mm: introduce page reference manipulation functions
[linux-2.6-block.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page_ref.h>
26
27 struct mempolicy;
28 struct anon_vma;
29 struct anon_vma_chain;
30 struct file_ra_state;
31 struct user_struct;
32 struct writeback_control;
33 struct bdi_writeback;
34
35 #ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
36 extern unsigned long max_mapnr;
37
38 static inline void set_max_mapnr(unsigned long limit)
39 {
40         max_mapnr = limit;
41 }
42 #else
43 static inline void set_max_mapnr(unsigned long limit) { }
44 #endif
45
46 extern unsigned long totalram_pages;
47 extern void * high_memory;
48 extern int page_cluster;
49
50 #ifdef CONFIG_SYSCTL
51 extern int sysctl_legacy_va_layout;
52 #else
53 #define sysctl_legacy_va_layout 0
54 #endif
55
56 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57 extern const int mmap_rnd_bits_min;
58 extern const int mmap_rnd_bits_max;
59 extern int mmap_rnd_bits __read_mostly;
60 #endif
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62 extern const int mmap_rnd_compat_bits_min;
63 extern const int mmap_rnd_compat_bits_max;
64 extern int mmap_rnd_compat_bits __read_mostly;
65 #endif
66
67 #include <asm/page.h>
68 #include <asm/pgtable.h>
69 #include <asm/processor.h>
70
71 #ifndef __pa_symbol
72 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
73 #endif
74
75 /*
76  * To prevent common memory management code establishing
77  * a zero page mapping on a read fault.
78  * This macro should be defined within <asm/pgtable.h>.
79  * s390 does this to prevent multiplexing of hardware bits
80  * related to the physical page in case of virtualization.
81  */
82 #ifndef mm_forbids_zeropage
83 #define mm_forbids_zeropage(X)  (0)
84 #endif
85
86 /*
87  * Default maximum number of active map areas, this limits the number of vmas
88  * per mm struct. Users can overwrite this number by sysctl but there is a
89  * problem.
90  *
91  * When a program's coredump is generated as ELF format, a section is created
92  * per a vma. In ELF, the number of sections is represented in unsigned short.
93  * This means the number of sections should be smaller than 65535 at coredump.
94  * Because the kernel adds some informative sections to a image of program at
95  * generating coredump, we need some margin. The number of extra sections is
96  * 1-3 now and depends on arch. We use "5" as safe margin, here.
97  *
98  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
99  * not a hard limit any more. Although some userspace tools can be surprised by
100  * that.
101  */
102 #define MAPCOUNT_ELF_CORE_MARGIN        (5)
103 #define DEFAULT_MAX_MAP_COUNT   (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
104
105 extern int sysctl_max_map_count;
106
107 extern unsigned long sysctl_user_reserve_kbytes;
108 extern unsigned long sysctl_admin_reserve_kbytes;
109
110 extern int sysctl_overcommit_memory;
111 extern int sysctl_overcommit_ratio;
112 extern unsigned long sysctl_overcommit_kbytes;
113
114 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
115                                     size_t *, loff_t *);
116 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
117                                     size_t *, loff_t *);
118
119 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
120
121 /* to align the pointer to the (next) page boundary */
122 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
123
124 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
125 #define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
126
127 /*
128  * Linux kernel virtual memory manager primitives.
129  * The idea being to have a "virtual" mm in the same way
130  * we have a virtual fs - giving a cleaner interface to the
131  * mm details, and allowing different kinds of memory mappings
132  * (from shared memory to executable loading to arbitrary
133  * mmap() functions).
134  */
135
136 extern struct kmem_cache *vm_area_cachep;
137
138 #ifndef CONFIG_MMU
139 extern struct rb_root nommu_region_tree;
140 extern struct rw_semaphore nommu_region_sem;
141
142 extern unsigned int kobjsize(const void *objp);
143 #endif
144
145 /*
146  * vm_flags in vm_area_struct, see mm_types.h.
147  * When changing, update also include/trace/events/mmflags.h
148  */
149 #define VM_NONE         0x00000000
150
151 #define VM_READ         0x00000001      /* currently active flags */
152 #define VM_WRITE        0x00000002
153 #define VM_EXEC         0x00000004
154 #define VM_SHARED       0x00000008
155
156 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
157 #define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
158 #define VM_MAYWRITE     0x00000020
159 #define VM_MAYEXEC      0x00000040
160 #define VM_MAYSHARE     0x00000080
161
162 #define VM_GROWSDOWN    0x00000100      /* general info on the segment */
163 #define VM_UFFD_MISSING 0x00000200      /* missing pages tracking */
164 #define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
165 #define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
166 #define VM_UFFD_WP      0x00001000      /* wrprotect pages tracking */
167
168 #define VM_LOCKED       0x00002000
169 #define VM_IO           0x00004000      /* Memory mapped I/O or similar */
170
171                                         /* Used by sys_madvise() */
172 #define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
173 #define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
174
175 #define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
176 #define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
177 #define VM_LOCKONFAULT  0x00080000      /* Lock the pages covered when they are faulted in */
178 #define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
179 #define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
180 #define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
181 #define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
182 #define VM_ARCH_2       0x02000000
183 #define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
184
185 #ifdef CONFIG_MEM_SOFT_DIRTY
186 # define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
187 #else
188 # define VM_SOFTDIRTY   0
189 #endif
190
191 #define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
192 #define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
193 #define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
194 #define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
195
196 #if defined(CONFIG_X86)
197 # define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
198 #elif defined(CONFIG_PPC)
199 # define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
200 #elif defined(CONFIG_PARISC)
201 # define VM_GROWSUP     VM_ARCH_1
202 #elif defined(CONFIG_METAG)
203 # define VM_GROWSUP     VM_ARCH_1
204 #elif defined(CONFIG_IA64)
205 # define VM_GROWSUP     VM_ARCH_1
206 #elif !defined(CONFIG_MMU)
207 # define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
208 #endif
209
210 #if defined(CONFIG_X86)
211 /* MPX specific bounds table or bounds directory */
212 # define VM_MPX         VM_ARCH_2
213 #endif
214
215 #ifndef VM_GROWSUP
216 # define VM_GROWSUP     VM_NONE
217 #endif
218
219 /* Bits set in the VMA until the stack is in its final location */
220 #define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
221
222 #ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
223 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
224 #endif
225
226 #ifdef CONFIG_STACK_GROWSUP
227 #define VM_STACK        VM_GROWSUP
228 #else
229 #define VM_STACK        VM_GROWSDOWN
230 #endif
231
232 #define VM_STACK_FLAGS  (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
233
234 /*
235  * Special vmas that are non-mergable, non-mlock()able.
236  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
237  */
238 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
239
240 /* This mask defines which mm->def_flags a process can inherit its parent */
241 #define VM_INIT_DEF_MASK        VM_NOHUGEPAGE
242
243 /* This mask is used to clear all the VMA flags used by mlock */
244 #define VM_LOCKED_CLEAR_MASK    (~(VM_LOCKED | VM_LOCKONFAULT))
245
246 /*
247  * mapping from the currently active vm_flags protection bits (the
248  * low four bits) to a page protection mask..
249  */
250 extern pgprot_t protection_map[16];
251
252 #define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
253 #define FAULT_FLAG_MKWRITE      0x02    /* Fault was mkwrite of existing pte */
254 #define FAULT_FLAG_ALLOW_RETRY  0x04    /* Retry fault if blocking */
255 #define FAULT_FLAG_RETRY_NOWAIT 0x08    /* Don't drop mmap_sem and wait when retrying */
256 #define FAULT_FLAG_KILLABLE     0x10    /* The fault task is in SIGKILL killable region */
257 #define FAULT_FLAG_TRIED        0x20    /* Second try */
258 #define FAULT_FLAG_USER         0x40    /* The fault originated in userspace */
259
260 /*
261  * vm_fault is filled by the the pagefault handler and passed to the vma's
262  * ->fault function. The vma's ->fault is responsible for returning a bitmask
263  * of VM_FAULT_xxx flags that give details about how the fault was handled.
264  *
265  * MM layer fills up gfp_mask for page allocations but fault handler might
266  * alter it if its implementation requires a different allocation context.
267  *
268  * pgoff should be used in favour of virtual_address, if possible.
269  */
270 struct vm_fault {
271         unsigned int flags;             /* FAULT_FLAG_xxx flags */
272         gfp_t gfp_mask;                 /* gfp mask to be used for allocations */
273         pgoff_t pgoff;                  /* Logical page offset based on vma */
274         void __user *virtual_address;   /* Faulting virtual address */
275
276         struct page *cow_page;          /* Handler may choose to COW */
277         struct page *page;              /* ->fault handlers should return a
278                                          * page here, unless VM_FAULT_NOPAGE
279                                          * is set (which is also implied by
280                                          * VM_FAULT_ERROR).
281                                          */
282         /* for ->map_pages() only */
283         pgoff_t max_pgoff;              /* map pages for offset from pgoff till
284                                          * max_pgoff inclusive */
285         pte_t *pte;                     /* pte entry associated with ->pgoff */
286 };
287
288 /*
289  * These are the virtual MM functions - opening of an area, closing and
290  * unmapping it (needed to keep files on disk up-to-date etc), pointer
291  * to the functions called when a no-page or a wp-page exception occurs. 
292  */
293 struct vm_operations_struct {
294         void (*open)(struct vm_area_struct * area);
295         void (*close)(struct vm_area_struct * area);
296         int (*mremap)(struct vm_area_struct * area);
297         int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
298         int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
299                                                 pmd_t *, unsigned int flags);
300         void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
301
302         /* notification that a previously read-only page is about to become
303          * writable, if an error is returned it will cause a SIGBUS */
304         int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
305
306         /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
307         int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
308
309         /* called by access_process_vm when get_user_pages() fails, typically
310          * for use by special VMAs that can switch between memory and hardware
311          */
312         int (*access)(struct vm_area_struct *vma, unsigned long addr,
313                       void *buf, int len, int write);
314
315         /* Called by the /proc/PID/maps code to ask the vma whether it
316          * has a special name.  Returning non-NULL will also cause this
317          * vma to be dumped unconditionally. */
318         const char *(*name)(struct vm_area_struct *vma);
319
320 #ifdef CONFIG_NUMA
321         /*
322          * set_policy() op must add a reference to any non-NULL @new mempolicy
323          * to hold the policy upon return.  Caller should pass NULL @new to
324          * remove a policy and fall back to surrounding context--i.e. do not
325          * install a MPOL_DEFAULT policy, nor the task or system default
326          * mempolicy.
327          */
328         int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
329
330         /*
331          * get_policy() op must add reference [mpol_get()] to any policy at
332          * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
333          * in mm/mempolicy.c will do this automatically.
334          * get_policy() must NOT add a ref if the policy at (vma,addr) is not
335          * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
336          * If no [shared/vma] mempolicy exists at the addr, get_policy() op
337          * must return NULL--i.e., do not "fallback" to task or system default
338          * policy.
339          */
340         struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
341                                         unsigned long addr);
342 #endif
343         /*
344          * Called by vm_normal_page() for special PTEs to find the
345          * page for @addr.  This is useful if the default behavior
346          * (using pte_page()) would not find the correct page.
347          */
348         struct page *(*find_special_page)(struct vm_area_struct *vma,
349                                           unsigned long addr);
350 };
351
352 struct mmu_gather;
353 struct inode;
354
355 #define page_private(page)              ((page)->private)
356 #define set_page_private(page, v)       ((page)->private = (v))
357
358 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
359 static inline int pmd_devmap(pmd_t pmd)
360 {
361         return 0;
362 }
363 #endif
364
365 /*
366  * FIXME: take this include out, include page-flags.h in
367  * files which need it (119 of them)
368  */
369 #include <linux/page-flags.h>
370 #include <linux/huge_mm.h>
371
372 /*
373  * Methods to modify the page usage count.
374  *
375  * What counts for a page usage:
376  * - cache mapping   (page->mapping)
377  * - private data    (page->private)
378  * - page mapped in a task's page tables, each mapping
379  *   is counted separately
380  *
381  * Also, many kernel routines increase the page count before a critical
382  * routine so they can be sure the page doesn't go away from under them.
383  */
384
385 /*
386  * Drop a ref, return true if the refcount fell to zero (the page has no users)
387  */
388 static inline int put_page_testzero(struct page *page)
389 {
390         VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
391         return page_ref_dec_and_test(page);
392 }
393
394 /*
395  * Try to grab a ref unless the page has a refcount of zero, return false if
396  * that is the case.
397  * This can be called when MMU is off so it must not access
398  * any of the virtual mappings.
399  */
400 static inline int get_page_unless_zero(struct page *page)
401 {
402         return page_ref_add_unless(page, 1, 0);
403 }
404
405 extern int page_is_ram(unsigned long pfn);
406
407 enum {
408         REGION_INTERSECTS,
409         REGION_DISJOINT,
410         REGION_MIXED,
411 };
412
413 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
414                       unsigned long desc);
415
416 /* Support for virtually mapped pages */
417 struct page *vmalloc_to_page(const void *addr);
418 unsigned long vmalloc_to_pfn(const void *addr);
419
420 /*
421  * Determine if an address is within the vmalloc range
422  *
423  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
424  * is no special casing required.
425  */
426 static inline int is_vmalloc_addr(const void *x)
427 {
428 #ifdef CONFIG_MMU
429         unsigned long addr = (unsigned long)x;
430
431         return addr >= VMALLOC_START && addr < VMALLOC_END;
432 #else
433         return 0;
434 #endif
435 }
436 #ifdef CONFIG_MMU
437 extern int is_vmalloc_or_module_addr(const void *x);
438 #else
439 static inline int is_vmalloc_or_module_addr(const void *x)
440 {
441         return 0;
442 }
443 #endif
444
445 extern void kvfree(const void *addr);
446
447 static inline atomic_t *compound_mapcount_ptr(struct page *page)
448 {
449         return &page[1].compound_mapcount;
450 }
451
452 static inline int compound_mapcount(struct page *page)
453 {
454         if (!PageCompound(page))
455                 return 0;
456         page = compound_head(page);
457         return atomic_read(compound_mapcount_ptr(page)) + 1;
458 }
459
460 /*
461  * The atomic page->_mapcount, starts from -1: so that transitions
462  * both from it and to it can be tracked, using atomic_inc_and_test
463  * and atomic_add_negative(-1).
464  */
465 static inline void page_mapcount_reset(struct page *page)
466 {
467         atomic_set(&(page)->_mapcount, -1);
468 }
469
470 int __page_mapcount(struct page *page);
471
472 static inline int page_mapcount(struct page *page)
473 {
474         VM_BUG_ON_PAGE(PageSlab(page), page);
475
476         if (unlikely(PageCompound(page)))
477                 return __page_mapcount(page);
478         return atomic_read(&page->_mapcount) + 1;
479 }
480
481 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
482 int total_mapcount(struct page *page);
483 #else
484 static inline int total_mapcount(struct page *page)
485 {
486         return page_mapcount(page);
487 }
488 #endif
489
490 static inline struct page *virt_to_head_page(const void *x)
491 {
492         struct page *page = virt_to_page(x);
493
494         return compound_head(page);
495 }
496
497 void __put_page(struct page *page);
498
499 void put_pages_list(struct list_head *pages);
500
501 void split_page(struct page *page, unsigned int order);
502 int split_free_page(struct page *page);
503
504 /*
505  * Compound pages have a destructor function.  Provide a
506  * prototype for that function and accessor functions.
507  * These are _only_ valid on the head of a compound page.
508  */
509 typedef void compound_page_dtor(struct page *);
510
511 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
512 enum compound_dtor_id {
513         NULL_COMPOUND_DTOR,
514         COMPOUND_PAGE_DTOR,
515 #ifdef CONFIG_HUGETLB_PAGE
516         HUGETLB_PAGE_DTOR,
517 #endif
518 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
519         TRANSHUGE_PAGE_DTOR,
520 #endif
521         NR_COMPOUND_DTORS,
522 };
523 extern compound_page_dtor * const compound_page_dtors[];
524
525 static inline void set_compound_page_dtor(struct page *page,
526                 enum compound_dtor_id compound_dtor)
527 {
528         VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
529         page[1].compound_dtor = compound_dtor;
530 }
531
532 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
533 {
534         VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
535         return compound_page_dtors[page[1].compound_dtor];
536 }
537
538 static inline unsigned int compound_order(struct page *page)
539 {
540         if (!PageHead(page))
541                 return 0;
542         return page[1].compound_order;
543 }
544
545 static inline void set_compound_order(struct page *page, unsigned int order)
546 {
547         page[1].compound_order = order;
548 }
549
550 void free_compound_page(struct page *page);
551
552 #ifdef CONFIG_MMU
553 /*
554  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
555  * servicing faults for write access.  In the normal case, do always want
556  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
557  * that do not have writing enabled, when used by access_process_vm.
558  */
559 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
560 {
561         if (likely(vma->vm_flags & VM_WRITE))
562                 pte = pte_mkwrite(pte);
563         return pte;
564 }
565
566 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
567                 struct page *page, pte_t *pte, bool write, bool anon);
568 #endif
569
570 /*
571  * Multiple processes may "see" the same page. E.g. for untouched
572  * mappings of /dev/null, all processes see the same page full of
573  * zeroes, and text pages of executables and shared libraries have
574  * only one copy in memory, at most, normally.
575  *
576  * For the non-reserved pages, page_count(page) denotes a reference count.
577  *   page_count() == 0 means the page is free. page->lru is then used for
578  *   freelist management in the buddy allocator.
579  *   page_count() > 0  means the page has been allocated.
580  *
581  * Pages are allocated by the slab allocator in order to provide memory
582  * to kmalloc and kmem_cache_alloc. In this case, the management of the
583  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
584  * unless a particular usage is carefully commented. (the responsibility of
585  * freeing the kmalloc memory is the caller's, of course).
586  *
587  * A page may be used by anyone else who does a __get_free_page().
588  * In this case, page_count still tracks the references, and should only
589  * be used through the normal accessor functions. The top bits of page->flags
590  * and page->virtual store page management information, but all other fields
591  * are unused and could be used privately, carefully. The management of this
592  * page is the responsibility of the one who allocated it, and those who have
593  * subsequently been given references to it.
594  *
595  * The other pages (we may call them "pagecache pages") are completely
596  * managed by the Linux memory manager: I/O, buffers, swapping etc.
597  * The following discussion applies only to them.
598  *
599  * A pagecache page contains an opaque `private' member, which belongs to the
600  * page's address_space. Usually, this is the address of a circular list of
601  * the page's disk buffers. PG_private must be set to tell the VM to call
602  * into the filesystem to release these pages.
603  *
604  * A page may belong to an inode's memory mapping. In this case, page->mapping
605  * is the pointer to the inode, and page->index is the file offset of the page,
606  * in units of PAGE_CACHE_SIZE.
607  *
608  * If pagecache pages are not associated with an inode, they are said to be
609  * anonymous pages. These may become associated with the swapcache, and in that
610  * case PG_swapcache is set, and page->private is an offset into the swapcache.
611  *
612  * In either case (swapcache or inode backed), the pagecache itself holds one
613  * reference to the page. Setting PG_private should also increment the
614  * refcount. The each user mapping also has a reference to the page.
615  *
616  * The pagecache pages are stored in a per-mapping radix tree, which is
617  * rooted at mapping->page_tree, and indexed by offset.
618  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
619  * lists, we instead now tag pages as dirty/writeback in the radix tree.
620  *
621  * All pagecache pages may be subject to I/O:
622  * - inode pages may need to be read from disk,
623  * - inode pages which have been modified and are MAP_SHARED may need
624  *   to be written back to the inode on disk,
625  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
626  *   modified may need to be swapped out to swap space and (later) to be read
627  *   back into memory.
628  */
629
630 /*
631  * The zone field is never updated after free_area_init_core()
632  * sets it, so none of the operations on it need to be atomic.
633  */
634
635 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
636 #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
637 #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
638 #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
639 #define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
640
641 /*
642  * Define the bit shifts to access each section.  For non-existent
643  * sections we define the shift as 0; that plus a 0 mask ensures
644  * the compiler will optimise away reference to them.
645  */
646 #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
647 #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
648 #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
649 #define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
650
651 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
652 #ifdef NODE_NOT_IN_PAGE_FLAGS
653 #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
654 #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
655                                                 SECTIONS_PGOFF : ZONES_PGOFF)
656 #else
657 #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
658 #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
659                                                 NODES_PGOFF : ZONES_PGOFF)
660 #endif
661
662 #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
663
664 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
665 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
666 #endif
667
668 #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
669 #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
670 #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
671 #define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_SHIFT) - 1)
672 #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
673
674 static inline enum zone_type page_zonenum(const struct page *page)
675 {
676         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
677 }
678
679 #ifdef CONFIG_ZONE_DEVICE
680 void get_zone_device_page(struct page *page);
681 void put_zone_device_page(struct page *page);
682 static inline bool is_zone_device_page(const struct page *page)
683 {
684         return page_zonenum(page) == ZONE_DEVICE;
685 }
686 #else
687 static inline void get_zone_device_page(struct page *page)
688 {
689 }
690 static inline void put_zone_device_page(struct page *page)
691 {
692 }
693 static inline bool is_zone_device_page(const struct page *page)
694 {
695         return false;
696 }
697 #endif
698
699 static inline void get_page(struct page *page)
700 {
701         page = compound_head(page);
702         /*
703          * Getting a normal page or the head of a compound page
704          * requires to already have an elevated page->_count.
705          */
706         VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
707         page_ref_inc(page);
708
709         if (unlikely(is_zone_device_page(page)))
710                 get_zone_device_page(page);
711 }
712
713 static inline void put_page(struct page *page)
714 {
715         page = compound_head(page);
716
717         if (put_page_testzero(page))
718                 __put_page(page);
719
720         if (unlikely(is_zone_device_page(page)))
721                 put_zone_device_page(page);
722 }
723
724 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
725 #define SECTION_IN_PAGE_FLAGS
726 #endif
727
728 /*
729  * The identification function is mainly used by the buddy allocator for
730  * determining if two pages could be buddies. We are not really identifying
731  * the zone since we could be using the section number id if we do not have
732  * node id available in page flags.
733  * We only guarantee that it will return the same value for two combinable
734  * pages in a zone.
735  */
736 static inline int page_zone_id(struct page *page)
737 {
738         return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
739 }
740
741 static inline int zone_to_nid(struct zone *zone)
742 {
743 #ifdef CONFIG_NUMA
744         return zone->node;
745 #else
746         return 0;
747 #endif
748 }
749
750 #ifdef NODE_NOT_IN_PAGE_FLAGS
751 extern int page_to_nid(const struct page *page);
752 #else
753 static inline int page_to_nid(const struct page *page)
754 {
755         return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
756 }
757 #endif
758
759 #ifdef CONFIG_NUMA_BALANCING
760 static inline int cpu_pid_to_cpupid(int cpu, int pid)
761 {
762         return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
763 }
764
765 static inline int cpupid_to_pid(int cpupid)
766 {
767         return cpupid & LAST__PID_MASK;
768 }
769
770 static inline int cpupid_to_cpu(int cpupid)
771 {
772         return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
773 }
774
775 static inline int cpupid_to_nid(int cpupid)
776 {
777         return cpu_to_node(cpupid_to_cpu(cpupid));
778 }
779
780 static inline bool cpupid_pid_unset(int cpupid)
781 {
782         return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
783 }
784
785 static inline bool cpupid_cpu_unset(int cpupid)
786 {
787         return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
788 }
789
790 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
791 {
792         return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
793 }
794
795 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
796 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
797 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
798 {
799         return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
800 }
801
802 static inline int page_cpupid_last(struct page *page)
803 {
804         return page->_last_cpupid;
805 }
806 static inline void page_cpupid_reset_last(struct page *page)
807 {
808         page->_last_cpupid = -1 & LAST_CPUPID_MASK;
809 }
810 #else
811 static inline int page_cpupid_last(struct page *page)
812 {
813         return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
814 }
815
816 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
817
818 static inline void page_cpupid_reset_last(struct page *page)
819 {
820         int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
821
822         page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
823         page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
824 }
825 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
826 #else /* !CONFIG_NUMA_BALANCING */
827 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
828 {
829         return page_to_nid(page); /* XXX */
830 }
831
832 static inline int page_cpupid_last(struct page *page)
833 {
834         return page_to_nid(page); /* XXX */
835 }
836
837 static inline int cpupid_to_nid(int cpupid)
838 {
839         return -1;
840 }
841
842 static inline int cpupid_to_pid(int cpupid)
843 {
844         return -1;
845 }
846
847 static inline int cpupid_to_cpu(int cpupid)
848 {
849         return -1;
850 }
851
852 static inline int cpu_pid_to_cpupid(int nid, int pid)
853 {
854         return -1;
855 }
856
857 static inline bool cpupid_pid_unset(int cpupid)
858 {
859         return 1;
860 }
861
862 static inline void page_cpupid_reset_last(struct page *page)
863 {
864 }
865
866 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
867 {
868         return false;
869 }
870 #endif /* CONFIG_NUMA_BALANCING */
871
872 static inline struct zone *page_zone(const struct page *page)
873 {
874         return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
875 }
876
877 #ifdef SECTION_IN_PAGE_FLAGS
878 static inline void set_page_section(struct page *page, unsigned long section)
879 {
880         page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
881         page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
882 }
883
884 static inline unsigned long page_to_section(const struct page *page)
885 {
886         return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
887 }
888 #endif
889
890 static inline void set_page_zone(struct page *page, enum zone_type zone)
891 {
892         page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
893         page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
894 }
895
896 static inline void set_page_node(struct page *page, unsigned long node)
897 {
898         page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
899         page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
900 }
901
902 static inline void set_page_links(struct page *page, enum zone_type zone,
903         unsigned long node, unsigned long pfn)
904 {
905         set_page_zone(page, zone);
906         set_page_node(page, node);
907 #ifdef SECTION_IN_PAGE_FLAGS
908         set_page_section(page, pfn_to_section_nr(pfn));
909 #endif
910 }
911
912 #ifdef CONFIG_MEMCG
913 static inline struct mem_cgroup *page_memcg(struct page *page)
914 {
915         return page->mem_cgroup;
916 }
917 #else
918 static inline struct mem_cgroup *page_memcg(struct page *page)
919 {
920         return NULL;
921 }
922 #endif
923
924 /*
925  * Some inline functions in vmstat.h depend on page_zone()
926  */
927 #include <linux/vmstat.h>
928
929 static __always_inline void *lowmem_page_address(const struct page *page)
930 {
931         return __va(PFN_PHYS(page_to_pfn(page)));
932 }
933
934 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
935 #define HASHED_PAGE_VIRTUAL
936 #endif
937
938 #if defined(WANT_PAGE_VIRTUAL)
939 static inline void *page_address(const struct page *page)
940 {
941         return page->virtual;
942 }
943 static inline void set_page_address(struct page *page, void *address)
944 {
945         page->virtual = address;
946 }
947 #define page_address_init()  do { } while(0)
948 #endif
949
950 #if defined(HASHED_PAGE_VIRTUAL)
951 void *page_address(const struct page *page);
952 void set_page_address(struct page *page, void *virtual);
953 void page_address_init(void);
954 #endif
955
956 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
957 #define page_address(page) lowmem_page_address(page)
958 #define set_page_address(page, address)  do { } while(0)
959 #define page_address_init()  do { } while(0)
960 #endif
961
962 extern void *page_rmapping(struct page *page);
963 extern struct anon_vma *page_anon_vma(struct page *page);
964 extern struct address_space *page_mapping(struct page *page);
965
966 extern struct address_space *__page_file_mapping(struct page *);
967
968 static inline
969 struct address_space *page_file_mapping(struct page *page)
970 {
971         if (unlikely(PageSwapCache(page)))
972                 return __page_file_mapping(page);
973
974         return page->mapping;
975 }
976
977 /*
978  * Return the pagecache index of the passed page.  Regular pagecache pages
979  * use ->index whereas swapcache pages use ->private
980  */
981 static inline pgoff_t page_index(struct page *page)
982 {
983         if (unlikely(PageSwapCache(page)))
984                 return page_private(page);
985         return page->index;
986 }
987
988 extern pgoff_t __page_file_index(struct page *page);
989
990 /*
991  * Return the file index of the page. Regular pagecache pages use ->index
992  * whereas swapcache pages use swp_offset(->private)
993  */
994 static inline pgoff_t page_file_index(struct page *page)
995 {
996         if (unlikely(PageSwapCache(page)))
997                 return __page_file_index(page);
998
999         return page->index;
1000 }
1001
1002 /*
1003  * Return true if this page is mapped into pagetables.
1004  * For compound page it returns true if any subpage of compound page is mapped.
1005  */
1006 static inline bool page_mapped(struct page *page)
1007 {
1008         int i;
1009         if (likely(!PageCompound(page)))
1010                 return atomic_read(&page->_mapcount) >= 0;
1011         page = compound_head(page);
1012         if (atomic_read(compound_mapcount_ptr(page)) >= 0)
1013                 return true;
1014         for (i = 0; i < hpage_nr_pages(page); i++) {
1015                 if (atomic_read(&page[i]._mapcount) >= 0)
1016                         return true;
1017         }
1018         return false;
1019 }
1020
1021 /*
1022  * Return true only if the page has been allocated with
1023  * ALLOC_NO_WATERMARKS and the low watermark was not
1024  * met implying that the system is under some pressure.
1025  */
1026 static inline bool page_is_pfmemalloc(struct page *page)
1027 {
1028         /*
1029          * Page index cannot be this large so this must be
1030          * a pfmemalloc page.
1031          */
1032         return page->index == -1UL;
1033 }
1034
1035 /*
1036  * Only to be called by the page allocator on a freshly allocated
1037  * page.
1038  */
1039 static inline void set_page_pfmemalloc(struct page *page)
1040 {
1041         page->index = -1UL;
1042 }
1043
1044 static inline void clear_page_pfmemalloc(struct page *page)
1045 {
1046         page->index = 0;
1047 }
1048
1049 /*
1050  * Different kinds of faults, as returned by handle_mm_fault().
1051  * Used to decide whether a process gets delivered SIGBUS or
1052  * just gets major/minor fault counters bumped up.
1053  */
1054
1055 #define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
1056
1057 #define VM_FAULT_OOM    0x0001
1058 #define VM_FAULT_SIGBUS 0x0002
1059 #define VM_FAULT_MAJOR  0x0004
1060 #define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
1061 #define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
1062 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1063 #define VM_FAULT_SIGSEGV 0x0040
1064
1065 #define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
1066 #define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
1067 #define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
1068 #define VM_FAULT_FALLBACK 0x0800        /* huge page fault failed, fall back to small */
1069
1070 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1071
1072 #define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1073                          VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1074                          VM_FAULT_FALLBACK)
1075
1076 /* Encode hstate index for a hwpoisoned large page */
1077 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1078 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1079
1080 /*
1081  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1082  */
1083 extern void pagefault_out_of_memory(void);
1084
1085 #define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
1086
1087 /*
1088  * Flags passed to show_mem() and show_free_areas() to suppress output in
1089  * various contexts.
1090  */
1091 #define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
1092
1093 extern void show_free_areas(unsigned int flags);
1094 extern bool skip_free_areas_node(unsigned int flags, int nid);
1095
1096 int shmem_zero_setup(struct vm_area_struct *);
1097 #ifdef CONFIG_SHMEM
1098 bool shmem_mapping(struct address_space *mapping);
1099 #else
1100 static inline bool shmem_mapping(struct address_space *mapping)
1101 {
1102         return false;
1103 }
1104 #endif
1105
1106 extern bool can_do_mlock(void);
1107 extern int user_shm_lock(size_t, struct user_struct *);
1108 extern void user_shm_unlock(size_t, struct user_struct *);
1109
1110 /*
1111  * Parameter block passed down to zap_pte_range in exceptional cases.
1112  */
1113 struct zap_details {
1114         struct address_space *check_mapping;    /* Check page->mapping if set */
1115         pgoff_t first_index;                    /* Lowest page->index to unmap */
1116         pgoff_t last_index;                     /* Highest page->index to unmap */
1117 };
1118
1119 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1120                 pte_t pte);
1121
1122 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1123                 unsigned long size);
1124 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1125                 unsigned long size, struct zap_details *);
1126 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1127                 unsigned long start, unsigned long end);
1128
1129 /**
1130  * mm_walk - callbacks for walk_page_range
1131  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1132  *             this handler is required to be able to handle
1133  *             pmd_trans_huge() pmds.  They may simply choose to
1134  *             split_huge_page() instead of handling it explicitly.
1135  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1136  * @pte_hole: if set, called for each hole at all levels
1137  * @hugetlb_entry: if set, called for each hugetlb entry
1138  * @test_walk: caller specific callback function to determine whether
1139  *             we walk over the current vma or not. A positive returned
1140  *             value means "do page table walk over the current vma,"
1141  *             and a negative one means "abort current page table walk
1142  *             right now." 0 means "skip the current vma."
1143  * @mm:        mm_struct representing the target process of page table walk
1144  * @vma:       vma currently walked (NULL if walking outside vmas)
1145  * @private:   private data for callbacks' usage
1146  *
1147  * (see the comment on walk_page_range() for more details)
1148  */
1149 struct mm_walk {
1150         int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1151                          unsigned long next, struct mm_walk *walk);
1152         int (*pte_entry)(pte_t *pte, unsigned long addr,
1153                          unsigned long next, struct mm_walk *walk);
1154         int (*pte_hole)(unsigned long addr, unsigned long next,
1155                         struct mm_walk *walk);
1156         int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1157                              unsigned long addr, unsigned long next,
1158                              struct mm_walk *walk);
1159         int (*test_walk)(unsigned long addr, unsigned long next,
1160                         struct mm_walk *walk);
1161         struct mm_struct *mm;
1162         struct vm_area_struct *vma;
1163         void *private;
1164 };
1165
1166 int walk_page_range(unsigned long addr, unsigned long end,
1167                 struct mm_walk *walk);
1168 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1169 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1170                 unsigned long end, unsigned long floor, unsigned long ceiling);
1171 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1172                         struct vm_area_struct *vma);
1173 void unmap_mapping_range(struct address_space *mapping,
1174                 loff_t const holebegin, loff_t const holelen, int even_cows);
1175 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1176         unsigned long *pfn);
1177 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1178                 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1179 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1180                         void *buf, int len, int write);
1181
1182 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1183                 loff_t const holebegin, loff_t const holelen)
1184 {
1185         unmap_mapping_range(mapping, holebegin, holelen, 0);
1186 }
1187
1188 extern void truncate_pagecache(struct inode *inode, loff_t new);
1189 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1190 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1191 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1192 int truncate_inode_page(struct address_space *mapping, struct page *page);
1193 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1194 int invalidate_inode_page(struct page *page);
1195
1196 #ifdef CONFIG_MMU
1197 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1198                         unsigned long address, unsigned int flags);
1199 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1200                             unsigned long address, unsigned int fault_flags,
1201                             bool *unlocked);
1202 #else
1203 static inline int handle_mm_fault(struct mm_struct *mm,
1204                         struct vm_area_struct *vma, unsigned long address,
1205                         unsigned int flags)
1206 {
1207         /* should never happen if there's no MMU */
1208         BUG();
1209         return VM_FAULT_SIGBUS;
1210 }
1211 static inline int fixup_user_fault(struct task_struct *tsk,
1212                 struct mm_struct *mm, unsigned long address,
1213                 unsigned int fault_flags, bool *unlocked)
1214 {
1215         /* should never happen if there's no MMU */
1216         BUG();
1217         return -EFAULT;
1218 }
1219 #endif
1220
1221 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1222 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1223                 void *buf, int len, int write);
1224
1225 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1226                       unsigned long start, unsigned long nr_pages,
1227                       unsigned int foll_flags, struct page **pages,
1228                       struct vm_area_struct **vmas, int *nonblocking);
1229 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1230                     unsigned long start, unsigned long nr_pages,
1231                     int write, int force, struct page **pages,
1232                     struct vm_area_struct **vmas);
1233 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1234                     unsigned long start, unsigned long nr_pages,
1235                     int write, int force, struct page **pages,
1236                     int *locked);
1237 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1238                                unsigned long start, unsigned long nr_pages,
1239                                int write, int force, struct page **pages,
1240                                unsigned int gup_flags);
1241 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1242                     unsigned long start, unsigned long nr_pages,
1243                     int write, int force, struct page **pages);
1244 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1245                         struct page **pages);
1246
1247 /* Container for pinned pfns / pages */
1248 struct frame_vector {
1249         unsigned int nr_allocated;      /* Number of frames we have space for */
1250         unsigned int nr_frames; /* Number of frames stored in ptrs array */
1251         bool got_ref;           /* Did we pin pages by getting page ref? */
1252         bool is_pfns;           /* Does array contain pages or pfns? */
1253         void *ptrs[0];          /* Array of pinned pfns / pages. Use
1254                                  * pfns_vector_pages() or pfns_vector_pfns()
1255                                  * for access */
1256 };
1257
1258 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1259 void frame_vector_destroy(struct frame_vector *vec);
1260 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1261                      bool write, bool force, struct frame_vector *vec);
1262 void put_vaddr_frames(struct frame_vector *vec);
1263 int frame_vector_to_pages(struct frame_vector *vec);
1264 void frame_vector_to_pfns(struct frame_vector *vec);
1265
1266 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1267 {
1268         return vec->nr_frames;
1269 }
1270
1271 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1272 {
1273         if (vec->is_pfns) {
1274                 int err = frame_vector_to_pages(vec);
1275
1276                 if (err)
1277                         return ERR_PTR(err);
1278         }
1279         return (struct page **)(vec->ptrs);
1280 }
1281
1282 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1283 {
1284         if (!vec->is_pfns)
1285                 frame_vector_to_pfns(vec);
1286         return (unsigned long *)(vec->ptrs);
1287 }
1288
1289 struct kvec;
1290 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1291                         struct page **pages);
1292 int get_kernel_page(unsigned long start, int write, struct page **pages);
1293 struct page *get_dump_page(unsigned long addr);
1294
1295 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1296 extern void do_invalidatepage(struct page *page, unsigned int offset,
1297                               unsigned int length);
1298
1299 int __set_page_dirty_nobuffers(struct page *page);
1300 int __set_page_dirty_no_writeback(struct page *page);
1301 int redirty_page_for_writepage(struct writeback_control *wbc,
1302                                 struct page *page);
1303 void account_page_dirtied(struct page *page, struct address_space *mapping);
1304 void account_page_cleaned(struct page *page, struct address_space *mapping,
1305                           struct bdi_writeback *wb);
1306 int set_page_dirty(struct page *page);
1307 int set_page_dirty_lock(struct page *page);
1308 void cancel_dirty_page(struct page *page);
1309 int clear_page_dirty_for_io(struct page *page);
1310
1311 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1312
1313 /* Is the vma a continuation of the stack vma above it? */
1314 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1315 {
1316         return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1317 }
1318
1319 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1320 {
1321         return !vma->vm_ops;
1322 }
1323
1324 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1325                                              unsigned long addr)
1326 {
1327         return (vma->vm_flags & VM_GROWSDOWN) &&
1328                 (vma->vm_start == addr) &&
1329                 !vma_growsdown(vma->vm_prev, addr);
1330 }
1331
1332 /* Is the vma a continuation of the stack vma below it? */
1333 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1334 {
1335         return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1336 }
1337
1338 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1339                                            unsigned long addr)
1340 {
1341         return (vma->vm_flags & VM_GROWSUP) &&
1342                 (vma->vm_end == addr) &&
1343                 !vma_growsup(vma->vm_next, addr);
1344 }
1345
1346 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
1347
1348 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1349                 unsigned long old_addr, struct vm_area_struct *new_vma,
1350                 unsigned long new_addr, unsigned long len,
1351                 bool need_rmap_locks);
1352 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1353                               unsigned long end, pgprot_t newprot,
1354                               int dirty_accountable, int prot_numa);
1355 extern int mprotect_fixup(struct vm_area_struct *vma,
1356                           struct vm_area_struct **pprev, unsigned long start,
1357                           unsigned long end, unsigned long newflags);
1358
1359 /*
1360  * doesn't attempt to fault and will return short.
1361  */
1362 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1363                           struct page **pages);
1364 /*
1365  * per-process(per-mm_struct) statistics.
1366  */
1367 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1368 {
1369         long val = atomic_long_read(&mm->rss_stat.count[member]);
1370
1371 #ifdef SPLIT_RSS_COUNTING
1372         /*
1373          * counter is updated in asynchronous manner and may go to minus.
1374          * But it's never be expected number for users.
1375          */
1376         if (val < 0)
1377                 val = 0;
1378 #endif
1379         return (unsigned long)val;
1380 }
1381
1382 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1383 {
1384         atomic_long_add(value, &mm->rss_stat.count[member]);
1385 }
1386
1387 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1388 {
1389         atomic_long_inc(&mm->rss_stat.count[member]);
1390 }
1391
1392 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1393 {
1394         atomic_long_dec(&mm->rss_stat.count[member]);
1395 }
1396
1397 /* Optimized variant when page is already known not to be PageAnon */
1398 static inline int mm_counter_file(struct page *page)
1399 {
1400         if (PageSwapBacked(page))
1401                 return MM_SHMEMPAGES;
1402         return MM_FILEPAGES;
1403 }
1404
1405 static inline int mm_counter(struct page *page)
1406 {
1407         if (PageAnon(page))
1408                 return MM_ANONPAGES;
1409         return mm_counter_file(page);
1410 }
1411
1412 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1413 {
1414         return get_mm_counter(mm, MM_FILEPAGES) +
1415                 get_mm_counter(mm, MM_ANONPAGES) +
1416                 get_mm_counter(mm, MM_SHMEMPAGES);
1417 }
1418
1419 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1420 {
1421         return max(mm->hiwater_rss, get_mm_rss(mm));
1422 }
1423
1424 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1425 {
1426         return max(mm->hiwater_vm, mm->total_vm);
1427 }
1428
1429 static inline void update_hiwater_rss(struct mm_struct *mm)
1430 {
1431         unsigned long _rss = get_mm_rss(mm);
1432
1433         if ((mm)->hiwater_rss < _rss)
1434                 (mm)->hiwater_rss = _rss;
1435 }
1436
1437 static inline void update_hiwater_vm(struct mm_struct *mm)
1438 {
1439         if (mm->hiwater_vm < mm->total_vm)
1440                 mm->hiwater_vm = mm->total_vm;
1441 }
1442
1443 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1444 {
1445         mm->hiwater_rss = get_mm_rss(mm);
1446 }
1447
1448 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1449                                          struct mm_struct *mm)
1450 {
1451         unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1452
1453         if (*maxrss < hiwater_rss)
1454                 *maxrss = hiwater_rss;
1455 }
1456
1457 #if defined(SPLIT_RSS_COUNTING)
1458 void sync_mm_rss(struct mm_struct *mm);
1459 #else
1460 static inline void sync_mm_rss(struct mm_struct *mm)
1461 {
1462 }
1463 #endif
1464
1465 #ifndef __HAVE_ARCH_PTE_DEVMAP
1466 static inline int pte_devmap(pte_t pte)
1467 {
1468         return 0;
1469 }
1470 #endif
1471
1472 int vma_wants_writenotify(struct vm_area_struct *vma);
1473
1474 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1475                                spinlock_t **ptl);
1476 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1477                                     spinlock_t **ptl)
1478 {
1479         pte_t *ptep;
1480         __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1481         return ptep;
1482 }
1483
1484 #ifdef __PAGETABLE_PUD_FOLDED
1485 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1486                                                 unsigned long address)
1487 {
1488         return 0;
1489 }
1490 #else
1491 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1492 #endif
1493
1494 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1495 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1496                                                 unsigned long address)
1497 {
1498         return 0;
1499 }
1500
1501 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1502
1503 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1504 {
1505         return 0;
1506 }
1507
1508 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1509 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1510
1511 #else
1512 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1513
1514 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1515 {
1516         atomic_long_set(&mm->nr_pmds, 0);
1517 }
1518
1519 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1520 {
1521         return atomic_long_read(&mm->nr_pmds);
1522 }
1523
1524 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1525 {
1526         atomic_long_inc(&mm->nr_pmds);
1527 }
1528
1529 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1530 {
1531         atomic_long_dec(&mm->nr_pmds);
1532 }
1533 #endif
1534
1535 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1536 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1537
1538 /*
1539  * The following ifdef needed to get the 4level-fixup.h header to work.
1540  * Remove it when 4level-fixup.h has been removed.
1541  */
1542 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1543 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1544 {
1545         return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1546                 NULL: pud_offset(pgd, address);
1547 }
1548
1549 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1550 {
1551         return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1552                 NULL: pmd_offset(pud, address);
1553 }
1554 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1555
1556 #if USE_SPLIT_PTE_PTLOCKS
1557 #if ALLOC_SPLIT_PTLOCKS
1558 void __init ptlock_cache_init(void);
1559 extern bool ptlock_alloc(struct page *page);
1560 extern void ptlock_free(struct page *page);
1561
1562 static inline spinlock_t *ptlock_ptr(struct page *page)
1563 {
1564         return page->ptl;
1565 }
1566 #else /* ALLOC_SPLIT_PTLOCKS */
1567 static inline void ptlock_cache_init(void)
1568 {
1569 }
1570
1571 static inline bool ptlock_alloc(struct page *page)
1572 {
1573         return true;
1574 }
1575
1576 static inline void ptlock_free(struct page *page)
1577 {
1578 }
1579
1580 static inline spinlock_t *ptlock_ptr(struct page *page)
1581 {
1582         return &page->ptl;
1583 }
1584 #endif /* ALLOC_SPLIT_PTLOCKS */
1585
1586 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1587 {
1588         return ptlock_ptr(pmd_page(*pmd));
1589 }
1590
1591 static inline bool ptlock_init(struct page *page)
1592 {
1593         /*
1594          * prep_new_page() initialize page->private (and therefore page->ptl)
1595          * with 0. Make sure nobody took it in use in between.
1596          *
1597          * It can happen if arch try to use slab for page table allocation:
1598          * slab code uses page->slab_cache, which share storage with page->ptl.
1599          */
1600         VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1601         if (!ptlock_alloc(page))
1602                 return false;
1603         spin_lock_init(ptlock_ptr(page));
1604         return true;
1605 }
1606
1607 /* Reset page->mapping so free_pages_check won't complain. */
1608 static inline void pte_lock_deinit(struct page *page)
1609 {
1610         page->mapping = NULL;
1611         ptlock_free(page);
1612 }
1613
1614 #else   /* !USE_SPLIT_PTE_PTLOCKS */
1615 /*
1616  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1617  */
1618 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1619 {
1620         return &mm->page_table_lock;
1621 }
1622 static inline void ptlock_cache_init(void) {}
1623 static inline bool ptlock_init(struct page *page) { return true; }
1624 static inline void pte_lock_deinit(struct page *page) {}
1625 #endif /* USE_SPLIT_PTE_PTLOCKS */
1626
1627 static inline void pgtable_init(void)
1628 {
1629         ptlock_cache_init();
1630         pgtable_cache_init();
1631 }
1632
1633 static inline bool pgtable_page_ctor(struct page *page)
1634 {
1635         if (!ptlock_init(page))
1636                 return false;
1637         inc_zone_page_state(page, NR_PAGETABLE);
1638         return true;
1639 }
1640
1641 static inline void pgtable_page_dtor(struct page *page)
1642 {
1643         pte_lock_deinit(page);
1644         dec_zone_page_state(page, NR_PAGETABLE);
1645 }
1646
1647 #define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1648 ({                                                      \
1649         spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1650         pte_t *__pte = pte_offset_map(pmd, address);    \
1651         *(ptlp) = __ptl;                                \
1652         spin_lock(__ptl);                               \
1653         __pte;                                          \
1654 })
1655
1656 #define pte_unmap_unlock(pte, ptl)      do {            \
1657         spin_unlock(ptl);                               \
1658         pte_unmap(pte);                                 \
1659 } while (0)
1660
1661 #define pte_alloc(mm, pmd, address)                     \
1662         (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1663
1664 #define pte_alloc_map(mm, pmd, address)                 \
1665         (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1666
1667 #define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1668         (pte_alloc(mm, pmd, address) ?                  \
1669                  NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1670
1671 #define pte_alloc_kernel(pmd, address)                  \
1672         ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1673                 NULL: pte_offset_kernel(pmd, address))
1674
1675 #if USE_SPLIT_PMD_PTLOCKS
1676
1677 static struct page *pmd_to_page(pmd_t *pmd)
1678 {
1679         unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1680         return virt_to_page((void *)((unsigned long) pmd & mask));
1681 }
1682
1683 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1684 {
1685         return ptlock_ptr(pmd_to_page(pmd));
1686 }
1687
1688 static inline bool pgtable_pmd_page_ctor(struct page *page)
1689 {
1690 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1691         page->pmd_huge_pte = NULL;
1692 #endif
1693         return ptlock_init(page);
1694 }
1695
1696 static inline void pgtable_pmd_page_dtor(struct page *page)
1697 {
1698 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1699         VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1700 #endif
1701         ptlock_free(page);
1702 }
1703
1704 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1705
1706 #else
1707
1708 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1709 {
1710         return &mm->page_table_lock;
1711 }
1712
1713 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1714 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1715
1716 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1717
1718 #endif
1719
1720 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1721 {
1722         spinlock_t *ptl = pmd_lockptr(mm, pmd);
1723         spin_lock(ptl);
1724         return ptl;
1725 }
1726
1727 extern void free_area_init(unsigned long * zones_size);
1728 extern void free_area_init_node(int nid, unsigned long * zones_size,
1729                 unsigned long zone_start_pfn, unsigned long *zholes_size);
1730 extern void free_initmem(void);
1731
1732 /*
1733  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1734  * into the buddy system. The freed pages will be poisoned with pattern
1735  * "poison" if it's within range [0, UCHAR_MAX].
1736  * Return pages freed into the buddy system.
1737  */
1738 extern unsigned long free_reserved_area(void *start, void *end,
1739                                         int poison, char *s);
1740
1741 #ifdef  CONFIG_HIGHMEM
1742 /*
1743  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1744  * and totalram_pages.
1745  */
1746 extern void free_highmem_page(struct page *page);
1747 #endif
1748
1749 extern void adjust_managed_page_count(struct page *page, long count);
1750 extern void mem_init_print_info(const char *str);
1751
1752 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1753
1754 /* Free the reserved page into the buddy system, so it gets managed. */
1755 static inline void __free_reserved_page(struct page *page)
1756 {
1757         ClearPageReserved(page);
1758         init_page_count(page);
1759         __free_page(page);
1760 }
1761
1762 static inline void free_reserved_page(struct page *page)
1763 {
1764         __free_reserved_page(page);
1765         adjust_managed_page_count(page, 1);
1766 }
1767
1768 static inline void mark_page_reserved(struct page *page)
1769 {
1770         SetPageReserved(page);
1771         adjust_managed_page_count(page, -1);
1772 }
1773
1774 /*
1775  * Default method to free all the __init memory into the buddy system.
1776  * The freed pages will be poisoned with pattern "poison" if it's within
1777  * range [0, UCHAR_MAX].
1778  * Return pages freed into the buddy system.
1779  */
1780 static inline unsigned long free_initmem_default(int poison)
1781 {
1782         extern char __init_begin[], __init_end[];
1783
1784         return free_reserved_area(&__init_begin, &__init_end,
1785                                   poison, "unused kernel");
1786 }
1787
1788 static inline unsigned long get_num_physpages(void)
1789 {
1790         int nid;
1791         unsigned long phys_pages = 0;
1792
1793         for_each_online_node(nid)
1794                 phys_pages += node_present_pages(nid);
1795
1796         return phys_pages;
1797 }
1798
1799 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1800 /*
1801  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1802  * zones, allocate the backing mem_map and account for memory holes in a more
1803  * architecture independent manner. This is a substitute for creating the
1804  * zone_sizes[] and zholes_size[] arrays and passing them to
1805  * free_area_init_node()
1806  *
1807  * An architecture is expected to register range of page frames backed by
1808  * physical memory with memblock_add[_node]() before calling
1809  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1810  * usage, an architecture is expected to do something like
1811  *
1812  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1813  *                                                       max_highmem_pfn};
1814  * for_each_valid_physical_page_range()
1815  *      memblock_add_node(base, size, nid)
1816  * free_area_init_nodes(max_zone_pfns);
1817  *
1818  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1819  * registered physical page range.  Similarly
1820  * sparse_memory_present_with_active_regions() calls memory_present() for
1821  * each range when SPARSEMEM is enabled.
1822  *
1823  * See mm/page_alloc.c for more information on each function exposed by
1824  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1825  */
1826 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1827 unsigned long node_map_pfn_alignment(void);
1828 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1829                                                 unsigned long end_pfn);
1830 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1831                                                 unsigned long end_pfn);
1832 extern void get_pfn_range_for_nid(unsigned int nid,
1833                         unsigned long *start_pfn, unsigned long *end_pfn);
1834 extern unsigned long find_min_pfn_with_active_regions(void);
1835 extern void free_bootmem_with_active_regions(int nid,
1836                                                 unsigned long max_low_pfn);
1837 extern void sparse_memory_present_with_active_regions(int nid);
1838
1839 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1840
1841 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1842     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1843 static inline int __early_pfn_to_nid(unsigned long pfn,
1844                                         struct mminit_pfnnid_cache *state)
1845 {
1846         return 0;
1847 }
1848 #else
1849 /* please see mm/page_alloc.c */
1850 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1851 /* there is a per-arch backend function. */
1852 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1853                                         struct mminit_pfnnid_cache *state);
1854 #endif
1855
1856 extern void set_dma_reserve(unsigned long new_dma_reserve);
1857 extern void memmap_init_zone(unsigned long, int, unsigned long,
1858                                 unsigned long, enum memmap_context);
1859 extern void setup_per_zone_wmarks(void);
1860 extern int __meminit init_per_zone_wmark_min(void);
1861 extern void mem_init(void);
1862 extern void __init mmap_init(void);
1863 extern void show_mem(unsigned int flags);
1864 extern long si_mem_available(void);
1865 extern void si_meminfo(struct sysinfo * val);
1866 extern void si_meminfo_node(struct sysinfo *val, int nid);
1867
1868 extern __printf(3, 4)
1869 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1870                 const char *fmt, ...);
1871
1872 extern void setup_per_cpu_pageset(void);
1873
1874 extern void zone_pcp_update(struct zone *zone);
1875 extern void zone_pcp_reset(struct zone *zone);
1876
1877 /* page_alloc.c */
1878 extern int min_free_kbytes;
1879 extern int watermark_scale_factor;
1880
1881 /* nommu.c */
1882 extern atomic_long_t mmap_pages_allocated;
1883 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1884
1885 /* interval_tree.c */
1886 void vma_interval_tree_insert(struct vm_area_struct *node,
1887                               struct rb_root *root);
1888 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1889                                     struct vm_area_struct *prev,
1890                                     struct rb_root *root);
1891 void vma_interval_tree_remove(struct vm_area_struct *node,
1892                               struct rb_root *root);
1893 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1894                                 unsigned long start, unsigned long last);
1895 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1896                                 unsigned long start, unsigned long last);
1897
1898 #define vma_interval_tree_foreach(vma, root, start, last)               \
1899         for (vma = vma_interval_tree_iter_first(root, start, last);     \
1900              vma; vma = vma_interval_tree_iter_next(vma, start, last))
1901
1902 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1903                                    struct rb_root *root);
1904 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1905                                    struct rb_root *root);
1906 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1907         struct rb_root *root, unsigned long start, unsigned long last);
1908 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1909         struct anon_vma_chain *node, unsigned long start, unsigned long last);
1910 #ifdef CONFIG_DEBUG_VM_RB
1911 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1912 #endif
1913
1914 #define anon_vma_interval_tree_foreach(avc, root, start, last)           \
1915         for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1916              avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1917
1918 /* mmap.c */
1919 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1920 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1921         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1922 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1923         struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1924         unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1925         struct mempolicy *, struct vm_userfaultfd_ctx);
1926 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1927 extern int split_vma(struct mm_struct *,
1928         struct vm_area_struct *, unsigned long addr, int new_below);
1929 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1930 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1931         struct rb_node **, struct rb_node *);
1932 extern void unlink_file_vma(struct vm_area_struct *);
1933 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1934         unsigned long addr, unsigned long len, pgoff_t pgoff,
1935         bool *need_rmap_locks);
1936 extern void exit_mmap(struct mm_struct *);
1937
1938 static inline int check_data_rlimit(unsigned long rlim,
1939                                     unsigned long new,
1940                                     unsigned long start,
1941                                     unsigned long end_data,
1942                                     unsigned long start_data)
1943 {
1944         if (rlim < RLIM_INFINITY) {
1945                 if (((new - start) + (end_data - start_data)) > rlim)
1946                         return -ENOSPC;
1947         }
1948
1949         return 0;
1950 }
1951
1952 extern int mm_take_all_locks(struct mm_struct *mm);
1953 extern void mm_drop_all_locks(struct mm_struct *mm);
1954
1955 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1956 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1957
1958 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1959 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1960
1961 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1962                                    unsigned long addr, unsigned long len,
1963                                    unsigned long flags,
1964                                    const struct vm_special_mapping *spec);
1965 /* This is an obsolete alternative to _install_special_mapping. */
1966 extern int install_special_mapping(struct mm_struct *mm,
1967                                    unsigned long addr, unsigned long len,
1968                                    unsigned long flags, struct page **pages);
1969
1970 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1971
1972 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1973         unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1974 extern unsigned long do_mmap(struct file *file, unsigned long addr,
1975         unsigned long len, unsigned long prot, unsigned long flags,
1976         vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1977 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1978
1979 static inline unsigned long
1980 do_mmap_pgoff(struct file *file, unsigned long addr,
1981         unsigned long len, unsigned long prot, unsigned long flags,
1982         unsigned long pgoff, unsigned long *populate)
1983 {
1984         return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1985 }
1986
1987 #ifdef CONFIG_MMU
1988 extern int __mm_populate(unsigned long addr, unsigned long len,
1989                          int ignore_errors);
1990 static inline void mm_populate(unsigned long addr, unsigned long len)
1991 {
1992         /* Ignore errors */
1993         (void) __mm_populate(addr, len, 1);
1994 }
1995 #else
1996 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1997 #endif
1998
1999 /* These take the mm semaphore themselves */
2000 extern unsigned long vm_brk(unsigned long, unsigned long);
2001 extern int vm_munmap(unsigned long, size_t);
2002 extern unsigned long vm_mmap(struct file *, unsigned long,
2003         unsigned long, unsigned long,
2004         unsigned long, unsigned long);
2005
2006 struct vm_unmapped_area_info {
2007 #define VM_UNMAPPED_AREA_TOPDOWN 1
2008         unsigned long flags;
2009         unsigned long length;
2010         unsigned long low_limit;
2011         unsigned long high_limit;
2012         unsigned long align_mask;
2013         unsigned long align_offset;
2014 };
2015
2016 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2017 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2018
2019 /*
2020  * Search for an unmapped address range.
2021  *
2022  * We are looking for a range that:
2023  * - does not intersect with any VMA;
2024  * - is contained within the [low_limit, high_limit) interval;
2025  * - is at least the desired size.
2026  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2027  */
2028 static inline unsigned long
2029 vm_unmapped_area(struct vm_unmapped_area_info *info)
2030 {
2031         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2032                 return unmapped_area_topdown(info);
2033         else
2034                 return unmapped_area(info);
2035 }
2036
2037 /* truncate.c */
2038 extern void truncate_inode_pages(struct address_space *, loff_t);
2039 extern void truncate_inode_pages_range(struct address_space *,
2040                                        loff_t lstart, loff_t lend);
2041 extern void truncate_inode_pages_final(struct address_space *);
2042
2043 /* generic vm_area_ops exported for stackable file systems */
2044 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2045 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2046 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2047
2048 /* mm/page-writeback.c */
2049 int write_one_page(struct page *page, int wait);
2050 void task_dirty_inc(struct task_struct *tsk);
2051
2052 /* readahead.c */
2053 #define VM_MAX_READAHEAD        128     /* kbytes */
2054 #define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
2055
2056 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2057                         pgoff_t offset, unsigned long nr_to_read);
2058
2059 void page_cache_sync_readahead(struct address_space *mapping,
2060                                struct file_ra_state *ra,
2061                                struct file *filp,
2062                                pgoff_t offset,
2063                                unsigned long size);
2064
2065 void page_cache_async_readahead(struct address_space *mapping,
2066                                 struct file_ra_state *ra,
2067                                 struct file *filp,
2068                                 struct page *pg,
2069                                 pgoff_t offset,
2070                                 unsigned long size);
2071
2072 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2073 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2074
2075 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2076 extern int expand_downwards(struct vm_area_struct *vma,
2077                 unsigned long address);
2078 #if VM_GROWSUP
2079 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2080 #else
2081   #define expand_upwards(vma, address) (0)
2082 #endif
2083
2084 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2085 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2086 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2087                                              struct vm_area_struct **pprev);
2088
2089 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2090    NULL if none.  Assume start_addr < end_addr. */
2091 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2092 {
2093         struct vm_area_struct * vma = find_vma(mm,start_addr);
2094
2095         if (vma && end_addr <= vma->vm_start)
2096                 vma = NULL;
2097         return vma;
2098 }
2099
2100 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2101 {
2102         return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2103 }
2104
2105 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2106 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2107                                 unsigned long vm_start, unsigned long vm_end)
2108 {
2109         struct vm_area_struct *vma = find_vma(mm, vm_start);
2110
2111         if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2112                 vma = NULL;
2113
2114         return vma;
2115 }
2116
2117 #ifdef CONFIG_MMU
2118 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2119 void vma_set_page_prot(struct vm_area_struct *vma);
2120 #else
2121 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2122 {
2123         return __pgprot(0);
2124 }
2125 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2126 {
2127         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2128 }
2129 #endif
2130
2131 #ifdef CONFIG_NUMA_BALANCING
2132 unsigned long change_prot_numa(struct vm_area_struct *vma,
2133                         unsigned long start, unsigned long end);
2134 #endif
2135
2136 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2137 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2138                         unsigned long pfn, unsigned long size, pgprot_t);
2139 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2140 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2141                         unsigned long pfn);
2142 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2143                         unsigned long pfn, pgprot_t pgprot);
2144 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2145                         pfn_t pfn);
2146 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2147
2148
2149 struct page *follow_page_mask(struct vm_area_struct *vma,
2150                               unsigned long address, unsigned int foll_flags,
2151                               unsigned int *page_mask);
2152
2153 static inline struct page *follow_page(struct vm_area_struct *vma,
2154                 unsigned long address, unsigned int foll_flags)
2155 {
2156         unsigned int unused_page_mask;
2157         return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2158 }
2159
2160 #define FOLL_WRITE      0x01    /* check pte is writable */
2161 #define FOLL_TOUCH      0x02    /* mark page accessed */
2162 #define FOLL_GET        0x04    /* do get_page on page */
2163 #define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
2164 #define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
2165 #define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
2166                                  * and return without waiting upon it */
2167 #define FOLL_POPULATE   0x40    /* fault in page */
2168 #define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
2169 #define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
2170 #define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
2171 #define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
2172 #define FOLL_TRIED      0x800   /* a retry, previous pass started an IO */
2173 #define FOLL_MLOCK      0x1000  /* lock present pages */
2174
2175 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2176                         void *data);
2177 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2178                                unsigned long size, pte_fn_t fn, void *data);
2179
2180
2181 #ifdef CONFIG_PAGE_POISONING
2182 extern bool page_poisoning_enabled(void);
2183 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2184 extern bool page_is_poisoned(struct page *page);
2185 #else
2186 static inline bool page_poisoning_enabled(void) { return false; }
2187 static inline void kernel_poison_pages(struct page *page, int numpages,
2188                                         int enable) { }
2189 static inline bool page_is_poisoned(struct page *page) { return false; }
2190 #endif
2191
2192 #ifdef CONFIG_DEBUG_PAGEALLOC
2193 extern bool _debug_pagealloc_enabled;
2194 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2195
2196 static inline bool debug_pagealloc_enabled(void)
2197 {
2198         return _debug_pagealloc_enabled;
2199 }
2200
2201 static inline void
2202 kernel_map_pages(struct page *page, int numpages, int enable)
2203 {
2204         if (!debug_pagealloc_enabled())
2205                 return;
2206
2207         __kernel_map_pages(page, numpages, enable);
2208 }
2209 #ifdef CONFIG_HIBERNATION
2210 extern bool kernel_page_present(struct page *page);
2211 #endif  /* CONFIG_HIBERNATION */
2212 #else   /* CONFIG_DEBUG_PAGEALLOC */
2213 static inline void
2214 kernel_map_pages(struct page *page, int numpages, int enable) {}
2215 #ifdef CONFIG_HIBERNATION
2216 static inline bool kernel_page_present(struct page *page) { return true; }
2217 #endif  /* CONFIG_HIBERNATION */
2218 static inline bool debug_pagealloc_enabled(void)
2219 {
2220         return false;
2221 }
2222 #endif  /* CONFIG_DEBUG_PAGEALLOC */
2223
2224 #ifdef __HAVE_ARCH_GATE_AREA
2225 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2226 extern int in_gate_area_no_mm(unsigned long addr);
2227 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2228 #else
2229 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2230 {
2231         return NULL;
2232 }
2233 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2234 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2235 {
2236         return 0;
2237 }
2238 #endif  /* __HAVE_ARCH_GATE_AREA */
2239
2240 #ifdef CONFIG_SYSCTL
2241 extern int sysctl_drop_caches;
2242 int drop_caches_sysctl_handler(struct ctl_table *, int,
2243                                         void __user *, size_t *, loff_t *);
2244 #endif
2245
2246 void drop_slab(void);
2247 void drop_slab_node(int nid);
2248
2249 #ifndef CONFIG_MMU
2250 #define randomize_va_space 0
2251 #else
2252 extern int randomize_va_space;
2253 #endif
2254
2255 const char * arch_vma_name(struct vm_area_struct *vma);
2256 void print_vma_addr(char *prefix, unsigned long rip);
2257
2258 void sparse_mem_maps_populate_node(struct page **map_map,
2259                                    unsigned long pnum_begin,
2260                                    unsigned long pnum_end,
2261                                    unsigned long map_count,
2262                                    int nodeid);
2263
2264 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2265 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2266 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2267 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2268 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2269 void *vmemmap_alloc_block(unsigned long size, int node);
2270 struct vmem_altmap;
2271 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2272                 struct vmem_altmap *altmap);
2273 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2274 {
2275         return __vmemmap_alloc_block_buf(size, node, NULL);
2276 }
2277
2278 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2279 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2280                                int node);
2281 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2282 void vmemmap_populate_print_last(void);
2283 #ifdef CONFIG_MEMORY_HOTPLUG
2284 void vmemmap_free(unsigned long start, unsigned long end);
2285 #endif
2286 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2287                                   unsigned long size);
2288
2289 enum mf_flags {
2290         MF_COUNT_INCREASED = 1 << 0,
2291         MF_ACTION_REQUIRED = 1 << 1,
2292         MF_MUST_KILL = 1 << 2,
2293         MF_SOFT_OFFLINE = 1 << 3,
2294 };
2295 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2296 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2297 extern int unpoison_memory(unsigned long pfn);
2298 extern int get_hwpoison_page(struct page *page);
2299 #define put_hwpoison_page(page) put_page(page)
2300 extern int sysctl_memory_failure_early_kill;
2301 extern int sysctl_memory_failure_recovery;
2302 extern void shake_page(struct page *p, int access);
2303 extern atomic_long_t num_poisoned_pages;
2304 extern int soft_offline_page(struct page *page, int flags);
2305
2306
2307 /*
2308  * Error handlers for various types of pages.
2309  */
2310 enum mf_result {
2311         MF_IGNORED,     /* Error: cannot be handled */
2312         MF_FAILED,      /* Error: handling failed */
2313         MF_DELAYED,     /* Will be handled later */
2314         MF_RECOVERED,   /* Successfully recovered */
2315 };
2316
2317 enum mf_action_page_type {
2318         MF_MSG_KERNEL,
2319         MF_MSG_KERNEL_HIGH_ORDER,
2320         MF_MSG_SLAB,
2321         MF_MSG_DIFFERENT_COMPOUND,
2322         MF_MSG_POISONED_HUGE,
2323         MF_MSG_HUGE,
2324         MF_MSG_FREE_HUGE,
2325         MF_MSG_UNMAP_FAILED,
2326         MF_MSG_DIRTY_SWAPCACHE,
2327         MF_MSG_CLEAN_SWAPCACHE,
2328         MF_MSG_DIRTY_MLOCKED_LRU,
2329         MF_MSG_CLEAN_MLOCKED_LRU,
2330         MF_MSG_DIRTY_UNEVICTABLE_LRU,
2331         MF_MSG_CLEAN_UNEVICTABLE_LRU,
2332         MF_MSG_DIRTY_LRU,
2333         MF_MSG_CLEAN_LRU,
2334         MF_MSG_TRUNCATED_LRU,
2335         MF_MSG_BUDDY,
2336         MF_MSG_BUDDY_2ND,
2337         MF_MSG_UNKNOWN,
2338 };
2339
2340 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2341 extern void clear_huge_page(struct page *page,
2342                             unsigned long addr,
2343                             unsigned int pages_per_huge_page);
2344 extern void copy_user_huge_page(struct page *dst, struct page *src,
2345                                 unsigned long addr, struct vm_area_struct *vma,
2346                                 unsigned int pages_per_huge_page);
2347 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2348
2349 extern struct page_ext_operations debug_guardpage_ops;
2350 extern struct page_ext_operations page_poisoning_ops;
2351
2352 #ifdef CONFIG_DEBUG_PAGEALLOC
2353 extern unsigned int _debug_guardpage_minorder;
2354 extern bool _debug_guardpage_enabled;
2355
2356 static inline unsigned int debug_guardpage_minorder(void)
2357 {
2358         return _debug_guardpage_minorder;
2359 }
2360
2361 static inline bool debug_guardpage_enabled(void)
2362 {
2363         return _debug_guardpage_enabled;
2364 }
2365
2366 static inline bool page_is_guard(struct page *page)
2367 {
2368         struct page_ext *page_ext;
2369
2370         if (!debug_guardpage_enabled())
2371                 return false;
2372
2373         page_ext = lookup_page_ext(page);
2374         return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2375 }
2376 #else
2377 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2378 static inline bool debug_guardpage_enabled(void) { return false; }
2379 static inline bool page_is_guard(struct page *page) { return false; }
2380 #endif /* CONFIG_DEBUG_PAGEALLOC */
2381
2382 #if MAX_NUMNODES > 1
2383 void __init setup_nr_node_ids(void);
2384 #else
2385 static inline void setup_nr_node_ids(void) {}
2386 #endif
2387
2388 #endif /* __KERNEL__ */
2389 #endif /* _LINUX_MM_H */