1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
8 #include <linux/pgalloc_tag.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/compiler.h>
16 #include <linux/mm_types.h>
17 #include <linux/mmap_lock.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page-flags.h>
27 #include <linux/page_ref.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 #include <linux/sched.h>
31 #include <linux/pgtable.h>
32 #include <linux/kasan.h>
33 #include <linux/memremap.h>
34 #include <linux/slab.h>
35 #include <linux/cacheinfo.h>
36 #include <linux/rcuwait.h>
40 struct anon_vma_chain;
45 void arch_mm_preinit(void);
46 void mm_core_init(void);
47 void init_mm_internals(void);
49 extern atomic_long_t _totalram_pages;
50 static inline unsigned long totalram_pages(void)
52 return (unsigned long)atomic_long_read(&_totalram_pages);
55 static inline void totalram_pages_inc(void)
57 atomic_long_inc(&_totalram_pages);
60 static inline void totalram_pages_dec(void)
62 atomic_long_dec(&_totalram_pages);
65 static inline void totalram_pages_add(long count)
67 atomic_long_add(count, &_totalram_pages);
70 extern void * high_memory;
73 extern int sysctl_legacy_va_layout;
75 #define sysctl_legacy_va_layout 0
78 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
79 extern const int mmap_rnd_bits_min;
80 extern int mmap_rnd_bits_max __ro_after_init;
81 extern int mmap_rnd_bits __read_mostly;
83 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
84 extern const int mmap_rnd_compat_bits_min;
85 extern const int mmap_rnd_compat_bits_max;
86 extern int mmap_rnd_compat_bits __read_mostly;
89 #ifndef DIRECT_MAP_PHYSMEM_END
90 # ifdef MAX_PHYSMEM_BITS
91 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
93 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63))
98 #include <asm/processor.h>
101 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
105 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
109 #define lm_alias(x) __va(__pa_symbol(x))
113 * To prevent common memory management code establishing
114 * a zero page mapping on a read fault.
115 * This macro should be defined within <asm/pgtable.h>.
116 * s390 does this to prevent multiplexing of hardware bits
117 * related to the physical page in case of virtualization.
119 #ifndef mm_forbids_zeropage
120 #define mm_forbids_zeropage(X) (0)
124 * On some architectures it is expensive to call memset() for small sizes.
125 * If an architecture decides to implement their own version of
126 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
127 * define their own version of this macro in <asm/pgtable.h>
129 #if BITS_PER_LONG == 64
130 /* This function must be updated when the size of struct page grows above 96
131 * or reduces below 56. The idea that compiler optimizes out switch()
132 * statement, and only leaves move/store instructions. Also the compiler can
133 * combine write statements if they are both assignments and can be reordered,
134 * this can result in several of the writes here being dropped.
136 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
137 static inline void __mm_zero_struct_page(struct page *page)
139 unsigned long *_pp = (void *)page;
141 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
142 BUILD_BUG_ON(sizeof(struct page) & 7);
143 BUILD_BUG_ON(sizeof(struct page) < 56);
144 BUILD_BUG_ON(sizeof(struct page) > 96);
146 switch (sizeof(struct page)) {
173 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
177 * Default maximum number of active map areas, this limits the number of vmas
178 * per mm struct. Users can overwrite this number by sysctl but there is a
181 * When a program's coredump is generated as ELF format, a section is created
182 * per a vma. In ELF, the number of sections is represented in unsigned short.
183 * This means the number of sections should be smaller than 65535 at coredump.
184 * Because the kernel adds some informative sections to a image of program at
185 * generating coredump, we need some margin. The number of extra sections is
186 * 1-3 now and depends on arch. We use "5" as safe margin, here.
188 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
189 * not a hard limit any more. Although some userspace tools can be surprised by
192 #define MAPCOUNT_ELF_CORE_MARGIN (5)
193 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195 extern int sysctl_max_map_count;
197 extern unsigned long sysctl_user_reserve_kbytes;
198 extern unsigned long sysctl_admin_reserve_kbytes;
200 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
201 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
202 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
204 #define nth_page(page,n) ((page) + (n))
205 #define folio_page_idx(folio, p) ((p) - &(folio)->page)
208 /* to align the pointer to the (next) page boundary */
209 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
211 /* to align the pointer to the (prev) page boundary */
212 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
214 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
215 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
217 static inline struct folio *lru_to_folio(struct list_head *head)
219 return list_entry((head)->prev, struct folio, lru);
222 void setup_initial_init_mm(void *start_code, void *end_code,
223 void *end_data, void *brk);
226 * Linux kernel virtual memory manager primitives.
227 * The idea being to have a "virtual" mm in the same way
228 * we have a virtual fs - giving a cleaner interface to the
229 * mm details, and allowing different kinds of memory mappings
230 * (from shared memory to executable loading to arbitrary
234 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
235 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
236 void vm_area_free(struct vm_area_struct *);
239 extern struct rb_root nommu_region_tree;
240 extern struct rw_semaphore nommu_region_sem;
242 extern unsigned int kobjsize(const void *objp);
246 * vm_flags in vm_area_struct, see mm_types.h.
247 * When changing, update also include/trace/events/mmflags.h
249 #define VM_NONE 0x00000000
251 #define VM_READ 0x00000001 /* currently active flags */
252 #define VM_WRITE 0x00000002
253 #define VM_EXEC 0x00000004
254 #define VM_SHARED 0x00000008
256 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
257 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
258 #define VM_MAYWRITE 0x00000020
259 #define VM_MAYEXEC 0x00000040
260 #define VM_MAYSHARE 0x00000080
262 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
264 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
265 #else /* CONFIG_MMU */
266 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
267 #define VM_UFFD_MISSING 0
268 #endif /* CONFIG_MMU */
269 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
270 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
272 #define VM_LOCKED 0x00002000
273 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
275 /* Used by sys_madvise() */
276 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
277 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
279 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
280 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
281 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
282 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
283 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
284 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
285 #define VM_SYNC 0x00800000 /* Synchronous page faults */
286 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
287 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
288 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
290 #ifdef CONFIG_MEM_SOFT_DIRTY
291 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
293 # define VM_SOFTDIRTY 0
296 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
297 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
298 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
299 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
301 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
302 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
303 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
304 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
305 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
306 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
307 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
308 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */
309 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
310 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
311 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
312 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
313 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
314 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
315 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6)
316 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
318 #ifdef CONFIG_ARCH_HAS_PKEYS
319 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
320 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0
321 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
322 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
323 #if CONFIG_ARCH_PKEY_BITS > 3
324 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
326 # define VM_PKEY_BIT3 0
328 #if CONFIG_ARCH_PKEY_BITS > 4
329 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
331 # define VM_PKEY_BIT4 0
333 #endif /* CONFIG_ARCH_HAS_PKEYS */
335 #ifdef CONFIG_X86_USER_SHADOW_STACK
337 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
340 * These VMAs will get a single end guard page. This helps userspace protect
341 * itself from attacks. A single page is enough for current shadow stack archs
342 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
343 * for more details on the guard size.
345 # define VM_SHADOW_STACK VM_HIGH_ARCH_5
348 #if defined(CONFIG_ARM64_GCS)
350 * arm64's Guarded Control Stack implements similar functionality and
351 * has similar constraints to shadow stacks.
353 # define VM_SHADOW_STACK VM_HIGH_ARCH_6
356 #ifndef VM_SHADOW_STACK
357 # define VM_SHADOW_STACK VM_NONE
360 #if defined(CONFIG_PPC64)
361 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
362 #elif defined(CONFIG_PARISC)
363 # define VM_GROWSUP VM_ARCH_1
364 #elif defined(CONFIG_SPARC64)
365 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
366 # define VM_ARCH_CLEAR VM_SPARC_ADI
367 #elif defined(CONFIG_ARM64)
368 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
369 # define VM_ARCH_CLEAR VM_ARM64_BTI
370 #elif !defined(CONFIG_MMU)
371 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
374 #if defined(CONFIG_ARM64_MTE)
375 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */
376 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */
378 # define VM_MTE VM_NONE
379 # define VM_MTE_ALLOWED VM_NONE
383 # define VM_GROWSUP VM_NONE
386 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
387 # define VM_UFFD_MINOR_BIT 41
388 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
389 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
390 # define VM_UFFD_MINOR VM_NONE
391 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
394 * This flag is used to connect VFIO to arch specific KVM code. It
395 * indicates that the memory under this VMA is safe for use with any
396 * non-cachable memory type inside KVM. Some VFIO devices, on some
397 * platforms, are thought to be unsafe and can cause machine crashes
398 * if KVM does not lock down the memory type.
401 #define VM_ALLOW_ANY_UNCACHED_BIT 39
402 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
404 #define VM_ALLOW_ANY_UNCACHED VM_NONE
408 #define VM_DROPPABLE_BIT 40
409 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
410 #elif defined(CONFIG_PPC32)
411 #define VM_DROPPABLE VM_ARCH_1
413 #define VM_DROPPABLE VM_NONE
417 /* VM is sealed, in vm_flags */
418 #define VM_SEALED _BITUL(63)
421 /* Bits set in the VMA until the stack is in its final location */
422 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
424 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
426 /* Common data flag combinations */
427 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
428 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
429 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
430 VM_MAYWRITE | VM_MAYEXEC)
431 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
432 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
434 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
435 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
438 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
439 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
442 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
444 #ifdef CONFIG_STACK_GROWSUP
445 #define VM_STACK VM_GROWSUP
446 #define VM_STACK_EARLY VM_GROWSDOWN
448 #define VM_STACK VM_GROWSDOWN
449 #define VM_STACK_EARLY 0
452 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
454 /* VMA basic access permission flags */
455 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
459 * Special vmas that are non-mergable, non-mlock()able.
461 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
463 /* This mask prevents VMA from being scanned with khugepaged */
464 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
466 /* This mask defines which mm->def_flags a process can inherit its parent */
467 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
469 /* This mask represents all the VMA flag bits used by mlock */
470 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
472 /* Arch-specific flags to clear when updating VM flags on protection change */
473 #ifndef VM_ARCH_CLEAR
474 # define VM_ARCH_CLEAR VM_NONE
476 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
479 * mapping from the currently active vm_flags protection bits (the
480 * low four bits) to a page protection mask..
484 * The default fault flags that should be used by most of the
485 * arch-specific page fault handlers.
487 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
488 FAULT_FLAG_KILLABLE | \
489 FAULT_FLAG_INTERRUPTIBLE)
492 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
493 * @flags: Fault flags.
495 * This is mostly used for places where we want to try to avoid taking
496 * the mmap_lock for too long a time when waiting for another condition
497 * to change, in which case we can try to be polite to release the
498 * mmap_lock in the first round to avoid potential starvation of other
499 * processes that would also want the mmap_lock.
501 * Return: true if the page fault allows retry and this is the first
502 * attempt of the fault handling; false otherwise.
504 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
506 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
507 (!(flags & FAULT_FLAG_TRIED));
510 #define FAULT_FLAG_TRACE \
511 { FAULT_FLAG_WRITE, "WRITE" }, \
512 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
513 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
514 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
515 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
516 { FAULT_FLAG_TRIED, "TRIED" }, \
517 { FAULT_FLAG_USER, "USER" }, \
518 { FAULT_FLAG_REMOTE, "REMOTE" }, \
519 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
520 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
521 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
524 * vm_fault is filled by the pagefault handler and passed to the vma's
525 * ->fault function. The vma's ->fault is responsible for returning a bitmask
526 * of VM_FAULT_xxx flags that give details about how the fault was handled.
528 * MM layer fills up gfp_mask for page allocations but fault handler might
529 * alter it if its implementation requires a different allocation context.
531 * pgoff should be used in favour of virtual_address, if possible.
535 struct vm_area_struct *vma; /* Target VMA */
536 gfp_t gfp_mask; /* gfp mask to be used for allocations */
537 pgoff_t pgoff; /* Logical page offset based on vma */
538 unsigned long address; /* Faulting virtual address - masked */
539 unsigned long real_address; /* Faulting virtual address - unmasked */
541 enum fault_flag flags; /* FAULT_FLAG_xxx flags
542 * XXX: should really be 'const' */
543 pmd_t *pmd; /* Pointer to pmd entry matching
545 pud_t *pud; /* Pointer to pud entry matching
549 pte_t orig_pte; /* Value of PTE at the time of fault */
550 pmd_t orig_pmd; /* Value of PMD at the time of fault,
551 * used by PMD fault only.
555 struct page *cow_page; /* Page handler may use for COW fault */
556 struct page *page; /* ->fault handlers should return a
557 * page here, unless VM_FAULT_NOPAGE
558 * is set (which is also implied by
561 /* These three entries are valid only while holding ptl lock */
562 pte_t *pte; /* Pointer to pte entry matching
563 * the 'address'. NULL if the page
564 * table hasn't been allocated.
566 spinlock_t *ptl; /* Page table lock.
567 * Protects pte page table if 'pte'
568 * is not NULL, otherwise pmd.
570 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
571 * vm_ops->map_pages() sets up a page
572 * table from atomic context.
573 * do_fault_around() pre-allocates
574 * page table to avoid allocation from
580 * These are the virtual MM functions - opening of an area, closing and
581 * unmapping it (needed to keep files on disk up-to-date etc), pointer
582 * to the functions called when a no-page or a wp-page exception occurs.
584 struct vm_operations_struct {
585 void (*open)(struct vm_area_struct * area);
587 * @close: Called when the VMA is being removed from the MM.
588 * Context: User context. May sleep. Caller holds mmap_lock.
590 void (*close)(struct vm_area_struct * area);
591 /* Called any time before splitting to check if it's allowed */
592 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
593 int (*mremap)(struct vm_area_struct *area);
595 * Called by mprotect() to make driver-specific permission
596 * checks before mprotect() is finalised. The VMA must not
597 * be modified. Returns 0 if mprotect() can proceed.
599 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
600 unsigned long end, unsigned long newflags);
601 vm_fault_t (*fault)(struct vm_fault *vmf);
602 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
603 vm_fault_t (*map_pages)(struct vm_fault *vmf,
604 pgoff_t start_pgoff, pgoff_t end_pgoff);
605 unsigned long (*pagesize)(struct vm_area_struct * area);
607 /* notification that a previously read-only page is about to become
608 * writable, if an error is returned it will cause a SIGBUS */
609 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
611 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
612 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
614 /* called by access_process_vm when get_user_pages() fails, typically
615 * for use by special VMAs. See also generic_access_phys() for a generic
616 * implementation useful for any iomem mapping.
618 int (*access)(struct vm_area_struct *vma, unsigned long addr,
619 void *buf, int len, int write);
621 /* Called by the /proc/PID/maps code to ask the vma whether it
622 * has a special name. Returning non-NULL will also cause this
623 * vma to be dumped unconditionally. */
624 const char *(*name)(struct vm_area_struct *vma);
628 * set_policy() op must add a reference to any non-NULL @new mempolicy
629 * to hold the policy upon return. Caller should pass NULL @new to
630 * remove a policy and fall back to surrounding context--i.e. do not
631 * install a MPOL_DEFAULT policy, nor the task or system default
634 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
637 * get_policy() op must add reference [mpol_get()] to any policy at
638 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
639 * in mm/mempolicy.c will do this automatically.
640 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
641 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
642 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
643 * must return NULL--i.e., do not "fallback" to task or system default
646 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
647 unsigned long addr, pgoff_t *ilx);
650 * Called by vm_normal_page() for special PTEs to find the
651 * page for @addr. This is useful if the default behavior
652 * (using pte_page()) would not find the correct page.
654 struct page *(*find_special_page)(struct vm_area_struct *vma,
658 #ifdef CONFIG_NUMA_BALANCING
659 static inline void vma_numab_state_init(struct vm_area_struct *vma)
661 vma->numab_state = NULL;
663 static inline void vma_numab_state_free(struct vm_area_struct *vma)
665 kfree(vma->numab_state);
668 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
669 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
670 #endif /* CONFIG_NUMA_BALANCING */
673 * These must be here rather than mmap_lock.h as dependent on vm_fault type,
674 * declared in this header.
676 #ifdef CONFIG_PER_VMA_LOCK
677 static inline void release_fault_lock(struct vm_fault *vmf)
679 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
680 vma_end_read(vmf->vma);
682 mmap_read_unlock(vmf->vma->vm_mm);
685 static inline void assert_fault_locked(struct vm_fault *vmf)
687 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
688 vma_assert_locked(vmf->vma);
690 mmap_assert_locked(vmf->vma->vm_mm);
693 static inline void release_fault_lock(struct vm_fault *vmf)
695 mmap_read_unlock(vmf->vma->vm_mm);
698 static inline void assert_fault_locked(struct vm_fault *vmf)
700 mmap_assert_locked(vmf->vma->vm_mm);
702 #endif /* CONFIG_PER_VMA_LOCK */
704 extern const struct vm_operations_struct vma_dummy_vm_ops;
706 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
708 memset(vma, 0, sizeof(*vma));
710 vma->vm_ops = &vma_dummy_vm_ops;
711 INIT_LIST_HEAD(&vma->anon_vma_chain);
712 vma_lock_init(vma, false);
715 /* Use when VMA is not part of the VMA tree and needs no locking */
716 static inline void vm_flags_init(struct vm_area_struct *vma,
719 ACCESS_PRIVATE(vma, __vm_flags) = flags;
723 * Use when VMA is part of the VMA tree and modifications need coordination
724 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
725 * it should be locked explicitly beforehand.
727 static inline void vm_flags_reset(struct vm_area_struct *vma,
730 vma_assert_write_locked(vma);
731 vm_flags_init(vma, flags);
734 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
737 vma_assert_write_locked(vma);
738 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
741 static inline void vm_flags_set(struct vm_area_struct *vma,
744 vma_start_write(vma);
745 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
748 static inline void vm_flags_clear(struct vm_area_struct *vma,
751 vma_start_write(vma);
752 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
756 * Use only if VMA is not part of the VMA tree or has no other users and
757 * therefore needs no locking.
759 static inline void __vm_flags_mod(struct vm_area_struct *vma,
760 vm_flags_t set, vm_flags_t clear)
762 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
766 * Use only when the order of set/clear operations is unimportant, otherwise
767 * use vm_flags_{set|clear} explicitly.
769 static inline void vm_flags_mod(struct vm_area_struct *vma,
770 vm_flags_t set, vm_flags_t clear)
772 vma_start_write(vma);
773 __vm_flags_mod(vma, set, clear);
776 static inline void vma_set_anonymous(struct vm_area_struct *vma)
781 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
787 * Indicate if the VMA is a heap for the given task; for
788 * /proc/PID/maps that is the heap of the main task.
790 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
792 return vma->vm_start < vma->vm_mm->brk &&
793 vma->vm_end > vma->vm_mm->start_brk;
797 * Indicate if the VMA is a stack for the given task; for
798 * /proc/PID/maps that is the stack of the main task.
800 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
803 * We make no effort to guess what a given thread considers to be
804 * its "stack". It's not even well-defined for programs written
807 return vma->vm_start <= vma->vm_mm->start_stack &&
808 vma->vm_end >= vma->vm_mm->start_stack;
811 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
813 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
818 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
819 VM_STACK_INCOMPLETE_SETUP)
825 static inline bool vma_is_foreign(struct vm_area_struct *vma)
830 if (current->mm != vma->vm_mm)
836 static inline bool vma_is_accessible(struct vm_area_struct *vma)
838 return vma->vm_flags & VM_ACCESS_FLAGS;
841 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
843 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
844 (VM_SHARED | VM_MAYWRITE);
847 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
849 return is_shared_maywrite(vma->vm_flags);
853 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
855 return mas_find(&vmi->mas, max - 1);
858 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
861 * Uses mas_find() to get the first VMA when the iterator starts.
862 * Calling mas_next() could skip the first entry.
864 return mas_find(&vmi->mas, ULONG_MAX);
868 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
870 return mas_next_range(&vmi->mas, ULONG_MAX);
874 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
876 return mas_prev(&vmi->mas, 0);
879 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
880 unsigned long start, unsigned long end, gfp_t gfp)
882 __mas_set_range(&vmi->mas, start, end - 1);
883 mas_store_gfp(&vmi->mas, NULL, gfp);
884 if (unlikely(mas_is_err(&vmi->mas)))
890 /* Free any unused preallocations */
891 static inline void vma_iter_free(struct vma_iterator *vmi)
893 mas_destroy(&vmi->mas);
896 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
897 struct vm_area_struct *vma)
899 vmi->mas.index = vma->vm_start;
900 vmi->mas.last = vma->vm_end - 1;
901 mas_store(&vmi->mas, vma);
902 if (unlikely(mas_is_err(&vmi->mas)))
905 vma_mark_attached(vma);
909 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
911 mas_pause(&vmi->mas);
914 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
916 mas_set(&vmi->mas, addr);
919 #define for_each_vma(__vmi, __vma) \
920 while (((__vma) = vma_next(&(__vmi))) != NULL)
922 /* The MM code likes to work with exclusive end addresses */
923 #define for_each_vma_range(__vmi, __vma, __end) \
924 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
928 * The vma_is_shmem is not inline because it is used only by slow
929 * paths in userfault.
931 bool vma_is_shmem(struct vm_area_struct *vma);
932 bool vma_is_anon_shmem(struct vm_area_struct *vma);
934 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
935 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
938 int vma_is_stack_for_current(struct vm_area_struct *vma);
940 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
941 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
946 extern void prep_compound_page(struct page *page, unsigned int order);
948 static inline unsigned int folio_large_order(const struct folio *folio)
950 return folio->_flags_1 & 0xff;
953 #ifdef NR_PAGES_IN_LARGE_FOLIO
954 static inline long folio_large_nr_pages(const struct folio *folio)
956 return folio->_nr_pages;
959 static inline long folio_large_nr_pages(const struct folio *folio)
961 return 1L << folio_large_order(folio);
966 * compound_order() can be called without holding a reference, which means
967 * that niceties like page_folio() don't work. These callers should be
968 * prepared to handle wild return values. For example, PG_head may be
969 * set before the order is initialised, or this may be a tail page.
970 * See compaction.c for some good examples.
972 static inline unsigned int compound_order(struct page *page)
974 struct folio *folio = (struct folio *)page;
976 if (!test_bit(PG_head, &folio->flags))
978 return folio_large_order(folio);
982 * folio_order - The allocation order of a folio.
985 * A folio is composed of 2^order pages. See get_order() for the definition
988 * Return: The order of the folio.
990 static inline unsigned int folio_order(const struct folio *folio)
992 if (!folio_test_large(folio))
994 return folio_large_order(folio);
998 * folio_reset_order - Reset the folio order and derived _nr_pages
1001 * Reset the order and derived _nr_pages to 0. Must only be used in the
1002 * process of splitting large folios.
1004 static inline void folio_reset_order(struct folio *folio)
1006 if (WARN_ON_ONCE(!folio_test_large(folio)))
1008 folio->_flags_1 &= ~0xffUL;
1009 #ifdef NR_PAGES_IN_LARGE_FOLIO
1010 folio->_nr_pages = 0;
1014 #include <linux/huge_mm.h>
1017 * Methods to modify the page usage count.
1019 * What counts for a page usage:
1020 * - cache mapping (page->mapping)
1021 * - private data (page->private)
1022 * - page mapped in a task's page tables, each mapping
1023 * is counted separately
1025 * Also, many kernel routines increase the page count before a critical
1026 * routine so they can be sure the page doesn't go away from under them.
1030 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1032 static inline int put_page_testzero(struct page *page)
1034 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1035 return page_ref_dec_and_test(page);
1038 static inline int folio_put_testzero(struct folio *folio)
1040 return put_page_testzero(&folio->page);
1044 * Try to grab a ref unless the page has a refcount of zero, return false if
1046 * This can be called when MMU is off so it must not access
1047 * any of the virtual mappings.
1049 static inline bool get_page_unless_zero(struct page *page)
1051 return page_ref_add_unless(page, 1, 0);
1054 static inline struct folio *folio_get_nontail_page(struct page *page)
1056 if (unlikely(!get_page_unless_zero(page)))
1058 return (struct folio *)page;
1061 extern int page_is_ram(unsigned long pfn);
1069 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1070 unsigned long desc);
1072 /* Support for virtually mapped pages */
1073 struct page *vmalloc_to_page(const void *addr);
1074 unsigned long vmalloc_to_pfn(const void *addr);
1077 * Determine if an address is within the vmalloc range
1079 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1080 * is no special casing required.
1083 extern bool is_vmalloc_addr(const void *x);
1084 extern int is_vmalloc_or_module_addr(const void *x);
1086 static inline bool is_vmalloc_addr(const void *x)
1090 static inline int is_vmalloc_or_module_addr(const void *x)
1097 * How many times the entire folio is mapped as a single unit (eg by a
1098 * PMD or PUD entry). This is probably not what you want, except for
1099 * debugging purposes or implementation of other core folio_*() primitives.
1101 static inline int folio_entire_mapcount(const struct folio *folio)
1103 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1104 if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1))
1106 return atomic_read(&folio->_entire_mapcount) + 1;
1109 static inline int folio_large_mapcount(const struct folio *folio)
1111 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1112 return atomic_read(&folio->_large_mapcount) + 1;
1116 * folio_mapcount() - Number of mappings of this folio.
1117 * @folio: The folio.
1119 * The folio mapcount corresponds to the number of present user page table
1120 * entries that reference any part of a folio. Each such present user page
1121 * table entry must be paired with exactly on folio reference.
1123 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1126 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1127 * references the entire folio counts exactly once, even when such special
1128 * page table entries are comprised of multiple ordinary page table entries.
1130 * Will report 0 for pages which cannot be mapped into userspace, such as
1131 * slab, page tables and similar.
1133 * Return: The number of times this folio is mapped.
1135 static inline int folio_mapcount(const struct folio *folio)
1139 if (likely(!folio_test_large(folio))) {
1140 mapcount = atomic_read(&folio->_mapcount) + 1;
1141 if (page_mapcount_is_type(mapcount))
1145 return folio_large_mapcount(folio);
1149 * folio_mapped - Is this folio mapped into userspace?
1150 * @folio: The folio.
1152 * Return: True if any page in this folio is referenced by user page tables.
1154 static inline bool folio_mapped(const struct folio *folio)
1156 return folio_mapcount(folio) >= 1;
1160 * Return true if this page is mapped into pagetables.
1161 * For compound page it returns true if any sub-page of compound page is mapped,
1162 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1164 static inline bool page_mapped(const struct page *page)
1166 return folio_mapped(page_folio(page));
1169 static inline struct page *virt_to_head_page(const void *x)
1171 struct page *page = virt_to_page(x);
1173 return compound_head(page);
1176 static inline struct folio *virt_to_folio(const void *x)
1178 struct page *page = virt_to_page(x);
1180 return page_folio(page);
1183 void __folio_put(struct folio *folio);
1185 void split_page(struct page *page, unsigned int order);
1186 void folio_copy(struct folio *dst, struct folio *src);
1187 int folio_mc_copy(struct folio *dst, struct folio *src);
1189 unsigned long nr_free_buffer_pages(void);
1191 /* Returns the number of bytes in this potentially compound page. */
1192 static inline unsigned long page_size(struct page *page)
1194 return PAGE_SIZE << compound_order(page);
1197 /* Returns the number of bits needed for the number of bytes in a page */
1198 static inline unsigned int page_shift(struct page *page)
1200 return PAGE_SHIFT + compound_order(page);
1204 * thp_order - Order of a transparent huge page.
1205 * @page: Head page of a transparent huge page.
1207 static inline unsigned int thp_order(struct page *page)
1209 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1210 return compound_order(page);
1214 * thp_size - Size of a transparent huge page.
1215 * @page: Head page of a transparent huge page.
1217 * Return: Number of bytes in this page.
1219 static inline unsigned long thp_size(struct page *page)
1221 return PAGE_SIZE << thp_order(page);
1226 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1227 * servicing faults for write access. In the normal case, do always want
1228 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1229 * that do not have writing enabled, when used by access_process_vm.
1231 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1233 if (likely(vma->vm_flags & VM_WRITE))
1234 pte = pte_mkwrite(pte, vma);
1238 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page);
1239 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1240 struct page *page, unsigned int nr, unsigned long addr);
1242 vm_fault_t finish_fault(struct vm_fault *vmf);
1246 * Multiple processes may "see" the same page. E.g. for untouched
1247 * mappings of /dev/null, all processes see the same page full of
1248 * zeroes, and text pages of executables and shared libraries have
1249 * only one copy in memory, at most, normally.
1251 * For the non-reserved pages, page_count(page) denotes a reference count.
1252 * page_count() == 0 means the page is free. page->lru is then used for
1253 * freelist management in the buddy allocator.
1254 * page_count() > 0 means the page has been allocated.
1256 * Pages are allocated by the slab allocator in order to provide memory
1257 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1258 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1259 * unless a particular usage is carefully commented. (the responsibility of
1260 * freeing the kmalloc memory is the caller's, of course).
1262 * A page may be used by anyone else who does a __get_free_page().
1263 * In this case, page_count still tracks the references, and should only
1264 * be used through the normal accessor functions. The top bits of page->flags
1265 * and page->virtual store page management information, but all other fields
1266 * are unused and could be used privately, carefully. The management of this
1267 * page is the responsibility of the one who allocated it, and those who have
1268 * subsequently been given references to it.
1270 * The other pages (we may call them "pagecache pages") are completely
1271 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1272 * The following discussion applies only to them.
1274 * A pagecache page contains an opaque `private' member, which belongs to the
1275 * page's address_space. Usually, this is the address of a circular list of
1276 * the page's disk buffers. PG_private must be set to tell the VM to call
1277 * into the filesystem to release these pages.
1279 * A folio may belong to an inode's memory mapping. In this case,
1280 * folio->mapping points to the inode, and folio->index is the file
1281 * offset of the folio, in units of PAGE_SIZE.
1283 * If pagecache pages are not associated with an inode, they are said to be
1284 * anonymous pages. These may become associated with the swapcache, and in that
1285 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1287 * In either case (swapcache or inode backed), the pagecache itself holds one
1288 * reference to the page. Setting PG_private should also increment the
1289 * refcount. The each user mapping also has a reference to the page.
1291 * The pagecache pages are stored in a per-mapping radix tree, which is
1292 * rooted at mapping->i_pages, and indexed by offset.
1293 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1294 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1296 * All pagecache pages may be subject to I/O:
1297 * - inode pages may need to be read from disk,
1298 * - inode pages which have been modified and are MAP_SHARED may need
1299 * to be written back to the inode on disk,
1300 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1301 * modified may need to be swapped out to swap space and (later) to be read
1305 /* 127: arbitrary random number, small enough to assemble well */
1306 #define folio_ref_zero_or_close_to_overflow(folio) \
1307 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1310 * folio_get - Increment the reference count on a folio.
1311 * @folio: The folio.
1313 * Context: May be called in any context, as long as you know that
1314 * you have a refcount on the folio. If you do not already have one,
1315 * folio_try_get() may be the right interface for you to use.
1317 static inline void folio_get(struct folio *folio)
1319 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1320 folio_ref_inc(folio);
1323 static inline void get_page(struct page *page)
1325 struct folio *folio = page_folio(page);
1326 if (WARN_ON_ONCE(folio_test_slab(folio)))
1331 static inline __must_check bool try_get_page(struct page *page)
1333 page = compound_head(page);
1334 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1341 * folio_put - Decrement the reference count on a folio.
1342 * @folio: The folio.
1344 * If the folio's reference count reaches zero, the memory will be
1345 * released back to the page allocator and may be used by another
1346 * allocation immediately. Do not access the memory or the struct folio
1347 * after calling folio_put() unless you can be sure that it wasn't the
1350 * Context: May be called in process or interrupt context, but not in NMI
1351 * context. May be called while holding a spinlock.
1353 static inline void folio_put(struct folio *folio)
1355 if (folio_put_testzero(folio))
1360 * folio_put_refs - Reduce the reference count on a folio.
1361 * @folio: The folio.
1362 * @refs: The amount to subtract from the folio's reference count.
1364 * If the folio's reference count reaches zero, the memory will be
1365 * released back to the page allocator and may be used by another
1366 * allocation immediately. Do not access the memory or the struct folio
1367 * after calling folio_put_refs() unless you can be sure that these weren't
1368 * the last references.
1370 * Context: May be called in process or interrupt context, but not in NMI
1371 * context. May be called while holding a spinlock.
1373 static inline void folio_put_refs(struct folio *folio, int refs)
1375 if (folio_ref_sub_and_test(folio, refs))
1379 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1382 * union release_pages_arg - an array of pages or folios
1384 * release_pages() releases a simple array of multiple pages, and
1385 * accepts various different forms of said page array: either
1386 * a regular old boring array of pages, an array of folios, or
1387 * an array of encoded page pointers.
1389 * The transparent union syntax for this kind of "any of these
1390 * argument types" is all kinds of ugly, so look away.
1393 struct page **pages;
1394 struct folio **folios;
1395 struct encoded_page **encoded_pages;
1396 } release_pages_arg __attribute__ ((__transparent_union__));
1398 void release_pages(release_pages_arg, int nr);
1401 * folios_put - Decrement the reference count on an array of folios.
1402 * @folios: The folios.
1404 * Like folio_put(), but for a batch of folios. This is more efficient
1405 * than writing the loop yourself as it will optimise the locks which need
1406 * to be taken if the folios are freed. The folios batch is returned
1407 * empty and ready to be reused for another batch; there is no need to
1410 * Context: May be called in process or interrupt context, but not in NMI
1411 * context. May be called while holding a spinlock.
1413 static inline void folios_put(struct folio_batch *folios)
1415 folios_put_refs(folios, NULL);
1418 static inline void put_page(struct page *page)
1420 struct folio *folio = page_folio(page);
1422 if (folio_test_slab(folio))
1429 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1430 * the page's refcount so that two separate items are tracked: the original page
1431 * reference count, and also a new count of how many pin_user_pages() calls were
1432 * made against the page. ("gup-pinned" is another term for the latter).
1434 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1435 * distinct from normal pages. As such, the unpin_user_page() call (and its
1436 * variants) must be used in order to release gup-pinned pages.
1440 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1441 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1442 * simpler, due to the fact that adding an even power of two to the page
1443 * refcount has the effect of using only the upper N bits, for the code that
1444 * counts up using the bias value. This means that the lower bits are left for
1445 * the exclusive use of the original code that increments and decrements by one
1446 * (or at least, by much smaller values than the bias value).
1448 * Of course, once the lower bits overflow into the upper bits (and this is
1449 * OK, because subtraction recovers the original values), then visual inspection
1450 * no longer suffices to directly view the separate counts. However, for normal
1451 * applications that don't have huge page reference counts, this won't be an
1454 * Locking: the lockless algorithm described in folio_try_get_rcu()
1455 * provides safe operation for get_user_pages(), folio_mkclean() and
1456 * other calls that race to set up page table entries.
1458 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1460 void unpin_user_page(struct page *page);
1461 void unpin_folio(struct folio *folio);
1462 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1464 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1466 void unpin_user_pages(struct page **pages, unsigned long npages);
1467 void unpin_user_folio(struct folio *folio, unsigned long npages);
1468 void unpin_folios(struct folio **folios, unsigned long nfolios);
1470 static inline bool is_cow_mapping(vm_flags_t flags)
1472 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1476 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1479 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1480 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1481 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1482 * underlying memory if ptrace is active, so this is only possible if
1483 * ptrace does not apply. Note that there is no mprotect() to upgrade
1484 * write permissions later.
1486 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1490 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1491 #define SECTION_IN_PAGE_FLAGS
1495 * The identification function is mainly used by the buddy allocator for
1496 * determining if two pages could be buddies. We are not really identifying
1497 * the zone since we could be using the section number id if we do not have
1498 * node id available in page flags.
1499 * We only guarantee that it will return the same value for two combinable
1502 static inline int page_zone_id(struct page *page)
1504 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1507 #ifdef NODE_NOT_IN_PAGE_FLAGS
1508 int page_to_nid(const struct page *page);
1510 static inline int page_to_nid(const struct page *page)
1512 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1516 static inline int folio_nid(const struct folio *folio)
1518 return page_to_nid(&folio->page);
1521 #ifdef CONFIG_NUMA_BALANCING
1522 /* page access time bits needs to hold at least 4 seconds */
1523 #define PAGE_ACCESS_TIME_MIN_BITS 12
1524 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1525 #define PAGE_ACCESS_TIME_BUCKETS \
1526 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1528 #define PAGE_ACCESS_TIME_BUCKETS 0
1531 #define PAGE_ACCESS_TIME_MASK \
1532 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1534 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1536 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1539 static inline int cpupid_to_pid(int cpupid)
1541 return cpupid & LAST__PID_MASK;
1544 static inline int cpupid_to_cpu(int cpupid)
1546 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1549 static inline int cpupid_to_nid(int cpupid)
1551 return cpu_to_node(cpupid_to_cpu(cpupid));
1554 static inline bool cpupid_pid_unset(int cpupid)
1556 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1559 static inline bool cpupid_cpu_unset(int cpupid)
1561 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1564 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1566 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1569 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1570 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1571 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1573 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1576 static inline int folio_last_cpupid(struct folio *folio)
1578 return folio->_last_cpupid;
1580 static inline void page_cpupid_reset_last(struct page *page)
1582 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1585 static inline int folio_last_cpupid(struct folio *folio)
1587 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1590 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1592 static inline void page_cpupid_reset_last(struct page *page)
1594 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1596 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1598 static inline int folio_xchg_access_time(struct folio *folio, int time)
1602 last_time = folio_xchg_last_cpupid(folio,
1603 time >> PAGE_ACCESS_TIME_BUCKETS);
1604 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1607 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1609 unsigned int pid_bit;
1611 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1612 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1613 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1617 bool folio_use_access_time(struct folio *folio);
1618 #else /* !CONFIG_NUMA_BALANCING */
1619 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1621 return folio_nid(folio); /* XXX */
1624 static inline int folio_xchg_access_time(struct folio *folio, int time)
1629 static inline int folio_last_cpupid(struct folio *folio)
1631 return folio_nid(folio); /* XXX */
1634 static inline int cpupid_to_nid(int cpupid)
1639 static inline int cpupid_to_pid(int cpupid)
1644 static inline int cpupid_to_cpu(int cpupid)
1649 static inline int cpu_pid_to_cpupid(int nid, int pid)
1654 static inline bool cpupid_pid_unset(int cpupid)
1659 static inline void page_cpupid_reset_last(struct page *page)
1663 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1668 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1671 static inline bool folio_use_access_time(struct folio *folio)
1675 #endif /* CONFIG_NUMA_BALANCING */
1677 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1680 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1681 * setting tags for all pages to native kernel tag value 0xff, as the default
1682 * value 0x00 maps to 0xff.
1685 static inline u8 page_kasan_tag(const struct page *page)
1687 u8 tag = KASAN_TAG_KERNEL;
1689 if (kasan_enabled()) {
1690 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1697 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1699 unsigned long old_flags, flags;
1701 if (!kasan_enabled())
1705 old_flags = READ_ONCE(page->flags);
1708 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1709 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1710 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1713 static inline void page_kasan_tag_reset(struct page *page)
1715 if (kasan_enabled())
1716 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1719 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1721 static inline u8 page_kasan_tag(const struct page *page)
1726 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1727 static inline void page_kasan_tag_reset(struct page *page) { }
1729 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1731 static inline struct zone *page_zone(const struct page *page)
1733 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1736 static inline pg_data_t *page_pgdat(const struct page *page)
1738 return NODE_DATA(page_to_nid(page));
1741 static inline struct zone *folio_zone(const struct folio *folio)
1743 return page_zone(&folio->page);
1746 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1748 return page_pgdat(&folio->page);
1751 #ifdef SECTION_IN_PAGE_FLAGS
1752 static inline void set_page_section(struct page *page, unsigned long section)
1754 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1755 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1758 static inline unsigned long page_to_section(const struct page *page)
1760 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1765 * folio_pfn - Return the Page Frame Number of a folio.
1766 * @folio: The folio.
1768 * A folio may contain multiple pages. The pages have consecutive
1769 * Page Frame Numbers.
1771 * Return: The Page Frame Number of the first page in the folio.
1773 static inline unsigned long folio_pfn(const struct folio *folio)
1775 return page_to_pfn(&folio->page);
1778 static inline struct folio *pfn_folio(unsigned long pfn)
1780 return page_folio(pfn_to_page(pfn));
1784 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1786 return pfn_pte(page_to_pfn(page), pgprot);
1790 * folio_mk_pte - Create a PTE for this folio
1791 * @folio: The folio to create a PTE for
1792 * @pgprot: The page protection bits to use
1794 * Create a page table entry for the first page of this folio.
1795 * This is suitable for passing to set_ptes().
1797 * Return: A page table entry suitable for mapping this folio.
1799 static inline pte_t folio_mk_pte(struct folio *folio, pgprot_t pgprot)
1801 return pfn_pte(folio_pfn(folio), pgprot);
1804 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1806 * folio_mk_pmd - Create a PMD for this folio
1807 * @folio: The folio to create a PMD for
1808 * @pgprot: The page protection bits to use
1810 * Create a page table entry for the first page of this folio.
1811 * This is suitable for passing to set_pmd_at().
1813 * Return: A page table entry suitable for mapping this folio.
1815 static inline pmd_t folio_mk_pmd(struct folio *folio, pgprot_t pgprot)
1817 return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot));
1820 #endif /* CONFIG_MMU */
1822 static inline bool folio_has_pincount(const struct folio *folio)
1824 if (IS_ENABLED(CONFIG_64BIT))
1825 return folio_test_large(folio);
1826 return folio_order(folio) > 1;
1830 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1831 * @folio: The folio.
1833 * This function checks if a folio has been pinned via a call to
1834 * a function in the pin_user_pages() family.
1836 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1837 * because it means "definitely not pinned for DMA", but true means "probably
1838 * pinned for DMA, but possibly a false positive due to having at least
1839 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1841 * False positives are OK, because: a) it's unlikely for a folio to
1842 * get that many refcounts, and b) all the callers of this routine are
1843 * expected to be able to deal gracefully with a false positive.
1845 * For most large folios, the result will be exactly correct. That's because
1846 * we have more tracking data available: the _pincount field is used
1847 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1849 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1851 * Return: True, if it is likely that the folio has been "dma-pinned".
1852 * False, if the folio is definitely not dma-pinned.
1854 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1856 if (folio_has_pincount(folio))
1857 return atomic_read(&folio->_pincount) > 0;
1860 * folio_ref_count() is signed. If that refcount overflows, then
1861 * folio_ref_count() returns a negative value, and callers will avoid
1862 * further incrementing the refcount.
1864 * Here, for that overflow case, use the sign bit to count a little
1865 * bit higher via unsigned math, and thus still get an accurate result.
1867 return ((unsigned int)folio_ref_count(folio)) >=
1868 GUP_PIN_COUNTING_BIAS;
1872 * This should most likely only be called during fork() to see whether we
1873 * should break the cow immediately for an anon page on the src mm.
1875 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1877 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1878 struct folio *folio)
1880 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1882 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1885 return folio_maybe_dma_pinned(folio);
1889 * is_zero_page - Query if a page is a zero page
1890 * @page: The page to query
1892 * This returns true if @page is one of the permanent zero pages.
1894 static inline bool is_zero_page(const struct page *page)
1896 return is_zero_pfn(page_to_pfn(page));
1900 * is_zero_folio - Query if a folio is a zero page
1901 * @folio: The folio to query
1903 * This returns true if @folio is one of the permanent zero pages.
1905 static inline bool is_zero_folio(const struct folio *folio)
1907 return is_zero_page(&folio->page);
1910 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1911 #ifdef CONFIG_MIGRATION
1912 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1915 int mt = folio_migratetype(folio);
1917 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1920 /* The zero page can be "pinned" but gets special handling. */
1921 if (is_zero_folio(folio))
1924 /* Coherent device memory must always allow eviction. */
1925 if (folio_is_device_coherent(folio))
1929 * Filesystems can only tolerate transient delays to truncate and
1930 * hole-punch operations
1932 if (folio_is_fsdax(folio))
1935 /* Otherwise, non-movable zone folios can be pinned. */
1936 return !folio_is_zone_movable(folio);
1940 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1946 static inline void set_page_zone(struct page *page, enum zone_type zone)
1948 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1949 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1952 static inline void set_page_node(struct page *page, unsigned long node)
1954 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1955 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1958 static inline void set_page_links(struct page *page, enum zone_type zone,
1959 unsigned long node, unsigned long pfn)
1961 set_page_zone(page, zone);
1962 set_page_node(page, node);
1963 #ifdef SECTION_IN_PAGE_FLAGS
1964 set_page_section(page, pfn_to_section_nr(pfn));
1969 * folio_nr_pages - The number of pages in the folio.
1970 * @folio: The folio.
1972 * Return: A positive power of two.
1974 static inline long folio_nr_pages(const struct folio *folio)
1976 if (!folio_test_large(folio))
1978 return folio_large_nr_pages(folio);
1981 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
1982 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1983 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
1985 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
1989 * compound_nr() returns the number of pages in this potentially compound
1990 * page. compound_nr() can be called on a tail page, and is defined to
1991 * return 1 in that case.
1993 static inline long compound_nr(struct page *page)
1995 struct folio *folio = (struct folio *)page;
1997 if (!test_bit(PG_head, &folio->flags))
1999 return folio_large_nr_pages(folio);
2003 * folio_next - Move to the next physical folio.
2004 * @folio: The folio we're currently operating on.
2006 * If you have physically contiguous memory which may span more than
2007 * one folio (eg a &struct bio_vec), use this function to move from one
2008 * folio to the next. Do not use it if the memory is only virtually
2009 * contiguous as the folios are almost certainly not adjacent to each
2010 * other. This is the folio equivalent to writing ``page++``.
2012 * Context: We assume that the folios are refcounted and/or locked at a
2013 * higher level and do not adjust the reference counts.
2014 * Return: The next struct folio.
2016 static inline struct folio *folio_next(struct folio *folio)
2018 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2022 * folio_shift - The size of the memory described by this folio.
2023 * @folio: The folio.
2025 * A folio represents a number of bytes which is a power-of-two in size.
2026 * This function tells you which power-of-two the folio is. See also
2027 * folio_size() and folio_order().
2029 * Context: The caller should have a reference on the folio to prevent
2030 * it from being split. It is not necessary for the folio to be locked.
2031 * Return: The base-2 logarithm of the size of this folio.
2033 static inline unsigned int folio_shift(const struct folio *folio)
2035 return PAGE_SHIFT + folio_order(folio);
2039 * folio_size - The number of bytes in a folio.
2040 * @folio: The folio.
2042 * Context: The caller should have a reference on the folio to prevent
2043 * it from being split. It is not necessary for the folio to be locked.
2044 * Return: The number of bytes in this folio.
2046 static inline size_t folio_size(const struct folio *folio)
2048 return PAGE_SIZE << folio_order(folio);
2052 * folio_maybe_mapped_shared - Whether the folio is mapped into the page
2053 * tables of more than one MM
2054 * @folio: The folio.
2056 * This function checks if the folio maybe currently mapped into more than one
2057 * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single
2058 * MM ("mapped exclusively").
2060 * For KSM folios, this function also returns "mapped shared" when a folio is
2061 * mapped multiple times into the same MM, because the individual page mappings
2064 * For small anonymous folios and anonymous hugetlb folios, the return
2065 * value will be exactly correct: non-KSM folios can only be mapped at most once
2066 * into an MM, and they cannot be partially mapped. KSM folios are
2067 * considered shared even if mapped multiple times into the same MM.
2069 * For other folios, the result can be fuzzy:
2070 * #. For partially-mappable large folios (THP), the return value can wrongly
2071 * indicate "mapped shared" (false positive) if a folio was mapped by
2072 * more than two MMs at one point in time.
2073 * #. For pagecache folios (including hugetlb), the return value can wrongly
2074 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2075 * cover the same file range.
2077 * Further, this function only considers current page table mappings that
2078 * are tracked using the folio mapcount(s).
2080 * This function does not consider:
2081 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2082 * pagecache, temporary unmapping for migration).
2083 * #. If the folio is mapped differently (VM_PFNMAP).
2084 * #. If hugetlb page table sharing applies. Callers might want to check
2085 * hugetlb_pmd_shared().
2087 * Return: Whether the folio is estimated to be mapped into more than one MM.
2089 static inline bool folio_maybe_mapped_shared(struct folio *folio)
2091 int mapcount = folio_mapcount(folio);
2093 /* Only partially-mappable folios require more care. */
2094 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2095 return mapcount > 1;
2098 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ...
2099 * simply assume "mapped shared", nobody should really care
2100 * about this for arbitrary kernel allocations.
2102 if (!IS_ENABLED(CONFIG_MM_ID))
2106 * A single mapping implies "mapped exclusively", even if the
2107 * folio flag says something different: it's easier to handle this
2108 * case here instead of on the RMAP hot path.
2112 return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids);
2116 * folio_expected_ref_count - calculate the expected folio refcount
2119 * Calculate the expected folio refcount, taking references from the pagecache,
2120 * swapcache, PG_private and page table mappings into account. Useful in
2121 * combination with folio_ref_count() to detect unexpected references (e.g.,
2122 * GUP or other temporary references).
2124 * Does currently not consider references from the LRU cache. If the folio
2125 * was isolated from the LRU (which is the case during migration or split),
2126 * the LRU cache does not apply.
2128 * Calling this function on an unmapped folio -- !folio_mapped() -- that is
2129 * locked will return a stable result.
2131 * Calling this function on a mapped folio will not result in a stable result,
2132 * because nothing stops additional page table mappings from coming (e.g.,
2133 * fork()) or going (e.g., munmap()).
2135 * Calling this function without the folio lock will also not result in a
2136 * stable result: for example, the folio might get dropped from the swapcache
2139 * However, even when called without the folio lock or on a mapped folio,
2140 * this function can be used to detect unexpected references early (for example,
2141 * if it makes sense to even lock the folio and unmap it).
2143 * The caller must add any reference (e.g., from folio_try_get()) it might be
2144 * holding itself to the result.
2146 * Returns the expected folio refcount.
2148 static inline int folio_expected_ref_count(const struct folio *folio)
2150 const int order = folio_order(folio);
2153 if (WARN_ON_ONCE(folio_test_slab(folio)))
2156 if (folio_test_anon(folio)) {
2157 /* One reference per page from the swapcache. */
2158 ref_count += folio_test_swapcache(folio) << order;
2159 } else if (!((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS)) {
2160 /* One reference per page from the pagecache. */
2161 ref_count += !!folio->mapping << order;
2162 /* One reference from PG_private. */
2163 ref_count += folio_test_private(folio);
2166 /* One reference per page table mapping. */
2167 return ref_count + folio_mapcount(folio);
2170 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2171 static inline int arch_make_folio_accessible(struct folio *folio)
2178 * Some inline functions in vmstat.h depend on page_zone()
2180 #include <linux/vmstat.h>
2182 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2183 #define HASHED_PAGE_VIRTUAL
2186 #if defined(WANT_PAGE_VIRTUAL)
2187 static inline void *page_address(const struct page *page)
2189 return page->virtual;
2191 static inline void set_page_address(struct page *page, void *address)
2193 page->virtual = address;
2195 #define page_address_init() do { } while(0)
2198 #if defined(HASHED_PAGE_VIRTUAL)
2199 void *page_address(const struct page *page);
2200 void set_page_address(struct page *page, void *virtual);
2201 void page_address_init(void);
2204 static __always_inline void *lowmem_page_address(const struct page *page)
2206 return page_to_virt(page);
2209 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2210 #define page_address(page) lowmem_page_address(page)
2211 #define set_page_address(page, address) do { } while(0)
2212 #define page_address_init() do { } while(0)
2215 static inline void *folio_address(const struct folio *folio)
2217 return page_address(&folio->page);
2221 * Return true only if the page has been allocated with
2222 * ALLOC_NO_WATERMARKS and the low watermark was not
2223 * met implying that the system is under some pressure.
2225 static inline bool page_is_pfmemalloc(const struct page *page)
2228 * lru.next has bit 1 set if the page is allocated from the
2229 * pfmemalloc reserves. Callers may simply overwrite it if
2230 * they do not need to preserve that information.
2232 return (uintptr_t)page->lru.next & BIT(1);
2236 * Return true only if the folio has been allocated with
2237 * ALLOC_NO_WATERMARKS and the low watermark was not
2238 * met implying that the system is under some pressure.
2240 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2243 * lru.next has bit 1 set if the page is allocated from the
2244 * pfmemalloc reserves. Callers may simply overwrite it if
2245 * they do not need to preserve that information.
2247 return (uintptr_t)folio->lru.next & BIT(1);
2251 * Only to be called by the page allocator on a freshly allocated
2254 static inline void set_page_pfmemalloc(struct page *page)
2256 page->lru.next = (void *)BIT(1);
2259 static inline void clear_page_pfmemalloc(struct page *page)
2261 page->lru.next = NULL;
2265 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2267 extern void pagefault_out_of_memory(void);
2269 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2270 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2273 * Parameter block passed down to zap_pte_range in exceptional cases.
2275 struct zap_details {
2276 struct folio *single_folio; /* Locked folio to be unmapped */
2277 bool even_cows; /* Zap COWed private pages too? */
2278 bool reclaim_pt; /* Need reclaim page tables? */
2279 zap_flags_t zap_flags; /* Extra flags for zapping */
2283 * Whether to drop the pte markers, for example, the uffd-wp information for
2284 * file-backed memory. This should only be specified when we will completely
2285 * drop the page in the mm, either by truncation or unmapping of the vma. By
2286 * default, the flag is not set.
2288 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2289 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2290 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2292 #ifdef CONFIG_SCHED_MM_CID
2293 void sched_mm_cid_before_execve(struct task_struct *t);
2294 void sched_mm_cid_after_execve(struct task_struct *t);
2295 void sched_mm_cid_fork(struct task_struct *t);
2296 void sched_mm_cid_exit_signals(struct task_struct *t);
2297 static inline int task_mm_cid(struct task_struct *t)
2302 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2303 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2304 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2305 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2306 static inline int task_mm_cid(struct task_struct *t)
2309 * Use the processor id as a fall-back when the mm cid feature is
2310 * disabled. This provides functional per-cpu data structure accesses
2311 * in user-space, althrough it won't provide the memory usage benefits.
2313 return raw_smp_processor_id();
2318 extern bool can_do_mlock(void);
2320 static inline bool can_do_mlock(void) { return false; }
2322 extern int user_shm_lock(size_t, struct ucounts *);
2323 extern void user_shm_unlock(size_t, struct ucounts *);
2325 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2327 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2329 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2330 unsigned long addr, pmd_t pmd);
2331 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2334 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2335 unsigned long size);
2336 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2337 unsigned long size, struct zap_details *details);
2338 static inline void zap_vma_pages(struct vm_area_struct *vma)
2340 zap_page_range_single(vma, vma->vm_start,
2341 vma->vm_end - vma->vm_start, NULL);
2343 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2344 struct vm_area_struct *start_vma, unsigned long start,
2345 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2347 struct mmu_notifier_range;
2349 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2350 unsigned long end, unsigned long floor, unsigned long ceiling);
2352 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2353 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2354 void *buf, int len, int write);
2356 struct follow_pfnmap_args {
2359 * @vma: Pointer to @vm_area_struct struct
2360 * @address: the virtual address to walk
2362 struct vm_area_struct *vma;
2363 unsigned long address;
2367 * The caller shouldn't touch any of these.
2374 * @pfn: the PFN of the address
2375 * @addr_mask: address mask covering pfn
2376 * @pgprot: the pgprot_t of the mapping
2377 * @writable: whether the mapping is writable
2378 * @special: whether the mapping is a special mapping (real PFN maps)
2381 unsigned long addr_mask;
2386 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2387 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2389 extern void truncate_pagecache(struct inode *inode, loff_t new);
2390 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2391 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2392 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2393 int generic_error_remove_folio(struct address_space *mapping,
2394 struct folio *folio);
2396 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2397 unsigned long address, struct pt_regs *regs);
2400 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2401 unsigned long address, unsigned int flags,
2402 struct pt_regs *regs);
2403 extern int fixup_user_fault(struct mm_struct *mm,
2404 unsigned long address, unsigned int fault_flags,
2406 void unmap_mapping_pages(struct address_space *mapping,
2407 pgoff_t start, pgoff_t nr, bool even_cows);
2408 void unmap_mapping_range(struct address_space *mapping,
2409 loff_t const holebegin, loff_t const holelen, int even_cows);
2411 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2412 unsigned long address, unsigned int flags,
2413 struct pt_regs *regs)
2415 /* should never happen if there's no MMU */
2417 return VM_FAULT_SIGBUS;
2419 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2420 unsigned int fault_flags, bool *unlocked)
2422 /* should never happen if there's no MMU */
2426 static inline void unmap_mapping_pages(struct address_space *mapping,
2427 pgoff_t start, pgoff_t nr, bool even_cows) { }
2428 static inline void unmap_mapping_range(struct address_space *mapping,
2429 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2432 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2433 loff_t const holebegin, loff_t const holelen)
2435 unmap_mapping_range(mapping, holebegin, holelen, 0);
2438 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2439 unsigned long addr);
2441 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2442 void *buf, int len, unsigned int gup_flags);
2443 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2444 void *buf, int len, unsigned int gup_flags);
2446 #ifdef CONFIG_BPF_SYSCALL
2447 extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
2448 void *buf, int len, unsigned int gup_flags);
2451 long get_user_pages_remote(struct mm_struct *mm,
2452 unsigned long start, unsigned long nr_pages,
2453 unsigned int gup_flags, struct page **pages,
2455 long pin_user_pages_remote(struct mm_struct *mm,
2456 unsigned long start, unsigned long nr_pages,
2457 unsigned int gup_flags, struct page **pages,
2461 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2463 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2466 struct vm_area_struct **vmap)
2469 struct vm_area_struct *vma;
2472 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2473 return ERR_PTR(-EINVAL);
2475 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2478 return ERR_PTR(got);
2480 vma = vma_lookup(mm, addr);
2481 if (WARN_ON_ONCE(!vma)) {
2483 return ERR_PTR(-EINVAL);
2490 long get_user_pages(unsigned long start, unsigned long nr_pages,
2491 unsigned int gup_flags, struct page **pages);
2492 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2493 unsigned int gup_flags, struct page **pages);
2494 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2495 struct page **pages, unsigned int gup_flags);
2496 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2497 struct page **pages, unsigned int gup_flags);
2498 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2499 struct folio **folios, unsigned int max_folios,
2501 int folio_add_pins(struct folio *folio, unsigned int pins);
2503 int get_user_pages_fast(unsigned long start, int nr_pages,
2504 unsigned int gup_flags, struct page **pages);
2505 int pin_user_pages_fast(unsigned long start, int nr_pages,
2506 unsigned int gup_flags, struct page **pages);
2507 void folio_add_pin(struct folio *folio);
2509 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2510 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2511 struct task_struct *task, bool bypass_rlim);
2514 struct page *get_dump_page(unsigned long addr, int *locked);
2516 bool folio_mark_dirty(struct folio *folio);
2517 bool folio_mark_dirty_lock(struct folio *folio);
2518 bool set_page_dirty(struct page *page);
2519 int set_page_dirty_lock(struct page *page);
2521 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2524 * Flags used by change_protection(). For now we make it a bitmap so
2525 * that we can pass in multiple flags just like parameters. However
2526 * for now all the callers are only use one of the flags at the same
2530 * Whether we should manually check if we can map individual PTEs writable,
2531 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2532 * PTEs automatically in a writable mapping.
2534 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2535 /* Whether this protection change is for NUMA hints */
2536 #define MM_CP_PROT_NUMA (1UL << 1)
2537 /* Whether this change is for write protecting */
2538 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2539 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2540 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2541 MM_CP_UFFD_WP_RESOLVE)
2543 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2545 extern long change_protection(struct mmu_gather *tlb,
2546 struct vm_area_struct *vma, unsigned long start,
2547 unsigned long end, unsigned long cp_flags);
2548 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2549 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2550 unsigned long start, unsigned long end, unsigned long newflags);
2553 * doesn't attempt to fault and will return short.
2555 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2556 unsigned int gup_flags, struct page **pages);
2558 static inline bool get_user_page_fast_only(unsigned long addr,
2559 unsigned int gup_flags, struct page **pagep)
2561 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2564 * per-process(per-mm_struct) statistics.
2566 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2568 return percpu_counter_read_positive(&mm->rss_stat[member]);
2571 static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member)
2573 return percpu_counter_sum_positive(&mm->rss_stat[member]);
2576 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2578 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2580 percpu_counter_add(&mm->rss_stat[member], value);
2582 mm_trace_rss_stat(mm, member);
2585 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2587 percpu_counter_inc(&mm->rss_stat[member]);
2589 mm_trace_rss_stat(mm, member);
2592 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2594 percpu_counter_dec(&mm->rss_stat[member]);
2596 mm_trace_rss_stat(mm, member);
2599 /* Optimized variant when folio is already known not to be anon */
2600 static inline int mm_counter_file(struct folio *folio)
2602 if (folio_test_swapbacked(folio))
2603 return MM_SHMEMPAGES;
2604 return MM_FILEPAGES;
2607 static inline int mm_counter(struct folio *folio)
2609 if (folio_test_anon(folio))
2610 return MM_ANONPAGES;
2611 return mm_counter_file(folio);
2614 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2616 return get_mm_counter(mm, MM_FILEPAGES) +
2617 get_mm_counter(mm, MM_ANONPAGES) +
2618 get_mm_counter(mm, MM_SHMEMPAGES);
2621 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2623 return max(mm->hiwater_rss, get_mm_rss(mm));
2626 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2628 return max(mm->hiwater_vm, mm->total_vm);
2631 static inline void update_hiwater_rss(struct mm_struct *mm)
2633 unsigned long _rss = get_mm_rss(mm);
2635 if (data_race(mm->hiwater_rss) < _rss)
2636 (mm)->hiwater_rss = _rss;
2639 static inline void update_hiwater_vm(struct mm_struct *mm)
2641 if (mm->hiwater_vm < mm->total_vm)
2642 mm->hiwater_vm = mm->total_vm;
2645 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2647 mm->hiwater_rss = get_mm_rss(mm);
2650 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2651 struct mm_struct *mm)
2653 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2655 if (*maxrss < hiwater_rss)
2656 *maxrss = hiwater_rss;
2659 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2660 static inline int pte_special(pte_t pte)
2665 static inline pte_t pte_mkspecial(pte_t pte)
2671 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
2672 static inline bool pmd_special(pmd_t pmd)
2677 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2681 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2683 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
2684 static inline bool pud_special(pud_t pud)
2689 static inline pud_t pud_mkspecial(pud_t pud)
2693 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2695 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2696 static inline int pte_devmap(pte_t pte)
2702 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2704 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2708 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2712 #ifdef __PAGETABLE_P4D_FOLDED
2713 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2714 unsigned long address)
2719 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2722 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2723 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2724 unsigned long address)
2728 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2729 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2732 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2734 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2736 if (mm_pud_folded(mm))
2738 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2741 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2743 if (mm_pud_folded(mm))
2745 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2749 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2750 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2751 unsigned long address)
2756 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2757 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2760 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2762 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2764 if (mm_pmd_folded(mm))
2766 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2769 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2771 if (mm_pmd_folded(mm))
2773 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2778 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2780 atomic_long_set(&mm->pgtables_bytes, 0);
2783 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2785 return atomic_long_read(&mm->pgtables_bytes);
2788 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2790 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2793 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2795 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2799 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2800 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2805 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2806 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2809 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2810 int __pte_alloc_kernel(pmd_t *pmd);
2812 #if defined(CONFIG_MMU)
2814 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2815 unsigned long address)
2817 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2818 NULL : p4d_offset(pgd, address);
2821 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2822 unsigned long address)
2824 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2825 NULL : pud_offset(p4d, address);
2828 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2830 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2831 NULL: pmd_offset(pud, address);
2833 #endif /* CONFIG_MMU */
2835 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2837 return page_ptdesc(virt_to_page(x));
2840 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2842 return page_to_virt(ptdesc_page(pt));
2845 static inline void *ptdesc_address(const struct ptdesc *pt)
2847 return folio_address(ptdesc_folio(pt));
2850 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2852 return folio_test_reserved(ptdesc_folio(pt));
2856 * pagetable_alloc - Allocate pagetables
2858 * @order: desired pagetable order
2860 * pagetable_alloc allocates memory for page tables as well as a page table
2861 * descriptor to describe that memory.
2863 * Return: The ptdesc describing the allocated page tables.
2865 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2867 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2869 return page_ptdesc(page);
2871 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2874 * pagetable_free - Free pagetables
2875 * @pt: The page table descriptor
2877 * pagetable_free frees the memory of all page tables described by a page
2878 * table descriptor and the memory for the descriptor itself.
2880 static inline void pagetable_free(struct ptdesc *pt)
2882 struct page *page = ptdesc_page(pt);
2884 __free_pages(page, compound_order(page));
2887 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2888 #if ALLOC_SPLIT_PTLOCKS
2889 void __init ptlock_cache_init(void);
2890 bool ptlock_alloc(struct ptdesc *ptdesc);
2891 void ptlock_free(struct ptdesc *ptdesc);
2893 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2897 #else /* ALLOC_SPLIT_PTLOCKS */
2898 static inline void ptlock_cache_init(void)
2902 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2907 static inline void ptlock_free(struct ptdesc *ptdesc)
2911 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2913 return &ptdesc->ptl;
2915 #endif /* ALLOC_SPLIT_PTLOCKS */
2917 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2919 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2922 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2924 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2925 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2926 return ptlock_ptr(virt_to_ptdesc(pte));
2929 static inline bool ptlock_init(struct ptdesc *ptdesc)
2932 * prep_new_page() initialize page->private (and therefore page->ptl)
2933 * with 0. Make sure nobody took it in use in between.
2935 * It can happen if arch try to use slab for page table allocation:
2936 * slab code uses page->slab_cache, which share storage with page->ptl.
2938 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2939 if (!ptlock_alloc(ptdesc))
2941 spin_lock_init(ptlock_ptr(ptdesc));
2945 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2947 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2949 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2951 return &mm->page_table_lock;
2953 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2955 return &mm->page_table_lock;
2957 static inline void ptlock_cache_init(void) {}
2958 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2959 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2960 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2962 static inline void __pagetable_ctor(struct ptdesc *ptdesc)
2964 struct folio *folio = ptdesc_folio(ptdesc);
2966 __folio_set_pgtable(folio);
2967 lruvec_stat_add_folio(folio, NR_PAGETABLE);
2970 static inline void pagetable_dtor(struct ptdesc *ptdesc)
2972 struct folio *folio = ptdesc_folio(ptdesc);
2974 ptlock_free(ptdesc);
2975 __folio_clear_pgtable(folio);
2976 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2979 static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
2981 pagetable_dtor(ptdesc);
2982 pagetable_free(ptdesc);
2985 static inline bool pagetable_pte_ctor(struct mm_struct *mm,
2986 struct ptdesc *ptdesc)
2988 if (mm != &init_mm && !ptlock_init(ptdesc))
2990 __pagetable_ctor(ptdesc);
2994 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2995 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3000 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3003 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3005 return __pte_offset_map(pmd, addr, NULL);
3008 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3009 unsigned long addr, spinlock_t **ptlp);
3010 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3011 unsigned long addr, spinlock_t **ptlp)
3015 __cond_lock(RCU, __cond_lock(*ptlp,
3016 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3020 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3021 unsigned long addr, spinlock_t **ptlp);
3022 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3023 unsigned long addr, pmd_t *pmdvalp,
3026 #define pte_unmap_unlock(pte, ptl) do { \
3031 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3033 #define pte_alloc_map(mm, pmd, address) \
3034 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3036 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3037 (pte_alloc(mm, pmd) ? \
3038 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3040 #define pte_alloc_kernel(pmd, address) \
3041 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3042 NULL: pte_offset_kernel(pmd, address))
3044 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3046 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3048 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3049 return virt_to_page((void *)((unsigned long) pmd & mask));
3052 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3054 return page_ptdesc(pmd_pgtable_page(pmd));
3057 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3059 return ptlock_ptr(pmd_ptdesc(pmd));
3062 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3064 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3065 ptdesc->pmd_huge_pte = NULL;
3067 return ptlock_init(ptdesc);
3070 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3074 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3076 return &mm->page_table_lock;
3079 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3081 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3085 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3087 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3092 static inline bool pagetable_pmd_ctor(struct mm_struct *mm,
3093 struct ptdesc *ptdesc)
3095 if (mm != &init_mm && !pmd_ptlock_init(ptdesc))
3097 ptdesc_pmd_pts_init(ptdesc);
3098 __pagetable_ctor(ptdesc);
3103 * No scalability reason to split PUD locks yet, but follow the same pattern
3104 * as the PMD locks to make it easier if we decide to. The VM should not be
3105 * considered ready to switch to split PUD locks yet; there may be places
3106 * which need to be converted from page_table_lock.
3108 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3110 return &mm->page_table_lock;
3113 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3115 spinlock_t *ptl = pud_lockptr(mm, pud);
3121 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3123 __pagetable_ctor(ptdesc);
3126 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3128 __pagetable_ctor(ptdesc);
3131 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3133 __pagetable_ctor(ptdesc);
3136 extern void __init pagecache_init(void);
3137 extern void free_initmem(void);
3140 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3141 * into the buddy system. The freed pages will be poisoned with pattern
3142 * "poison" if it's within range [0, UCHAR_MAX].
3143 * Return pages freed into the buddy system.
3145 extern unsigned long free_reserved_area(void *start, void *end,
3146 int poison, const char *s);
3148 extern void adjust_managed_page_count(struct page *page, long count);
3150 extern void reserve_bootmem_region(phys_addr_t start,
3151 phys_addr_t end, int nid);
3153 /* Free the reserved page into the buddy system, so it gets managed. */
3154 void free_reserved_page(struct page *page);
3156 static inline void mark_page_reserved(struct page *page)
3158 SetPageReserved(page);
3159 adjust_managed_page_count(page, -1);
3162 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3164 free_reserved_page(ptdesc_page(pt));
3168 * Default method to free all the __init memory into the buddy system.
3169 * The freed pages will be poisoned with pattern "poison" if it's within
3170 * range [0, UCHAR_MAX].
3171 * Return pages freed into the buddy system.
3173 static inline unsigned long free_initmem_default(int poison)
3175 extern char __init_begin[], __init_end[];
3177 return free_reserved_area(&__init_begin, &__init_end,
3178 poison, "unused kernel image (initmem)");
3181 static inline unsigned long get_num_physpages(void)
3184 unsigned long phys_pages = 0;
3186 for_each_online_node(nid)
3187 phys_pages += node_present_pages(nid);
3193 * Using memblock node mappings, an architecture may initialise its
3194 * zones, allocate the backing mem_map and account for memory holes in an
3195 * architecture independent manner.
3197 * An architecture is expected to register range of page frames backed by
3198 * physical memory with memblock_add[_node]() before calling
3199 * free_area_init() passing in the PFN each zone ends at. At a basic
3200 * usage, an architecture is expected to do something like
3202 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3204 * for_each_valid_physical_page_range()
3205 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3206 * free_area_init(max_zone_pfns);
3208 void free_area_init(unsigned long *max_zone_pfn);
3209 unsigned long node_map_pfn_alignment(void);
3210 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3211 unsigned long end_pfn);
3212 extern void get_pfn_range_for_nid(unsigned int nid,
3213 unsigned long *start_pfn, unsigned long *end_pfn);
3216 static inline int early_pfn_to_nid(unsigned long pfn)
3221 /* please see mm/page_alloc.c */
3222 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3225 extern void mem_init(void);
3226 extern void __init mmap_init(void);
3228 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3229 static inline void show_mem(void)
3231 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3233 extern long si_mem_available(void);
3234 extern void si_meminfo(struct sysinfo * val);
3235 extern void si_meminfo_node(struct sysinfo *val, int nid);
3237 extern __printf(3, 4)
3238 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3240 extern void setup_per_cpu_pageset(void);
3243 extern atomic_long_t mmap_pages_allocated;
3244 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3246 /* interval_tree.c */
3247 void vma_interval_tree_insert(struct vm_area_struct *node,
3248 struct rb_root_cached *root);
3249 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3250 struct vm_area_struct *prev,
3251 struct rb_root_cached *root);
3252 void vma_interval_tree_remove(struct vm_area_struct *node,
3253 struct rb_root_cached *root);
3254 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3255 unsigned long start, unsigned long last);
3256 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3257 unsigned long start, unsigned long last);
3259 #define vma_interval_tree_foreach(vma, root, start, last) \
3260 for (vma = vma_interval_tree_iter_first(root, start, last); \
3261 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3263 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3264 struct rb_root_cached *root);
3265 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3266 struct rb_root_cached *root);
3267 struct anon_vma_chain *
3268 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3269 unsigned long start, unsigned long last);
3270 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3271 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3272 #ifdef CONFIG_DEBUG_VM_RB
3273 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3276 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
3277 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3278 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3281 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3282 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3283 extern void exit_mmap(struct mm_struct *);
3284 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3285 unsigned long addr, bool write);
3287 static inline int check_data_rlimit(unsigned long rlim,
3289 unsigned long start,
3290 unsigned long end_data,
3291 unsigned long start_data)
3293 if (rlim < RLIM_INFINITY) {
3294 if (((new - start) + (end_data - start_data)) > rlim)
3301 extern int mm_take_all_locks(struct mm_struct *mm);
3302 extern void mm_drop_all_locks(struct mm_struct *mm);
3304 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3305 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3306 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3307 extern struct file *get_task_exe_file(struct task_struct *task);
3309 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3310 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3312 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3313 const struct vm_special_mapping *sm);
3314 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3315 unsigned long addr, unsigned long len,
3316 unsigned long flags,
3317 const struct vm_special_mapping *spec);
3319 unsigned long randomize_stack_top(unsigned long stack_top);
3320 unsigned long randomize_page(unsigned long start, unsigned long range);
3323 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3324 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3326 static inline unsigned long
3327 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3328 unsigned long pgoff, unsigned long flags)
3330 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3333 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3334 unsigned long len, unsigned long prot, unsigned long flags,
3335 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3336 struct list_head *uf);
3337 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3338 unsigned long start, size_t len, struct list_head *uf,
3340 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3341 struct mm_struct *mm, unsigned long start,
3342 unsigned long end, struct list_head *uf, bool unlock);
3343 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3344 struct list_head *uf);
3345 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3348 extern int __mm_populate(unsigned long addr, unsigned long len,
3350 static inline void mm_populate(unsigned long addr, unsigned long len)
3353 (void) __mm_populate(addr, len, 1);
3356 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3359 /* This takes the mm semaphore itself */
3360 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3361 extern int vm_munmap(unsigned long, size_t);
3362 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3363 unsigned long, unsigned long,
3364 unsigned long, unsigned long);
3366 struct vm_unmapped_area_info {
3367 #define VM_UNMAPPED_AREA_TOPDOWN 1
3368 unsigned long flags;
3369 unsigned long length;
3370 unsigned long low_limit;
3371 unsigned long high_limit;
3372 unsigned long align_mask;
3373 unsigned long align_offset;
3374 unsigned long start_gap;
3377 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3380 extern void truncate_inode_pages(struct address_space *, loff_t);
3381 extern void truncate_inode_pages_range(struct address_space *,
3382 loff_t lstart, loff_t lend);
3383 extern void truncate_inode_pages_final(struct address_space *);
3385 /* generic vm_area_ops exported for stackable file systems */
3386 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3387 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3388 pgoff_t start_pgoff, pgoff_t end_pgoff);
3389 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3391 extern unsigned long stack_guard_gap;
3392 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3393 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3394 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3396 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3397 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3398 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3399 struct vm_area_struct **pprev);
3402 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3403 * NULL if none. Assume start_addr < end_addr.
3405 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3406 unsigned long start_addr, unsigned long end_addr);
3409 * vma_lookup() - Find a VMA at a specific address
3410 * @mm: The process address space.
3411 * @addr: The user address.
3413 * Return: The vm_area_struct at the given address, %NULL otherwise.
3416 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3418 return mtree_load(&mm->mm_mt, addr);
3421 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3423 if (vma->vm_flags & VM_GROWSDOWN)
3424 return stack_guard_gap;
3426 /* See reasoning around the VM_SHADOW_STACK definition */
3427 if (vma->vm_flags & VM_SHADOW_STACK)
3433 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3435 unsigned long gap = stack_guard_start_gap(vma);
3436 unsigned long vm_start = vma->vm_start;
3439 if (vm_start > vma->vm_start)
3444 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3446 unsigned long vm_end = vma->vm_end;
3448 if (vma->vm_flags & VM_GROWSUP) {
3449 vm_end += stack_guard_gap;
3450 if (vm_end < vma->vm_end)
3451 vm_end = -PAGE_SIZE;
3456 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3458 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3461 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3462 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3463 unsigned long vm_start, unsigned long vm_end)
3465 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3467 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3473 static inline bool range_in_vma(struct vm_area_struct *vma,
3474 unsigned long start, unsigned long end)
3476 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3480 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3481 void vma_set_page_prot(struct vm_area_struct *vma);
3483 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3487 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3489 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3493 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3495 #ifdef CONFIG_NUMA_BALANCING
3496 unsigned long change_prot_numa(struct vm_area_struct *vma,
3497 unsigned long start, unsigned long end);
3500 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3501 unsigned long addr);
3502 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3503 unsigned long pfn, unsigned long size, pgprot_t);
3504 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3505 unsigned long pfn, unsigned long size, pgprot_t prot);
3506 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3507 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3508 struct page **pages, unsigned long *num);
3509 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3511 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3513 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
3515 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3517 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3518 unsigned long pfn, pgprot_t pgprot);
3519 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3521 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3522 unsigned long addr, pfn_t pfn);
3523 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3525 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3526 unsigned long addr, struct page *page)
3528 int err = vm_insert_page(vma, addr, page);
3531 return VM_FAULT_OOM;
3532 if (err < 0 && err != -EBUSY)
3533 return VM_FAULT_SIGBUS;
3535 return VM_FAULT_NOPAGE;
3538 #ifndef io_remap_pfn_range
3539 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3540 unsigned long addr, unsigned long pfn,
3541 unsigned long size, pgprot_t prot)
3543 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3547 static inline vm_fault_t vmf_error(int err)
3550 return VM_FAULT_OOM;
3551 else if (err == -EHWPOISON)
3552 return VM_FAULT_HWPOISON;
3553 return VM_FAULT_SIGBUS;
3557 * Convert errno to return value for ->page_mkwrite() calls.
3559 * This should eventually be merged with vmf_error() above, but will need a
3560 * careful audit of all vmf_error() callers.
3562 static inline vm_fault_t vmf_fs_error(int err)
3565 return VM_FAULT_LOCKED;
3566 if (err == -EFAULT || err == -EAGAIN)
3567 return VM_FAULT_NOPAGE;
3569 return VM_FAULT_OOM;
3570 /* -ENOSPC, -EDQUOT, -EIO ... */
3571 return VM_FAULT_SIGBUS;
3574 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3576 if (vm_fault & VM_FAULT_OOM)
3578 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3579 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3580 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3586 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3587 * a (NUMA hinting) fault is required.
3589 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3593 * If callers don't want to honor NUMA hinting faults, no need to
3594 * determine if we would actually have to trigger a NUMA hinting fault.
3596 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3600 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3602 * Requiring a fault here even for inaccessible VMAs would mean that
3603 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3604 * refuses to process NUMA hinting faults in inaccessible VMAs.
3606 return !vma_is_accessible(vma);
3609 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3610 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3611 unsigned long size, pte_fn_t fn, void *data);
3612 extern int apply_to_existing_page_range(struct mm_struct *mm,
3613 unsigned long address, unsigned long size,
3614 pte_fn_t fn, void *data);
3616 #ifdef CONFIG_PAGE_POISONING
3617 extern void __kernel_poison_pages(struct page *page, int numpages);
3618 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3619 extern bool _page_poisoning_enabled_early;
3620 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3621 static inline bool page_poisoning_enabled(void)
3623 return _page_poisoning_enabled_early;
3626 * For use in fast paths after init_mem_debugging() has run, or when a
3627 * false negative result is not harmful when called too early.
3629 static inline bool page_poisoning_enabled_static(void)
3631 return static_branch_unlikely(&_page_poisoning_enabled);
3633 static inline void kernel_poison_pages(struct page *page, int numpages)
3635 if (page_poisoning_enabled_static())
3636 __kernel_poison_pages(page, numpages);
3638 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3640 if (page_poisoning_enabled_static())
3641 __kernel_unpoison_pages(page, numpages);
3644 static inline bool page_poisoning_enabled(void) { return false; }
3645 static inline bool page_poisoning_enabled_static(void) { return false; }
3646 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3647 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3648 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3651 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3652 static inline bool want_init_on_alloc(gfp_t flags)
3654 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3657 return flags & __GFP_ZERO;
3660 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3661 static inline bool want_init_on_free(void)
3663 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3667 extern bool _debug_pagealloc_enabled_early;
3668 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3670 static inline bool debug_pagealloc_enabled(void)
3672 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3673 _debug_pagealloc_enabled_early;
3677 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3678 * or when a false negative result is not harmful when called too early.
3680 static inline bool debug_pagealloc_enabled_static(void)
3682 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3685 return static_branch_unlikely(&_debug_pagealloc_enabled);
3689 * To support DEBUG_PAGEALLOC architecture must ensure that
3690 * __kernel_map_pages() never fails
3692 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3693 #ifdef CONFIG_DEBUG_PAGEALLOC
3694 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3696 if (debug_pagealloc_enabled_static())
3697 __kernel_map_pages(page, numpages, 1);
3700 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3702 if (debug_pagealloc_enabled_static())
3703 __kernel_map_pages(page, numpages, 0);
3706 extern unsigned int _debug_guardpage_minorder;
3707 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3709 static inline unsigned int debug_guardpage_minorder(void)
3711 return _debug_guardpage_minorder;
3714 static inline bool debug_guardpage_enabled(void)
3716 return static_branch_unlikely(&_debug_guardpage_enabled);
3719 static inline bool page_is_guard(struct page *page)
3721 if (!debug_guardpage_enabled())
3724 return PageGuard(page);
3727 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3728 static inline bool set_page_guard(struct zone *zone, struct page *page,
3731 if (!debug_guardpage_enabled())
3733 return __set_page_guard(zone, page, order);
3736 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3737 static inline void clear_page_guard(struct zone *zone, struct page *page,
3740 if (!debug_guardpage_enabled())
3742 __clear_page_guard(zone, page, order);
3745 #else /* CONFIG_DEBUG_PAGEALLOC */
3746 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3747 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3748 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3749 static inline bool debug_guardpage_enabled(void) { return false; }
3750 static inline bool page_is_guard(struct page *page) { return false; }
3751 static inline bool set_page_guard(struct zone *zone, struct page *page,
3752 unsigned int order) { return false; }
3753 static inline void clear_page_guard(struct zone *zone, struct page *page,
3754 unsigned int order) {}
3755 #endif /* CONFIG_DEBUG_PAGEALLOC */
3757 #ifdef __HAVE_ARCH_GATE_AREA
3758 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3759 extern int in_gate_area_no_mm(unsigned long addr);
3760 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3762 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3766 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3767 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3771 #endif /* __HAVE_ARCH_GATE_AREA */
3773 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3775 void drop_slab(void);
3778 #define randomize_va_space 0
3780 extern int randomize_va_space;
3783 const char * arch_vma_name(struct vm_area_struct *vma);
3785 void print_vma_addr(char *prefix, unsigned long rip);
3787 static inline void print_vma_addr(char *prefix, unsigned long rip)
3792 void *sparse_buffer_alloc(unsigned long size);
3793 unsigned long section_map_size(void);
3794 struct page * __populate_section_memmap(unsigned long pfn,
3795 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3796 struct dev_pagemap *pgmap);
3797 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3798 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3799 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3800 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3801 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3802 struct vmem_altmap *altmap, unsigned long ptpfn,
3803 unsigned long flags);
3804 void *vmemmap_alloc_block(unsigned long size, int node);
3806 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3807 struct vmem_altmap *altmap);
3808 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3809 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3810 unsigned long addr, unsigned long next);
3811 int vmemmap_check_pmd(pmd_t *pmd, int node,
3812 unsigned long addr, unsigned long next);
3813 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3814 int node, struct vmem_altmap *altmap);
3815 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3816 int node, struct vmem_altmap *altmap);
3817 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3818 struct vmem_altmap *altmap);
3819 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node,
3820 unsigned long headsize);
3821 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node,
3822 unsigned long headsize);
3823 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node,
3824 unsigned long headsize);
3825 void vmemmap_populate_print_last(void);
3826 #ifdef CONFIG_MEMORY_HOTPLUG
3827 void vmemmap_free(unsigned long start, unsigned long end,
3828 struct vmem_altmap *altmap);
3831 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3832 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3834 /* number of pfns from base where pfn_to_page() is valid */
3836 return altmap->reserve + altmap->free;
3840 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3841 unsigned long nr_pfns)
3843 altmap->alloc -= nr_pfns;
3846 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3851 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3852 unsigned long nr_pfns)
3857 #define VMEMMAP_RESERVE_NR 2
3858 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3859 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3860 struct dev_pagemap *pgmap)
3862 unsigned long nr_pages;
3863 unsigned long nr_vmemmap_pages;
3865 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3868 nr_pages = pgmap_vmemmap_nr(pgmap);
3869 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3871 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3872 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3874 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3877 * If we don't have an architecture override, use the generic rule
3879 #ifndef vmemmap_can_optimize
3880 #define vmemmap_can_optimize __vmemmap_can_optimize
3884 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3885 struct dev_pagemap *pgmap)
3892 MF_COUNT_INCREASED = 1 << 0,
3893 MF_ACTION_REQUIRED = 1 << 1,
3894 MF_MUST_KILL = 1 << 2,
3895 MF_SOFT_OFFLINE = 1 << 3,
3896 MF_UNPOISON = 1 << 4,
3897 MF_SW_SIMULATED = 1 << 5,
3898 MF_NO_RETRY = 1 << 6,
3899 MF_MEM_PRE_REMOVE = 1 << 7,
3901 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3902 unsigned long count, int mf_flags);
3903 extern int memory_failure(unsigned long pfn, int flags);
3904 extern void memory_failure_queue_kick(int cpu);
3905 extern int unpoison_memory(unsigned long pfn);
3906 extern atomic_long_t num_poisoned_pages __read_mostly;
3907 extern int soft_offline_page(unsigned long pfn, int flags);
3908 #ifdef CONFIG_MEMORY_FAILURE
3910 * Sysfs entries for memory failure handling statistics.
3912 extern const struct attribute_group memory_failure_attr_group;
3913 extern void memory_failure_queue(unsigned long pfn, int flags);
3914 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3915 bool *migratable_cleared);
3916 void num_poisoned_pages_inc(unsigned long pfn);
3917 void num_poisoned_pages_sub(unsigned long pfn, long i);
3919 static inline void memory_failure_queue(unsigned long pfn, int flags)
3923 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3924 bool *migratable_cleared)
3929 static inline void num_poisoned_pages_inc(unsigned long pfn)
3933 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3938 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3939 extern void memblk_nr_poison_inc(unsigned long pfn);
3940 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3942 static inline void memblk_nr_poison_inc(unsigned long pfn)
3946 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3951 #ifndef arch_memory_failure
3952 static inline int arch_memory_failure(unsigned long pfn, int flags)
3958 #ifndef arch_is_platform_page
3959 static inline bool arch_is_platform_page(u64 paddr)
3966 * Error handlers for various types of pages.
3969 MF_IGNORED, /* Error: cannot be handled */
3970 MF_FAILED, /* Error: handling failed */
3971 MF_DELAYED, /* Will be handled later */
3972 MF_RECOVERED, /* Successfully recovered */
3975 enum mf_action_page_type {
3977 MF_MSG_KERNEL_HIGH_ORDER,
3978 MF_MSG_DIFFERENT_COMPOUND,
3981 MF_MSG_GET_HWPOISON,
3982 MF_MSG_UNMAP_FAILED,
3983 MF_MSG_DIRTY_SWAPCACHE,
3984 MF_MSG_CLEAN_SWAPCACHE,
3985 MF_MSG_DIRTY_MLOCKED_LRU,
3986 MF_MSG_CLEAN_MLOCKED_LRU,
3987 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3988 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3991 MF_MSG_TRUNCATED_LRU,
3995 MF_MSG_ALREADY_POISONED,
3999 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4000 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4001 int copy_user_large_folio(struct folio *dst, struct folio *src,
4002 unsigned long addr_hint,
4003 struct vm_area_struct *vma);
4004 long copy_folio_from_user(struct folio *dst_folio,
4005 const void __user *usr_src,
4006 bool allow_pagefault);
4009 * vma_is_special_huge - Are transhuge page-table entries considered special?
4010 * @vma: Pointer to the struct vm_area_struct to consider
4012 * Whether transhuge page-table entries are considered "special" following
4013 * the definition in vm_normal_page().
4015 * Return: true if transhuge page-table entries should be considered special,
4018 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4020 return vma_is_dax(vma) || (vma->vm_file &&
4021 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4024 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4026 #if MAX_NUMNODES > 1
4027 void __init setup_nr_node_ids(void);
4029 static inline void setup_nr_node_ids(void) {}
4032 extern int memcmp_pages(struct page *page1, struct page *page2);
4034 static inline int pages_identical(struct page *page1, struct page *page2)
4036 return !memcmp_pages(page1, page2);
4039 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4040 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4041 pgoff_t first_index, pgoff_t nr,
4042 pgoff_t bitmap_pgoff,
4043 unsigned long *bitmap,
4047 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4048 pgoff_t first_index, pgoff_t nr);
4051 #ifdef CONFIG_ANON_VMA_NAME
4052 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4053 unsigned long len_in,
4054 struct anon_vma_name *anon_name);
4057 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4058 unsigned long len_in, struct anon_vma_name *anon_name) {
4063 #ifdef CONFIG_UNACCEPTED_MEMORY
4065 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4066 void accept_memory(phys_addr_t start, unsigned long size);
4070 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4076 static inline void accept_memory(phys_addr_t start, unsigned long size)
4082 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4084 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4087 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4088 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4090 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4091 int reserve_mem_release_by_name(const char *name);
4094 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4096 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4098 /* noop on 32 bit */
4104 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4107 static inline bool user_alloc_needs_zeroing(void)
4110 * for user folios, arch with cache aliasing requires cache flush and
4111 * arc changes folio->flags to make icache coherent with dcache, so
4112 * always return false to make caller use
4113 * clear_user_page()/clear_user_highpage().
4115 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4116 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4120 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4121 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4122 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4126 * mseal of userspace process's system mappings.
4128 #ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS
4129 #define VM_SEALED_SYSMAP VM_SEALED
4131 #define VM_SEALED_SYSMAP VM_NONE
4135 * DMA mapping IDs for page_pool
4137 * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and
4138 * stashes it in the upper bits of page->pp_magic. We always want to be able to
4139 * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP
4140 * pages can have arbitrary kernel pointers stored in the same field as pp_magic
4141 * (since it overlaps with page->lru.next), so we must ensure that we cannot
4142 * mistake a valid kernel pointer with any of the values we write into this
4145 * On architectures that set POISON_POINTER_DELTA, this is already ensured,
4146 * since this value becomes part of PP_SIGNATURE; meaning we can just use the
4147 * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the
4148 * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is
4149 * 0, we make sure that we leave the two topmost bits empty, as that guarantees
4150 * we won't mistake a valid kernel pointer for a value we set, regardless of the
4153 * Altogether, this means that the number of bits available is constrained by
4154 * the size of an unsigned long (at the upper end, subtracting two bits per the
4155 * above), and the definition of PP_SIGNATURE (with or without
4156 * POISON_POINTER_DELTA).
4158 #define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA))
4159 #if POISON_POINTER_DELTA > 0
4160 /* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA
4161 * index to not overlap with that if set
4163 #define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT)
4165 /* Always leave out the topmost two; see above. */
4166 #define PP_DMA_INDEX_BITS MIN(32, BITS_PER_LONG - PP_DMA_INDEX_SHIFT - 2)
4169 #define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \
4172 /* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is
4173 * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for
4174 * the head page of compound page and bit 1 for pfmemalloc page, as well as the
4175 * bits used for the DMA index. page_is_pfmemalloc() is checked in
4176 * __page_pool_put_page() to avoid recycling the pfmemalloc page.
4178 #define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL)
4180 #ifdef CONFIG_PAGE_POOL
4181 static inline bool page_pool_page_is_pp(struct page *page)
4183 return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE;
4186 static inline bool page_pool_page_is_pp(struct page *page)
4192 #endif /* _LINUX_MM_H */