c58ca8dd561b7312ffc0836585c04d9fe917a124
[linux-block.git] / include / net / sock.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET         An implementation of the TCP/IP protocol suite for the LINUX
4  *              operating system.  INET is implemented using the  BSD Socket
5  *              interface as the means of communication with the user level.
6  *
7  *              Definitions for the AF_INET socket handler.
8  *
9  * Version:     @(#)sock.h      1.0.4   05/13/93
10  *
11  * Authors:     Ross Biro
12  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *              Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *              Alan Cox        :       Volatiles in skbuff pointers. See
18  *                                      skbuff comments. May be overdone,
19  *                                      better to prove they can be removed
20  *                                      than the reverse.
21  *              Alan Cox        :       Added a zapped field for tcp to note
22  *                                      a socket is reset and must stay shut up
23  *              Alan Cox        :       New fields for options
24  *      Pauline Middelink       :       identd support
25  *              Alan Cox        :       Eliminate low level recv/recvfrom
26  *              David S. Miller :       New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :       removed net_pinfo, tp_pinfo and made
29  *                                      protinfo be just a void pointer, as the
30  *                                      protocol specific parts were moved to
31  *                                      respective headers and ipv4/v6, etc now
32  *                                      use private slabcaches for its socks
33  *              Pedro Hortas    :       New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>       /* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78
79 /* This is the per-socket lock.  The spinlock provides a synchronization
80  * between user contexts and software interrupt processing, whereas the
81  * mini-semaphore synchronizes multiple users amongst themselves.
82  */
83 typedef struct {
84         spinlock_t              slock;
85         int                     owned;
86         wait_queue_head_t       wq;
87         /*
88          * We express the mutex-alike socket_lock semantics
89          * to the lock validator by explicitly managing
90          * the slock as a lock variant (in addition to
91          * the slock itself):
92          */
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94         struct lockdep_map dep_map;
95 #endif
96 } socket_lock_t;
97
98 struct sock;
99 struct proto;
100 struct net;
101
102 typedef __u32 __bitwise __portpair;
103 typedef __u64 __bitwise __addrpair;
104
105 /**
106  *      struct sock_common - minimal network layer representation of sockets
107  *      @skc_daddr: Foreign IPv4 addr
108  *      @skc_rcv_saddr: Bound local IPv4 addr
109  *      @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
110  *      @skc_hash: hash value used with various protocol lookup tables
111  *      @skc_u16hashes: two u16 hash values used by UDP lookup tables
112  *      @skc_dport: placeholder for inet_dport/tw_dport
113  *      @skc_num: placeholder for inet_num/tw_num
114  *      @skc_portpair: __u32 union of @skc_dport & @skc_num
115  *      @skc_family: network address family
116  *      @skc_state: Connection state
117  *      @skc_reuse: %SO_REUSEADDR setting
118  *      @skc_reuseport: %SO_REUSEPORT setting
119  *      @skc_ipv6only: socket is IPV6 only
120  *      @skc_net_refcnt: socket is using net ref counting
121  *      @skc_bound_dev_if: bound device index if != 0
122  *      @skc_bind_node: bind hash linkage for various protocol lookup tables
123  *      @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
124  *      @skc_prot: protocol handlers inside a network family
125  *      @skc_net: reference to the network namespace of this socket
126  *      @skc_v6_daddr: IPV6 destination address
127  *      @skc_v6_rcv_saddr: IPV6 source address
128  *      @skc_cookie: socket's cookie value
129  *      @skc_node: main hash linkage for various protocol lookup tables
130  *      @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
131  *      @skc_tx_queue_mapping: tx queue number for this connection
132  *      @skc_rx_queue_mapping: rx queue number for this connection
133  *      @skc_flags: place holder for sk_flags
134  *              %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
135  *              %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
136  *      @skc_listener: connection request listener socket (aka rsk_listener)
137  *              [union with @skc_flags]
138  *      @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
139  *              [union with @skc_flags]
140  *      @skc_incoming_cpu: record/match cpu processing incoming packets
141  *      @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
142  *              [union with @skc_incoming_cpu]
143  *      @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
144  *              [union with @skc_incoming_cpu]
145  *      @skc_refcnt: reference count
146  *
147  *      This is the minimal network layer representation of sockets, the header
148  *      for struct sock and struct inet_timewait_sock.
149  */
150 struct sock_common {
151         union {
152                 __addrpair      skc_addrpair;
153                 struct {
154                         __be32  skc_daddr;
155                         __be32  skc_rcv_saddr;
156                 };
157         };
158         union  {
159                 unsigned int    skc_hash;
160                 __u16           skc_u16hashes[2];
161         };
162         /* skc_dport && skc_num must be grouped as well */
163         union {
164                 __portpair      skc_portpair;
165                 struct {
166                         __be16  skc_dport;
167                         __u16   skc_num;
168                 };
169         };
170
171         unsigned short          skc_family;
172         volatile unsigned char  skc_state;
173         unsigned char           skc_reuse:4;
174         unsigned char           skc_reuseport:1;
175         unsigned char           skc_ipv6only:1;
176         unsigned char           skc_net_refcnt:1;
177         int                     skc_bound_dev_if;
178         union {
179                 struct hlist_node       skc_bind_node;
180                 struct hlist_node       skc_portaddr_node;
181         };
182         struct proto            *skc_prot;
183         possible_net_t          skc_net;
184
185 #if IS_ENABLED(CONFIG_IPV6)
186         struct in6_addr         skc_v6_daddr;
187         struct in6_addr         skc_v6_rcv_saddr;
188 #endif
189
190         atomic64_t              skc_cookie;
191
192         /* following fields are padding to force
193          * offset(struct sock, sk_refcnt) == 128 on 64bit arches
194          * assuming IPV6 is enabled. We use this padding differently
195          * for different kind of 'sockets'
196          */
197         union {
198                 unsigned long   skc_flags;
199                 struct sock     *skc_listener; /* request_sock */
200                 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
201         };
202         /*
203          * fields between dontcopy_begin/dontcopy_end
204          * are not copied in sock_copy()
205          */
206         /* private: */
207         int                     skc_dontcopy_begin[0];
208         /* public: */
209         union {
210                 struct hlist_node       skc_node;
211                 struct hlist_nulls_node skc_nulls_node;
212         };
213         unsigned short          skc_tx_queue_mapping;
214 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
215         unsigned short          skc_rx_queue_mapping;
216 #endif
217         union {
218                 int             skc_incoming_cpu;
219                 u32             skc_rcv_wnd;
220                 u32             skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
221         };
222
223         refcount_t              skc_refcnt;
224         /* private: */
225         int                     skc_dontcopy_end[0];
226         union {
227                 u32             skc_rxhash;
228                 u32             skc_window_clamp;
229                 u32             skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230         };
231         /* public: */
232 };
233
234 struct bpf_local_storage;
235 struct sk_filter;
236
237 /**
238   *     struct sock - network layer representation of sockets
239   *     @__sk_common: shared layout with inet_timewait_sock
240   *     @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
241   *     @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
242   *     @sk_lock:       synchronizer
243   *     @sk_kern_sock: True if sock is using kernel lock classes
244   *     @sk_rcvbuf: size of receive buffer in bytes
245   *     @sk_wq: sock wait queue and async head
246   *     @sk_rx_dst: receive input route used by early demux
247   *     @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
248   *     @sk_rx_dst_cookie: cookie for @sk_rx_dst
249   *     @sk_dst_cache: destination cache
250   *     @sk_dst_pending_confirm: need to confirm neighbour
251   *     @sk_policy: flow policy
252   *     @sk_receive_queue: incoming packets
253   *     @sk_wmem_alloc: transmit queue bytes committed
254   *     @sk_tsq_flags: TCP Small Queues flags
255   *     @sk_write_queue: Packet sending queue
256   *     @sk_omem_alloc: "o" is "option" or "other"
257   *     @sk_wmem_queued: persistent queue size
258   *     @sk_forward_alloc: space allocated forward
259   *     @sk_reserved_mem: space reserved and non-reclaimable for the socket
260   *     @sk_napi_id: id of the last napi context to receive data for sk
261   *     @sk_ll_usec: usecs to busypoll when there is no data
262   *     @sk_allocation: allocation mode
263   *     @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
264   *     @sk_pacing_status: Pacing status (requested, handled by sch_fq)
265   *     @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
266   *     @sk_sndbuf: size of send buffer in bytes
267   *     @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
268   *     @sk_no_check_rx: allow zero checksum in RX packets
269   *     @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
270   *     @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
271   *     @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
272   *     @sk_gso_max_size: Maximum GSO segment size to build
273   *     @sk_gso_max_segs: Maximum number of GSO segments
274   *     @sk_pacing_shift: scaling factor for TCP Small Queues
275   *     @sk_lingertime: %SO_LINGER l_linger setting
276   *     @sk_backlog: always used with the per-socket spinlock held
277   *     @sk_callback_lock: used with the callbacks in the end of this struct
278   *     @sk_error_queue: rarely used
279   *     @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
280   *                       IPV6_ADDRFORM for instance)
281   *     @sk_err: last error
282   *     @sk_err_soft: errors that don't cause failure but are the cause of a
283   *                   persistent failure not just 'timed out'
284   *     @sk_drops: raw/udp drops counter
285   *     @sk_ack_backlog: current listen backlog
286   *     @sk_max_ack_backlog: listen backlog set in listen()
287   *     @sk_uid: user id of owner
288   *     @sk_prefer_busy_poll: prefer busypolling over softirq processing
289   *     @sk_busy_poll_budget: napi processing budget when busypolling
290   *     @sk_priority: %SO_PRIORITY setting
291   *     @sk_type: socket type (%SOCK_STREAM, etc)
292   *     @sk_protocol: which protocol this socket belongs in this network family
293   *     @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
294   *     @sk_peer_pid: &struct pid for this socket's peer
295   *     @sk_peer_cred: %SO_PEERCRED setting
296   *     @sk_rcvlowat: %SO_RCVLOWAT setting
297   *     @sk_rcvtimeo: %SO_RCVTIMEO setting
298   *     @sk_sndtimeo: %SO_SNDTIMEO setting
299   *     @sk_txhash: computed flow hash for use on transmit
300   *     @sk_txrehash: enable TX hash rethink
301   *     @sk_filter: socket filtering instructions
302   *     @sk_timer: sock cleanup timer
303   *     @sk_stamp: time stamp of last packet received
304   *     @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
305   *     @sk_tsflags: SO_TIMESTAMPING flags
306   *     @sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
307   *                        Sockets that can be used under memory reclaim should
308   *                        set this to false.
309   *     @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
310   *                   for timestamping
311   *     @sk_tskey: counter to disambiguate concurrent tstamp requests
312   *     @sk_zckey: counter to order MSG_ZEROCOPY notifications
313   *     @sk_socket: Identd and reporting IO signals
314   *     @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
315   *     @sk_frag: cached page frag
316   *     @sk_peek_off: current peek_offset value
317   *     @sk_send_head: front of stuff to transmit
318   *     @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
319   *     @sk_security: used by security modules
320   *     @sk_mark: generic packet mark
321   *     @sk_cgrp_data: cgroup data for this cgroup
322   *     @sk_memcg: this socket's memory cgroup association
323   *     @sk_write_pending: a write to stream socket waits to start
324   *     @sk_disconnects: number of disconnect operations performed on this sock
325   *     @sk_state_change: callback to indicate change in the state of the sock
326   *     @sk_data_ready: callback to indicate there is data to be processed
327   *     @sk_write_space: callback to indicate there is bf sending space available
328   *     @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
329   *     @sk_backlog_rcv: callback to process the backlog
330   *     @sk_validate_xmit_skb: ptr to an optional validate function
331   *     @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
332   *     @sk_reuseport_cb: reuseport group container
333   *     @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
334   *     @sk_rcu: used during RCU grace period
335   *     @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
336   *     @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
337   *     @sk_txtime_report_errors: set report errors mode for SO_TXTIME
338   *     @sk_txtime_unused: unused txtime flags
339   *     @ns_tracker: tracker for netns reference
340   *     @sk_user_frags: xarray of pages the user is holding a reference on.
341   */
342 struct sock {
343         /*
344          * Now struct inet_timewait_sock also uses sock_common, so please just
345          * don't add nothing before this first member (__sk_common) --acme
346          */
347         struct sock_common      __sk_common;
348 #define sk_node                 __sk_common.skc_node
349 #define sk_nulls_node           __sk_common.skc_nulls_node
350 #define sk_refcnt               __sk_common.skc_refcnt
351 #define sk_tx_queue_mapping     __sk_common.skc_tx_queue_mapping
352 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
353 #define sk_rx_queue_mapping     __sk_common.skc_rx_queue_mapping
354 #endif
355
356 #define sk_dontcopy_begin       __sk_common.skc_dontcopy_begin
357 #define sk_dontcopy_end         __sk_common.skc_dontcopy_end
358 #define sk_hash                 __sk_common.skc_hash
359 #define sk_portpair             __sk_common.skc_portpair
360 #define sk_num                  __sk_common.skc_num
361 #define sk_dport                __sk_common.skc_dport
362 #define sk_addrpair             __sk_common.skc_addrpair
363 #define sk_daddr                __sk_common.skc_daddr
364 #define sk_rcv_saddr            __sk_common.skc_rcv_saddr
365 #define sk_family               __sk_common.skc_family
366 #define sk_state                __sk_common.skc_state
367 #define sk_reuse                __sk_common.skc_reuse
368 #define sk_reuseport            __sk_common.skc_reuseport
369 #define sk_ipv6only             __sk_common.skc_ipv6only
370 #define sk_net_refcnt           __sk_common.skc_net_refcnt
371 #define sk_bound_dev_if         __sk_common.skc_bound_dev_if
372 #define sk_bind_node            __sk_common.skc_bind_node
373 #define sk_prot                 __sk_common.skc_prot
374 #define sk_net                  __sk_common.skc_net
375 #define sk_v6_daddr             __sk_common.skc_v6_daddr
376 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
377 #define sk_cookie               __sk_common.skc_cookie
378 #define sk_incoming_cpu         __sk_common.skc_incoming_cpu
379 #define sk_flags                __sk_common.skc_flags
380 #define sk_rxhash               __sk_common.skc_rxhash
381
382         __cacheline_group_begin(sock_write_rx);
383
384         atomic_t                sk_drops;
385         __s32                   sk_peek_off;
386         struct sk_buff_head     sk_error_queue;
387         struct sk_buff_head     sk_receive_queue;
388         /*
389          * The backlog queue is special, it is always used with
390          * the per-socket spinlock held and requires low latency
391          * access. Therefore we special case it's implementation.
392          * Note : rmem_alloc is in this structure to fill a hole
393          * on 64bit arches, not because its logically part of
394          * backlog.
395          */
396         struct {
397                 atomic_t        rmem_alloc;
398                 int             len;
399                 struct sk_buff  *head;
400                 struct sk_buff  *tail;
401         } sk_backlog;
402 #define sk_rmem_alloc sk_backlog.rmem_alloc
403
404         __cacheline_group_end(sock_write_rx);
405
406         __cacheline_group_begin(sock_read_rx);
407         /* early demux fields */
408         struct dst_entry __rcu  *sk_rx_dst;
409         int                     sk_rx_dst_ifindex;
410         u32                     sk_rx_dst_cookie;
411
412 #ifdef CONFIG_NET_RX_BUSY_POLL
413         unsigned int            sk_ll_usec;
414         unsigned int            sk_napi_id;
415         u16                     sk_busy_poll_budget;
416         u8                      sk_prefer_busy_poll;
417 #endif
418         u8                      sk_userlocks;
419         int                     sk_rcvbuf;
420
421         struct sk_filter __rcu  *sk_filter;
422         union {
423                 struct socket_wq __rcu  *sk_wq;
424                 /* private: */
425                 struct socket_wq        *sk_wq_raw;
426                 /* public: */
427         };
428
429         void                    (*sk_data_ready)(struct sock *sk);
430         long                    sk_rcvtimeo;
431         int                     sk_rcvlowat;
432         __cacheline_group_end(sock_read_rx);
433
434         __cacheline_group_begin(sock_read_rxtx);
435         int                     sk_err;
436         struct socket           *sk_socket;
437         struct mem_cgroup       *sk_memcg;
438 #ifdef CONFIG_XFRM
439         struct xfrm_policy __rcu *sk_policy[2];
440 #endif
441         __cacheline_group_end(sock_read_rxtx);
442
443         __cacheline_group_begin(sock_write_rxtx);
444         socket_lock_t           sk_lock;
445         u32                     sk_reserved_mem;
446         int                     sk_forward_alloc;
447         u32                     sk_tsflags;
448         __cacheline_group_end(sock_write_rxtx);
449
450         __cacheline_group_begin(sock_write_tx);
451         int                     sk_write_pending;
452         atomic_t                sk_omem_alloc;
453         int                     sk_sndbuf;
454
455         int                     sk_wmem_queued;
456         refcount_t              sk_wmem_alloc;
457         unsigned long           sk_tsq_flags;
458         union {
459                 struct sk_buff  *sk_send_head;
460                 struct rb_root  tcp_rtx_queue;
461         };
462         struct sk_buff_head     sk_write_queue;
463         u32                     sk_dst_pending_confirm;
464         u32                     sk_pacing_status; /* see enum sk_pacing */
465         struct page_frag        sk_frag;
466         struct timer_list       sk_timer;
467
468         unsigned long           sk_pacing_rate; /* bytes per second */
469         atomic_t                sk_zckey;
470         atomic_t                sk_tskey;
471         __cacheline_group_end(sock_write_tx);
472
473         __cacheline_group_begin(sock_read_tx);
474         unsigned long           sk_max_pacing_rate;
475         long                    sk_sndtimeo;
476         u32                     sk_priority;
477         u32                     sk_mark;
478         struct dst_entry __rcu  *sk_dst_cache;
479         netdev_features_t       sk_route_caps;
480 #ifdef CONFIG_SOCK_VALIDATE_XMIT
481         struct sk_buff*         (*sk_validate_xmit_skb)(struct sock *sk,
482                                                         struct net_device *dev,
483                                                         struct sk_buff *skb);
484 #endif
485         u16                     sk_gso_type;
486         u16                     sk_gso_max_segs;
487         unsigned int            sk_gso_max_size;
488         gfp_t                   sk_allocation;
489         u32                     sk_txhash;
490         u8                      sk_pacing_shift;
491         bool                    sk_use_task_frag;
492         __cacheline_group_end(sock_read_tx);
493
494         /*
495          * Because of non atomicity rules, all
496          * changes are protected by socket lock.
497          */
498         u8                      sk_gso_disabled : 1,
499                                 sk_kern_sock : 1,
500                                 sk_no_check_tx : 1,
501                                 sk_no_check_rx : 1;
502         u8                      sk_shutdown;
503         u16                     sk_type;
504         u16                     sk_protocol;
505         unsigned long           sk_lingertime;
506         struct proto            *sk_prot_creator;
507         rwlock_t                sk_callback_lock;
508         int                     sk_err_soft;
509         u32                     sk_ack_backlog;
510         u32                     sk_max_ack_backlog;
511         kuid_t                  sk_uid;
512         spinlock_t              sk_peer_lock;
513         int                     sk_bind_phc;
514         struct pid              *sk_peer_pid;
515         const struct cred       *sk_peer_cred;
516
517         ktime_t                 sk_stamp;
518 #if BITS_PER_LONG==32
519         seqlock_t               sk_stamp_seq;
520 #endif
521         int                     sk_disconnects;
522
523         u8                      sk_txrehash;
524         u8                      sk_clockid;
525         u8                      sk_txtime_deadline_mode : 1,
526                                 sk_txtime_report_errors : 1,
527                                 sk_txtime_unused : 6;
528
529         void                    *sk_user_data;
530 #ifdef CONFIG_SECURITY
531         void                    *sk_security;
532 #endif
533         struct sock_cgroup_data sk_cgrp_data;
534         void                    (*sk_state_change)(struct sock *sk);
535         void                    (*sk_write_space)(struct sock *sk);
536         void                    (*sk_error_report)(struct sock *sk);
537         int                     (*sk_backlog_rcv)(struct sock *sk,
538                                                   struct sk_buff *skb);
539         void                    (*sk_destruct)(struct sock *sk);
540         struct sock_reuseport __rcu     *sk_reuseport_cb;
541 #ifdef CONFIG_BPF_SYSCALL
542         struct bpf_local_storage __rcu  *sk_bpf_storage;
543 #endif
544         struct rcu_head         sk_rcu;
545         netns_tracker           ns_tracker;
546         struct xarray           sk_user_frags;
547 };
548
549 struct sock_bh_locked {
550         struct sock *sock;
551         local_lock_t bh_lock;
552 };
553
554 enum sk_pacing {
555         SK_PACING_NONE          = 0,
556         SK_PACING_NEEDED        = 1,
557         SK_PACING_FQ            = 2,
558 };
559
560 /* flag bits in sk_user_data
561  *
562  * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
563  *   not be suitable for copying when cloning the socket. For instance,
564  *   it can point to a reference counted object. sk_user_data bottom
565  *   bit is set if pointer must not be copied.
566  *
567  * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
568  *   managed/owned by a BPF reuseport array. This bit should be set
569  *   when sk_user_data's sk is added to the bpf's reuseport_array.
570  *
571  * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
572  *   sk_user_data points to psock type. This bit should be set
573  *   when sk_user_data is assigned to a psock object.
574  */
575 #define SK_USER_DATA_NOCOPY     1UL
576 #define SK_USER_DATA_BPF        2UL
577 #define SK_USER_DATA_PSOCK      4UL
578 #define SK_USER_DATA_PTRMASK    ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
579                                   SK_USER_DATA_PSOCK)
580
581 /**
582  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
583  * @sk: socket
584  */
585 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
586 {
587         return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
588 }
589
590 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
591
592 /**
593  * __locked_read_sk_user_data_with_flags - return the pointer
594  * only if argument flags all has been set in sk_user_data. Otherwise
595  * return NULL
596  *
597  * @sk: socket
598  * @flags: flag bits
599  *
600  * The caller must be holding sk->sk_callback_lock.
601  */
602 static inline void *
603 __locked_read_sk_user_data_with_flags(const struct sock *sk,
604                                       uintptr_t flags)
605 {
606         uintptr_t sk_user_data =
607                 (uintptr_t)rcu_dereference_check(__sk_user_data(sk),
608                                                  lockdep_is_held(&sk->sk_callback_lock));
609
610         WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
611
612         if ((sk_user_data & flags) == flags)
613                 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
614         return NULL;
615 }
616
617 /**
618  * __rcu_dereference_sk_user_data_with_flags - return the pointer
619  * only if argument flags all has been set in sk_user_data. Otherwise
620  * return NULL
621  *
622  * @sk: socket
623  * @flags: flag bits
624  */
625 static inline void *
626 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
627                                           uintptr_t flags)
628 {
629         uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
630
631         WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
632
633         if ((sk_user_data & flags) == flags)
634                 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
635         return NULL;
636 }
637
638 #define rcu_dereference_sk_user_data(sk)                                \
639         __rcu_dereference_sk_user_data_with_flags(sk, 0)
640 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)            \
641 ({                                                                      \
642         uintptr_t __tmp1 = (uintptr_t)(ptr),                            \
643                   __tmp2 = (uintptr_t)(flags);                          \
644         WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);                   \
645         WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);                    \
646         rcu_assign_pointer(__sk_user_data((sk)),                        \
647                            __tmp1 | __tmp2);                            \
648 })
649 #define rcu_assign_sk_user_data(sk, ptr)                                \
650         __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
651
652 static inline
653 struct net *sock_net(const struct sock *sk)
654 {
655         return read_pnet(&sk->sk_net);
656 }
657
658 static inline
659 void sock_net_set(struct sock *sk, struct net *net)
660 {
661         write_pnet(&sk->sk_net, net);
662 }
663
664 /*
665  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
666  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
667  * on a socket means that the socket will reuse everybody else's port
668  * without looking at the other's sk_reuse value.
669  */
670
671 #define SK_NO_REUSE     0
672 #define SK_CAN_REUSE    1
673 #define SK_FORCE_REUSE  2
674
675 int sk_set_peek_off(struct sock *sk, int val);
676
677 static inline int sk_peek_offset(const struct sock *sk, int flags)
678 {
679         if (unlikely(flags & MSG_PEEK)) {
680                 return READ_ONCE(sk->sk_peek_off);
681         }
682
683         return 0;
684 }
685
686 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
687 {
688         s32 off = READ_ONCE(sk->sk_peek_off);
689
690         if (unlikely(off >= 0)) {
691                 off = max_t(s32, off - val, 0);
692                 WRITE_ONCE(sk->sk_peek_off, off);
693         }
694 }
695
696 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
697 {
698         sk_peek_offset_bwd(sk, -val);
699 }
700
701 /*
702  * Hashed lists helper routines
703  */
704 static inline struct sock *sk_entry(const struct hlist_node *node)
705 {
706         return hlist_entry(node, struct sock, sk_node);
707 }
708
709 static inline struct sock *__sk_head(const struct hlist_head *head)
710 {
711         return hlist_entry(head->first, struct sock, sk_node);
712 }
713
714 static inline struct sock *sk_head(const struct hlist_head *head)
715 {
716         return hlist_empty(head) ? NULL : __sk_head(head);
717 }
718
719 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
720 {
721         return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
722 }
723
724 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
725 {
726         return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
727 }
728
729 static inline struct sock *sk_next(const struct sock *sk)
730 {
731         return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
732 }
733
734 static inline struct sock *sk_nulls_next(const struct sock *sk)
735 {
736         return (!is_a_nulls(sk->sk_nulls_node.next)) ?
737                 hlist_nulls_entry(sk->sk_nulls_node.next,
738                                   struct sock, sk_nulls_node) :
739                 NULL;
740 }
741
742 static inline bool sk_unhashed(const struct sock *sk)
743 {
744         return hlist_unhashed(&sk->sk_node);
745 }
746
747 static inline bool sk_hashed(const struct sock *sk)
748 {
749         return !sk_unhashed(sk);
750 }
751
752 static inline void sk_node_init(struct hlist_node *node)
753 {
754         node->pprev = NULL;
755 }
756
757 static inline void __sk_del_node(struct sock *sk)
758 {
759         __hlist_del(&sk->sk_node);
760 }
761
762 /* NB: equivalent to hlist_del_init_rcu */
763 static inline bool __sk_del_node_init(struct sock *sk)
764 {
765         if (sk_hashed(sk)) {
766                 __sk_del_node(sk);
767                 sk_node_init(&sk->sk_node);
768                 return true;
769         }
770         return false;
771 }
772
773 /* Grab socket reference count. This operation is valid only
774    when sk is ALREADY grabbed f.e. it is found in hash table
775    or a list and the lookup is made under lock preventing hash table
776    modifications.
777  */
778
779 static __always_inline void sock_hold(struct sock *sk)
780 {
781         refcount_inc(&sk->sk_refcnt);
782 }
783
784 /* Ungrab socket in the context, which assumes that socket refcnt
785    cannot hit zero, f.e. it is true in context of any socketcall.
786  */
787 static __always_inline void __sock_put(struct sock *sk)
788 {
789         refcount_dec(&sk->sk_refcnt);
790 }
791
792 static inline bool sk_del_node_init(struct sock *sk)
793 {
794         bool rc = __sk_del_node_init(sk);
795
796         if (rc) {
797                 /* paranoid for a while -acme */
798                 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
799                 __sock_put(sk);
800         }
801         return rc;
802 }
803 #define sk_del_node_init_rcu(sk)        sk_del_node_init(sk)
804
805 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
806 {
807         if (sk_hashed(sk)) {
808                 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
809                 return true;
810         }
811         return false;
812 }
813
814 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
815 {
816         bool rc = __sk_nulls_del_node_init_rcu(sk);
817
818         if (rc) {
819                 /* paranoid for a while -acme */
820                 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
821                 __sock_put(sk);
822         }
823         return rc;
824 }
825
826 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
827 {
828         hlist_add_head(&sk->sk_node, list);
829 }
830
831 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
832 {
833         sock_hold(sk);
834         __sk_add_node(sk, list);
835 }
836
837 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
838 {
839         sock_hold(sk);
840         if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
841             sk->sk_family == AF_INET6)
842                 hlist_add_tail_rcu(&sk->sk_node, list);
843         else
844                 hlist_add_head_rcu(&sk->sk_node, list);
845 }
846
847 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
848 {
849         sock_hold(sk);
850         hlist_add_tail_rcu(&sk->sk_node, list);
851 }
852
853 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
854 {
855         hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
856 }
857
858 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
859 {
860         hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
861 }
862
863 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
864 {
865         sock_hold(sk);
866         __sk_nulls_add_node_rcu(sk, list);
867 }
868
869 static inline void __sk_del_bind_node(struct sock *sk)
870 {
871         __hlist_del(&sk->sk_bind_node);
872 }
873
874 static inline void sk_add_bind_node(struct sock *sk,
875                                         struct hlist_head *list)
876 {
877         hlist_add_head(&sk->sk_bind_node, list);
878 }
879
880 #define sk_for_each(__sk, list) \
881         hlist_for_each_entry(__sk, list, sk_node)
882 #define sk_for_each_rcu(__sk, list) \
883         hlist_for_each_entry_rcu(__sk, list, sk_node)
884 #define sk_nulls_for_each(__sk, node, list) \
885         hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
886 #define sk_nulls_for_each_rcu(__sk, node, list) \
887         hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
888 #define sk_for_each_from(__sk) \
889         hlist_for_each_entry_from(__sk, sk_node)
890 #define sk_nulls_for_each_from(__sk, node) \
891         if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
892                 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
893 #define sk_for_each_safe(__sk, tmp, list) \
894         hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
895 #define sk_for_each_bound(__sk, list) \
896         hlist_for_each_entry(__sk, list, sk_bind_node)
897
898 /**
899  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
900  * @tpos:       the type * to use as a loop cursor.
901  * @pos:        the &struct hlist_node to use as a loop cursor.
902  * @head:       the head for your list.
903  * @offset:     offset of hlist_node within the struct.
904  *
905  */
906 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)                  \
907         for (pos = rcu_dereference(hlist_first_rcu(head));                     \
908              pos != NULL &&                                                    \
909                 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
910              pos = rcu_dereference(hlist_next_rcu(pos)))
911
912 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
913 {
914         /* Careful only use this in a context where these parameters
915          * can not change and must all be valid, such as recvmsg from
916          * userspace.
917          */
918         return sk->sk_socket->file->f_cred->user_ns;
919 }
920
921 /* Sock flags */
922 enum sock_flags {
923         SOCK_DEAD,
924         SOCK_DONE,
925         SOCK_URGINLINE,
926         SOCK_KEEPOPEN,
927         SOCK_LINGER,
928         SOCK_DESTROY,
929         SOCK_BROADCAST,
930         SOCK_TIMESTAMP,
931         SOCK_ZAPPED,
932         SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
933         SOCK_DBG, /* %SO_DEBUG setting */
934         SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
935         SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
936         SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
937         SOCK_MEMALLOC, /* VM depends on this socket for swapping */
938         SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
939         SOCK_FASYNC, /* fasync() active */
940         SOCK_RXQ_OVFL,
941         SOCK_ZEROCOPY, /* buffers from userspace */
942         SOCK_WIFI_STATUS, /* push wifi status to userspace */
943         SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
944                      * Will use last 4 bytes of packet sent from
945                      * user-space instead.
946                      */
947         SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
948         SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
949         SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
950         SOCK_TXTIME,
951         SOCK_XDP, /* XDP is attached */
952         SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
953         SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
954 };
955
956 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
957
958 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
959 {
960         nsk->sk_flags = osk->sk_flags;
961 }
962
963 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
964 {
965         __set_bit(flag, &sk->sk_flags);
966 }
967
968 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
969 {
970         __clear_bit(flag, &sk->sk_flags);
971 }
972
973 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
974                                      int valbool)
975 {
976         if (valbool)
977                 sock_set_flag(sk, bit);
978         else
979                 sock_reset_flag(sk, bit);
980 }
981
982 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
983 {
984         return test_bit(flag, &sk->sk_flags);
985 }
986
987 #ifdef CONFIG_NET
988 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
989 static inline int sk_memalloc_socks(void)
990 {
991         return static_branch_unlikely(&memalloc_socks_key);
992 }
993
994 void __receive_sock(struct file *file);
995 #else
996
997 static inline int sk_memalloc_socks(void)
998 {
999         return 0;
1000 }
1001
1002 static inline void __receive_sock(struct file *file)
1003 { }
1004 #endif
1005
1006 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1007 {
1008         return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1009 }
1010
1011 static inline void sk_acceptq_removed(struct sock *sk)
1012 {
1013         WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1014 }
1015
1016 static inline void sk_acceptq_added(struct sock *sk)
1017 {
1018         WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1019 }
1020
1021 /* Note: If you think the test should be:
1022  *      return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1023  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1024  */
1025 static inline bool sk_acceptq_is_full(const struct sock *sk)
1026 {
1027         return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1028 }
1029
1030 /*
1031  * Compute minimal free write space needed to queue new packets.
1032  */
1033 static inline int sk_stream_min_wspace(const struct sock *sk)
1034 {
1035         return READ_ONCE(sk->sk_wmem_queued) >> 1;
1036 }
1037
1038 static inline int sk_stream_wspace(const struct sock *sk)
1039 {
1040         return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1041 }
1042
1043 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1044 {
1045         WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1046 }
1047
1048 static inline void sk_forward_alloc_add(struct sock *sk, int val)
1049 {
1050         /* Paired with lockless reads of sk->sk_forward_alloc */
1051         WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1052 }
1053
1054 void sk_stream_write_space(struct sock *sk);
1055
1056 /* OOB backlog add */
1057 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1058 {
1059         /* dont let skb dst not refcounted, we are going to leave rcu lock */
1060         skb_dst_force(skb);
1061
1062         if (!sk->sk_backlog.tail)
1063                 WRITE_ONCE(sk->sk_backlog.head, skb);
1064         else
1065                 sk->sk_backlog.tail->next = skb;
1066
1067         WRITE_ONCE(sk->sk_backlog.tail, skb);
1068         skb->next = NULL;
1069 }
1070
1071 /*
1072  * Take into account size of receive queue and backlog queue
1073  * Do not take into account this skb truesize,
1074  * to allow even a single big packet to come.
1075  */
1076 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1077 {
1078         unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1079
1080         return qsize > limit;
1081 }
1082
1083 /* The per-socket spinlock must be held here. */
1084 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1085                                               unsigned int limit)
1086 {
1087         if (sk_rcvqueues_full(sk, limit))
1088                 return -ENOBUFS;
1089
1090         /*
1091          * If the skb was allocated from pfmemalloc reserves, only
1092          * allow SOCK_MEMALLOC sockets to use it as this socket is
1093          * helping free memory
1094          */
1095         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1096                 return -ENOMEM;
1097
1098         __sk_add_backlog(sk, skb);
1099         sk->sk_backlog.len += skb->truesize;
1100         return 0;
1101 }
1102
1103 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1104
1105 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1106 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1107
1108 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1109 {
1110         if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1111                 return __sk_backlog_rcv(sk, skb);
1112
1113         return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1114                                   tcp_v6_do_rcv,
1115                                   tcp_v4_do_rcv,
1116                                   sk, skb);
1117 }
1118
1119 static inline void sk_incoming_cpu_update(struct sock *sk)
1120 {
1121         int cpu = raw_smp_processor_id();
1122
1123         if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1124                 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1125 }
1126
1127
1128 static inline void sock_rps_save_rxhash(struct sock *sk,
1129                                         const struct sk_buff *skb)
1130 {
1131 #ifdef CONFIG_RPS
1132         /* The following WRITE_ONCE() is paired with the READ_ONCE()
1133          * here, and another one in sock_rps_record_flow().
1134          */
1135         if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1136                 WRITE_ONCE(sk->sk_rxhash, skb->hash);
1137 #endif
1138 }
1139
1140 static inline void sock_rps_reset_rxhash(struct sock *sk)
1141 {
1142 #ifdef CONFIG_RPS
1143         /* Paired with READ_ONCE() in sock_rps_record_flow() */
1144         WRITE_ONCE(sk->sk_rxhash, 0);
1145 #endif
1146 }
1147
1148 #define sk_wait_event(__sk, __timeo, __condition, __wait)               \
1149         ({      int __rc, __dis = __sk->sk_disconnects;                 \
1150                 release_sock(__sk);                                     \
1151                 __rc = __condition;                                     \
1152                 if (!__rc) {                                            \
1153                         *(__timeo) = wait_woken(__wait,                 \
1154                                                 TASK_INTERRUPTIBLE,     \
1155                                                 *(__timeo));            \
1156                 }                                                       \
1157                 sched_annotate_sleep();                                 \
1158                 lock_sock(__sk);                                        \
1159                 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1160                 __rc;                                                   \
1161         })
1162
1163 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1164 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1165 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1166 int sk_stream_error(struct sock *sk, int flags, int err);
1167 void sk_stream_kill_queues(struct sock *sk);
1168 void sk_set_memalloc(struct sock *sk);
1169 void sk_clear_memalloc(struct sock *sk);
1170
1171 void __sk_flush_backlog(struct sock *sk);
1172
1173 static inline bool sk_flush_backlog(struct sock *sk)
1174 {
1175         if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1176                 __sk_flush_backlog(sk);
1177                 return true;
1178         }
1179         return false;
1180 }
1181
1182 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1183
1184 struct request_sock_ops;
1185 struct timewait_sock_ops;
1186 struct inet_hashinfo;
1187 struct raw_hashinfo;
1188 struct smc_hashinfo;
1189 struct module;
1190 struct sk_psock;
1191
1192 /*
1193  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1194  * un-modified. Special care is taken when initializing object to zero.
1195  */
1196 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1197 {
1198         if (offsetof(struct sock, sk_node.next) != 0)
1199                 memset(sk, 0, offsetof(struct sock, sk_node.next));
1200         memset(&sk->sk_node.pprev, 0,
1201                size - offsetof(struct sock, sk_node.pprev));
1202 }
1203
1204 struct proto_accept_arg {
1205         int flags;
1206         int err;
1207         int is_empty;
1208         bool kern;
1209 };
1210
1211 /* Networking protocol blocks we attach to sockets.
1212  * socket layer -> transport layer interface
1213  */
1214 struct proto {
1215         void                    (*close)(struct sock *sk,
1216                                         long timeout);
1217         int                     (*pre_connect)(struct sock *sk,
1218                                         struct sockaddr *uaddr,
1219                                         int addr_len);
1220         int                     (*connect)(struct sock *sk,
1221                                         struct sockaddr *uaddr,
1222                                         int addr_len);
1223         int                     (*disconnect)(struct sock *sk, int flags);
1224
1225         struct sock *           (*accept)(struct sock *sk,
1226                                           struct proto_accept_arg *arg);
1227
1228         int                     (*ioctl)(struct sock *sk, int cmd,
1229                                          int *karg);
1230         int                     (*init)(struct sock *sk);
1231         void                    (*destroy)(struct sock *sk);
1232         void                    (*shutdown)(struct sock *sk, int how);
1233         int                     (*setsockopt)(struct sock *sk, int level,
1234                                         int optname, sockptr_t optval,
1235                                         unsigned int optlen);
1236         int                     (*getsockopt)(struct sock *sk, int level,
1237                                         int optname, char __user *optval,
1238                                         int __user *option);
1239         void                    (*keepalive)(struct sock *sk, int valbool);
1240 #ifdef CONFIG_COMPAT
1241         int                     (*compat_ioctl)(struct sock *sk,
1242                                         unsigned int cmd, unsigned long arg);
1243 #endif
1244         int                     (*sendmsg)(struct sock *sk, struct msghdr *msg,
1245                                            size_t len);
1246         int                     (*recvmsg)(struct sock *sk, struct msghdr *msg,
1247                                            size_t len, int flags, int *addr_len);
1248         void                    (*splice_eof)(struct socket *sock);
1249         int                     (*bind)(struct sock *sk,
1250                                         struct sockaddr *addr, int addr_len);
1251         int                     (*bind_add)(struct sock *sk,
1252                                         struct sockaddr *addr, int addr_len);
1253
1254         int                     (*backlog_rcv) (struct sock *sk,
1255                                                 struct sk_buff *skb);
1256         bool                    (*bpf_bypass_getsockopt)(int level,
1257                                                          int optname);
1258
1259         void            (*release_cb)(struct sock *sk);
1260
1261         /* Keeping track of sk's, looking them up, and port selection methods. */
1262         int                     (*hash)(struct sock *sk);
1263         void                    (*unhash)(struct sock *sk);
1264         void                    (*rehash)(struct sock *sk);
1265         int                     (*get_port)(struct sock *sk, unsigned short snum);
1266         void                    (*put_port)(struct sock *sk);
1267 #ifdef CONFIG_BPF_SYSCALL
1268         int                     (*psock_update_sk_prot)(struct sock *sk,
1269                                                         struct sk_psock *psock,
1270                                                         bool restore);
1271 #endif
1272
1273         /* Keeping track of sockets in use */
1274 #ifdef CONFIG_PROC_FS
1275         unsigned int            inuse_idx;
1276 #endif
1277
1278 #if IS_ENABLED(CONFIG_MPTCP)
1279         int                     (*forward_alloc_get)(const struct sock *sk);
1280 #endif
1281
1282         bool                    (*stream_memory_free)(const struct sock *sk, int wake);
1283         bool                    (*sock_is_readable)(struct sock *sk);
1284         /* Memory pressure */
1285         void                    (*enter_memory_pressure)(struct sock *sk);
1286         void                    (*leave_memory_pressure)(struct sock *sk);
1287         atomic_long_t           *memory_allocated;      /* Current allocated memory. */
1288         int  __percpu           *per_cpu_fw_alloc;
1289         struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
1290
1291         /*
1292          * Pressure flag: try to collapse.
1293          * Technical note: it is used by multiple contexts non atomically.
1294          * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1295          * All the __sk_mem_schedule() is of this nature: accounting
1296          * is strict, actions are advisory and have some latency.
1297          */
1298         unsigned long           *memory_pressure;
1299         long                    *sysctl_mem;
1300
1301         int                     *sysctl_wmem;
1302         int                     *sysctl_rmem;
1303         u32                     sysctl_wmem_offset;
1304         u32                     sysctl_rmem_offset;
1305
1306         int                     max_header;
1307         bool                    no_autobind;
1308
1309         struct kmem_cache       *slab;
1310         unsigned int            obj_size;
1311         unsigned int            ipv6_pinfo_offset;
1312         slab_flags_t            slab_flags;
1313         unsigned int            useroffset;     /* Usercopy region offset */
1314         unsigned int            usersize;       /* Usercopy region size */
1315
1316         unsigned int __percpu   *orphan_count;
1317
1318         struct request_sock_ops *rsk_prot;
1319         struct timewait_sock_ops *twsk_prot;
1320
1321         union {
1322                 struct inet_hashinfo    *hashinfo;
1323                 struct udp_table        *udp_table;
1324                 struct raw_hashinfo     *raw_hash;
1325                 struct smc_hashinfo     *smc_hash;
1326         } h;
1327
1328         struct module           *owner;
1329
1330         char                    name[32];
1331
1332         struct list_head        node;
1333         int                     (*diag_destroy)(struct sock *sk, int err);
1334 } __randomize_layout;
1335
1336 int proto_register(struct proto *prot, int alloc_slab);
1337 void proto_unregister(struct proto *prot);
1338 int sock_load_diag_module(int family, int protocol);
1339
1340 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1341
1342 static inline int sk_forward_alloc_get(const struct sock *sk)
1343 {
1344 #if IS_ENABLED(CONFIG_MPTCP)
1345         if (sk->sk_prot->forward_alloc_get)
1346                 return sk->sk_prot->forward_alloc_get(sk);
1347 #endif
1348         return READ_ONCE(sk->sk_forward_alloc);
1349 }
1350
1351 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1352 {
1353         if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1354                 return false;
1355
1356         return sk->sk_prot->stream_memory_free ?
1357                 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1358                                      tcp_stream_memory_free, sk, wake) : true;
1359 }
1360
1361 static inline bool sk_stream_memory_free(const struct sock *sk)
1362 {
1363         return __sk_stream_memory_free(sk, 0);
1364 }
1365
1366 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1367 {
1368         return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1369                __sk_stream_memory_free(sk, wake);
1370 }
1371
1372 static inline bool sk_stream_is_writeable(const struct sock *sk)
1373 {
1374         return __sk_stream_is_writeable(sk, 0);
1375 }
1376
1377 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1378                                             struct cgroup *ancestor)
1379 {
1380 #ifdef CONFIG_SOCK_CGROUP_DATA
1381         return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1382                                     ancestor);
1383 #else
1384         return -ENOTSUPP;
1385 #endif
1386 }
1387
1388 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1389
1390 static inline void sk_sockets_allocated_dec(struct sock *sk)
1391 {
1392         percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1393                                  SK_ALLOC_PERCPU_COUNTER_BATCH);
1394 }
1395
1396 static inline void sk_sockets_allocated_inc(struct sock *sk)
1397 {
1398         percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1399                                  SK_ALLOC_PERCPU_COUNTER_BATCH);
1400 }
1401
1402 static inline u64
1403 sk_sockets_allocated_read_positive(struct sock *sk)
1404 {
1405         return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1406 }
1407
1408 static inline int
1409 proto_sockets_allocated_sum_positive(struct proto *prot)
1410 {
1411         return percpu_counter_sum_positive(prot->sockets_allocated);
1412 }
1413
1414 #ifdef CONFIG_PROC_FS
1415 #define PROTO_INUSE_NR  64      /* should be enough for the first time */
1416 struct prot_inuse {
1417         int all;
1418         int val[PROTO_INUSE_NR];
1419 };
1420
1421 static inline void sock_prot_inuse_add(const struct net *net,
1422                                        const struct proto *prot, int val)
1423 {
1424         this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1425 }
1426
1427 static inline void sock_inuse_add(const struct net *net, int val)
1428 {
1429         this_cpu_add(net->core.prot_inuse->all, val);
1430 }
1431
1432 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1433 int sock_inuse_get(struct net *net);
1434 #else
1435 static inline void sock_prot_inuse_add(const struct net *net,
1436                                        const struct proto *prot, int val)
1437 {
1438 }
1439
1440 static inline void sock_inuse_add(const struct net *net, int val)
1441 {
1442 }
1443 #endif
1444
1445
1446 /* With per-bucket locks this operation is not-atomic, so that
1447  * this version is not worse.
1448  */
1449 static inline int __sk_prot_rehash(struct sock *sk)
1450 {
1451         sk->sk_prot->unhash(sk);
1452         return sk->sk_prot->hash(sk);
1453 }
1454
1455 /* About 10 seconds */
1456 #define SOCK_DESTROY_TIME (10*HZ)
1457
1458 /* Sockets 0-1023 can't be bound to unless you are superuser */
1459 #define PROT_SOCK       1024
1460
1461 #define SHUTDOWN_MASK   3
1462 #define RCV_SHUTDOWN    1
1463 #define SEND_SHUTDOWN   2
1464
1465 #define SOCK_BINDADDR_LOCK      4
1466 #define SOCK_BINDPORT_LOCK      8
1467
1468 struct socket_alloc {
1469         struct socket socket;
1470         struct inode vfs_inode;
1471 };
1472
1473 static inline struct socket *SOCKET_I(struct inode *inode)
1474 {
1475         return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1476 }
1477
1478 static inline struct inode *SOCK_INODE(struct socket *socket)
1479 {
1480         return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1481 }
1482
1483 /*
1484  * Functions for memory accounting
1485  */
1486 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1487 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1488 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1489 void __sk_mem_reclaim(struct sock *sk, int amount);
1490
1491 #define SK_MEM_SEND     0
1492 #define SK_MEM_RECV     1
1493
1494 /* sysctl_mem values are in pages */
1495 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1496 {
1497         return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1498 }
1499
1500 static inline int sk_mem_pages(int amt)
1501 {
1502         return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1503 }
1504
1505 static inline bool sk_has_account(struct sock *sk)
1506 {
1507         /* return true if protocol supports memory accounting */
1508         return !!sk->sk_prot->memory_allocated;
1509 }
1510
1511 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1512 {
1513         int delta;
1514
1515         if (!sk_has_account(sk))
1516                 return true;
1517         delta = size - sk->sk_forward_alloc;
1518         return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1519 }
1520
1521 static inline bool
1522 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1523 {
1524         int delta;
1525
1526         if (!sk_has_account(sk))
1527                 return true;
1528         delta = size - sk->sk_forward_alloc;
1529         return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1530                 skb_pfmemalloc(skb);
1531 }
1532
1533 static inline int sk_unused_reserved_mem(const struct sock *sk)
1534 {
1535         int unused_mem;
1536
1537         if (likely(!sk->sk_reserved_mem))
1538                 return 0;
1539
1540         unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1541                         atomic_read(&sk->sk_rmem_alloc);
1542
1543         return unused_mem > 0 ? unused_mem : 0;
1544 }
1545
1546 static inline void sk_mem_reclaim(struct sock *sk)
1547 {
1548         int reclaimable;
1549
1550         if (!sk_has_account(sk))
1551                 return;
1552
1553         reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1554
1555         if (reclaimable >= (int)PAGE_SIZE)
1556                 __sk_mem_reclaim(sk, reclaimable);
1557 }
1558
1559 static inline void sk_mem_reclaim_final(struct sock *sk)
1560 {
1561         sk->sk_reserved_mem = 0;
1562         sk_mem_reclaim(sk);
1563 }
1564
1565 static inline void sk_mem_charge(struct sock *sk, int size)
1566 {
1567         if (!sk_has_account(sk))
1568                 return;
1569         sk_forward_alloc_add(sk, -size);
1570 }
1571
1572 static inline void sk_mem_uncharge(struct sock *sk, int size)
1573 {
1574         if (!sk_has_account(sk))
1575                 return;
1576         sk_forward_alloc_add(sk, size);
1577         sk_mem_reclaim(sk);
1578 }
1579
1580 /*
1581  * Macro so as to not evaluate some arguments when
1582  * lockdep is not enabled.
1583  *
1584  * Mark both the sk_lock and the sk_lock.slock as a
1585  * per-address-family lock class.
1586  */
1587 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
1588 do {                                                                    \
1589         sk->sk_lock.owned = 0;                                          \
1590         init_waitqueue_head(&sk->sk_lock.wq);                           \
1591         spin_lock_init(&(sk)->sk_lock.slock);                           \
1592         debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
1593                         sizeof((sk)->sk_lock));                         \
1594         lockdep_set_class_and_name(&(sk)->sk_lock.slock,                \
1595                                 (skey), (sname));                               \
1596         lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);     \
1597 } while (0)
1598
1599 static inline bool lockdep_sock_is_held(const struct sock *sk)
1600 {
1601         return lockdep_is_held(&sk->sk_lock) ||
1602                lockdep_is_held(&sk->sk_lock.slock);
1603 }
1604
1605 void lock_sock_nested(struct sock *sk, int subclass);
1606
1607 static inline void lock_sock(struct sock *sk)
1608 {
1609         lock_sock_nested(sk, 0);
1610 }
1611
1612 void __lock_sock(struct sock *sk);
1613 void __release_sock(struct sock *sk);
1614 void release_sock(struct sock *sk);
1615
1616 /* BH context may only use the following locking interface. */
1617 #define bh_lock_sock(__sk)      spin_lock(&((__sk)->sk_lock.slock))
1618 #define bh_lock_sock_nested(__sk) \
1619                                 spin_lock_nested(&((__sk)->sk_lock.slock), \
1620                                 SINGLE_DEPTH_NESTING)
1621 #define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
1622
1623 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1624
1625 /**
1626  * lock_sock_fast - fast version of lock_sock
1627  * @sk: socket
1628  *
1629  * This version should be used for very small section, where process won't block
1630  * return false if fast path is taken:
1631  *
1632  *   sk_lock.slock locked, owned = 0, BH disabled
1633  *
1634  * return true if slow path is taken:
1635  *
1636  *   sk_lock.slock unlocked, owned = 1, BH enabled
1637  */
1638 static inline bool lock_sock_fast(struct sock *sk)
1639 {
1640         /* The sk_lock has mutex_lock() semantics here. */
1641         mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1642
1643         return __lock_sock_fast(sk);
1644 }
1645
1646 /* fast socket lock variant for caller already holding a [different] socket lock */
1647 static inline bool lock_sock_fast_nested(struct sock *sk)
1648 {
1649         mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1650
1651         return __lock_sock_fast(sk);
1652 }
1653
1654 /**
1655  * unlock_sock_fast - complement of lock_sock_fast
1656  * @sk: socket
1657  * @slow: slow mode
1658  *
1659  * fast unlock socket for user context.
1660  * If slow mode is on, we call regular release_sock()
1661  */
1662 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1663         __releases(&sk->sk_lock.slock)
1664 {
1665         if (slow) {
1666                 release_sock(sk);
1667                 __release(&sk->sk_lock.slock);
1668         } else {
1669                 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1670                 spin_unlock_bh(&sk->sk_lock.slock);
1671         }
1672 }
1673
1674 void sockopt_lock_sock(struct sock *sk);
1675 void sockopt_release_sock(struct sock *sk);
1676 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1677 bool sockopt_capable(int cap);
1678
1679 /* Used by processes to "lock" a socket state, so that
1680  * interrupts and bottom half handlers won't change it
1681  * from under us. It essentially blocks any incoming
1682  * packets, so that we won't get any new data or any
1683  * packets that change the state of the socket.
1684  *
1685  * While locked, BH processing will add new packets to
1686  * the backlog queue.  This queue is processed by the
1687  * owner of the socket lock right before it is released.
1688  *
1689  * Since ~2.3.5 it is also exclusive sleep lock serializing
1690  * accesses from user process context.
1691  */
1692
1693 static inline void sock_owned_by_me(const struct sock *sk)
1694 {
1695 #ifdef CONFIG_LOCKDEP
1696         WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1697 #endif
1698 }
1699
1700 static inline void sock_not_owned_by_me(const struct sock *sk)
1701 {
1702 #ifdef CONFIG_LOCKDEP
1703         WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1704 #endif
1705 }
1706
1707 static inline bool sock_owned_by_user(const struct sock *sk)
1708 {
1709         sock_owned_by_me(sk);
1710         return sk->sk_lock.owned;
1711 }
1712
1713 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1714 {
1715         return sk->sk_lock.owned;
1716 }
1717
1718 static inline void sock_release_ownership(struct sock *sk)
1719 {
1720         DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1721         sk->sk_lock.owned = 0;
1722
1723         /* The sk_lock has mutex_unlock() semantics: */
1724         mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1725 }
1726
1727 /* no reclassification while locks are held */
1728 static inline bool sock_allow_reclassification(const struct sock *csk)
1729 {
1730         struct sock *sk = (struct sock *)csk;
1731
1732         return !sock_owned_by_user_nocheck(sk) &&
1733                 !spin_is_locked(&sk->sk_lock.slock);
1734 }
1735
1736 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1737                       struct proto *prot, int kern);
1738 void sk_free(struct sock *sk);
1739 void sk_destruct(struct sock *sk);
1740 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1741 void sk_free_unlock_clone(struct sock *sk);
1742
1743 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1744                              gfp_t priority);
1745 void __sock_wfree(struct sk_buff *skb);
1746 void sock_wfree(struct sk_buff *skb);
1747 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1748                              gfp_t priority);
1749 void skb_orphan_partial(struct sk_buff *skb);
1750 void sock_rfree(struct sk_buff *skb);
1751 void sock_efree(struct sk_buff *skb);
1752 #ifdef CONFIG_INET
1753 void sock_edemux(struct sk_buff *skb);
1754 void sock_pfree(struct sk_buff *skb);
1755 #else
1756 #define sock_edemux sock_efree
1757 #endif
1758
1759 int sk_setsockopt(struct sock *sk, int level, int optname,
1760                   sockptr_t optval, unsigned int optlen);
1761 int sock_setsockopt(struct socket *sock, int level, int op,
1762                     sockptr_t optval, unsigned int optlen);
1763 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1764                        int optname, sockptr_t optval, int optlen);
1765 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1766                        int optname, sockptr_t optval, sockptr_t optlen);
1767
1768 int sk_getsockopt(struct sock *sk, int level, int optname,
1769                   sockptr_t optval, sockptr_t optlen);
1770 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1771                    bool timeval, bool time32);
1772 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1773                                      unsigned long data_len, int noblock,
1774                                      int *errcode, int max_page_order);
1775
1776 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1777                                                   unsigned long size,
1778                                                   int noblock, int *errcode)
1779 {
1780         return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1781 }
1782
1783 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1784 void sock_kfree_s(struct sock *sk, void *mem, int size);
1785 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1786 void sk_send_sigurg(struct sock *sk);
1787
1788 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1789 {
1790         if (sk->sk_socket)
1791                 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1792         WRITE_ONCE(sk->sk_prot, proto);
1793 }
1794
1795 struct sockcm_cookie {
1796         u64 transmit_time;
1797         u32 mark;
1798         u32 tsflags;
1799 };
1800
1801 static inline void sockcm_init(struct sockcm_cookie *sockc,
1802                                const struct sock *sk)
1803 {
1804         *sockc = (struct sockcm_cookie) {
1805                 .tsflags = READ_ONCE(sk->sk_tsflags)
1806         };
1807 }
1808
1809 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1810                      struct sockcm_cookie *sockc);
1811 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1812                    struct sockcm_cookie *sockc);
1813
1814 /*
1815  * Functions to fill in entries in struct proto_ops when a protocol
1816  * does not implement a particular function.
1817  */
1818 int sock_no_bind(struct socket *, struct sockaddr *, int);
1819 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1820 int sock_no_socketpair(struct socket *, struct socket *);
1821 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *);
1822 int sock_no_getname(struct socket *, struct sockaddr *, int);
1823 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1824 int sock_no_listen(struct socket *, int);
1825 int sock_no_shutdown(struct socket *, int);
1826 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1827 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1828 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1829 int sock_no_mmap(struct file *file, struct socket *sock,
1830                  struct vm_area_struct *vma);
1831
1832 /*
1833  * Functions to fill in entries in struct proto_ops when a protocol
1834  * uses the inet style.
1835  */
1836 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1837                                   char __user *optval, int __user *optlen);
1838 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1839                         int flags);
1840 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1841                            sockptr_t optval, unsigned int optlen);
1842
1843 void sk_common_release(struct sock *sk);
1844
1845 /*
1846  *      Default socket callbacks and setup code
1847  */
1848
1849 /* Initialise core socket variables using an explicit uid. */
1850 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1851
1852 /* Initialise core socket variables.
1853  * Assumes struct socket *sock is embedded in a struct socket_alloc.
1854  */
1855 void sock_init_data(struct socket *sock, struct sock *sk);
1856
1857 /*
1858  * Socket reference counting postulates.
1859  *
1860  * * Each user of socket SHOULD hold a reference count.
1861  * * Each access point to socket (an hash table bucket, reference from a list,
1862  *   running timer, skb in flight MUST hold a reference count.
1863  * * When reference count hits 0, it means it will never increase back.
1864  * * When reference count hits 0, it means that no references from
1865  *   outside exist to this socket and current process on current CPU
1866  *   is last user and may/should destroy this socket.
1867  * * sk_free is called from any context: process, BH, IRQ. When
1868  *   it is called, socket has no references from outside -> sk_free
1869  *   may release descendant resources allocated by the socket, but
1870  *   to the time when it is called, socket is NOT referenced by any
1871  *   hash tables, lists etc.
1872  * * Packets, delivered from outside (from network or from another process)
1873  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1874  *   when they sit in queue. Otherwise, packets will leak to hole, when
1875  *   socket is looked up by one cpu and unhasing is made by another CPU.
1876  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1877  *   (leak to backlog). Packet socket does all the processing inside
1878  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1879  *   use separate SMP lock, so that they are prone too.
1880  */
1881
1882 /* Ungrab socket and destroy it, if it was the last reference. */
1883 static inline void sock_put(struct sock *sk)
1884 {
1885         if (refcount_dec_and_test(&sk->sk_refcnt))
1886                 sk_free(sk);
1887 }
1888 /* Generic version of sock_put(), dealing with all sockets
1889  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1890  */
1891 void sock_gen_put(struct sock *sk);
1892
1893 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1894                      unsigned int trim_cap, bool refcounted);
1895 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1896                                  const int nested)
1897 {
1898         return __sk_receive_skb(sk, skb, nested, 1, true);
1899 }
1900
1901 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1902 {
1903         /* sk_tx_queue_mapping accept only upto a 16-bit value */
1904         if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1905                 return;
1906         /* Paired with READ_ONCE() in sk_tx_queue_get() and
1907          * other WRITE_ONCE() because socket lock might be not held.
1908          */
1909         WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1910 }
1911
1912 #define NO_QUEUE_MAPPING        USHRT_MAX
1913
1914 static inline void sk_tx_queue_clear(struct sock *sk)
1915 {
1916         /* Paired with READ_ONCE() in sk_tx_queue_get() and
1917          * other WRITE_ONCE() because socket lock might be not held.
1918          */
1919         WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1920 }
1921
1922 static inline int sk_tx_queue_get(const struct sock *sk)
1923 {
1924         if (sk) {
1925                 /* Paired with WRITE_ONCE() in sk_tx_queue_clear()
1926                  * and sk_tx_queue_set().
1927                  */
1928                 int val = READ_ONCE(sk->sk_tx_queue_mapping);
1929
1930                 if (val != NO_QUEUE_MAPPING)
1931                         return val;
1932         }
1933         return -1;
1934 }
1935
1936 static inline void __sk_rx_queue_set(struct sock *sk,
1937                                      const struct sk_buff *skb,
1938                                      bool force_set)
1939 {
1940 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1941         if (skb_rx_queue_recorded(skb)) {
1942                 u16 rx_queue = skb_get_rx_queue(skb);
1943
1944                 if (force_set ||
1945                     unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
1946                         WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
1947         }
1948 #endif
1949 }
1950
1951 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1952 {
1953         __sk_rx_queue_set(sk, skb, true);
1954 }
1955
1956 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
1957 {
1958         __sk_rx_queue_set(sk, skb, false);
1959 }
1960
1961 static inline void sk_rx_queue_clear(struct sock *sk)
1962 {
1963 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1964         WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
1965 #endif
1966 }
1967
1968 static inline int sk_rx_queue_get(const struct sock *sk)
1969 {
1970 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1971         if (sk) {
1972                 int res = READ_ONCE(sk->sk_rx_queue_mapping);
1973
1974                 if (res != NO_QUEUE_MAPPING)
1975                         return res;
1976         }
1977 #endif
1978
1979         return -1;
1980 }
1981
1982 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1983 {
1984         sk->sk_socket = sock;
1985 }
1986
1987 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1988 {
1989         BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1990         return &rcu_dereference_raw(sk->sk_wq)->wait;
1991 }
1992 /* Detach socket from process context.
1993  * Announce socket dead, detach it from wait queue and inode.
1994  * Note that parent inode held reference count on this struct sock,
1995  * we do not release it in this function, because protocol
1996  * probably wants some additional cleanups or even continuing
1997  * to work with this socket (TCP).
1998  */
1999 static inline void sock_orphan(struct sock *sk)
2000 {
2001         write_lock_bh(&sk->sk_callback_lock);
2002         sock_set_flag(sk, SOCK_DEAD);
2003         sk_set_socket(sk, NULL);
2004         sk->sk_wq  = NULL;
2005         write_unlock_bh(&sk->sk_callback_lock);
2006 }
2007
2008 static inline void sock_graft(struct sock *sk, struct socket *parent)
2009 {
2010         WARN_ON(parent->sk);
2011         write_lock_bh(&sk->sk_callback_lock);
2012         rcu_assign_pointer(sk->sk_wq, &parent->wq);
2013         parent->sk = sk;
2014         sk_set_socket(sk, parent);
2015         sk->sk_uid = SOCK_INODE(parent)->i_uid;
2016         security_sock_graft(sk, parent);
2017         write_unlock_bh(&sk->sk_callback_lock);
2018 }
2019
2020 kuid_t sock_i_uid(struct sock *sk);
2021 unsigned long __sock_i_ino(struct sock *sk);
2022 unsigned long sock_i_ino(struct sock *sk);
2023
2024 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2025 {
2026         return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2027 }
2028
2029 static inline u32 net_tx_rndhash(void)
2030 {
2031         u32 v = get_random_u32();
2032
2033         return v ?: 1;
2034 }
2035
2036 static inline void sk_set_txhash(struct sock *sk)
2037 {
2038         /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2039         WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2040 }
2041
2042 static inline bool sk_rethink_txhash(struct sock *sk)
2043 {
2044         if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2045                 sk_set_txhash(sk);
2046                 return true;
2047         }
2048         return false;
2049 }
2050
2051 static inline struct dst_entry *
2052 __sk_dst_get(const struct sock *sk)
2053 {
2054         return rcu_dereference_check(sk->sk_dst_cache,
2055                                      lockdep_sock_is_held(sk));
2056 }
2057
2058 static inline struct dst_entry *
2059 sk_dst_get(const struct sock *sk)
2060 {
2061         struct dst_entry *dst;
2062
2063         rcu_read_lock();
2064         dst = rcu_dereference(sk->sk_dst_cache);
2065         if (dst && !rcuref_get(&dst->__rcuref))
2066                 dst = NULL;
2067         rcu_read_unlock();
2068         return dst;
2069 }
2070
2071 static inline void __dst_negative_advice(struct sock *sk)
2072 {
2073         struct dst_entry *dst = __sk_dst_get(sk);
2074
2075         if (dst && dst->ops->negative_advice)
2076                 dst->ops->negative_advice(sk, dst);
2077 }
2078
2079 static inline void dst_negative_advice(struct sock *sk)
2080 {
2081         sk_rethink_txhash(sk);
2082         __dst_negative_advice(sk);
2083 }
2084
2085 static inline void
2086 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2087 {
2088         struct dst_entry *old_dst;
2089
2090         sk_tx_queue_clear(sk);
2091         WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2092         old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2093                                             lockdep_sock_is_held(sk));
2094         rcu_assign_pointer(sk->sk_dst_cache, dst);
2095         dst_release(old_dst);
2096 }
2097
2098 static inline void
2099 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2100 {
2101         struct dst_entry *old_dst;
2102
2103         sk_tx_queue_clear(sk);
2104         WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2105         old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst)));
2106         dst_release(old_dst);
2107 }
2108
2109 static inline void
2110 __sk_dst_reset(struct sock *sk)
2111 {
2112         __sk_dst_set(sk, NULL);
2113 }
2114
2115 static inline void
2116 sk_dst_reset(struct sock *sk)
2117 {
2118         sk_dst_set(sk, NULL);
2119 }
2120
2121 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2122
2123 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2124
2125 static inline void sk_dst_confirm(struct sock *sk)
2126 {
2127         if (!READ_ONCE(sk->sk_dst_pending_confirm))
2128                 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2129 }
2130
2131 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2132 {
2133         if (skb_get_dst_pending_confirm(skb)) {
2134                 struct sock *sk = skb->sk;
2135
2136                 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2137                         WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2138                 neigh_confirm(n);
2139         }
2140 }
2141
2142 bool sk_mc_loop(const struct sock *sk);
2143
2144 static inline bool sk_can_gso(const struct sock *sk)
2145 {
2146         return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2147 }
2148
2149 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2150
2151 static inline void sk_gso_disable(struct sock *sk)
2152 {
2153         sk->sk_gso_disabled = 1;
2154         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2155 }
2156
2157 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2158                                            struct iov_iter *from, char *to,
2159                                            int copy, int offset)
2160 {
2161         if (skb->ip_summed == CHECKSUM_NONE) {
2162                 __wsum csum = 0;
2163                 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2164                         return -EFAULT;
2165                 skb->csum = csum_block_add(skb->csum, csum, offset);
2166         } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2167                 if (!copy_from_iter_full_nocache(to, copy, from))
2168                         return -EFAULT;
2169         } else if (!copy_from_iter_full(to, copy, from))
2170                 return -EFAULT;
2171
2172         return 0;
2173 }
2174
2175 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2176                                        struct iov_iter *from, int copy)
2177 {
2178         int err, offset = skb->len;
2179
2180         err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2181                                        copy, offset);
2182         if (err)
2183                 __skb_trim(skb, offset);
2184
2185         return err;
2186 }
2187
2188 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2189                                            struct sk_buff *skb,
2190                                            struct page *page,
2191                                            int off, int copy)
2192 {
2193         int err;
2194
2195         err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2196                                        copy, skb->len);
2197         if (err)
2198                 return err;
2199
2200         skb_len_add(skb, copy);
2201         sk_wmem_queued_add(sk, copy);
2202         sk_mem_charge(sk, copy);
2203         return 0;
2204 }
2205
2206 /**
2207  * sk_wmem_alloc_get - returns write allocations
2208  * @sk: socket
2209  *
2210  * Return: sk_wmem_alloc minus initial offset of one
2211  */
2212 static inline int sk_wmem_alloc_get(const struct sock *sk)
2213 {
2214         return refcount_read(&sk->sk_wmem_alloc) - 1;
2215 }
2216
2217 /**
2218  * sk_rmem_alloc_get - returns read allocations
2219  * @sk: socket
2220  *
2221  * Return: sk_rmem_alloc
2222  */
2223 static inline int sk_rmem_alloc_get(const struct sock *sk)
2224 {
2225         return atomic_read(&sk->sk_rmem_alloc);
2226 }
2227
2228 /**
2229  * sk_has_allocations - check if allocations are outstanding
2230  * @sk: socket
2231  *
2232  * Return: true if socket has write or read allocations
2233  */
2234 static inline bool sk_has_allocations(const struct sock *sk)
2235 {
2236         return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2237 }
2238
2239 /**
2240  * skwq_has_sleeper - check if there are any waiting processes
2241  * @wq: struct socket_wq
2242  *
2243  * Return: true if socket_wq has waiting processes
2244  *
2245  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2246  * barrier call. They were added due to the race found within the tcp code.
2247  *
2248  * Consider following tcp code paths::
2249  *
2250  *   CPU1                CPU2
2251  *   sys_select          receive packet
2252  *   ...                 ...
2253  *   __add_wait_queue    update tp->rcv_nxt
2254  *   ...                 ...
2255  *   tp->rcv_nxt check   sock_def_readable
2256  *   ...                 {
2257  *   schedule               rcu_read_lock();
2258  *                          wq = rcu_dereference(sk->sk_wq);
2259  *                          if (wq && waitqueue_active(&wq->wait))
2260  *                              wake_up_interruptible(&wq->wait)
2261  *                          ...
2262  *                       }
2263  *
2264  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2265  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2266  * could then endup calling schedule and sleep forever if there are no more
2267  * data on the socket.
2268  *
2269  */
2270 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2271 {
2272         return wq && wq_has_sleeper(&wq->wait);
2273 }
2274
2275 /**
2276  * sock_poll_wait - place memory barrier behind the poll_wait call.
2277  * @filp:           file
2278  * @sock:           socket to wait on
2279  * @p:              poll_table
2280  *
2281  * See the comments in the wq_has_sleeper function.
2282  */
2283 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2284                                   poll_table *p)
2285 {
2286         if (!poll_does_not_wait(p)) {
2287                 poll_wait(filp, &sock->wq.wait, p);
2288                 /* We need to be sure we are in sync with the
2289                  * socket flags modification.
2290                  *
2291                  * This memory barrier is paired in the wq_has_sleeper.
2292                  */
2293                 smp_mb();
2294         }
2295 }
2296
2297 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2298 {
2299         /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2300         u32 txhash = READ_ONCE(sk->sk_txhash);
2301
2302         if (txhash) {
2303                 skb->l4_hash = 1;
2304                 skb->hash = txhash;
2305         }
2306 }
2307
2308 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2309
2310 /*
2311  *      Queue a received datagram if it will fit. Stream and sequenced
2312  *      protocols can't normally use this as they need to fit buffers in
2313  *      and play with them.
2314  *
2315  *      Inlined as it's very short and called for pretty much every
2316  *      packet ever received.
2317  */
2318 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2319 {
2320         skb_orphan(skb);
2321         skb->sk = sk;
2322         skb->destructor = sock_rfree;
2323         atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2324         sk_mem_charge(sk, skb->truesize);
2325 }
2326
2327 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2328 {
2329         if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2330                 skb_orphan(skb);
2331                 skb->destructor = sock_efree;
2332                 skb->sk = sk;
2333                 return true;
2334         }
2335         return false;
2336 }
2337
2338 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2339 {
2340         skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2341         if (skb) {
2342                 if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2343                         skb_set_owner_r(skb, sk);
2344                         return skb;
2345                 }
2346                 __kfree_skb(skb);
2347         }
2348         return NULL;
2349 }
2350
2351 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2352 {
2353         if (skb->destructor != sock_wfree) {
2354                 skb_orphan(skb);
2355                 return;
2356         }
2357         skb->slow_gro = 1;
2358 }
2359
2360 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2361                     unsigned long expires);
2362
2363 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2364
2365 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2366
2367 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2368                         struct sk_buff *skb, unsigned int flags,
2369                         void (*destructor)(struct sock *sk,
2370                                            struct sk_buff *skb));
2371 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2372
2373 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2374                               enum skb_drop_reason *reason);
2375
2376 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2377 {
2378         return sock_queue_rcv_skb_reason(sk, skb, NULL);
2379 }
2380
2381 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2382 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2383
2384 /*
2385  *      Recover an error report and clear atomically
2386  */
2387
2388 static inline int sock_error(struct sock *sk)
2389 {
2390         int err;
2391
2392         /* Avoid an atomic operation for the common case.
2393          * This is racy since another cpu/thread can change sk_err under us.
2394          */
2395         if (likely(data_race(!sk->sk_err)))
2396                 return 0;
2397
2398         err = xchg(&sk->sk_err, 0);
2399         return -err;
2400 }
2401
2402 void sk_error_report(struct sock *sk);
2403
2404 static inline unsigned long sock_wspace(struct sock *sk)
2405 {
2406         int amt = 0;
2407
2408         if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2409                 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2410                 if (amt < 0)
2411                         amt = 0;
2412         }
2413         return amt;
2414 }
2415
2416 /* Note:
2417  *  We use sk->sk_wq_raw, from contexts knowing this
2418  *  pointer is not NULL and cannot disappear/change.
2419  */
2420 static inline void sk_set_bit(int nr, struct sock *sk)
2421 {
2422         if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2423             !sock_flag(sk, SOCK_FASYNC))
2424                 return;
2425
2426         set_bit(nr, &sk->sk_wq_raw->flags);
2427 }
2428
2429 static inline void sk_clear_bit(int nr, struct sock *sk)
2430 {
2431         if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2432             !sock_flag(sk, SOCK_FASYNC))
2433                 return;
2434
2435         clear_bit(nr, &sk->sk_wq_raw->flags);
2436 }
2437
2438 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2439 {
2440         if (sock_flag(sk, SOCK_FASYNC)) {
2441                 rcu_read_lock();
2442                 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2443                 rcu_read_unlock();
2444         }
2445 }
2446
2447 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band)
2448 {
2449         if (unlikely(sock_flag(sk, SOCK_FASYNC)))
2450                 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2451 }
2452
2453 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2454  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2455  * Note: for send buffers, TCP works better if we can build two skbs at
2456  * minimum.
2457  */
2458 #define TCP_SKB_MIN_TRUESIZE    (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2459
2460 #define SOCK_MIN_SNDBUF         (TCP_SKB_MIN_TRUESIZE * 2)
2461 #define SOCK_MIN_RCVBUF          TCP_SKB_MIN_TRUESIZE
2462
2463 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2464 {
2465         u32 val;
2466
2467         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2468                 return;
2469
2470         val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2471         val = max_t(u32, val, sk_unused_reserved_mem(sk));
2472
2473         WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2474 }
2475
2476 /**
2477  * sk_page_frag - return an appropriate page_frag
2478  * @sk: socket
2479  *
2480  * Use the per task page_frag instead of the per socket one for
2481  * optimization when we know that we're in process context and own
2482  * everything that's associated with %current.
2483  *
2484  * Both direct reclaim and page faults can nest inside other
2485  * socket operations and end up recursing into sk_page_frag()
2486  * while it's already in use: explicitly avoid task page_frag
2487  * when users disable sk_use_task_frag.
2488  *
2489  * Return: a per task page_frag if context allows that,
2490  * otherwise a per socket one.
2491  */
2492 static inline struct page_frag *sk_page_frag(struct sock *sk)
2493 {
2494         if (sk->sk_use_task_frag)
2495                 return &current->task_frag;
2496
2497         return &sk->sk_frag;
2498 }
2499
2500 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2501
2502 /*
2503  *      Default write policy as shown to user space via poll/select/SIGIO
2504  */
2505 static inline bool sock_writeable(const struct sock *sk)
2506 {
2507         return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2508 }
2509
2510 static inline gfp_t gfp_any(void)
2511 {
2512         return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2513 }
2514
2515 static inline gfp_t gfp_memcg_charge(void)
2516 {
2517         return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2518 }
2519
2520 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2521 {
2522         return noblock ? 0 : sk->sk_rcvtimeo;
2523 }
2524
2525 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2526 {
2527         return noblock ? 0 : sk->sk_sndtimeo;
2528 }
2529
2530 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2531 {
2532         int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2533
2534         return v ?: 1;
2535 }
2536
2537 /* Alas, with timeout socket operations are not restartable.
2538  * Compare this to poll().
2539  */
2540 static inline int sock_intr_errno(long timeo)
2541 {
2542         return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2543 }
2544
2545 struct sock_skb_cb {
2546         u32 dropcount;
2547 };
2548
2549 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2550  * using skb->cb[] would keep using it directly and utilize its
2551  * alignment guarantee.
2552  */
2553 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2554                             sizeof(struct sock_skb_cb)))
2555
2556 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2557                             SOCK_SKB_CB_OFFSET))
2558
2559 #define sock_skb_cb_check_size(size) \
2560         BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2561
2562 static inline void
2563 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2564 {
2565         SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2566                                                 atomic_read(&sk->sk_drops) : 0;
2567 }
2568
2569 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2570 {
2571         int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2572
2573         atomic_add(segs, &sk->sk_drops);
2574 }
2575
2576 static inline ktime_t sock_read_timestamp(struct sock *sk)
2577 {
2578 #if BITS_PER_LONG==32
2579         unsigned int seq;
2580         ktime_t kt;
2581
2582         do {
2583                 seq = read_seqbegin(&sk->sk_stamp_seq);
2584                 kt = sk->sk_stamp;
2585         } while (read_seqretry(&sk->sk_stamp_seq, seq));
2586
2587         return kt;
2588 #else
2589         return READ_ONCE(sk->sk_stamp);
2590 #endif
2591 }
2592
2593 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2594 {
2595 #if BITS_PER_LONG==32
2596         write_seqlock(&sk->sk_stamp_seq);
2597         sk->sk_stamp = kt;
2598         write_sequnlock(&sk->sk_stamp_seq);
2599 #else
2600         WRITE_ONCE(sk->sk_stamp, kt);
2601 #endif
2602 }
2603
2604 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2605                            struct sk_buff *skb);
2606 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2607                              struct sk_buff *skb);
2608
2609 static inline void
2610 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2611 {
2612         struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2613         u32 tsflags = READ_ONCE(sk->sk_tsflags);
2614         ktime_t kt = skb->tstamp;
2615         /*
2616          * generate control messages if
2617          * - receive time stamping in software requested
2618          * - software time stamp available and wanted
2619          * - hardware time stamps available and wanted
2620          */
2621         if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2622             (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2623             (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2624             (hwtstamps->hwtstamp &&
2625              (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2626                 __sock_recv_timestamp(msg, sk, skb);
2627         else
2628                 sock_write_timestamp(sk, kt);
2629
2630         if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2631                 __sock_recv_wifi_status(msg, sk, skb);
2632 }
2633
2634 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2635                        struct sk_buff *skb);
2636
2637 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2638 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2639                                    struct sk_buff *skb)
2640 {
2641 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)                        | \
2642                            (1UL << SOCK_RCVTSTAMP)                      | \
2643                            (1UL << SOCK_RCVMARK))
2644 #define TSFLAGS_ANY       (SOF_TIMESTAMPING_SOFTWARE                    | \
2645                            SOF_TIMESTAMPING_RAW_HARDWARE)
2646
2647         if (sk->sk_flags & FLAGS_RECV_CMSGS ||
2648             READ_ONCE(sk->sk_tsflags) & TSFLAGS_ANY)
2649                 __sock_recv_cmsgs(msg, sk, skb);
2650         else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2651                 sock_write_timestamp(sk, skb->tstamp);
2652         else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2653                 sock_write_timestamp(sk, 0);
2654 }
2655
2656 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2657
2658 /**
2659  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2660  * @sk:         socket sending this packet
2661  * @tsflags:    timestamping flags to use
2662  * @tx_flags:   completed with instructions for time stamping
2663  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2664  *
2665  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2666  */
2667 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2668                                       __u8 *tx_flags, __u32 *tskey)
2669 {
2670         if (unlikely(tsflags)) {
2671                 __sock_tx_timestamp(tsflags, tx_flags);
2672                 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2673                     tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2674                         *tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2675         }
2676         if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2677                 *tx_flags |= SKBTX_WIFI_STATUS;
2678 }
2679
2680 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2681                                      __u8 *tx_flags)
2682 {
2683         _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2684 }
2685
2686 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2687 {
2688         _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2689                            &skb_shinfo(skb)->tskey);
2690 }
2691
2692 static inline bool sk_is_inet(const struct sock *sk)
2693 {
2694         int family = READ_ONCE(sk->sk_family);
2695
2696         return family == AF_INET || family == AF_INET6;
2697 }
2698
2699 static inline bool sk_is_tcp(const struct sock *sk)
2700 {
2701         return sk_is_inet(sk) &&
2702                sk->sk_type == SOCK_STREAM &&
2703                sk->sk_protocol == IPPROTO_TCP;
2704 }
2705
2706 static inline bool sk_is_udp(const struct sock *sk)
2707 {
2708         return sk_is_inet(sk) &&
2709                sk->sk_type == SOCK_DGRAM &&
2710                sk->sk_protocol == IPPROTO_UDP;
2711 }
2712
2713 static inline bool sk_is_stream_unix(const struct sock *sk)
2714 {
2715         return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM;
2716 }
2717
2718 /**
2719  * sk_eat_skb - Release a skb if it is no longer needed
2720  * @sk: socket to eat this skb from
2721  * @skb: socket buffer to eat
2722  *
2723  * This routine must be called with interrupts disabled or with the socket
2724  * locked so that the sk_buff queue operation is ok.
2725 */
2726 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2727 {
2728         __skb_unlink(skb, &sk->sk_receive_queue);
2729         __kfree_skb(skb);
2730 }
2731
2732 static inline bool
2733 skb_sk_is_prefetched(struct sk_buff *skb)
2734 {
2735 #ifdef CONFIG_INET
2736         return skb->destructor == sock_pfree;
2737 #else
2738         return false;
2739 #endif /* CONFIG_INET */
2740 }
2741
2742 /* This helper checks if a socket is a full socket,
2743  * ie _not_ a timewait or request socket.
2744  */
2745 static inline bool sk_fullsock(const struct sock *sk)
2746 {
2747         return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2748 }
2749
2750 static inline bool
2751 sk_is_refcounted(struct sock *sk)
2752 {
2753         /* Only full sockets have sk->sk_flags. */
2754         return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2755 }
2756
2757 /* Checks if this SKB belongs to an HW offloaded socket
2758  * and whether any SW fallbacks are required based on dev.
2759  * Check decrypted mark in case skb_orphan() cleared socket.
2760  */
2761 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2762                                                    struct net_device *dev)
2763 {
2764 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2765         struct sock *sk = skb->sk;
2766
2767         if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2768                 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2769         } else if (unlikely(skb_is_decrypted(skb))) {
2770                 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2771                 kfree_skb(skb);
2772                 skb = NULL;
2773         }
2774 #endif
2775
2776         return skb;
2777 }
2778
2779 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2780  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2781  */
2782 static inline bool sk_listener(const struct sock *sk)
2783 {
2784         return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2785 }
2786
2787 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2788 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2789                        int type);
2790
2791 bool sk_ns_capable(const struct sock *sk,
2792                    struct user_namespace *user_ns, int cap);
2793 bool sk_capable(const struct sock *sk, int cap);
2794 bool sk_net_capable(const struct sock *sk, int cap);
2795
2796 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2797
2798 /* Take into consideration the size of the struct sk_buff overhead in the
2799  * determination of these values, since that is non-constant across
2800  * platforms.  This makes socket queueing behavior and performance
2801  * not depend upon such differences.
2802  */
2803 #define _SK_MEM_PACKETS         256
2804 #define _SK_MEM_OVERHEAD        SKB_TRUESIZE(256)
2805 #define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2806 #define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2807
2808 extern __u32 sysctl_wmem_max;
2809 extern __u32 sysctl_rmem_max;
2810
2811 extern int sysctl_tstamp_allow_data;
2812
2813 extern __u32 sysctl_wmem_default;
2814 extern __u32 sysctl_rmem_default;
2815
2816 #define SKB_FRAG_PAGE_ORDER     get_order(32768)
2817 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2818
2819 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2820 {
2821         /* Does this proto have per netns sysctl_wmem ? */
2822         if (proto->sysctl_wmem_offset)
2823                 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2824
2825         return READ_ONCE(*proto->sysctl_wmem);
2826 }
2827
2828 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2829 {
2830         /* Does this proto have per netns sysctl_rmem ? */
2831         if (proto->sysctl_rmem_offset)
2832                 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2833
2834         return READ_ONCE(*proto->sysctl_rmem);
2835 }
2836
2837 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2838  * Some wifi drivers need to tweak it to get more chunks.
2839  * They can use this helper from their ndo_start_xmit()
2840  */
2841 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2842 {
2843         if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2844                 return;
2845         WRITE_ONCE(sk->sk_pacing_shift, val);
2846 }
2847
2848 /* if a socket is bound to a device, check that the given device
2849  * index is either the same or that the socket is bound to an L3
2850  * master device and the given device index is also enslaved to
2851  * that L3 master
2852  */
2853 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2854 {
2855         int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2856         int mdif;
2857
2858         if (!bound_dev_if || bound_dev_if == dif)
2859                 return true;
2860
2861         mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2862         if (mdif && mdif == bound_dev_if)
2863                 return true;
2864
2865         return false;
2866 }
2867
2868 void sock_def_readable(struct sock *sk);
2869
2870 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2871 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2872 int sock_set_timestamping(struct sock *sk, int optname,
2873                           struct so_timestamping timestamping);
2874
2875 void sock_enable_timestamps(struct sock *sk);
2876 void sock_no_linger(struct sock *sk);
2877 void sock_set_keepalive(struct sock *sk);
2878 void sock_set_priority(struct sock *sk, u32 priority);
2879 void sock_set_rcvbuf(struct sock *sk, int val);
2880 void sock_set_mark(struct sock *sk, u32 val);
2881 void sock_set_reuseaddr(struct sock *sk);
2882 void sock_set_reuseport(struct sock *sk);
2883 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2884
2885 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2886
2887 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2888 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2889                            sockptr_t optval, int optlen, bool old_timeval);
2890
2891 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
2892                      void __user *arg, void *karg, size_t size);
2893 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
2894 static inline bool sk_is_readable(struct sock *sk)
2895 {
2896         if (sk->sk_prot->sock_is_readable)
2897                 return sk->sk_prot->sock_is_readable(sk);
2898         return false;
2899 }
2900 #endif  /* _SOCK_H */