Merge tag 'mm-hotfixes-stable-2024-06-26-17-28' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-block.git] / include / linux / jiffies.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_JIFFIES_H
3 #define _LINUX_JIFFIES_H
4
5 #include <linux/cache.h>
6 #include <linux/limits.h>
7 #include <linux/math64.h>
8 #include <linux/minmax.h>
9 #include <linux/types.h>
10 #include <linux/time.h>
11 #include <linux/timex.h>
12 #include <vdso/jiffies.h>
13 #include <asm/param.h>                  /* for HZ */
14 #include <generated/timeconst.h>
15
16 /*
17  * The following defines establish the engineering parameters of the PLL
18  * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
19  * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
20  * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
21  * nearest power of two in order to avoid hardware multiply operations.
22  */
23 #if HZ >= 12 && HZ < 24
24 # define SHIFT_HZ       4
25 #elif HZ >= 24 && HZ < 48
26 # define SHIFT_HZ       5
27 #elif HZ >= 48 && HZ < 96
28 # define SHIFT_HZ       6
29 #elif HZ >= 96 && HZ < 192
30 # define SHIFT_HZ       7
31 #elif HZ >= 192 && HZ < 384
32 # define SHIFT_HZ       8
33 #elif HZ >= 384 && HZ < 768
34 # define SHIFT_HZ       9
35 #elif HZ >= 768 && HZ < 1536
36 # define SHIFT_HZ       10
37 #elif HZ >= 1536 && HZ < 3072
38 # define SHIFT_HZ       11
39 #elif HZ >= 3072 && HZ < 6144
40 # define SHIFT_HZ       12
41 #elif HZ >= 6144 && HZ < 12288
42 # define SHIFT_HZ       13
43 #else
44 # error Invalid value of HZ.
45 #endif
46
47 /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
48  * improve accuracy by shifting LSH bits, hence calculating:
49  *     (NOM << LSH) / DEN
50  * This however means trouble for large NOM, because (NOM << LSH) may no
51  * longer fit in 32 bits. The following way of calculating this gives us
52  * some slack, under the following conditions:
53  *   - (NOM / DEN) fits in (32 - LSH) bits.
54  *   - (NOM % DEN) fits in (32 - LSH) bits.
55  */
56 #define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
57                              + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
58
59 /* LATCH is used in the interval timer and ftape setup. */
60 #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ)   /* For divider */
61
62 extern int register_refined_jiffies(long clock_tick_rate);
63
64 /* TICK_USEC is the time between ticks in usec assuming SHIFTED_HZ */
65 #define TICK_USEC ((USEC_PER_SEC + HZ/2) / HZ)
66
67 /* USER_TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
68 #define USER_TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
69
70 #ifndef __jiffy_arch_data
71 #define __jiffy_arch_data
72 #endif
73
74 /*
75  * The 64-bit value is not atomic on 32-bit systems - you MUST NOT read it
76  * without sampling the sequence number in jiffies_lock.
77  * get_jiffies_64() will do this for you as appropriate.
78  *
79  * jiffies and jiffies_64 are at the same address for little-endian systems
80  * and for 64-bit big-endian systems.
81  * On 32-bit big-endian systems, jiffies is the lower 32 bits of jiffies_64
82  * (i.e., at address @jiffies_64 + 4).
83  * See arch/ARCH/kernel/vmlinux.lds.S
84  */
85 extern u64 __cacheline_aligned_in_smp jiffies_64;
86 extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies;
87
88 #if (BITS_PER_LONG < 64)
89 u64 get_jiffies_64(void);
90 #else
91 /**
92  * get_jiffies_64 - read the 64-bit non-atomic jiffies_64 value
93  *
94  * When BITS_PER_LONG < 64, this uses sequence number sampling using
95  * jiffies_lock to protect the 64-bit read.
96  *
97  * Return: current 64-bit jiffies value
98  */
99 static inline u64 get_jiffies_64(void)
100 {
101         return (u64)jiffies;
102 }
103 #endif
104
105 /**
106  * DOC: General information about time_* inlines
107  *
108  * These inlines deal with timer wrapping correctly. You are strongly encouraged
109  * to use them:
110  *
111  * #. Because people otherwise forget
112  * #. Because if the timer wrap changes in future you won't have to alter your
113  *    driver code.
114  */
115
116 /**
117  * time_after - returns true if the time a is after time b.
118  * @a: first comparable as unsigned long
119  * @b: second comparable as unsigned long
120  *
121  * Do this with "<0" and ">=0" to only test the sign of the result. A
122  * good compiler would generate better code (and a really good compiler
123  * wouldn't care). Gcc is currently neither.
124  *
125  * Return: %true is time a is after time b, otherwise %false.
126  */
127 #define time_after(a,b)         \
128         (typecheck(unsigned long, a) && \
129          typecheck(unsigned long, b) && \
130          ((long)((b) - (a)) < 0))
131 /**
132  * time_before - returns true if the time a is before time b.
133  * @a: first comparable as unsigned long
134  * @b: second comparable as unsigned long
135  *
136  * Return: %true is time a is before time b, otherwise %false.
137  */
138 #define time_before(a,b)        time_after(b,a)
139
140 /**
141  * time_after_eq - returns true if the time a is after or the same as time b.
142  * @a: first comparable as unsigned long
143  * @b: second comparable as unsigned long
144  *
145  * Return: %true is time a is after or the same as time b, otherwise %false.
146  */
147 #define time_after_eq(a,b)      \
148         (typecheck(unsigned long, a) && \
149          typecheck(unsigned long, b) && \
150          ((long)((a) - (b)) >= 0))
151 /**
152  * time_before_eq - returns true if the time a is before or the same as time b.
153  * @a: first comparable as unsigned long
154  * @b: second comparable as unsigned long
155  *
156  * Return: %true is time a is before or the same as time b, otherwise %false.
157  */
158 #define time_before_eq(a,b)     time_after_eq(b,a)
159
160 /**
161  * time_in_range - Calculate whether a is in the range of [b, c].
162  * @a: time to test
163  * @b: beginning of the range
164  * @c: end of the range
165  *
166  * Return: %true is time a is in the range [b, c], otherwise %false.
167  */
168 #define time_in_range(a,b,c) \
169         (time_after_eq(a,b) && \
170          time_before_eq(a,c))
171
172 /**
173  * time_in_range_open - Calculate whether a is in the range of [b, c).
174  * @a: time to test
175  * @b: beginning of the range
176  * @c: end of the range
177  *
178  * Return: %true is time a is in the range [b, c), otherwise %false.
179  */
180 #define time_in_range_open(a,b,c) \
181         (time_after_eq(a,b) && \
182          time_before(a,c))
183
184 /* Same as above, but does so with platform independent 64bit types.
185  * These must be used when utilizing jiffies_64 (i.e. return value of
186  * get_jiffies_64()). */
187
188 /**
189  * time_after64 - returns true if the time a is after time b.
190  * @a: first comparable as __u64
191  * @b: second comparable as __u64
192  *
193  * This must be used when utilizing jiffies_64 (i.e. return value of
194  * get_jiffies_64()).
195  *
196  * Return: %true is time a is after time b, otherwise %false.
197  */
198 #define time_after64(a,b)       \
199         (typecheck(__u64, a) && \
200          typecheck(__u64, b) && \
201          ((__s64)((b) - (a)) < 0))
202 /**
203  * time_before64 - returns true if the time a is before time b.
204  * @a: first comparable as __u64
205  * @b: second comparable as __u64
206  *
207  * This must be used when utilizing jiffies_64 (i.e. return value of
208  * get_jiffies_64()).
209  *
210  * Return: %true is time a is before time b, otherwise %false.
211  */
212 #define time_before64(a,b)      time_after64(b,a)
213
214 /**
215  * time_after_eq64 - returns true if the time a is after or the same as time b.
216  * @a: first comparable as __u64
217  * @b: second comparable as __u64
218  *
219  * This must be used when utilizing jiffies_64 (i.e. return value of
220  * get_jiffies_64()).
221  *
222  * Return: %true is time a is after or the same as time b, otherwise %false.
223  */
224 #define time_after_eq64(a,b)    \
225         (typecheck(__u64, a) && \
226          typecheck(__u64, b) && \
227          ((__s64)((a) - (b)) >= 0))
228 /**
229  * time_before_eq64 - returns true if the time a is before or the same as time b.
230  * @a: first comparable as __u64
231  * @b: second comparable as __u64
232  *
233  * This must be used when utilizing jiffies_64 (i.e. return value of
234  * get_jiffies_64()).
235  *
236  * Return: %true is time a is before or the same as time b, otherwise %false.
237  */
238 #define time_before_eq64(a,b)   time_after_eq64(b,a)
239
240 /**
241  * time_in_range64 - Calculate whether a is in the range of [b, c].
242  * @a: time to test
243  * @b: beginning of the range
244  * @c: end of the range
245  *
246  * Return: %true is time a is in the range [b, c], otherwise %false.
247  */
248 #define time_in_range64(a, b, c) \
249         (time_after_eq64(a, b) && \
250          time_before_eq64(a, c))
251
252 /*
253  * These eight macros compare jiffies[_64] and 'a' for convenience.
254  */
255
256 /**
257  * time_is_before_jiffies - return true if a is before jiffies
258  * @a: time (unsigned long) to compare to jiffies
259  *
260  * Return: %true is time a is before jiffies, otherwise %false.
261  */
262 #define time_is_before_jiffies(a) time_after(jiffies, a)
263 /**
264  * time_is_before_jiffies64 - return true if a is before jiffies_64
265  * @a: time (__u64) to compare to jiffies_64
266  *
267  * Return: %true is time a is before jiffies_64, otherwise %false.
268  */
269 #define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a)
270
271 /**
272  * time_is_after_jiffies - return true if a is after jiffies
273  * @a: time (unsigned long) to compare to jiffies
274  *
275  * Return: %true is time a is after jiffies, otherwise %false.
276  */
277 #define time_is_after_jiffies(a) time_before(jiffies, a)
278 /**
279  * time_is_after_jiffies64 - return true if a is after jiffies_64
280  * @a: time (__u64) to compare to jiffies_64
281  *
282  * Return: %true is time a is after jiffies_64, otherwise %false.
283  */
284 #define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a)
285
286 /**
287  * time_is_before_eq_jiffies - return true if a is before or equal to jiffies
288  * @a: time (unsigned long) to compare to jiffies
289  *
290  * Return: %true is time a is before or the same as jiffies, otherwise %false.
291  */
292 #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
293 /**
294  * time_is_before_eq_jiffies64 - return true if a is before or equal to jiffies_64
295  * @a: time (__u64) to compare to jiffies_64
296  *
297  * Return: %true is time a is before or the same jiffies_64, otherwise %false.
298  */
299 #define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a)
300
301 /**
302  * time_is_after_eq_jiffies - return true if a is after or equal to jiffies
303  * @a: time (unsigned long) to compare to jiffies
304  *
305  * Return: %true is time a is after or the same as jiffies, otherwise %false.
306  */
307 #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
308 /**
309  * time_is_after_eq_jiffies64 - return true if a is after or equal to jiffies_64
310  * @a: time (__u64) to compare to jiffies_64
311  *
312  * Return: %true is time a is after or the same as jiffies_64, otherwise %false.
313  */
314 #define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a)
315
316 /*
317  * Have the 32-bit jiffies value wrap 5 minutes after boot
318  * so jiffies wrap bugs show up earlier.
319  */
320 #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
321
322 /*
323  * Change timeval to jiffies, trying to avoid the
324  * most obvious overflows..
325  *
326  * And some not so obvious.
327  *
328  * Note that we don't want to return LONG_MAX, because
329  * for various timeout reasons we often end up having
330  * to wait "jiffies+1" in order to guarantee that we wait
331  * at _least_ "jiffies" - so "jiffies+1" had better still
332  * be positive.
333  */
334 #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
335
336 extern unsigned long preset_lpj;
337
338 /*
339  * We want to do realistic conversions of time so we need to use the same
340  * values the update wall clock code uses as the jiffies size.  This value
341  * is: TICK_NSEC (which is defined in timex.h).  This
342  * is a constant and is in nanoseconds.  We will use scaled math
343  * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
344  * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
345  * constants and so are computed at compile time.  SHIFT_HZ (computed in
346  * timex.h) adjusts the scaling for different HZ values.
347
348  * Scaled math???  What is that?
349  *
350  * Scaled math is a way to do integer math on values that would,
351  * otherwise, either overflow, underflow, or cause undesired div
352  * instructions to appear in the execution path.  In short, we "scale"
353  * up the operands so they take more bits (more precision, less
354  * underflow), do the desired operation and then "scale" the result back
355  * by the same amount.  If we do the scaling by shifting we avoid the
356  * costly mpy and the dastardly div instructions.
357
358  * Suppose, for example, we want to convert from seconds to jiffies
359  * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
360  * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
361  * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
362  * might calculate at compile time, however, the result will only have
363  * about 3-4 bits of precision (less for smaller values of HZ).
364  *
365  * So, we scale as follows:
366  * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
367  * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
368  * Then we make SCALE a power of two so:
369  * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
370  * Now we define:
371  * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
372  * jiff = (sec * SEC_CONV) >> SCALE;
373  *
374  * Often the math we use will expand beyond 32-bits so we tell C how to
375  * do this and pass the 64-bit result of the mpy through the ">> SCALE"
376  * which should take the result back to 32-bits.  We want this expansion
377  * to capture as much precision as possible.  At the same time we don't
378  * want to overflow so we pick the SCALE to avoid this.  In this file,
379  * that means using a different scale for each range of HZ values (as
380  * defined in timex.h).
381  *
382  * For those who want to know, gcc will give a 64-bit result from a "*"
383  * operator if the result is a long long AND at least one of the
384  * operands is cast to long long (usually just prior to the "*" so as
385  * not to confuse it into thinking it really has a 64-bit operand,
386  * which, buy the way, it can do, but it takes more code and at least 2
387  * mpys).
388
389  * We also need to be aware that one second in nanoseconds is only a
390  * couple of bits away from overflowing a 32-bit word, so we MUST use
391  * 64-bits to get the full range time in nanoseconds.
392
393  */
394
395 /*
396  * Here are the scales we will use.  One for seconds, nanoseconds and
397  * microseconds.
398  *
399  * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
400  * check if the sign bit is set.  If not, we bump the shift count by 1.
401  * (Gets an extra bit of precision where we can use it.)
402  * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
403  * Haven't tested others.
404
405  * Limits of cpp (for #if expressions) only long (no long long), but
406  * then we only need the most signicant bit.
407  */
408
409 #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
410 #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
411 #undef SEC_JIFFIE_SC
412 #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
413 #endif
414 #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
415 #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
416                                 TICK_NSEC -1) / (u64)TICK_NSEC))
417
418 #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
419                                         TICK_NSEC -1) / (u64)TICK_NSEC))
420 /*
421  * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that
422  * into seconds.  The 64-bit case will overflow if we are not careful,
423  * so use the messy SH_DIV macro to do it.  Still all constants.
424  */
425 #if BITS_PER_LONG < 64
426 # define MAX_SEC_IN_JIFFIES \
427         (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
428 #else   /* take care of overflow on 64-bit machines */
429 # define MAX_SEC_IN_JIFFIES \
430         (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
431
432 #endif
433
434 /*
435  * Convert various time units to each other:
436  */
437 extern unsigned int jiffies_to_msecs(const unsigned long j);
438 extern unsigned int jiffies_to_usecs(const unsigned long j);
439
440 /**
441  * jiffies_to_nsecs - Convert jiffies to nanoseconds
442  * @j: jiffies value
443  *
444  * Return: nanoseconds value
445  */
446 static inline u64 jiffies_to_nsecs(const unsigned long j)
447 {
448         return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
449 }
450
451 extern u64 jiffies64_to_nsecs(u64 j);
452 extern u64 jiffies64_to_msecs(u64 j);
453
454 extern unsigned long __msecs_to_jiffies(const unsigned int m);
455 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
456 /*
457  * HZ is equal to or smaller than 1000, and 1000 is a nice round
458  * multiple of HZ, divide with the factor between them, but round
459  * upwards:
460  */
461 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
462 {
463         return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
464 }
465 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
466 /*
467  * HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
468  * simply multiply with the factor between them.
469  *
470  * But first make sure the multiplication result cannot overflow:
471  */
472 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
473 {
474         if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
475                 return MAX_JIFFY_OFFSET;
476         return m * (HZ / MSEC_PER_SEC);
477 }
478 #else
479 /*
480  * Generic case - multiply, round and divide. But first check that if
481  * we are doing a net multiplication, that we wouldn't overflow:
482  */
483 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
484 {
485         if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
486                 return MAX_JIFFY_OFFSET;
487
488         return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32;
489 }
490 #endif
491 /**
492  * msecs_to_jiffies: - convert milliseconds to jiffies
493  * @m:  time in milliseconds
494  *
495  * conversion is done as follows:
496  *
497  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
498  *
499  * - 'too large' values [that would result in larger than
500  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
501  *
502  * - all other values are converted to jiffies by either multiplying
503  *   the input value by a factor or dividing it with a factor and
504  *   handling any 32-bit overflows.
505  *   for the details see __msecs_to_jiffies()
506  *
507  * msecs_to_jiffies() checks for the passed in value being a constant
508  * via __builtin_constant_p() allowing gcc to eliminate most of the
509  * code. __msecs_to_jiffies() is called if the value passed does not
510  * allow constant folding and the actual conversion must be done at
511  * runtime.
512  * The HZ range specific helpers _msecs_to_jiffies() are called both
513  * directly here and from __msecs_to_jiffies() in the case where
514  * constant folding is not possible.
515  *
516  * Return: jiffies value
517  */
518 static __always_inline unsigned long msecs_to_jiffies(const unsigned int m)
519 {
520         if (__builtin_constant_p(m)) {
521                 if ((int)m < 0)
522                         return MAX_JIFFY_OFFSET;
523                 return _msecs_to_jiffies(m);
524         } else {
525                 return __msecs_to_jiffies(m);
526         }
527 }
528
529 extern unsigned long __usecs_to_jiffies(const unsigned int u);
530 #if !(USEC_PER_SEC % HZ)
531 static inline unsigned long _usecs_to_jiffies(const unsigned int u)
532 {
533         return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
534 }
535 #else
536 static inline unsigned long _usecs_to_jiffies(const unsigned int u)
537 {
538         return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
539                 >> USEC_TO_HZ_SHR32;
540 }
541 #endif
542
543 /**
544  * usecs_to_jiffies: - convert microseconds to jiffies
545  * @u:  time in microseconds
546  *
547  * conversion is done as follows:
548  *
549  * - 'too large' values [that would result in larger than
550  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
551  *
552  * - all other values are converted to jiffies by either multiplying
553  *   the input value by a factor or dividing it with a factor and
554  *   handling any 32-bit overflows as for msecs_to_jiffies.
555  *
556  * usecs_to_jiffies() checks for the passed in value being a constant
557  * via __builtin_constant_p() allowing gcc to eliminate most of the
558  * code. __usecs_to_jiffies() is called if the value passed does not
559  * allow constant folding and the actual conversion must be done at
560  * runtime.
561  * The HZ range specific helpers _usecs_to_jiffies() are called both
562  * directly here and from __msecs_to_jiffies() in the case where
563  * constant folding is not possible.
564  *
565  * Return: jiffies value
566  */
567 static __always_inline unsigned long usecs_to_jiffies(const unsigned int u)
568 {
569         if (__builtin_constant_p(u)) {
570                 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
571                         return MAX_JIFFY_OFFSET;
572                 return _usecs_to_jiffies(u);
573         } else {
574                 return __usecs_to_jiffies(u);
575         }
576 }
577
578 extern unsigned long timespec64_to_jiffies(const struct timespec64 *value);
579 extern void jiffies_to_timespec64(const unsigned long jiffies,
580                                   struct timespec64 *value);
581 extern clock_t jiffies_to_clock_t(unsigned long x);
582
583 static inline clock_t jiffies_delta_to_clock_t(long delta)
584 {
585         return jiffies_to_clock_t(max(0L, delta));
586 }
587
588 static inline unsigned int jiffies_delta_to_msecs(long delta)
589 {
590         return jiffies_to_msecs(max(0L, delta));
591 }
592
593 extern unsigned long clock_t_to_jiffies(unsigned long x);
594 extern u64 jiffies_64_to_clock_t(u64 x);
595 extern u64 nsec_to_clock_t(u64 x);
596 extern u64 nsecs_to_jiffies64(u64 n);
597 extern unsigned long nsecs_to_jiffies(u64 n);
598
599 #define TIMESTAMP_SIZE  30
600
601 #endif