macsec: remove first zero and add attribute name in comments
[linux-block.git] / include / linux / netdevice.h
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Definitions for the Interfaces handler.
7  *
8  * Version:     @(#)dev.h       1.0.10  08/12/93
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *              Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *              This program is free software; you can redistribute it and/or
19  *              modify it under the terms of the GNU General Public License
20  *              as published by the Free Software Foundation; either version
21  *              2 of the License, or (at your option) any later version.
22  *
23  *              Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55 #include <linux/hashtable.h>
56
57 struct netpoll_info;
58 struct device;
59 struct phy_device;
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* 802.15.4 specific */
63 struct wpan_dev;
64 struct mpls_dev;
65 /* UDP Tunnel offloads */
66 struct udp_tunnel_info;
67 struct bpf_prog;
68
69 void netdev_set_default_ethtool_ops(struct net_device *dev,
70                                     const struct ethtool_ops *ops);
71
72 /* Backlog congestion levels */
73 #define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
74 #define NET_RX_DROP             1       /* packet dropped */
75
76 /*
77  * Transmit return codes: transmit return codes originate from three different
78  * namespaces:
79  *
80  * - qdisc return codes
81  * - driver transmit return codes
82  * - errno values
83  *
84  * Drivers are allowed to return any one of those in their hard_start_xmit()
85  * function. Real network devices commonly used with qdiscs should only return
86  * the driver transmit return codes though - when qdiscs are used, the actual
87  * transmission happens asynchronously, so the value is not propagated to
88  * higher layers. Virtual network devices transmit synchronously; in this case
89  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
90  * others are propagated to higher layers.
91  */
92
93 /* qdisc ->enqueue() return codes. */
94 #define NET_XMIT_SUCCESS        0x00
95 #define NET_XMIT_DROP           0x01    /* skb dropped                  */
96 #define NET_XMIT_CN             0x02    /* congestion notification      */
97 #define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
98
99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100  * indicates that the device will soon be dropping packets, or already drops
101  * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK          0xf0
107
108 enum netdev_tx {
109         __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
110         NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
111         NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
112 };
113 typedef enum netdev_tx netdev_tx_t;
114
115 /*
116  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
117  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
118  */
119 static inline bool dev_xmit_complete(int rc)
120 {
121         /*
122          * Positive cases with an skb consumed by a driver:
123          * - successful transmission (rc == NETDEV_TX_OK)
124          * - error while transmitting (rc < 0)
125          * - error while queueing to a different device (rc & NET_XMIT_MASK)
126          */
127         if (likely(rc < NET_XMIT_MASK))
128                 return true;
129
130         return false;
131 }
132
133 /*
134  *      Compute the worst-case header length according to the protocols
135  *      used.
136  */
137
138 #if defined(CONFIG_HYPERV_NET)
139 # define LL_MAX_HEADER 128
140 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
141 # if defined(CONFIG_MAC80211_MESH)
142 #  define LL_MAX_HEADER 128
143 # else
144 #  define LL_MAX_HEADER 96
145 # endif
146 #else
147 # define LL_MAX_HEADER 32
148 #endif
149
150 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
151     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
152 #define MAX_HEADER LL_MAX_HEADER
153 #else
154 #define MAX_HEADER (LL_MAX_HEADER + 48)
155 #endif
156
157 /*
158  *      Old network device statistics. Fields are native words
159  *      (unsigned long) so they can be read and written atomically.
160  */
161
162 struct net_device_stats {
163         unsigned long   rx_packets;
164         unsigned long   tx_packets;
165         unsigned long   rx_bytes;
166         unsigned long   tx_bytes;
167         unsigned long   rx_errors;
168         unsigned long   tx_errors;
169         unsigned long   rx_dropped;
170         unsigned long   tx_dropped;
171         unsigned long   multicast;
172         unsigned long   collisions;
173         unsigned long   rx_length_errors;
174         unsigned long   rx_over_errors;
175         unsigned long   rx_crc_errors;
176         unsigned long   rx_frame_errors;
177         unsigned long   rx_fifo_errors;
178         unsigned long   rx_missed_errors;
179         unsigned long   tx_aborted_errors;
180         unsigned long   tx_carrier_errors;
181         unsigned long   tx_fifo_errors;
182         unsigned long   tx_heartbeat_errors;
183         unsigned long   tx_window_errors;
184         unsigned long   rx_compressed;
185         unsigned long   tx_compressed;
186 };
187
188
189 #include <linux/cache.h>
190 #include <linux/skbuff.h>
191
192 #ifdef CONFIG_RPS
193 #include <linux/static_key.h>
194 extern struct static_key rps_needed;
195 #endif
196
197 struct neighbour;
198 struct neigh_parms;
199 struct sk_buff;
200
201 struct netdev_hw_addr {
202         struct list_head        list;
203         unsigned char           addr[MAX_ADDR_LEN];
204         unsigned char           type;
205 #define NETDEV_HW_ADDR_T_LAN            1
206 #define NETDEV_HW_ADDR_T_SAN            2
207 #define NETDEV_HW_ADDR_T_SLAVE          3
208 #define NETDEV_HW_ADDR_T_UNICAST        4
209 #define NETDEV_HW_ADDR_T_MULTICAST      5
210         bool                    global_use;
211         int                     sync_cnt;
212         int                     refcount;
213         int                     synced;
214         struct rcu_head         rcu_head;
215 };
216
217 struct netdev_hw_addr_list {
218         struct list_head        list;
219         int                     count;
220 };
221
222 #define netdev_hw_addr_list_count(l) ((l)->count)
223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
224 #define netdev_hw_addr_list_for_each(ha, l) \
225         list_for_each_entry(ha, &(l)->list, list)
226
227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
229 #define netdev_for_each_uc_addr(ha, dev) \
230         netdev_hw_addr_list_for_each(ha, &(dev)->uc)
231
232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
234 #define netdev_for_each_mc_addr(ha, dev) \
235         netdev_hw_addr_list_for_each(ha, &(dev)->mc)
236
237 struct hh_cache {
238         u16             hh_len;
239         u16             __pad;
240         seqlock_t       hh_lock;
241
242         /* cached hardware header; allow for machine alignment needs.        */
243 #define HH_DATA_MOD     16
244 #define HH_DATA_OFF(__len) \
245         (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
246 #define HH_DATA_ALIGN(__len) \
247         (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
248         unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
249 };
250
251 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
252  * Alternative is:
253  *   dev->hard_header_len ? (dev->hard_header_len +
254  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
255  *
256  * We could use other alignment values, but we must maintain the
257  * relationship HH alignment <= LL alignment.
258  */
259 #define LL_RESERVED_SPACE(dev) \
260         ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
261 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
262         ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
263
264 struct header_ops {
265         int     (*create) (struct sk_buff *skb, struct net_device *dev,
266                            unsigned short type, const void *daddr,
267                            const void *saddr, unsigned int len);
268         int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
269         int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
270         void    (*cache_update)(struct hh_cache *hh,
271                                 const struct net_device *dev,
272                                 const unsigned char *haddr);
273         bool    (*validate)(const char *ll_header, unsigned int len);
274 };
275
276 /* These flag bits are private to the generic network queueing
277  * layer; they may not be explicitly referenced by any other
278  * code.
279  */
280
281 enum netdev_state_t {
282         __LINK_STATE_START,
283         __LINK_STATE_PRESENT,
284         __LINK_STATE_NOCARRIER,
285         __LINK_STATE_LINKWATCH_PENDING,
286         __LINK_STATE_DORMANT,
287 };
288
289
290 /*
291  * This structure holds boot-time configured netdevice settings. They
292  * are then used in the device probing.
293  */
294 struct netdev_boot_setup {
295         char name[IFNAMSIZ];
296         struct ifmap map;
297 };
298 #define NETDEV_BOOT_SETUP_MAX 8
299
300 int __init netdev_boot_setup(char *str);
301
302 /*
303  * Structure for NAPI scheduling similar to tasklet but with weighting
304  */
305 struct napi_struct {
306         /* The poll_list must only be managed by the entity which
307          * changes the state of the NAPI_STATE_SCHED bit.  This means
308          * whoever atomically sets that bit can add this napi_struct
309          * to the per-CPU poll_list, and whoever clears that bit
310          * can remove from the list right before clearing the bit.
311          */
312         struct list_head        poll_list;
313
314         unsigned long           state;
315         int                     weight;
316         unsigned int            gro_count;
317         int                     (*poll)(struct napi_struct *, int);
318 #ifdef CONFIG_NETPOLL
319         int                     poll_owner;
320 #endif
321         struct net_device       *dev;
322         struct sk_buff          *gro_list;
323         struct sk_buff          *skb;
324         struct hrtimer          timer;
325         struct list_head        dev_list;
326         struct hlist_node       napi_hash_node;
327         unsigned int            napi_id;
328 };
329
330 enum {
331         NAPI_STATE_SCHED,       /* Poll is scheduled */
332         NAPI_STATE_DISABLE,     /* Disable pending */
333         NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
334         NAPI_STATE_HASHED,      /* In NAPI hash (busy polling possible) */
335         NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
336         NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
337 };
338
339 enum {
340         NAPIF_STATE_SCHED        = (1UL << NAPI_STATE_SCHED),
341         NAPIF_STATE_DISABLE      = (1UL << NAPI_STATE_DISABLE),
342         NAPIF_STATE_NPSVC        = (1UL << NAPI_STATE_NPSVC),
343         NAPIF_STATE_HASHED       = (1UL << NAPI_STATE_HASHED),
344         NAPIF_STATE_NO_BUSY_POLL = (1UL << NAPI_STATE_NO_BUSY_POLL),
345         NAPIF_STATE_IN_BUSY_POLL = (1UL << NAPI_STATE_IN_BUSY_POLL),
346 };
347
348 enum gro_result {
349         GRO_MERGED,
350         GRO_MERGED_FREE,
351         GRO_HELD,
352         GRO_NORMAL,
353         GRO_DROP,
354 };
355 typedef enum gro_result gro_result_t;
356
357 /*
358  * enum rx_handler_result - Possible return values for rx_handlers.
359  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
360  * further.
361  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
362  * case skb->dev was changed by rx_handler.
363  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
364  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
365  *
366  * rx_handlers are functions called from inside __netif_receive_skb(), to do
367  * special processing of the skb, prior to delivery to protocol handlers.
368  *
369  * Currently, a net_device can only have a single rx_handler registered. Trying
370  * to register a second rx_handler will return -EBUSY.
371  *
372  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
373  * To unregister a rx_handler on a net_device, use
374  * netdev_rx_handler_unregister().
375  *
376  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
377  * do with the skb.
378  *
379  * If the rx_handler consumed the skb in some way, it should return
380  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
381  * the skb to be delivered in some other way.
382  *
383  * If the rx_handler changed skb->dev, to divert the skb to another
384  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
385  * new device will be called if it exists.
386  *
387  * If the rx_handler decides the skb should be ignored, it should return
388  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
389  * are registered on exact device (ptype->dev == skb->dev).
390  *
391  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
392  * delivered, it should return RX_HANDLER_PASS.
393  *
394  * A device without a registered rx_handler will behave as if rx_handler
395  * returned RX_HANDLER_PASS.
396  */
397
398 enum rx_handler_result {
399         RX_HANDLER_CONSUMED,
400         RX_HANDLER_ANOTHER,
401         RX_HANDLER_EXACT,
402         RX_HANDLER_PASS,
403 };
404 typedef enum rx_handler_result rx_handler_result_t;
405 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
406
407 void __napi_schedule(struct napi_struct *n);
408 void __napi_schedule_irqoff(struct napi_struct *n);
409
410 static inline bool napi_disable_pending(struct napi_struct *n)
411 {
412         return test_bit(NAPI_STATE_DISABLE, &n->state);
413 }
414
415 /**
416  *      napi_schedule_prep - check if NAPI can be scheduled
417  *      @n: NAPI context
418  *
419  * Test if NAPI routine is already running, and if not mark
420  * it as running.  This is used as a condition variable to
421  * insure only one NAPI poll instance runs.  We also make
422  * sure there is no pending NAPI disable.
423  */
424 static inline bool napi_schedule_prep(struct napi_struct *n)
425 {
426         return !napi_disable_pending(n) &&
427                 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
428 }
429
430 /**
431  *      napi_schedule - schedule NAPI poll
432  *      @n: NAPI context
433  *
434  * Schedule NAPI poll routine to be called if it is not already
435  * running.
436  */
437 static inline void napi_schedule(struct napi_struct *n)
438 {
439         if (napi_schedule_prep(n))
440                 __napi_schedule(n);
441 }
442
443 /**
444  *      napi_schedule_irqoff - schedule NAPI poll
445  *      @n: NAPI context
446  *
447  * Variant of napi_schedule(), assuming hard irqs are masked.
448  */
449 static inline void napi_schedule_irqoff(struct napi_struct *n)
450 {
451         if (napi_schedule_prep(n))
452                 __napi_schedule_irqoff(n);
453 }
454
455 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
456 static inline bool napi_reschedule(struct napi_struct *napi)
457 {
458         if (napi_schedule_prep(napi)) {
459                 __napi_schedule(napi);
460                 return true;
461         }
462         return false;
463 }
464
465 bool __napi_complete(struct napi_struct *n);
466 bool napi_complete_done(struct napi_struct *n, int work_done);
467 /**
468  *      napi_complete - NAPI processing complete
469  *      @n: NAPI context
470  *
471  * Mark NAPI processing as complete.
472  * Consider using napi_complete_done() instead.
473  * Return false if device should avoid rearming interrupts.
474  */
475 static inline bool napi_complete(struct napi_struct *n)
476 {
477         return napi_complete_done(n, 0);
478 }
479
480 /**
481  *      napi_hash_del - remove a NAPI from global table
482  *      @napi: NAPI context
483  *
484  * Warning: caller must observe RCU grace period
485  * before freeing memory containing @napi, if
486  * this function returns true.
487  * Note: core networking stack automatically calls it
488  * from netif_napi_del().
489  * Drivers might want to call this helper to combine all
490  * the needed RCU grace periods into a single one.
491  */
492 bool napi_hash_del(struct napi_struct *napi);
493
494 /**
495  *      napi_disable - prevent NAPI from scheduling
496  *      @n: NAPI context
497  *
498  * Stop NAPI from being scheduled on this context.
499  * Waits till any outstanding processing completes.
500  */
501 void napi_disable(struct napi_struct *n);
502
503 /**
504  *      napi_enable - enable NAPI scheduling
505  *      @n: NAPI context
506  *
507  * Resume NAPI from being scheduled on this context.
508  * Must be paired with napi_disable.
509  */
510 static inline void napi_enable(struct napi_struct *n)
511 {
512         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
513         smp_mb__before_atomic();
514         clear_bit(NAPI_STATE_SCHED, &n->state);
515         clear_bit(NAPI_STATE_NPSVC, &n->state);
516 }
517
518 /**
519  *      napi_synchronize - wait until NAPI is not running
520  *      @n: NAPI context
521  *
522  * Wait until NAPI is done being scheduled on this context.
523  * Waits till any outstanding processing completes but
524  * does not disable future activations.
525  */
526 static inline void napi_synchronize(const struct napi_struct *n)
527 {
528         if (IS_ENABLED(CONFIG_SMP))
529                 while (test_bit(NAPI_STATE_SCHED, &n->state))
530                         msleep(1);
531         else
532                 barrier();
533 }
534
535 enum netdev_queue_state_t {
536         __QUEUE_STATE_DRV_XOFF,
537         __QUEUE_STATE_STACK_XOFF,
538         __QUEUE_STATE_FROZEN,
539 };
540
541 #define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
542 #define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
543 #define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
544
545 #define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
546 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
547                                         QUEUE_STATE_FROZEN)
548 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
549                                         QUEUE_STATE_FROZEN)
550
551 /*
552  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
553  * netif_tx_* functions below are used to manipulate this flag.  The
554  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
555  * queue independently.  The netif_xmit_*stopped functions below are called
556  * to check if the queue has been stopped by the driver or stack (either
557  * of the XOFF bits are set in the state).  Drivers should not need to call
558  * netif_xmit*stopped functions, they should only be using netif_tx_*.
559  */
560
561 struct netdev_queue {
562 /*
563  * read-mostly part
564  */
565         struct net_device       *dev;
566         struct Qdisc __rcu      *qdisc;
567         struct Qdisc            *qdisc_sleeping;
568 #ifdef CONFIG_SYSFS
569         struct kobject          kobj;
570 #endif
571 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
572         int                     numa_node;
573 #endif
574         unsigned long           tx_maxrate;
575         /*
576          * Number of TX timeouts for this queue
577          * (/sys/class/net/DEV/Q/trans_timeout)
578          */
579         unsigned long           trans_timeout;
580 /*
581  * write-mostly part
582  */
583         spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
584         int                     xmit_lock_owner;
585         /*
586          * Time (in jiffies) of last Tx
587          */
588         unsigned long           trans_start;
589
590         unsigned long           state;
591
592 #ifdef CONFIG_BQL
593         struct dql              dql;
594 #endif
595 } ____cacheline_aligned_in_smp;
596
597 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
598 {
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600         return q->numa_node;
601 #else
602         return NUMA_NO_NODE;
603 #endif
604 }
605
606 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
607 {
608 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
609         q->numa_node = node;
610 #endif
611 }
612
613 #ifdef CONFIG_RPS
614 /*
615  * This structure holds an RPS map which can be of variable length.  The
616  * map is an array of CPUs.
617  */
618 struct rps_map {
619         unsigned int len;
620         struct rcu_head rcu;
621         u16 cpus[0];
622 };
623 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
624
625 /*
626  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
627  * tail pointer for that CPU's input queue at the time of last enqueue, and
628  * a hardware filter index.
629  */
630 struct rps_dev_flow {
631         u16 cpu;
632         u16 filter;
633         unsigned int last_qtail;
634 };
635 #define RPS_NO_FILTER 0xffff
636
637 /*
638  * The rps_dev_flow_table structure contains a table of flow mappings.
639  */
640 struct rps_dev_flow_table {
641         unsigned int mask;
642         struct rcu_head rcu;
643         struct rps_dev_flow flows[0];
644 };
645 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
646     ((_num) * sizeof(struct rps_dev_flow)))
647
648 /*
649  * The rps_sock_flow_table contains mappings of flows to the last CPU
650  * on which they were processed by the application (set in recvmsg).
651  * Each entry is a 32bit value. Upper part is the high-order bits
652  * of flow hash, lower part is CPU number.
653  * rps_cpu_mask is used to partition the space, depending on number of
654  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
655  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
656  * meaning we use 32-6=26 bits for the hash.
657  */
658 struct rps_sock_flow_table {
659         u32     mask;
660
661         u32     ents[0] ____cacheline_aligned_in_smp;
662 };
663 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
664
665 #define RPS_NO_CPU 0xffff
666
667 extern u32 rps_cpu_mask;
668 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
669
670 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
671                                         u32 hash)
672 {
673         if (table && hash) {
674                 unsigned int index = hash & table->mask;
675                 u32 val = hash & ~rps_cpu_mask;
676
677                 /* We only give a hint, preemption can change CPU under us */
678                 val |= raw_smp_processor_id();
679
680                 if (table->ents[index] != val)
681                         table->ents[index] = val;
682         }
683 }
684
685 #ifdef CONFIG_RFS_ACCEL
686 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
687                          u16 filter_id);
688 #endif
689 #endif /* CONFIG_RPS */
690
691 /* This structure contains an instance of an RX queue. */
692 struct netdev_rx_queue {
693 #ifdef CONFIG_RPS
694         struct rps_map __rcu            *rps_map;
695         struct rps_dev_flow_table __rcu *rps_flow_table;
696 #endif
697         struct kobject                  kobj;
698         struct net_device               *dev;
699 } ____cacheline_aligned_in_smp;
700
701 /*
702  * RX queue sysfs structures and functions.
703  */
704 struct rx_queue_attribute {
705         struct attribute attr;
706         ssize_t (*show)(struct netdev_rx_queue *queue,
707             struct rx_queue_attribute *attr, char *buf);
708         ssize_t (*store)(struct netdev_rx_queue *queue,
709             struct rx_queue_attribute *attr, const char *buf, size_t len);
710 };
711
712 #ifdef CONFIG_XPS
713 /*
714  * This structure holds an XPS map which can be of variable length.  The
715  * map is an array of queues.
716  */
717 struct xps_map {
718         unsigned int len;
719         unsigned int alloc_len;
720         struct rcu_head rcu;
721         u16 queues[0];
722 };
723 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
724 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
725        - sizeof(struct xps_map)) / sizeof(u16))
726
727 /*
728  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
729  */
730 struct xps_dev_maps {
731         struct rcu_head rcu;
732         struct xps_map __rcu *cpu_map[0];
733 };
734 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +          \
735         (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
736 #endif /* CONFIG_XPS */
737
738 #define TC_MAX_QUEUE    16
739 #define TC_BITMASK      15
740 /* HW offloaded queuing disciplines txq count and offset maps */
741 struct netdev_tc_txq {
742         u16 count;
743         u16 offset;
744 };
745
746 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
747 /*
748  * This structure is to hold information about the device
749  * configured to run FCoE protocol stack.
750  */
751 struct netdev_fcoe_hbainfo {
752         char    manufacturer[64];
753         char    serial_number[64];
754         char    hardware_version[64];
755         char    driver_version[64];
756         char    optionrom_version[64];
757         char    firmware_version[64];
758         char    model[256];
759         char    model_description[256];
760 };
761 #endif
762
763 #define MAX_PHYS_ITEM_ID_LEN 32
764
765 /* This structure holds a unique identifier to identify some
766  * physical item (port for example) used by a netdevice.
767  */
768 struct netdev_phys_item_id {
769         unsigned char id[MAX_PHYS_ITEM_ID_LEN];
770         unsigned char id_len;
771 };
772
773 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
774                                             struct netdev_phys_item_id *b)
775 {
776         return a->id_len == b->id_len &&
777                memcmp(a->id, b->id, a->id_len) == 0;
778 }
779
780 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
781                                        struct sk_buff *skb);
782
783 /* These structures hold the attributes of qdisc and classifiers
784  * that are being passed to the netdevice through the setup_tc op.
785  */
786 enum {
787         TC_SETUP_MQPRIO,
788         TC_SETUP_CLSU32,
789         TC_SETUP_CLSFLOWER,
790         TC_SETUP_MATCHALL,
791         TC_SETUP_CLSBPF,
792 };
793
794 struct tc_cls_u32_offload;
795
796 struct tc_to_netdev {
797         unsigned int type;
798         union {
799                 u8 tc;
800                 struct tc_cls_u32_offload *cls_u32;
801                 struct tc_cls_flower_offload *cls_flower;
802                 struct tc_cls_matchall_offload *cls_mall;
803                 struct tc_cls_bpf_offload *cls_bpf;
804         };
805         bool egress_dev;
806 };
807
808 /* These structures hold the attributes of xdp state that are being passed
809  * to the netdevice through the xdp op.
810  */
811 enum xdp_netdev_command {
812         /* Set or clear a bpf program used in the earliest stages of packet
813          * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
814          * is responsible for calling bpf_prog_put on any old progs that are
815          * stored. In case of error, the callee need not release the new prog
816          * reference, but on success it takes ownership and must bpf_prog_put
817          * when it is no longer used.
818          */
819         XDP_SETUP_PROG,
820         /* Check if a bpf program is set on the device.  The callee should
821          * return true if a program is currently attached and running.
822          */
823         XDP_QUERY_PROG,
824 };
825
826 struct netdev_xdp {
827         enum xdp_netdev_command command;
828         union {
829                 /* XDP_SETUP_PROG */
830                 struct bpf_prog *prog;
831                 /* XDP_QUERY_PROG */
832                 bool prog_attached;
833         };
834 };
835
836 /*
837  * This structure defines the management hooks for network devices.
838  * The following hooks can be defined; unless noted otherwise, they are
839  * optional and can be filled with a null pointer.
840  *
841  * int (*ndo_init)(struct net_device *dev);
842  *     This function is called once when a network device is registered.
843  *     The network device can use this for any late stage initialization
844  *     or semantic validation. It can fail with an error code which will
845  *     be propagated back to register_netdev.
846  *
847  * void (*ndo_uninit)(struct net_device *dev);
848  *     This function is called when device is unregistered or when registration
849  *     fails. It is not called if init fails.
850  *
851  * int (*ndo_open)(struct net_device *dev);
852  *     This function is called when a network device transitions to the up
853  *     state.
854  *
855  * int (*ndo_stop)(struct net_device *dev);
856  *     This function is called when a network device transitions to the down
857  *     state.
858  *
859  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
860  *                               struct net_device *dev);
861  *      Called when a packet needs to be transmitted.
862  *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
863  *      the queue before that can happen; it's for obsolete devices and weird
864  *      corner cases, but the stack really does a non-trivial amount
865  *      of useless work if you return NETDEV_TX_BUSY.
866  *      Required; cannot be NULL.
867  *
868  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
869  *              netdev_features_t features);
870  *      Adjusts the requested feature flags according to device-specific
871  *      constraints, and returns the resulting flags. Must not modify
872  *      the device state.
873  *
874  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
875  *                         void *accel_priv, select_queue_fallback_t fallback);
876  *      Called to decide which queue to use when device supports multiple
877  *      transmit queues.
878  *
879  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
880  *      This function is called to allow device receiver to make
881  *      changes to configuration when multicast or promiscuous is enabled.
882  *
883  * void (*ndo_set_rx_mode)(struct net_device *dev);
884  *      This function is called device changes address list filtering.
885  *      If driver handles unicast address filtering, it should set
886  *      IFF_UNICAST_FLT in its priv_flags.
887  *
888  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
889  *      This function  is called when the Media Access Control address
890  *      needs to be changed. If this interface is not defined, the
891  *      MAC address can not be changed.
892  *
893  * int (*ndo_validate_addr)(struct net_device *dev);
894  *      Test if Media Access Control address is valid for the device.
895  *
896  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
897  *      Called when a user requests an ioctl which can't be handled by
898  *      the generic interface code. If not defined ioctls return
899  *      not supported error code.
900  *
901  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
902  *      Used to set network devices bus interface parameters. This interface
903  *      is retained for legacy reasons; new devices should use the bus
904  *      interface (PCI) for low level management.
905  *
906  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
907  *      Called when a user wants to change the Maximum Transfer Unit
908  *      of a device. If not defined, any request to change MTU will
909  *      will return an error.
910  *
911  * void (*ndo_tx_timeout)(struct net_device *dev);
912  *      Callback used when the transmitter has not made any progress
913  *      for dev->watchdog ticks.
914  *
915  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
916  *                      struct rtnl_link_stats64 *storage);
917  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
918  *      Called when a user wants to get the network device usage
919  *      statistics. Drivers must do one of the following:
920  *      1. Define @ndo_get_stats64 to fill in a zero-initialised
921  *         rtnl_link_stats64 structure passed by the caller.
922  *      2. Define @ndo_get_stats to update a net_device_stats structure
923  *         (which should normally be dev->stats) and return a pointer to
924  *         it. The structure may be changed asynchronously only if each
925  *         field is written atomically.
926  *      3. Update dev->stats asynchronously and atomically, and define
927  *         neither operation.
928  *
929  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
930  *      Return true if this device supports offload stats of this attr_id.
931  *
932  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
933  *      void *attr_data)
934  *      Get statistics for offload operations by attr_id. Write it into the
935  *      attr_data pointer.
936  *
937  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
938  *      If device supports VLAN filtering this function is called when a
939  *      VLAN id is registered.
940  *
941  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
942  *      If device supports VLAN filtering this function is called when a
943  *      VLAN id is unregistered.
944  *
945  * void (*ndo_poll_controller)(struct net_device *dev);
946  *
947  *      SR-IOV management functions.
948  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
949  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
950  *                        u8 qos, __be16 proto);
951  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
952  *                        int max_tx_rate);
953  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
954  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
955  * int (*ndo_get_vf_config)(struct net_device *dev,
956  *                          int vf, struct ifla_vf_info *ivf);
957  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
958  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
959  *                        struct nlattr *port[]);
960  *
961  *      Enable or disable the VF ability to query its RSS Redirection Table and
962  *      Hash Key. This is needed since on some devices VF share this information
963  *      with PF and querying it may introduce a theoretical security risk.
964  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
965  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
966  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
967  *      Called to setup 'tc' number of traffic classes in the net device. This
968  *      is always called from the stack with the rtnl lock held and netif tx
969  *      queues stopped. This allows the netdevice to perform queue management
970  *      safely.
971  *
972  *      Fiber Channel over Ethernet (FCoE) offload functions.
973  * int (*ndo_fcoe_enable)(struct net_device *dev);
974  *      Called when the FCoE protocol stack wants to start using LLD for FCoE
975  *      so the underlying device can perform whatever needed configuration or
976  *      initialization to support acceleration of FCoE traffic.
977  *
978  * int (*ndo_fcoe_disable)(struct net_device *dev);
979  *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
980  *      so the underlying device can perform whatever needed clean-ups to
981  *      stop supporting acceleration of FCoE traffic.
982  *
983  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
984  *                           struct scatterlist *sgl, unsigned int sgc);
985  *      Called when the FCoE Initiator wants to initialize an I/O that
986  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
987  *      perform necessary setup and returns 1 to indicate the device is set up
988  *      successfully to perform DDP on this I/O, otherwise this returns 0.
989  *
990  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
991  *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
992  *      indicated by the FC exchange id 'xid', so the underlying device can
993  *      clean up and reuse resources for later DDP requests.
994  *
995  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
996  *                            struct scatterlist *sgl, unsigned int sgc);
997  *      Called when the FCoE Target wants to initialize an I/O that
998  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
999  *      perform necessary setup and returns 1 to indicate the device is set up
1000  *      successfully to perform DDP on this I/O, otherwise this returns 0.
1001  *
1002  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1003  *                             struct netdev_fcoe_hbainfo *hbainfo);
1004  *      Called when the FCoE Protocol stack wants information on the underlying
1005  *      device. This information is utilized by the FCoE protocol stack to
1006  *      register attributes with Fiber Channel management service as per the
1007  *      FC-GS Fabric Device Management Information(FDMI) specification.
1008  *
1009  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1010  *      Called when the underlying device wants to override default World Wide
1011  *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1012  *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1013  *      protocol stack to use.
1014  *
1015  *      RFS acceleration.
1016  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1017  *                          u16 rxq_index, u32 flow_id);
1018  *      Set hardware filter for RFS.  rxq_index is the target queue index;
1019  *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1020  *      Return the filter ID on success, or a negative error code.
1021  *
1022  *      Slave management functions (for bridge, bonding, etc).
1023  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1024  *      Called to make another netdev an underling.
1025  *
1026  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1027  *      Called to release previously enslaved netdev.
1028  *
1029  *      Feature/offload setting functions.
1030  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1031  *      Called to update device configuration to new features. Passed
1032  *      feature set might be less than what was returned by ndo_fix_features()).
1033  *      Must return >0 or -errno if it changed dev->features itself.
1034  *
1035  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1036  *                    struct net_device *dev,
1037  *                    const unsigned char *addr, u16 vid, u16 flags)
1038  *      Adds an FDB entry to dev for addr.
1039  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1040  *                    struct net_device *dev,
1041  *                    const unsigned char *addr, u16 vid)
1042  *      Deletes the FDB entry from dev coresponding to addr.
1043  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1044  *                     struct net_device *dev, struct net_device *filter_dev,
1045  *                     int *idx)
1046  *      Used to add FDB entries to dump requests. Implementers should add
1047  *      entries to skb and update idx with the number of entries.
1048  *
1049  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1050  *                           u16 flags)
1051  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1052  *                           struct net_device *dev, u32 filter_mask,
1053  *                           int nlflags)
1054  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1055  *                           u16 flags);
1056  *
1057  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1058  *      Called to change device carrier. Soft-devices (like dummy, team, etc)
1059  *      which do not represent real hardware may define this to allow their
1060  *      userspace components to manage their virtual carrier state. Devices
1061  *      that determine carrier state from physical hardware properties (eg
1062  *      network cables) or protocol-dependent mechanisms (eg
1063  *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1064  *
1065  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1066  *                             struct netdev_phys_item_id *ppid);
1067  *      Called to get ID of physical port of this device. If driver does
1068  *      not implement this, it is assumed that the hw is not able to have
1069  *      multiple net devices on single physical port.
1070  *
1071  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1072  *                            struct udp_tunnel_info *ti);
1073  *      Called by UDP tunnel to notify a driver about the UDP port and socket
1074  *      address family that a UDP tunnel is listnening to. It is called only
1075  *      when a new port starts listening. The operation is protected by the
1076  *      RTNL.
1077  *
1078  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1079  *                            struct udp_tunnel_info *ti);
1080  *      Called by UDP tunnel to notify the driver about a UDP port and socket
1081  *      address family that the UDP tunnel is not listening to anymore. The
1082  *      operation is protected by the RTNL.
1083  *
1084  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1085  *                               struct net_device *dev)
1086  *      Called by upper layer devices to accelerate switching or other
1087  *      station functionality into hardware. 'pdev is the lowerdev
1088  *      to use for the offload and 'dev' is the net device that will
1089  *      back the offload. Returns a pointer to the private structure
1090  *      the upper layer will maintain.
1091  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1092  *      Called by upper layer device to delete the station created
1093  *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1094  *      the station and priv is the structure returned by the add
1095  *      operation.
1096  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1097  *                                    struct net_device *dev,
1098  *                                    void *priv);
1099  *      Callback to use for xmit over the accelerated station. This
1100  *      is used in place of ndo_start_xmit on accelerated net
1101  *      devices.
1102  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1103  *                                         struct net_device *dev
1104  *                                         netdev_features_t features);
1105  *      Called by core transmit path to determine if device is capable of
1106  *      performing offload operations on a given packet. This is to give
1107  *      the device an opportunity to implement any restrictions that cannot
1108  *      be otherwise expressed by feature flags. The check is called with
1109  *      the set of features that the stack has calculated and it returns
1110  *      those the driver believes to be appropriate.
1111  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1112  *                           int queue_index, u32 maxrate);
1113  *      Called when a user wants to set a max-rate limitation of specific
1114  *      TX queue.
1115  * int (*ndo_get_iflink)(const struct net_device *dev);
1116  *      Called to get the iflink value of this device.
1117  * void (*ndo_change_proto_down)(struct net_device *dev,
1118  *                               bool proto_down);
1119  *      This function is used to pass protocol port error state information
1120  *      to the switch driver. The switch driver can react to the proto_down
1121  *      by doing a phys down on the associated switch port.
1122  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1123  *      This function is used to get egress tunnel information for given skb.
1124  *      This is useful for retrieving outer tunnel header parameters while
1125  *      sampling packet.
1126  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1127  *      This function is used to specify the headroom that the skb must
1128  *      consider when allocation skb during packet reception. Setting
1129  *      appropriate rx headroom value allows avoiding skb head copy on
1130  *      forward. Setting a negative value resets the rx headroom to the
1131  *      default value.
1132  * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1133  *      This function is used to set or query state related to XDP on the
1134  *      netdevice. See definition of enum xdp_netdev_command for details.
1135  *
1136  */
1137 struct net_device_ops {
1138         int                     (*ndo_init)(struct net_device *dev);
1139         void                    (*ndo_uninit)(struct net_device *dev);
1140         int                     (*ndo_open)(struct net_device *dev);
1141         int                     (*ndo_stop)(struct net_device *dev);
1142         netdev_tx_t             (*ndo_start_xmit)(struct sk_buff *skb,
1143                                                   struct net_device *dev);
1144         netdev_features_t       (*ndo_features_check)(struct sk_buff *skb,
1145                                                       struct net_device *dev,
1146                                                       netdev_features_t features);
1147         u16                     (*ndo_select_queue)(struct net_device *dev,
1148                                                     struct sk_buff *skb,
1149                                                     void *accel_priv,
1150                                                     select_queue_fallback_t fallback);
1151         void                    (*ndo_change_rx_flags)(struct net_device *dev,
1152                                                        int flags);
1153         void                    (*ndo_set_rx_mode)(struct net_device *dev);
1154         int                     (*ndo_set_mac_address)(struct net_device *dev,
1155                                                        void *addr);
1156         int                     (*ndo_validate_addr)(struct net_device *dev);
1157         int                     (*ndo_do_ioctl)(struct net_device *dev,
1158                                                 struct ifreq *ifr, int cmd);
1159         int                     (*ndo_set_config)(struct net_device *dev,
1160                                                   struct ifmap *map);
1161         int                     (*ndo_change_mtu)(struct net_device *dev,
1162                                                   int new_mtu);
1163         int                     (*ndo_neigh_setup)(struct net_device *dev,
1164                                                    struct neigh_parms *);
1165         void                    (*ndo_tx_timeout) (struct net_device *dev);
1166
1167         struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1168                                                      struct rtnl_link_stats64 *storage);
1169         bool                    (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1170         int                     (*ndo_get_offload_stats)(int attr_id,
1171                                                          const struct net_device *dev,
1172                                                          void *attr_data);
1173         struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1174
1175         int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1176                                                        __be16 proto, u16 vid);
1177         int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1178                                                         __be16 proto, u16 vid);
1179 #ifdef CONFIG_NET_POLL_CONTROLLER
1180         void                    (*ndo_poll_controller)(struct net_device *dev);
1181         int                     (*ndo_netpoll_setup)(struct net_device *dev,
1182                                                      struct netpoll_info *info);
1183         void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1184 #endif
1185 #ifdef CONFIG_NET_RX_BUSY_POLL
1186         int                     (*ndo_busy_poll)(struct napi_struct *dev);
1187 #endif
1188         int                     (*ndo_set_vf_mac)(struct net_device *dev,
1189                                                   int queue, u8 *mac);
1190         int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1191                                                    int queue, u16 vlan,
1192                                                    u8 qos, __be16 proto);
1193         int                     (*ndo_set_vf_rate)(struct net_device *dev,
1194                                                    int vf, int min_tx_rate,
1195                                                    int max_tx_rate);
1196         int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1197                                                        int vf, bool setting);
1198         int                     (*ndo_set_vf_trust)(struct net_device *dev,
1199                                                     int vf, bool setting);
1200         int                     (*ndo_get_vf_config)(struct net_device *dev,
1201                                                      int vf,
1202                                                      struct ifla_vf_info *ivf);
1203         int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1204                                                          int vf, int link_state);
1205         int                     (*ndo_get_vf_stats)(struct net_device *dev,
1206                                                     int vf,
1207                                                     struct ifla_vf_stats
1208                                                     *vf_stats);
1209         int                     (*ndo_set_vf_port)(struct net_device *dev,
1210                                                    int vf,
1211                                                    struct nlattr *port[]);
1212         int                     (*ndo_get_vf_port)(struct net_device *dev,
1213                                                    int vf, struct sk_buff *skb);
1214         int                     (*ndo_set_vf_guid)(struct net_device *dev,
1215                                                    int vf, u64 guid,
1216                                                    int guid_type);
1217         int                     (*ndo_set_vf_rss_query_en)(
1218                                                    struct net_device *dev,
1219                                                    int vf, bool setting);
1220         int                     (*ndo_setup_tc)(struct net_device *dev,
1221                                                 u32 handle,
1222                                                 __be16 protocol,
1223                                                 struct tc_to_netdev *tc);
1224 #if IS_ENABLED(CONFIG_FCOE)
1225         int                     (*ndo_fcoe_enable)(struct net_device *dev);
1226         int                     (*ndo_fcoe_disable)(struct net_device *dev);
1227         int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1228                                                       u16 xid,
1229                                                       struct scatterlist *sgl,
1230                                                       unsigned int sgc);
1231         int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1232                                                      u16 xid);
1233         int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1234                                                        u16 xid,
1235                                                        struct scatterlist *sgl,
1236                                                        unsigned int sgc);
1237         int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1238                                                         struct netdev_fcoe_hbainfo *hbainfo);
1239 #endif
1240
1241 #if IS_ENABLED(CONFIG_LIBFCOE)
1242 #define NETDEV_FCOE_WWNN 0
1243 #define NETDEV_FCOE_WWPN 1
1244         int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1245                                                     u64 *wwn, int type);
1246 #endif
1247
1248 #ifdef CONFIG_RFS_ACCEL
1249         int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1250                                                      const struct sk_buff *skb,
1251                                                      u16 rxq_index,
1252                                                      u32 flow_id);
1253 #endif
1254         int                     (*ndo_add_slave)(struct net_device *dev,
1255                                                  struct net_device *slave_dev);
1256         int                     (*ndo_del_slave)(struct net_device *dev,
1257                                                  struct net_device *slave_dev);
1258         netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1259                                                     netdev_features_t features);
1260         int                     (*ndo_set_features)(struct net_device *dev,
1261                                                     netdev_features_t features);
1262         int                     (*ndo_neigh_construct)(struct net_device *dev,
1263                                                        struct neighbour *n);
1264         void                    (*ndo_neigh_destroy)(struct net_device *dev,
1265                                                      struct neighbour *n);
1266
1267         int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1268                                                struct nlattr *tb[],
1269                                                struct net_device *dev,
1270                                                const unsigned char *addr,
1271                                                u16 vid,
1272                                                u16 flags);
1273         int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1274                                                struct nlattr *tb[],
1275                                                struct net_device *dev,
1276                                                const unsigned char *addr,
1277                                                u16 vid);
1278         int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1279                                                 struct netlink_callback *cb,
1280                                                 struct net_device *dev,
1281                                                 struct net_device *filter_dev,
1282                                                 int *idx);
1283
1284         int                     (*ndo_bridge_setlink)(struct net_device *dev,
1285                                                       struct nlmsghdr *nlh,
1286                                                       u16 flags);
1287         int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1288                                                       u32 pid, u32 seq,
1289                                                       struct net_device *dev,
1290                                                       u32 filter_mask,
1291                                                       int nlflags);
1292         int                     (*ndo_bridge_dellink)(struct net_device *dev,
1293                                                       struct nlmsghdr *nlh,
1294                                                       u16 flags);
1295         int                     (*ndo_change_carrier)(struct net_device *dev,
1296                                                       bool new_carrier);
1297         int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1298                                                         struct netdev_phys_item_id *ppid);
1299         int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1300                                                           char *name, size_t len);
1301         void                    (*ndo_udp_tunnel_add)(struct net_device *dev,
1302                                                       struct udp_tunnel_info *ti);
1303         void                    (*ndo_udp_tunnel_del)(struct net_device *dev,
1304                                                       struct udp_tunnel_info *ti);
1305         void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1306                                                         struct net_device *dev);
1307         void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1308                                                         void *priv);
1309
1310         netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1311                                                         struct net_device *dev,
1312                                                         void *priv);
1313         int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1314         int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1315                                                       int queue_index,
1316                                                       u32 maxrate);
1317         int                     (*ndo_get_iflink)(const struct net_device *dev);
1318         int                     (*ndo_change_proto_down)(struct net_device *dev,
1319                                                          bool proto_down);
1320         int                     (*ndo_fill_metadata_dst)(struct net_device *dev,
1321                                                        struct sk_buff *skb);
1322         void                    (*ndo_set_rx_headroom)(struct net_device *dev,
1323                                                        int needed_headroom);
1324         int                     (*ndo_xdp)(struct net_device *dev,
1325                                            struct netdev_xdp *xdp);
1326 };
1327
1328 /**
1329  * enum net_device_priv_flags - &struct net_device priv_flags
1330  *
1331  * These are the &struct net_device, they are only set internally
1332  * by drivers and used in the kernel. These flags are invisible to
1333  * userspace; this means that the order of these flags can change
1334  * during any kernel release.
1335  *
1336  * You should have a pretty good reason to be extending these flags.
1337  *
1338  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1339  * @IFF_EBRIDGE: Ethernet bridging device
1340  * @IFF_BONDING: bonding master or slave
1341  * @IFF_ISATAP: ISATAP interface (RFC4214)
1342  * @IFF_WAN_HDLC: WAN HDLC device
1343  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1344  *      release skb->dst
1345  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1346  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1347  * @IFF_MACVLAN_PORT: device used as macvlan port
1348  * @IFF_BRIDGE_PORT: device used as bridge port
1349  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1350  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1351  * @IFF_UNICAST_FLT: Supports unicast filtering
1352  * @IFF_TEAM_PORT: device used as team port
1353  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1354  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1355  *      change when it's running
1356  * @IFF_MACVLAN: Macvlan device
1357  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1358  *      underlying stacked devices
1359  * @IFF_IPVLAN_MASTER: IPvlan master device
1360  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1361  * @IFF_L3MDEV_MASTER: device is an L3 master device
1362  * @IFF_NO_QUEUE: device can run without qdisc attached
1363  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1364  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1365  * @IFF_TEAM: device is a team device
1366  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1367  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1368  *      entity (i.e. the master device for bridged veth)
1369  * @IFF_MACSEC: device is a MACsec device
1370  */
1371 enum netdev_priv_flags {
1372         IFF_802_1Q_VLAN                 = 1<<0,
1373         IFF_EBRIDGE                     = 1<<1,
1374         IFF_BONDING                     = 1<<2,
1375         IFF_ISATAP                      = 1<<3,
1376         IFF_WAN_HDLC                    = 1<<4,
1377         IFF_XMIT_DST_RELEASE            = 1<<5,
1378         IFF_DONT_BRIDGE                 = 1<<6,
1379         IFF_DISABLE_NETPOLL             = 1<<7,
1380         IFF_MACVLAN_PORT                = 1<<8,
1381         IFF_BRIDGE_PORT                 = 1<<9,
1382         IFF_OVS_DATAPATH                = 1<<10,
1383         IFF_TX_SKB_SHARING              = 1<<11,
1384         IFF_UNICAST_FLT                 = 1<<12,
1385         IFF_TEAM_PORT                   = 1<<13,
1386         IFF_SUPP_NOFCS                  = 1<<14,
1387         IFF_LIVE_ADDR_CHANGE            = 1<<15,
1388         IFF_MACVLAN                     = 1<<16,
1389         IFF_XMIT_DST_RELEASE_PERM       = 1<<17,
1390         IFF_IPVLAN_MASTER               = 1<<18,
1391         IFF_IPVLAN_SLAVE                = 1<<19,
1392         IFF_L3MDEV_MASTER               = 1<<20,
1393         IFF_NO_QUEUE                    = 1<<21,
1394         IFF_OPENVSWITCH                 = 1<<22,
1395         IFF_L3MDEV_SLAVE                = 1<<23,
1396         IFF_TEAM                        = 1<<24,
1397         IFF_RXFH_CONFIGURED             = 1<<25,
1398         IFF_PHONY_HEADROOM              = 1<<26,
1399         IFF_MACSEC                      = 1<<27,
1400 };
1401
1402 #define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1403 #define IFF_EBRIDGE                     IFF_EBRIDGE
1404 #define IFF_BONDING                     IFF_BONDING
1405 #define IFF_ISATAP                      IFF_ISATAP
1406 #define IFF_WAN_HDLC                    IFF_WAN_HDLC
1407 #define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1408 #define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1409 #define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1410 #define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1411 #define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1412 #define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1413 #define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1414 #define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1415 #define IFF_TEAM_PORT                   IFF_TEAM_PORT
1416 #define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1417 #define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1418 #define IFF_MACVLAN                     IFF_MACVLAN
1419 #define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1420 #define IFF_IPVLAN_MASTER               IFF_IPVLAN_MASTER
1421 #define IFF_IPVLAN_SLAVE                IFF_IPVLAN_SLAVE
1422 #define IFF_L3MDEV_MASTER               IFF_L3MDEV_MASTER
1423 #define IFF_NO_QUEUE                    IFF_NO_QUEUE
1424 #define IFF_OPENVSWITCH                 IFF_OPENVSWITCH
1425 #define IFF_L3MDEV_SLAVE                IFF_L3MDEV_SLAVE
1426 #define IFF_TEAM                        IFF_TEAM
1427 #define IFF_RXFH_CONFIGURED             IFF_RXFH_CONFIGURED
1428 #define IFF_MACSEC                      IFF_MACSEC
1429
1430 /**
1431  *      struct net_device - The DEVICE structure.
1432  *              Actually, this whole structure is a big mistake.  It mixes I/O
1433  *              data with strictly "high-level" data, and it has to know about
1434  *              almost every data structure used in the INET module.
1435  *
1436  *      @name:  This is the first field of the "visible" part of this structure
1437  *              (i.e. as seen by users in the "Space.c" file).  It is the name
1438  *              of the interface.
1439  *
1440  *      @name_hlist:    Device name hash chain, please keep it close to name[]
1441  *      @ifalias:       SNMP alias
1442  *      @mem_end:       Shared memory end
1443  *      @mem_start:     Shared memory start
1444  *      @base_addr:     Device I/O address
1445  *      @irq:           Device IRQ number
1446  *
1447  *      @carrier_changes:       Stats to monitor carrier on<->off transitions
1448  *
1449  *      @state:         Generic network queuing layer state, see netdev_state_t
1450  *      @dev_list:      The global list of network devices
1451  *      @napi_list:     List entry used for polling NAPI devices
1452  *      @unreg_list:    List entry  when we are unregistering the
1453  *                      device; see the function unregister_netdev
1454  *      @close_list:    List entry used when we are closing the device
1455  *      @ptype_all:     Device-specific packet handlers for all protocols
1456  *      @ptype_specific: Device-specific, protocol-specific packet handlers
1457  *
1458  *      @adj_list:      Directly linked devices, like slaves for bonding
1459  *      @features:      Currently active device features
1460  *      @hw_features:   User-changeable features
1461  *
1462  *      @wanted_features:       User-requested features
1463  *      @vlan_features:         Mask of features inheritable by VLAN devices
1464  *
1465  *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1466  *                              This field indicates what encapsulation
1467  *                              offloads the hardware is capable of doing,
1468  *                              and drivers will need to set them appropriately.
1469  *
1470  *      @mpls_features: Mask of features inheritable by MPLS
1471  *
1472  *      @ifindex:       interface index
1473  *      @group:         The group the device belongs to
1474  *
1475  *      @stats:         Statistics struct, which was left as a legacy, use
1476  *                      rtnl_link_stats64 instead
1477  *
1478  *      @rx_dropped:    Dropped packets by core network,
1479  *                      do not use this in drivers
1480  *      @tx_dropped:    Dropped packets by core network,
1481  *                      do not use this in drivers
1482  *      @rx_nohandler:  nohandler dropped packets by core network on
1483  *                      inactive devices, do not use this in drivers
1484  *
1485  *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1486  *                              instead of ioctl,
1487  *                              see <net/iw_handler.h> for details.
1488  *      @wireless_data: Instance data managed by the core of wireless extensions
1489  *
1490  *      @netdev_ops:    Includes several pointers to callbacks,
1491  *                      if one wants to override the ndo_*() functions
1492  *      @ethtool_ops:   Management operations
1493  *      @ndisc_ops:     Includes callbacks for different IPv6 neighbour
1494  *                      discovery handling. Necessary for e.g. 6LoWPAN.
1495  *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1496  *                      of Layer 2 headers.
1497  *
1498  *      @flags:         Interface flags (a la BSD)
1499  *      @priv_flags:    Like 'flags' but invisible to userspace,
1500  *                      see if.h for the definitions
1501  *      @gflags:        Global flags ( kept as legacy )
1502  *      @padded:        How much padding added by alloc_netdev()
1503  *      @operstate:     RFC2863 operstate
1504  *      @link_mode:     Mapping policy to operstate
1505  *      @if_port:       Selectable AUI, TP, ...
1506  *      @dma:           DMA channel
1507  *      @mtu:           Interface MTU value
1508  *      @min_mtu:       Interface Minimum MTU value
1509  *      @max_mtu:       Interface Maximum MTU value
1510  *      @type:          Interface hardware type
1511  *      @hard_header_len: Maximum hardware header length.
1512  *
1513  *      @needed_headroom: Extra headroom the hardware may need, but not in all
1514  *                        cases can this be guaranteed
1515  *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1516  *                        cases can this be guaranteed. Some cases also use
1517  *                        LL_MAX_HEADER instead to allocate the skb
1518  *
1519  *      interface address info:
1520  *
1521  *      @perm_addr:             Permanent hw address
1522  *      @addr_assign_type:      Hw address assignment type
1523  *      @addr_len:              Hardware address length
1524  *      @neigh_priv_len:        Used in neigh_alloc()
1525  *      @dev_id:                Used to differentiate devices that share
1526  *                              the same link layer address
1527  *      @dev_port:              Used to differentiate devices that share
1528  *                              the same function
1529  *      @addr_list_lock:        XXX: need comments on this one
1530  *      @uc_promisc:            Counter that indicates promiscuous mode
1531  *                              has been enabled due to the need to listen to
1532  *                              additional unicast addresses in a device that
1533  *                              does not implement ndo_set_rx_mode()
1534  *      @uc:                    unicast mac addresses
1535  *      @mc:                    multicast mac addresses
1536  *      @dev_addrs:             list of device hw addresses
1537  *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1538  *      @promiscuity:           Number of times the NIC is told to work in
1539  *                              promiscuous mode; if it becomes 0 the NIC will
1540  *                              exit promiscuous mode
1541  *      @allmulti:              Counter, enables or disables allmulticast mode
1542  *
1543  *      @vlan_info:     VLAN info
1544  *      @dsa_ptr:       dsa specific data
1545  *      @tipc_ptr:      TIPC specific data
1546  *      @atalk_ptr:     AppleTalk link
1547  *      @ip_ptr:        IPv4 specific data
1548  *      @dn_ptr:        DECnet specific data
1549  *      @ip6_ptr:       IPv6 specific data
1550  *      @ax25_ptr:      AX.25 specific data
1551  *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1552  *
1553  *      @last_rx:       Time of last Rx
1554  *      @dev_addr:      Hw address (before bcast,
1555  *                      because most packets are unicast)
1556  *
1557  *      @_rx:                   Array of RX queues
1558  *      @num_rx_queues:         Number of RX queues
1559  *                              allocated at register_netdev() time
1560  *      @real_num_rx_queues:    Number of RX queues currently active in device
1561  *
1562  *      @rx_handler:            handler for received packets
1563  *      @rx_handler_data:       XXX: need comments on this one
1564  *      @ingress_queue:         XXX: need comments on this one
1565  *      @broadcast:             hw bcast address
1566  *
1567  *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1568  *                      indexed by RX queue number. Assigned by driver.
1569  *                      This must only be set if the ndo_rx_flow_steer
1570  *                      operation is defined
1571  *      @index_hlist:           Device index hash chain
1572  *
1573  *      @_tx:                   Array of TX queues
1574  *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1575  *      @real_num_tx_queues:    Number of TX queues currently active in device
1576  *      @qdisc:                 Root qdisc from userspace point of view
1577  *      @tx_queue_len:          Max frames per queue allowed
1578  *      @tx_global_lock:        XXX: need comments on this one
1579  *
1580  *      @xps_maps:      XXX: need comments on this one
1581  *
1582  *      @watchdog_timeo:        Represents the timeout that is used by
1583  *                              the watchdog (see dev_watchdog())
1584  *      @watchdog_timer:        List of timers
1585  *
1586  *      @pcpu_refcnt:           Number of references to this device
1587  *      @todo_list:             Delayed register/unregister
1588  *      @link_watch_list:       XXX: need comments on this one
1589  *
1590  *      @reg_state:             Register/unregister state machine
1591  *      @dismantle:             Device is going to be freed
1592  *      @rtnl_link_state:       This enum represents the phases of creating
1593  *                              a new link
1594  *
1595  *      @destructor:            Called from unregister,
1596  *                              can be used to call free_netdev
1597  *      @npinfo:                XXX: need comments on this one
1598  *      @nd_net:                Network namespace this network device is inside
1599  *
1600  *      @ml_priv:       Mid-layer private
1601  *      @lstats:        Loopback statistics
1602  *      @tstats:        Tunnel statistics
1603  *      @dstats:        Dummy statistics
1604  *      @vstats:        Virtual ethernet statistics
1605  *
1606  *      @garp_port:     GARP
1607  *      @mrp_port:      MRP
1608  *
1609  *      @dev:           Class/net/name entry
1610  *      @sysfs_groups:  Space for optional device, statistics and wireless
1611  *                      sysfs groups
1612  *
1613  *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1614  *      @rtnl_link_ops: Rtnl_link_ops
1615  *
1616  *      @gso_max_size:  Maximum size of generic segmentation offload
1617  *      @gso_max_segs:  Maximum number of segments that can be passed to the
1618  *                      NIC for GSO
1619  *
1620  *      @dcbnl_ops:     Data Center Bridging netlink ops
1621  *      @num_tc:        Number of traffic classes in the net device
1622  *      @tc_to_txq:     XXX: need comments on this one
1623  *      @prio_tc_map:   XXX: need comments on this one
1624  *
1625  *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1626  *
1627  *      @priomap:       XXX: need comments on this one
1628  *      @phydev:        Physical device may attach itself
1629  *                      for hardware timestamping
1630  *
1631  *      @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1632  *      @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1633  *
1634  *      @proto_down:    protocol port state information can be sent to the
1635  *                      switch driver and used to set the phys state of the
1636  *                      switch port.
1637  *
1638  *      FIXME: cleanup struct net_device such that network protocol info
1639  *      moves out.
1640  */
1641
1642 struct net_device {
1643         char                    name[IFNAMSIZ];
1644         struct hlist_node       name_hlist;
1645         char                    *ifalias;
1646         /*
1647          *      I/O specific fields
1648          *      FIXME: Merge these and struct ifmap into one
1649          */
1650         unsigned long           mem_end;
1651         unsigned long           mem_start;
1652         unsigned long           base_addr;
1653         int                     irq;
1654
1655         atomic_t                carrier_changes;
1656
1657         /*
1658          *      Some hardware also needs these fields (state,dev_list,
1659          *      napi_list,unreg_list,close_list) but they are not
1660          *      part of the usual set specified in Space.c.
1661          */
1662
1663         unsigned long           state;
1664
1665         struct list_head        dev_list;
1666         struct list_head        napi_list;
1667         struct list_head        unreg_list;
1668         struct list_head        close_list;
1669         struct list_head        ptype_all;
1670         struct list_head        ptype_specific;
1671
1672         struct {
1673                 struct list_head upper;
1674                 struct list_head lower;
1675         } adj_list;
1676
1677         netdev_features_t       features;
1678         netdev_features_t       hw_features;
1679         netdev_features_t       wanted_features;
1680         netdev_features_t       vlan_features;
1681         netdev_features_t       hw_enc_features;
1682         netdev_features_t       mpls_features;
1683         netdev_features_t       gso_partial_features;
1684
1685         int                     ifindex;
1686         int                     group;
1687
1688         struct net_device_stats stats;
1689
1690         atomic_long_t           rx_dropped;
1691         atomic_long_t           tx_dropped;
1692         atomic_long_t           rx_nohandler;
1693
1694 #ifdef CONFIG_WIRELESS_EXT
1695         const struct iw_handler_def *wireless_handlers;
1696         struct iw_public_data   *wireless_data;
1697 #endif
1698         const struct net_device_ops *netdev_ops;
1699         const struct ethtool_ops *ethtool_ops;
1700 #ifdef CONFIG_NET_SWITCHDEV
1701         const struct switchdev_ops *switchdev_ops;
1702 #endif
1703 #ifdef CONFIG_NET_L3_MASTER_DEV
1704         const struct l3mdev_ops *l3mdev_ops;
1705 #endif
1706 #if IS_ENABLED(CONFIG_IPV6)
1707         const struct ndisc_ops *ndisc_ops;
1708 #endif
1709
1710         const struct header_ops *header_ops;
1711
1712         unsigned int            flags;
1713         unsigned int            priv_flags;
1714
1715         unsigned short          gflags;
1716         unsigned short          padded;
1717
1718         unsigned char           operstate;
1719         unsigned char           link_mode;
1720
1721         unsigned char           if_port;
1722         unsigned char           dma;
1723
1724         unsigned int            mtu;
1725         unsigned int            min_mtu;
1726         unsigned int            max_mtu;
1727         unsigned short          type;
1728         unsigned short          hard_header_len;
1729
1730         unsigned short          needed_headroom;
1731         unsigned short          needed_tailroom;
1732
1733         /* Interface address info. */
1734         unsigned char           perm_addr[MAX_ADDR_LEN];
1735         unsigned char           addr_assign_type;
1736         unsigned char           addr_len;
1737         unsigned short          neigh_priv_len;
1738         unsigned short          dev_id;
1739         unsigned short          dev_port;
1740         spinlock_t              addr_list_lock;
1741         unsigned char           name_assign_type;
1742         bool                    uc_promisc;
1743         struct netdev_hw_addr_list      uc;
1744         struct netdev_hw_addr_list      mc;
1745         struct netdev_hw_addr_list      dev_addrs;
1746
1747 #ifdef CONFIG_SYSFS
1748         struct kset             *queues_kset;
1749 #endif
1750         unsigned int            promiscuity;
1751         unsigned int            allmulti;
1752
1753
1754         /* Protocol-specific pointers */
1755
1756 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1757         struct vlan_info __rcu  *vlan_info;
1758 #endif
1759 #if IS_ENABLED(CONFIG_NET_DSA)
1760         struct dsa_switch_tree  *dsa_ptr;
1761 #endif
1762 #if IS_ENABLED(CONFIG_TIPC)
1763         struct tipc_bearer __rcu *tipc_ptr;
1764 #endif
1765         void                    *atalk_ptr;
1766         struct in_device __rcu  *ip_ptr;
1767         struct dn_dev __rcu     *dn_ptr;
1768         struct inet6_dev __rcu  *ip6_ptr;
1769         void                    *ax25_ptr;
1770         struct wireless_dev     *ieee80211_ptr;
1771         struct wpan_dev         *ieee802154_ptr;
1772 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1773         struct mpls_dev __rcu   *mpls_ptr;
1774 #endif
1775
1776 /*
1777  * Cache lines mostly used on receive path (including eth_type_trans())
1778  */
1779         unsigned long           last_rx;
1780
1781         /* Interface address info used in eth_type_trans() */
1782         unsigned char           *dev_addr;
1783
1784 #ifdef CONFIG_SYSFS
1785         struct netdev_rx_queue  *_rx;
1786
1787         unsigned int            num_rx_queues;
1788         unsigned int            real_num_rx_queues;
1789 #endif
1790
1791         unsigned long           gro_flush_timeout;
1792         rx_handler_func_t __rcu *rx_handler;
1793         void __rcu              *rx_handler_data;
1794
1795 #ifdef CONFIG_NET_CLS_ACT
1796         struct tcf_proto __rcu  *ingress_cl_list;
1797 #endif
1798         struct netdev_queue __rcu *ingress_queue;
1799 #ifdef CONFIG_NETFILTER_INGRESS
1800         struct nf_hook_entry __rcu *nf_hooks_ingress;
1801 #endif
1802
1803         unsigned char           broadcast[MAX_ADDR_LEN];
1804 #ifdef CONFIG_RFS_ACCEL
1805         struct cpu_rmap         *rx_cpu_rmap;
1806 #endif
1807         struct hlist_node       index_hlist;
1808
1809 /*
1810  * Cache lines mostly used on transmit path
1811  */
1812         struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1813         unsigned int            num_tx_queues;
1814         unsigned int            real_num_tx_queues;
1815         struct Qdisc            *qdisc;
1816 #ifdef CONFIG_NET_SCHED
1817         DECLARE_HASHTABLE       (qdisc_hash, 4);
1818 #endif
1819         unsigned long           tx_queue_len;
1820         spinlock_t              tx_global_lock;
1821         int                     watchdog_timeo;
1822
1823 #ifdef CONFIG_XPS
1824         struct xps_dev_maps __rcu *xps_maps;
1825 #endif
1826 #ifdef CONFIG_NET_CLS_ACT
1827         struct tcf_proto __rcu  *egress_cl_list;
1828 #endif
1829
1830         /* These may be needed for future network-power-down code. */
1831         struct timer_list       watchdog_timer;
1832
1833         int __percpu            *pcpu_refcnt;
1834         struct list_head        todo_list;
1835
1836         struct list_head        link_watch_list;
1837
1838         enum { NETREG_UNINITIALIZED=0,
1839                NETREG_REGISTERED,       /* completed register_netdevice */
1840                NETREG_UNREGISTERING,    /* called unregister_netdevice */
1841                NETREG_UNREGISTERED,     /* completed unregister todo */
1842                NETREG_RELEASED,         /* called free_netdev */
1843                NETREG_DUMMY,            /* dummy device for NAPI poll */
1844         } reg_state:8;
1845
1846         bool dismantle;
1847
1848         enum {
1849                 RTNL_LINK_INITIALIZED,
1850                 RTNL_LINK_INITIALIZING,
1851         } rtnl_link_state:16;
1852
1853         void (*destructor)(struct net_device *dev);
1854
1855 #ifdef CONFIG_NETPOLL
1856         struct netpoll_info __rcu       *npinfo;
1857 #endif
1858
1859         possible_net_t                  nd_net;
1860
1861         /* mid-layer private */
1862         union {
1863                 void                                    *ml_priv;
1864                 struct pcpu_lstats __percpu             *lstats;
1865                 struct pcpu_sw_netstats __percpu        *tstats;
1866                 struct pcpu_dstats __percpu             *dstats;
1867                 struct pcpu_vstats __percpu             *vstats;
1868         };
1869
1870         struct garp_port __rcu  *garp_port;
1871         struct mrp_port __rcu   *mrp_port;
1872
1873         struct device           dev;
1874         const struct attribute_group *sysfs_groups[4];
1875         const struct attribute_group *sysfs_rx_queue_group;
1876
1877         const struct rtnl_link_ops *rtnl_link_ops;
1878
1879         /* for setting kernel sock attribute on TCP connection setup */
1880 #define GSO_MAX_SIZE            65536
1881         unsigned int            gso_max_size;
1882 #define GSO_MAX_SEGS            65535
1883         u16                     gso_max_segs;
1884
1885 #ifdef CONFIG_DCB
1886         const struct dcbnl_rtnl_ops *dcbnl_ops;
1887 #endif
1888         u8                      num_tc;
1889         struct netdev_tc_txq    tc_to_txq[TC_MAX_QUEUE];
1890         u8                      prio_tc_map[TC_BITMASK + 1];
1891
1892 #if IS_ENABLED(CONFIG_FCOE)
1893         unsigned int            fcoe_ddp_xid;
1894 #endif
1895 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1896         struct netprio_map __rcu *priomap;
1897 #endif
1898         struct phy_device       *phydev;
1899         struct lock_class_key   *qdisc_tx_busylock;
1900         struct lock_class_key   *qdisc_running_key;
1901         bool                    proto_down;
1902 };
1903 #define to_net_dev(d) container_of(d, struct net_device, dev)
1904
1905 #define NETDEV_ALIGN            32
1906
1907 static inline
1908 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1909 {
1910         return dev->prio_tc_map[prio & TC_BITMASK];
1911 }
1912
1913 static inline
1914 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1915 {
1916         if (tc >= dev->num_tc)
1917                 return -EINVAL;
1918
1919         dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1920         return 0;
1921 }
1922
1923 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1924 void netdev_reset_tc(struct net_device *dev);
1925 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1926 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1927
1928 static inline
1929 int netdev_get_num_tc(struct net_device *dev)
1930 {
1931         return dev->num_tc;
1932 }
1933
1934 static inline
1935 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1936                                          unsigned int index)
1937 {
1938         return &dev->_tx[index];
1939 }
1940
1941 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1942                                                     const struct sk_buff *skb)
1943 {
1944         return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1945 }
1946
1947 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1948                                             void (*f)(struct net_device *,
1949                                                       struct netdev_queue *,
1950                                                       void *),
1951                                             void *arg)
1952 {
1953         unsigned int i;
1954
1955         for (i = 0; i < dev->num_tx_queues; i++)
1956                 f(dev, &dev->_tx[i], arg);
1957 }
1958
1959 #define netdev_lockdep_set_classes(dev)                         \
1960 {                                                               \
1961         static struct lock_class_key qdisc_tx_busylock_key;     \
1962         static struct lock_class_key qdisc_running_key;         \
1963         static struct lock_class_key qdisc_xmit_lock_key;       \
1964         static struct lock_class_key dev_addr_list_lock_key;    \
1965         unsigned int i;                                         \
1966                                                                 \
1967         (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;      \
1968         (dev)->qdisc_running_key = &qdisc_running_key;          \
1969         lockdep_set_class(&(dev)->addr_list_lock,               \
1970                           &dev_addr_list_lock_key);             \
1971         for (i = 0; i < (dev)->num_tx_queues; i++)              \
1972                 lockdep_set_class(&(dev)->_tx[i]._xmit_lock,    \
1973                                   &qdisc_xmit_lock_key);        \
1974 }
1975
1976 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1977                                     struct sk_buff *skb,
1978                                     void *accel_priv);
1979
1980 /* returns the headroom that the master device needs to take in account
1981  * when forwarding to this dev
1982  */
1983 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1984 {
1985         return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1986 }
1987
1988 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1989 {
1990         if (dev->netdev_ops->ndo_set_rx_headroom)
1991                 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
1992 }
1993
1994 /* set the device rx headroom to the dev's default */
1995 static inline void netdev_reset_rx_headroom(struct net_device *dev)
1996 {
1997         netdev_set_rx_headroom(dev, -1);
1998 }
1999
2000 /*
2001  * Net namespace inlines
2002  */
2003 static inline
2004 struct net *dev_net(const struct net_device *dev)
2005 {
2006         return read_pnet(&dev->nd_net);
2007 }
2008
2009 static inline
2010 void dev_net_set(struct net_device *dev, struct net *net)
2011 {
2012         write_pnet(&dev->nd_net, net);
2013 }
2014
2015 static inline bool netdev_uses_dsa(struct net_device *dev)
2016 {
2017 #if IS_ENABLED(CONFIG_NET_DSA)
2018         if (dev->dsa_ptr != NULL)
2019                 return dsa_uses_tagged_protocol(dev->dsa_ptr);
2020 #endif
2021         return false;
2022 }
2023
2024 /**
2025  *      netdev_priv - access network device private data
2026  *      @dev: network device
2027  *
2028  * Get network device private data
2029  */
2030 static inline void *netdev_priv(const struct net_device *dev)
2031 {
2032         return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2033 }
2034
2035 /* Set the sysfs physical device reference for the network logical device
2036  * if set prior to registration will cause a symlink during initialization.
2037  */
2038 #define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
2039
2040 /* Set the sysfs device type for the network logical device to allow
2041  * fine-grained identification of different network device types. For
2042  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2043  */
2044 #define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
2045
2046 /* Default NAPI poll() weight
2047  * Device drivers are strongly advised to not use bigger value
2048  */
2049 #define NAPI_POLL_WEIGHT 64
2050
2051 /**
2052  *      netif_napi_add - initialize a NAPI context
2053  *      @dev:  network device
2054  *      @napi: NAPI context
2055  *      @poll: polling function
2056  *      @weight: default weight
2057  *
2058  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2059  * *any* of the other NAPI-related functions.
2060  */
2061 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2062                     int (*poll)(struct napi_struct *, int), int weight);
2063
2064 /**
2065  *      netif_tx_napi_add - initialize a NAPI context
2066  *      @dev:  network device
2067  *      @napi: NAPI context
2068  *      @poll: polling function
2069  *      @weight: default weight
2070  *
2071  * This variant of netif_napi_add() should be used from drivers using NAPI
2072  * to exclusively poll a TX queue.
2073  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2074  */
2075 static inline void netif_tx_napi_add(struct net_device *dev,
2076                                      struct napi_struct *napi,
2077                                      int (*poll)(struct napi_struct *, int),
2078                                      int weight)
2079 {
2080         set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2081         netif_napi_add(dev, napi, poll, weight);
2082 }
2083
2084 /**
2085  *  netif_napi_del - remove a NAPI context
2086  *  @napi: NAPI context
2087  *
2088  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2089  */
2090 void netif_napi_del(struct napi_struct *napi);
2091
2092 struct napi_gro_cb {
2093         /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2094         void    *frag0;
2095
2096         /* Length of frag0. */
2097         unsigned int frag0_len;
2098
2099         /* This indicates where we are processing relative to skb->data. */
2100         int     data_offset;
2101
2102         /* This is non-zero if the packet cannot be merged with the new skb. */
2103         u16     flush;
2104
2105         /* Save the IP ID here and check when we get to the transport layer */
2106         u16     flush_id;
2107
2108         /* Number of segments aggregated. */
2109         u16     count;
2110
2111         /* Start offset for remote checksum offload */
2112         u16     gro_remcsum_start;
2113
2114         /* jiffies when first packet was created/queued */
2115         unsigned long age;
2116
2117         /* Used in ipv6_gro_receive() and foo-over-udp */
2118         u16     proto;
2119
2120         /* This is non-zero if the packet may be of the same flow. */
2121         u8      same_flow:1;
2122
2123         /* Used in tunnel GRO receive */
2124         u8      encap_mark:1;
2125
2126         /* GRO checksum is valid */
2127         u8      csum_valid:1;
2128
2129         /* Number of checksums via CHECKSUM_UNNECESSARY */
2130         u8      csum_cnt:3;
2131
2132         /* Free the skb? */
2133         u8      free:2;
2134 #define NAPI_GRO_FREE             1
2135 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2136
2137         /* Used in foo-over-udp, set in udp[46]_gro_receive */
2138         u8      is_ipv6:1;
2139
2140         /* Used in GRE, set in fou/gue_gro_receive */
2141         u8      is_fou:1;
2142
2143         /* Used to determine if flush_id can be ignored */
2144         u8      is_atomic:1;
2145
2146         /* Number of gro_receive callbacks this packet already went through */
2147         u8 recursion_counter:4;
2148
2149         /* 1 bit hole */
2150
2151         /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2152         __wsum  csum;
2153
2154         /* used in skb_gro_receive() slow path */
2155         struct sk_buff *last;
2156 };
2157
2158 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2159
2160 #define GRO_RECURSION_LIMIT 15
2161 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2162 {
2163         return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2164 }
2165
2166 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2167 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2168                                                 struct sk_buff **head,
2169                                                 struct sk_buff *skb)
2170 {
2171         if (unlikely(gro_recursion_inc_test(skb))) {
2172                 NAPI_GRO_CB(skb)->flush |= 1;
2173                 return NULL;
2174         }
2175
2176         return cb(head, skb);
2177 }
2178
2179 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2180                                              struct sk_buff *);
2181 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2182                                                    struct sock *sk,
2183                                                    struct sk_buff **head,
2184                                                    struct sk_buff *skb)
2185 {
2186         if (unlikely(gro_recursion_inc_test(skb))) {
2187                 NAPI_GRO_CB(skb)->flush |= 1;
2188                 return NULL;
2189         }
2190
2191         return cb(sk, head, skb);
2192 }
2193
2194 struct packet_type {
2195         __be16                  type;   /* This is really htons(ether_type). */
2196         struct net_device       *dev;   /* NULL is wildcarded here           */
2197         int                     (*func) (struct sk_buff *,
2198                                          struct net_device *,
2199                                          struct packet_type *,
2200                                          struct net_device *);
2201         bool                    (*id_match)(struct packet_type *ptype,
2202                                             struct sock *sk);
2203         void                    *af_packet_priv;
2204         struct list_head        list;
2205 };
2206
2207 struct offload_callbacks {
2208         struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
2209                                                 netdev_features_t features);
2210         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
2211                                                  struct sk_buff *skb);
2212         int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
2213 };
2214
2215 struct packet_offload {
2216         __be16                   type;  /* This is really htons(ether_type). */
2217         u16                      priority;
2218         struct offload_callbacks callbacks;
2219         struct list_head         list;
2220 };
2221
2222 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2223 struct pcpu_sw_netstats {
2224         u64     rx_packets;
2225         u64     rx_bytes;
2226         u64     tx_packets;
2227         u64     tx_bytes;
2228         struct u64_stats_sync   syncp;
2229 };
2230
2231 #define __netdev_alloc_pcpu_stats(type, gfp)                            \
2232 ({                                                                      \
2233         typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2234         if (pcpu_stats) {                                               \
2235                 int __cpu;                                              \
2236                 for_each_possible_cpu(__cpu) {                          \
2237                         typeof(type) *stat;                             \
2238                         stat = per_cpu_ptr(pcpu_stats, __cpu);          \
2239                         u64_stats_init(&stat->syncp);                   \
2240                 }                                                       \
2241         }                                                               \
2242         pcpu_stats;                                                     \
2243 })
2244
2245 #define netdev_alloc_pcpu_stats(type)                                   \
2246         __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2247
2248 enum netdev_lag_tx_type {
2249         NETDEV_LAG_TX_TYPE_UNKNOWN,
2250         NETDEV_LAG_TX_TYPE_RANDOM,
2251         NETDEV_LAG_TX_TYPE_BROADCAST,
2252         NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2253         NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2254         NETDEV_LAG_TX_TYPE_HASH,
2255 };
2256
2257 struct netdev_lag_upper_info {
2258         enum netdev_lag_tx_type tx_type;
2259 };
2260
2261 struct netdev_lag_lower_state_info {
2262         u8 link_up : 1,
2263            tx_enabled : 1;
2264 };
2265
2266 #include <linux/notifier.h>
2267
2268 /* netdevice notifier chain. Please remember to update the rtnetlink
2269  * notification exclusion list in rtnetlink_event() when adding new
2270  * types.
2271  */
2272 #define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
2273 #define NETDEV_DOWN     0x0002
2274 #define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
2275                                    detected a hardware crash and restarted
2276                                    - we can use this eg to kick tcp sessions
2277                                    once done */
2278 #define NETDEV_CHANGE   0x0004  /* Notify device state change */
2279 #define NETDEV_REGISTER 0x0005
2280 #define NETDEV_UNREGISTER       0x0006
2281 #define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
2282 #define NETDEV_CHANGEADDR       0x0008
2283 #define NETDEV_GOING_DOWN       0x0009
2284 #define NETDEV_CHANGENAME       0x000A
2285 #define NETDEV_FEAT_CHANGE      0x000B
2286 #define NETDEV_BONDING_FAILOVER 0x000C
2287 #define NETDEV_PRE_UP           0x000D
2288 #define NETDEV_PRE_TYPE_CHANGE  0x000E
2289 #define NETDEV_POST_TYPE_CHANGE 0x000F
2290 #define NETDEV_POST_INIT        0x0010
2291 #define NETDEV_UNREGISTER_FINAL 0x0011
2292 #define NETDEV_RELEASE          0x0012
2293 #define NETDEV_NOTIFY_PEERS     0x0013
2294 #define NETDEV_JOIN             0x0014
2295 #define NETDEV_CHANGEUPPER      0x0015
2296 #define NETDEV_RESEND_IGMP      0x0016
2297 #define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
2298 #define NETDEV_CHANGEINFODATA   0x0018
2299 #define NETDEV_BONDING_INFO     0x0019
2300 #define NETDEV_PRECHANGEUPPER   0x001A
2301 #define NETDEV_CHANGELOWERSTATE 0x001B
2302 #define NETDEV_UDP_TUNNEL_PUSH_INFO     0x001C
2303 #define NETDEV_CHANGE_TX_QUEUE_LEN      0x001E
2304
2305 int register_netdevice_notifier(struct notifier_block *nb);
2306 int unregister_netdevice_notifier(struct notifier_block *nb);
2307
2308 struct netdev_notifier_info {
2309         struct net_device *dev;
2310 };
2311
2312 struct netdev_notifier_change_info {
2313         struct netdev_notifier_info info; /* must be first */
2314         unsigned int flags_changed;
2315 };
2316
2317 struct netdev_notifier_changeupper_info {
2318         struct netdev_notifier_info info; /* must be first */
2319         struct net_device *upper_dev; /* new upper dev */
2320         bool master; /* is upper dev master */
2321         bool linking; /* is the notification for link or unlink */
2322         void *upper_info; /* upper dev info */
2323 };
2324
2325 struct netdev_notifier_changelowerstate_info {
2326         struct netdev_notifier_info info; /* must be first */
2327         void *lower_state_info; /* is lower dev state */
2328 };
2329
2330 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2331                                              struct net_device *dev)
2332 {
2333         info->dev = dev;
2334 }
2335
2336 static inline struct net_device *
2337 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2338 {
2339         return info->dev;
2340 }
2341
2342 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2343
2344
2345 extern rwlock_t                         dev_base_lock;          /* Device list lock */
2346
2347 #define for_each_netdev(net, d)         \
2348                 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2349 #define for_each_netdev_reverse(net, d) \
2350                 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2351 #define for_each_netdev_rcu(net, d)             \
2352                 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2353 #define for_each_netdev_safe(net, d, n) \
2354                 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2355 #define for_each_netdev_continue(net, d)                \
2356                 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2357 #define for_each_netdev_continue_rcu(net, d)            \
2358         list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2359 #define for_each_netdev_in_bond_rcu(bond, slave)        \
2360                 for_each_netdev_rcu(&init_net, slave)   \
2361                         if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2362 #define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2363
2364 static inline struct net_device *next_net_device(struct net_device *dev)
2365 {
2366         struct list_head *lh;
2367         struct net *net;
2368
2369         net = dev_net(dev);
2370         lh = dev->dev_list.next;
2371         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2372 }
2373
2374 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2375 {
2376         struct list_head *lh;
2377         struct net *net;
2378
2379         net = dev_net(dev);
2380         lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2381         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2382 }
2383
2384 static inline struct net_device *first_net_device(struct net *net)
2385 {
2386         return list_empty(&net->dev_base_head) ? NULL :
2387                 net_device_entry(net->dev_base_head.next);
2388 }
2389
2390 static inline struct net_device *first_net_device_rcu(struct net *net)
2391 {
2392         struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2393
2394         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2395 }
2396
2397 int netdev_boot_setup_check(struct net_device *dev);
2398 unsigned long netdev_boot_base(const char *prefix, int unit);
2399 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2400                                        const char *hwaddr);
2401 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2402 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2403 void dev_add_pack(struct packet_type *pt);
2404 void dev_remove_pack(struct packet_type *pt);
2405 void __dev_remove_pack(struct packet_type *pt);
2406 void dev_add_offload(struct packet_offload *po);
2407 void dev_remove_offload(struct packet_offload *po);
2408
2409 int dev_get_iflink(const struct net_device *dev);
2410 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2411 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2412                                       unsigned short mask);
2413 struct net_device *dev_get_by_name(struct net *net, const char *name);
2414 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2415 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2416 int dev_alloc_name(struct net_device *dev, const char *name);
2417 int dev_open(struct net_device *dev);
2418 int dev_close(struct net_device *dev);
2419 int dev_close_many(struct list_head *head, bool unlink);
2420 void dev_disable_lro(struct net_device *dev);
2421 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2422 int dev_queue_xmit(struct sk_buff *skb);
2423 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2424 int register_netdevice(struct net_device *dev);
2425 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2426 void unregister_netdevice_many(struct list_head *head);
2427 static inline void unregister_netdevice(struct net_device *dev)
2428 {
2429         unregister_netdevice_queue(dev, NULL);
2430 }
2431
2432 int netdev_refcnt_read(const struct net_device *dev);
2433 void free_netdev(struct net_device *dev);
2434 void netdev_freemem(struct net_device *dev);
2435 void synchronize_net(void);
2436 int init_dummy_netdev(struct net_device *dev);
2437
2438 DECLARE_PER_CPU(int, xmit_recursion);
2439 #define XMIT_RECURSION_LIMIT    10
2440
2441 static inline int dev_recursion_level(void)
2442 {
2443         return this_cpu_read(xmit_recursion);
2444 }
2445
2446 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2447 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2448 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2449 int netdev_get_name(struct net *net, char *name, int ifindex);
2450 int dev_restart(struct net_device *dev);
2451 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2452
2453 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2454 {
2455         return NAPI_GRO_CB(skb)->data_offset;
2456 }
2457
2458 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2459 {
2460         return skb->len - NAPI_GRO_CB(skb)->data_offset;
2461 }
2462
2463 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2464 {
2465         NAPI_GRO_CB(skb)->data_offset += len;
2466 }
2467
2468 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2469                                         unsigned int offset)
2470 {
2471         return NAPI_GRO_CB(skb)->frag0 + offset;
2472 }
2473
2474 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2475 {
2476         return NAPI_GRO_CB(skb)->frag0_len < hlen;
2477 }
2478
2479 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2480                                         unsigned int offset)
2481 {
2482         if (!pskb_may_pull(skb, hlen))
2483                 return NULL;
2484
2485         NAPI_GRO_CB(skb)->frag0 = NULL;
2486         NAPI_GRO_CB(skb)->frag0_len = 0;
2487         return skb->data + offset;
2488 }
2489
2490 static inline void *skb_gro_network_header(struct sk_buff *skb)
2491 {
2492         return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2493                skb_network_offset(skb);
2494 }
2495
2496 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2497                                         const void *start, unsigned int len)
2498 {
2499         if (NAPI_GRO_CB(skb)->csum_valid)
2500                 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2501                                                   csum_partial(start, len, 0));
2502 }
2503
2504 /* GRO checksum functions. These are logical equivalents of the normal
2505  * checksum functions (in skbuff.h) except that they operate on the GRO
2506  * offsets and fields in sk_buff.
2507  */
2508
2509 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2510
2511 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2512 {
2513         return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2514 }
2515
2516 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2517                                                       bool zero_okay,
2518                                                       __sum16 check)
2519 {
2520         return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2521                 skb_checksum_start_offset(skb) <
2522                  skb_gro_offset(skb)) &&
2523                 !skb_at_gro_remcsum_start(skb) &&
2524                 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2525                 (!zero_okay || check));
2526 }
2527
2528 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2529                                                            __wsum psum)
2530 {
2531         if (NAPI_GRO_CB(skb)->csum_valid &&
2532             !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2533                 return 0;
2534
2535         NAPI_GRO_CB(skb)->csum = psum;
2536
2537         return __skb_gro_checksum_complete(skb);
2538 }
2539
2540 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2541 {
2542         if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2543                 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2544                 NAPI_GRO_CB(skb)->csum_cnt--;
2545         } else {
2546                 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2547                  * verified a new top level checksum or an encapsulated one
2548                  * during GRO. This saves work if we fallback to normal path.
2549                  */
2550                 __skb_incr_checksum_unnecessary(skb);
2551         }
2552 }
2553
2554 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2555                                     compute_pseudo)                     \
2556 ({                                                                      \
2557         __sum16 __ret = 0;                                              \
2558         if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2559                 __ret = __skb_gro_checksum_validate_complete(skb,       \
2560                                 compute_pseudo(skb, proto));            \
2561         if (__ret)                                                      \
2562                 __skb_mark_checksum_bad(skb);                           \
2563         else                                                            \
2564                 skb_gro_incr_csum_unnecessary(skb);                     \
2565         __ret;                                                          \
2566 })
2567
2568 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2569         __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2570
2571 #define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2572                                              compute_pseudo)            \
2573         __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2574
2575 #define skb_gro_checksum_simple_validate(skb)                           \
2576         __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2577
2578 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2579 {
2580         return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2581                 !NAPI_GRO_CB(skb)->csum_valid);
2582 }
2583
2584 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2585                                               __sum16 check, __wsum pseudo)
2586 {
2587         NAPI_GRO_CB(skb)->csum = ~pseudo;
2588         NAPI_GRO_CB(skb)->csum_valid = 1;
2589 }
2590
2591 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2592 do {                                                                    \
2593         if (__skb_gro_checksum_convert_check(skb))                      \
2594                 __skb_gro_checksum_convert(skb, check,                  \
2595                                            compute_pseudo(skb, proto)); \
2596 } while (0)
2597
2598 struct gro_remcsum {
2599         int offset;
2600         __wsum delta;
2601 };
2602
2603 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2604 {
2605         grc->offset = 0;
2606         grc->delta = 0;
2607 }
2608
2609 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2610                                             unsigned int off, size_t hdrlen,
2611                                             int start, int offset,
2612                                             struct gro_remcsum *grc,
2613                                             bool nopartial)
2614 {
2615         __wsum delta;
2616         size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2617
2618         BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2619
2620         if (!nopartial) {
2621                 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2622                 return ptr;
2623         }
2624
2625         ptr = skb_gro_header_fast(skb, off);
2626         if (skb_gro_header_hard(skb, off + plen)) {
2627                 ptr = skb_gro_header_slow(skb, off + plen, off);
2628                 if (!ptr)
2629                         return NULL;
2630         }
2631
2632         delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2633                                start, offset);
2634
2635         /* Adjust skb->csum since we changed the packet */
2636         NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2637
2638         grc->offset = off + hdrlen + offset;
2639         grc->delta = delta;
2640
2641         return ptr;
2642 }
2643
2644 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2645                                            struct gro_remcsum *grc)
2646 {
2647         void *ptr;
2648         size_t plen = grc->offset + sizeof(u16);
2649
2650         if (!grc->delta)
2651                 return;
2652
2653         ptr = skb_gro_header_fast(skb, grc->offset);
2654         if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2655                 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2656                 if (!ptr)
2657                         return;
2658         }
2659
2660         remcsum_unadjust((__sum16 *)ptr, grc->delta);
2661 }
2662
2663 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2664                                   unsigned short type,
2665                                   const void *daddr, const void *saddr,
2666                                   unsigned int len)
2667 {
2668         if (!dev->header_ops || !dev->header_ops->create)
2669                 return 0;
2670
2671         return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2672 }
2673
2674 static inline int dev_parse_header(const struct sk_buff *skb,
2675                                    unsigned char *haddr)
2676 {
2677         const struct net_device *dev = skb->dev;
2678
2679         if (!dev->header_ops || !dev->header_ops->parse)
2680                 return 0;
2681         return dev->header_ops->parse(skb, haddr);
2682 }
2683
2684 /* ll_header must have at least hard_header_len allocated */
2685 static inline bool dev_validate_header(const struct net_device *dev,
2686                                        char *ll_header, int len)
2687 {
2688         if (likely(len >= dev->hard_header_len))
2689                 return true;
2690
2691         if (capable(CAP_SYS_RAWIO)) {
2692                 memset(ll_header + len, 0, dev->hard_header_len - len);
2693                 return true;
2694         }
2695
2696         if (dev->header_ops && dev->header_ops->validate)
2697                 return dev->header_ops->validate(ll_header, len);
2698
2699         return false;
2700 }
2701
2702 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2703 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2704 static inline int unregister_gifconf(unsigned int family)
2705 {
2706         return register_gifconf(family, NULL);
2707 }
2708
2709 #ifdef CONFIG_NET_FLOW_LIMIT
2710 #define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2711 struct sd_flow_limit {
2712         u64                     count;
2713         unsigned int            num_buckets;
2714         unsigned int            history_head;
2715         u16                     history[FLOW_LIMIT_HISTORY];
2716         u8                      buckets[];
2717 };
2718
2719 extern int netdev_flow_limit_table_len;
2720 #endif /* CONFIG_NET_FLOW_LIMIT */
2721
2722 /*
2723  * Incoming packets are placed on per-CPU queues
2724  */
2725 struct softnet_data {
2726         struct list_head        poll_list;
2727         struct sk_buff_head     process_queue;
2728
2729         /* stats */
2730         unsigned int            processed;
2731         unsigned int            time_squeeze;
2732         unsigned int            received_rps;
2733 #ifdef CONFIG_RPS
2734         struct softnet_data     *rps_ipi_list;
2735 #endif
2736 #ifdef CONFIG_NET_FLOW_LIMIT
2737         struct sd_flow_limit __rcu *flow_limit;
2738 #endif
2739         struct Qdisc            *output_queue;
2740         struct Qdisc            **output_queue_tailp;
2741         struct sk_buff          *completion_queue;
2742
2743 #ifdef CONFIG_RPS
2744         /* input_queue_head should be written by cpu owning this struct,
2745          * and only read by other cpus. Worth using a cache line.
2746          */
2747         unsigned int            input_queue_head ____cacheline_aligned_in_smp;
2748
2749         /* Elements below can be accessed between CPUs for RPS/RFS */
2750         struct call_single_data csd ____cacheline_aligned_in_smp;
2751         struct softnet_data     *rps_ipi_next;
2752         unsigned int            cpu;
2753         unsigned int            input_queue_tail;
2754 #endif
2755         unsigned int            dropped;
2756         struct sk_buff_head     input_pkt_queue;
2757         struct napi_struct      backlog;
2758
2759 };
2760
2761 static inline void input_queue_head_incr(struct softnet_data *sd)
2762 {
2763 #ifdef CONFIG_RPS
2764         sd->input_queue_head++;
2765 #endif
2766 }
2767
2768 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2769                                               unsigned int *qtail)
2770 {
2771 #ifdef CONFIG_RPS
2772         *qtail = ++sd->input_queue_tail;
2773 #endif
2774 }
2775
2776 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2777
2778 void __netif_schedule(struct Qdisc *q);
2779 void netif_schedule_queue(struct netdev_queue *txq);
2780
2781 static inline void netif_tx_schedule_all(struct net_device *dev)
2782 {
2783         unsigned int i;
2784
2785         for (i = 0; i < dev->num_tx_queues; i++)
2786                 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2787 }
2788
2789 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2790 {
2791         clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2792 }
2793
2794 /**
2795  *      netif_start_queue - allow transmit
2796  *      @dev: network device
2797  *
2798  *      Allow upper layers to call the device hard_start_xmit routine.
2799  */
2800 static inline void netif_start_queue(struct net_device *dev)
2801 {
2802         netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2803 }
2804
2805 static inline void netif_tx_start_all_queues(struct net_device *dev)
2806 {
2807         unsigned int i;
2808
2809         for (i = 0; i < dev->num_tx_queues; i++) {
2810                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2811                 netif_tx_start_queue(txq);
2812         }
2813 }
2814
2815 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2816
2817 /**
2818  *      netif_wake_queue - restart transmit
2819  *      @dev: network device
2820  *
2821  *      Allow upper layers to call the device hard_start_xmit routine.
2822  *      Used for flow control when transmit resources are available.
2823  */
2824 static inline void netif_wake_queue(struct net_device *dev)
2825 {
2826         netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2827 }
2828
2829 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2830 {
2831         unsigned int i;
2832
2833         for (i = 0; i < dev->num_tx_queues; i++) {
2834                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2835                 netif_tx_wake_queue(txq);
2836         }
2837 }
2838
2839 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2840 {
2841         set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2842 }
2843
2844 /**
2845  *      netif_stop_queue - stop transmitted packets
2846  *      @dev: network device
2847  *
2848  *      Stop upper layers calling the device hard_start_xmit routine.
2849  *      Used for flow control when transmit resources are unavailable.
2850  */
2851 static inline void netif_stop_queue(struct net_device *dev)
2852 {
2853         netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2854 }
2855
2856 void netif_tx_stop_all_queues(struct net_device *dev);
2857
2858 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2859 {
2860         return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2861 }
2862
2863 /**
2864  *      netif_queue_stopped - test if transmit queue is flowblocked
2865  *      @dev: network device
2866  *
2867  *      Test if transmit queue on device is currently unable to send.
2868  */
2869 static inline bool netif_queue_stopped(const struct net_device *dev)
2870 {
2871         return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2872 }
2873
2874 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2875 {
2876         return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2877 }
2878
2879 static inline bool
2880 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2881 {
2882         return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2883 }
2884
2885 static inline bool
2886 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2887 {
2888         return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2889 }
2890
2891 /**
2892  *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2893  *      @dev_queue: pointer to transmit queue
2894  *
2895  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2896  * to give appropriate hint to the CPU.
2897  */
2898 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2899 {
2900 #ifdef CONFIG_BQL
2901         prefetchw(&dev_queue->dql.num_queued);
2902 #endif
2903 }
2904
2905 /**
2906  *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2907  *      @dev_queue: pointer to transmit queue
2908  *
2909  * BQL enabled drivers might use this helper in their TX completion path,
2910  * to give appropriate hint to the CPU.
2911  */
2912 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2913 {
2914 #ifdef CONFIG_BQL
2915         prefetchw(&dev_queue->dql.limit);
2916 #endif
2917 }
2918
2919 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2920                                         unsigned int bytes)
2921 {
2922 #ifdef CONFIG_BQL
2923         dql_queued(&dev_queue->dql, bytes);
2924
2925         if (likely(dql_avail(&dev_queue->dql) >= 0))
2926                 return;
2927
2928         set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2929
2930         /*
2931          * The XOFF flag must be set before checking the dql_avail below,
2932          * because in netdev_tx_completed_queue we update the dql_completed
2933          * before checking the XOFF flag.
2934          */
2935         smp_mb();
2936
2937         /* check again in case another CPU has just made room avail */
2938         if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2939                 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2940 #endif
2941 }
2942
2943 /**
2944  *      netdev_sent_queue - report the number of bytes queued to hardware
2945  *      @dev: network device
2946  *      @bytes: number of bytes queued to the hardware device queue
2947  *
2948  *      Report the number of bytes queued for sending/completion to the network
2949  *      device hardware queue. @bytes should be a good approximation and should
2950  *      exactly match netdev_completed_queue() @bytes
2951  */
2952 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2953 {
2954         netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2955 }
2956
2957 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2958                                              unsigned int pkts, unsigned int bytes)
2959 {
2960 #ifdef CONFIG_BQL
2961         if (unlikely(!bytes))
2962                 return;
2963
2964         dql_completed(&dev_queue->dql, bytes);
2965
2966         /*
2967          * Without the memory barrier there is a small possiblity that
2968          * netdev_tx_sent_queue will miss the update and cause the queue to
2969          * be stopped forever
2970          */
2971         smp_mb();
2972
2973         if (dql_avail(&dev_queue->dql) < 0)
2974                 return;
2975
2976         if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2977                 netif_schedule_queue(dev_queue);
2978 #endif
2979 }
2980
2981 /**
2982  *      netdev_completed_queue - report bytes and packets completed by device
2983  *      @dev: network device
2984  *      @pkts: actual number of packets sent over the medium
2985  *      @bytes: actual number of bytes sent over the medium
2986  *
2987  *      Report the number of bytes and packets transmitted by the network device
2988  *      hardware queue over the physical medium, @bytes must exactly match the
2989  *      @bytes amount passed to netdev_sent_queue()
2990  */
2991 static inline void netdev_completed_queue(struct net_device *dev,
2992                                           unsigned int pkts, unsigned int bytes)
2993 {
2994         netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2995 }
2996
2997 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2998 {
2999 #ifdef CONFIG_BQL
3000         clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3001         dql_reset(&q->dql);
3002 #endif
3003 }
3004
3005 /**
3006  *      netdev_reset_queue - reset the packets and bytes count of a network device
3007  *      @dev_queue: network device
3008  *
3009  *      Reset the bytes and packet count of a network device and clear the
3010  *      software flow control OFF bit for this network device
3011  */
3012 static inline void netdev_reset_queue(struct net_device *dev_queue)
3013 {
3014         netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3015 }
3016
3017 /**
3018  *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
3019  *      @dev: network device
3020  *      @queue_index: given tx queue index
3021  *
3022  *      Returns 0 if given tx queue index >= number of device tx queues,
3023  *      otherwise returns the originally passed tx queue index.
3024  */
3025 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3026 {
3027         if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3028                 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3029                                      dev->name, queue_index,
3030                                      dev->real_num_tx_queues);
3031                 return 0;
3032         }
3033
3034         return queue_index;
3035 }
3036
3037 /**
3038  *      netif_running - test if up
3039  *      @dev: network device
3040  *
3041  *      Test if the device has been brought up.
3042  */
3043 static inline bool netif_running(const struct net_device *dev)
3044 {
3045         return test_bit(__LINK_STATE_START, &dev->state);
3046 }
3047
3048 /*
3049  * Routines to manage the subqueues on a device.  We only need start,
3050  * stop, and a check if it's stopped.  All other device management is
3051  * done at the overall netdevice level.
3052  * Also test the device if we're multiqueue.
3053  */
3054
3055 /**
3056  *      netif_start_subqueue - allow sending packets on subqueue
3057  *      @dev: network device
3058  *      @queue_index: sub queue index
3059  *
3060  * Start individual transmit queue of a device with multiple transmit queues.
3061  */
3062 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3063 {
3064         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3065
3066         netif_tx_start_queue(txq);
3067 }
3068
3069 /**
3070  *      netif_stop_subqueue - stop sending packets on subqueue
3071  *      @dev: network device
3072  *      @queue_index: sub queue index
3073  *
3074  * Stop individual transmit queue of a device with multiple transmit queues.
3075  */
3076 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3077 {
3078         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3079         netif_tx_stop_queue(txq);
3080 }
3081
3082 /**
3083  *      netif_subqueue_stopped - test status of subqueue
3084  *      @dev: network device
3085  *      @queue_index: sub queue index
3086  *
3087  * Check individual transmit queue of a device with multiple transmit queues.
3088  */
3089 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3090                                             u16 queue_index)
3091 {
3092         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3093
3094         return netif_tx_queue_stopped(txq);
3095 }
3096
3097 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3098                                           struct sk_buff *skb)
3099 {
3100         return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3101 }
3102
3103 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3104
3105 #ifdef CONFIG_XPS
3106 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3107                         u16 index);
3108 #else
3109 static inline int netif_set_xps_queue(struct net_device *dev,
3110                                       const struct cpumask *mask,
3111                                       u16 index)
3112 {
3113         return 0;
3114 }
3115 #endif
3116
3117 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3118                   unsigned int num_tx_queues);
3119
3120 /*
3121  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3122  * as a distribution range limit for the returned value.
3123  */
3124 static inline u16 skb_tx_hash(const struct net_device *dev,
3125                               struct sk_buff *skb)
3126 {
3127         return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3128 }
3129
3130 /**
3131  *      netif_is_multiqueue - test if device has multiple transmit queues
3132  *      @dev: network device
3133  *
3134  * Check if device has multiple transmit queues
3135  */
3136 static inline bool netif_is_multiqueue(const struct net_device *dev)
3137 {
3138         return dev->num_tx_queues > 1;
3139 }
3140
3141 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3142
3143 #ifdef CONFIG_SYSFS
3144 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3145 #else
3146 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3147                                                 unsigned int rxq)
3148 {
3149         return 0;
3150 }
3151 #endif
3152
3153 #ifdef CONFIG_SYSFS
3154 static inline unsigned int get_netdev_rx_queue_index(
3155                 struct netdev_rx_queue *queue)
3156 {
3157         struct net_device *dev = queue->dev;
3158         int index = queue - dev->_rx;
3159
3160         BUG_ON(index >= dev->num_rx_queues);
3161         return index;
3162 }
3163 #endif
3164
3165 #define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
3166 int netif_get_num_default_rss_queues(void);
3167
3168 enum skb_free_reason {
3169         SKB_REASON_CONSUMED,
3170         SKB_REASON_DROPPED,
3171 };
3172
3173 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3174 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3175
3176 /*
3177  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3178  * interrupt context or with hardware interrupts being disabled.
3179  * (in_irq() || irqs_disabled())
3180  *
3181  * We provide four helpers that can be used in following contexts :
3182  *
3183  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3184  *  replacing kfree_skb(skb)
3185  *
3186  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3187  *  Typically used in place of consume_skb(skb) in TX completion path
3188  *
3189  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3190  *  replacing kfree_skb(skb)
3191  *
3192  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3193  *  and consumed a packet. Used in place of consume_skb(skb)
3194  */
3195 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3196 {
3197         __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3198 }
3199
3200 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3201 {
3202         __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3203 }
3204
3205 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3206 {
3207         __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3208 }
3209
3210 static inline void dev_consume_skb_any(struct sk_buff *skb)
3211 {
3212         __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3213 }
3214
3215 int netif_rx(struct sk_buff *skb);
3216 int netif_rx_ni(struct sk_buff *skb);
3217 int netif_receive_skb(struct sk_buff *skb);
3218 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3219 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3220 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3221 gro_result_t napi_gro_frags(struct napi_struct *napi);
3222 struct packet_offload *gro_find_receive_by_type(__be16 type);
3223 struct packet_offload *gro_find_complete_by_type(__be16 type);
3224
3225 static inline void napi_free_frags(struct napi_struct *napi)
3226 {
3227         kfree_skb(napi->skb);
3228         napi->skb = NULL;
3229 }
3230
3231 bool netdev_is_rx_handler_busy(struct net_device *dev);
3232 int netdev_rx_handler_register(struct net_device *dev,
3233                                rx_handler_func_t *rx_handler,
3234                                void *rx_handler_data);
3235 void netdev_rx_handler_unregister(struct net_device *dev);
3236
3237 bool dev_valid_name(const char *name);
3238 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3239 int dev_ethtool(struct net *net, struct ifreq *);
3240 unsigned int dev_get_flags(const struct net_device *);
3241 int __dev_change_flags(struct net_device *, unsigned int flags);
3242 int dev_change_flags(struct net_device *, unsigned int);
3243 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3244                         unsigned int gchanges);
3245 int dev_change_name(struct net_device *, const char *);
3246 int dev_set_alias(struct net_device *, const char *, size_t);
3247 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3248 int dev_set_mtu(struct net_device *, int);
3249 void dev_set_group(struct net_device *, int);
3250 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3251 int dev_change_carrier(struct net_device *, bool new_carrier);
3252 int dev_get_phys_port_id(struct net_device *dev,
3253                          struct netdev_phys_item_id *ppid);
3254 int dev_get_phys_port_name(struct net_device *dev,
3255                            char *name, size_t len);
3256 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3257 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags);
3258 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3259 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3260                                     struct netdev_queue *txq, int *ret);
3261 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3262 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3263 bool is_skb_forwardable(const struct net_device *dev,
3264                         const struct sk_buff *skb);
3265
3266 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3267                                                struct sk_buff *skb)
3268 {
3269         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3270             unlikely(!is_skb_forwardable(dev, skb))) {
3271                 atomic_long_inc(&dev->rx_dropped);
3272                 kfree_skb(skb);
3273                 return NET_RX_DROP;
3274         }
3275
3276         skb_scrub_packet(skb, true);
3277         skb->priority = 0;
3278         return 0;
3279 }
3280
3281 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3282
3283 extern int              netdev_budget;
3284
3285 /* Called by rtnetlink.c:rtnl_unlock() */
3286 void netdev_run_todo(void);
3287
3288 /**
3289  *      dev_put - release reference to device
3290  *      @dev: network device
3291  *
3292  * Release reference to device to allow it to be freed.
3293  */
3294 static inline void dev_put(struct net_device *dev)
3295 {
3296         this_cpu_dec(*dev->pcpu_refcnt);
3297 }
3298
3299 /**
3300  *      dev_hold - get reference to device
3301  *      @dev: network device
3302  *
3303  * Hold reference to device to keep it from being freed.
3304  */
3305 static inline void dev_hold(struct net_device *dev)
3306 {
3307         this_cpu_inc(*dev->pcpu_refcnt);
3308 }
3309
3310 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3311  * and _off may be called from IRQ context, but it is caller
3312  * who is responsible for serialization of these calls.
3313  *
3314  * The name carrier is inappropriate, these functions should really be
3315  * called netif_lowerlayer_*() because they represent the state of any
3316  * kind of lower layer not just hardware media.
3317  */
3318
3319 void linkwatch_init_dev(struct net_device *dev);
3320 void linkwatch_fire_event(struct net_device *dev);
3321 void linkwatch_forget_dev(struct net_device *dev);
3322
3323 /**
3324  *      netif_carrier_ok - test if carrier present
3325  *      @dev: network device
3326  *
3327  * Check if carrier is present on device
3328  */
3329 static inline bool netif_carrier_ok(const struct net_device *dev)
3330 {
3331         return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3332 }
3333
3334 unsigned long dev_trans_start(struct net_device *dev);
3335
3336 void __netdev_watchdog_up(struct net_device *dev);
3337
3338 void netif_carrier_on(struct net_device *dev);
3339
3340 void netif_carrier_off(struct net_device *dev);
3341
3342 /**
3343  *      netif_dormant_on - mark device as dormant.
3344  *      @dev: network device
3345  *
3346  * Mark device as dormant (as per RFC2863).
3347  *
3348  * The dormant state indicates that the relevant interface is not
3349  * actually in a condition to pass packets (i.e., it is not 'up') but is
3350  * in a "pending" state, waiting for some external event.  For "on-
3351  * demand" interfaces, this new state identifies the situation where the
3352  * interface is waiting for events to place it in the up state.
3353  */
3354 static inline void netif_dormant_on(struct net_device *dev)
3355 {
3356         if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3357                 linkwatch_fire_event(dev);
3358 }
3359
3360 /**
3361  *      netif_dormant_off - set device as not dormant.
3362  *      @dev: network device
3363  *
3364  * Device is not in dormant state.
3365  */
3366 static inline void netif_dormant_off(struct net_device *dev)
3367 {
3368         if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3369                 linkwatch_fire_event(dev);
3370 }
3371
3372 /**
3373  *      netif_dormant - test if carrier present
3374  *      @dev: network device
3375  *
3376  * Check if carrier is present on device
3377  */
3378 static inline bool netif_dormant(const struct net_device *dev)
3379 {
3380         return test_bit(__LINK_STATE_DORMANT, &dev->state);
3381 }
3382
3383
3384 /**
3385  *      netif_oper_up - test if device is operational
3386  *      @dev: network device
3387  *
3388  * Check if carrier is operational
3389  */
3390 static inline bool netif_oper_up(const struct net_device *dev)
3391 {
3392         return (dev->operstate == IF_OPER_UP ||
3393                 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3394 }
3395
3396 /**
3397  *      netif_device_present - is device available or removed
3398  *      @dev: network device
3399  *
3400  * Check if device has not been removed from system.
3401  */
3402 static inline bool netif_device_present(struct net_device *dev)
3403 {
3404         return test_bit(__LINK_STATE_PRESENT, &dev->state);
3405 }
3406
3407 void netif_device_detach(struct net_device *dev);
3408
3409 void netif_device_attach(struct net_device *dev);
3410
3411 /*
3412  * Network interface message level settings
3413  */
3414
3415 enum {
3416         NETIF_MSG_DRV           = 0x0001,
3417         NETIF_MSG_PROBE         = 0x0002,
3418         NETIF_MSG_LINK          = 0x0004,
3419         NETIF_MSG_TIMER         = 0x0008,
3420         NETIF_MSG_IFDOWN        = 0x0010,
3421         NETIF_MSG_IFUP          = 0x0020,
3422         NETIF_MSG_RX_ERR        = 0x0040,
3423         NETIF_MSG_TX_ERR        = 0x0080,
3424         NETIF_MSG_TX_QUEUED     = 0x0100,
3425         NETIF_MSG_INTR          = 0x0200,
3426         NETIF_MSG_TX_DONE       = 0x0400,
3427         NETIF_MSG_RX_STATUS     = 0x0800,
3428         NETIF_MSG_PKTDATA       = 0x1000,
3429         NETIF_MSG_HW            = 0x2000,
3430         NETIF_MSG_WOL           = 0x4000,
3431 };
3432
3433 #define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3434 #define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3435 #define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3436 #define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3437 #define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3438 #define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3439 #define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3440 #define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3441 #define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3442 #define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3443 #define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3444 #define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3445 #define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3446 #define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3447 #define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3448
3449 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3450 {
3451         /* use default */
3452         if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3453                 return default_msg_enable_bits;
3454         if (debug_value == 0)   /* no output */
3455                 return 0;
3456         /* set low N bits */
3457         return (1 << debug_value) - 1;
3458 }
3459
3460 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3461 {
3462         spin_lock(&txq->_xmit_lock);
3463         txq->xmit_lock_owner = cpu;
3464 }
3465
3466 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3467 {
3468         __acquire(&txq->_xmit_lock);
3469         return true;
3470 }
3471
3472 static inline void __netif_tx_release(struct netdev_queue *txq)
3473 {
3474         __release(&txq->_xmit_lock);
3475 }
3476
3477 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3478 {
3479         spin_lock_bh(&txq->_xmit_lock);
3480         txq->xmit_lock_owner = smp_processor_id();
3481 }
3482
3483 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3484 {
3485         bool ok = spin_trylock(&txq->_xmit_lock);
3486         if (likely(ok))
3487                 txq->xmit_lock_owner = smp_processor_id();
3488         return ok;
3489 }
3490
3491 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3492 {
3493         txq->xmit_lock_owner = -1;
3494         spin_unlock(&txq->_xmit_lock);
3495 }
3496
3497 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3498 {
3499         txq->xmit_lock_owner = -1;
3500         spin_unlock_bh(&txq->_xmit_lock);
3501 }
3502
3503 static inline void txq_trans_update(struct netdev_queue *txq)
3504 {
3505         if (txq->xmit_lock_owner != -1)
3506                 txq->trans_start = jiffies;
3507 }
3508
3509 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3510 static inline void netif_trans_update(struct net_device *dev)
3511 {
3512         struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3513
3514         if (txq->trans_start != jiffies)
3515                 txq->trans_start = jiffies;
3516 }
3517
3518 /**
3519  *      netif_tx_lock - grab network device transmit lock
3520  *      @dev: network device
3521  *
3522  * Get network device transmit lock
3523  */
3524 static inline void netif_tx_lock(struct net_device *dev)
3525 {
3526         unsigned int i;
3527         int cpu;
3528
3529         spin_lock(&dev->tx_global_lock);
3530         cpu = smp_processor_id();
3531         for (i = 0; i < dev->num_tx_queues; i++) {
3532                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3533
3534                 /* We are the only thread of execution doing a
3535                  * freeze, but we have to grab the _xmit_lock in
3536                  * order to synchronize with threads which are in
3537                  * the ->hard_start_xmit() handler and already
3538                  * checked the frozen bit.
3539                  */
3540                 __netif_tx_lock(txq, cpu);
3541                 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3542                 __netif_tx_unlock(txq);
3543         }
3544 }
3545
3546 static inline void netif_tx_lock_bh(struct net_device *dev)
3547 {
3548         local_bh_disable();
3549         netif_tx_lock(dev);
3550 }
3551
3552 static inline void netif_tx_unlock(struct net_device *dev)
3553 {
3554         unsigned int i;
3555
3556         for (i = 0; i < dev->num_tx_queues; i++) {
3557                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3558
3559                 /* No need to grab the _xmit_lock here.  If the
3560                  * queue is not stopped for another reason, we
3561                  * force a schedule.
3562                  */
3563                 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3564                 netif_schedule_queue(txq);
3565         }
3566         spin_unlock(&dev->tx_global_lock);
3567 }
3568
3569 static inline void netif_tx_unlock_bh(struct net_device *dev)
3570 {
3571         netif_tx_unlock(dev);
3572         local_bh_enable();
3573 }
3574
3575 #define HARD_TX_LOCK(dev, txq, cpu) {                   \
3576         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3577                 __netif_tx_lock(txq, cpu);              \
3578         } else {                                        \
3579                 __netif_tx_acquire(txq);                \
3580         }                                               \
3581 }
3582
3583 #define HARD_TX_TRYLOCK(dev, txq)                       \
3584         (((dev->features & NETIF_F_LLTX) == 0) ?        \
3585                 __netif_tx_trylock(txq) :               \
3586                 __netif_tx_acquire(txq))
3587
3588 #define HARD_TX_UNLOCK(dev, txq) {                      \
3589         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3590                 __netif_tx_unlock(txq);                 \
3591         } else {                                        \
3592                 __netif_tx_release(txq);                \
3593         }                                               \
3594 }
3595
3596 static inline void netif_tx_disable(struct net_device *dev)
3597 {
3598         unsigned int i;
3599         int cpu;
3600
3601         local_bh_disable();
3602         cpu = smp_processor_id();
3603         for (i = 0; i < dev->num_tx_queues; i++) {
3604                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3605
3606                 __netif_tx_lock(txq, cpu);
3607                 netif_tx_stop_queue(txq);
3608                 __netif_tx_unlock(txq);
3609         }
3610         local_bh_enable();
3611 }
3612
3613 static inline void netif_addr_lock(struct net_device *dev)
3614 {
3615         spin_lock(&dev->addr_list_lock);
3616 }
3617
3618 static inline void netif_addr_lock_nested(struct net_device *dev)
3619 {
3620         int subclass = SINGLE_DEPTH_NESTING;
3621
3622         if (dev->netdev_ops->ndo_get_lock_subclass)
3623                 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3624
3625         spin_lock_nested(&dev->addr_list_lock, subclass);
3626 }
3627
3628 static inline void netif_addr_lock_bh(struct net_device *dev)
3629 {
3630         spin_lock_bh(&dev->addr_list_lock);
3631 }
3632
3633 static inline void netif_addr_unlock(struct net_device *dev)
3634 {
3635         spin_unlock(&dev->addr_list_lock);
3636 }
3637
3638 static inline void netif_addr_unlock_bh(struct net_device *dev)
3639 {
3640         spin_unlock_bh(&dev->addr_list_lock);
3641 }
3642
3643 /*
3644  * dev_addrs walker. Should be used only for read access. Call with
3645  * rcu_read_lock held.
3646  */
3647 #define for_each_dev_addr(dev, ha) \
3648                 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3649
3650 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3651
3652 void ether_setup(struct net_device *dev);
3653
3654 /* Support for loadable net-drivers */
3655 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3656                                     unsigned char name_assign_type,
3657                                     void (*setup)(struct net_device *),
3658                                     unsigned int txqs, unsigned int rxqs);
3659 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3660         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3661
3662 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3663         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3664                          count)
3665
3666 int register_netdev(struct net_device *dev);
3667 void unregister_netdev(struct net_device *dev);
3668
3669 /* General hardware address lists handling functions */
3670 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3671                    struct netdev_hw_addr_list *from_list, int addr_len);
3672 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3673                       struct netdev_hw_addr_list *from_list, int addr_len);
3674 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3675                        struct net_device *dev,
3676                        int (*sync)(struct net_device *, const unsigned char *),
3677                        int (*unsync)(struct net_device *,
3678                                      const unsigned char *));
3679 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3680                           struct net_device *dev,
3681                           int (*unsync)(struct net_device *,
3682                                         const unsigned char *));
3683 void __hw_addr_init(struct netdev_hw_addr_list *list);
3684
3685 /* Functions used for device addresses handling */
3686 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3687                  unsigned char addr_type);
3688 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3689                  unsigned char addr_type);
3690 void dev_addr_flush(struct net_device *dev);
3691 int dev_addr_init(struct net_device *dev);
3692
3693 /* Functions used for unicast addresses handling */
3694 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3695 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3696 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3697 int dev_uc_sync(struct net_device *to, struct net_device *from);
3698 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3699 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3700 void dev_uc_flush(struct net_device *dev);
3701 void dev_uc_init(struct net_device *dev);
3702
3703 /**
3704  *  __dev_uc_sync - Synchonize device's unicast list
3705  *  @dev:  device to sync
3706  *  @sync: function to call if address should be added
3707  *  @unsync: function to call if address should be removed
3708  *
3709  *  Add newly added addresses to the interface, and release
3710  *  addresses that have been deleted.
3711  */
3712 static inline int __dev_uc_sync(struct net_device *dev,
3713                                 int (*sync)(struct net_device *,
3714                                             const unsigned char *),
3715                                 int (*unsync)(struct net_device *,
3716                                               const unsigned char *))
3717 {
3718         return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3719 }
3720
3721 /**
3722  *  __dev_uc_unsync - Remove synchronized addresses from device
3723  *  @dev:  device to sync
3724  *  @unsync: function to call if address should be removed
3725  *
3726  *  Remove all addresses that were added to the device by dev_uc_sync().
3727  */
3728 static inline void __dev_uc_unsync(struct net_device *dev,
3729                                    int (*unsync)(struct net_device *,
3730                                                  const unsigned char *))
3731 {
3732         __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3733 }
3734
3735 /* Functions used for multicast addresses handling */
3736 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3737 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3738 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3739 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3740 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3741 int dev_mc_sync(struct net_device *to, struct net_device *from);
3742 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3743 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3744 void dev_mc_flush(struct net_device *dev);
3745 void dev_mc_init(struct net_device *dev);
3746
3747 /**
3748  *  __dev_mc_sync - Synchonize device's multicast list
3749  *  @dev:  device to sync
3750  *  @sync: function to call if address should be added
3751  *  @unsync: function to call if address should be removed
3752  *
3753  *  Add newly added addresses to the interface, and release
3754  *  addresses that have been deleted.
3755  */
3756 static inline int __dev_mc_sync(struct net_device *dev,
3757                                 int (*sync)(struct net_device *,
3758                                             const unsigned char *),
3759                                 int (*unsync)(struct net_device *,
3760                                               const unsigned char *))
3761 {
3762         return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3763 }
3764
3765 /**
3766  *  __dev_mc_unsync - Remove synchronized addresses from device
3767  *  @dev:  device to sync
3768  *  @unsync: function to call if address should be removed
3769  *
3770  *  Remove all addresses that were added to the device by dev_mc_sync().
3771  */
3772 static inline void __dev_mc_unsync(struct net_device *dev,
3773                                    int (*unsync)(struct net_device *,
3774                                                  const unsigned char *))
3775 {
3776         __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3777 }
3778
3779 /* Functions used for secondary unicast and multicast support */
3780 void dev_set_rx_mode(struct net_device *dev);
3781 void __dev_set_rx_mode(struct net_device *dev);
3782 int dev_set_promiscuity(struct net_device *dev, int inc);
3783 int dev_set_allmulti(struct net_device *dev, int inc);
3784 void netdev_state_change(struct net_device *dev);
3785 void netdev_notify_peers(struct net_device *dev);
3786 void netdev_features_change(struct net_device *dev);
3787 /* Load a device via the kmod */
3788 void dev_load(struct net *net, const char *name);
3789 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3790                                         struct rtnl_link_stats64 *storage);
3791 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3792                              const struct net_device_stats *netdev_stats);
3793
3794 extern int              netdev_max_backlog;
3795 extern int              netdev_tstamp_prequeue;
3796 extern int              weight_p;
3797
3798 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3799 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3800                                                      struct list_head **iter);
3801 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3802                                                      struct list_head **iter);
3803
3804 /* iterate through upper list, must be called under RCU read lock */
3805 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3806         for (iter = &(dev)->adj_list.upper, \
3807              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3808              updev; \
3809              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3810
3811 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3812                                   int (*fn)(struct net_device *upper_dev,
3813                                             void *data),
3814                                   void *data);
3815
3816 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3817                                   struct net_device *upper_dev);
3818
3819 void *netdev_lower_get_next_private(struct net_device *dev,
3820                                     struct list_head **iter);
3821 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3822                                         struct list_head **iter);
3823
3824 #define netdev_for_each_lower_private(dev, priv, iter) \
3825         for (iter = (dev)->adj_list.lower.next, \
3826              priv = netdev_lower_get_next_private(dev, &(iter)); \
3827              priv; \
3828              priv = netdev_lower_get_next_private(dev, &(iter)))
3829
3830 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3831         for (iter = &(dev)->adj_list.lower, \
3832              priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3833              priv; \
3834              priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3835
3836 void *netdev_lower_get_next(struct net_device *dev,
3837                                 struct list_head **iter);
3838
3839 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3840         for (iter = (dev)->adj_list.lower.next, \
3841              ldev = netdev_lower_get_next(dev, &(iter)); \
3842              ldev; \
3843              ldev = netdev_lower_get_next(dev, &(iter)))
3844
3845 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3846                                              struct list_head **iter);
3847 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3848                                                  struct list_head **iter);
3849
3850 int netdev_walk_all_lower_dev(struct net_device *dev,
3851                               int (*fn)(struct net_device *lower_dev,
3852                                         void *data),
3853                               void *data);
3854 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3855                                   int (*fn)(struct net_device *lower_dev,
3856                                             void *data),
3857                                   void *data);
3858
3859 void *netdev_adjacent_get_private(struct list_head *adj_list);
3860 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3861 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3862 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3863 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3864 int netdev_master_upper_dev_link(struct net_device *dev,
3865                                  struct net_device *upper_dev,
3866                                  void *upper_priv, void *upper_info);
3867 void netdev_upper_dev_unlink(struct net_device *dev,
3868                              struct net_device *upper_dev);
3869 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3870 void *netdev_lower_dev_get_private(struct net_device *dev,
3871                                    struct net_device *lower_dev);
3872 void netdev_lower_state_changed(struct net_device *lower_dev,
3873                                 void *lower_state_info);
3874 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
3875                                            struct neighbour *n);
3876 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
3877                                           struct neighbour *n);
3878
3879 /* RSS keys are 40 or 52 bytes long */
3880 #define NETDEV_RSS_KEY_LEN 52
3881 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3882 void netdev_rss_key_fill(void *buffer, size_t len);
3883
3884 int dev_get_nest_level(struct net_device *dev);
3885 int skb_checksum_help(struct sk_buff *skb);
3886 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3887                                   netdev_features_t features, bool tx_path);
3888 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3889                                     netdev_features_t features);
3890
3891 struct netdev_bonding_info {
3892         ifslave slave;
3893         ifbond  master;
3894 };
3895
3896 struct netdev_notifier_bonding_info {
3897         struct netdev_notifier_info info; /* must be first */
3898         struct netdev_bonding_info  bonding_info;
3899 };
3900
3901 void netdev_bonding_info_change(struct net_device *dev,
3902                                 struct netdev_bonding_info *bonding_info);
3903
3904 static inline
3905 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3906 {
3907         return __skb_gso_segment(skb, features, true);
3908 }
3909 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3910
3911 static inline bool can_checksum_protocol(netdev_features_t features,
3912                                          __be16 protocol)
3913 {
3914         if (protocol == htons(ETH_P_FCOE))
3915                 return !!(features & NETIF_F_FCOE_CRC);
3916
3917         /* Assume this is an IP checksum (not SCTP CRC) */
3918
3919         if (features & NETIF_F_HW_CSUM) {
3920                 /* Can checksum everything */
3921                 return true;
3922         }
3923
3924         switch (protocol) {
3925         case htons(ETH_P_IP):
3926                 return !!(features & NETIF_F_IP_CSUM);
3927         case htons(ETH_P_IPV6):
3928                 return !!(features & NETIF_F_IPV6_CSUM);
3929         default:
3930                 return false;
3931         }
3932 }
3933
3934 #ifdef CONFIG_BUG
3935 void netdev_rx_csum_fault(struct net_device *dev);
3936 #else
3937 static inline void netdev_rx_csum_fault(struct net_device *dev)
3938 {
3939 }
3940 #endif
3941 /* rx skb timestamps */
3942 void net_enable_timestamp(void);
3943 void net_disable_timestamp(void);
3944
3945 #ifdef CONFIG_PROC_FS
3946 int __init dev_proc_init(void);
3947 #else
3948 #define dev_proc_init() 0
3949 #endif
3950
3951 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3952                                               struct sk_buff *skb, struct net_device *dev,
3953                                               bool more)
3954 {
3955         skb->xmit_more = more ? 1 : 0;
3956         return ops->ndo_start_xmit(skb, dev);
3957 }
3958
3959 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3960                                             struct netdev_queue *txq, bool more)
3961 {
3962         const struct net_device_ops *ops = dev->netdev_ops;
3963         int rc;
3964
3965         rc = __netdev_start_xmit(ops, skb, dev, more);
3966         if (rc == NETDEV_TX_OK)
3967                 txq_trans_update(txq);
3968
3969         return rc;
3970 }
3971
3972 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3973                                 const void *ns);
3974 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3975                                  const void *ns);
3976
3977 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3978 {
3979         return netdev_class_create_file_ns(class_attr, NULL);
3980 }
3981
3982 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3983 {
3984         netdev_class_remove_file_ns(class_attr, NULL);
3985 }
3986
3987 extern struct kobj_ns_type_operations net_ns_type_operations;
3988
3989 const char *netdev_drivername(const struct net_device *dev);
3990
3991 void linkwatch_run_queue(void);
3992
3993 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3994                                                           netdev_features_t f2)
3995 {
3996         if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
3997                 if (f1 & NETIF_F_HW_CSUM)
3998                         f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3999                 else
4000                         f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4001         }
4002
4003         return f1 & f2;
4004 }
4005
4006 static inline netdev_features_t netdev_get_wanted_features(
4007         struct net_device *dev)
4008 {
4009         return (dev->features & ~dev->hw_features) | dev->wanted_features;
4010 }
4011 netdev_features_t netdev_increment_features(netdev_features_t all,
4012         netdev_features_t one, netdev_features_t mask);
4013
4014 /* Allow TSO being used on stacked device :
4015  * Performing the GSO segmentation before last device
4016  * is a performance improvement.
4017  */
4018 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4019                                                         netdev_features_t mask)
4020 {
4021         return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4022 }
4023
4024 int __netdev_update_features(struct net_device *dev);
4025 void netdev_update_features(struct net_device *dev);
4026 void netdev_change_features(struct net_device *dev);
4027
4028 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4029                                         struct net_device *dev);
4030
4031 netdev_features_t passthru_features_check(struct sk_buff *skb,
4032                                           struct net_device *dev,
4033                                           netdev_features_t features);
4034 netdev_features_t netif_skb_features(struct sk_buff *skb);
4035
4036 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4037 {
4038         netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4039
4040         /* check flags correspondence */
4041         BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4042         BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4043         BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4044         BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4045         BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4046         BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4047         BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4048         BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4049         BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4050         BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4051         BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4052         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4053         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4054         BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4055         BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4056         BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4057
4058         return (features & feature) == feature;
4059 }
4060
4061 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4062 {
4063         return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4064                (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4065 }
4066
4067 static inline bool netif_needs_gso(struct sk_buff *skb,
4068                                    netdev_features_t features)
4069 {
4070         return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4071                 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4072                          (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4073 }
4074
4075 static inline void netif_set_gso_max_size(struct net_device *dev,
4076                                           unsigned int size)
4077 {
4078         dev->gso_max_size = size;
4079 }
4080
4081 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4082                                         int pulled_hlen, u16 mac_offset,
4083                                         int mac_len)
4084 {
4085         skb->protocol = protocol;
4086         skb->encapsulation = 1;
4087         skb_push(skb, pulled_hlen);
4088         skb_reset_transport_header(skb);
4089         skb->mac_header = mac_offset;
4090         skb->network_header = skb->mac_header + mac_len;
4091         skb->mac_len = mac_len;
4092 }
4093
4094 static inline bool netif_is_macsec(const struct net_device *dev)
4095 {
4096         return dev->priv_flags & IFF_MACSEC;
4097 }
4098
4099 static inline bool netif_is_macvlan(const struct net_device *dev)
4100 {
4101         return dev->priv_flags & IFF_MACVLAN;
4102 }
4103
4104 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4105 {
4106         return dev->priv_flags & IFF_MACVLAN_PORT;
4107 }
4108
4109 static inline bool netif_is_ipvlan(const struct net_device *dev)
4110 {
4111         return dev->priv_flags & IFF_IPVLAN_SLAVE;
4112 }
4113
4114 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4115 {
4116         return dev->priv_flags & IFF_IPVLAN_MASTER;
4117 }
4118
4119 static inline bool netif_is_bond_master(const struct net_device *dev)
4120 {
4121         return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4122 }
4123
4124 static inline bool netif_is_bond_slave(const struct net_device *dev)
4125 {
4126         return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4127 }
4128
4129 static inline bool netif_supports_nofcs(struct net_device *dev)
4130 {
4131         return dev->priv_flags & IFF_SUPP_NOFCS;
4132 }
4133
4134 static inline bool netif_is_l3_master(const struct net_device *dev)
4135 {
4136         return dev->priv_flags & IFF_L3MDEV_MASTER;
4137 }
4138
4139 static inline bool netif_is_l3_slave(const struct net_device *dev)
4140 {
4141         return dev->priv_flags & IFF_L3MDEV_SLAVE;
4142 }
4143
4144 static inline bool netif_is_bridge_master(const struct net_device *dev)
4145 {
4146         return dev->priv_flags & IFF_EBRIDGE;
4147 }
4148
4149 static inline bool netif_is_bridge_port(const struct net_device *dev)
4150 {
4151         return dev->priv_flags & IFF_BRIDGE_PORT;
4152 }
4153
4154 static inline bool netif_is_ovs_master(const struct net_device *dev)
4155 {
4156         return dev->priv_flags & IFF_OPENVSWITCH;
4157 }
4158
4159 static inline bool netif_is_team_master(const struct net_device *dev)
4160 {
4161         return dev->priv_flags & IFF_TEAM;
4162 }
4163
4164 static inline bool netif_is_team_port(const struct net_device *dev)
4165 {
4166         return dev->priv_flags & IFF_TEAM_PORT;
4167 }
4168
4169 static inline bool netif_is_lag_master(const struct net_device *dev)
4170 {
4171         return netif_is_bond_master(dev) || netif_is_team_master(dev);
4172 }
4173
4174 static inline bool netif_is_lag_port(const struct net_device *dev)
4175 {
4176         return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4177 }
4178
4179 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4180 {
4181         return dev->priv_flags & IFF_RXFH_CONFIGURED;
4182 }
4183
4184 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4185 static inline void netif_keep_dst(struct net_device *dev)
4186 {
4187         dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4188 }
4189
4190 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4191 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4192 {
4193         /* TODO: reserve and use an additional IFF bit, if we get more users */
4194         return dev->priv_flags & IFF_MACSEC;
4195 }
4196
4197 extern struct pernet_operations __net_initdata loopback_net_ops;
4198
4199 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4200
4201 /* netdev_printk helpers, similar to dev_printk */
4202
4203 static inline const char *netdev_name(const struct net_device *dev)
4204 {
4205         if (!dev->name[0] || strchr(dev->name, '%'))
4206                 return "(unnamed net_device)";
4207         return dev->name;
4208 }
4209
4210 static inline const char *netdev_reg_state(const struct net_device *dev)
4211 {
4212         switch (dev->reg_state) {
4213         case NETREG_UNINITIALIZED: return " (uninitialized)";
4214         case NETREG_REGISTERED: return "";
4215         case NETREG_UNREGISTERING: return " (unregistering)";
4216         case NETREG_UNREGISTERED: return " (unregistered)";
4217         case NETREG_RELEASED: return " (released)";
4218         case NETREG_DUMMY: return " (dummy)";
4219         }
4220
4221         WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4222         return " (unknown)";
4223 }
4224
4225 __printf(3, 4)
4226 void netdev_printk(const char *level, const struct net_device *dev,
4227                    const char *format, ...);
4228 __printf(2, 3)
4229 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4230 __printf(2, 3)
4231 void netdev_alert(const struct net_device *dev, const char *format, ...);
4232 __printf(2, 3)
4233 void netdev_crit(const struct net_device *dev, const char *format, ...);
4234 __printf(2, 3)
4235 void netdev_err(const struct net_device *dev, const char *format, ...);
4236 __printf(2, 3)
4237 void netdev_warn(const struct net_device *dev, const char *format, ...);
4238 __printf(2, 3)
4239 void netdev_notice(const struct net_device *dev, const char *format, ...);
4240 __printf(2, 3)
4241 void netdev_info(const struct net_device *dev, const char *format, ...);
4242
4243 #define MODULE_ALIAS_NETDEV(device) \
4244         MODULE_ALIAS("netdev-" device)
4245
4246 #if defined(CONFIG_DYNAMIC_DEBUG)
4247 #define netdev_dbg(__dev, format, args...)                      \
4248 do {                                                            \
4249         dynamic_netdev_dbg(__dev, format, ##args);              \
4250 } while (0)
4251 #elif defined(DEBUG)
4252 #define netdev_dbg(__dev, format, args...)                      \
4253         netdev_printk(KERN_DEBUG, __dev, format, ##args)
4254 #else
4255 #define netdev_dbg(__dev, format, args...)                      \
4256 ({                                                              \
4257         if (0)                                                  \
4258                 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4259 })
4260 #endif
4261
4262 #if defined(VERBOSE_DEBUG)
4263 #define netdev_vdbg     netdev_dbg
4264 #else
4265
4266 #define netdev_vdbg(dev, format, args...)                       \
4267 ({                                                              \
4268         if (0)                                                  \
4269                 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4270         0;                                                      \
4271 })
4272 #endif
4273
4274 /*
4275  * netdev_WARN() acts like dev_printk(), but with the key difference
4276  * of using a WARN/WARN_ON to get the message out, including the
4277  * file/line information and a backtrace.
4278  */
4279 #define netdev_WARN(dev, format, args...)                       \
4280         WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),   \
4281              netdev_reg_state(dev), ##args)
4282
4283 /* netif printk helpers, similar to netdev_printk */
4284
4285 #define netif_printk(priv, type, level, dev, fmt, args...)      \
4286 do {                                                            \
4287         if (netif_msg_##type(priv))                             \
4288                 netdev_printk(level, (dev), fmt, ##args);       \
4289 } while (0)
4290
4291 #define netif_level(level, priv, type, dev, fmt, args...)       \
4292 do {                                                            \
4293         if (netif_msg_##type(priv))                             \
4294                 netdev_##level(dev, fmt, ##args);               \
4295 } while (0)
4296
4297 #define netif_emerg(priv, type, dev, fmt, args...)              \
4298         netif_level(emerg, priv, type, dev, fmt, ##args)
4299 #define netif_alert(priv, type, dev, fmt, args...)              \
4300         netif_level(alert, priv, type, dev, fmt, ##args)
4301 #define netif_crit(priv, type, dev, fmt, args...)               \
4302         netif_level(crit, priv, type, dev, fmt, ##args)
4303 #define netif_err(priv, type, dev, fmt, args...)                \
4304         netif_level(err, priv, type, dev, fmt, ##args)
4305 #define netif_warn(priv, type, dev, fmt, args...)               \
4306         netif_level(warn, priv, type, dev, fmt, ##args)
4307 #define netif_notice(priv, type, dev, fmt, args...)             \
4308         netif_level(notice, priv, type, dev, fmt, ##args)
4309 #define netif_info(priv, type, dev, fmt, args...)               \
4310         netif_level(info, priv, type, dev, fmt, ##args)
4311
4312 #if defined(CONFIG_DYNAMIC_DEBUG)
4313 #define netif_dbg(priv, type, netdev, format, args...)          \
4314 do {                                                            \
4315         if (netif_msg_##type(priv))                             \
4316                 dynamic_netdev_dbg(netdev, format, ##args);     \
4317 } while (0)
4318 #elif defined(DEBUG)
4319 #define netif_dbg(priv, type, dev, format, args...)             \
4320         netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4321 #else
4322 #define netif_dbg(priv, type, dev, format, args...)                     \
4323 ({                                                                      \
4324         if (0)                                                          \
4325                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4326         0;                                                              \
4327 })
4328 #endif
4329
4330 #if defined(VERBOSE_DEBUG)
4331 #define netif_vdbg      netif_dbg
4332 #else
4333 #define netif_vdbg(priv, type, dev, format, args...)            \
4334 ({                                                              \
4335         if (0)                                                  \
4336                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4337         0;                                                      \
4338 })
4339 #endif
4340
4341 /*
4342  *      The list of packet types we will receive (as opposed to discard)
4343  *      and the routines to invoke.
4344  *
4345  *      Why 16. Because with 16 the only overlap we get on a hash of the
4346  *      low nibble of the protocol value is RARP/SNAP/X.25.
4347  *
4348  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4349  *             sure which should go first, but I bet it won't make much
4350  *             difference if we are running VLANs.  The good news is that
4351  *             this protocol won't be in the list unless compiled in, so
4352  *             the average user (w/out VLANs) will not be adversely affected.
4353  *             --BLG
4354  *
4355  *              0800    IP
4356  *              8100    802.1Q VLAN
4357  *              0001    802.3
4358  *              0002    AX.25
4359  *              0004    802.2
4360  *              8035    RARP
4361  *              0005    SNAP
4362  *              0805    X.25
4363  *              0806    ARP
4364  *              8137    IPX
4365  *              0009    Localtalk
4366  *              86DD    IPv6
4367  */
4368 #define PTYPE_HASH_SIZE (16)
4369 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4370
4371 #endif  /* _LINUX_NETDEVICE_H */