Merge patch series "RISC-V: Align the shadow stack"
[linux-block.git] / include / linux / cpuset.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_CPUSET_H
3 #define _LINUX_CPUSET_H
4 /*
5  *  cpuset interface
6  *
7  *  Copyright (C) 2003 BULL SA
8  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
9  *
10  */
11
12 #include <linux/sched.h>
13 #include <linux/sched/topology.h>
14 #include <linux/sched/task.h>
15 #include <linux/cpumask.h>
16 #include <linux/nodemask.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_context.h>
19 #include <linux/jump_label.h>
20
21 #ifdef CONFIG_CPUSETS
22
23 /*
24  * Static branch rewrites can happen in an arbitrary order for a given
25  * key. In code paths where we need to loop with read_mems_allowed_begin() and
26  * read_mems_allowed_retry() to get a consistent view of mems_allowed, we need
27  * to ensure that begin() always gets rewritten before retry() in the
28  * disabled -> enabled transition. If not, then if local irqs are disabled
29  * around the loop, we can deadlock since retry() would always be
30  * comparing the latest value of the mems_allowed seqcount against 0 as
31  * begin() still would see cpusets_enabled() as false. The enabled -> disabled
32  * transition should happen in reverse order for the same reasons (want to stop
33  * looking at real value of mems_allowed.sequence in retry() first).
34  */
35 extern struct static_key_false cpusets_pre_enable_key;
36 extern struct static_key_false cpusets_enabled_key;
37 extern struct static_key_false cpusets_insane_config_key;
38
39 static inline bool cpusets_enabled(void)
40 {
41         return static_branch_unlikely(&cpusets_enabled_key);
42 }
43
44 static inline void cpuset_inc(void)
45 {
46         static_branch_inc_cpuslocked(&cpusets_pre_enable_key);
47         static_branch_inc_cpuslocked(&cpusets_enabled_key);
48 }
49
50 static inline void cpuset_dec(void)
51 {
52         static_branch_dec_cpuslocked(&cpusets_enabled_key);
53         static_branch_dec_cpuslocked(&cpusets_pre_enable_key);
54 }
55
56 /*
57  * This will get enabled whenever a cpuset configuration is considered
58  * unsupportable in general. E.g. movable only node which cannot satisfy
59  * any non movable allocations (see update_nodemask). Page allocator
60  * needs to make additional checks for those configurations and this
61  * check is meant to guard those checks without any overhead for sane
62  * configurations.
63  */
64 static inline bool cpusets_insane_config(void)
65 {
66         return static_branch_unlikely(&cpusets_insane_config_key);
67 }
68
69 extern int cpuset_init(void);
70 extern void cpuset_init_smp(void);
71 extern void cpuset_force_rebuild(void);
72 extern void cpuset_update_active_cpus(void);
73 extern void cpuset_wait_for_hotplug(void);
74 extern void cpuset_read_lock(void);
75 extern void cpuset_read_unlock(void);
76 extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask);
77 extern bool cpuset_cpus_allowed_fallback(struct task_struct *p);
78 extern nodemask_t cpuset_mems_allowed(struct task_struct *p);
79 #define cpuset_current_mems_allowed (current->mems_allowed)
80 void cpuset_init_current_mems_allowed(void);
81 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask);
82
83 extern bool __cpuset_node_allowed(int node, gfp_t gfp_mask);
84
85 static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask)
86 {
87         if (cpusets_enabled())
88                 return __cpuset_node_allowed(node, gfp_mask);
89         return true;
90 }
91
92 static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
93 {
94         return __cpuset_node_allowed(zone_to_nid(z), gfp_mask);
95 }
96
97 static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
98 {
99         if (cpusets_enabled())
100                 return __cpuset_zone_allowed(z, gfp_mask);
101         return true;
102 }
103
104 extern int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
105                                           const struct task_struct *tsk2);
106
107 #define cpuset_memory_pressure_bump()                           \
108         do {                                                    \
109                 if (cpuset_memory_pressure_enabled)             \
110                         __cpuset_memory_pressure_bump();        \
111         } while (0)
112 extern int cpuset_memory_pressure_enabled;
113 extern void __cpuset_memory_pressure_bump(void);
114
115 extern void cpuset_task_status_allowed(struct seq_file *m,
116                                         struct task_struct *task);
117 extern int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
118                             struct pid *pid, struct task_struct *tsk);
119
120 extern int cpuset_mem_spread_node(void);
121 extern int cpuset_slab_spread_node(void);
122
123 static inline int cpuset_do_page_mem_spread(void)
124 {
125         return task_spread_page(current);
126 }
127
128 static inline int cpuset_do_slab_mem_spread(void)
129 {
130         return task_spread_slab(current);
131 }
132
133 extern bool current_cpuset_is_being_rebound(void);
134
135 extern void rebuild_sched_domains(void);
136
137 extern void cpuset_print_current_mems_allowed(void);
138
139 /*
140  * read_mems_allowed_begin is required when making decisions involving
141  * mems_allowed such as during page allocation. mems_allowed can be updated in
142  * parallel and depending on the new value an operation can fail potentially
143  * causing process failure. A retry loop with read_mems_allowed_begin and
144  * read_mems_allowed_retry prevents these artificial failures.
145  */
146 static inline unsigned int read_mems_allowed_begin(void)
147 {
148         if (!static_branch_unlikely(&cpusets_pre_enable_key))
149                 return 0;
150
151         return read_seqcount_begin(&current->mems_allowed_seq);
152 }
153
154 /*
155  * If this returns true, the operation that took place after
156  * read_mems_allowed_begin may have failed artificially due to a concurrent
157  * update of mems_allowed. It is up to the caller to retry the operation if
158  * appropriate.
159  */
160 static inline bool read_mems_allowed_retry(unsigned int seq)
161 {
162         if (!static_branch_unlikely(&cpusets_enabled_key))
163                 return false;
164
165         return read_seqcount_retry(&current->mems_allowed_seq, seq);
166 }
167
168 static inline void set_mems_allowed(nodemask_t nodemask)
169 {
170         unsigned long flags;
171
172         task_lock(current);
173         local_irq_save(flags);
174         write_seqcount_begin(&current->mems_allowed_seq);
175         current->mems_allowed = nodemask;
176         write_seqcount_end(&current->mems_allowed_seq);
177         local_irq_restore(flags);
178         task_unlock(current);
179 }
180
181 #else /* !CONFIG_CPUSETS */
182
183 static inline bool cpusets_enabled(void) { return false; }
184
185 static inline bool cpusets_insane_config(void) { return false; }
186
187 static inline int cpuset_init(void) { return 0; }
188 static inline void cpuset_init_smp(void) {}
189
190 static inline void cpuset_force_rebuild(void) { }
191
192 static inline void cpuset_update_active_cpus(void)
193 {
194         partition_sched_domains(1, NULL, NULL);
195 }
196
197 static inline void cpuset_wait_for_hotplug(void) { }
198
199 static inline void cpuset_read_lock(void) { }
200 static inline void cpuset_read_unlock(void) { }
201
202 static inline void cpuset_cpus_allowed(struct task_struct *p,
203                                        struct cpumask *mask)
204 {
205         cpumask_copy(mask, task_cpu_possible_mask(p));
206 }
207
208 static inline bool cpuset_cpus_allowed_fallback(struct task_struct *p)
209 {
210         return false;
211 }
212
213 static inline nodemask_t cpuset_mems_allowed(struct task_struct *p)
214 {
215         return node_possible_map;
216 }
217
218 #define cpuset_current_mems_allowed (node_states[N_MEMORY])
219 static inline void cpuset_init_current_mems_allowed(void) {}
220
221 static inline int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
222 {
223         return 1;
224 }
225
226 static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask)
227 {
228         return true;
229 }
230
231 static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
232 {
233         return true;
234 }
235
236 static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
237 {
238         return true;
239 }
240
241 static inline int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
242                                                  const struct task_struct *tsk2)
243 {
244         return 1;
245 }
246
247 static inline void cpuset_memory_pressure_bump(void) {}
248
249 static inline void cpuset_task_status_allowed(struct seq_file *m,
250                                                 struct task_struct *task)
251 {
252 }
253
254 static inline int cpuset_mem_spread_node(void)
255 {
256         return 0;
257 }
258
259 static inline int cpuset_slab_spread_node(void)
260 {
261         return 0;
262 }
263
264 static inline int cpuset_do_page_mem_spread(void)
265 {
266         return 0;
267 }
268
269 static inline int cpuset_do_slab_mem_spread(void)
270 {
271         return 0;
272 }
273
274 static inline bool current_cpuset_is_being_rebound(void)
275 {
276         return false;
277 }
278
279 static inline void rebuild_sched_domains(void)
280 {
281         partition_sched_domains(1, NULL, NULL);
282 }
283
284 static inline void cpuset_print_current_mems_allowed(void)
285 {
286 }
287
288 static inline void set_mems_allowed(nodemask_t nodemask)
289 {
290 }
291
292 static inline unsigned int read_mems_allowed_begin(void)
293 {
294         return 0;
295 }
296
297 static inline bool read_mems_allowed_retry(unsigned int seq)
298 {
299         return false;
300 }
301
302 #endif /* !CONFIG_CPUSETS */
303
304 #endif /* _LINUX_CPUSET_H */