coredump: Limit coredumps to a single thread group
[linux-block.git] / include / linux / sched / signal.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_SIGNAL_H
3 #define _LINUX_SCHED_SIGNAL_H
4
5 #include <linux/rculist.h>
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/sched/jobctl.h>
9 #include <linux/sched/task.h>
10 #include <linux/cred.h>
11 #include <linux/refcount.h>
12 #include <linux/posix-timers.h>
13 #include <linux/mm_types.h>
14 #include <asm/ptrace.h>
15
16 /*
17  * Types defining task->signal and task->sighand and APIs using them:
18  */
19
20 struct sighand_struct {
21         spinlock_t              siglock;
22         refcount_t              count;
23         wait_queue_head_t       signalfd_wqh;
24         struct k_sigaction      action[_NSIG];
25 };
26
27 /*
28  * Per-process accounting stats:
29  */
30 struct pacct_struct {
31         int                     ac_flag;
32         long                    ac_exitcode;
33         unsigned long           ac_mem;
34         u64                     ac_utime, ac_stime;
35         unsigned long           ac_minflt, ac_majflt;
36 };
37
38 struct cpu_itimer {
39         u64 expires;
40         u64 incr;
41 };
42
43 /*
44  * This is the atomic variant of task_cputime, which can be used for
45  * storing and updating task_cputime statistics without locking.
46  */
47 struct task_cputime_atomic {
48         atomic64_t utime;
49         atomic64_t stime;
50         atomic64_t sum_exec_runtime;
51 };
52
53 #define INIT_CPUTIME_ATOMIC \
54         (struct task_cputime_atomic) {                          \
55                 .utime = ATOMIC64_INIT(0),                      \
56                 .stime = ATOMIC64_INIT(0),                      \
57                 .sum_exec_runtime = ATOMIC64_INIT(0),           \
58         }
59 /**
60  * struct thread_group_cputimer - thread group interval timer counts
61  * @cputime_atomic:     atomic thread group interval timers.
62  *
63  * This structure contains the version of task_cputime, above, that is
64  * used for thread group CPU timer calculations.
65  */
66 struct thread_group_cputimer {
67         struct task_cputime_atomic cputime_atomic;
68 };
69
70 struct multiprocess_signals {
71         sigset_t signal;
72         struct hlist_node node;
73 };
74
75 struct core_thread {
76         struct task_struct *task;
77         struct core_thread *next;
78 };
79
80 struct core_state {
81         atomic_t nr_threads;
82         struct core_thread dumper;
83         struct completion startup;
84 };
85
86 /*
87  * NOTE! "signal_struct" does not have its own
88  * locking, because a shared signal_struct always
89  * implies a shared sighand_struct, so locking
90  * sighand_struct is always a proper superset of
91  * the locking of signal_struct.
92  */
93 struct signal_struct {
94         refcount_t              sigcnt;
95         atomic_t                live;
96         int                     nr_threads;
97         struct list_head        thread_head;
98
99         wait_queue_head_t       wait_chldexit;  /* for wait4() */
100
101         /* current thread group signal load-balancing target: */
102         struct task_struct      *curr_target;
103
104         /* shared signal handling: */
105         struct sigpending       shared_pending;
106
107         /* For collecting multiprocess signals during fork */
108         struct hlist_head       multiprocess;
109
110         /* thread group exit support */
111         int                     group_exit_code;
112         /* overloaded:
113          * - notify group_exit_task when ->count is equal to notify_count
114          * - everyone except group_exit_task is stopped during signal delivery
115          *   of fatal signals, group_exit_task processes the signal.
116          */
117         int                     notify_count;
118         struct task_struct      *group_exit_task;
119
120         /* thread group stop support, overloads group_exit_code too */
121         int                     group_stop_count;
122         unsigned int            flags; /* see SIGNAL_* flags below */
123
124         struct core_state *core_state; /* coredumping support */
125
126         /*
127          * PR_SET_CHILD_SUBREAPER marks a process, like a service
128          * manager, to re-parent orphan (double-forking) child processes
129          * to this process instead of 'init'. The service manager is
130          * able to receive SIGCHLD signals and is able to investigate
131          * the process until it calls wait(). All children of this
132          * process will inherit a flag if they should look for a
133          * child_subreaper process at exit.
134          */
135         unsigned int            is_child_subreaper:1;
136         unsigned int            has_child_subreaper:1;
137
138 #ifdef CONFIG_POSIX_TIMERS
139
140         /* POSIX.1b Interval Timers */
141         int                     posix_timer_id;
142         struct list_head        posix_timers;
143
144         /* ITIMER_REAL timer for the process */
145         struct hrtimer real_timer;
146         ktime_t it_real_incr;
147
148         /*
149          * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
150          * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
151          * values are defined to 0 and 1 respectively
152          */
153         struct cpu_itimer it[2];
154
155         /*
156          * Thread group totals for process CPU timers.
157          * See thread_group_cputimer(), et al, for details.
158          */
159         struct thread_group_cputimer cputimer;
160
161 #endif
162         /* Empty if CONFIG_POSIX_TIMERS=n */
163         struct posix_cputimers posix_cputimers;
164
165         /* PID/PID hash table linkage. */
166         struct pid *pids[PIDTYPE_MAX];
167
168 #ifdef CONFIG_NO_HZ_FULL
169         atomic_t tick_dep_mask;
170 #endif
171
172         struct pid *tty_old_pgrp;
173
174         /* boolean value for session group leader */
175         int leader;
176
177         struct tty_struct *tty; /* NULL if no tty */
178
179 #ifdef CONFIG_SCHED_AUTOGROUP
180         struct autogroup *autogroup;
181 #endif
182         /*
183          * Cumulative resource counters for dead threads in the group,
184          * and for reaped dead child processes forked by this group.
185          * Live threads maintain their own counters and add to these
186          * in __exit_signal, except for the group leader.
187          */
188         seqlock_t stats_lock;
189         u64 utime, stime, cutime, cstime;
190         u64 gtime;
191         u64 cgtime;
192         struct prev_cputime prev_cputime;
193         unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
194         unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
195         unsigned long inblock, oublock, cinblock, coublock;
196         unsigned long maxrss, cmaxrss;
197         struct task_io_accounting ioac;
198
199         /*
200          * Cumulative ns of schedule CPU time fo dead threads in the
201          * group, not including a zombie group leader, (This only differs
202          * from jiffies_to_ns(utime + stime) if sched_clock uses something
203          * other than jiffies.)
204          */
205         unsigned long long sum_sched_runtime;
206
207         /*
208          * We don't bother to synchronize most readers of this at all,
209          * because there is no reader checking a limit that actually needs
210          * to get both rlim_cur and rlim_max atomically, and either one
211          * alone is a single word that can safely be read normally.
212          * getrlimit/setrlimit use task_lock(current->group_leader) to
213          * protect this instead of the siglock, because they really
214          * have no need to disable irqs.
215          */
216         struct rlimit rlim[RLIM_NLIMITS];
217
218 #ifdef CONFIG_BSD_PROCESS_ACCT
219         struct pacct_struct pacct;      /* per-process accounting information */
220 #endif
221 #ifdef CONFIG_TASKSTATS
222         struct taskstats *stats;
223 #endif
224 #ifdef CONFIG_AUDIT
225         unsigned audit_tty;
226         struct tty_audit_buf *tty_audit_buf;
227 #endif
228
229         /*
230          * Thread is the potential origin of an oom condition; kill first on
231          * oom
232          */
233         bool oom_flag_origin;
234         short oom_score_adj;            /* OOM kill score adjustment */
235         short oom_score_adj_min;        /* OOM kill score adjustment min value.
236                                          * Only settable by CAP_SYS_RESOURCE. */
237         struct mm_struct *oom_mm;       /* recorded mm when the thread group got
238                                          * killed by the oom killer */
239
240         struct mutex cred_guard_mutex;  /* guard against foreign influences on
241                                          * credential calculations
242                                          * (notably. ptrace)
243                                          * Deprecated do not use in new code.
244                                          * Use exec_update_lock instead.
245                                          */
246         struct rw_semaphore exec_update_lock;   /* Held while task_struct is
247                                                  * being updated during exec,
248                                                  * and may have inconsistent
249                                                  * permissions.
250                                                  */
251 } __randomize_layout;
252
253 /*
254  * Bits in flags field of signal_struct.
255  */
256 #define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
257 #define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
258 #define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
259 #define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
260 /*
261  * Pending notifications to parent.
262  */
263 #define SIGNAL_CLD_STOPPED      0x00000010
264 #define SIGNAL_CLD_CONTINUED    0x00000020
265 #define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
266
267 #define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
268
269 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
270                           SIGNAL_STOP_CONTINUED)
271
272 static inline void signal_set_stop_flags(struct signal_struct *sig,
273                                          unsigned int flags)
274 {
275         WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
276         sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
277 }
278
279 /* If true, all threads except ->group_exit_task have pending SIGKILL */
280 static inline int signal_group_exit(const struct signal_struct *sig)
281 {
282         return  (sig->flags & SIGNAL_GROUP_EXIT) ||
283                 (sig->group_exit_task != NULL);
284 }
285
286 extern void flush_signals(struct task_struct *);
287 extern void ignore_signals(struct task_struct *);
288 extern void flush_signal_handlers(struct task_struct *, int force_default);
289 extern int dequeue_signal(struct task_struct *task,
290                           sigset_t *mask, kernel_siginfo_t *info);
291
292 static inline int kernel_dequeue_signal(void)
293 {
294         struct task_struct *task = current;
295         kernel_siginfo_t __info;
296         int ret;
297
298         spin_lock_irq(&task->sighand->siglock);
299         ret = dequeue_signal(task, &task->blocked, &__info);
300         spin_unlock_irq(&task->sighand->siglock);
301
302         return ret;
303 }
304
305 static inline void kernel_signal_stop(void)
306 {
307         spin_lock_irq(&current->sighand->siglock);
308         if (current->jobctl & JOBCTL_STOP_DEQUEUED)
309                 set_special_state(TASK_STOPPED);
310         spin_unlock_irq(&current->sighand->siglock);
311
312         schedule();
313 }
314 #ifdef __ia64__
315 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
316 #else
317 # define ___ARCH_SI_IA64(_a1, _a2, _a3)
318 #endif
319
320 int force_sig_fault_to_task(int sig, int code, void __user *addr
321         ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
322         , struct task_struct *t);
323 int force_sig_fault(int sig, int code, void __user *addr
324         ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr));
325 int send_sig_fault(int sig, int code, void __user *addr
326         ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
327         , struct task_struct *t);
328
329 int force_sig_mceerr(int code, void __user *, short);
330 int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
331
332 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
333 int force_sig_pkuerr(void __user *addr, u32 pkey);
334 int force_sig_perf(void __user *addr, u32 type, u64 sig_data);
335
336 int force_sig_ptrace_errno_trap(int errno, void __user *addr);
337 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno);
338 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
339                         struct task_struct *t);
340 int force_sig_seccomp(int syscall, int reason, bool force_coredump);
341
342 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
343 extern void force_sigsegv(int sig);
344 extern int force_sig_info(struct kernel_siginfo *);
345 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
346 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
347 extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *,
348                                 const struct cred *);
349 extern int kill_pgrp(struct pid *pid, int sig, int priv);
350 extern int kill_pid(struct pid *pid, int sig, int priv);
351 extern __must_check bool do_notify_parent(struct task_struct *, int);
352 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
353 extern void force_sig(int);
354 extern int send_sig(int, struct task_struct *, int);
355 extern int zap_other_threads(struct task_struct *p);
356 extern struct sigqueue *sigqueue_alloc(void);
357 extern void sigqueue_free(struct sigqueue *);
358 extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
359 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
360
361 static inline int restart_syscall(void)
362 {
363         set_tsk_thread_flag(current, TIF_SIGPENDING);
364         return -ERESTARTNOINTR;
365 }
366
367 static inline int task_sigpending(struct task_struct *p)
368 {
369         return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
370 }
371
372 static inline int signal_pending(struct task_struct *p)
373 {
374         /*
375          * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same
376          * behavior in terms of ensuring that we break out of wait loops
377          * so that notify signal callbacks can be processed.
378          */
379         if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL)))
380                 return 1;
381         return task_sigpending(p);
382 }
383
384 static inline int __fatal_signal_pending(struct task_struct *p)
385 {
386         return unlikely(sigismember(&p->pending.signal, SIGKILL));
387 }
388
389 static inline int fatal_signal_pending(struct task_struct *p)
390 {
391         return task_sigpending(p) && __fatal_signal_pending(p);
392 }
393
394 static inline int signal_pending_state(unsigned int state, struct task_struct *p)
395 {
396         if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
397                 return 0;
398         if (!signal_pending(p))
399                 return 0;
400
401         return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
402 }
403
404 /*
405  * This should only be used in fault handlers to decide whether we
406  * should stop the current fault routine to handle the signals
407  * instead, especially with the case where we've got interrupted with
408  * a VM_FAULT_RETRY.
409  */
410 static inline bool fault_signal_pending(vm_fault_t fault_flags,
411                                         struct pt_regs *regs)
412 {
413         return unlikely((fault_flags & VM_FAULT_RETRY) &&
414                         (fatal_signal_pending(current) ||
415                          (user_mode(regs) && signal_pending(current))));
416 }
417
418 /*
419  * Reevaluate whether the task has signals pending delivery.
420  * Wake the task if so.
421  * This is required every time the blocked sigset_t changes.
422  * callers must hold sighand->siglock.
423  */
424 extern void recalc_sigpending_and_wake(struct task_struct *t);
425 extern void recalc_sigpending(void);
426 extern void calculate_sigpending(void);
427
428 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
429
430 static inline void signal_wake_up(struct task_struct *t, bool resume)
431 {
432         signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
433 }
434 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
435 {
436         signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
437 }
438
439 void task_join_group_stop(struct task_struct *task);
440
441 #ifdef TIF_RESTORE_SIGMASK
442 /*
443  * Legacy restore_sigmask accessors.  These are inefficient on
444  * SMP architectures because they require atomic operations.
445  */
446
447 /**
448  * set_restore_sigmask() - make sure saved_sigmask processing gets done
449  *
450  * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
451  * will run before returning to user mode, to process the flag.  For
452  * all callers, TIF_SIGPENDING is already set or it's no harm to set
453  * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
454  * arch code will notice on return to user mode, in case those bits
455  * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
456  * signal code always gets run when TIF_RESTORE_SIGMASK is set.
457  */
458 static inline void set_restore_sigmask(void)
459 {
460         set_thread_flag(TIF_RESTORE_SIGMASK);
461 }
462
463 static inline void clear_tsk_restore_sigmask(struct task_struct *task)
464 {
465         clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
466 }
467
468 static inline void clear_restore_sigmask(void)
469 {
470         clear_thread_flag(TIF_RESTORE_SIGMASK);
471 }
472 static inline bool test_tsk_restore_sigmask(struct task_struct *task)
473 {
474         return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
475 }
476 static inline bool test_restore_sigmask(void)
477 {
478         return test_thread_flag(TIF_RESTORE_SIGMASK);
479 }
480 static inline bool test_and_clear_restore_sigmask(void)
481 {
482         return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
483 }
484
485 #else   /* TIF_RESTORE_SIGMASK */
486
487 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
488 static inline void set_restore_sigmask(void)
489 {
490         current->restore_sigmask = true;
491 }
492 static inline void clear_tsk_restore_sigmask(struct task_struct *task)
493 {
494         task->restore_sigmask = false;
495 }
496 static inline void clear_restore_sigmask(void)
497 {
498         current->restore_sigmask = false;
499 }
500 static inline bool test_restore_sigmask(void)
501 {
502         return current->restore_sigmask;
503 }
504 static inline bool test_tsk_restore_sigmask(struct task_struct *task)
505 {
506         return task->restore_sigmask;
507 }
508 static inline bool test_and_clear_restore_sigmask(void)
509 {
510         if (!current->restore_sigmask)
511                 return false;
512         current->restore_sigmask = false;
513         return true;
514 }
515 #endif
516
517 static inline void restore_saved_sigmask(void)
518 {
519         if (test_and_clear_restore_sigmask())
520                 __set_current_blocked(&current->saved_sigmask);
521 }
522
523 extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize);
524
525 static inline void restore_saved_sigmask_unless(bool interrupted)
526 {
527         if (interrupted)
528                 WARN_ON(!signal_pending(current));
529         else
530                 restore_saved_sigmask();
531 }
532
533 static inline sigset_t *sigmask_to_save(void)
534 {
535         sigset_t *res = &current->blocked;
536         if (unlikely(test_restore_sigmask()))
537                 res = &current->saved_sigmask;
538         return res;
539 }
540
541 static inline int kill_cad_pid(int sig, int priv)
542 {
543         return kill_pid(cad_pid, sig, priv);
544 }
545
546 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
547 #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0)
548 #define SEND_SIG_PRIV   ((struct kernel_siginfo *) 1)
549
550 static inline int __on_sig_stack(unsigned long sp)
551 {
552 #ifdef CONFIG_STACK_GROWSUP
553         return sp >= current->sas_ss_sp &&
554                 sp - current->sas_ss_sp < current->sas_ss_size;
555 #else
556         return sp > current->sas_ss_sp &&
557                 sp - current->sas_ss_sp <= current->sas_ss_size;
558 #endif
559 }
560
561 /*
562  * True if we are on the alternate signal stack.
563  */
564 static inline int on_sig_stack(unsigned long sp)
565 {
566         /*
567          * If the signal stack is SS_AUTODISARM then, by construction, we
568          * can't be on the signal stack unless user code deliberately set
569          * SS_AUTODISARM when we were already on it.
570          *
571          * This improves reliability: if user state gets corrupted such that
572          * the stack pointer points very close to the end of the signal stack,
573          * then this check will enable the signal to be handled anyway.
574          */
575         if (current->sas_ss_flags & SS_AUTODISARM)
576                 return 0;
577
578         return __on_sig_stack(sp);
579 }
580
581 static inline int sas_ss_flags(unsigned long sp)
582 {
583         if (!current->sas_ss_size)
584                 return SS_DISABLE;
585
586         return on_sig_stack(sp) ? SS_ONSTACK : 0;
587 }
588
589 static inline void sas_ss_reset(struct task_struct *p)
590 {
591         p->sas_ss_sp = 0;
592         p->sas_ss_size = 0;
593         p->sas_ss_flags = SS_DISABLE;
594 }
595
596 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
597 {
598         if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
599 #ifdef CONFIG_STACK_GROWSUP
600                 return current->sas_ss_sp;
601 #else
602                 return current->sas_ss_sp + current->sas_ss_size;
603 #endif
604         return sp;
605 }
606
607 extern void __cleanup_sighand(struct sighand_struct *);
608 extern void flush_itimer_signals(void);
609
610 #define tasklist_empty() \
611         list_empty(&init_task.tasks)
612
613 #define next_task(p) \
614         list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
615
616 #define for_each_process(p) \
617         for (p = &init_task ; (p = next_task(p)) != &init_task ; )
618
619 extern bool current_is_single_threaded(void);
620
621 /*
622  * Careful: do_each_thread/while_each_thread is a double loop so
623  *          'break' will not work as expected - use goto instead.
624  */
625 #define do_each_thread(g, t) \
626         for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
627
628 #define while_each_thread(g, t) \
629         while ((t = next_thread(t)) != g)
630
631 #define __for_each_thread(signal, t)    \
632         list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
633
634 #define for_each_thread(p, t)           \
635         __for_each_thread((p)->signal, t)
636
637 /* Careful: this is a double loop, 'break' won't work as expected. */
638 #define for_each_process_thread(p, t)   \
639         for_each_process(p) for_each_thread(p, t)
640
641 typedef int (*proc_visitor)(struct task_struct *p, void *data);
642 void walk_process_tree(struct task_struct *top, proc_visitor, void *);
643
644 static inline
645 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
646 {
647         struct pid *pid;
648         if (type == PIDTYPE_PID)
649                 pid = task_pid(task);
650         else
651                 pid = task->signal->pids[type];
652         return pid;
653 }
654
655 static inline struct pid *task_tgid(struct task_struct *task)
656 {
657         return task->signal->pids[PIDTYPE_TGID];
658 }
659
660 /*
661  * Without tasklist or RCU lock it is not safe to dereference
662  * the result of task_pgrp/task_session even if task == current,
663  * we can race with another thread doing sys_setsid/sys_setpgid.
664  */
665 static inline struct pid *task_pgrp(struct task_struct *task)
666 {
667         return task->signal->pids[PIDTYPE_PGID];
668 }
669
670 static inline struct pid *task_session(struct task_struct *task)
671 {
672         return task->signal->pids[PIDTYPE_SID];
673 }
674
675 static inline int get_nr_threads(struct task_struct *task)
676 {
677         return task->signal->nr_threads;
678 }
679
680 static inline bool thread_group_leader(struct task_struct *p)
681 {
682         return p->exit_signal >= 0;
683 }
684
685 static inline
686 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
687 {
688         return p1->signal == p2->signal;
689 }
690
691 static inline struct task_struct *next_thread(const struct task_struct *p)
692 {
693         return list_entry_rcu(p->thread_group.next,
694                               struct task_struct, thread_group);
695 }
696
697 static inline int thread_group_empty(struct task_struct *p)
698 {
699         return list_empty(&p->thread_group);
700 }
701
702 #define delay_group_leader(p) \
703                 (thread_group_leader(p) && !thread_group_empty(p))
704
705 extern bool thread_group_exited(struct pid *pid);
706
707 extern struct sighand_struct *__lock_task_sighand(struct task_struct *task,
708                                                         unsigned long *flags);
709
710 static inline struct sighand_struct *lock_task_sighand(struct task_struct *task,
711                                                        unsigned long *flags)
712 {
713         struct sighand_struct *ret;
714
715         ret = __lock_task_sighand(task, flags);
716         (void)__cond_lock(&task->sighand->siglock, ret);
717         return ret;
718 }
719
720 static inline void unlock_task_sighand(struct task_struct *task,
721                                                 unsigned long *flags)
722 {
723         spin_unlock_irqrestore(&task->sighand->siglock, *flags);
724 }
725
726 #ifdef CONFIG_LOCKDEP
727 extern void lockdep_assert_task_sighand_held(struct task_struct *task);
728 #else
729 static inline void lockdep_assert_task_sighand_held(struct task_struct *task) { }
730 #endif
731
732 static inline unsigned long task_rlimit(const struct task_struct *task,
733                 unsigned int limit)
734 {
735         return READ_ONCE(task->signal->rlim[limit].rlim_cur);
736 }
737
738 static inline unsigned long task_rlimit_max(const struct task_struct *task,
739                 unsigned int limit)
740 {
741         return READ_ONCE(task->signal->rlim[limit].rlim_max);
742 }
743
744 static inline unsigned long rlimit(unsigned int limit)
745 {
746         return task_rlimit(current, limit);
747 }
748
749 static inline unsigned long rlimit_max(unsigned int limit)
750 {
751         return task_rlimit_max(current, limit);
752 }
753
754 #endif /* _LINUX_SCHED_SIGNAL_H */