2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
47 #include "xfs_trace.h"
50 STATIC void xfs_unmountfs_wait(xfs_mount_t *);
54 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
56 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
58 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
60 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
64 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
65 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
66 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
72 short type; /* 0 = integer
73 * 1 = binary / string (no translation)
76 { offsetof(xfs_sb_t, sb_magicnum), 0 },
77 { offsetof(xfs_sb_t, sb_blocksize), 0 },
78 { offsetof(xfs_sb_t, sb_dblocks), 0 },
79 { offsetof(xfs_sb_t, sb_rblocks), 0 },
80 { offsetof(xfs_sb_t, sb_rextents), 0 },
81 { offsetof(xfs_sb_t, sb_uuid), 1 },
82 { offsetof(xfs_sb_t, sb_logstart), 0 },
83 { offsetof(xfs_sb_t, sb_rootino), 0 },
84 { offsetof(xfs_sb_t, sb_rbmino), 0 },
85 { offsetof(xfs_sb_t, sb_rsumino), 0 },
86 { offsetof(xfs_sb_t, sb_rextsize), 0 },
87 { offsetof(xfs_sb_t, sb_agblocks), 0 },
88 { offsetof(xfs_sb_t, sb_agcount), 0 },
89 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
90 { offsetof(xfs_sb_t, sb_logblocks), 0 },
91 { offsetof(xfs_sb_t, sb_versionnum), 0 },
92 { offsetof(xfs_sb_t, sb_sectsize), 0 },
93 { offsetof(xfs_sb_t, sb_inodesize), 0 },
94 { offsetof(xfs_sb_t, sb_inopblock), 0 },
95 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
96 { offsetof(xfs_sb_t, sb_blocklog), 0 },
97 { offsetof(xfs_sb_t, sb_sectlog), 0 },
98 { offsetof(xfs_sb_t, sb_inodelog), 0 },
99 { offsetof(xfs_sb_t, sb_inopblog), 0 },
100 { offsetof(xfs_sb_t, sb_agblklog), 0 },
101 { offsetof(xfs_sb_t, sb_rextslog), 0 },
102 { offsetof(xfs_sb_t, sb_inprogress), 0 },
103 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
104 { offsetof(xfs_sb_t, sb_icount), 0 },
105 { offsetof(xfs_sb_t, sb_ifree), 0 },
106 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
107 { offsetof(xfs_sb_t, sb_frextents), 0 },
108 { offsetof(xfs_sb_t, sb_uquotino), 0 },
109 { offsetof(xfs_sb_t, sb_gquotino), 0 },
110 { offsetof(xfs_sb_t, sb_qflags), 0 },
111 { offsetof(xfs_sb_t, sb_flags), 0 },
112 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
113 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
114 { offsetof(xfs_sb_t, sb_unit), 0 },
115 { offsetof(xfs_sb_t, sb_width), 0 },
116 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
117 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
118 { offsetof(xfs_sb_t, sb_logsectsize),0 },
119 { offsetof(xfs_sb_t, sb_logsunit), 0 },
120 { offsetof(xfs_sb_t, sb_features2), 0 },
121 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
122 { sizeof(xfs_sb_t), 0 }
125 static DEFINE_MUTEX(xfs_uuid_table_mutex);
126 static int xfs_uuid_table_size;
127 static uuid_t *xfs_uuid_table;
130 * See if the UUID is unique among mounted XFS filesystems.
131 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
135 struct xfs_mount *mp)
137 uuid_t *uuid = &mp->m_sb.sb_uuid;
140 if (mp->m_flags & XFS_MOUNT_NOUUID)
143 if (uuid_is_nil(uuid)) {
145 "XFS: Filesystem %s has nil UUID - can't mount",
147 return XFS_ERROR(EINVAL);
150 mutex_lock(&xfs_uuid_table_mutex);
151 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
152 if (uuid_is_nil(&xfs_uuid_table[i])) {
156 if (uuid_equal(uuid, &xfs_uuid_table[i]))
161 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
162 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
163 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
165 hole = xfs_uuid_table_size++;
167 xfs_uuid_table[hole] = *uuid;
168 mutex_unlock(&xfs_uuid_table_mutex);
173 mutex_unlock(&xfs_uuid_table_mutex);
174 cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount",
176 return XFS_ERROR(EINVAL);
181 struct xfs_mount *mp)
183 uuid_t *uuid = &mp->m_sb.sb_uuid;
186 if (mp->m_flags & XFS_MOUNT_NOUUID)
189 mutex_lock(&xfs_uuid_table_mutex);
190 for (i = 0; i < xfs_uuid_table_size; i++) {
191 if (uuid_is_nil(&xfs_uuid_table[i]))
193 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
195 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
198 ASSERT(i < xfs_uuid_table_size);
199 mutex_unlock(&xfs_uuid_table_mutex);
204 * Reference counting access wrappers to the perag structures.
207 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
209 struct xfs_perag *pag;
212 spin_lock(&mp->m_perag_lock);
213 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
215 ASSERT(atomic_read(&pag->pag_ref) >= 0);
216 /* catch leaks in the positive direction during testing */
217 ASSERT(atomic_read(&pag->pag_ref) < 1000);
218 ref = atomic_inc_return(&pag->pag_ref);
220 spin_unlock(&mp->m_perag_lock);
221 trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
226 xfs_perag_put(struct xfs_perag *pag)
230 ASSERT(atomic_read(&pag->pag_ref) > 0);
231 ref = atomic_dec_return(&pag->pag_ref);
232 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
236 * Free up the resources associated with a mount structure. Assume that
237 * the structure was initially zeroed, so we can tell which fields got
245 struct xfs_perag *pag;
247 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
248 spin_lock(&mp->m_perag_lock);
249 pag = radix_tree_delete(&mp->m_perag_tree, agno);
250 ASSERT(atomic_read(&pag->pag_ref) == 0);
251 spin_unlock(&mp->m_perag_lock);
253 kmem_free(pag->pagb_list);
259 * Check size of device based on the (data/realtime) block count.
260 * Note: this check is used by the growfs code as well as mount.
263 xfs_sb_validate_fsb_count(
267 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
268 ASSERT(sbp->sb_blocklog >= BBSHIFT);
270 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
271 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
273 #else /* Limited by UINT_MAX of sectors */
274 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
281 * Check the validity of the SB found.
284 xfs_mount_validate_sb(
290 * If the log device and data device have the
291 * same device number, the log is internal.
292 * Consequently, the sb_logstart should be non-zero. If
293 * we have a zero sb_logstart in this case, we may be trying to mount
294 * a volume filesystem in a non-volume manner.
296 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
297 xfs_fs_mount_cmn_err(flags, "bad magic number");
298 return XFS_ERROR(EWRONGFS);
301 if (!xfs_sb_good_version(sbp)) {
302 xfs_fs_mount_cmn_err(flags, "bad version");
303 return XFS_ERROR(EWRONGFS);
307 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
308 xfs_fs_mount_cmn_err(flags,
309 "filesystem is marked as having an external log; "
310 "specify logdev on the\nmount command line.");
311 return XFS_ERROR(EINVAL);
315 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
316 xfs_fs_mount_cmn_err(flags,
317 "filesystem is marked as having an internal log; "
318 "do not specify logdev on\nthe mount command line.");
319 return XFS_ERROR(EINVAL);
323 * More sanity checking. These were stolen directly from
327 sbp->sb_agcount <= 0 ||
328 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
329 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
330 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
331 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
332 sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
333 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
334 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
335 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
336 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
337 sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
338 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
339 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
340 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
341 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
342 sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
343 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
344 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
345 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
346 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
347 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
348 return XFS_ERROR(EFSCORRUPTED);
352 * Sanity check AG count, size fields against data size field
355 sbp->sb_dblocks == 0 ||
357 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
358 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
359 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
360 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
361 return XFS_ERROR(EFSCORRUPTED);
365 * Until this is fixed only page-sized or smaller data blocks work.
367 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
368 xfs_fs_mount_cmn_err(flags,
369 "file system with blocksize %d bytes",
371 xfs_fs_mount_cmn_err(flags,
372 "only pagesize (%ld) or less will currently work.",
374 return XFS_ERROR(ENOSYS);
378 * Currently only very few inode sizes are supported.
380 switch (sbp->sb_inodesize) {
387 xfs_fs_mount_cmn_err(flags,
388 "inode size of %d bytes not supported",
390 return XFS_ERROR(ENOSYS);
393 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
394 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
395 xfs_fs_mount_cmn_err(flags,
396 "file system too large to be mounted on this system.");
397 return XFS_ERROR(E2BIG);
400 if (unlikely(sbp->sb_inprogress)) {
401 xfs_fs_mount_cmn_err(flags, "file system busy");
402 return XFS_ERROR(EFSCORRUPTED);
406 * Version 1 directory format has never worked on Linux.
408 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
409 xfs_fs_mount_cmn_err(flags,
410 "file system using version 1 directory format");
411 return XFS_ERROR(ENOSYS);
418 xfs_initialize_perag_icache(
421 if (!pag->pag_ici_init) {
422 rwlock_init(&pag->pag_ici_lock);
423 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
424 pag->pag_ici_init = 1;
429 xfs_initialize_perag(
431 xfs_agnumber_t agcount,
432 xfs_agnumber_t *maxagi)
434 xfs_agnumber_t index, max_metadata;
438 xfs_sb_t *sbp = &mp->m_sb;
439 xfs_ino_t max_inum = XFS_MAXINUMBER_32;
441 /* Check to see if the filesystem can overflow 32 bit inodes */
442 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
443 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
446 * Walk the current per-ag tree so we don't try to initialise AGs
447 * that already exist (growfs case). Allocate and insert all the
448 * AGs we don't find ready for initialisation.
450 for (index = 0; index < agcount; index++) {
451 pag = xfs_perag_get(mp, index);
456 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
459 if (radix_tree_preload(GFP_NOFS))
461 spin_lock(&mp->m_perag_lock);
462 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
464 spin_unlock(&mp->m_perag_lock);
468 pag->pag_agno = index;
470 spin_unlock(&mp->m_perag_lock);
471 radix_tree_preload_end();
474 /* Clear the mount flag if no inode can overflow 32 bits
475 * on this filesystem, or if specifically requested..
477 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
478 mp->m_flags |= XFS_MOUNT_32BITINODES;
480 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
483 /* If we can overflow then setup the ag headers accordingly */
484 if (mp->m_flags & XFS_MOUNT_32BITINODES) {
485 /* Calculate how much should be reserved for inodes to
486 * meet the max inode percentage.
488 if (mp->m_maxicount) {
491 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
493 icount += sbp->sb_agblocks - 1;
494 do_div(icount, sbp->sb_agblocks);
495 max_metadata = icount;
497 max_metadata = agcount;
499 for (index = 0; index < agcount; index++) {
500 ino = XFS_AGINO_TO_INO(mp, index, agino);
501 if (ino > max_inum) {
506 /* This ag is preferred for inodes */
507 pag = xfs_perag_get(mp, index);
508 pag->pagi_inodeok = 1;
509 if (index < max_metadata)
510 pag->pagf_metadata = 1;
511 xfs_initialize_perag_icache(pag);
515 /* Setup default behavior for smaller filesystems */
516 for (index = 0; index < agcount; index++) {
517 pag = xfs_perag_get(mp, index);
518 pag->pagi_inodeok = 1;
519 xfs_initialize_perag_icache(pag);
533 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
534 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
535 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
536 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
537 to->sb_rextents = be64_to_cpu(from->sb_rextents);
538 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
539 to->sb_logstart = be64_to_cpu(from->sb_logstart);
540 to->sb_rootino = be64_to_cpu(from->sb_rootino);
541 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
542 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
543 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
544 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
545 to->sb_agcount = be32_to_cpu(from->sb_agcount);
546 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
547 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
548 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
549 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
550 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
551 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
552 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
553 to->sb_blocklog = from->sb_blocklog;
554 to->sb_sectlog = from->sb_sectlog;
555 to->sb_inodelog = from->sb_inodelog;
556 to->sb_inopblog = from->sb_inopblog;
557 to->sb_agblklog = from->sb_agblklog;
558 to->sb_rextslog = from->sb_rextslog;
559 to->sb_inprogress = from->sb_inprogress;
560 to->sb_imax_pct = from->sb_imax_pct;
561 to->sb_icount = be64_to_cpu(from->sb_icount);
562 to->sb_ifree = be64_to_cpu(from->sb_ifree);
563 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
564 to->sb_frextents = be64_to_cpu(from->sb_frextents);
565 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
566 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
567 to->sb_qflags = be16_to_cpu(from->sb_qflags);
568 to->sb_flags = from->sb_flags;
569 to->sb_shared_vn = from->sb_shared_vn;
570 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
571 to->sb_unit = be32_to_cpu(from->sb_unit);
572 to->sb_width = be32_to_cpu(from->sb_width);
573 to->sb_dirblklog = from->sb_dirblklog;
574 to->sb_logsectlog = from->sb_logsectlog;
575 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
576 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
577 to->sb_features2 = be32_to_cpu(from->sb_features2);
578 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
582 * Copy in core superblock to ondisk one.
584 * The fields argument is mask of superblock fields to copy.
592 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
593 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
603 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
604 first = xfs_sb_info[f].offset;
605 size = xfs_sb_info[f + 1].offset - first;
607 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
609 if (size == 1 || xfs_sb_info[f].type == 1) {
610 memcpy(to_ptr + first, from_ptr + first, size);
614 *(__be16 *)(to_ptr + first) =
615 cpu_to_be16(*(__u16 *)(from_ptr + first));
618 *(__be32 *)(to_ptr + first) =
619 cpu_to_be32(*(__u32 *)(from_ptr + first));
622 *(__be64 *)(to_ptr + first) =
623 cpu_to_be64(*(__u64 *)(from_ptr + first));
630 fields &= ~(1LL << f);
637 * Does the initial read of the superblock.
640 xfs_readsb(xfs_mount_t *mp, int flags)
642 unsigned int sector_size;
643 unsigned int extra_flags;
647 ASSERT(mp->m_sb_bp == NULL);
648 ASSERT(mp->m_ddev_targp != NULL);
651 * Allocate a (locked) buffer to hold the superblock.
652 * This will be kept around at all times to optimize
653 * access to the superblock.
655 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
656 extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
658 bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR, BTOBB(sector_size),
660 if (!bp || XFS_BUF_ISERROR(bp)) {
661 xfs_fs_mount_cmn_err(flags, "SB read failed");
662 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
665 ASSERT(XFS_BUF_ISBUSY(bp));
666 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
669 * Initialize the mount structure from the superblock.
670 * But first do some basic consistency checking.
672 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
674 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
676 xfs_fs_mount_cmn_err(flags, "SB validate failed");
681 * We must be able to do sector-sized and sector-aligned IO.
683 if (sector_size > mp->m_sb.sb_sectsize) {
684 xfs_fs_mount_cmn_err(flags,
685 "device supports only %u byte sectors (not %u)",
686 sector_size, mp->m_sb.sb_sectsize);
692 * If device sector size is smaller than the superblock size,
693 * re-read the superblock so the buffer is correctly sized.
695 if (sector_size < mp->m_sb.sb_sectsize) {
696 XFS_BUF_UNMANAGE(bp);
698 sector_size = mp->m_sb.sb_sectsize;
699 bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR,
700 BTOBB(sector_size), extra_flags);
701 if (!bp || XFS_BUF_ISERROR(bp)) {
702 xfs_fs_mount_cmn_err(flags, "SB re-read failed");
703 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
706 ASSERT(XFS_BUF_ISBUSY(bp));
707 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
710 /* Initialize per-cpu counters */
711 xfs_icsb_reinit_counters(mp);
715 ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
720 XFS_BUF_UNMANAGE(bp);
730 * Mount initialization code establishing various mount
731 * fields from the superblock associated with the given
735 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
737 mp->m_agfrotor = mp->m_agirotor = 0;
738 spin_lock_init(&mp->m_agirotor_lock);
739 mp->m_maxagi = mp->m_sb.sb_agcount;
740 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
741 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
742 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
743 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
744 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
745 mp->m_blockmask = sbp->sb_blocksize - 1;
746 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
747 mp->m_blockwmask = mp->m_blockwsize - 1;
749 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
750 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
751 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
752 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
754 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
755 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
756 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
757 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
759 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
760 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
761 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
762 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
764 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
765 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
767 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
771 * xfs_initialize_perag_data
773 * Read in each per-ag structure so we can count up the number of
774 * allocated inodes, free inodes and used filesystem blocks as this
775 * information is no longer persistent in the superblock. Once we have
776 * this information, write it into the in-core superblock structure.
779 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
781 xfs_agnumber_t index;
783 xfs_sb_t *sbp = &mp->m_sb;
787 uint64_t bfreelst = 0;
791 for (index = 0; index < agcount; index++) {
793 * read the agf, then the agi. This gets us
794 * all the information we need and populates the
795 * per-ag structures for us.
797 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
801 error = xfs_ialloc_pagi_init(mp, NULL, index);
804 pag = xfs_perag_get(mp, index);
805 ifree += pag->pagi_freecount;
806 ialloc += pag->pagi_count;
807 bfree += pag->pagf_freeblks;
808 bfreelst += pag->pagf_flcount;
809 btree += pag->pagf_btreeblks;
813 * Overwrite incore superblock counters with just-read data
815 spin_lock(&mp->m_sb_lock);
816 sbp->sb_ifree = ifree;
817 sbp->sb_icount = ialloc;
818 sbp->sb_fdblocks = bfree + bfreelst + btree;
819 spin_unlock(&mp->m_sb_lock);
821 /* Fixup the per-cpu counters as well. */
822 xfs_icsb_reinit_counters(mp);
828 * Update alignment values based on mount options and sb values
831 xfs_update_alignment(xfs_mount_t *mp)
833 xfs_sb_t *sbp = &(mp->m_sb);
837 * If stripe unit and stripe width are not multiples
838 * of the fs blocksize turn off alignment.
840 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
841 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
842 if (mp->m_flags & XFS_MOUNT_RETERR) {
844 "XFS: alignment check 1 failed");
845 return XFS_ERROR(EINVAL);
847 mp->m_dalign = mp->m_swidth = 0;
850 * Convert the stripe unit and width to FSBs.
852 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
853 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
854 if (mp->m_flags & XFS_MOUNT_RETERR) {
855 return XFS_ERROR(EINVAL);
857 xfs_fs_cmn_err(CE_WARN, mp,
858 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
859 mp->m_dalign, mp->m_swidth,
864 } else if (mp->m_dalign) {
865 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
867 if (mp->m_flags & XFS_MOUNT_RETERR) {
868 xfs_fs_cmn_err(CE_WARN, mp,
869 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
872 return XFS_ERROR(EINVAL);
879 * Update superblock with new values
882 if (xfs_sb_version_hasdalign(sbp)) {
883 if (sbp->sb_unit != mp->m_dalign) {
884 sbp->sb_unit = mp->m_dalign;
885 mp->m_update_flags |= XFS_SB_UNIT;
887 if (sbp->sb_width != mp->m_swidth) {
888 sbp->sb_width = mp->m_swidth;
889 mp->m_update_flags |= XFS_SB_WIDTH;
892 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
893 xfs_sb_version_hasdalign(&mp->m_sb)) {
894 mp->m_dalign = sbp->sb_unit;
895 mp->m_swidth = sbp->sb_width;
902 * Set the maximum inode count for this filesystem
905 xfs_set_maxicount(xfs_mount_t *mp)
907 xfs_sb_t *sbp = &(mp->m_sb);
910 if (sbp->sb_imax_pct) {
912 * Make sure the maximum inode count is a multiple
913 * of the units we allocate inodes in.
915 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
917 do_div(icount, mp->m_ialloc_blks);
918 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
926 * Set the default minimum read and write sizes unless
927 * already specified in a mount option.
928 * We use smaller I/O sizes when the file system
929 * is being used for NFS service (wsync mount option).
932 xfs_set_rw_sizes(xfs_mount_t *mp)
934 xfs_sb_t *sbp = &(mp->m_sb);
935 int readio_log, writeio_log;
937 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
938 if (mp->m_flags & XFS_MOUNT_WSYNC) {
939 readio_log = XFS_WSYNC_READIO_LOG;
940 writeio_log = XFS_WSYNC_WRITEIO_LOG;
942 readio_log = XFS_READIO_LOG_LARGE;
943 writeio_log = XFS_WRITEIO_LOG_LARGE;
946 readio_log = mp->m_readio_log;
947 writeio_log = mp->m_writeio_log;
950 if (sbp->sb_blocklog > readio_log) {
951 mp->m_readio_log = sbp->sb_blocklog;
953 mp->m_readio_log = readio_log;
955 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
956 if (sbp->sb_blocklog > writeio_log) {
957 mp->m_writeio_log = sbp->sb_blocklog;
959 mp->m_writeio_log = writeio_log;
961 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
965 * Set whether we're using inode alignment.
968 xfs_set_inoalignment(xfs_mount_t *mp)
970 if (xfs_sb_version_hasalign(&mp->m_sb) &&
971 mp->m_sb.sb_inoalignmt >=
972 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
973 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
975 mp->m_inoalign_mask = 0;
977 * If we are using stripe alignment, check whether
978 * the stripe unit is a multiple of the inode alignment
980 if (mp->m_dalign && mp->m_inoalign_mask &&
981 !(mp->m_dalign & mp->m_inoalign_mask))
982 mp->m_sinoalign = mp->m_dalign;
988 * Check that the data (and log if separate) are an ok size.
991 xfs_check_sizes(xfs_mount_t *mp)
997 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
998 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
999 cmn_err(CE_WARN, "XFS: size check 1 failed");
1000 return XFS_ERROR(E2BIG);
1002 error = xfs_read_buf(mp, mp->m_ddev_targp,
1003 d - XFS_FSS_TO_BB(mp, 1),
1004 XFS_FSS_TO_BB(mp, 1), 0, &bp);
1008 cmn_err(CE_WARN, "XFS: size check 2 failed");
1009 if (error == ENOSPC)
1010 error = XFS_ERROR(E2BIG);
1014 if (mp->m_logdev_targp != mp->m_ddev_targp) {
1015 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1016 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1017 cmn_err(CE_WARN, "XFS: size check 3 failed");
1018 return XFS_ERROR(E2BIG);
1020 error = xfs_read_buf(mp, mp->m_logdev_targp,
1021 d - XFS_FSB_TO_BB(mp, 1),
1022 XFS_FSB_TO_BB(mp, 1), 0, &bp);
1026 cmn_err(CE_WARN, "XFS: size check 3 failed");
1027 if (error == ENOSPC)
1028 error = XFS_ERROR(E2BIG);
1036 * Clear the quotaflags in memory and in the superblock.
1039 xfs_mount_reset_sbqflags(
1040 struct xfs_mount *mp)
1043 struct xfs_trans *tp;
1048 * It is OK to look at sb_qflags here in mount path,
1049 * without m_sb_lock.
1051 if (mp->m_sb.sb_qflags == 0)
1053 spin_lock(&mp->m_sb_lock);
1054 mp->m_sb.sb_qflags = 0;
1055 spin_unlock(&mp->m_sb_lock);
1058 * If the fs is readonly, let the incore superblock run
1059 * with quotas off but don't flush the update out to disk
1061 if (mp->m_flags & XFS_MOUNT_RDONLY)
1065 xfs_fs_cmn_err(CE_NOTE, mp, "Writing superblock quota changes");
1068 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1069 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1070 XFS_DEFAULT_LOG_COUNT);
1072 xfs_trans_cancel(tp, 0);
1073 xfs_fs_cmn_err(CE_ALERT, mp,
1074 "xfs_mount_reset_sbqflags: Superblock update failed!");
1078 xfs_mod_sb(tp, XFS_SB_QFLAGS);
1079 return xfs_trans_commit(tp, 0);
1083 * This function does the following on an initial mount of a file system:
1084 * - reads the superblock from disk and init the mount struct
1085 * - if we're a 32-bit kernel, do a size check on the superblock
1086 * so we don't mount terabyte filesystems
1087 * - init mount struct realtime fields
1088 * - allocate inode hash table for fs
1089 * - init directory manager
1090 * - perform recovery and init the log manager
1096 xfs_sb_t *sbp = &(mp->m_sb);
1099 uint quotamount = 0;
1100 uint quotaflags = 0;
1103 xfs_mount_common(mp, sbp);
1106 * Check for a mismatched features2 values. Older kernels
1107 * read & wrote into the wrong sb offset for sb_features2
1108 * on some platforms due to xfs_sb_t not being 64bit size aligned
1109 * when sb_features2 was added, which made older superblock
1110 * reading/writing routines swap it as a 64-bit value.
1112 * For backwards compatibility, we make both slots equal.
1114 * If we detect a mismatched field, we OR the set bits into the
1115 * existing features2 field in case it has already been modified; we
1116 * don't want to lose any features. We then update the bad location
1117 * with the ORed value so that older kernels will see any features2
1118 * flags, and mark the two fields as needing updates once the
1119 * transaction subsystem is online.
1121 if (xfs_sb_has_mismatched_features2(sbp)) {
1123 "XFS: correcting sb_features alignment problem");
1124 sbp->sb_features2 |= sbp->sb_bad_features2;
1125 sbp->sb_bad_features2 = sbp->sb_features2;
1126 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1129 * Re-check for ATTR2 in case it was found in bad_features2
1132 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1133 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1134 mp->m_flags |= XFS_MOUNT_ATTR2;
1137 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1138 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1139 xfs_sb_version_removeattr2(&mp->m_sb);
1140 mp->m_update_flags |= XFS_SB_FEATURES2;
1142 /* update sb_versionnum for the clearing of the morebits */
1143 if (!sbp->sb_features2)
1144 mp->m_update_flags |= XFS_SB_VERSIONNUM;
1148 * Check if sb_agblocks is aligned at stripe boundary
1149 * If sb_agblocks is NOT aligned turn off m_dalign since
1150 * allocator alignment is within an ag, therefore ag has
1151 * to be aligned at stripe boundary.
1153 error = xfs_update_alignment(mp);
1157 xfs_alloc_compute_maxlevels(mp);
1158 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1159 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1160 xfs_ialloc_compute_maxlevels(mp);
1162 xfs_set_maxicount(mp);
1164 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1166 error = xfs_uuid_mount(mp);
1171 * Set the minimum read and write sizes
1173 xfs_set_rw_sizes(mp);
1176 * Set the inode cluster size.
1177 * This may still be overridden by the file system
1178 * block size if it is larger than the chosen cluster size.
1180 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1183 * Set inode alignment fields
1185 xfs_set_inoalignment(mp);
1188 * Check that the data (and log if separate) are an ok size.
1190 error = xfs_check_sizes(mp);
1192 goto out_remove_uuid;
1195 * Initialize realtime fields in the mount structure
1197 error = xfs_rtmount_init(mp);
1199 cmn_err(CE_WARN, "XFS: RT mount failed");
1200 goto out_remove_uuid;
1204 * Copies the low order bits of the timestamp and the randomly
1205 * set "sequence" number out of a UUID.
1207 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1209 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1214 * Initialize the attribute manager's entries.
1216 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1219 * Initialize the precomputed transaction reservations values.
1224 * Allocate and initialize the per-ag data.
1226 spin_lock_init(&mp->m_perag_lock);
1227 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_NOFS);
1228 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1230 cmn_err(CE_WARN, "XFS: Failed per-ag init: %d", error);
1231 goto out_remove_uuid;
1234 if (!sbp->sb_logblocks) {
1235 cmn_err(CE_WARN, "XFS: no log defined");
1236 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1237 error = XFS_ERROR(EFSCORRUPTED);
1238 goto out_free_perag;
1242 * log's mount-time initialization. Perform 1st part recovery if needed
1244 error = xfs_log_mount(mp, mp->m_logdev_targp,
1245 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1246 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1248 cmn_err(CE_WARN, "XFS: log mount failed");
1249 goto out_free_perag;
1253 * Now the log is mounted, we know if it was an unclean shutdown or
1254 * not. If it was, with the first phase of recovery has completed, we
1255 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1256 * but they are recovered transactionally in the second recovery phase
1259 * Hence we can safely re-initialise incore superblock counters from
1260 * the per-ag data. These may not be correct if the filesystem was not
1261 * cleanly unmounted, so we need to wait for recovery to finish before
1264 * If the filesystem was cleanly unmounted, then we can trust the
1265 * values in the superblock to be correct and we don't need to do
1268 * If we are currently making the filesystem, the initialisation will
1269 * fail as the perag data is in an undefined state.
1271 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1272 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1273 !mp->m_sb.sb_inprogress) {
1274 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1276 goto out_free_perag;
1280 * Get and sanity-check the root inode.
1281 * Save the pointer to it in the mount structure.
1283 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1285 cmn_err(CE_WARN, "XFS: failed to read root inode");
1286 goto out_log_dealloc;
1289 ASSERT(rip != NULL);
1291 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1292 cmn_err(CE_WARN, "XFS: corrupted root inode");
1293 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1294 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1295 (unsigned long long)rip->i_ino);
1296 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1297 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1299 error = XFS_ERROR(EFSCORRUPTED);
1302 mp->m_rootip = rip; /* save it */
1304 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1307 * Initialize realtime inode pointers in the mount structure
1309 error = xfs_rtmount_inodes(mp);
1312 * Free up the root inode.
1314 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1319 * If this is a read-only mount defer the superblock updates until
1320 * the next remount into writeable mode. Otherwise we would never
1321 * perform the update e.g. for the root filesystem.
1323 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1324 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1326 cmn_err(CE_WARN, "XFS: failed to write sb changes");
1332 * Initialise the XFS quota management subsystem for this mount
1334 if (XFS_IS_QUOTA_RUNNING(mp)) {
1335 error = xfs_qm_newmount(mp, "amount, "aflags);
1339 ASSERT(!XFS_IS_QUOTA_ON(mp));
1342 * If a file system had quotas running earlier, but decided to
1343 * mount without -o uquota/pquota/gquota options, revoke the
1344 * quotachecked license.
1346 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1348 "XFS: resetting qflags for filesystem %s",
1351 error = xfs_mount_reset_sbqflags(mp);
1358 * Finish recovering the file system. This part needed to be
1359 * delayed until after the root and real-time bitmap inodes
1360 * were consistently read in.
1362 error = xfs_log_mount_finish(mp);
1364 cmn_err(CE_WARN, "XFS: log mount finish failed");
1369 * Complete the quota initialisation, post-log-replay component.
1372 ASSERT(mp->m_qflags == 0);
1373 mp->m_qflags = quotaflags;
1375 xfs_qm_mount_quotas(mp);
1378 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
1379 if (XFS_IS_QUOTA_ON(mp))
1380 xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas turned on");
1382 xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas not turned on");
1386 * Now we are mounted, reserve a small amount of unused space for
1387 * privileged transactions. This is needed so that transaction
1388 * space required for critical operations can dip into this pool
1389 * when at ENOSPC. This is needed for operations like create with
1390 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1391 * are not allowed to use this reserved space.
1393 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1394 * This may drive us straight to ENOSPC on mount, but that implies
1395 * we were already there on the last unmount. Warn if this occurs.
1397 resblks = mp->m_sb.sb_dblocks;
1398 do_div(resblks, 20);
1399 resblks = min_t(__uint64_t, resblks, 1024);
1400 error = xfs_reserve_blocks(mp, &resblks, NULL);
1402 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. "
1403 "Continuing without a reserve pool.");
1408 xfs_rtunmount_inodes(mp);
1412 xfs_log_unmount(mp);
1416 xfs_uuid_unmount(mp);
1422 * This flushes out the inodes,dquots and the superblock, unmounts the
1423 * log and makes sure that incore structures are freed.
1427 struct xfs_mount *mp)
1432 xfs_qm_unmount_quotas(mp);
1433 xfs_rtunmount_inodes(mp);
1434 IRELE(mp->m_rootip);
1437 * We can potentially deadlock here if we have an inode cluster
1438 * that has been freed has its buffer still pinned in memory because
1439 * the transaction is still sitting in a iclog. The stale inodes
1440 * on that buffer will have their flush locks held until the
1441 * transaction hits the disk and the callbacks run. the inode
1442 * flush takes the flush lock unconditionally and with nothing to
1443 * push out the iclog we will never get that unlocked. hence we
1444 * need to force the log first.
1446 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1447 xfs_reclaim_inodes(mp, XFS_IFLUSH_ASYNC);
1452 * Flush out the log synchronously so that we know for sure
1453 * that nothing is pinned. This is important because bflush()
1454 * will skip pinned buffers.
1456 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1458 xfs_binval(mp->m_ddev_targp);
1459 if (mp->m_rtdev_targp) {
1460 xfs_binval(mp->m_rtdev_targp);
1464 * Unreserve any blocks we have so that when we unmount we don't account
1465 * the reserved free space as used. This is really only necessary for
1466 * lazy superblock counting because it trusts the incore superblock
1467 * counters to be absolutely correct on clean unmount.
1469 * We don't bother correcting this elsewhere for lazy superblock
1470 * counting because on mount of an unclean filesystem we reconstruct the
1471 * correct counter value and this is irrelevant.
1473 * For non-lazy counter filesystems, this doesn't matter at all because
1474 * we only every apply deltas to the superblock and hence the incore
1475 * value does not matter....
1478 error = xfs_reserve_blocks(mp, &resblks, NULL);
1480 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1481 "Freespace may not be correct on next mount.");
1483 error = xfs_log_sbcount(mp, 1);
1485 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1486 "Freespace may not be correct on next mount.");
1487 xfs_unmountfs_writesb(mp);
1488 xfs_unmountfs_wait(mp); /* wait for async bufs */
1489 xfs_log_unmount_write(mp);
1490 xfs_log_unmount(mp);
1491 xfs_uuid_unmount(mp);
1494 xfs_errortag_clearall(mp, 0);
1500 xfs_unmountfs_wait(xfs_mount_t *mp)
1502 if (mp->m_logdev_targp != mp->m_ddev_targp)
1503 xfs_wait_buftarg(mp->m_logdev_targp);
1504 if (mp->m_rtdev_targp)
1505 xfs_wait_buftarg(mp->m_rtdev_targp);
1506 xfs_wait_buftarg(mp->m_ddev_targp);
1510 xfs_fs_writable(xfs_mount_t *mp)
1512 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1513 (mp->m_flags & XFS_MOUNT_RDONLY));
1519 * Called either periodically to keep the on disk superblock values
1520 * roughly up to date or from unmount to make sure the values are
1521 * correct on a clean unmount.
1523 * Note this code can be called during the process of freezing, so
1524 * we may need to use the transaction allocator which does not not
1525 * block when the transaction subsystem is in its frozen state.
1535 if (!xfs_fs_writable(mp))
1538 xfs_icsb_sync_counters(mp, 0);
1541 * we don't need to do this if we are updating the superblock
1542 * counters on every modification.
1544 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1547 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1548 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1549 XFS_DEFAULT_LOG_COUNT);
1551 xfs_trans_cancel(tp, 0);
1555 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1557 xfs_trans_set_sync(tp);
1558 error = xfs_trans_commit(tp, 0);
1563 xfs_unmountfs_writesb(xfs_mount_t *mp)
1569 * skip superblock write if fs is read-only, or
1570 * if we are doing a forced umount.
1572 if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1573 XFS_FORCED_SHUTDOWN(mp))) {
1575 sbp = xfs_getsb(mp, 0);
1577 XFS_BUF_UNDONE(sbp);
1578 XFS_BUF_UNREAD(sbp);
1579 XFS_BUF_UNDELAYWRITE(sbp);
1581 XFS_BUF_UNASYNC(sbp);
1582 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1583 xfsbdstrat(mp, sbp);
1584 error = xfs_iowait(sbp);
1586 xfs_ioerror_alert("xfs_unmountfs_writesb",
1587 mp, sbp, XFS_BUF_ADDR(sbp));
1594 * xfs_mod_sb() can be used to copy arbitrary changes to the
1595 * in-core superblock into the superblock buffer to be logged.
1596 * It does not provide the higher level of locking that is
1597 * needed to protect the in-core superblock from concurrent
1601 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1613 bp = xfs_trans_getsb(tp, mp, 0);
1614 first = sizeof(xfs_sb_t);
1617 /* translate/copy */
1619 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1621 /* find modified range */
1623 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1624 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1625 first = xfs_sb_info[f].offset;
1627 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1628 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1629 last = xfs_sb_info[f + 1].offset - 1;
1631 xfs_trans_log_buf(tp, bp, first, last);
1636 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1637 * a delta to a specified field in the in-core superblock. Simply
1638 * switch on the field indicated and apply the delta to that field.
1639 * Fields are not allowed to dip below zero, so if the delta would
1640 * do this do not apply it and return EINVAL.
1642 * The m_sb_lock must be held when this routine is called.
1645 xfs_mod_incore_sb_unlocked(
1647 xfs_sb_field_t field,
1651 int scounter; /* short counter for 32 bit fields */
1652 long long lcounter; /* long counter for 64 bit fields */
1653 long long res_used, rem;
1656 * With the in-core superblock spin lock held, switch
1657 * on the indicated field. Apply the delta to the
1658 * proper field. If the fields value would dip below
1659 * 0, then do not apply the delta and return EINVAL.
1662 case XFS_SBS_ICOUNT:
1663 lcounter = (long long)mp->m_sb.sb_icount;
1667 return XFS_ERROR(EINVAL);
1669 mp->m_sb.sb_icount = lcounter;
1672 lcounter = (long long)mp->m_sb.sb_ifree;
1676 return XFS_ERROR(EINVAL);
1678 mp->m_sb.sb_ifree = lcounter;
1680 case XFS_SBS_FDBLOCKS:
1681 lcounter = (long long)
1682 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1683 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1685 if (delta > 0) { /* Putting blocks back */
1686 if (res_used > delta) {
1687 mp->m_resblks_avail += delta;
1689 rem = delta - res_used;
1690 mp->m_resblks_avail = mp->m_resblks;
1693 } else { /* Taking blocks away */
1698 * If were out of blocks, use any available reserved blocks if
1704 lcounter = (long long)mp->m_resblks_avail + delta;
1706 return XFS_ERROR(ENOSPC);
1708 mp->m_resblks_avail = lcounter;
1710 } else { /* not reserved */
1711 return XFS_ERROR(ENOSPC);
1716 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1718 case XFS_SBS_FREXTENTS:
1719 lcounter = (long long)mp->m_sb.sb_frextents;
1722 return XFS_ERROR(ENOSPC);
1724 mp->m_sb.sb_frextents = lcounter;
1726 case XFS_SBS_DBLOCKS:
1727 lcounter = (long long)mp->m_sb.sb_dblocks;
1731 return XFS_ERROR(EINVAL);
1733 mp->m_sb.sb_dblocks = lcounter;
1735 case XFS_SBS_AGCOUNT:
1736 scounter = mp->m_sb.sb_agcount;
1740 return XFS_ERROR(EINVAL);
1742 mp->m_sb.sb_agcount = scounter;
1744 case XFS_SBS_IMAX_PCT:
1745 scounter = mp->m_sb.sb_imax_pct;
1749 return XFS_ERROR(EINVAL);
1751 mp->m_sb.sb_imax_pct = scounter;
1753 case XFS_SBS_REXTSIZE:
1754 scounter = mp->m_sb.sb_rextsize;
1758 return XFS_ERROR(EINVAL);
1760 mp->m_sb.sb_rextsize = scounter;
1762 case XFS_SBS_RBMBLOCKS:
1763 scounter = mp->m_sb.sb_rbmblocks;
1767 return XFS_ERROR(EINVAL);
1769 mp->m_sb.sb_rbmblocks = scounter;
1771 case XFS_SBS_RBLOCKS:
1772 lcounter = (long long)mp->m_sb.sb_rblocks;
1776 return XFS_ERROR(EINVAL);
1778 mp->m_sb.sb_rblocks = lcounter;
1780 case XFS_SBS_REXTENTS:
1781 lcounter = (long long)mp->m_sb.sb_rextents;
1785 return XFS_ERROR(EINVAL);
1787 mp->m_sb.sb_rextents = lcounter;
1789 case XFS_SBS_REXTSLOG:
1790 scounter = mp->m_sb.sb_rextslog;
1794 return XFS_ERROR(EINVAL);
1796 mp->m_sb.sb_rextslog = scounter;
1800 return XFS_ERROR(EINVAL);
1805 * xfs_mod_incore_sb() is used to change a field in the in-core
1806 * superblock structure by the specified delta. This modification
1807 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1808 * routine to do the work.
1813 xfs_sb_field_t field,
1819 /* check for per-cpu counters */
1821 #ifdef HAVE_PERCPU_SB
1822 case XFS_SBS_ICOUNT:
1824 case XFS_SBS_FDBLOCKS:
1825 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1826 status = xfs_icsb_modify_counters(mp, field,
1833 spin_lock(&mp->m_sb_lock);
1834 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1835 spin_unlock(&mp->m_sb_lock);
1843 * xfs_mod_incore_sb_batch() is used to change more than one field
1844 * in the in-core superblock structure at a time. This modification
1845 * is protected by a lock internal to this module. The fields and
1846 * changes to those fields are specified in the array of xfs_mod_sb
1847 * structures passed in.
1849 * Either all of the specified deltas will be applied or none of
1850 * them will. If any modified field dips below 0, then all modifications
1851 * will be backed out and EINVAL will be returned.
1854 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1860 * Loop through the array of mod structures and apply each
1861 * individually. If any fail, then back out all those
1862 * which have already been applied. Do all of this within
1863 * the scope of the m_sb_lock so that all of the changes will
1866 spin_lock(&mp->m_sb_lock);
1868 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1870 * Apply the delta at index n. If it fails, break
1871 * from the loop so we'll fall into the undo loop
1874 switch (msbp->msb_field) {
1875 #ifdef HAVE_PERCPU_SB
1876 case XFS_SBS_ICOUNT:
1878 case XFS_SBS_FDBLOCKS:
1879 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1880 spin_unlock(&mp->m_sb_lock);
1881 status = xfs_icsb_modify_counters(mp,
1883 msbp->msb_delta, rsvd);
1884 spin_lock(&mp->m_sb_lock);
1890 status = xfs_mod_incore_sb_unlocked(mp,
1892 msbp->msb_delta, rsvd);
1902 * If we didn't complete the loop above, then back out
1903 * any changes made to the superblock. If you add code
1904 * between the loop above and here, make sure that you
1905 * preserve the value of status. Loop back until
1906 * we step below the beginning of the array. Make sure
1907 * we don't touch anything back there.
1911 while (msbp >= msb) {
1912 switch (msbp->msb_field) {
1913 #ifdef HAVE_PERCPU_SB
1914 case XFS_SBS_ICOUNT:
1916 case XFS_SBS_FDBLOCKS:
1917 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1918 spin_unlock(&mp->m_sb_lock);
1919 status = xfs_icsb_modify_counters(mp,
1923 spin_lock(&mp->m_sb_lock);
1929 status = xfs_mod_incore_sb_unlocked(mp,
1935 ASSERT(status == 0);
1939 spin_unlock(&mp->m_sb_lock);
1944 * xfs_getsb() is called to obtain the buffer for the superblock.
1945 * The buffer is returned locked and read in from disk.
1946 * The buffer should be released with a call to xfs_brelse().
1948 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1949 * the superblock buffer if it can be locked without sleeping.
1950 * If it can't then we'll return NULL.
1959 ASSERT(mp->m_sb_bp != NULL);
1961 if (flags & XFS_BUF_TRYLOCK) {
1962 if (!XFS_BUF_CPSEMA(bp)) {
1966 XFS_BUF_PSEMA(bp, PRIBIO);
1969 ASSERT(XFS_BUF_ISDONE(bp));
1974 * Used to free the superblock along various error paths.
1983 * Use xfs_getsb() so that the buffer will be locked
1984 * when we call xfs_buf_relse().
1986 bp = xfs_getsb(mp, 0);
1987 XFS_BUF_UNMANAGE(bp);
1993 * Used to log changes to the superblock unit and width fields which could
1994 * be altered by the mount options, as well as any potential sb_features2
1995 * fixup. Only the first superblock is updated.
2005 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
2006 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
2007 XFS_SB_VERSIONNUM));
2009 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
2010 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
2011 XFS_DEFAULT_LOG_COUNT);
2013 xfs_trans_cancel(tp, 0);
2016 xfs_mod_sb(tp, fields);
2017 error = xfs_trans_commit(tp, 0);
2022 #ifdef HAVE_PERCPU_SB
2024 * Per-cpu incore superblock counters
2026 * Simple concept, difficult implementation
2028 * Basically, replace the incore superblock counters with a distributed per cpu
2029 * counter for contended fields (e.g. free block count).
2031 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2032 * hence needs to be accurately read when we are running low on space. Hence
2033 * there is a method to enable and disable the per-cpu counters based on how
2034 * much "stuff" is available in them.
2036 * Basically, a counter is enabled if there is enough free resource to justify
2037 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2038 * ENOSPC), then we disable the counters to synchronise all callers and
2039 * re-distribute the available resources.
2041 * If, once we redistributed the available resources, we still get a failure,
2042 * we disable the per-cpu counter and go through the slow path.
2044 * The slow path is the current xfs_mod_incore_sb() function. This means that
2045 * when we disable a per-cpu counter, we need to drain its resources back to
2046 * the global superblock. We do this after disabling the counter to prevent
2047 * more threads from queueing up on the counter.
2049 * Essentially, this means that we still need a lock in the fast path to enable
2050 * synchronisation between the global counters and the per-cpu counters. This
2051 * is not a problem because the lock will be local to a CPU almost all the time
2052 * and have little contention except when we get to ENOSPC conditions.
2054 * Basically, this lock becomes a barrier that enables us to lock out the fast
2055 * path while we do things like enabling and disabling counters and
2056 * synchronising the counters.
2060 * 1. m_sb_lock before picking up per-cpu locks
2061 * 2. per-cpu locks always picked up via for_each_online_cpu() order
2062 * 3. accurate counter sync requires m_sb_lock + per cpu locks
2063 * 4. modifying per-cpu counters requires holding per-cpu lock
2064 * 5. modifying global counters requires holding m_sb_lock
2065 * 6. enabling or disabling a counter requires holding the m_sb_lock
2066 * and _none_ of the per-cpu locks.
2068 * Disabled counters are only ever re-enabled by a balance operation
2069 * that results in more free resources per CPU than a given threshold.
2070 * To ensure counters don't remain disabled, they are rebalanced when
2071 * the global resource goes above a higher threshold (i.e. some hysteresis
2072 * is present to prevent thrashing).
2075 #ifdef CONFIG_HOTPLUG_CPU
2077 * hot-plug CPU notifier support.
2079 * We need a notifier per filesystem as we need to be able to identify
2080 * the filesystem to balance the counters out. This is achieved by
2081 * having a notifier block embedded in the xfs_mount_t and doing pointer
2082 * magic to get the mount pointer from the notifier block address.
2085 xfs_icsb_cpu_notify(
2086 struct notifier_block *nfb,
2087 unsigned long action,
2090 xfs_icsb_cnts_t *cntp;
2093 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2094 cntp = (xfs_icsb_cnts_t *)
2095 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2097 case CPU_UP_PREPARE:
2098 case CPU_UP_PREPARE_FROZEN:
2099 /* Easy Case - initialize the area and locks, and
2100 * then rebalance when online does everything else for us. */
2101 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2104 case CPU_ONLINE_FROZEN:
2106 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2107 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2108 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2109 xfs_icsb_unlock(mp);
2112 case CPU_DEAD_FROZEN:
2113 /* Disable all the counters, then fold the dead cpu's
2114 * count into the total on the global superblock and
2115 * re-enable the counters. */
2117 spin_lock(&mp->m_sb_lock);
2118 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2119 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2120 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2122 mp->m_sb.sb_icount += cntp->icsb_icount;
2123 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2124 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2126 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2128 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2129 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2130 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2131 spin_unlock(&mp->m_sb_lock);
2132 xfs_icsb_unlock(mp);
2138 #endif /* CONFIG_HOTPLUG_CPU */
2141 xfs_icsb_init_counters(
2144 xfs_icsb_cnts_t *cntp;
2147 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2148 if (mp->m_sb_cnts == NULL)
2151 #ifdef CONFIG_HOTPLUG_CPU
2152 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2153 mp->m_icsb_notifier.priority = 0;
2154 register_hotcpu_notifier(&mp->m_icsb_notifier);
2155 #endif /* CONFIG_HOTPLUG_CPU */
2157 for_each_online_cpu(i) {
2158 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2159 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2162 mutex_init(&mp->m_icsb_mutex);
2165 * start with all counters disabled so that the
2166 * initial balance kicks us off correctly
2168 mp->m_icsb_counters = -1;
2173 xfs_icsb_reinit_counters(
2178 * start with all counters disabled so that the
2179 * initial balance kicks us off correctly
2181 mp->m_icsb_counters = -1;
2182 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2183 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2184 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2185 xfs_icsb_unlock(mp);
2189 xfs_icsb_destroy_counters(
2192 if (mp->m_sb_cnts) {
2193 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2194 free_percpu(mp->m_sb_cnts);
2196 mutex_destroy(&mp->m_icsb_mutex);
2201 xfs_icsb_cnts_t *icsbp)
2203 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2209 xfs_icsb_unlock_cntr(
2210 xfs_icsb_cnts_t *icsbp)
2212 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2217 xfs_icsb_lock_all_counters(
2220 xfs_icsb_cnts_t *cntp;
2223 for_each_online_cpu(i) {
2224 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2225 xfs_icsb_lock_cntr(cntp);
2230 xfs_icsb_unlock_all_counters(
2233 xfs_icsb_cnts_t *cntp;
2236 for_each_online_cpu(i) {
2237 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2238 xfs_icsb_unlock_cntr(cntp);
2245 xfs_icsb_cnts_t *cnt,
2248 xfs_icsb_cnts_t *cntp;
2251 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2253 if (!(flags & XFS_ICSB_LAZY_COUNT))
2254 xfs_icsb_lock_all_counters(mp);
2256 for_each_online_cpu(i) {
2257 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2258 cnt->icsb_icount += cntp->icsb_icount;
2259 cnt->icsb_ifree += cntp->icsb_ifree;
2260 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2263 if (!(flags & XFS_ICSB_LAZY_COUNT))
2264 xfs_icsb_unlock_all_counters(mp);
2268 xfs_icsb_counter_disabled(
2270 xfs_sb_field_t field)
2272 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2273 return test_bit(field, &mp->m_icsb_counters);
2277 xfs_icsb_disable_counter(
2279 xfs_sb_field_t field)
2281 xfs_icsb_cnts_t cnt;
2283 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2286 * If we are already disabled, then there is nothing to do
2287 * here. We check before locking all the counters to avoid
2288 * the expensive lock operation when being called in the
2289 * slow path and the counter is already disabled. This is
2290 * safe because the only time we set or clear this state is under
2293 if (xfs_icsb_counter_disabled(mp, field))
2296 xfs_icsb_lock_all_counters(mp);
2297 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2298 /* drain back to superblock */
2300 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2302 case XFS_SBS_ICOUNT:
2303 mp->m_sb.sb_icount = cnt.icsb_icount;
2306 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2308 case XFS_SBS_FDBLOCKS:
2309 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2316 xfs_icsb_unlock_all_counters(mp);
2320 xfs_icsb_enable_counter(
2322 xfs_sb_field_t field,
2326 xfs_icsb_cnts_t *cntp;
2329 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2331 xfs_icsb_lock_all_counters(mp);
2332 for_each_online_cpu(i) {
2333 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2335 case XFS_SBS_ICOUNT:
2336 cntp->icsb_icount = count + resid;
2339 cntp->icsb_ifree = count + resid;
2341 case XFS_SBS_FDBLOCKS:
2342 cntp->icsb_fdblocks = count + resid;
2350 clear_bit(field, &mp->m_icsb_counters);
2351 xfs_icsb_unlock_all_counters(mp);
2355 xfs_icsb_sync_counters_locked(
2359 xfs_icsb_cnts_t cnt;
2361 xfs_icsb_count(mp, &cnt, flags);
2363 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2364 mp->m_sb.sb_icount = cnt.icsb_icount;
2365 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2366 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2367 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2368 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2372 * Accurate update of per-cpu counters to incore superblock
2375 xfs_icsb_sync_counters(
2379 spin_lock(&mp->m_sb_lock);
2380 xfs_icsb_sync_counters_locked(mp, flags);
2381 spin_unlock(&mp->m_sb_lock);
2385 * Balance and enable/disable counters as necessary.
2387 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2388 * chosen to be the same number as single on disk allocation chunk per CPU, and
2389 * free blocks is something far enough zero that we aren't going thrash when we
2390 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2391 * prevent looping endlessly when xfs_alloc_space asks for more than will
2392 * be distributed to a single CPU but each CPU has enough blocks to be
2395 * Note that we can be called when counters are already disabled.
2396 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2397 * prevent locking every per-cpu counter needlessly.
2400 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2401 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2402 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2404 xfs_icsb_balance_counter_locked(
2406 xfs_sb_field_t field,
2409 uint64_t count, resid;
2410 int weight = num_online_cpus();
2411 uint64_t min = (uint64_t)min_per_cpu;
2413 /* disable counter and sync counter */
2414 xfs_icsb_disable_counter(mp, field);
2416 /* update counters - first CPU gets residual*/
2418 case XFS_SBS_ICOUNT:
2419 count = mp->m_sb.sb_icount;
2420 resid = do_div(count, weight);
2421 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2425 count = mp->m_sb.sb_ifree;
2426 resid = do_div(count, weight);
2427 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2430 case XFS_SBS_FDBLOCKS:
2431 count = mp->m_sb.sb_fdblocks;
2432 resid = do_div(count, weight);
2433 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2438 count = resid = 0; /* quiet, gcc */
2442 xfs_icsb_enable_counter(mp, field, count, resid);
2446 xfs_icsb_balance_counter(
2448 xfs_sb_field_t fields,
2451 spin_lock(&mp->m_sb_lock);
2452 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2453 spin_unlock(&mp->m_sb_lock);
2457 xfs_icsb_modify_counters(
2459 xfs_sb_field_t field,
2463 xfs_icsb_cnts_t *icsbp;
2464 long long lcounter; /* long counter for 64 bit fields */
2470 icsbp = this_cpu_ptr(mp->m_sb_cnts);
2473 * if the counter is disabled, go to slow path
2475 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2477 xfs_icsb_lock_cntr(icsbp);
2478 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2479 xfs_icsb_unlock_cntr(icsbp);
2484 case XFS_SBS_ICOUNT:
2485 lcounter = icsbp->icsb_icount;
2487 if (unlikely(lcounter < 0))
2488 goto balance_counter;
2489 icsbp->icsb_icount = lcounter;
2493 lcounter = icsbp->icsb_ifree;
2495 if (unlikely(lcounter < 0))
2496 goto balance_counter;
2497 icsbp->icsb_ifree = lcounter;
2500 case XFS_SBS_FDBLOCKS:
2501 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2503 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2505 if (unlikely(lcounter < 0))
2506 goto balance_counter;
2507 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2513 xfs_icsb_unlock_cntr(icsbp);
2521 * serialise with a mutex so we don't burn lots of cpu on
2522 * the superblock lock. We still need to hold the superblock
2523 * lock, however, when we modify the global structures.
2528 * Now running atomically.
2530 * If the counter is enabled, someone has beaten us to rebalancing.
2531 * Drop the lock and try again in the fast path....
2533 if (!(xfs_icsb_counter_disabled(mp, field))) {
2534 xfs_icsb_unlock(mp);
2539 * The counter is currently disabled. Because we are
2540 * running atomically here, we know a rebalance cannot
2541 * be in progress. Hence we can go straight to operating
2542 * on the global superblock. We do not call xfs_mod_incore_sb()
2543 * here even though we need to get the m_sb_lock. Doing so
2544 * will cause us to re-enter this function and deadlock.
2545 * Hence we get the m_sb_lock ourselves and then call
2546 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2547 * directly on the global counters.
2549 spin_lock(&mp->m_sb_lock);
2550 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2551 spin_unlock(&mp->m_sb_lock);
2554 * Now that we've modified the global superblock, we
2555 * may be able to re-enable the distributed counters
2556 * (e.g. lots of space just got freed). After that
2560 xfs_icsb_balance_counter(mp, field, 0);
2561 xfs_icsb_unlock(mp);
2565 xfs_icsb_unlock_cntr(icsbp);
2569 * We may have multiple threads here if multiple per-cpu
2570 * counters run dry at the same time. This will mean we can
2571 * do more balances than strictly necessary but it is not
2572 * the common slowpath case.
2577 * running atomically.
2579 * This will leave the counter in the correct state for future
2580 * accesses. After the rebalance, we simply try again and our retry
2581 * will either succeed through the fast path or slow path without
2582 * another balance operation being required.
2584 xfs_icsb_balance_counter(mp, field, delta);
2585 xfs_icsb_unlock(mp);