
584  * buffer. This order is the same order used by the header buffer. In this mode
585  * each superblock is given the same amount of space as an uncompressed
586  * superblock of the particular format would require, rounding up to the next
587  * multiple of 128 bytes in size.
588  */
589 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
590
591 /*
592  * AFBC copy-block restrict
593  *
594  * Buffers with this flag must obey the copy-block restriction. The restriction
595  * is such that there are no copy-blocks referring across the border of 8x8
596  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
597  */
598 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
599
600 /*
601  * AFBC tiled layout
602  *
603  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
604  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
605  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
606  * larger bpp formats. The order between the tiles is scan line.
607  * When the tiled layout is used, the buffer size (in pixels) must be aligned
608  * to the tile size.
609  */
610 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
611
612 /*
613  * AFBC solid color blocks
614  *
615  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
616  * can be reduced if a whole superblock is a single color.
617  */
618 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
619
620 #if defined(__cplusplus)
621 }
622 #endif
623
624 #endif /* DRM_FOURCC_H */