Merge tag 'wireless-next-2023-11-27' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / include / linux / cpuset.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_CPUSET_H
3 #define _LINUX_CPUSET_H
4 /*
5  *  cpuset interface
6  *
7  *  Copyright (C) 2003 BULL SA
8  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
9  *
10  */
11
12 #include <linux/sched.h>
13 #include <linux/sched/topology.h>
14 #include <linux/sched/task.h>
15 #include <linux/cpumask.h>
16 #include <linux/nodemask.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_context.h>
19 #include <linux/jump_label.h>
20
21 #ifdef CONFIG_CPUSETS
22
23 /*
24  * Static branch rewrites can happen in an arbitrary order for a given
25  * key. In code paths where we need to loop with read_mems_allowed_begin() and
26  * read_mems_allowed_retry() to get a consistent view of mems_allowed, we need
27  * to ensure that begin() always gets rewritten before retry() in the
28  * disabled -> enabled transition. If not, then if local irqs are disabled
29  * around the loop, we can deadlock since retry() would always be
30  * comparing the latest value of the mems_allowed seqcount against 0 as
31  * begin() still would see cpusets_enabled() as false. The enabled -> disabled
32  * transition should happen in reverse order for the same reasons (want to stop
33  * looking at real value of mems_allowed.sequence in retry() first).
34  */
35 extern struct static_key_false cpusets_pre_enable_key;
36 extern struct static_key_false cpusets_enabled_key;
37 extern struct static_key_false cpusets_insane_config_key;
38
39 static inline bool cpusets_enabled(void)
40 {
41         return static_branch_unlikely(&cpusets_enabled_key);
42 }
43
44 static inline void cpuset_inc(void)
45 {
46         static_branch_inc_cpuslocked(&cpusets_pre_enable_key);
47         static_branch_inc_cpuslocked(&cpusets_enabled_key);
48 }
49
50 static inline void cpuset_dec(void)
51 {
52         static_branch_dec_cpuslocked(&cpusets_enabled_key);
53         static_branch_dec_cpuslocked(&cpusets_pre_enable_key);
54 }
55
56 /*
57  * This will get enabled whenever a cpuset configuration is considered
58  * unsupportable in general. E.g. movable only node which cannot satisfy
59  * any non movable allocations (see update_nodemask). Page allocator
60  * needs to make additional checks for those configurations and this
61  * check is meant to guard those checks without any overhead for sane
62  * configurations.
63  */
64 static inline bool cpusets_insane_config(void)
65 {
66         return static_branch_unlikely(&cpusets_insane_config_key);
67 }
68
69 extern int cpuset_init(void);
70 extern void cpuset_init_smp(void);
71 extern void cpuset_force_rebuild(void);
72 extern void cpuset_update_active_cpus(void);
73 extern void cpuset_wait_for_hotplug(void);
74 extern void inc_dl_tasks_cs(struct task_struct *task);
75 extern void dec_dl_tasks_cs(struct task_struct *task);
76 extern void cpuset_lock(void);
77 extern void cpuset_unlock(void);
78 extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask);
79 extern bool cpuset_cpus_allowed_fallback(struct task_struct *p);
80 extern nodemask_t cpuset_mems_allowed(struct task_struct *p);
81 #define cpuset_current_mems_allowed (current->mems_allowed)
82 void cpuset_init_current_mems_allowed(void);
83 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask);
84
85 extern bool cpuset_node_allowed(int node, gfp_t gfp_mask);
86
87 static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
88 {
89         return cpuset_node_allowed(zone_to_nid(z), gfp_mask);
90 }
91
92 static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
93 {
94         if (cpusets_enabled())
95                 return __cpuset_zone_allowed(z, gfp_mask);
96         return true;
97 }
98
99 extern int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
100                                           const struct task_struct *tsk2);
101
102 #define cpuset_memory_pressure_bump()                           \
103         do {                                                    \
104                 if (cpuset_memory_pressure_enabled)             \
105                         __cpuset_memory_pressure_bump();        \
106         } while (0)
107 extern int cpuset_memory_pressure_enabled;
108 extern void __cpuset_memory_pressure_bump(void);
109
110 extern void cpuset_task_status_allowed(struct seq_file *m,
111                                         struct task_struct *task);
112 extern int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
113                             struct pid *pid, struct task_struct *tsk);
114
115 extern int cpuset_mem_spread_node(void);
116 extern int cpuset_slab_spread_node(void);
117
118 static inline int cpuset_do_page_mem_spread(void)
119 {
120         return task_spread_page(current);
121 }
122
123 static inline int cpuset_do_slab_mem_spread(void)
124 {
125         return task_spread_slab(current);
126 }
127
128 extern bool current_cpuset_is_being_rebound(void);
129
130 extern void rebuild_sched_domains(void);
131
132 extern void cpuset_print_current_mems_allowed(void);
133
134 /*
135  * read_mems_allowed_begin is required when making decisions involving
136  * mems_allowed such as during page allocation. mems_allowed can be updated in
137  * parallel and depending on the new value an operation can fail potentially
138  * causing process failure. A retry loop with read_mems_allowed_begin and
139  * read_mems_allowed_retry prevents these artificial failures.
140  */
141 static inline unsigned int read_mems_allowed_begin(void)
142 {
143         if (!static_branch_unlikely(&cpusets_pre_enable_key))
144                 return 0;
145
146         return read_seqcount_begin(&current->mems_allowed_seq);
147 }
148
149 /*
150  * If this returns true, the operation that took place after
151  * read_mems_allowed_begin may have failed artificially due to a concurrent
152  * update of mems_allowed. It is up to the caller to retry the operation if
153  * appropriate.
154  */
155 static inline bool read_mems_allowed_retry(unsigned int seq)
156 {
157         if (!static_branch_unlikely(&cpusets_enabled_key))
158                 return false;
159
160         return read_seqcount_retry(&current->mems_allowed_seq, seq);
161 }
162
163 static inline void set_mems_allowed(nodemask_t nodemask)
164 {
165         unsigned long flags;
166
167         task_lock(current);
168         local_irq_save(flags);
169         write_seqcount_begin(&current->mems_allowed_seq);
170         current->mems_allowed = nodemask;
171         write_seqcount_end(&current->mems_allowed_seq);
172         local_irq_restore(flags);
173         task_unlock(current);
174 }
175
176 #else /* !CONFIG_CPUSETS */
177
178 static inline bool cpusets_enabled(void) { return false; }
179
180 static inline bool cpusets_insane_config(void) { return false; }
181
182 static inline int cpuset_init(void) { return 0; }
183 static inline void cpuset_init_smp(void) {}
184
185 static inline void cpuset_force_rebuild(void) { }
186
187 static inline void cpuset_update_active_cpus(void)
188 {
189         partition_sched_domains(1, NULL, NULL);
190 }
191
192 static inline void cpuset_wait_for_hotplug(void) { }
193
194 static inline void inc_dl_tasks_cs(struct task_struct *task) { }
195 static inline void dec_dl_tasks_cs(struct task_struct *task) { }
196 static inline void cpuset_lock(void) { }
197 static inline void cpuset_unlock(void) { }
198
199 static inline void cpuset_cpus_allowed(struct task_struct *p,
200                                        struct cpumask *mask)
201 {
202         cpumask_copy(mask, task_cpu_possible_mask(p));
203 }
204
205 static inline bool cpuset_cpus_allowed_fallback(struct task_struct *p)
206 {
207         return false;
208 }
209
210 static inline nodemask_t cpuset_mems_allowed(struct task_struct *p)
211 {
212         return node_possible_map;
213 }
214
215 #define cpuset_current_mems_allowed (node_states[N_MEMORY])
216 static inline void cpuset_init_current_mems_allowed(void) {}
217
218 static inline int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
219 {
220         return 1;
221 }
222
223 static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
224 {
225         return true;
226 }
227
228 static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
229 {
230         return true;
231 }
232
233 static inline int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
234                                                  const struct task_struct *tsk2)
235 {
236         return 1;
237 }
238
239 static inline void cpuset_memory_pressure_bump(void) {}
240
241 static inline void cpuset_task_status_allowed(struct seq_file *m,
242                                                 struct task_struct *task)
243 {
244 }
245
246 static inline int cpuset_mem_spread_node(void)
247 {
248         return 0;
249 }
250
251 static inline int cpuset_slab_spread_node(void)
252 {
253         return 0;
254 }
255
256 static inline int cpuset_do_page_mem_spread(void)
257 {
258         return 0;
259 }
260
261 static inline int cpuset_do_slab_mem_spread(void)
262 {
263         return 0;
264 }
265
266 static inline bool current_cpuset_is_being_rebound(void)
267 {
268         return false;
269 }
270
271 static inline void rebuild_sched_domains(void)
272 {
273         partition_sched_domains(1, NULL, NULL);
274 }
275
276 static inline void cpuset_print_current_mems_allowed(void)
277 {
278 }
279
280 static inline void set_mems_allowed(nodemask_t nodemask)
281 {
282 }
283
284 static inline unsigned int read_mems_allowed_begin(void)
285 {
286         return 0;
287 }
288
289 static inline bool read_mems_allowed_retry(unsigned int seq)
290 {
291         return false;
292 }
293
294 #endif /* !CONFIG_CPUSETS */
295
296 #endif /* _LINUX_CPUSET_H */