Merge branch 'for-3.4' of git://linux-nfs.org/~bfields/linux
[linux-2.6-block.git] / include / linux / dmaengine.h
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59
16  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called COPYING.
20  */
21 #ifndef DMAENGINE_H
22 #define DMAENGINE_H
23
24 #include <linux/device.h>
25 #include <linux/uio.h>
26 #include <linux/bug.h>
27 #include <linux/scatterlist.h>
28 #include <linux/bitmap.h>
29 #include <asm/page.h>
30
31 /**
32  * typedef dma_cookie_t - an opaque DMA cookie
33  *
34  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
35  */
36 typedef s32 dma_cookie_t;
37 #define DMA_MIN_COOKIE  1
38 #define DMA_MAX_COOKIE  INT_MAX
39
40 #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
41
42 /**
43  * enum dma_status - DMA transaction status
44  * @DMA_SUCCESS: transaction completed successfully
45  * @DMA_IN_PROGRESS: transaction not yet processed
46  * @DMA_PAUSED: transaction is paused
47  * @DMA_ERROR: transaction failed
48  */
49 enum dma_status {
50         DMA_SUCCESS,
51         DMA_IN_PROGRESS,
52         DMA_PAUSED,
53         DMA_ERROR,
54 };
55
56 /**
57  * enum dma_transaction_type - DMA transaction types/indexes
58  *
59  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
60  * automatically set as dma devices are registered.
61  */
62 enum dma_transaction_type {
63         DMA_MEMCPY,
64         DMA_XOR,
65         DMA_PQ,
66         DMA_XOR_VAL,
67         DMA_PQ_VAL,
68         DMA_MEMSET,
69         DMA_INTERRUPT,
70         DMA_SG,
71         DMA_PRIVATE,
72         DMA_ASYNC_TX,
73         DMA_SLAVE,
74         DMA_CYCLIC,
75         DMA_INTERLEAVE,
76 /* last transaction type for creation of the capabilities mask */
77         DMA_TX_TYPE_END,
78 };
79
80 /**
81  * enum dma_transfer_direction - dma transfer mode and direction indicator
82  * @DMA_MEM_TO_MEM: Async/Memcpy mode
83  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
84  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
85  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
86  */
87 enum dma_transfer_direction {
88         DMA_MEM_TO_MEM,
89         DMA_MEM_TO_DEV,
90         DMA_DEV_TO_MEM,
91         DMA_DEV_TO_DEV,
92         DMA_TRANS_NONE,
93 };
94
95 /**
96  * Interleaved Transfer Request
97  * ----------------------------
98  * A chunk is collection of contiguous bytes to be transfered.
99  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
100  * ICGs may or maynot change between chunks.
101  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
102  *  that when repeated an integral number of times, specifies the transfer.
103  * A transfer template is specification of a Frame, the number of times
104  *  it is to be repeated and other per-transfer attributes.
105  *
106  * Practically, a client driver would have ready a template for each
107  *  type of transfer it is going to need during its lifetime and
108  *  set only 'src_start' and 'dst_start' before submitting the requests.
109  *
110  *
111  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
112  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
113  *
114  *    ==  Chunk size
115  *    ... ICG
116  */
117
118 /**
119  * struct data_chunk - Element of scatter-gather list that makes a frame.
120  * @size: Number of bytes to read from source.
121  *        size_dst := fn(op, size_src), so doesn't mean much for destination.
122  * @icg: Number of bytes to jump after last src/dst address of this
123  *       chunk and before first src/dst address for next chunk.
124  *       Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
125  *       Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
126  */
127 struct data_chunk {
128         size_t size;
129         size_t icg;
130 };
131
132 /**
133  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
134  *       and attributes.
135  * @src_start: Bus address of source for the first chunk.
136  * @dst_start: Bus address of destination for the first chunk.
137  * @dir: Specifies the type of Source and Destination.
138  * @src_inc: If the source address increments after reading from it.
139  * @dst_inc: If the destination address increments after writing to it.
140  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
141  *              Otherwise, source is read contiguously (icg ignored).
142  *              Ignored if src_inc is false.
143  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
144  *              Otherwise, destination is filled contiguously (icg ignored).
145  *              Ignored if dst_inc is false.
146  * @numf: Number of frames in this template.
147  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
148  * @sgl: Array of {chunk,icg} pairs that make up a frame.
149  */
150 struct dma_interleaved_template {
151         dma_addr_t src_start;
152         dma_addr_t dst_start;
153         enum dma_transfer_direction dir;
154         bool src_inc;
155         bool dst_inc;
156         bool src_sgl;
157         bool dst_sgl;
158         size_t numf;
159         size_t frame_size;
160         struct data_chunk sgl[0];
161 };
162
163 /**
164  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
165  *  control completion, and communicate status.
166  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
167  *  this transaction
168  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
169  *  acknowledges receipt, i.e. has has a chance to establish any dependency
170  *  chains
171  * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
172  * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
173  * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
174  *      (if not set, do the source dma-unmapping as page)
175  * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
176  *      (if not set, do the destination dma-unmapping as page)
177  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
178  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
179  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
180  *  sources that were the result of a previous operation, in the case of a PQ
181  *  operation it continues the calculation with new sources
182  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
183  *  on the result of this operation
184  */
185 enum dma_ctrl_flags {
186         DMA_PREP_INTERRUPT = (1 << 0),
187         DMA_CTRL_ACK = (1 << 1),
188         DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
189         DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
190         DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
191         DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
192         DMA_PREP_PQ_DISABLE_P = (1 << 6),
193         DMA_PREP_PQ_DISABLE_Q = (1 << 7),
194         DMA_PREP_CONTINUE = (1 << 8),
195         DMA_PREP_FENCE = (1 << 9),
196 };
197
198 /**
199  * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
200  * on a running channel.
201  * @DMA_TERMINATE_ALL: terminate all ongoing transfers
202  * @DMA_PAUSE: pause ongoing transfers
203  * @DMA_RESUME: resume paused transfer
204  * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
205  * that need to runtime reconfigure the slave channels (as opposed to passing
206  * configuration data in statically from the platform). An additional
207  * argument of struct dma_slave_config must be passed in with this
208  * command.
209  * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
210  * into external start mode.
211  */
212 enum dma_ctrl_cmd {
213         DMA_TERMINATE_ALL,
214         DMA_PAUSE,
215         DMA_RESUME,
216         DMA_SLAVE_CONFIG,
217         FSLDMA_EXTERNAL_START,
218 };
219
220 /**
221  * enum sum_check_bits - bit position of pq_check_flags
222  */
223 enum sum_check_bits {
224         SUM_CHECK_P = 0,
225         SUM_CHECK_Q = 1,
226 };
227
228 /**
229  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
230  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
231  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
232  */
233 enum sum_check_flags {
234         SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
235         SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
236 };
237
238
239 /**
240  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
241  * See linux/cpumask.h
242  */
243 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
244
245 /**
246  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
247  * @memcpy_count: transaction counter
248  * @bytes_transferred: byte counter
249  */
250
251 struct dma_chan_percpu {
252         /* stats */
253         unsigned long memcpy_count;
254         unsigned long bytes_transferred;
255 };
256
257 /**
258  * struct dma_chan - devices supply DMA channels, clients use them
259  * @device: ptr to the dma device who supplies this channel, always !%NULL
260  * @cookie: last cookie value returned to client
261  * @chan_id: channel ID for sysfs
262  * @dev: class device for sysfs
263  * @device_node: used to add this to the device chan list
264  * @local: per-cpu pointer to a struct dma_chan_percpu
265  * @client-count: how many clients are using this channel
266  * @table_count: number of appearances in the mem-to-mem allocation table
267  * @private: private data for certain client-channel associations
268  */
269 struct dma_chan {
270         struct dma_device *device;
271         dma_cookie_t cookie;
272
273         /* sysfs */
274         int chan_id;
275         struct dma_chan_dev *dev;
276
277         struct list_head device_node;
278         struct dma_chan_percpu __percpu *local;
279         int client_count;
280         int table_count;
281         void *private;
282 };
283
284 /**
285  * struct dma_chan_dev - relate sysfs device node to backing channel device
286  * @chan - driver channel device
287  * @device - sysfs device
288  * @dev_id - parent dma_device dev_id
289  * @idr_ref - reference count to gate release of dma_device dev_id
290  */
291 struct dma_chan_dev {
292         struct dma_chan *chan;
293         struct device device;
294         int dev_id;
295         atomic_t *idr_ref;
296 };
297
298 /**
299  * enum dma_slave_buswidth - defines bus with of the DMA slave
300  * device, source or target buses
301  */
302 enum dma_slave_buswidth {
303         DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
304         DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
305         DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
306         DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
307         DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
308 };
309
310 /**
311  * struct dma_slave_config - dma slave channel runtime config
312  * @direction: whether the data shall go in or out on this slave
313  * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
314  * legal values, DMA_BIDIRECTIONAL is not acceptable since we
315  * need to differentiate source and target addresses.
316  * @src_addr: this is the physical address where DMA slave data
317  * should be read (RX), if the source is memory this argument is
318  * ignored.
319  * @dst_addr: this is the physical address where DMA slave data
320  * should be written (TX), if the source is memory this argument
321  * is ignored.
322  * @src_addr_width: this is the width in bytes of the source (RX)
323  * register where DMA data shall be read. If the source
324  * is memory this may be ignored depending on architecture.
325  * Legal values: 1, 2, 4, 8.
326  * @dst_addr_width: same as src_addr_width but for destination
327  * target (TX) mutatis mutandis.
328  * @src_maxburst: the maximum number of words (note: words, as in
329  * units of the src_addr_width member, not bytes) that can be sent
330  * in one burst to the device. Typically something like half the
331  * FIFO depth on I/O peripherals so you don't overflow it. This
332  * may or may not be applicable on memory sources.
333  * @dst_maxburst: same as src_maxburst but for destination target
334  * mutatis mutandis.
335  *
336  * This struct is passed in as configuration data to a DMA engine
337  * in order to set up a certain channel for DMA transport at runtime.
338  * The DMA device/engine has to provide support for an additional
339  * command in the channel config interface, DMA_SLAVE_CONFIG
340  * and this struct will then be passed in as an argument to the
341  * DMA engine device_control() function.
342  *
343  * The rationale for adding configuration information to this struct
344  * is as follows: if it is likely that most DMA slave controllers in
345  * the world will support the configuration option, then make it
346  * generic. If not: if it is fixed so that it be sent in static from
347  * the platform data, then prefer to do that. Else, if it is neither
348  * fixed at runtime, nor generic enough (such as bus mastership on
349  * some CPU family and whatnot) then create a custom slave config
350  * struct and pass that, then make this config a member of that
351  * struct, if applicable.
352  */
353 struct dma_slave_config {
354         enum dma_transfer_direction direction;
355         dma_addr_t src_addr;
356         dma_addr_t dst_addr;
357         enum dma_slave_buswidth src_addr_width;
358         enum dma_slave_buswidth dst_addr_width;
359         u32 src_maxburst;
360         u32 dst_maxburst;
361 };
362
363 static inline const char *dma_chan_name(struct dma_chan *chan)
364 {
365         return dev_name(&chan->dev->device);
366 }
367
368 void dma_chan_cleanup(struct kref *kref);
369
370 /**
371  * typedef dma_filter_fn - callback filter for dma_request_channel
372  * @chan: channel to be reviewed
373  * @filter_param: opaque parameter passed through dma_request_channel
374  *
375  * When this optional parameter is specified in a call to dma_request_channel a
376  * suitable channel is passed to this routine for further dispositioning before
377  * being returned.  Where 'suitable' indicates a non-busy channel that
378  * satisfies the given capability mask.  It returns 'true' to indicate that the
379  * channel is suitable.
380  */
381 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
382
383 typedef void (*dma_async_tx_callback)(void *dma_async_param);
384 /**
385  * struct dma_async_tx_descriptor - async transaction descriptor
386  * ---dma generic offload fields---
387  * @cookie: tracking cookie for this transaction, set to -EBUSY if
388  *      this tx is sitting on a dependency list
389  * @flags: flags to augment operation preparation, control completion, and
390  *      communicate status
391  * @phys: physical address of the descriptor
392  * @chan: target channel for this operation
393  * @tx_submit: set the prepared descriptor(s) to be executed by the engine
394  * @callback: routine to call after this operation is complete
395  * @callback_param: general parameter to pass to the callback routine
396  * ---async_tx api specific fields---
397  * @next: at completion submit this descriptor
398  * @parent: pointer to the next level up in the dependency chain
399  * @lock: protect the parent and next pointers
400  */
401 struct dma_async_tx_descriptor {
402         dma_cookie_t cookie;
403         enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
404         dma_addr_t phys;
405         struct dma_chan *chan;
406         dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
407         dma_async_tx_callback callback;
408         void *callback_param;
409 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
410         struct dma_async_tx_descriptor *next;
411         struct dma_async_tx_descriptor *parent;
412         spinlock_t lock;
413 #endif
414 };
415
416 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
417 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
418 {
419 }
420 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
421 {
422 }
423 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
424 {
425         BUG();
426 }
427 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
428 {
429 }
430 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
431 {
432 }
433 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
434 {
435         return NULL;
436 }
437 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
438 {
439         return NULL;
440 }
441
442 #else
443 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
444 {
445         spin_lock_bh(&txd->lock);
446 }
447 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
448 {
449         spin_unlock_bh(&txd->lock);
450 }
451 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
452 {
453         txd->next = next;
454         next->parent = txd;
455 }
456 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
457 {
458         txd->parent = NULL;
459 }
460 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
461 {
462         txd->next = NULL;
463 }
464 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
465 {
466         return txd->parent;
467 }
468 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
469 {
470         return txd->next;
471 }
472 #endif
473
474 /**
475  * struct dma_tx_state - filled in to report the status of
476  * a transfer.
477  * @last: last completed DMA cookie
478  * @used: last issued DMA cookie (i.e. the one in progress)
479  * @residue: the remaining number of bytes left to transmit
480  *      on the selected transfer for states DMA_IN_PROGRESS and
481  *      DMA_PAUSED if this is implemented in the driver, else 0
482  */
483 struct dma_tx_state {
484         dma_cookie_t last;
485         dma_cookie_t used;
486         u32 residue;
487 };
488
489 /**
490  * struct dma_device - info on the entity supplying DMA services
491  * @chancnt: how many DMA channels are supported
492  * @privatecnt: how many DMA channels are requested by dma_request_channel
493  * @channels: the list of struct dma_chan
494  * @global_node: list_head for global dma_device_list
495  * @cap_mask: one or more dma_capability flags
496  * @max_xor: maximum number of xor sources, 0 if no capability
497  * @max_pq: maximum number of PQ sources and PQ-continue capability
498  * @copy_align: alignment shift for memcpy operations
499  * @xor_align: alignment shift for xor operations
500  * @pq_align: alignment shift for pq operations
501  * @fill_align: alignment shift for memset operations
502  * @dev_id: unique device ID
503  * @dev: struct device reference for dma mapping api
504  * @device_alloc_chan_resources: allocate resources and return the
505  *      number of allocated descriptors
506  * @device_free_chan_resources: release DMA channel's resources
507  * @device_prep_dma_memcpy: prepares a memcpy operation
508  * @device_prep_dma_xor: prepares a xor operation
509  * @device_prep_dma_xor_val: prepares a xor validation operation
510  * @device_prep_dma_pq: prepares a pq operation
511  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
512  * @device_prep_dma_memset: prepares a memset operation
513  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
514  * @device_prep_slave_sg: prepares a slave dma operation
515  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
516  *      The function takes a buffer of size buf_len. The callback function will
517  *      be called after period_len bytes have been transferred.
518  * @device_prep_interleaved_dma: Transfer expression in a generic way.
519  * @device_control: manipulate all pending operations on a channel, returns
520  *      zero or error code
521  * @device_tx_status: poll for transaction completion, the optional
522  *      txstate parameter can be supplied with a pointer to get a
523  *      struct with auxiliary transfer status information, otherwise the call
524  *      will just return a simple status code
525  * @device_issue_pending: push pending transactions to hardware
526  */
527 struct dma_device {
528
529         unsigned int chancnt;
530         unsigned int privatecnt;
531         struct list_head channels;
532         struct list_head global_node;
533         dma_cap_mask_t  cap_mask;
534         unsigned short max_xor;
535         unsigned short max_pq;
536         u8 copy_align;
537         u8 xor_align;
538         u8 pq_align;
539         u8 fill_align;
540         #define DMA_HAS_PQ_CONTINUE (1 << 15)
541
542         int dev_id;
543         struct device *dev;
544
545         int (*device_alloc_chan_resources)(struct dma_chan *chan);
546         void (*device_free_chan_resources)(struct dma_chan *chan);
547
548         struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
549                 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
550                 size_t len, unsigned long flags);
551         struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
552                 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
553                 unsigned int src_cnt, size_t len, unsigned long flags);
554         struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
555                 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
556                 size_t len, enum sum_check_flags *result, unsigned long flags);
557         struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
558                 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
559                 unsigned int src_cnt, const unsigned char *scf,
560                 size_t len, unsigned long flags);
561         struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
562                 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
563                 unsigned int src_cnt, const unsigned char *scf, size_t len,
564                 enum sum_check_flags *pqres, unsigned long flags);
565         struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
566                 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
567                 unsigned long flags);
568         struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
569                 struct dma_chan *chan, unsigned long flags);
570         struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
571                 struct dma_chan *chan,
572                 struct scatterlist *dst_sg, unsigned int dst_nents,
573                 struct scatterlist *src_sg, unsigned int src_nents,
574                 unsigned long flags);
575
576         struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
577                 struct dma_chan *chan, struct scatterlist *sgl,
578                 unsigned int sg_len, enum dma_transfer_direction direction,
579                 unsigned long flags);
580         struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
581                 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
582                 size_t period_len, enum dma_transfer_direction direction);
583         struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
584                 struct dma_chan *chan, struct dma_interleaved_template *xt,
585                 unsigned long flags);
586         int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
587                 unsigned long arg);
588
589         enum dma_status (*device_tx_status)(struct dma_chan *chan,
590                                             dma_cookie_t cookie,
591                                             struct dma_tx_state *txstate);
592         void (*device_issue_pending)(struct dma_chan *chan);
593 };
594
595 static inline int dmaengine_device_control(struct dma_chan *chan,
596                                            enum dma_ctrl_cmd cmd,
597                                            unsigned long arg)
598 {
599         return chan->device->device_control(chan, cmd, arg);
600 }
601
602 static inline int dmaengine_slave_config(struct dma_chan *chan,
603                                           struct dma_slave_config *config)
604 {
605         return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
606                         (unsigned long)config);
607 }
608
609 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
610         struct dma_chan *chan, void *buf, size_t len,
611         enum dma_transfer_direction dir, unsigned long flags)
612 {
613         struct scatterlist sg;
614         sg_init_one(&sg, buf, len);
615
616         return chan->device->device_prep_slave_sg(chan, &sg, 1, dir, flags);
617 }
618
619 static inline int dmaengine_terminate_all(struct dma_chan *chan)
620 {
621         return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
622 }
623
624 static inline int dmaengine_pause(struct dma_chan *chan)
625 {
626         return dmaengine_device_control(chan, DMA_PAUSE, 0);
627 }
628
629 static inline int dmaengine_resume(struct dma_chan *chan)
630 {
631         return dmaengine_device_control(chan, DMA_RESUME, 0);
632 }
633
634 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
635 {
636         return desc->tx_submit(desc);
637 }
638
639 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
640 {
641         size_t mask;
642
643         if (!align)
644                 return true;
645         mask = (1 << align) - 1;
646         if (mask & (off1 | off2 | len))
647                 return false;
648         return true;
649 }
650
651 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
652                                        size_t off2, size_t len)
653 {
654         return dmaengine_check_align(dev->copy_align, off1, off2, len);
655 }
656
657 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
658                                       size_t off2, size_t len)
659 {
660         return dmaengine_check_align(dev->xor_align, off1, off2, len);
661 }
662
663 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
664                                      size_t off2, size_t len)
665 {
666         return dmaengine_check_align(dev->pq_align, off1, off2, len);
667 }
668
669 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
670                                        size_t off2, size_t len)
671 {
672         return dmaengine_check_align(dev->fill_align, off1, off2, len);
673 }
674
675 static inline void
676 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
677 {
678         dma->max_pq = maxpq;
679         if (has_pq_continue)
680                 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
681 }
682
683 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
684 {
685         return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
686 }
687
688 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
689 {
690         enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
691
692         return (flags & mask) == mask;
693 }
694
695 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
696 {
697         return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
698 }
699
700 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
701 {
702         return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
703 }
704
705 /* dma_maxpq - reduce maxpq in the face of continued operations
706  * @dma - dma device with PQ capability
707  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
708  *
709  * When an engine does not support native continuation we need 3 extra
710  * source slots to reuse P and Q with the following coefficients:
711  * 1/ {00} * P : remove P from Q', but use it as a source for P'
712  * 2/ {01} * Q : use Q to continue Q' calculation
713  * 3/ {00} * Q : subtract Q from P' to cancel (2)
714  *
715  * In the case where P is disabled we only need 1 extra source:
716  * 1/ {01} * Q : use Q to continue Q' calculation
717  */
718 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
719 {
720         if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
721                 return dma_dev_to_maxpq(dma);
722         else if (dmaf_p_disabled_continue(flags))
723                 return dma_dev_to_maxpq(dma) - 1;
724         else if (dmaf_continue(flags))
725                 return dma_dev_to_maxpq(dma) - 3;
726         BUG();
727 }
728
729 /* --- public DMA engine API --- */
730
731 #ifdef CONFIG_DMA_ENGINE
732 void dmaengine_get(void);
733 void dmaengine_put(void);
734 #else
735 static inline void dmaengine_get(void)
736 {
737 }
738 static inline void dmaengine_put(void)
739 {
740 }
741 #endif
742
743 #ifdef CONFIG_NET_DMA
744 #define net_dmaengine_get()     dmaengine_get()
745 #define net_dmaengine_put()     dmaengine_put()
746 #else
747 static inline void net_dmaengine_get(void)
748 {
749 }
750 static inline void net_dmaengine_put(void)
751 {
752 }
753 #endif
754
755 #ifdef CONFIG_ASYNC_TX_DMA
756 #define async_dmaengine_get()   dmaengine_get()
757 #define async_dmaengine_put()   dmaengine_put()
758 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
759 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
760 #else
761 #define async_dma_find_channel(type) dma_find_channel(type)
762 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
763 #else
764 static inline void async_dmaengine_get(void)
765 {
766 }
767 static inline void async_dmaengine_put(void)
768 {
769 }
770 static inline struct dma_chan *
771 async_dma_find_channel(enum dma_transaction_type type)
772 {
773         return NULL;
774 }
775 #endif /* CONFIG_ASYNC_TX_DMA */
776
777 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
778         void *dest, void *src, size_t len);
779 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
780         struct page *page, unsigned int offset, void *kdata, size_t len);
781 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
782         struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
783         unsigned int src_off, size_t len);
784 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
785         struct dma_chan *chan);
786
787 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
788 {
789         tx->flags |= DMA_CTRL_ACK;
790 }
791
792 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
793 {
794         tx->flags &= ~DMA_CTRL_ACK;
795 }
796
797 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
798 {
799         return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
800 }
801
802 #define first_dma_cap(mask) __first_dma_cap(&(mask))
803 static inline int __first_dma_cap(const dma_cap_mask_t *srcp)
804 {
805         return min_t(int, DMA_TX_TYPE_END,
806                 find_first_bit(srcp->bits, DMA_TX_TYPE_END));
807 }
808
809 #define next_dma_cap(n, mask) __next_dma_cap((n), &(mask))
810 static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp)
811 {
812         return min_t(int, DMA_TX_TYPE_END,
813                 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1));
814 }
815
816 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
817 static inline void
818 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
819 {
820         set_bit(tx_type, dstp->bits);
821 }
822
823 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
824 static inline void
825 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
826 {
827         clear_bit(tx_type, dstp->bits);
828 }
829
830 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
831 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
832 {
833         bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
834 }
835
836 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
837 static inline int
838 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
839 {
840         return test_bit(tx_type, srcp->bits);
841 }
842
843 #define for_each_dma_cap_mask(cap, mask) \
844         for ((cap) = first_dma_cap(mask);       \
845                 (cap) < DMA_TX_TYPE_END;        \
846                 (cap) = next_dma_cap((cap), (mask)))
847
848 /**
849  * dma_async_issue_pending - flush pending transactions to HW
850  * @chan: target DMA channel
851  *
852  * This allows drivers to push copies to HW in batches,
853  * reducing MMIO writes where possible.
854  */
855 static inline void dma_async_issue_pending(struct dma_chan *chan)
856 {
857         chan->device->device_issue_pending(chan);
858 }
859
860 #define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan)
861
862 /**
863  * dma_async_is_tx_complete - poll for transaction completion
864  * @chan: DMA channel
865  * @cookie: transaction identifier to check status of
866  * @last: returns last completed cookie, can be NULL
867  * @used: returns last issued cookie, can be NULL
868  *
869  * If @last and @used are passed in, upon return they reflect the driver
870  * internal state and can be used with dma_async_is_complete() to check
871  * the status of multiple cookies without re-checking hardware state.
872  */
873 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
874         dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
875 {
876         struct dma_tx_state state;
877         enum dma_status status;
878
879         status = chan->device->device_tx_status(chan, cookie, &state);
880         if (last)
881                 *last = state.last;
882         if (used)
883                 *used = state.used;
884         return status;
885 }
886
887 #define dma_async_memcpy_complete(chan, cookie, last, used)\
888         dma_async_is_tx_complete(chan, cookie, last, used)
889
890 /**
891  * dma_async_is_complete - test a cookie against chan state
892  * @cookie: transaction identifier to test status of
893  * @last_complete: last know completed transaction
894  * @last_used: last cookie value handed out
895  *
896  * dma_async_is_complete() is used in dma_async_memcpy_complete()
897  * the test logic is separated for lightweight testing of multiple cookies
898  */
899 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
900                         dma_cookie_t last_complete, dma_cookie_t last_used)
901 {
902         if (last_complete <= last_used) {
903                 if ((cookie <= last_complete) || (cookie > last_used))
904                         return DMA_SUCCESS;
905         } else {
906                 if ((cookie <= last_complete) && (cookie > last_used))
907                         return DMA_SUCCESS;
908         }
909         return DMA_IN_PROGRESS;
910 }
911
912 static inline void
913 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
914 {
915         if (st) {
916                 st->last = last;
917                 st->used = used;
918                 st->residue = residue;
919         }
920 }
921
922 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
923 #ifdef CONFIG_DMA_ENGINE
924 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
925 void dma_issue_pending_all(void);
926 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param);
927 void dma_release_channel(struct dma_chan *chan);
928 #else
929 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
930 {
931         return DMA_SUCCESS;
932 }
933 static inline void dma_issue_pending_all(void)
934 {
935 }
936 static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask,
937                                               dma_filter_fn fn, void *fn_param)
938 {
939         return NULL;
940 }
941 static inline void dma_release_channel(struct dma_chan *chan)
942 {
943 }
944 #endif
945
946 /* --- DMA device --- */
947
948 int dma_async_device_register(struct dma_device *device);
949 void dma_async_device_unregister(struct dma_device *device);
950 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
951 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
952 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
953
954 /* --- Helper iov-locking functions --- */
955
956 struct dma_page_list {
957         char __user *base_address;
958         int nr_pages;
959         struct page **pages;
960 };
961
962 struct dma_pinned_list {
963         int nr_iovecs;
964         struct dma_page_list page_list[0];
965 };
966
967 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
968 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
969
970 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
971         struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
972 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
973         struct dma_pinned_list *pinned_list, struct page *page,
974         unsigned int offset, size_t len);
975
976 #endif /* DMAENGINE_H */