Merge tag 'asoc-fix-4.17-rc2' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / include / linux / netdevice.h
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Definitions for the Interfaces handler.
7  *
8  * Version:     @(#)dev.h       1.0.10  08/12/93
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *              Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *              This program is free software; you can redistribute it and/or
19  *              modify it under the terms of the GNU General Public License
20  *              as published by the Free Software Foundation; either version
21  *              2 of the License, or (at your option) any later version.
22  *
23  *              Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 #include <net/xdp.h>
48
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_port;
60
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct bpf_prog;
70 struct xdp_buff;
71
72 void netdev_set_default_ethtool_ops(struct net_device *dev,
73                                     const struct ethtool_ops *ops);
74
75 /* Backlog congestion levels */
76 #define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
77 #define NET_RX_DROP             1       /* packet dropped */
78
79 /*
80  * Transmit return codes: transmit return codes originate from three different
81  * namespaces:
82  *
83  * - qdisc return codes
84  * - driver transmit return codes
85  * - errno values
86  *
87  * Drivers are allowed to return any one of those in their hard_start_xmit()
88  * function. Real network devices commonly used with qdiscs should only return
89  * the driver transmit return codes though - when qdiscs are used, the actual
90  * transmission happens asynchronously, so the value is not propagated to
91  * higher layers. Virtual network devices transmit synchronously; in this case
92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93  * others are propagated to higher layers.
94  */
95
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS        0x00
98 #define NET_XMIT_DROP           0x01    /* skb dropped                  */
99 #define NET_XMIT_CN             0x02    /* congestion notification      */
100 #define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
101
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK          0xf0
110
111 enum netdev_tx {
112         __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
113         NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
114         NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124         /*
125          * Positive cases with an skb consumed by a driver:
126          * - successful transmission (rc == NETDEV_TX_OK)
127          * - error while transmitting (rc < 0)
128          * - error while queueing to a different device (rc & NET_XMIT_MASK)
129          */
130         if (likely(rc < NET_XMIT_MASK))
131                 return true;
132
133         return false;
134 }
135
136 /*
137  *      Compute the worst-case header length according to the protocols
138  *      used.
139  */
140
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159
160 /*
161  *      Old network device statistics. Fields are native words
162  *      (unsigned long) so they can be read and written atomically.
163  */
164
165 struct net_device_stats {
166         unsigned long   rx_packets;
167         unsigned long   tx_packets;
168         unsigned long   rx_bytes;
169         unsigned long   tx_bytes;
170         unsigned long   rx_errors;
171         unsigned long   tx_errors;
172         unsigned long   rx_dropped;
173         unsigned long   tx_dropped;
174         unsigned long   multicast;
175         unsigned long   collisions;
176         unsigned long   rx_length_errors;
177         unsigned long   rx_over_errors;
178         unsigned long   rx_crc_errors;
179         unsigned long   rx_frame_errors;
180         unsigned long   rx_fifo_errors;
181         unsigned long   rx_missed_errors;
182         unsigned long   tx_aborted_errors;
183         unsigned long   tx_carrier_errors;
184         unsigned long   tx_fifo_errors;
185         unsigned long   tx_heartbeat_errors;
186         unsigned long   tx_window_errors;
187         unsigned long   rx_compressed;
188         unsigned long   tx_compressed;
189 };
190
191
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key rps_needed;
198 extern struct static_key rfs_needed;
199 #endif
200
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204
205 struct netdev_hw_addr {
206         struct list_head        list;
207         unsigned char           addr[MAX_ADDR_LEN];
208         unsigned char           type;
209 #define NETDEV_HW_ADDR_T_LAN            1
210 #define NETDEV_HW_ADDR_T_SAN            2
211 #define NETDEV_HW_ADDR_T_SLAVE          3
212 #define NETDEV_HW_ADDR_T_UNICAST        4
213 #define NETDEV_HW_ADDR_T_MULTICAST      5
214         bool                    global_use;
215         int                     sync_cnt;
216         int                     refcount;
217         int                     synced;
218         struct rcu_head         rcu_head;
219 };
220
221 struct netdev_hw_addr_list {
222         struct list_head        list;
223         int                     count;
224 };
225
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229         list_for_each_entry(ha, &(l)->list, list)
230
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234         netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239         netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240
241 struct hh_cache {
242         unsigned int    hh_len;
243         seqlock_t       hh_lock;
244
245         /* cached hardware header; allow for machine alignment needs.        */
246 #define HH_DATA_MOD     16
247 #define HH_DATA_OFF(__len) \
248         (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250         (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251         unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255  * Alternative is:
256  *   dev->hard_header_len ? (dev->hard_header_len +
257  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258  *
259  * We could use other alignment values, but we must maintain the
260  * relationship HH alignment <= LL alignment.
261  */
262 #define LL_RESERVED_SPACE(dev) \
263         ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265         ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266
267 struct header_ops {
268         int     (*create) (struct sk_buff *skb, struct net_device *dev,
269                            unsigned short type, const void *daddr,
270                            const void *saddr, unsigned int len);
271         int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
272         int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273         void    (*cache_update)(struct hh_cache *hh,
274                                 const struct net_device *dev,
275                                 const unsigned char *haddr);
276         bool    (*validate)(const char *ll_header, unsigned int len);
277 };
278
279 /* These flag bits are private to the generic network queueing
280  * layer; they may not be explicitly referenced by any other
281  * code.
282  */
283
284 enum netdev_state_t {
285         __LINK_STATE_START,
286         __LINK_STATE_PRESENT,
287         __LINK_STATE_NOCARRIER,
288         __LINK_STATE_LINKWATCH_PENDING,
289         __LINK_STATE_DORMANT,
290 };
291
292
293 /*
294  * This structure holds boot-time configured netdevice settings. They
295  * are then used in the device probing.
296  */
297 struct netdev_boot_setup {
298         char name[IFNAMSIZ];
299         struct ifmap map;
300 };
301 #define NETDEV_BOOT_SETUP_MAX 8
302
303 int __init netdev_boot_setup(char *str);
304
305 /*
306  * Structure for NAPI scheduling similar to tasklet but with weighting
307  */
308 struct napi_struct {
309         /* The poll_list must only be managed by the entity which
310          * changes the state of the NAPI_STATE_SCHED bit.  This means
311          * whoever atomically sets that bit can add this napi_struct
312          * to the per-CPU poll_list, and whoever clears that bit
313          * can remove from the list right before clearing the bit.
314          */
315         struct list_head        poll_list;
316
317         unsigned long           state;
318         int                     weight;
319         unsigned int            gro_count;
320         int                     (*poll)(struct napi_struct *, int);
321 #ifdef CONFIG_NETPOLL
322         int                     poll_owner;
323 #endif
324         struct net_device       *dev;
325         struct sk_buff          *gro_list;
326         struct sk_buff          *skb;
327         struct hrtimer          timer;
328         struct list_head        dev_list;
329         struct hlist_node       napi_hash_node;
330         unsigned int            napi_id;
331 };
332
333 enum {
334         NAPI_STATE_SCHED,       /* Poll is scheduled */
335         NAPI_STATE_MISSED,      /* reschedule a napi */
336         NAPI_STATE_DISABLE,     /* Disable pending */
337         NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
338         NAPI_STATE_HASHED,      /* In NAPI hash (busy polling possible) */
339         NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
340         NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
341 };
342
343 enum {
344         NAPIF_STATE_SCHED        = BIT(NAPI_STATE_SCHED),
345         NAPIF_STATE_MISSED       = BIT(NAPI_STATE_MISSED),
346         NAPIF_STATE_DISABLE      = BIT(NAPI_STATE_DISABLE),
347         NAPIF_STATE_NPSVC        = BIT(NAPI_STATE_NPSVC),
348         NAPIF_STATE_HASHED       = BIT(NAPI_STATE_HASHED),
349         NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
350         NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
351 };
352
353 enum gro_result {
354         GRO_MERGED,
355         GRO_MERGED_FREE,
356         GRO_HELD,
357         GRO_NORMAL,
358         GRO_DROP,
359         GRO_CONSUMED,
360 };
361 typedef enum gro_result gro_result_t;
362
363 /*
364  * enum rx_handler_result - Possible return values for rx_handlers.
365  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
366  * further.
367  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
368  * case skb->dev was changed by rx_handler.
369  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
370  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
371  *
372  * rx_handlers are functions called from inside __netif_receive_skb(), to do
373  * special processing of the skb, prior to delivery to protocol handlers.
374  *
375  * Currently, a net_device can only have a single rx_handler registered. Trying
376  * to register a second rx_handler will return -EBUSY.
377  *
378  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
379  * To unregister a rx_handler on a net_device, use
380  * netdev_rx_handler_unregister().
381  *
382  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
383  * do with the skb.
384  *
385  * If the rx_handler consumed the skb in some way, it should return
386  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
387  * the skb to be delivered in some other way.
388  *
389  * If the rx_handler changed skb->dev, to divert the skb to another
390  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
391  * new device will be called if it exists.
392  *
393  * If the rx_handler decides the skb should be ignored, it should return
394  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
395  * are registered on exact device (ptype->dev == skb->dev).
396  *
397  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
398  * delivered, it should return RX_HANDLER_PASS.
399  *
400  * A device without a registered rx_handler will behave as if rx_handler
401  * returned RX_HANDLER_PASS.
402  */
403
404 enum rx_handler_result {
405         RX_HANDLER_CONSUMED,
406         RX_HANDLER_ANOTHER,
407         RX_HANDLER_EXACT,
408         RX_HANDLER_PASS,
409 };
410 typedef enum rx_handler_result rx_handler_result_t;
411 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
412
413 void __napi_schedule(struct napi_struct *n);
414 void __napi_schedule_irqoff(struct napi_struct *n);
415
416 static inline bool napi_disable_pending(struct napi_struct *n)
417 {
418         return test_bit(NAPI_STATE_DISABLE, &n->state);
419 }
420
421 bool napi_schedule_prep(struct napi_struct *n);
422
423 /**
424  *      napi_schedule - schedule NAPI poll
425  *      @n: NAPI context
426  *
427  * Schedule NAPI poll routine to be called if it is not already
428  * running.
429  */
430 static inline void napi_schedule(struct napi_struct *n)
431 {
432         if (napi_schedule_prep(n))
433                 __napi_schedule(n);
434 }
435
436 /**
437  *      napi_schedule_irqoff - schedule NAPI poll
438  *      @n: NAPI context
439  *
440  * Variant of napi_schedule(), assuming hard irqs are masked.
441  */
442 static inline void napi_schedule_irqoff(struct napi_struct *n)
443 {
444         if (napi_schedule_prep(n))
445                 __napi_schedule_irqoff(n);
446 }
447
448 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
449 static inline bool napi_reschedule(struct napi_struct *napi)
450 {
451         if (napi_schedule_prep(napi)) {
452                 __napi_schedule(napi);
453                 return true;
454         }
455         return false;
456 }
457
458 bool napi_complete_done(struct napi_struct *n, int work_done);
459 /**
460  *      napi_complete - NAPI processing complete
461  *      @n: NAPI context
462  *
463  * Mark NAPI processing as complete.
464  * Consider using napi_complete_done() instead.
465  * Return false if device should avoid rearming interrupts.
466  */
467 static inline bool napi_complete(struct napi_struct *n)
468 {
469         return napi_complete_done(n, 0);
470 }
471
472 /**
473  *      napi_hash_del - remove a NAPI from global table
474  *      @napi: NAPI context
475  *
476  * Warning: caller must observe RCU grace period
477  * before freeing memory containing @napi, if
478  * this function returns true.
479  * Note: core networking stack automatically calls it
480  * from netif_napi_del().
481  * Drivers might want to call this helper to combine all
482  * the needed RCU grace periods into a single one.
483  */
484 bool napi_hash_del(struct napi_struct *napi);
485
486 /**
487  *      napi_disable - prevent NAPI from scheduling
488  *      @n: NAPI context
489  *
490  * Stop NAPI from being scheduled on this context.
491  * Waits till any outstanding processing completes.
492  */
493 void napi_disable(struct napi_struct *n);
494
495 /**
496  *      napi_enable - enable NAPI scheduling
497  *      @n: NAPI context
498  *
499  * Resume NAPI from being scheduled on this context.
500  * Must be paired with napi_disable.
501  */
502 static inline void napi_enable(struct napi_struct *n)
503 {
504         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
505         smp_mb__before_atomic();
506         clear_bit(NAPI_STATE_SCHED, &n->state);
507         clear_bit(NAPI_STATE_NPSVC, &n->state);
508 }
509
510 /**
511  *      napi_synchronize - wait until NAPI is not running
512  *      @n: NAPI context
513  *
514  * Wait until NAPI is done being scheduled on this context.
515  * Waits till any outstanding processing completes but
516  * does not disable future activations.
517  */
518 static inline void napi_synchronize(const struct napi_struct *n)
519 {
520         if (IS_ENABLED(CONFIG_SMP))
521                 while (test_bit(NAPI_STATE_SCHED, &n->state))
522                         msleep(1);
523         else
524                 barrier();
525 }
526
527 enum netdev_queue_state_t {
528         __QUEUE_STATE_DRV_XOFF,
529         __QUEUE_STATE_STACK_XOFF,
530         __QUEUE_STATE_FROZEN,
531 };
532
533 #define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
534 #define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
535 #define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
536
537 #define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
538 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
539                                         QUEUE_STATE_FROZEN)
540 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
541                                         QUEUE_STATE_FROZEN)
542
543 /*
544  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
545  * netif_tx_* functions below are used to manipulate this flag.  The
546  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
547  * queue independently.  The netif_xmit_*stopped functions below are called
548  * to check if the queue has been stopped by the driver or stack (either
549  * of the XOFF bits are set in the state).  Drivers should not need to call
550  * netif_xmit*stopped functions, they should only be using netif_tx_*.
551  */
552
553 struct netdev_queue {
554 /*
555  * read-mostly part
556  */
557         struct net_device       *dev;
558         struct Qdisc __rcu      *qdisc;
559         struct Qdisc            *qdisc_sleeping;
560 #ifdef CONFIG_SYSFS
561         struct kobject          kobj;
562 #endif
563 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
564         int                     numa_node;
565 #endif
566         unsigned long           tx_maxrate;
567         /*
568          * Number of TX timeouts for this queue
569          * (/sys/class/net/DEV/Q/trans_timeout)
570          */
571         unsigned long           trans_timeout;
572 /*
573  * write-mostly part
574  */
575         spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
576         int                     xmit_lock_owner;
577         /*
578          * Time (in jiffies) of last Tx
579          */
580         unsigned long           trans_start;
581
582         unsigned long           state;
583
584 #ifdef CONFIG_BQL
585         struct dql              dql;
586 #endif
587 } ____cacheline_aligned_in_smp;
588
589 extern int sysctl_fb_tunnels_only_for_init_net;
590
591 static inline bool net_has_fallback_tunnels(const struct net *net)
592 {
593         return net == &init_net ||
594                !IS_ENABLED(CONFIG_SYSCTL) ||
595                !sysctl_fb_tunnels_only_for_init_net;
596 }
597
598 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
599 {
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601         return q->numa_node;
602 #else
603         return NUMA_NO_NODE;
604 #endif
605 }
606
607 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
608 {
609 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
610         q->numa_node = node;
611 #endif
612 }
613
614 #ifdef CONFIG_RPS
615 /*
616  * This structure holds an RPS map which can be of variable length.  The
617  * map is an array of CPUs.
618  */
619 struct rps_map {
620         unsigned int len;
621         struct rcu_head rcu;
622         u16 cpus[0];
623 };
624 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
625
626 /*
627  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
628  * tail pointer for that CPU's input queue at the time of last enqueue, and
629  * a hardware filter index.
630  */
631 struct rps_dev_flow {
632         u16 cpu;
633         u16 filter;
634         unsigned int last_qtail;
635 };
636 #define RPS_NO_FILTER 0xffff
637
638 /*
639  * The rps_dev_flow_table structure contains a table of flow mappings.
640  */
641 struct rps_dev_flow_table {
642         unsigned int mask;
643         struct rcu_head rcu;
644         struct rps_dev_flow flows[0];
645 };
646 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
647     ((_num) * sizeof(struct rps_dev_flow)))
648
649 /*
650  * The rps_sock_flow_table contains mappings of flows to the last CPU
651  * on which they were processed by the application (set in recvmsg).
652  * Each entry is a 32bit value. Upper part is the high-order bits
653  * of flow hash, lower part is CPU number.
654  * rps_cpu_mask is used to partition the space, depending on number of
655  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
656  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
657  * meaning we use 32-6=26 bits for the hash.
658  */
659 struct rps_sock_flow_table {
660         u32     mask;
661
662         u32     ents[0] ____cacheline_aligned_in_smp;
663 };
664 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
665
666 #define RPS_NO_CPU 0xffff
667
668 extern u32 rps_cpu_mask;
669 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
670
671 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
672                                         u32 hash)
673 {
674         if (table && hash) {
675                 unsigned int index = hash & table->mask;
676                 u32 val = hash & ~rps_cpu_mask;
677
678                 /* We only give a hint, preemption can change CPU under us */
679                 val |= raw_smp_processor_id();
680
681                 if (table->ents[index] != val)
682                         table->ents[index] = val;
683         }
684 }
685
686 #ifdef CONFIG_RFS_ACCEL
687 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
688                          u16 filter_id);
689 #endif
690 #endif /* CONFIG_RPS */
691
692 /* This structure contains an instance of an RX queue. */
693 struct netdev_rx_queue {
694 #ifdef CONFIG_RPS
695         struct rps_map __rcu            *rps_map;
696         struct rps_dev_flow_table __rcu *rps_flow_table;
697 #endif
698         struct kobject                  kobj;
699         struct net_device               *dev;
700         struct xdp_rxq_info             xdp_rxq;
701 } ____cacheline_aligned_in_smp;
702
703 /*
704  * RX queue sysfs structures and functions.
705  */
706 struct rx_queue_attribute {
707         struct attribute attr;
708         ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
709         ssize_t (*store)(struct netdev_rx_queue *queue,
710                          const char *buf, size_t len);
711 };
712
713 #ifdef CONFIG_XPS
714 /*
715  * This structure holds an XPS map which can be of variable length.  The
716  * map is an array of queues.
717  */
718 struct xps_map {
719         unsigned int len;
720         unsigned int alloc_len;
721         struct rcu_head rcu;
722         u16 queues[0];
723 };
724 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
725 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
726        - sizeof(struct xps_map)) / sizeof(u16))
727
728 /*
729  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
730  */
731 struct xps_dev_maps {
732         struct rcu_head rcu;
733         struct xps_map __rcu *cpu_map[0];
734 };
735 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +          \
736         (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
737 #endif /* CONFIG_XPS */
738
739 #define TC_MAX_QUEUE    16
740 #define TC_BITMASK      15
741 /* HW offloaded queuing disciplines txq count and offset maps */
742 struct netdev_tc_txq {
743         u16 count;
744         u16 offset;
745 };
746
747 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
748 /*
749  * This structure is to hold information about the device
750  * configured to run FCoE protocol stack.
751  */
752 struct netdev_fcoe_hbainfo {
753         char    manufacturer[64];
754         char    serial_number[64];
755         char    hardware_version[64];
756         char    driver_version[64];
757         char    optionrom_version[64];
758         char    firmware_version[64];
759         char    model[256];
760         char    model_description[256];
761 };
762 #endif
763
764 #define MAX_PHYS_ITEM_ID_LEN 32
765
766 /* This structure holds a unique identifier to identify some
767  * physical item (port for example) used by a netdevice.
768  */
769 struct netdev_phys_item_id {
770         unsigned char id[MAX_PHYS_ITEM_ID_LEN];
771         unsigned char id_len;
772 };
773
774 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
775                                             struct netdev_phys_item_id *b)
776 {
777         return a->id_len == b->id_len &&
778                memcmp(a->id, b->id, a->id_len) == 0;
779 }
780
781 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
782                                        struct sk_buff *skb);
783
784 enum tc_setup_type {
785         TC_SETUP_QDISC_MQPRIO,
786         TC_SETUP_CLSU32,
787         TC_SETUP_CLSFLOWER,
788         TC_SETUP_CLSMATCHALL,
789         TC_SETUP_CLSBPF,
790         TC_SETUP_BLOCK,
791         TC_SETUP_QDISC_CBS,
792         TC_SETUP_QDISC_RED,
793         TC_SETUP_QDISC_PRIO,
794 };
795
796 /* These structures hold the attributes of bpf state that are being passed
797  * to the netdevice through the bpf op.
798  */
799 enum bpf_netdev_command {
800         /* Set or clear a bpf program used in the earliest stages of packet
801          * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
802          * is responsible for calling bpf_prog_put on any old progs that are
803          * stored. In case of error, the callee need not release the new prog
804          * reference, but on success it takes ownership and must bpf_prog_put
805          * when it is no longer used.
806          */
807         XDP_SETUP_PROG,
808         XDP_SETUP_PROG_HW,
809         /* Check if a bpf program is set on the device.  The callee should
810          * set @prog_attached to one of XDP_ATTACHED_* values, note that "true"
811          * is equivalent to XDP_ATTACHED_DRV.
812          */
813         XDP_QUERY_PROG,
814         /* BPF program for offload callbacks, invoked at program load time. */
815         BPF_OFFLOAD_VERIFIER_PREP,
816         BPF_OFFLOAD_TRANSLATE,
817         BPF_OFFLOAD_DESTROY,
818         BPF_OFFLOAD_MAP_ALLOC,
819         BPF_OFFLOAD_MAP_FREE,
820 };
821
822 struct bpf_prog_offload_ops;
823 struct netlink_ext_ack;
824
825 struct netdev_bpf {
826         enum bpf_netdev_command command;
827         union {
828                 /* XDP_SETUP_PROG */
829                 struct {
830                         u32 flags;
831                         struct bpf_prog *prog;
832                         struct netlink_ext_ack *extack;
833                 };
834                 /* XDP_QUERY_PROG */
835                 struct {
836                         u8 prog_attached;
837                         u32 prog_id;
838                         /* flags with which program was installed */
839                         u32 prog_flags;
840                 };
841                 /* BPF_OFFLOAD_VERIFIER_PREP */
842                 struct {
843                         struct bpf_prog *prog;
844                         const struct bpf_prog_offload_ops *ops; /* callee set */
845                 } verifier;
846                 /* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */
847                 struct {
848                         struct bpf_prog *prog;
849                 } offload;
850                 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
851                 struct {
852                         struct bpf_offloaded_map *offmap;
853                 };
854         };
855 };
856
857 #ifdef CONFIG_XFRM_OFFLOAD
858 struct xfrmdev_ops {
859         int     (*xdo_dev_state_add) (struct xfrm_state *x);
860         void    (*xdo_dev_state_delete) (struct xfrm_state *x);
861         void    (*xdo_dev_state_free) (struct xfrm_state *x);
862         bool    (*xdo_dev_offload_ok) (struct sk_buff *skb,
863                                        struct xfrm_state *x);
864         void    (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
865 };
866 #endif
867
868 struct dev_ifalias {
869         struct rcu_head rcuhead;
870         char ifalias[];
871 };
872
873 /*
874  * This structure defines the management hooks for network devices.
875  * The following hooks can be defined; unless noted otherwise, they are
876  * optional and can be filled with a null pointer.
877  *
878  * int (*ndo_init)(struct net_device *dev);
879  *     This function is called once when a network device is registered.
880  *     The network device can use this for any late stage initialization
881  *     or semantic validation. It can fail with an error code which will
882  *     be propagated back to register_netdev.
883  *
884  * void (*ndo_uninit)(struct net_device *dev);
885  *     This function is called when device is unregistered or when registration
886  *     fails. It is not called if init fails.
887  *
888  * int (*ndo_open)(struct net_device *dev);
889  *     This function is called when a network device transitions to the up
890  *     state.
891  *
892  * int (*ndo_stop)(struct net_device *dev);
893  *     This function is called when a network device transitions to the down
894  *     state.
895  *
896  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
897  *                               struct net_device *dev);
898  *      Called when a packet needs to be transmitted.
899  *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
900  *      the queue before that can happen; it's for obsolete devices and weird
901  *      corner cases, but the stack really does a non-trivial amount
902  *      of useless work if you return NETDEV_TX_BUSY.
903  *      Required; cannot be NULL.
904  *
905  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
906  *                                         struct net_device *dev
907  *                                         netdev_features_t features);
908  *      Called by core transmit path to determine if device is capable of
909  *      performing offload operations on a given packet. This is to give
910  *      the device an opportunity to implement any restrictions that cannot
911  *      be otherwise expressed by feature flags. The check is called with
912  *      the set of features that the stack has calculated and it returns
913  *      those the driver believes to be appropriate.
914  *
915  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
916  *                         void *accel_priv, select_queue_fallback_t fallback);
917  *      Called to decide which queue to use when device supports multiple
918  *      transmit queues.
919  *
920  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
921  *      This function is called to allow device receiver to make
922  *      changes to configuration when multicast or promiscuous is enabled.
923  *
924  * void (*ndo_set_rx_mode)(struct net_device *dev);
925  *      This function is called device changes address list filtering.
926  *      If driver handles unicast address filtering, it should set
927  *      IFF_UNICAST_FLT in its priv_flags.
928  *
929  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
930  *      This function  is called when the Media Access Control address
931  *      needs to be changed. If this interface is not defined, the
932  *      MAC address can not be changed.
933  *
934  * int (*ndo_validate_addr)(struct net_device *dev);
935  *      Test if Media Access Control address is valid for the device.
936  *
937  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
938  *      Called when a user requests an ioctl which can't be handled by
939  *      the generic interface code. If not defined ioctls return
940  *      not supported error code.
941  *
942  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
943  *      Used to set network devices bus interface parameters. This interface
944  *      is retained for legacy reasons; new devices should use the bus
945  *      interface (PCI) for low level management.
946  *
947  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
948  *      Called when a user wants to change the Maximum Transfer Unit
949  *      of a device.
950  *
951  * void (*ndo_tx_timeout)(struct net_device *dev);
952  *      Callback used when the transmitter has not made any progress
953  *      for dev->watchdog ticks.
954  *
955  * void (*ndo_get_stats64)(struct net_device *dev,
956  *                         struct rtnl_link_stats64 *storage);
957  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
958  *      Called when a user wants to get the network device usage
959  *      statistics. Drivers must do one of the following:
960  *      1. Define @ndo_get_stats64 to fill in a zero-initialised
961  *         rtnl_link_stats64 structure passed by the caller.
962  *      2. Define @ndo_get_stats to update a net_device_stats structure
963  *         (which should normally be dev->stats) and return a pointer to
964  *         it. The structure may be changed asynchronously only if each
965  *         field is written atomically.
966  *      3. Update dev->stats asynchronously and atomically, and define
967  *         neither operation.
968  *
969  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
970  *      Return true if this device supports offload stats of this attr_id.
971  *
972  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
973  *      void *attr_data)
974  *      Get statistics for offload operations by attr_id. Write it into the
975  *      attr_data pointer.
976  *
977  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
978  *      If device supports VLAN filtering this function is called when a
979  *      VLAN id is registered.
980  *
981  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
982  *      If device supports VLAN filtering this function is called when a
983  *      VLAN id is unregistered.
984  *
985  * void (*ndo_poll_controller)(struct net_device *dev);
986  *
987  *      SR-IOV management functions.
988  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
989  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
990  *                        u8 qos, __be16 proto);
991  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
992  *                        int max_tx_rate);
993  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
994  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
995  * int (*ndo_get_vf_config)(struct net_device *dev,
996  *                          int vf, struct ifla_vf_info *ivf);
997  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
998  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
999  *                        struct nlattr *port[]);
1000  *
1001  *      Enable or disable the VF ability to query its RSS Redirection Table and
1002  *      Hash Key. This is needed since on some devices VF share this information
1003  *      with PF and querying it may introduce a theoretical security risk.
1004  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1005  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1006  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1007  *                     void *type_data);
1008  *      Called to setup any 'tc' scheduler, classifier or action on @dev.
1009  *      This is always called from the stack with the rtnl lock held and netif
1010  *      tx queues stopped. This allows the netdevice to perform queue
1011  *      management safely.
1012  *
1013  *      Fiber Channel over Ethernet (FCoE) offload functions.
1014  * int (*ndo_fcoe_enable)(struct net_device *dev);
1015  *      Called when the FCoE protocol stack wants to start using LLD for FCoE
1016  *      so the underlying device can perform whatever needed configuration or
1017  *      initialization to support acceleration of FCoE traffic.
1018  *
1019  * int (*ndo_fcoe_disable)(struct net_device *dev);
1020  *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
1021  *      so the underlying device can perform whatever needed clean-ups to
1022  *      stop supporting acceleration of FCoE traffic.
1023  *
1024  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1025  *                           struct scatterlist *sgl, unsigned int sgc);
1026  *      Called when the FCoE Initiator wants to initialize an I/O that
1027  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
1028  *      perform necessary setup and returns 1 to indicate the device is set up
1029  *      successfully to perform DDP on this I/O, otherwise this returns 0.
1030  *
1031  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1032  *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
1033  *      indicated by the FC exchange id 'xid', so the underlying device can
1034  *      clean up and reuse resources for later DDP requests.
1035  *
1036  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1037  *                            struct scatterlist *sgl, unsigned int sgc);
1038  *      Called when the FCoE Target wants to initialize an I/O that
1039  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
1040  *      perform necessary setup and returns 1 to indicate the device is set up
1041  *      successfully to perform DDP on this I/O, otherwise this returns 0.
1042  *
1043  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1044  *                             struct netdev_fcoe_hbainfo *hbainfo);
1045  *      Called when the FCoE Protocol stack wants information on the underlying
1046  *      device. This information is utilized by the FCoE protocol stack to
1047  *      register attributes with Fiber Channel management service as per the
1048  *      FC-GS Fabric Device Management Information(FDMI) specification.
1049  *
1050  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1051  *      Called when the underlying device wants to override default World Wide
1052  *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1053  *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1054  *      protocol stack to use.
1055  *
1056  *      RFS acceleration.
1057  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1058  *                          u16 rxq_index, u32 flow_id);
1059  *      Set hardware filter for RFS.  rxq_index is the target queue index;
1060  *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1061  *      Return the filter ID on success, or a negative error code.
1062  *
1063  *      Slave management functions (for bridge, bonding, etc).
1064  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1065  *      Called to make another netdev an underling.
1066  *
1067  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1068  *      Called to release previously enslaved netdev.
1069  *
1070  *      Feature/offload setting functions.
1071  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1072  *              netdev_features_t features);
1073  *      Adjusts the requested feature flags according to device-specific
1074  *      constraints, and returns the resulting flags. Must not modify
1075  *      the device state.
1076  *
1077  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1078  *      Called to update device configuration to new features. Passed
1079  *      feature set might be less than what was returned by ndo_fix_features()).
1080  *      Must return >0 or -errno if it changed dev->features itself.
1081  *
1082  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1083  *                    struct net_device *dev,
1084  *                    const unsigned char *addr, u16 vid, u16 flags)
1085  *      Adds an FDB entry to dev for addr.
1086  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1087  *                    struct net_device *dev,
1088  *                    const unsigned char *addr, u16 vid)
1089  *      Deletes the FDB entry from dev coresponding to addr.
1090  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1091  *                     struct net_device *dev, struct net_device *filter_dev,
1092  *                     int *idx)
1093  *      Used to add FDB entries to dump requests. Implementers should add
1094  *      entries to skb and update idx with the number of entries.
1095  *
1096  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1097  *                           u16 flags)
1098  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1099  *                           struct net_device *dev, u32 filter_mask,
1100  *                           int nlflags)
1101  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1102  *                           u16 flags);
1103  *
1104  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1105  *      Called to change device carrier. Soft-devices (like dummy, team, etc)
1106  *      which do not represent real hardware may define this to allow their
1107  *      userspace components to manage their virtual carrier state. Devices
1108  *      that determine carrier state from physical hardware properties (eg
1109  *      network cables) or protocol-dependent mechanisms (eg
1110  *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1111  *
1112  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1113  *                             struct netdev_phys_item_id *ppid);
1114  *      Called to get ID of physical port of this device. If driver does
1115  *      not implement this, it is assumed that the hw is not able to have
1116  *      multiple net devices on single physical port.
1117  *
1118  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1119  *                            struct udp_tunnel_info *ti);
1120  *      Called by UDP tunnel to notify a driver about the UDP port and socket
1121  *      address family that a UDP tunnel is listnening to. It is called only
1122  *      when a new port starts listening. The operation is protected by the
1123  *      RTNL.
1124  *
1125  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1126  *                            struct udp_tunnel_info *ti);
1127  *      Called by UDP tunnel to notify the driver about a UDP port and socket
1128  *      address family that the UDP tunnel is not listening to anymore. The
1129  *      operation is protected by the RTNL.
1130  *
1131  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1132  *                               struct net_device *dev)
1133  *      Called by upper layer devices to accelerate switching or other
1134  *      station functionality into hardware. 'pdev is the lowerdev
1135  *      to use for the offload and 'dev' is the net device that will
1136  *      back the offload. Returns a pointer to the private structure
1137  *      the upper layer will maintain.
1138  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1139  *      Called by upper layer device to delete the station created
1140  *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1141  *      the station and priv is the structure returned by the add
1142  *      operation.
1143  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1144  *                           int queue_index, u32 maxrate);
1145  *      Called when a user wants to set a max-rate limitation of specific
1146  *      TX queue.
1147  * int (*ndo_get_iflink)(const struct net_device *dev);
1148  *      Called to get the iflink value of this device.
1149  * void (*ndo_change_proto_down)(struct net_device *dev,
1150  *                               bool proto_down);
1151  *      This function is used to pass protocol port error state information
1152  *      to the switch driver. The switch driver can react to the proto_down
1153  *      by doing a phys down on the associated switch port.
1154  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1155  *      This function is used to get egress tunnel information for given skb.
1156  *      This is useful for retrieving outer tunnel header parameters while
1157  *      sampling packet.
1158  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1159  *      This function is used to specify the headroom that the skb must
1160  *      consider when allocation skb during packet reception. Setting
1161  *      appropriate rx headroom value allows avoiding skb head copy on
1162  *      forward. Setting a negative value resets the rx headroom to the
1163  *      default value.
1164  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1165  *      This function is used to set or query state related to XDP on the
1166  *      netdevice and manage BPF offload. See definition of
1167  *      enum bpf_netdev_command for details.
1168  * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp);
1169  *      This function is used to submit a XDP packet for transmit on a
1170  *      netdevice.
1171  * void (*ndo_xdp_flush)(struct net_device *dev);
1172  *      This function is used to inform the driver to flush a particular
1173  *      xdp tx queue. Must be called on same CPU as xdp_xmit.
1174  */
1175 struct net_device_ops {
1176         int                     (*ndo_init)(struct net_device *dev);
1177         void                    (*ndo_uninit)(struct net_device *dev);
1178         int                     (*ndo_open)(struct net_device *dev);
1179         int                     (*ndo_stop)(struct net_device *dev);
1180         netdev_tx_t             (*ndo_start_xmit)(struct sk_buff *skb,
1181                                                   struct net_device *dev);
1182         netdev_features_t       (*ndo_features_check)(struct sk_buff *skb,
1183                                                       struct net_device *dev,
1184                                                       netdev_features_t features);
1185         u16                     (*ndo_select_queue)(struct net_device *dev,
1186                                                     struct sk_buff *skb,
1187                                                     void *accel_priv,
1188                                                     select_queue_fallback_t fallback);
1189         void                    (*ndo_change_rx_flags)(struct net_device *dev,
1190                                                        int flags);
1191         void                    (*ndo_set_rx_mode)(struct net_device *dev);
1192         int                     (*ndo_set_mac_address)(struct net_device *dev,
1193                                                        void *addr);
1194         int                     (*ndo_validate_addr)(struct net_device *dev);
1195         int                     (*ndo_do_ioctl)(struct net_device *dev,
1196                                                 struct ifreq *ifr, int cmd);
1197         int                     (*ndo_set_config)(struct net_device *dev,
1198                                                   struct ifmap *map);
1199         int                     (*ndo_change_mtu)(struct net_device *dev,
1200                                                   int new_mtu);
1201         int                     (*ndo_neigh_setup)(struct net_device *dev,
1202                                                    struct neigh_parms *);
1203         void                    (*ndo_tx_timeout) (struct net_device *dev);
1204
1205         void                    (*ndo_get_stats64)(struct net_device *dev,
1206                                                    struct rtnl_link_stats64 *storage);
1207         bool                    (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1208         int                     (*ndo_get_offload_stats)(int attr_id,
1209                                                          const struct net_device *dev,
1210                                                          void *attr_data);
1211         struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1212
1213         int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1214                                                        __be16 proto, u16 vid);
1215         int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1216                                                         __be16 proto, u16 vid);
1217 #ifdef CONFIG_NET_POLL_CONTROLLER
1218         void                    (*ndo_poll_controller)(struct net_device *dev);
1219         int                     (*ndo_netpoll_setup)(struct net_device *dev,
1220                                                      struct netpoll_info *info);
1221         void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1222 #endif
1223         int                     (*ndo_set_vf_mac)(struct net_device *dev,
1224                                                   int queue, u8 *mac);
1225         int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1226                                                    int queue, u16 vlan,
1227                                                    u8 qos, __be16 proto);
1228         int                     (*ndo_set_vf_rate)(struct net_device *dev,
1229                                                    int vf, int min_tx_rate,
1230                                                    int max_tx_rate);
1231         int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1232                                                        int vf, bool setting);
1233         int                     (*ndo_set_vf_trust)(struct net_device *dev,
1234                                                     int vf, bool setting);
1235         int                     (*ndo_get_vf_config)(struct net_device *dev,
1236                                                      int vf,
1237                                                      struct ifla_vf_info *ivf);
1238         int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1239                                                          int vf, int link_state);
1240         int                     (*ndo_get_vf_stats)(struct net_device *dev,
1241                                                     int vf,
1242                                                     struct ifla_vf_stats
1243                                                     *vf_stats);
1244         int                     (*ndo_set_vf_port)(struct net_device *dev,
1245                                                    int vf,
1246                                                    struct nlattr *port[]);
1247         int                     (*ndo_get_vf_port)(struct net_device *dev,
1248                                                    int vf, struct sk_buff *skb);
1249         int                     (*ndo_set_vf_guid)(struct net_device *dev,
1250                                                    int vf, u64 guid,
1251                                                    int guid_type);
1252         int                     (*ndo_set_vf_rss_query_en)(
1253                                                    struct net_device *dev,
1254                                                    int vf, bool setting);
1255         int                     (*ndo_setup_tc)(struct net_device *dev,
1256                                                 enum tc_setup_type type,
1257                                                 void *type_data);
1258 #if IS_ENABLED(CONFIG_FCOE)
1259         int                     (*ndo_fcoe_enable)(struct net_device *dev);
1260         int                     (*ndo_fcoe_disable)(struct net_device *dev);
1261         int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1262                                                       u16 xid,
1263                                                       struct scatterlist *sgl,
1264                                                       unsigned int sgc);
1265         int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1266                                                      u16 xid);
1267         int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1268                                                        u16 xid,
1269                                                        struct scatterlist *sgl,
1270                                                        unsigned int sgc);
1271         int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1272                                                         struct netdev_fcoe_hbainfo *hbainfo);
1273 #endif
1274
1275 #if IS_ENABLED(CONFIG_LIBFCOE)
1276 #define NETDEV_FCOE_WWNN 0
1277 #define NETDEV_FCOE_WWPN 1
1278         int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1279                                                     u64 *wwn, int type);
1280 #endif
1281
1282 #ifdef CONFIG_RFS_ACCEL
1283         int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1284                                                      const struct sk_buff *skb,
1285                                                      u16 rxq_index,
1286                                                      u32 flow_id);
1287 #endif
1288         int                     (*ndo_add_slave)(struct net_device *dev,
1289                                                  struct net_device *slave_dev,
1290                                                  struct netlink_ext_ack *extack);
1291         int                     (*ndo_del_slave)(struct net_device *dev,
1292                                                  struct net_device *slave_dev);
1293         netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1294                                                     netdev_features_t features);
1295         int                     (*ndo_set_features)(struct net_device *dev,
1296                                                     netdev_features_t features);
1297         int                     (*ndo_neigh_construct)(struct net_device *dev,
1298                                                        struct neighbour *n);
1299         void                    (*ndo_neigh_destroy)(struct net_device *dev,
1300                                                      struct neighbour *n);
1301
1302         int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1303                                                struct nlattr *tb[],
1304                                                struct net_device *dev,
1305                                                const unsigned char *addr,
1306                                                u16 vid,
1307                                                u16 flags);
1308         int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1309                                                struct nlattr *tb[],
1310                                                struct net_device *dev,
1311                                                const unsigned char *addr,
1312                                                u16 vid);
1313         int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1314                                                 struct netlink_callback *cb,
1315                                                 struct net_device *dev,
1316                                                 struct net_device *filter_dev,
1317                                                 int *idx);
1318
1319         int                     (*ndo_bridge_setlink)(struct net_device *dev,
1320                                                       struct nlmsghdr *nlh,
1321                                                       u16 flags);
1322         int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1323                                                       u32 pid, u32 seq,
1324                                                       struct net_device *dev,
1325                                                       u32 filter_mask,
1326                                                       int nlflags);
1327         int                     (*ndo_bridge_dellink)(struct net_device *dev,
1328                                                       struct nlmsghdr *nlh,
1329                                                       u16 flags);
1330         int                     (*ndo_change_carrier)(struct net_device *dev,
1331                                                       bool new_carrier);
1332         int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1333                                                         struct netdev_phys_item_id *ppid);
1334         int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1335                                                           char *name, size_t len);
1336         void                    (*ndo_udp_tunnel_add)(struct net_device *dev,
1337                                                       struct udp_tunnel_info *ti);
1338         void                    (*ndo_udp_tunnel_del)(struct net_device *dev,
1339                                                       struct udp_tunnel_info *ti);
1340         void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1341                                                         struct net_device *dev);
1342         void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1343                                                         void *priv);
1344
1345         int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1346         int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1347                                                       int queue_index,
1348                                                       u32 maxrate);
1349         int                     (*ndo_get_iflink)(const struct net_device *dev);
1350         int                     (*ndo_change_proto_down)(struct net_device *dev,
1351                                                          bool proto_down);
1352         int                     (*ndo_fill_metadata_dst)(struct net_device *dev,
1353                                                        struct sk_buff *skb);
1354         void                    (*ndo_set_rx_headroom)(struct net_device *dev,
1355                                                        int needed_headroom);
1356         int                     (*ndo_bpf)(struct net_device *dev,
1357                                            struct netdev_bpf *bpf);
1358         int                     (*ndo_xdp_xmit)(struct net_device *dev,
1359                                                 struct xdp_buff *xdp);
1360         void                    (*ndo_xdp_flush)(struct net_device *dev);
1361 };
1362
1363 /**
1364  * enum net_device_priv_flags - &struct net_device priv_flags
1365  *
1366  * These are the &struct net_device, they are only set internally
1367  * by drivers and used in the kernel. These flags are invisible to
1368  * userspace; this means that the order of these flags can change
1369  * during any kernel release.
1370  *
1371  * You should have a pretty good reason to be extending these flags.
1372  *
1373  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1374  * @IFF_EBRIDGE: Ethernet bridging device
1375  * @IFF_BONDING: bonding master or slave
1376  * @IFF_ISATAP: ISATAP interface (RFC4214)
1377  * @IFF_WAN_HDLC: WAN HDLC device
1378  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1379  *      release skb->dst
1380  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1381  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1382  * @IFF_MACVLAN_PORT: device used as macvlan port
1383  * @IFF_BRIDGE_PORT: device used as bridge port
1384  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1385  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1386  * @IFF_UNICAST_FLT: Supports unicast filtering
1387  * @IFF_TEAM_PORT: device used as team port
1388  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1389  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1390  *      change when it's running
1391  * @IFF_MACVLAN: Macvlan device
1392  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1393  *      underlying stacked devices
1394  * @IFF_L3MDEV_MASTER: device is an L3 master device
1395  * @IFF_NO_QUEUE: device can run without qdisc attached
1396  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1397  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1398  * @IFF_TEAM: device is a team device
1399  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1400  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1401  *      entity (i.e. the master device for bridged veth)
1402  * @IFF_MACSEC: device is a MACsec device
1403  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1404  */
1405 enum netdev_priv_flags {
1406         IFF_802_1Q_VLAN                 = 1<<0,
1407         IFF_EBRIDGE                     = 1<<1,
1408         IFF_BONDING                     = 1<<2,
1409         IFF_ISATAP                      = 1<<3,
1410         IFF_WAN_HDLC                    = 1<<4,
1411         IFF_XMIT_DST_RELEASE            = 1<<5,
1412         IFF_DONT_BRIDGE                 = 1<<6,
1413         IFF_DISABLE_NETPOLL             = 1<<7,
1414         IFF_MACVLAN_PORT                = 1<<8,
1415         IFF_BRIDGE_PORT                 = 1<<9,
1416         IFF_OVS_DATAPATH                = 1<<10,
1417         IFF_TX_SKB_SHARING              = 1<<11,
1418         IFF_UNICAST_FLT                 = 1<<12,
1419         IFF_TEAM_PORT                   = 1<<13,
1420         IFF_SUPP_NOFCS                  = 1<<14,
1421         IFF_LIVE_ADDR_CHANGE            = 1<<15,
1422         IFF_MACVLAN                     = 1<<16,
1423         IFF_XMIT_DST_RELEASE_PERM       = 1<<17,
1424         IFF_L3MDEV_MASTER               = 1<<18,
1425         IFF_NO_QUEUE                    = 1<<19,
1426         IFF_OPENVSWITCH                 = 1<<20,
1427         IFF_L3MDEV_SLAVE                = 1<<21,
1428         IFF_TEAM                        = 1<<22,
1429         IFF_RXFH_CONFIGURED             = 1<<23,
1430         IFF_PHONY_HEADROOM              = 1<<24,
1431         IFF_MACSEC                      = 1<<25,
1432         IFF_NO_RX_HANDLER               = 1<<26,
1433 };
1434
1435 #define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1436 #define IFF_EBRIDGE                     IFF_EBRIDGE
1437 #define IFF_BONDING                     IFF_BONDING
1438 #define IFF_ISATAP                      IFF_ISATAP
1439 #define IFF_WAN_HDLC                    IFF_WAN_HDLC
1440 #define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1441 #define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1442 #define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1443 #define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1444 #define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1445 #define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1446 #define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1447 #define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1448 #define IFF_TEAM_PORT                   IFF_TEAM_PORT
1449 #define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1450 #define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1451 #define IFF_MACVLAN                     IFF_MACVLAN
1452 #define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1453 #define IFF_L3MDEV_MASTER               IFF_L3MDEV_MASTER
1454 #define IFF_NO_QUEUE                    IFF_NO_QUEUE
1455 #define IFF_OPENVSWITCH                 IFF_OPENVSWITCH
1456 #define IFF_L3MDEV_SLAVE                IFF_L3MDEV_SLAVE
1457 #define IFF_TEAM                        IFF_TEAM
1458 #define IFF_RXFH_CONFIGURED             IFF_RXFH_CONFIGURED
1459 #define IFF_MACSEC                      IFF_MACSEC
1460 #define IFF_NO_RX_HANDLER               IFF_NO_RX_HANDLER
1461
1462 /**
1463  *      struct net_device - The DEVICE structure.
1464  *
1465  *      Actually, this whole structure is a big mistake.  It mixes I/O
1466  *      data with strictly "high-level" data, and it has to know about
1467  *      almost every data structure used in the INET module.
1468  *
1469  *      @name:  This is the first field of the "visible" part of this structure
1470  *              (i.e. as seen by users in the "Space.c" file).  It is the name
1471  *              of the interface.
1472  *
1473  *      @name_hlist:    Device name hash chain, please keep it close to name[]
1474  *      @ifalias:       SNMP alias
1475  *      @mem_end:       Shared memory end
1476  *      @mem_start:     Shared memory start
1477  *      @base_addr:     Device I/O address
1478  *      @irq:           Device IRQ number
1479  *
1480  *      @state:         Generic network queuing layer state, see netdev_state_t
1481  *      @dev_list:      The global list of network devices
1482  *      @napi_list:     List entry used for polling NAPI devices
1483  *      @unreg_list:    List entry  when we are unregistering the
1484  *                      device; see the function unregister_netdev
1485  *      @close_list:    List entry used when we are closing the device
1486  *      @ptype_all:     Device-specific packet handlers for all protocols
1487  *      @ptype_specific: Device-specific, protocol-specific packet handlers
1488  *
1489  *      @adj_list:      Directly linked devices, like slaves for bonding
1490  *      @features:      Currently active device features
1491  *      @hw_features:   User-changeable features
1492  *
1493  *      @wanted_features:       User-requested features
1494  *      @vlan_features:         Mask of features inheritable by VLAN devices
1495  *
1496  *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1497  *                              This field indicates what encapsulation
1498  *                              offloads the hardware is capable of doing,
1499  *                              and drivers will need to set them appropriately.
1500  *
1501  *      @mpls_features: Mask of features inheritable by MPLS
1502  *
1503  *      @ifindex:       interface index
1504  *      @group:         The group the device belongs to
1505  *
1506  *      @stats:         Statistics struct, which was left as a legacy, use
1507  *                      rtnl_link_stats64 instead
1508  *
1509  *      @rx_dropped:    Dropped packets by core network,
1510  *                      do not use this in drivers
1511  *      @tx_dropped:    Dropped packets by core network,
1512  *                      do not use this in drivers
1513  *      @rx_nohandler:  nohandler dropped packets by core network on
1514  *                      inactive devices, do not use this in drivers
1515  *      @carrier_up_count:      Number of times the carrier has been up
1516  *      @carrier_down_count:    Number of times the carrier has been down
1517  *
1518  *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1519  *                              instead of ioctl,
1520  *                              see <net/iw_handler.h> for details.
1521  *      @wireless_data: Instance data managed by the core of wireless extensions
1522  *
1523  *      @netdev_ops:    Includes several pointers to callbacks,
1524  *                      if one wants to override the ndo_*() functions
1525  *      @ethtool_ops:   Management operations
1526  *      @ndisc_ops:     Includes callbacks for different IPv6 neighbour
1527  *                      discovery handling. Necessary for e.g. 6LoWPAN.
1528  *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1529  *                      of Layer 2 headers.
1530  *
1531  *      @flags:         Interface flags (a la BSD)
1532  *      @priv_flags:    Like 'flags' but invisible to userspace,
1533  *                      see if.h for the definitions
1534  *      @gflags:        Global flags ( kept as legacy )
1535  *      @padded:        How much padding added by alloc_netdev()
1536  *      @operstate:     RFC2863 operstate
1537  *      @link_mode:     Mapping policy to operstate
1538  *      @if_port:       Selectable AUI, TP, ...
1539  *      @dma:           DMA channel
1540  *      @mtu:           Interface MTU value
1541  *      @min_mtu:       Interface Minimum MTU value
1542  *      @max_mtu:       Interface Maximum MTU value
1543  *      @type:          Interface hardware type
1544  *      @hard_header_len: Maximum hardware header length.
1545  *      @min_header_len:  Minimum hardware header length
1546  *
1547  *      @needed_headroom: Extra headroom the hardware may need, but not in all
1548  *                        cases can this be guaranteed
1549  *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1550  *                        cases can this be guaranteed. Some cases also use
1551  *                        LL_MAX_HEADER instead to allocate the skb
1552  *
1553  *      interface address info:
1554  *
1555  *      @perm_addr:             Permanent hw address
1556  *      @addr_assign_type:      Hw address assignment type
1557  *      @addr_len:              Hardware address length
1558  *      @neigh_priv_len:        Used in neigh_alloc()
1559  *      @dev_id:                Used to differentiate devices that share
1560  *                              the same link layer address
1561  *      @dev_port:              Used to differentiate devices that share
1562  *                              the same function
1563  *      @addr_list_lock:        XXX: need comments on this one
1564  *      @uc_promisc:            Counter that indicates promiscuous mode
1565  *                              has been enabled due to the need to listen to
1566  *                              additional unicast addresses in a device that
1567  *                              does not implement ndo_set_rx_mode()
1568  *      @uc:                    unicast mac addresses
1569  *      @mc:                    multicast mac addresses
1570  *      @dev_addrs:             list of device hw addresses
1571  *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1572  *      @promiscuity:           Number of times the NIC is told to work in
1573  *                              promiscuous mode; if it becomes 0 the NIC will
1574  *                              exit promiscuous mode
1575  *      @allmulti:              Counter, enables or disables allmulticast mode
1576  *
1577  *      @vlan_info:     VLAN info
1578  *      @dsa_ptr:       dsa specific data
1579  *      @tipc_ptr:      TIPC specific data
1580  *      @atalk_ptr:     AppleTalk link
1581  *      @ip_ptr:        IPv4 specific data
1582  *      @dn_ptr:        DECnet specific data
1583  *      @ip6_ptr:       IPv6 specific data
1584  *      @ax25_ptr:      AX.25 specific data
1585  *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1586  *
1587  *      @dev_addr:      Hw address (before bcast,
1588  *                      because most packets are unicast)
1589  *
1590  *      @_rx:                   Array of RX queues
1591  *      @num_rx_queues:         Number of RX queues
1592  *                              allocated at register_netdev() time
1593  *      @real_num_rx_queues:    Number of RX queues currently active in device
1594  *
1595  *      @rx_handler:            handler for received packets
1596  *      @rx_handler_data:       XXX: need comments on this one
1597  *      @miniq_ingress:         ingress/clsact qdisc specific data for
1598  *                              ingress processing
1599  *      @ingress_queue:         XXX: need comments on this one
1600  *      @broadcast:             hw bcast address
1601  *
1602  *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1603  *                      indexed by RX queue number. Assigned by driver.
1604  *                      This must only be set if the ndo_rx_flow_steer
1605  *                      operation is defined
1606  *      @index_hlist:           Device index hash chain
1607  *
1608  *      @_tx:                   Array of TX queues
1609  *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1610  *      @real_num_tx_queues:    Number of TX queues currently active in device
1611  *      @qdisc:                 Root qdisc from userspace point of view
1612  *      @tx_queue_len:          Max frames per queue allowed
1613  *      @tx_global_lock:        XXX: need comments on this one
1614  *
1615  *      @xps_maps:      XXX: need comments on this one
1616  *      @miniq_egress:          clsact qdisc specific data for
1617  *                              egress processing
1618  *      @watchdog_timeo:        Represents the timeout that is used by
1619  *                              the watchdog (see dev_watchdog())
1620  *      @watchdog_timer:        List of timers
1621  *
1622  *      @pcpu_refcnt:           Number of references to this device
1623  *      @todo_list:             Delayed register/unregister
1624  *      @link_watch_list:       XXX: need comments on this one
1625  *
1626  *      @reg_state:             Register/unregister state machine
1627  *      @dismantle:             Device is going to be freed
1628  *      @rtnl_link_state:       This enum represents the phases of creating
1629  *                              a new link
1630  *
1631  *      @needs_free_netdev:     Should unregister perform free_netdev?
1632  *      @priv_destructor:       Called from unregister
1633  *      @npinfo:                XXX: need comments on this one
1634  *      @nd_net:                Network namespace this network device is inside
1635  *
1636  *      @ml_priv:       Mid-layer private
1637  *      @lstats:        Loopback statistics
1638  *      @tstats:        Tunnel statistics
1639  *      @dstats:        Dummy statistics
1640  *      @vstats:        Virtual ethernet statistics
1641  *
1642  *      @garp_port:     GARP
1643  *      @mrp_port:      MRP
1644  *
1645  *      @dev:           Class/net/name entry
1646  *      @sysfs_groups:  Space for optional device, statistics and wireless
1647  *                      sysfs groups
1648  *
1649  *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1650  *      @rtnl_link_ops: Rtnl_link_ops
1651  *
1652  *      @gso_max_size:  Maximum size of generic segmentation offload
1653  *      @gso_max_segs:  Maximum number of segments that can be passed to the
1654  *                      NIC for GSO
1655  *
1656  *      @dcbnl_ops:     Data Center Bridging netlink ops
1657  *      @num_tc:        Number of traffic classes in the net device
1658  *      @tc_to_txq:     XXX: need comments on this one
1659  *      @prio_tc_map:   XXX: need comments on this one
1660  *
1661  *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1662  *
1663  *      @priomap:       XXX: need comments on this one
1664  *      @phydev:        Physical device may attach itself
1665  *                      for hardware timestamping
1666  *      @sfp_bus:       attached &struct sfp_bus structure.
1667  *
1668  *      @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1669  *      @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1670  *
1671  *      @proto_down:    protocol port state information can be sent to the
1672  *                      switch driver and used to set the phys state of the
1673  *                      switch port.
1674  *
1675  *      FIXME: cleanup struct net_device such that network protocol info
1676  *      moves out.
1677  */
1678
1679 struct net_device {
1680         char                    name[IFNAMSIZ];
1681         struct hlist_node       name_hlist;
1682         struct dev_ifalias      __rcu *ifalias;
1683         /*
1684          *      I/O specific fields
1685          *      FIXME: Merge these and struct ifmap into one
1686          */
1687         unsigned long           mem_end;
1688         unsigned long           mem_start;
1689         unsigned long           base_addr;
1690         int                     irq;
1691
1692         /*
1693          *      Some hardware also needs these fields (state,dev_list,
1694          *      napi_list,unreg_list,close_list) but they are not
1695          *      part of the usual set specified in Space.c.
1696          */
1697
1698         unsigned long           state;
1699
1700         struct list_head        dev_list;
1701         struct list_head        napi_list;
1702         struct list_head        unreg_list;
1703         struct list_head        close_list;
1704         struct list_head        ptype_all;
1705         struct list_head        ptype_specific;
1706
1707         struct {
1708                 struct list_head upper;
1709                 struct list_head lower;
1710         } adj_list;
1711
1712         netdev_features_t       features;
1713         netdev_features_t       hw_features;
1714         netdev_features_t       wanted_features;
1715         netdev_features_t       vlan_features;
1716         netdev_features_t       hw_enc_features;
1717         netdev_features_t       mpls_features;
1718         netdev_features_t       gso_partial_features;
1719
1720         int                     ifindex;
1721         int                     group;
1722
1723         struct net_device_stats stats;
1724
1725         atomic_long_t           rx_dropped;
1726         atomic_long_t           tx_dropped;
1727         atomic_long_t           rx_nohandler;
1728
1729         /* Stats to monitor link on/off, flapping */
1730         atomic_t                carrier_up_count;
1731         atomic_t                carrier_down_count;
1732
1733 #ifdef CONFIG_WIRELESS_EXT
1734         const struct iw_handler_def *wireless_handlers;
1735         struct iw_public_data   *wireless_data;
1736 #endif
1737         const struct net_device_ops *netdev_ops;
1738         const struct ethtool_ops *ethtool_ops;
1739 #ifdef CONFIG_NET_SWITCHDEV
1740         const struct switchdev_ops *switchdev_ops;
1741 #endif
1742 #ifdef CONFIG_NET_L3_MASTER_DEV
1743         const struct l3mdev_ops *l3mdev_ops;
1744 #endif
1745 #if IS_ENABLED(CONFIG_IPV6)
1746         const struct ndisc_ops *ndisc_ops;
1747 #endif
1748
1749 #ifdef CONFIG_XFRM_OFFLOAD
1750         const struct xfrmdev_ops *xfrmdev_ops;
1751 #endif
1752
1753         const struct header_ops *header_ops;
1754
1755         unsigned int            flags;
1756         unsigned int            priv_flags;
1757
1758         unsigned short          gflags;
1759         unsigned short          padded;
1760
1761         unsigned char           operstate;
1762         unsigned char           link_mode;
1763
1764         unsigned char           if_port;
1765         unsigned char           dma;
1766
1767         unsigned int            mtu;
1768         unsigned int            min_mtu;
1769         unsigned int            max_mtu;
1770         unsigned short          type;
1771         unsigned short          hard_header_len;
1772         unsigned char           min_header_len;
1773
1774         unsigned short          needed_headroom;
1775         unsigned short          needed_tailroom;
1776
1777         /* Interface address info. */
1778         unsigned char           perm_addr[MAX_ADDR_LEN];
1779         unsigned char           addr_assign_type;
1780         unsigned char           addr_len;
1781         unsigned short          neigh_priv_len;
1782         unsigned short          dev_id;
1783         unsigned short          dev_port;
1784         spinlock_t              addr_list_lock;
1785         unsigned char           name_assign_type;
1786         bool                    uc_promisc;
1787         struct netdev_hw_addr_list      uc;
1788         struct netdev_hw_addr_list      mc;
1789         struct netdev_hw_addr_list      dev_addrs;
1790
1791 #ifdef CONFIG_SYSFS
1792         struct kset             *queues_kset;
1793 #endif
1794         unsigned int            promiscuity;
1795         unsigned int            allmulti;
1796
1797
1798         /* Protocol-specific pointers */
1799
1800 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1801         struct vlan_info __rcu  *vlan_info;
1802 #endif
1803 #if IS_ENABLED(CONFIG_NET_DSA)
1804         struct dsa_port         *dsa_ptr;
1805 #endif
1806 #if IS_ENABLED(CONFIG_TIPC)
1807         struct tipc_bearer __rcu *tipc_ptr;
1808 #endif
1809 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1810         void                    *atalk_ptr;
1811 #endif
1812         struct in_device __rcu  *ip_ptr;
1813 #if IS_ENABLED(CONFIG_DECNET)
1814         struct dn_dev __rcu     *dn_ptr;
1815 #endif
1816         struct inet6_dev __rcu  *ip6_ptr;
1817 #if IS_ENABLED(CONFIG_AX25)
1818         void                    *ax25_ptr;
1819 #endif
1820         struct wireless_dev     *ieee80211_ptr;
1821         struct wpan_dev         *ieee802154_ptr;
1822 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1823         struct mpls_dev __rcu   *mpls_ptr;
1824 #endif
1825
1826 /*
1827  * Cache lines mostly used on receive path (including eth_type_trans())
1828  */
1829         /* Interface address info used in eth_type_trans() */
1830         unsigned char           *dev_addr;
1831
1832         struct netdev_rx_queue  *_rx;
1833         unsigned int            num_rx_queues;
1834         unsigned int            real_num_rx_queues;
1835
1836         struct bpf_prog __rcu   *xdp_prog;
1837         unsigned long           gro_flush_timeout;
1838         rx_handler_func_t __rcu *rx_handler;
1839         void __rcu              *rx_handler_data;
1840
1841 #ifdef CONFIG_NET_CLS_ACT
1842         struct mini_Qdisc __rcu *miniq_ingress;
1843 #endif
1844         struct netdev_queue __rcu *ingress_queue;
1845 #ifdef CONFIG_NETFILTER_INGRESS
1846         struct nf_hook_entries __rcu *nf_hooks_ingress;
1847 #endif
1848
1849         unsigned char           broadcast[MAX_ADDR_LEN];
1850 #ifdef CONFIG_RFS_ACCEL
1851         struct cpu_rmap         *rx_cpu_rmap;
1852 #endif
1853         struct hlist_node       index_hlist;
1854
1855 /*
1856  * Cache lines mostly used on transmit path
1857  */
1858         struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1859         unsigned int            num_tx_queues;
1860         unsigned int            real_num_tx_queues;
1861         struct Qdisc            *qdisc;
1862 #ifdef CONFIG_NET_SCHED
1863         DECLARE_HASHTABLE       (qdisc_hash, 4);
1864 #endif
1865         unsigned int            tx_queue_len;
1866         spinlock_t              tx_global_lock;
1867         int                     watchdog_timeo;
1868
1869 #ifdef CONFIG_XPS
1870         struct xps_dev_maps __rcu *xps_maps;
1871 #endif
1872 #ifdef CONFIG_NET_CLS_ACT
1873         struct mini_Qdisc __rcu *miniq_egress;
1874 #endif
1875
1876         /* These may be needed for future network-power-down code. */
1877         struct timer_list       watchdog_timer;
1878
1879         int __percpu            *pcpu_refcnt;
1880         struct list_head        todo_list;
1881
1882         struct list_head        link_watch_list;
1883
1884         enum { NETREG_UNINITIALIZED=0,
1885                NETREG_REGISTERED,       /* completed register_netdevice */
1886                NETREG_UNREGISTERING,    /* called unregister_netdevice */
1887                NETREG_UNREGISTERED,     /* completed unregister todo */
1888                NETREG_RELEASED,         /* called free_netdev */
1889                NETREG_DUMMY,            /* dummy device for NAPI poll */
1890         } reg_state:8;
1891
1892         bool dismantle;
1893
1894         enum {
1895                 RTNL_LINK_INITIALIZED,
1896                 RTNL_LINK_INITIALIZING,
1897         } rtnl_link_state:16;
1898
1899         bool needs_free_netdev;
1900         void (*priv_destructor)(struct net_device *dev);
1901
1902 #ifdef CONFIG_NETPOLL
1903         struct netpoll_info __rcu       *npinfo;
1904 #endif
1905
1906         possible_net_t                  nd_net;
1907
1908         /* mid-layer private */
1909         union {
1910                 void                                    *ml_priv;
1911                 struct pcpu_lstats __percpu             *lstats;
1912                 struct pcpu_sw_netstats __percpu        *tstats;
1913                 struct pcpu_dstats __percpu             *dstats;
1914                 struct pcpu_vstats __percpu             *vstats;
1915         };
1916
1917 #if IS_ENABLED(CONFIG_GARP)
1918         struct garp_port __rcu  *garp_port;
1919 #endif
1920 #if IS_ENABLED(CONFIG_MRP)
1921         struct mrp_port __rcu   *mrp_port;
1922 #endif
1923
1924         struct device           dev;
1925         const struct attribute_group *sysfs_groups[4];
1926         const struct attribute_group *sysfs_rx_queue_group;
1927
1928         const struct rtnl_link_ops *rtnl_link_ops;
1929
1930         /* for setting kernel sock attribute on TCP connection setup */
1931 #define GSO_MAX_SIZE            65536
1932         unsigned int            gso_max_size;
1933 #define GSO_MAX_SEGS            65535
1934         u16                     gso_max_segs;
1935
1936 #ifdef CONFIG_DCB
1937         const struct dcbnl_rtnl_ops *dcbnl_ops;
1938 #endif
1939         u8                      num_tc;
1940         struct netdev_tc_txq    tc_to_txq[TC_MAX_QUEUE];
1941         u8                      prio_tc_map[TC_BITMASK + 1];
1942
1943 #if IS_ENABLED(CONFIG_FCOE)
1944         unsigned int            fcoe_ddp_xid;
1945 #endif
1946 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1947         struct netprio_map __rcu *priomap;
1948 #endif
1949         struct phy_device       *phydev;
1950         struct sfp_bus          *sfp_bus;
1951         struct lock_class_key   *qdisc_tx_busylock;
1952         struct lock_class_key   *qdisc_running_key;
1953         bool                    proto_down;
1954 };
1955 #define to_net_dev(d) container_of(d, struct net_device, dev)
1956
1957 static inline bool netif_elide_gro(const struct net_device *dev)
1958 {
1959         if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
1960                 return true;
1961         return false;
1962 }
1963
1964 #define NETDEV_ALIGN            32
1965
1966 static inline
1967 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1968 {
1969         return dev->prio_tc_map[prio & TC_BITMASK];
1970 }
1971
1972 static inline
1973 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1974 {
1975         if (tc >= dev->num_tc)
1976                 return -EINVAL;
1977
1978         dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1979         return 0;
1980 }
1981
1982 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1983 void netdev_reset_tc(struct net_device *dev);
1984 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1985 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1986
1987 static inline
1988 int netdev_get_num_tc(struct net_device *dev)
1989 {
1990         return dev->num_tc;
1991 }
1992
1993 static inline
1994 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1995                                          unsigned int index)
1996 {
1997         return &dev->_tx[index];
1998 }
1999
2000 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2001                                                     const struct sk_buff *skb)
2002 {
2003         return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2004 }
2005
2006 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2007                                             void (*f)(struct net_device *,
2008                                                       struct netdev_queue *,
2009                                                       void *),
2010                                             void *arg)
2011 {
2012         unsigned int i;
2013
2014         for (i = 0; i < dev->num_tx_queues; i++)
2015                 f(dev, &dev->_tx[i], arg);
2016 }
2017
2018 #define netdev_lockdep_set_classes(dev)                         \
2019 {                                                               \
2020         static struct lock_class_key qdisc_tx_busylock_key;     \
2021         static struct lock_class_key qdisc_running_key;         \
2022         static struct lock_class_key qdisc_xmit_lock_key;       \
2023         static struct lock_class_key dev_addr_list_lock_key;    \
2024         unsigned int i;                                         \
2025                                                                 \
2026         (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;      \
2027         (dev)->qdisc_running_key = &qdisc_running_key;          \
2028         lockdep_set_class(&(dev)->addr_list_lock,               \
2029                           &dev_addr_list_lock_key);             \
2030         for (i = 0; i < (dev)->num_tx_queues; i++)              \
2031                 lockdep_set_class(&(dev)->_tx[i]._xmit_lock,    \
2032                                   &qdisc_xmit_lock_key);        \
2033 }
2034
2035 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2036                                     struct sk_buff *skb,
2037                                     void *accel_priv);
2038
2039 /* returns the headroom that the master device needs to take in account
2040  * when forwarding to this dev
2041  */
2042 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2043 {
2044         return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2045 }
2046
2047 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2048 {
2049         if (dev->netdev_ops->ndo_set_rx_headroom)
2050                 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2051 }
2052
2053 /* set the device rx headroom to the dev's default */
2054 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2055 {
2056         netdev_set_rx_headroom(dev, -1);
2057 }
2058
2059 /*
2060  * Net namespace inlines
2061  */
2062 static inline
2063 struct net *dev_net(const struct net_device *dev)
2064 {
2065         return read_pnet(&dev->nd_net);
2066 }
2067
2068 static inline
2069 void dev_net_set(struct net_device *dev, struct net *net)
2070 {
2071         write_pnet(&dev->nd_net, net);
2072 }
2073
2074 /**
2075  *      netdev_priv - access network device private data
2076  *      @dev: network device
2077  *
2078  * Get network device private data
2079  */
2080 static inline void *netdev_priv(const struct net_device *dev)
2081 {
2082         return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2083 }
2084
2085 /* Set the sysfs physical device reference for the network logical device
2086  * if set prior to registration will cause a symlink during initialization.
2087  */
2088 #define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
2089
2090 /* Set the sysfs device type for the network logical device to allow
2091  * fine-grained identification of different network device types. For
2092  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2093  */
2094 #define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
2095
2096 /* Default NAPI poll() weight
2097  * Device drivers are strongly advised to not use bigger value
2098  */
2099 #define NAPI_POLL_WEIGHT 64
2100
2101 /**
2102  *      netif_napi_add - initialize a NAPI context
2103  *      @dev:  network device
2104  *      @napi: NAPI context
2105  *      @poll: polling function
2106  *      @weight: default weight
2107  *
2108  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2109  * *any* of the other NAPI-related functions.
2110  */
2111 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2112                     int (*poll)(struct napi_struct *, int), int weight);
2113
2114 /**
2115  *      netif_tx_napi_add - initialize a NAPI context
2116  *      @dev:  network device
2117  *      @napi: NAPI context
2118  *      @poll: polling function
2119  *      @weight: default weight
2120  *
2121  * This variant of netif_napi_add() should be used from drivers using NAPI
2122  * to exclusively poll a TX queue.
2123  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2124  */
2125 static inline void netif_tx_napi_add(struct net_device *dev,
2126                                      struct napi_struct *napi,
2127                                      int (*poll)(struct napi_struct *, int),
2128                                      int weight)
2129 {
2130         set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2131         netif_napi_add(dev, napi, poll, weight);
2132 }
2133
2134 /**
2135  *  netif_napi_del - remove a NAPI context
2136  *  @napi: NAPI context
2137  *
2138  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2139  */
2140 void netif_napi_del(struct napi_struct *napi);
2141
2142 struct napi_gro_cb {
2143         /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2144         void    *frag0;
2145
2146         /* Length of frag0. */
2147         unsigned int frag0_len;
2148
2149         /* This indicates where we are processing relative to skb->data. */
2150         int     data_offset;
2151
2152         /* This is non-zero if the packet cannot be merged with the new skb. */
2153         u16     flush;
2154
2155         /* Save the IP ID here and check when we get to the transport layer */
2156         u16     flush_id;
2157
2158         /* Number of segments aggregated. */
2159         u16     count;
2160
2161         /* Start offset for remote checksum offload */
2162         u16     gro_remcsum_start;
2163
2164         /* jiffies when first packet was created/queued */
2165         unsigned long age;
2166
2167         /* Used in ipv6_gro_receive() and foo-over-udp */
2168         u16     proto;
2169
2170         /* This is non-zero if the packet may be of the same flow. */
2171         u8      same_flow:1;
2172
2173         /* Used in tunnel GRO receive */
2174         u8      encap_mark:1;
2175
2176         /* GRO checksum is valid */
2177         u8      csum_valid:1;
2178
2179         /* Number of checksums via CHECKSUM_UNNECESSARY */
2180         u8      csum_cnt:3;
2181
2182         /* Free the skb? */
2183         u8      free:2;
2184 #define NAPI_GRO_FREE             1
2185 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2186
2187         /* Used in foo-over-udp, set in udp[46]_gro_receive */
2188         u8      is_ipv6:1;
2189
2190         /* Used in GRE, set in fou/gue_gro_receive */
2191         u8      is_fou:1;
2192
2193         /* Used to determine if flush_id can be ignored */
2194         u8      is_atomic:1;
2195
2196         /* Number of gro_receive callbacks this packet already went through */
2197         u8 recursion_counter:4;
2198
2199         /* 1 bit hole */
2200
2201         /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2202         __wsum  csum;
2203
2204         /* used in skb_gro_receive() slow path */
2205         struct sk_buff *last;
2206 };
2207
2208 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2209
2210 #define GRO_RECURSION_LIMIT 15
2211 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2212 {
2213         return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2214 }
2215
2216 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2217 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2218                                                 struct sk_buff **head,
2219                                                 struct sk_buff *skb)
2220 {
2221         if (unlikely(gro_recursion_inc_test(skb))) {
2222                 NAPI_GRO_CB(skb)->flush |= 1;
2223                 return NULL;
2224         }
2225
2226         return cb(head, skb);
2227 }
2228
2229 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2230                                              struct sk_buff *);
2231 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2232                                                    struct sock *sk,
2233                                                    struct sk_buff **head,
2234                                                    struct sk_buff *skb)
2235 {
2236         if (unlikely(gro_recursion_inc_test(skb))) {
2237                 NAPI_GRO_CB(skb)->flush |= 1;
2238                 return NULL;
2239         }
2240
2241         return cb(sk, head, skb);
2242 }
2243
2244 struct packet_type {
2245         __be16                  type;   /* This is really htons(ether_type). */
2246         struct net_device       *dev;   /* NULL is wildcarded here           */
2247         int                     (*func) (struct sk_buff *,
2248                                          struct net_device *,
2249                                          struct packet_type *,
2250                                          struct net_device *);
2251         bool                    (*id_match)(struct packet_type *ptype,
2252                                             struct sock *sk);
2253         void                    *af_packet_priv;
2254         struct list_head        list;
2255 };
2256
2257 struct offload_callbacks {
2258         struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
2259                                                 netdev_features_t features);
2260         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
2261                                                  struct sk_buff *skb);
2262         int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
2263 };
2264
2265 struct packet_offload {
2266         __be16                   type;  /* This is really htons(ether_type). */
2267         u16                      priority;
2268         struct offload_callbacks callbacks;
2269         struct list_head         list;
2270 };
2271
2272 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2273 struct pcpu_sw_netstats {
2274         u64     rx_packets;
2275         u64     rx_bytes;
2276         u64     tx_packets;
2277         u64     tx_bytes;
2278         struct u64_stats_sync   syncp;
2279 };
2280
2281 #define __netdev_alloc_pcpu_stats(type, gfp)                            \
2282 ({                                                                      \
2283         typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2284         if (pcpu_stats) {                                               \
2285                 int __cpu;                                              \
2286                 for_each_possible_cpu(__cpu) {                          \
2287                         typeof(type) *stat;                             \
2288                         stat = per_cpu_ptr(pcpu_stats, __cpu);          \
2289                         u64_stats_init(&stat->syncp);                   \
2290                 }                                                       \
2291         }                                                               \
2292         pcpu_stats;                                                     \
2293 })
2294
2295 #define netdev_alloc_pcpu_stats(type)                                   \
2296         __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2297
2298 enum netdev_lag_tx_type {
2299         NETDEV_LAG_TX_TYPE_UNKNOWN,
2300         NETDEV_LAG_TX_TYPE_RANDOM,
2301         NETDEV_LAG_TX_TYPE_BROADCAST,
2302         NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2303         NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2304         NETDEV_LAG_TX_TYPE_HASH,
2305 };
2306
2307 struct netdev_lag_upper_info {
2308         enum netdev_lag_tx_type tx_type;
2309 };
2310
2311 struct netdev_lag_lower_state_info {
2312         u8 link_up : 1,
2313            tx_enabled : 1;
2314 };
2315
2316 #include <linux/notifier.h>
2317
2318 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2319  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2320  * adding new types.
2321  */
2322 enum netdev_cmd {
2323         NETDEV_UP       = 1,    /* For now you can't veto a device up/down */
2324         NETDEV_DOWN,
2325         NETDEV_REBOOT,          /* Tell a protocol stack a network interface
2326                                    detected a hardware crash and restarted
2327                                    - we can use this eg to kick tcp sessions
2328                                    once done */
2329         NETDEV_CHANGE,          /* Notify device state change */
2330         NETDEV_REGISTER,
2331         NETDEV_UNREGISTER,
2332         NETDEV_CHANGEMTU,       /* notify after mtu change happened */
2333         NETDEV_CHANGEADDR,
2334         NETDEV_GOING_DOWN,
2335         NETDEV_CHANGENAME,
2336         NETDEV_FEAT_CHANGE,
2337         NETDEV_BONDING_FAILOVER,
2338         NETDEV_PRE_UP,
2339         NETDEV_PRE_TYPE_CHANGE,
2340         NETDEV_POST_TYPE_CHANGE,
2341         NETDEV_POST_INIT,
2342         NETDEV_RELEASE,
2343         NETDEV_NOTIFY_PEERS,
2344         NETDEV_JOIN,
2345         NETDEV_CHANGEUPPER,
2346         NETDEV_RESEND_IGMP,
2347         NETDEV_PRECHANGEMTU,    /* notify before mtu change happened */
2348         NETDEV_CHANGEINFODATA,
2349         NETDEV_BONDING_INFO,
2350         NETDEV_PRECHANGEUPPER,
2351         NETDEV_CHANGELOWERSTATE,
2352         NETDEV_UDP_TUNNEL_PUSH_INFO,
2353         NETDEV_UDP_TUNNEL_DROP_INFO,
2354         NETDEV_CHANGE_TX_QUEUE_LEN,
2355         NETDEV_CVLAN_FILTER_PUSH_INFO,
2356         NETDEV_CVLAN_FILTER_DROP_INFO,
2357         NETDEV_SVLAN_FILTER_PUSH_INFO,
2358         NETDEV_SVLAN_FILTER_DROP_INFO,
2359 };
2360 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2361
2362 int register_netdevice_notifier(struct notifier_block *nb);
2363 int unregister_netdevice_notifier(struct notifier_block *nb);
2364
2365 struct netdev_notifier_info {
2366         struct net_device       *dev;
2367         struct netlink_ext_ack  *extack;
2368 };
2369
2370 struct netdev_notifier_change_info {
2371         struct netdev_notifier_info info; /* must be first */
2372         unsigned int flags_changed;
2373 };
2374
2375 struct netdev_notifier_changeupper_info {
2376         struct netdev_notifier_info info; /* must be first */
2377         struct net_device *upper_dev; /* new upper dev */
2378         bool master; /* is upper dev master */
2379         bool linking; /* is the notification for link or unlink */
2380         void *upper_info; /* upper dev info */
2381 };
2382
2383 struct netdev_notifier_changelowerstate_info {
2384         struct netdev_notifier_info info; /* must be first */
2385         void *lower_state_info; /* is lower dev state */
2386 };
2387
2388 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2389                                              struct net_device *dev)
2390 {
2391         info->dev = dev;
2392         info->extack = NULL;
2393 }
2394
2395 static inline struct net_device *
2396 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2397 {
2398         return info->dev;
2399 }
2400
2401 static inline struct netlink_ext_ack *
2402 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2403 {
2404         return info->extack;
2405 }
2406
2407 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2408
2409
2410 extern rwlock_t                         dev_base_lock;          /* Device list lock */
2411
2412 #define for_each_netdev(net, d)         \
2413                 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2414 #define for_each_netdev_reverse(net, d) \
2415                 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2416 #define for_each_netdev_rcu(net, d)             \
2417                 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2418 #define for_each_netdev_safe(net, d, n) \
2419                 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2420 #define for_each_netdev_continue(net, d)                \
2421                 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2422 #define for_each_netdev_continue_rcu(net, d)            \
2423         list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2424 #define for_each_netdev_in_bond_rcu(bond, slave)        \
2425                 for_each_netdev_rcu(&init_net, slave)   \
2426                         if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2427 #define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2428
2429 static inline struct net_device *next_net_device(struct net_device *dev)
2430 {
2431         struct list_head *lh;
2432         struct net *net;
2433
2434         net = dev_net(dev);
2435         lh = dev->dev_list.next;
2436         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2437 }
2438
2439 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2440 {
2441         struct list_head *lh;
2442         struct net *net;
2443
2444         net = dev_net(dev);
2445         lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2446         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2447 }
2448
2449 static inline struct net_device *first_net_device(struct net *net)
2450 {
2451         return list_empty(&net->dev_base_head) ? NULL :
2452                 net_device_entry(net->dev_base_head.next);
2453 }
2454
2455 static inline struct net_device *first_net_device_rcu(struct net *net)
2456 {
2457         struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2458
2459         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2460 }
2461
2462 int netdev_boot_setup_check(struct net_device *dev);
2463 unsigned long netdev_boot_base(const char *prefix, int unit);
2464 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2465                                        const char *hwaddr);
2466 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2467 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2468 void dev_add_pack(struct packet_type *pt);
2469 void dev_remove_pack(struct packet_type *pt);
2470 void __dev_remove_pack(struct packet_type *pt);
2471 void dev_add_offload(struct packet_offload *po);
2472 void dev_remove_offload(struct packet_offload *po);
2473
2474 int dev_get_iflink(const struct net_device *dev);
2475 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2476 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2477                                       unsigned short mask);
2478 struct net_device *dev_get_by_name(struct net *net, const char *name);
2479 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2480 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2481 int dev_alloc_name(struct net_device *dev, const char *name);
2482 int dev_open(struct net_device *dev);
2483 void dev_close(struct net_device *dev);
2484 void dev_close_many(struct list_head *head, bool unlink);
2485 void dev_disable_lro(struct net_device *dev);
2486 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2487 int dev_queue_xmit(struct sk_buff *skb);
2488 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2489 int register_netdevice(struct net_device *dev);
2490 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2491 void unregister_netdevice_many(struct list_head *head);
2492 static inline void unregister_netdevice(struct net_device *dev)
2493 {
2494         unregister_netdevice_queue(dev, NULL);
2495 }
2496
2497 int netdev_refcnt_read(const struct net_device *dev);
2498 void free_netdev(struct net_device *dev);
2499 void netdev_freemem(struct net_device *dev);
2500 void synchronize_net(void);
2501 int init_dummy_netdev(struct net_device *dev);
2502
2503 DECLARE_PER_CPU(int, xmit_recursion);
2504 #define XMIT_RECURSION_LIMIT    10
2505
2506 static inline int dev_recursion_level(void)
2507 {
2508         return this_cpu_read(xmit_recursion);
2509 }
2510
2511 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2512 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2513 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2514 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2515 int netdev_get_name(struct net *net, char *name, int ifindex);
2516 int dev_restart(struct net_device *dev);
2517 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2518
2519 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2520 {
2521         return NAPI_GRO_CB(skb)->data_offset;
2522 }
2523
2524 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2525 {
2526         return skb->len - NAPI_GRO_CB(skb)->data_offset;
2527 }
2528
2529 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2530 {
2531         NAPI_GRO_CB(skb)->data_offset += len;
2532 }
2533
2534 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2535                                         unsigned int offset)
2536 {
2537         return NAPI_GRO_CB(skb)->frag0 + offset;
2538 }
2539
2540 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2541 {
2542         return NAPI_GRO_CB(skb)->frag0_len < hlen;
2543 }
2544
2545 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2546 {
2547         NAPI_GRO_CB(skb)->frag0 = NULL;
2548         NAPI_GRO_CB(skb)->frag0_len = 0;
2549 }
2550
2551 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2552                                         unsigned int offset)
2553 {
2554         if (!pskb_may_pull(skb, hlen))
2555                 return NULL;
2556
2557         skb_gro_frag0_invalidate(skb);
2558         return skb->data + offset;
2559 }
2560
2561 static inline void *skb_gro_network_header(struct sk_buff *skb)
2562 {
2563         return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2564                skb_network_offset(skb);
2565 }
2566
2567 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2568                                         const void *start, unsigned int len)
2569 {
2570         if (NAPI_GRO_CB(skb)->csum_valid)
2571                 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2572                                                   csum_partial(start, len, 0));
2573 }
2574
2575 /* GRO checksum functions. These are logical equivalents of the normal
2576  * checksum functions (in skbuff.h) except that they operate on the GRO
2577  * offsets and fields in sk_buff.
2578  */
2579
2580 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2581
2582 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2583 {
2584         return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2585 }
2586
2587 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2588                                                       bool zero_okay,
2589                                                       __sum16 check)
2590 {
2591         return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2592                 skb_checksum_start_offset(skb) <
2593                  skb_gro_offset(skb)) &&
2594                 !skb_at_gro_remcsum_start(skb) &&
2595                 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2596                 (!zero_okay || check));
2597 }
2598
2599 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2600                                                            __wsum psum)
2601 {
2602         if (NAPI_GRO_CB(skb)->csum_valid &&
2603             !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2604                 return 0;
2605
2606         NAPI_GRO_CB(skb)->csum = psum;
2607
2608         return __skb_gro_checksum_complete(skb);
2609 }
2610
2611 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2612 {
2613         if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2614                 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2615                 NAPI_GRO_CB(skb)->csum_cnt--;
2616         } else {
2617                 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2618                  * verified a new top level checksum or an encapsulated one
2619                  * during GRO. This saves work if we fallback to normal path.
2620                  */
2621                 __skb_incr_checksum_unnecessary(skb);
2622         }
2623 }
2624
2625 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2626                                     compute_pseudo)                     \
2627 ({                                                                      \
2628         __sum16 __ret = 0;                                              \
2629         if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2630                 __ret = __skb_gro_checksum_validate_complete(skb,       \
2631                                 compute_pseudo(skb, proto));            \
2632         if (!__ret)                                                     \
2633                 skb_gro_incr_csum_unnecessary(skb);                     \
2634         __ret;                                                          \
2635 })
2636
2637 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2638         __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2639
2640 #define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2641                                              compute_pseudo)            \
2642         __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2643
2644 #define skb_gro_checksum_simple_validate(skb)                           \
2645         __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2646
2647 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2648 {
2649         return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2650                 !NAPI_GRO_CB(skb)->csum_valid);
2651 }
2652
2653 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2654                                               __sum16 check, __wsum pseudo)
2655 {
2656         NAPI_GRO_CB(skb)->csum = ~pseudo;
2657         NAPI_GRO_CB(skb)->csum_valid = 1;
2658 }
2659
2660 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2661 do {                                                                    \
2662         if (__skb_gro_checksum_convert_check(skb))                      \
2663                 __skb_gro_checksum_convert(skb, check,                  \
2664                                            compute_pseudo(skb, proto)); \
2665 } while (0)
2666
2667 struct gro_remcsum {
2668         int offset;
2669         __wsum delta;
2670 };
2671
2672 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2673 {
2674         grc->offset = 0;
2675         grc->delta = 0;
2676 }
2677
2678 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2679                                             unsigned int off, size_t hdrlen,
2680                                             int start, int offset,
2681                                             struct gro_remcsum *grc,
2682                                             bool nopartial)
2683 {
2684         __wsum delta;
2685         size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2686
2687         BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2688
2689         if (!nopartial) {
2690                 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2691                 return ptr;
2692         }
2693
2694         ptr = skb_gro_header_fast(skb, off);
2695         if (skb_gro_header_hard(skb, off + plen)) {
2696                 ptr = skb_gro_header_slow(skb, off + plen, off);
2697                 if (!ptr)
2698                         return NULL;
2699         }
2700
2701         delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2702                                start, offset);
2703
2704         /* Adjust skb->csum since we changed the packet */
2705         NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2706
2707         grc->offset = off + hdrlen + offset;
2708         grc->delta = delta;
2709
2710         return ptr;
2711 }
2712
2713 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2714                                            struct gro_remcsum *grc)
2715 {
2716         void *ptr;
2717         size_t plen = grc->offset + sizeof(u16);
2718
2719         if (!grc->delta)
2720                 return;
2721
2722         ptr = skb_gro_header_fast(skb, grc->offset);
2723         if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2724                 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2725                 if (!ptr)
2726                         return;
2727         }
2728
2729         remcsum_unadjust((__sum16 *)ptr, grc->delta);
2730 }
2731
2732 #ifdef CONFIG_XFRM_OFFLOAD
2733 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2734 {
2735         if (PTR_ERR(pp) != -EINPROGRESS)
2736                 NAPI_GRO_CB(skb)->flush |= flush;
2737 }
2738 #else
2739 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2740 {
2741         NAPI_GRO_CB(skb)->flush |= flush;
2742 }
2743 #endif
2744
2745 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2746                                   unsigned short type,
2747                                   const void *daddr, const void *saddr,
2748                                   unsigned int len)
2749 {
2750         if (!dev->header_ops || !dev->header_ops->create)
2751                 return 0;
2752
2753         return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2754 }
2755
2756 static inline int dev_parse_header(const struct sk_buff *skb,
2757                                    unsigned char *haddr)
2758 {
2759         const struct net_device *dev = skb->dev;
2760
2761         if (!dev->header_ops || !dev->header_ops->parse)
2762                 return 0;
2763         return dev->header_ops->parse(skb, haddr);
2764 }
2765
2766 /* ll_header must have at least hard_header_len allocated */
2767 static inline bool dev_validate_header(const struct net_device *dev,
2768                                        char *ll_header, int len)
2769 {
2770         if (likely(len >= dev->hard_header_len))
2771                 return true;
2772         if (len < dev->min_header_len)
2773                 return false;
2774
2775         if (capable(CAP_SYS_RAWIO)) {
2776                 memset(ll_header + len, 0, dev->hard_header_len - len);
2777                 return true;
2778         }
2779
2780         if (dev->header_ops && dev->header_ops->validate)
2781                 return dev->header_ops->validate(ll_header, len);
2782
2783         return false;
2784 }
2785
2786 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2787                            int len, int size);
2788 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2789 static inline int unregister_gifconf(unsigned int family)
2790 {
2791         return register_gifconf(family, NULL);
2792 }
2793
2794 #ifdef CONFIG_NET_FLOW_LIMIT
2795 #define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2796 struct sd_flow_limit {
2797         u64                     count;
2798         unsigned int            num_buckets;
2799         unsigned int            history_head;
2800         u16                     history[FLOW_LIMIT_HISTORY];
2801         u8                      buckets[];
2802 };
2803
2804 extern int netdev_flow_limit_table_len;
2805 #endif /* CONFIG_NET_FLOW_LIMIT */
2806
2807 /*
2808  * Incoming packets are placed on per-CPU queues
2809  */
2810 struct softnet_data {
2811         struct list_head        poll_list;
2812         struct sk_buff_head     process_queue;
2813
2814         /* stats */
2815         unsigned int            processed;
2816         unsigned int            time_squeeze;
2817         unsigned int            received_rps;
2818 #ifdef CONFIG_RPS
2819         struct softnet_data     *rps_ipi_list;
2820 #endif
2821 #ifdef CONFIG_NET_FLOW_LIMIT
2822         struct sd_flow_limit __rcu *flow_limit;
2823 #endif
2824         struct Qdisc            *output_queue;
2825         struct Qdisc            **output_queue_tailp;
2826         struct sk_buff          *completion_queue;
2827 #ifdef CONFIG_XFRM_OFFLOAD
2828         struct sk_buff_head     xfrm_backlog;
2829 #endif
2830 #ifdef CONFIG_RPS
2831         /* input_queue_head should be written by cpu owning this struct,
2832          * and only read by other cpus. Worth using a cache line.
2833          */
2834         unsigned int            input_queue_head ____cacheline_aligned_in_smp;
2835
2836         /* Elements below can be accessed between CPUs for RPS/RFS */
2837         call_single_data_t      csd ____cacheline_aligned_in_smp;
2838         struct softnet_data     *rps_ipi_next;
2839         unsigned int            cpu;
2840         unsigned int            input_queue_tail;
2841 #endif
2842         unsigned int            dropped;
2843         struct sk_buff_head     input_pkt_queue;
2844         struct napi_struct      backlog;
2845
2846 };
2847
2848 static inline void input_queue_head_incr(struct softnet_data *sd)
2849 {
2850 #ifdef CONFIG_RPS
2851         sd->input_queue_head++;
2852 #endif
2853 }
2854
2855 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2856                                               unsigned int *qtail)
2857 {
2858 #ifdef CONFIG_RPS
2859         *qtail = ++sd->input_queue_tail;
2860 #endif
2861 }
2862
2863 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2864
2865 void __netif_schedule(struct Qdisc *q);
2866 void netif_schedule_queue(struct netdev_queue *txq);
2867
2868 static inline void netif_tx_schedule_all(struct net_device *dev)
2869 {
2870         unsigned int i;
2871
2872         for (i = 0; i < dev->num_tx_queues; i++)
2873                 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2874 }
2875
2876 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2877 {
2878         clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2879 }
2880
2881 /**
2882  *      netif_start_queue - allow transmit
2883  *      @dev: network device
2884  *
2885  *      Allow upper layers to call the device hard_start_xmit routine.
2886  */
2887 static inline void netif_start_queue(struct net_device *dev)
2888 {
2889         netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2890 }
2891
2892 static inline void netif_tx_start_all_queues(struct net_device *dev)
2893 {
2894         unsigned int i;
2895
2896         for (i = 0; i < dev->num_tx_queues; i++) {
2897                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2898                 netif_tx_start_queue(txq);
2899         }
2900 }
2901
2902 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2903
2904 /**
2905  *      netif_wake_queue - restart transmit
2906  *      @dev: network device
2907  *
2908  *      Allow upper layers to call the device hard_start_xmit routine.
2909  *      Used for flow control when transmit resources are available.
2910  */
2911 static inline void netif_wake_queue(struct net_device *dev)
2912 {
2913         netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2914 }
2915
2916 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2917 {
2918         unsigned int i;
2919
2920         for (i = 0; i < dev->num_tx_queues; i++) {
2921                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2922                 netif_tx_wake_queue(txq);
2923         }
2924 }
2925
2926 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2927 {
2928         set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2929 }
2930
2931 /**
2932  *      netif_stop_queue - stop transmitted packets
2933  *      @dev: network device
2934  *
2935  *      Stop upper layers calling the device hard_start_xmit routine.
2936  *      Used for flow control when transmit resources are unavailable.
2937  */
2938 static inline void netif_stop_queue(struct net_device *dev)
2939 {
2940         netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2941 }
2942
2943 void netif_tx_stop_all_queues(struct net_device *dev);
2944
2945 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2946 {
2947         return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2948 }
2949
2950 /**
2951  *      netif_queue_stopped - test if transmit queue is flowblocked
2952  *      @dev: network device
2953  *
2954  *      Test if transmit queue on device is currently unable to send.
2955  */
2956 static inline bool netif_queue_stopped(const struct net_device *dev)
2957 {
2958         return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2959 }
2960
2961 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2962 {
2963         return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2964 }
2965
2966 static inline bool
2967 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2968 {
2969         return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2970 }
2971
2972 static inline bool
2973 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2974 {
2975         return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2976 }
2977
2978 /**
2979  *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2980  *      @dev_queue: pointer to transmit queue
2981  *
2982  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2983  * to give appropriate hint to the CPU.
2984  */
2985 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2986 {
2987 #ifdef CONFIG_BQL
2988         prefetchw(&dev_queue->dql.num_queued);
2989 #endif
2990 }
2991
2992 /**
2993  *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2994  *      @dev_queue: pointer to transmit queue
2995  *
2996  * BQL enabled drivers might use this helper in their TX completion path,
2997  * to give appropriate hint to the CPU.
2998  */
2999 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3000 {
3001 #ifdef CONFIG_BQL
3002         prefetchw(&dev_queue->dql.limit);
3003 #endif
3004 }
3005
3006 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3007                                         unsigned int bytes)
3008 {
3009 #ifdef CONFIG_BQL
3010         dql_queued(&dev_queue->dql, bytes);
3011
3012         if (likely(dql_avail(&dev_queue->dql) >= 0))
3013                 return;
3014
3015         set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3016
3017         /*
3018          * The XOFF flag must be set before checking the dql_avail below,
3019          * because in netdev_tx_completed_queue we update the dql_completed
3020          * before checking the XOFF flag.
3021          */
3022         smp_mb();
3023
3024         /* check again in case another CPU has just made room avail */
3025         if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3026                 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3027 #endif
3028 }
3029
3030 /**
3031  *      netdev_sent_queue - report the number of bytes queued to hardware
3032  *      @dev: network device
3033  *      @bytes: number of bytes queued to the hardware device queue
3034  *
3035  *      Report the number of bytes queued for sending/completion to the network
3036  *      device hardware queue. @bytes should be a good approximation and should
3037  *      exactly match netdev_completed_queue() @bytes
3038  */
3039 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3040 {
3041         netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3042 }
3043
3044 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3045                                              unsigned int pkts, unsigned int bytes)
3046 {
3047 #ifdef CONFIG_BQL
3048         if (unlikely(!bytes))
3049                 return;
3050
3051         dql_completed(&dev_queue->dql, bytes);
3052
3053         /*
3054          * Without the memory barrier there is a small possiblity that
3055          * netdev_tx_sent_queue will miss the update and cause the queue to
3056          * be stopped forever
3057          */
3058         smp_mb();
3059
3060         if (dql_avail(&dev_queue->dql) < 0)
3061                 return;
3062
3063         if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3064                 netif_schedule_queue(dev_queue);
3065 #endif
3066 }
3067
3068 /**
3069  *      netdev_completed_queue - report bytes and packets completed by device
3070  *      @dev: network device
3071  *      @pkts: actual number of packets sent over the medium
3072  *      @bytes: actual number of bytes sent over the medium
3073  *
3074  *      Report the number of bytes and packets transmitted by the network device
3075  *      hardware queue over the physical medium, @bytes must exactly match the
3076  *      @bytes amount passed to netdev_sent_queue()
3077  */
3078 static inline void netdev_completed_queue(struct net_device *dev,
3079                                           unsigned int pkts, unsigned int bytes)
3080 {
3081         netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3082 }
3083
3084 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3085 {
3086 #ifdef CONFIG_BQL
3087         clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3088         dql_reset(&q->dql);
3089 #endif
3090 }
3091
3092 /**
3093  *      netdev_reset_queue - reset the packets and bytes count of a network device
3094  *      @dev_queue: network device
3095  *
3096  *      Reset the bytes and packet count of a network device and clear the
3097  *      software flow control OFF bit for this network device
3098  */
3099 static inline void netdev_reset_queue(struct net_device *dev_queue)
3100 {
3101         netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3102 }
3103
3104 /**
3105  *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
3106  *      @dev: network device
3107  *      @queue_index: given tx queue index
3108  *
3109  *      Returns 0 if given tx queue index >= number of device tx queues,
3110  *      otherwise returns the originally passed tx queue index.
3111  */
3112 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3113 {
3114         if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3115                 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3116                                      dev->name, queue_index,
3117                                      dev->real_num_tx_queues);
3118                 return 0;
3119         }
3120
3121         return queue_index;
3122 }
3123
3124 /**
3125  *      netif_running - test if up
3126  *      @dev: network device
3127  *
3128  *      Test if the device has been brought up.
3129  */
3130 static inline bool netif_running(const struct net_device *dev)
3131 {
3132         return test_bit(__LINK_STATE_START, &dev->state);
3133 }
3134
3135 /*
3136  * Routines to manage the subqueues on a device.  We only need start,
3137  * stop, and a check if it's stopped.  All other device management is
3138  * done at the overall netdevice level.
3139  * Also test the device if we're multiqueue.
3140  */
3141
3142 /**
3143  *      netif_start_subqueue - allow sending packets on subqueue
3144  *      @dev: network device
3145  *      @queue_index: sub queue index
3146  *
3147  * Start individual transmit queue of a device with multiple transmit queues.
3148  */
3149 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3150 {
3151         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3152
3153         netif_tx_start_queue(txq);
3154 }
3155
3156 /**
3157  *      netif_stop_subqueue - stop sending packets on subqueue
3158  *      @dev: network device
3159  *      @queue_index: sub queue index
3160  *
3161  * Stop individual transmit queue of a device with multiple transmit queues.
3162  */
3163 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3164 {
3165         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3166         netif_tx_stop_queue(txq);
3167 }
3168
3169 /**
3170  *      netif_subqueue_stopped - test status of subqueue
3171  *      @dev: network device
3172  *      @queue_index: sub queue index
3173  *
3174  * Check individual transmit queue of a device with multiple transmit queues.
3175  */
3176 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3177                                             u16 queue_index)
3178 {
3179         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3180
3181         return netif_tx_queue_stopped(txq);
3182 }
3183
3184 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3185                                           struct sk_buff *skb)
3186 {
3187         return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3188 }
3189
3190 /**
3191  *      netif_wake_subqueue - allow sending packets on subqueue
3192  *      @dev: network device
3193  *      @queue_index: sub queue index
3194  *
3195  * Resume individual transmit queue of a device with multiple transmit queues.
3196  */
3197 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3198 {
3199         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3200
3201         netif_tx_wake_queue(txq);
3202 }
3203
3204 #ifdef CONFIG_XPS
3205 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3206                         u16 index);
3207 #else
3208 static inline int netif_set_xps_queue(struct net_device *dev,
3209                                       const struct cpumask *mask,
3210                                       u16 index)
3211 {
3212         return 0;
3213 }
3214 #endif
3215
3216 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3217                   unsigned int num_tx_queues);
3218
3219 /*
3220  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3221  * as a distribution range limit for the returned value.
3222  */
3223 static inline u16 skb_tx_hash(const struct net_device *dev,
3224                               struct sk_buff *skb)
3225 {
3226         return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3227 }
3228
3229 /**
3230  *      netif_is_multiqueue - test if device has multiple transmit queues
3231  *      @dev: network device
3232  *
3233  * Check if device has multiple transmit queues
3234  */
3235 static inline bool netif_is_multiqueue(const struct net_device *dev)
3236 {
3237         return dev->num_tx_queues > 1;
3238 }
3239
3240 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3241
3242 #ifdef CONFIG_SYSFS
3243 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3244 #else
3245 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3246                                                 unsigned int rxq)
3247 {
3248         return 0;
3249 }
3250 #endif
3251
3252 static inline struct netdev_rx_queue *
3253 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3254 {
3255         return dev->_rx + rxq;
3256 }
3257
3258 #ifdef CONFIG_SYSFS
3259 static inline unsigned int get_netdev_rx_queue_index(
3260                 struct netdev_rx_queue *queue)
3261 {
3262         struct net_device *dev = queue->dev;
3263         int index = queue - dev->_rx;
3264
3265         BUG_ON(index >= dev->num_rx_queues);
3266         return index;
3267 }
3268 #endif
3269
3270 #define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
3271 int netif_get_num_default_rss_queues(void);
3272
3273 enum skb_free_reason {
3274         SKB_REASON_CONSUMED,
3275         SKB_REASON_DROPPED,
3276 };
3277
3278 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3279 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3280
3281 /*
3282  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3283  * interrupt context or with hardware interrupts being disabled.
3284  * (in_irq() || irqs_disabled())
3285  *
3286  * We provide four helpers that can be used in following contexts :
3287  *
3288  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3289  *  replacing kfree_skb(skb)
3290  *
3291  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3292  *  Typically used in place of consume_skb(skb) in TX completion path
3293  *
3294  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3295  *  replacing kfree_skb(skb)
3296  *
3297  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3298  *  and consumed a packet. Used in place of consume_skb(skb)
3299  */
3300 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3301 {
3302         __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3303 }
3304
3305 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3306 {
3307         __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3308 }
3309
3310 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3311 {
3312         __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3313 }
3314
3315 static inline void dev_consume_skb_any(struct sk_buff *skb)
3316 {
3317         __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3318 }
3319
3320 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3321 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3322 int netif_rx(struct sk_buff *skb);
3323 int netif_rx_ni(struct sk_buff *skb);
3324 int netif_receive_skb(struct sk_buff *skb);
3325 int netif_receive_skb_core(struct sk_buff *skb);
3326 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3327 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3328 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3329 gro_result_t napi_gro_frags(struct napi_struct *napi);
3330 struct packet_offload *gro_find_receive_by_type(__be16 type);
3331 struct packet_offload *gro_find_complete_by_type(__be16 type);
3332
3333 static inline void napi_free_frags(struct napi_struct *napi)
3334 {
3335         kfree_skb(napi->skb);
3336         napi->skb = NULL;
3337 }
3338
3339 bool netdev_is_rx_handler_busy(struct net_device *dev);
3340 int netdev_rx_handler_register(struct net_device *dev,
3341                                rx_handler_func_t *rx_handler,
3342                                void *rx_handler_data);
3343 void netdev_rx_handler_unregister(struct net_device *dev);
3344
3345 bool dev_valid_name(const char *name);
3346 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3347                 bool *need_copyout);
3348 int dev_ifconf(struct net *net, struct ifconf *, int);
3349 int dev_ethtool(struct net *net, struct ifreq *);
3350 unsigned int dev_get_flags(const struct net_device *);
3351 int __dev_change_flags(struct net_device *, unsigned int flags);
3352 int dev_change_flags(struct net_device *, unsigned int);
3353 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3354                         unsigned int gchanges);
3355 int dev_change_name(struct net_device *, const char *);
3356 int dev_set_alias(struct net_device *, const char *, size_t);
3357 int dev_get_alias(const struct net_device *, char *, size_t);
3358 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3359 int __dev_set_mtu(struct net_device *, int);
3360 int dev_set_mtu(struct net_device *, int);
3361 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3362 void dev_set_group(struct net_device *, int);
3363 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3364 int dev_change_carrier(struct net_device *, bool new_carrier);
3365 int dev_get_phys_port_id(struct net_device *dev,
3366                          struct netdev_phys_item_id *ppid);
3367 int dev_get_phys_port_name(struct net_device *dev,
3368                            char *name, size_t len);
3369 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3370 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3371 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3372                                     struct netdev_queue *txq, int *ret);
3373
3374 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3375 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3376                       int fd, u32 flags);
3377 void __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3378                      struct netdev_bpf *xdp);
3379
3380 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3381 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3382 bool is_skb_forwardable(const struct net_device *dev,
3383                         const struct sk_buff *skb);
3384
3385 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3386                                                struct sk_buff *skb)
3387 {
3388         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3389             unlikely(!is_skb_forwardable(dev, skb))) {
3390                 atomic_long_inc(&dev->rx_dropped);
3391                 kfree_skb(skb);
3392                 return NET_RX_DROP;
3393         }
3394
3395         skb_scrub_packet(skb, true);
3396         skb->priority = 0;
3397         return 0;
3398 }
3399
3400 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3401
3402 extern int              netdev_budget;
3403 extern unsigned int     netdev_budget_usecs;
3404
3405 /* Called by rtnetlink.c:rtnl_unlock() */
3406 void netdev_run_todo(void);
3407
3408 /**
3409  *      dev_put - release reference to device
3410  *      @dev: network device
3411  *
3412  * Release reference to device to allow it to be freed.
3413  */
3414 static inline void dev_put(struct net_device *dev)
3415 {
3416         this_cpu_dec(*dev->pcpu_refcnt);
3417 }
3418
3419 /**
3420  *      dev_hold - get reference to device
3421  *      @dev: network device
3422  *
3423  * Hold reference to device to keep it from being freed.
3424  */
3425 static inline void dev_hold(struct net_device *dev)
3426 {
3427         this_cpu_inc(*dev->pcpu_refcnt);
3428 }
3429
3430 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3431  * and _off may be called from IRQ context, but it is caller
3432  * who is responsible for serialization of these calls.
3433  *
3434  * The name carrier is inappropriate, these functions should really be
3435  * called netif_lowerlayer_*() because they represent the state of any
3436  * kind of lower layer not just hardware media.
3437  */
3438
3439 void linkwatch_init_dev(struct net_device *dev);
3440 void linkwatch_fire_event(struct net_device *dev);
3441 void linkwatch_forget_dev(struct net_device *dev);
3442
3443 /**
3444  *      netif_carrier_ok - test if carrier present
3445  *      @dev: network device
3446  *
3447  * Check if carrier is present on device
3448  */
3449 static inline bool netif_carrier_ok(const struct net_device *dev)
3450 {
3451         return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3452 }
3453
3454 unsigned long dev_trans_start(struct net_device *dev);
3455
3456 void __netdev_watchdog_up(struct net_device *dev);
3457
3458 void netif_carrier_on(struct net_device *dev);
3459
3460 void netif_carrier_off(struct net_device *dev);
3461
3462 /**
3463  *      netif_dormant_on - mark device as dormant.
3464  *      @dev: network device
3465  *
3466  * Mark device as dormant (as per RFC2863).
3467  *
3468  * The dormant state indicates that the relevant interface is not
3469  * actually in a condition to pass packets (i.e., it is not 'up') but is
3470  * in a "pending" state, waiting for some external event.  For "on-
3471  * demand" interfaces, this new state identifies the situation where the
3472  * interface is waiting for events to place it in the up state.
3473  */
3474 static inline void netif_dormant_on(struct net_device *dev)
3475 {
3476         if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3477                 linkwatch_fire_event(dev);
3478 }
3479
3480 /**
3481  *      netif_dormant_off - set device as not dormant.
3482  *      @dev: network device
3483  *
3484  * Device is not in dormant state.
3485  */
3486 static inline void netif_dormant_off(struct net_device *dev)
3487 {
3488         if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3489                 linkwatch_fire_event(dev);
3490 }
3491
3492 /**
3493  *      netif_dormant - test if device is dormant
3494  *      @dev: network device
3495  *
3496  * Check if device is dormant.
3497  */
3498 static inline bool netif_dormant(const struct net_device *dev)
3499 {
3500         return test_bit(__LINK_STATE_DORMANT, &dev->state);
3501 }
3502
3503
3504 /**
3505  *      netif_oper_up - test if device is operational
3506  *      @dev: network device
3507  *
3508  * Check if carrier is operational
3509  */
3510 static inline bool netif_oper_up(const struct net_device *dev)
3511 {
3512         return (dev->operstate == IF_OPER_UP ||
3513                 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3514 }
3515
3516 /**
3517  *      netif_device_present - is device available or removed
3518  *      @dev: network device
3519  *
3520  * Check if device has not been removed from system.
3521  */
3522 static inline bool netif_device_present(struct net_device *dev)
3523 {
3524         return test_bit(__LINK_STATE_PRESENT, &dev->state);
3525 }
3526
3527 void netif_device_detach(struct net_device *dev);
3528
3529 void netif_device_attach(struct net_device *dev);
3530
3531 /*
3532  * Network interface message level settings
3533  */
3534
3535 enum {
3536         NETIF_MSG_DRV           = 0x0001,
3537         NETIF_MSG_PROBE         = 0x0002,
3538         NETIF_MSG_LINK          = 0x0004,
3539         NETIF_MSG_TIMER         = 0x0008,
3540         NETIF_MSG_IFDOWN        = 0x0010,
3541         NETIF_MSG_IFUP          = 0x0020,
3542         NETIF_MSG_RX_ERR        = 0x0040,
3543         NETIF_MSG_TX_ERR        = 0x0080,
3544         NETIF_MSG_TX_QUEUED     = 0x0100,
3545         NETIF_MSG_INTR          = 0x0200,
3546         NETIF_MSG_TX_DONE       = 0x0400,
3547         NETIF_MSG_RX_STATUS     = 0x0800,
3548         NETIF_MSG_PKTDATA       = 0x1000,
3549         NETIF_MSG_HW            = 0x2000,
3550         NETIF_MSG_WOL           = 0x4000,
3551 };
3552
3553 #define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3554 #define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3555 #define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3556 #define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3557 #define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3558 #define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3559 #define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3560 #define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3561 #define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3562 #define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3563 #define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3564 #define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3565 #define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3566 #define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3567 #define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3568
3569 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3570 {
3571         /* use default */
3572         if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3573                 return default_msg_enable_bits;
3574         if (debug_value == 0)   /* no output */
3575                 return 0;
3576         /* set low N bits */
3577         return (1 << debug_value) - 1;
3578 }
3579
3580 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3581 {
3582         spin_lock(&txq->_xmit_lock);
3583         txq->xmit_lock_owner = cpu;
3584 }
3585
3586 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3587 {
3588         __acquire(&txq->_xmit_lock);
3589         return true;
3590 }
3591
3592 static inline void __netif_tx_release(struct netdev_queue *txq)
3593 {
3594         __release(&txq->_xmit_lock);
3595 }
3596
3597 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3598 {
3599         spin_lock_bh(&txq->_xmit_lock);
3600         txq->xmit_lock_owner = smp_processor_id();
3601 }
3602
3603 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3604 {
3605         bool ok = spin_trylock(&txq->_xmit_lock);
3606         if (likely(ok))
3607                 txq->xmit_lock_owner = smp_processor_id();
3608         return ok;
3609 }
3610
3611 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3612 {
3613         txq->xmit_lock_owner = -1;
3614         spin_unlock(&txq->_xmit_lock);
3615 }
3616
3617 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3618 {
3619         txq->xmit_lock_owner = -1;
3620         spin_unlock_bh(&txq->_xmit_lock);
3621 }
3622
3623 static inline void txq_trans_update(struct netdev_queue *txq)
3624 {
3625         if (txq->xmit_lock_owner != -1)
3626                 txq->trans_start = jiffies;
3627 }
3628
3629 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3630 static inline void netif_trans_update(struct net_device *dev)
3631 {
3632         struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3633
3634         if (txq->trans_start != jiffies)
3635                 txq->trans_start = jiffies;
3636 }
3637
3638 /**
3639  *      netif_tx_lock - grab network device transmit lock
3640  *      @dev: network device
3641  *
3642  * Get network device transmit lock
3643  */
3644 static inline void netif_tx_lock(struct net_device *dev)
3645 {
3646         unsigned int i;
3647         int cpu;
3648
3649         spin_lock(&dev->tx_global_lock);
3650         cpu = smp_processor_id();
3651         for (i = 0; i < dev->num_tx_queues; i++) {
3652                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3653
3654                 /* We are the only thread of execution doing a
3655                  * freeze, but we have to grab the _xmit_lock in
3656                  * order to synchronize with threads which are in
3657                  * the ->hard_start_xmit() handler and already
3658                  * checked the frozen bit.
3659                  */
3660                 __netif_tx_lock(txq, cpu);
3661                 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3662                 __netif_tx_unlock(txq);
3663         }
3664 }
3665
3666 static inline void netif_tx_lock_bh(struct net_device *dev)
3667 {
3668         local_bh_disable();
3669         netif_tx_lock(dev);
3670 }
3671
3672 static inline void netif_tx_unlock(struct net_device *dev)
3673 {
3674         unsigned int i;
3675
3676         for (i = 0; i < dev->num_tx_queues; i++) {
3677                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3678
3679                 /* No need to grab the _xmit_lock here.  If the
3680                  * queue is not stopped for another reason, we
3681                  * force a schedule.
3682                  */
3683                 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3684                 netif_schedule_queue(txq);
3685         }
3686         spin_unlock(&dev->tx_global_lock);
3687 }
3688
3689 static inline void netif_tx_unlock_bh(struct net_device *dev)
3690 {
3691         netif_tx_unlock(dev);
3692         local_bh_enable();
3693 }
3694
3695 #define HARD_TX_LOCK(dev, txq, cpu) {                   \
3696         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3697                 __netif_tx_lock(txq, cpu);              \
3698         } else {                                        \
3699                 __netif_tx_acquire(txq);                \
3700         }                                               \
3701 }
3702
3703 #define HARD_TX_TRYLOCK(dev, txq)                       \
3704         (((dev->features & NETIF_F_LLTX) == 0) ?        \
3705                 __netif_tx_trylock(txq) :               \
3706                 __netif_tx_acquire(txq))
3707
3708 #define HARD_TX_UNLOCK(dev, txq) {                      \
3709         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3710                 __netif_tx_unlock(txq);                 \
3711         } else {                                        \
3712                 __netif_tx_release(txq);                \
3713         }                                               \
3714 }
3715
3716 static inline void netif_tx_disable(struct net_device *dev)
3717 {
3718         unsigned int i;
3719         int cpu;
3720
3721         local_bh_disable();
3722         cpu = smp_processor_id();
3723         for (i = 0; i < dev->num_tx_queues; i++) {
3724                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3725
3726                 __netif_tx_lock(txq, cpu);
3727                 netif_tx_stop_queue(txq);
3728                 __netif_tx_unlock(txq);
3729         }
3730         local_bh_enable();
3731 }
3732
3733 static inline void netif_addr_lock(struct net_device *dev)
3734 {
3735         spin_lock(&dev->addr_list_lock);
3736 }
3737
3738 static inline void netif_addr_lock_nested(struct net_device *dev)
3739 {
3740         int subclass = SINGLE_DEPTH_NESTING;
3741
3742         if (dev->netdev_ops->ndo_get_lock_subclass)
3743                 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3744
3745         spin_lock_nested(&dev->addr_list_lock, subclass);
3746 }
3747
3748 static inline void netif_addr_lock_bh(struct net_device *dev)
3749 {
3750         spin_lock_bh(&dev->addr_list_lock);
3751 }
3752
3753 static inline void netif_addr_unlock(struct net_device *dev)
3754 {
3755         spin_unlock(&dev->addr_list_lock);
3756 }
3757
3758 static inline void netif_addr_unlock_bh(struct net_device *dev)
3759 {
3760         spin_unlock_bh(&dev->addr_list_lock);
3761 }
3762
3763 /*
3764  * dev_addrs walker. Should be used only for read access. Call with
3765  * rcu_read_lock held.
3766  */
3767 #define for_each_dev_addr(dev, ha) \
3768                 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3769
3770 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3771
3772 void ether_setup(struct net_device *dev);
3773
3774 /* Support for loadable net-drivers */
3775 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3776                                     unsigned char name_assign_type,
3777                                     void (*setup)(struct net_device *),
3778                                     unsigned int txqs, unsigned int rxqs);
3779 int dev_get_valid_name(struct net *net, struct net_device *dev,
3780                        const char *name);
3781
3782 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3783         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3784
3785 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3786         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3787                          count)
3788
3789 int register_netdev(struct net_device *dev);
3790 void unregister_netdev(struct net_device *dev);
3791
3792 /* General hardware address lists handling functions */
3793 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3794                    struct netdev_hw_addr_list *from_list, int addr_len);
3795 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3796                       struct netdev_hw_addr_list *from_list, int addr_len);
3797 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3798                        struct net_device *dev,
3799                        int (*sync)(struct net_device *, const unsigned char *),
3800                        int (*unsync)(struct net_device *,
3801                                      const unsigned char *));
3802 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3803                           struct net_device *dev,
3804                           int (*unsync)(struct net_device *,
3805                                         const unsigned char *));
3806 void __hw_addr_init(struct netdev_hw_addr_list *list);
3807
3808 /* Functions used for device addresses handling */
3809 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3810                  unsigned char addr_type);
3811 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3812                  unsigned char addr_type);
3813 void dev_addr_flush(struct net_device *dev);
3814 int dev_addr_init(struct net_device *dev);
3815
3816 /* Functions used for unicast addresses handling */
3817 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3818 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3819 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3820 int dev_uc_sync(struct net_device *to, struct net_device *from);
3821 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3822 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3823 void dev_uc_flush(struct net_device *dev);
3824 void dev_uc_init(struct net_device *dev);
3825
3826 /**
3827  *  __dev_uc_sync - Synchonize device's unicast list
3828  *  @dev:  device to sync
3829  *  @sync: function to call if address should be added
3830  *  @unsync: function to call if address should be removed
3831  *
3832  *  Add newly added addresses to the interface, and release
3833  *  addresses that have been deleted.
3834  */
3835 static inline int __dev_uc_sync(struct net_device *dev,
3836                                 int (*sync)(struct net_device *,
3837                                             const unsigned char *),
3838                                 int (*unsync)(struct net_device *,
3839                                               const unsigned char *))
3840 {
3841         return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3842 }
3843
3844 /**
3845  *  __dev_uc_unsync - Remove synchronized addresses from device
3846  *  @dev:  device to sync
3847  *  @unsync: function to call if address should be removed
3848  *
3849  *  Remove all addresses that were added to the device by dev_uc_sync().
3850  */
3851 static inline void __dev_uc_unsync(struct net_device *dev,
3852                                    int (*unsync)(struct net_device *,
3853                                                  const unsigned char *))
3854 {
3855         __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3856 }
3857
3858 /* Functions used for multicast addresses handling */
3859 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3860 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3861 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3862 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3863 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3864 int dev_mc_sync(struct net_device *to, struct net_device *from);
3865 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3866 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3867 void dev_mc_flush(struct net_device *dev);
3868 void dev_mc_init(struct net_device *dev);
3869
3870 /**
3871  *  __dev_mc_sync - Synchonize device's multicast list
3872  *  @dev:  device to sync
3873  *  @sync: function to call if address should be added
3874  *  @unsync: function to call if address should be removed
3875  *
3876  *  Add newly added addresses to the interface, and release
3877  *  addresses that have been deleted.
3878  */
3879 static inline int __dev_mc_sync(struct net_device *dev,
3880                                 int (*sync)(struct net_device *,
3881                                             const unsigned char *),
3882                                 int (*unsync)(struct net_device *,
3883                                               const unsigned char *))
3884 {
3885         return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3886 }
3887
3888 /**
3889  *  __dev_mc_unsync - Remove synchronized addresses from device
3890  *  @dev:  device to sync
3891  *  @unsync: function to call if address should be removed
3892  *
3893  *  Remove all addresses that were added to the device by dev_mc_sync().
3894  */
3895 static inline void __dev_mc_unsync(struct net_device *dev,
3896                                    int (*unsync)(struct net_device *,
3897                                                  const unsigned char *))
3898 {
3899         __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3900 }
3901
3902 /* Functions used for secondary unicast and multicast support */
3903 void dev_set_rx_mode(struct net_device *dev);
3904 void __dev_set_rx_mode(struct net_device *dev);
3905 int dev_set_promiscuity(struct net_device *dev, int inc);
3906 int dev_set_allmulti(struct net_device *dev, int inc);
3907 void netdev_state_change(struct net_device *dev);
3908 void netdev_notify_peers(struct net_device *dev);
3909 void netdev_features_change(struct net_device *dev);
3910 /* Load a device via the kmod */
3911 void dev_load(struct net *net, const char *name);
3912 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3913                                         struct rtnl_link_stats64 *storage);
3914 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3915                              const struct net_device_stats *netdev_stats);
3916
3917 extern int              netdev_max_backlog;
3918 extern int              netdev_tstamp_prequeue;
3919 extern int              weight_p;
3920 extern int              dev_weight_rx_bias;
3921 extern int              dev_weight_tx_bias;
3922 extern int              dev_rx_weight;
3923 extern int              dev_tx_weight;
3924
3925 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3926 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3927                                                      struct list_head **iter);
3928 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3929                                                      struct list_head **iter);
3930
3931 /* iterate through upper list, must be called under RCU read lock */
3932 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3933         for (iter = &(dev)->adj_list.upper, \
3934              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3935              updev; \
3936              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3937
3938 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3939                                   int (*fn)(struct net_device *upper_dev,
3940                                             void *data),
3941                                   void *data);
3942
3943 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3944                                   struct net_device *upper_dev);
3945
3946 bool netdev_has_any_upper_dev(struct net_device *dev);
3947
3948 void *netdev_lower_get_next_private(struct net_device *dev,
3949                                     struct list_head **iter);
3950 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3951                                         struct list_head **iter);
3952
3953 #define netdev_for_each_lower_private(dev, priv, iter) \
3954         for (iter = (dev)->adj_list.lower.next, \
3955              priv = netdev_lower_get_next_private(dev, &(iter)); \
3956              priv; \
3957              priv = netdev_lower_get_next_private(dev, &(iter)))
3958
3959 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3960         for (iter = &(dev)->adj_list.lower, \
3961              priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3962              priv; \
3963              priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3964
3965 void *netdev_lower_get_next(struct net_device *dev,
3966                                 struct list_head **iter);
3967
3968 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3969         for (iter = (dev)->adj_list.lower.next, \
3970              ldev = netdev_lower_get_next(dev, &(iter)); \
3971              ldev; \
3972              ldev = netdev_lower_get_next(dev, &(iter)))
3973
3974 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3975                                              struct list_head **iter);
3976 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3977                                                  struct list_head **iter);
3978
3979 int netdev_walk_all_lower_dev(struct net_device *dev,
3980                               int (*fn)(struct net_device *lower_dev,
3981                                         void *data),
3982                               void *data);
3983 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3984                                   int (*fn)(struct net_device *lower_dev,
3985                                             void *data),
3986                                   void *data);
3987
3988 void *netdev_adjacent_get_private(struct list_head *adj_list);
3989 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3990 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3991 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3992 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
3993                           struct netlink_ext_ack *extack);
3994 int netdev_master_upper_dev_link(struct net_device *dev,
3995                                  struct net_device *upper_dev,
3996                                  void *upper_priv, void *upper_info,
3997                                  struct netlink_ext_ack *extack);
3998 void netdev_upper_dev_unlink(struct net_device *dev,
3999                              struct net_device *upper_dev);
4000 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4001 void *netdev_lower_dev_get_private(struct net_device *dev,
4002                                    struct net_device *lower_dev);
4003 void netdev_lower_state_changed(struct net_device *lower_dev,
4004                                 void *lower_state_info);
4005
4006 /* RSS keys are 40 or 52 bytes long */
4007 #define NETDEV_RSS_KEY_LEN 52
4008 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4009 void netdev_rss_key_fill(void *buffer, size_t len);
4010
4011 int dev_get_nest_level(struct net_device *dev);
4012 int skb_checksum_help(struct sk_buff *skb);
4013 int skb_crc32c_csum_help(struct sk_buff *skb);
4014 int skb_csum_hwoffload_help(struct sk_buff *skb,
4015                             const netdev_features_t features);
4016
4017 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4018                                   netdev_features_t features, bool tx_path);
4019 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4020                                     netdev_features_t features);
4021
4022 struct netdev_bonding_info {
4023         ifslave slave;
4024         ifbond  master;
4025 };
4026
4027 struct netdev_notifier_bonding_info {
4028         struct netdev_notifier_info info; /* must be first */
4029         struct netdev_bonding_info  bonding_info;
4030 };
4031
4032 void netdev_bonding_info_change(struct net_device *dev,
4033                                 struct netdev_bonding_info *bonding_info);
4034
4035 static inline
4036 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4037 {
4038         return __skb_gso_segment(skb, features, true);
4039 }
4040 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4041
4042 static inline bool can_checksum_protocol(netdev_features_t features,
4043                                          __be16 protocol)
4044 {
4045         if (protocol == htons(ETH_P_FCOE))
4046                 return !!(features & NETIF_F_FCOE_CRC);
4047
4048         /* Assume this is an IP checksum (not SCTP CRC) */
4049
4050         if (features & NETIF_F_HW_CSUM) {
4051                 /* Can checksum everything */
4052                 return true;
4053         }
4054
4055         switch (protocol) {
4056         case htons(ETH_P_IP):
4057                 return !!(features & NETIF_F_IP_CSUM);
4058         case htons(ETH_P_IPV6):
4059                 return !!(features & NETIF_F_IPV6_CSUM);
4060         default:
4061                 return false;
4062         }
4063 }
4064
4065 #ifdef CONFIG_BUG
4066 void netdev_rx_csum_fault(struct net_device *dev);
4067 #else
4068 static inline void netdev_rx_csum_fault(struct net_device *dev)
4069 {
4070 }
4071 #endif
4072 /* rx skb timestamps */
4073 void net_enable_timestamp(void);
4074 void net_disable_timestamp(void);
4075
4076 #ifdef CONFIG_PROC_FS
4077 int __init dev_proc_init(void);
4078 #else
4079 #define dev_proc_init() 0
4080 #endif
4081
4082 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4083                                               struct sk_buff *skb, struct net_device *dev,
4084                                               bool more)
4085 {
4086         skb->xmit_more = more ? 1 : 0;
4087         return ops->ndo_start_xmit(skb, dev);
4088 }
4089
4090 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4091                                             struct netdev_queue *txq, bool more)
4092 {
4093         const struct net_device_ops *ops = dev->netdev_ops;
4094         int rc;
4095
4096         rc = __netdev_start_xmit(ops, skb, dev, more);
4097         if (rc == NETDEV_TX_OK)
4098                 txq_trans_update(txq);
4099
4100         return rc;
4101 }
4102
4103 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4104                                 const void *ns);
4105 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4106                                  const void *ns);
4107
4108 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4109 {
4110         return netdev_class_create_file_ns(class_attr, NULL);
4111 }
4112
4113 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4114 {
4115         netdev_class_remove_file_ns(class_attr, NULL);
4116 }
4117
4118 extern const struct kobj_ns_type_operations net_ns_type_operations;
4119
4120 const char *netdev_drivername(const struct net_device *dev);
4121
4122 void linkwatch_run_queue(void);
4123
4124 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4125                                                           netdev_features_t f2)
4126 {
4127         if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4128                 if (f1 & NETIF_F_HW_CSUM)
4129                         f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4130                 else
4131                         f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4132         }
4133
4134         return f1 & f2;
4135 }
4136
4137 static inline netdev_features_t netdev_get_wanted_features(
4138         struct net_device *dev)
4139 {
4140         return (dev->features & ~dev->hw_features) | dev->wanted_features;
4141 }
4142 netdev_features_t netdev_increment_features(netdev_features_t all,
4143         netdev_features_t one, netdev_features_t mask);
4144
4145 /* Allow TSO being used on stacked device :
4146  * Performing the GSO segmentation before last device
4147  * is a performance improvement.
4148  */
4149 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4150                                                         netdev_features_t mask)
4151 {
4152         return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4153 }
4154
4155 int __netdev_update_features(struct net_device *dev);
4156 void netdev_update_features(struct net_device *dev);
4157 void netdev_change_features(struct net_device *dev);
4158
4159 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4160                                         struct net_device *dev);
4161
4162 netdev_features_t passthru_features_check(struct sk_buff *skb,
4163                                           struct net_device *dev,
4164                                           netdev_features_t features);
4165 netdev_features_t netif_skb_features(struct sk_buff *skb);
4166
4167 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4168 {
4169         netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4170
4171         /* check flags correspondence */
4172         BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4173         BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4174         BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4175         BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4176         BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4177         BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4178         BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4179         BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4180         BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4181         BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4182         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4183         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4184         BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4185         BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4186         BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4187         BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4188         BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4189
4190         return (features & feature) == feature;
4191 }
4192
4193 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4194 {
4195         return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4196                (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4197 }
4198
4199 static inline bool netif_needs_gso(struct sk_buff *skb,
4200                                    netdev_features_t features)
4201 {
4202         return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4203                 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4204                          (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4205 }
4206
4207 static inline void netif_set_gso_max_size(struct net_device *dev,
4208                                           unsigned int size)
4209 {
4210         dev->gso_max_size = size;
4211 }
4212
4213 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4214                                         int pulled_hlen, u16 mac_offset,
4215                                         int mac_len)
4216 {
4217         skb->protocol = protocol;
4218         skb->encapsulation = 1;
4219         skb_push(skb, pulled_hlen);
4220         skb_reset_transport_header(skb);
4221         skb->mac_header = mac_offset;
4222         skb->network_header = skb->mac_header + mac_len;
4223         skb->mac_len = mac_len;
4224 }
4225
4226 static inline bool netif_is_macsec(const struct net_device *dev)
4227 {
4228         return dev->priv_flags & IFF_MACSEC;
4229 }
4230
4231 static inline bool netif_is_macvlan(const struct net_device *dev)
4232 {
4233         return dev->priv_flags & IFF_MACVLAN;
4234 }
4235
4236 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4237 {
4238         return dev->priv_flags & IFF_MACVLAN_PORT;
4239 }
4240
4241 static inline bool netif_is_bond_master(const struct net_device *dev)
4242 {
4243         return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4244 }
4245
4246 static inline bool netif_is_bond_slave(const struct net_device *dev)
4247 {
4248         return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4249 }
4250
4251 static inline bool netif_supports_nofcs(struct net_device *dev)
4252 {
4253         return dev->priv_flags & IFF_SUPP_NOFCS;
4254 }
4255
4256 static inline bool netif_is_l3_master(const struct net_device *dev)
4257 {
4258         return dev->priv_flags & IFF_L3MDEV_MASTER;
4259 }
4260
4261 static inline bool netif_is_l3_slave(const struct net_device *dev)
4262 {
4263         return dev->priv_flags & IFF_L3MDEV_SLAVE;
4264 }
4265
4266 static inline bool netif_is_bridge_master(const struct net_device *dev)
4267 {
4268         return dev->priv_flags & IFF_EBRIDGE;
4269 }
4270
4271 static inline bool netif_is_bridge_port(const struct net_device *dev)
4272 {
4273         return dev->priv_flags & IFF_BRIDGE_PORT;
4274 }
4275
4276 static inline bool netif_is_ovs_master(const struct net_device *dev)
4277 {
4278         return dev->priv_flags & IFF_OPENVSWITCH;
4279 }
4280
4281 static inline bool netif_is_ovs_port(const struct net_device *dev)
4282 {
4283         return dev->priv_flags & IFF_OVS_DATAPATH;
4284 }
4285
4286 static inline bool netif_is_team_master(const struct net_device *dev)
4287 {
4288         return dev->priv_flags & IFF_TEAM;
4289 }
4290
4291 static inline bool netif_is_team_port(const struct net_device *dev)
4292 {
4293         return dev->priv_flags & IFF_TEAM_PORT;
4294 }
4295
4296 static inline bool netif_is_lag_master(const struct net_device *dev)
4297 {
4298         return netif_is_bond_master(dev) || netif_is_team_master(dev);
4299 }
4300
4301 static inline bool netif_is_lag_port(const struct net_device *dev)
4302 {
4303         return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4304 }
4305
4306 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4307 {
4308         return dev->priv_flags & IFF_RXFH_CONFIGURED;
4309 }
4310
4311 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4312 static inline void netif_keep_dst(struct net_device *dev)
4313 {
4314         dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4315 }
4316
4317 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4318 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4319 {
4320         /* TODO: reserve and use an additional IFF bit, if we get more users */
4321         return dev->priv_flags & IFF_MACSEC;
4322 }
4323
4324 extern struct pernet_operations __net_initdata loopback_net_ops;
4325
4326 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4327
4328 /* netdev_printk helpers, similar to dev_printk */
4329
4330 static inline const char *netdev_name(const struct net_device *dev)
4331 {
4332         if (!dev->name[0] || strchr(dev->name, '%'))
4333                 return "(unnamed net_device)";
4334         return dev->name;
4335 }
4336
4337 static inline bool netdev_unregistering(const struct net_device *dev)
4338 {
4339         return dev->reg_state == NETREG_UNREGISTERING;
4340 }
4341
4342 static inline const char *netdev_reg_state(const struct net_device *dev)
4343 {
4344         switch (dev->reg_state) {
4345         case NETREG_UNINITIALIZED: return " (uninitialized)";
4346         case NETREG_REGISTERED: return "";
4347         case NETREG_UNREGISTERING: return " (unregistering)";
4348         case NETREG_UNREGISTERED: return " (unregistered)";
4349         case NETREG_RELEASED: return " (released)";
4350         case NETREG_DUMMY: return " (dummy)";
4351         }
4352
4353         WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4354         return " (unknown)";
4355 }
4356
4357 __printf(3, 4)
4358 void netdev_printk(const char *level, const struct net_device *dev,
4359                    const char *format, ...);
4360 __printf(2, 3)
4361 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4362 __printf(2, 3)
4363 void netdev_alert(const struct net_device *dev, const char *format, ...);
4364 __printf(2, 3)
4365 void netdev_crit(const struct net_device *dev, const char *format, ...);
4366 __printf(2, 3)
4367 void netdev_err(const struct net_device *dev, const char *format, ...);
4368 __printf(2, 3)
4369 void netdev_warn(const struct net_device *dev, const char *format, ...);
4370 __printf(2, 3)
4371 void netdev_notice(const struct net_device *dev, const char *format, ...);
4372 __printf(2, 3)
4373 void netdev_info(const struct net_device *dev, const char *format, ...);
4374
4375 #define netdev_level_once(level, dev, fmt, ...)                 \
4376 do {                                                            \
4377         static bool __print_once __read_mostly;                 \
4378                                                                 \
4379         if (!__print_once) {                                    \
4380                 __print_once = true;                            \
4381                 netdev_printk(level, dev, fmt, ##__VA_ARGS__);  \
4382         }                                                       \
4383 } while (0)
4384
4385 #define netdev_emerg_once(dev, fmt, ...) \
4386         netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4387 #define netdev_alert_once(dev, fmt, ...) \
4388         netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4389 #define netdev_crit_once(dev, fmt, ...) \
4390         netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4391 #define netdev_err_once(dev, fmt, ...) \
4392         netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4393 #define netdev_warn_once(dev, fmt, ...) \
4394         netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4395 #define netdev_notice_once(dev, fmt, ...) \
4396         netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4397 #define netdev_info_once(dev, fmt, ...) \
4398         netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4399
4400 #define MODULE_ALIAS_NETDEV(device) \
4401         MODULE_ALIAS("netdev-" device)
4402
4403 #if defined(CONFIG_DYNAMIC_DEBUG)
4404 #define netdev_dbg(__dev, format, args...)                      \
4405 do {                                                            \
4406         dynamic_netdev_dbg(__dev, format, ##args);              \
4407 } while (0)
4408 #elif defined(DEBUG)
4409 #define netdev_dbg(__dev, format, args...)                      \
4410         netdev_printk(KERN_DEBUG, __dev, format, ##args)
4411 #else
4412 #define netdev_dbg(__dev, format, args...)                      \
4413 ({                                                              \
4414         if (0)                                                  \
4415                 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4416 })
4417 #endif
4418
4419 #if defined(VERBOSE_DEBUG)
4420 #define netdev_vdbg     netdev_dbg
4421 #else
4422
4423 #define netdev_vdbg(dev, format, args...)                       \
4424 ({                                                              \
4425         if (0)                                                  \
4426                 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4427         0;                                                      \
4428 })
4429 #endif
4430
4431 /*
4432  * netdev_WARN() acts like dev_printk(), but with the key difference
4433  * of using a WARN/WARN_ON to get the message out, including the
4434  * file/line information and a backtrace.
4435  */
4436 #define netdev_WARN(dev, format, args...)                       \
4437         WARN(1, "netdevice: %s%s: " format, netdev_name(dev),   \
4438              netdev_reg_state(dev), ##args)
4439
4440 #define netdev_WARN_ONCE(dev, format, args...)                          \
4441         WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),      \
4442                   netdev_reg_state(dev), ##args)
4443
4444 /* netif printk helpers, similar to netdev_printk */
4445
4446 #define netif_printk(priv, type, level, dev, fmt, args...)      \
4447 do {                                                            \
4448         if (netif_msg_##type(priv))                             \
4449                 netdev_printk(level, (dev), fmt, ##args);       \
4450 } while (0)
4451
4452 #define netif_level(level, priv, type, dev, fmt, args...)       \
4453 do {                                                            \
4454         if (netif_msg_##type(priv))                             \
4455                 netdev_##level(dev, fmt, ##args);               \
4456 } while (0)
4457
4458 #define netif_emerg(priv, type, dev, fmt, args...)              \
4459         netif_level(emerg, priv, type, dev, fmt, ##args)
4460 #define netif_alert(priv, type, dev, fmt, args...)              \
4461         netif_level(alert, priv, type, dev, fmt, ##args)
4462 #define netif_crit(priv, type, dev, fmt, args...)               \
4463         netif_level(crit, priv, type, dev, fmt, ##args)
4464 #define netif_err(priv, type, dev, fmt, args...)                \
4465         netif_level(err, priv, type, dev, fmt, ##args)
4466 #define netif_warn(priv, type, dev, fmt, args...)               \
4467         netif_level(warn, priv, type, dev, fmt, ##args)
4468 #define netif_notice(priv, type, dev, fmt, args...)             \
4469         netif_level(notice, priv, type, dev, fmt, ##args)
4470 #define netif_info(priv, type, dev, fmt, args...)               \
4471         netif_level(info, priv, type, dev, fmt, ##args)
4472
4473 #if defined(CONFIG_DYNAMIC_DEBUG)
4474 #define netif_dbg(priv, type, netdev, format, args...)          \
4475 do {                                                            \
4476         if (netif_msg_##type(priv))                             \
4477                 dynamic_netdev_dbg(netdev, format, ##args);     \
4478 } while (0)
4479 #elif defined(DEBUG)
4480 #define netif_dbg(priv, type, dev, format, args...)             \
4481         netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4482 #else
4483 #define netif_dbg(priv, type, dev, format, args...)                     \
4484 ({                                                                      \
4485         if (0)                                                          \
4486                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4487         0;                                                              \
4488 })
4489 #endif
4490
4491 /* if @cond then downgrade to debug, else print at @level */
4492 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4493         do {                                                              \
4494                 if (cond)                                                 \
4495                         netif_dbg(priv, type, netdev, fmt, ##args);       \
4496                 else                                                      \
4497                         netif_ ## level(priv, type, netdev, fmt, ##args); \
4498         } while (0)
4499
4500 #if defined(VERBOSE_DEBUG)
4501 #define netif_vdbg      netif_dbg
4502 #else
4503 #define netif_vdbg(priv, type, dev, format, args...)            \
4504 ({                                                              \
4505         if (0)                                                  \
4506                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4507         0;                                                      \
4508 })
4509 #endif
4510
4511 /*
4512  *      The list of packet types we will receive (as opposed to discard)
4513  *      and the routines to invoke.
4514  *
4515  *      Why 16. Because with 16 the only overlap we get on a hash of the
4516  *      low nibble of the protocol value is RARP/SNAP/X.25.
4517  *
4518  *              0800    IP
4519  *              0001    802.3
4520  *              0002    AX.25
4521  *              0004    802.2
4522  *              8035    RARP
4523  *              0005    SNAP
4524  *              0805    X.25
4525  *              0806    ARP
4526  *              8137    IPX
4527  *              0009    Localtalk
4528  *              86DD    IPv6
4529  */
4530 #define PTYPE_HASH_SIZE (16)
4531 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4532
4533 #endif  /* _LINUX_NETDEVICE_H */