Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[linux-2.6-block.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
48 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
49 static struct shrinker xfs_buf_shake = {
50         .shrink = xfsbufd_wakeup,
51         .seeks = DEFAULT_SEEKS,
52 };
53
54 static struct workqueue_struct *xfslogd_workqueue;
55 struct workqueue_struct *xfsdatad_workqueue;
56 struct workqueue_struct *xfsconvertd_workqueue;
57
58 #ifdef XFS_BUF_LOCK_TRACKING
59 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
60 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
61 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
62 #else
63 # define XB_SET_OWNER(bp)       do { } while (0)
64 # define XB_CLEAR_OWNER(bp)     do { } while (0)
65 # define XB_GET_OWNER(bp)       do { } while (0)
66 #endif
67
68 #define xb_to_gfp(flags) \
69         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
71
72 #define xb_to_km(flags) \
73          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
74
75 #define xfs_buf_allocate(flags) \
76         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77 #define xfs_buf_deallocate(bp) \
78         kmem_zone_free(xfs_buf_zone, (bp));
79
80 static inline int
81 xfs_buf_is_vmapped(
82         struct xfs_buf  *bp)
83 {
84         /*
85          * Return true if the buffer is vmapped.
86          *
87          * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88          * code is clever enough to know it doesn't have to map a single page,
89          * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90          */
91         return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92 }
93
94 static inline int
95 xfs_buf_vmap_len(
96         struct xfs_buf  *bp)
97 {
98         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99 }
100
101 /*
102  *      Page Region interfaces.
103  *
104  *      For pages in filesystems where the blocksize is smaller than the
105  *      pagesize, we use the page->private field (long) to hold a bitmap
106  *      of uptodate regions within the page.
107  *
108  *      Each such region is "bytes per page / bits per long" bytes long.
109  *
110  *      NBPPR == number-of-bytes-per-page-region
111  *      BTOPR == bytes-to-page-region (rounded up)
112  *      BTOPRT == bytes-to-page-region-truncated (rounded down)
113  */
114 #if (BITS_PER_LONG == 32)
115 #define PRSHIFT         (PAGE_CACHE_SHIFT - 5)  /* (32 == 1<<5) */
116 #elif (BITS_PER_LONG == 64)
117 #define PRSHIFT         (PAGE_CACHE_SHIFT - 6)  /* (64 == 1<<6) */
118 #else
119 #error BITS_PER_LONG must be 32 or 64
120 #endif
121 #define NBPPR           (PAGE_CACHE_SIZE/BITS_PER_LONG)
122 #define BTOPR(b)        (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123 #define BTOPRT(b)       (((unsigned int)(b) >> PRSHIFT))
124
125 STATIC unsigned long
126 page_region_mask(
127         size_t          offset,
128         size_t          length)
129 {
130         unsigned long   mask;
131         int             first, final;
132
133         first = BTOPR(offset);
134         final = BTOPRT(offset + length - 1);
135         first = min(first, final);
136
137         mask = ~0UL;
138         mask <<= BITS_PER_LONG - (final - first);
139         mask >>= BITS_PER_LONG - (final);
140
141         ASSERT(offset + length <= PAGE_CACHE_SIZE);
142         ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144         return mask;
145 }
146
147 STATIC void
148 set_page_region(
149         struct page     *page,
150         size_t          offset,
151         size_t          length)
152 {
153         set_page_private(page,
154                 page_private(page) | page_region_mask(offset, length));
155         if (page_private(page) == ~0UL)
156                 SetPageUptodate(page);
157 }
158
159 STATIC int
160 test_page_region(
161         struct page     *page,
162         size_t          offset,
163         size_t          length)
164 {
165         unsigned long   mask = page_region_mask(offset, length);
166
167         return (mask && (page_private(page) & mask) == mask);
168 }
169
170 /*
171  *      Internal xfs_buf_t object manipulation
172  */
173
174 STATIC void
175 _xfs_buf_initialize(
176         xfs_buf_t               *bp,
177         xfs_buftarg_t           *target,
178         xfs_off_t               range_base,
179         size_t                  range_length,
180         xfs_buf_flags_t         flags)
181 {
182         /*
183          * We don't want certain flags to appear in b_flags.
184          */
185         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187         memset(bp, 0, sizeof(xfs_buf_t));
188         atomic_set(&bp->b_hold, 1);
189         init_completion(&bp->b_iowait);
190         INIT_LIST_HEAD(&bp->b_list);
191         RB_CLEAR_NODE(&bp->b_rbnode);
192         sema_init(&bp->b_sema, 0); /* held, no waiters */
193         XB_SET_OWNER(bp);
194         bp->b_target = target;
195         bp->b_file_offset = range_base;
196         /*
197          * Set buffer_length and count_desired to the same value initially.
198          * I/O routines should use count_desired, which will be the same in
199          * most cases but may be reset (e.g. XFS recovery).
200          */
201         bp->b_buffer_length = bp->b_count_desired = range_length;
202         bp->b_flags = flags;
203         bp->b_bn = XFS_BUF_DADDR_NULL;
204         atomic_set(&bp->b_pin_count, 0);
205         init_waitqueue_head(&bp->b_waiters);
206
207         XFS_STATS_INC(xb_create);
208
209         trace_xfs_buf_init(bp, _RET_IP_);
210 }
211
212 /*
213  *      Allocate a page array capable of holding a specified number
214  *      of pages, and point the page buf at it.
215  */
216 STATIC int
217 _xfs_buf_get_pages(
218         xfs_buf_t               *bp,
219         int                     page_count,
220         xfs_buf_flags_t         flags)
221 {
222         /* Make sure that we have a page list */
223         if (bp->b_pages == NULL) {
224                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225                 bp->b_page_count = page_count;
226                 if (page_count <= XB_PAGES) {
227                         bp->b_pages = bp->b_page_array;
228                 } else {
229                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
230                                         page_count, xb_to_km(flags));
231                         if (bp->b_pages == NULL)
232                                 return -ENOMEM;
233                 }
234                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
235         }
236         return 0;
237 }
238
239 /*
240  *      Frees b_pages if it was allocated.
241  */
242 STATIC void
243 _xfs_buf_free_pages(
244         xfs_buf_t       *bp)
245 {
246         if (bp->b_pages != bp->b_page_array) {
247                 kmem_free(bp->b_pages);
248                 bp->b_pages = NULL;
249         }
250 }
251
252 /*
253  *      Releases the specified buffer.
254  *
255  *      The modification state of any associated pages is left unchanged.
256  *      The buffer most not be on any hash - use xfs_buf_rele instead for
257  *      hashed and refcounted buffers
258  */
259 void
260 xfs_buf_free(
261         xfs_buf_t               *bp)
262 {
263         trace_xfs_buf_free(bp, _RET_IP_);
264
265         if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
266                 uint            i;
267
268                 if (xfs_buf_is_vmapped(bp))
269                         vm_unmap_ram(bp->b_addr - bp->b_offset,
270                                         bp->b_page_count);
271
272                 for (i = 0; i < bp->b_page_count; i++) {
273                         struct page     *page = bp->b_pages[i];
274
275                         if (bp->b_flags & _XBF_PAGE_CACHE)
276                                 ASSERT(!PagePrivate(page));
277                         page_cache_release(page);
278                 }
279         }
280         _xfs_buf_free_pages(bp);
281         xfs_buf_deallocate(bp);
282 }
283
284 /*
285  *      Finds all pages for buffer in question and builds it's page list.
286  */
287 STATIC int
288 _xfs_buf_lookup_pages(
289         xfs_buf_t               *bp,
290         uint                    flags)
291 {
292         struct address_space    *mapping = bp->b_target->bt_mapping;
293         size_t                  blocksize = bp->b_target->bt_bsize;
294         size_t                  size = bp->b_count_desired;
295         size_t                  nbytes, offset;
296         gfp_t                   gfp_mask = xb_to_gfp(flags);
297         unsigned short          page_count, i;
298         pgoff_t                 first;
299         xfs_off_t               end;
300         int                     error;
301
302         end = bp->b_file_offset + bp->b_buffer_length;
303         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
304
305         error = _xfs_buf_get_pages(bp, page_count, flags);
306         if (unlikely(error))
307                 return error;
308         bp->b_flags |= _XBF_PAGE_CACHE;
309
310         offset = bp->b_offset;
311         first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
312
313         for (i = 0; i < bp->b_page_count; i++) {
314                 struct page     *page;
315                 uint            retries = 0;
316
317               retry:
318                 page = find_or_create_page(mapping, first + i, gfp_mask);
319                 if (unlikely(page == NULL)) {
320                         if (flags & XBF_READ_AHEAD) {
321                                 bp->b_page_count = i;
322                                 for (i = 0; i < bp->b_page_count; i++)
323                                         unlock_page(bp->b_pages[i]);
324                                 return -ENOMEM;
325                         }
326
327                         /*
328                          * This could deadlock.
329                          *
330                          * But until all the XFS lowlevel code is revamped to
331                          * handle buffer allocation failures we can't do much.
332                          */
333                         if (!(++retries % 100))
334                                 printk(KERN_ERR
335                                         "XFS: possible memory allocation "
336                                         "deadlock in %s (mode:0x%x)\n",
337                                         __func__, gfp_mask);
338
339                         XFS_STATS_INC(xb_page_retries);
340                         xfsbufd_wakeup(NULL, 0, gfp_mask);
341                         congestion_wait(BLK_RW_ASYNC, HZ/50);
342                         goto retry;
343                 }
344
345                 XFS_STATS_INC(xb_page_found);
346
347                 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
348                 size -= nbytes;
349
350                 ASSERT(!PagePrivate(page));
351                 if (!PageUptodate(page)) {
352                         page_count--;
353                         if (blocksize >= PAGE_CACHE_SIZE) {
354                                 if (flags & XBF_READ)
355                                         bp->b_flags |= _XBF_PAGE_LOCKED;
356                         } else if (!PagePrivate(page)) {
357                                 if (test_page_region(page, offset, nbytes))
358                                         page_count++;
359                         }
360                 }
361
362                 bp->b_pages[i] = page;
363                 offset = 0;
364         }
365
366         if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
367                 for (i = 0; i < bp->b_page_count; i++)
368                         unlock_page(bp->b_pages[i]);
369         }
370
371         if (page_count == bp->b_page_count)
372                 bp->b_flags |= XBF_DONE;
373
374         return error;
375 }
376
377 /*
378  *      Map buffer into kernel address-space if nessecary.
379  */
380 STATIC int
381 _xfs_buf_map_pages(
382         xfs_buf_t               *bp,
383         uint                    flags)
384 {
385         /* A single page buffer is always mappable */
386         if (bp->b_page_count == 1) {
387                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
388                 bp->b_flags |= XBF_MAPPED;
389         } else if (flags & XBF_MAPPED) {
390                 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
391                                         -1, PAGE_KERNEL);
392                 if (unlikely(bp->b_addr == NULL))
393                         return -ENOMEM;
394                 bp->b_addr += bp->b_offset;
395                 bp->b_flags |= XBF_MAPPED;
396         }
397
398         return 0;
399 }
400
401 /*
402  *      Finding and Reading Buffers
403  */
404
405 /*
406  *      Look up, and creates if absent, a lockable buffer for
407  *      a given range of an inode.  The buffer is returned
408  *      locked.  If other overlapping buffers exist, they are
409  *      released before the new buffer is created and locked,
410  *      which may imply that this call will block until those buffers
411  *      are unlocked.  No I/O is implied by this call.
412  */
413 xfs_buf_t *
414 _xfs_buf_find(
415         xfs_buftarg_t           *btp,   /* block device target          */
416         xfs_off_t               ioff,   /* starting offset of range     */
417         size_t                  isize,  /* length of range              */
418         xfs_buf_flags_t         flags,
419         xfs_buf_t               *new_bp)
420 {
421         xfs_off_t               range_base;
422         size_t                  range_length;
423         struct xfs_perag        *pag;
424         struct rb_node          **rbp;
425         struct rb_node          *parent;
426         xfs_buf_t               *bp;
427
428         range_base = (ioff << BBSHIFT);
429         range_length = (isize << BBSHIFT);
430
431         /* Check for IOs smaller than the sector size / not sector aligned */
432         ASSERT(!(range_length < (1 << btp->bt_sshift)));
433         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
434
435         /* get tree root */
436         pag = xfs_perag_get(btp->bt_mount,
437                                 xfs_daddr_to_agno(btp->bt_mount, ioff));
438
439         /* walk tree */
440         spin_lock(&pag->pag_buf_lock);
441         rbp = &pag->pag_buf_tree.rb_node;
442         parent = NULL;
443         bp = NULL;
444         while (*rbp) {
445                 parent = *rbp;
446                 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
447
448                 if (range_base < bp->b_file_offset)
449                         rbp = &(*rbp)->rb_left;
450                 else if (range_base > bp->b_file_offset)
451                         rbp = &(*rbp)->rb_right;
452                 else {
453                         /*
454                          * found a block offset match. If the range doesn't
455                          * match, the only way this is allowed is if the buffer
456                          * in the cache is stale and the transaction that made
457                          * it stale has not yet committed. i.e. we are
458                          * reallocating a busy extent. Skip this buffer and
459                          * continue searching to the right for an exact match.
460                          */
461                         if (bp->b_buffer_length != range_length) {
462                                 ASSERT(bp->b_flags & XBF_STALE);
463                                 rbp = &(*rbp)->rb_right;
464                                 continue;
465                         }
466                         atomic_inc(&bp->b_hold);
467                         goto found;
468                 }
469         }
470
471         /* No match found */
472         if (new_bp) {
473                 _xfs_buf_initialize(new_bp, btp, range_base,
474                                 range_length, flags);
475                 rb_link_node(&new_bp->b_rbnode, parent, rbp);
476                 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
477                 /* the buffer keeps the perag reference until it is freed */
478                 new_bp->b_pag = pag;
479                 spin_unlock(&pag->pag_buf_lock);
480         } else {
481                 XFS_STATS_INC(xb_miss_locked);
482                 spin_unlock(&pag->pag_buf_lock);
483                 xfs_perag_put(pag);
484         }
485         return new_bp;
486
487 found:
488         spin_unlock(&pag->pag_buf_lock);
489         xfs_perag_put(pag);
490
491         if (xfs_buf_cond_lock(bp)) {
492                 /* failed, so wait for the lock if requested. */
493                 if (!(flags & XBF_TRYLOCK)) {
494                         xfs_buf_lock(bp);
495                         XFS_STATS_INC(xb_get_locked_waited);
496                 } else {
497                         xfs_buf_rele(bp);
498                         XFS_STATS_INC(xb_busy_locked);
499                         return NULL;
500                 }
501         }
502
503         if (bp->b_flags & XBF_STALE) {
504                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
505                 bp->b_flags &= XBF_MAPPED;
506         }
507
508         trace_xfs_buf_find(bp, flags, _RET_IP_);
509         XFS_STATS_INC(xb_get_locked);
510         return bp;
511 }
512
513 /*
514  *      Assembles a buffer covering the specified range.
515  *      Storage in memory for all portions of the buffer will be allocated,
516  *      although backing storage may not be.
517  */
518 xfs_buf_t *
519 xfs_buf_get(
520         xfs_buftarg_t           *target,/* target for buffer            */
521         xfs_off_t               ioff,   /* starting offset of range     */
522         size_t                  isize,  /* length of range              */
523         xfs_buf_flags_t         flags)
524 {
525         xfs_buf_t               *bp, *new_bp;
526         int                     error = 0, i;
527
528         new_bp = xfs_buf_allocate(flags);
529         if (unlikely(!new_bp))
530                 return NULL;
531
532         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
533         if (bp == new_bp) {
534                 error = _xfs_buf_lookup_pages(bp, flags);
535                 if (error)
536                         goto no_buffer;
537         } else {
538                 xfs_buf_deallocate(new_bp);
539                 if (unlikely(bp == NULL))
540                         return NULL;
541         }
542
543         for (i = 0; i < bp->b_page_count; i++)
544                 mark_page_accessed(bp->b_pages[i]);
545
546         if (!(bp->b_flags & XBF_MAPPED)) {
547                 error = _xfs_buf_map_pages(bp, flags);
548                 if (unlikely(error)) {
549                         printk(KERN_WARNING "%s: failed to map pages\n",
550                                         __func__);
551                         goto no_buffer;
552                 }
553         }
554
555         XFS_STATS_INC(xb_get);
556
557         /*
558          * Always fill in the block number now, the mapped cases can do
559          * their own overlay of this later.
560          */
561         bp->b_bn = ioff;
562         bp->b_count_desired = bp->b_buffer_length;
563
564         trace_xfs_buf_get(bp, flags, _RET_IP_);
565         return bp;
566
567  no_buffer:
568         if (flags & (XBF_LOCK | XBF_TRYLOCK))
569                 xfs_buf_unlock(bp);
570         xfs_buf_rele(bp);
571         return NULL;
572 }
573
574 STATIC int
575 _xfs_buf_read(
576         xfs_buf_t               *bp,
577         xfs_buf_flags_t         flags)
578 {
579         int                     status;
580
581         ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
582         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
583
584         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
585                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
586         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
587                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
588
589         status = xfs_buf_iorequest(bp);
590         if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
591                 return status;
592         return xfs_buf_iowait(bp);
593 }
594
595 xfs_buf_t *
596 xfs_buf_read(
597         xfs_buftarg_t           *target,
598         xfs_off_t               ioff,
599         size_t                  isize,
600         xfs_buf_flags_t         flags)
601 {
602         xfs_buf_t               *bp;
603
604         flags |= XBF_READ;
605
606         bp = xfs_buf_get(target, ioff, isize, flags);
607         if (bp) {
608                 trace_xfs_buf_read(bp, flags, _RET_IP_);
609
610                 if (!XFS_BUF_ISDONE(bp)) {
611                         XFS_STATS_INC(xb_get_read);
612                         _xfs_buf_read(bp, flags);
613                 } else if (flags & XBF_ASYNC) {
614                         /*
615                          * Read ahead call which is already satisfied,
616                          * drop the buffer
617                          */
618                         goto no_buffer;
619                 } else {
620                         /* We do not want read in the flags */
621                         bp->b_flags &= ~XBF_READ;
622                 }
623         }
624
625         return bp;
626
627  no_buffer:
628         if (flags & (XBF_LOCK | XBF_TRYLOCK))
629                 xfs_buf_unlock(bp);
630         xfs_buf_rele(bp);
631         return NULL;
632 }
633
634 /*
635  *      If we are not low on memory then do the readahead in a deadlock
636  *      safe manner.
637  */
638 void
639 xfs_buf_readahead(
640         xfs_buftarg_t           *target,
641         xfs_off_t               ioff,
642         size_t                  isize)
643 {
644         struct backing_dev_info *bdi;
645
646         bdi = target->bt_mapping->backing_dev_info;
647         if (bdi_read_congested(bdi))
648                 return;
649
650         xfs_buf_read(target, ioff, isize,
651                      XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
652 }
653
654 /*
655  * Read an uncached buffer from disk. Allocates and returns a locked
656  * buffer containing the disk contents or nothing.
657  */
658 struct xfs_buf *
659 xfs_buf_read_uncached(
660         struct xfs_mount        *mp,
661         struct xfs_buftarg      *target,
662         xfs_daddr_t             daddr,
663         size_t                  length,
664         int                     flags)
665 {
666         xfs_buf_t               *bp;
667         int                     error;
668
669         bp = xfs_buf_get_uncached(target, length, flags);
670         if (!bp)
671                 return NULL;
672
673         /* set up the buffer for a read IO */
674         xfs_buf_lock(bp);
675         XFS_BUF_SET_ADDR(bp, daddr);
676         XFS_BUF_READ(bp);
677         XFS_BUF_BUSY(bp);
678
679         xfsbdstrat(mp, bp);
680         error = xfs_buf_iowait(bp);
681         if (error || bp->b_error) {
682                 xfs_buf_relse(bp);
683                 return NULL;
684         }
685         return bp;
686 }
687
688 xfs_buf_t *
689 xfs_buf_get_empty(
690         size_t                  len,
691         xfs_buftarg_t           *target)
692 {
693         xfs_buf_t               *bp;
694
695         bp = xfs_buf_allocate(0);
696         if (bp)
697                 _xfs_buf_initialize(bp, target, 0, len, 0);
698         return bp;
699 }
700
701 static inline struct page *
702 mem_to_page(
703         void                    *addr)
704 {
705         if ((!is_vmalloc_addr(addr))) {
706                 return virt_to_page(addr);
707         } else {
708                 return vmalloc_to_page(addr);
709         }
710 }
711
712 int
713 xfs_buf_associate_memory(
714         xfs_buf_t               *bp,
715         void                    *mem,
716         size_t                  len)
717 {
718         int                     rval;
719         int                     i = 0;
720         unsigned long           pageaddr;
721         unsigned long           offset;
722         size_t                  buflen;
723         int                     page_count;
724
725         pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
726         offset = (unsigned long)mem - pageaddr;
727         buflen = PAGE_CACHE_ALIGN(len + offset);
728         page_count = buflen >> PAGE_CACHE_SHIFT;
729
730         /* Free any previous set of page pointers */
731         if (bp->b_pages)
732                 _xfs_buf_free_pages(bp);
733
734         bp->b_pages = NULL;
735         bp->b_addr = mem;
736
737         rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
738         if (rval)
739                 return rval;
740
741         bp->b_offset = offset;
742
743         for (i = 0; i < bp->b_page_count; i++) {
744                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
745                 pageaddr += PAGE_CACHE_SIZE;
746         }
747
748         bp->b_count_desired = len;
749         bp->b_buffer_length = buflen;
750         bp->b_flags |= XBF_MAPPED;
751         bp->b_flags &= ~_XBF_PAGE_LOCKED;
752
753         return 0;
754 }
755
756 xfs_buf_t *
757 xfs_buf_get_uncached(
758         struct xfs_buftarg      *target,
759         size_t                  len,
760         int                     flags)
761 {
762         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
763         int                     error, i;
764         xfs_buf_t               *bp;
765
766         bp = xfs_buf_allocate(0);
767         if (unlikely(bp == NULL))
768                 goto fail;
769         _xfs_buf_initialize(bp, target, 0, len, 0);
770
771         error = _xfs_buf_get_pages(bp, page_count, 0);
772         if (error)
773                 goto fail_free_buf;
774
775         for (i = 0; i < page_count; i++) {
776                 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
777                 if (!bp->b_pages[i])
778                         goto fail_free_mem;
779         }
780         bp->b_flags |= _XBF_PAGES;
781
782         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
783         if (unlikely(error)) {
784                 printk(KERN_WARNING "%s: failed to map pages\n",
785                                 __func__);
786                 goto fail_free_mem;
787         }
788
789         xfs_buf_unlock(bp);
790
791         trace_xfs_buf_get_uncached(bp, _RET_IP_);
792         return bp;
793
794  fail_free_mem:
795         while (--i >= 0)
796                 __free_page(bp->b_pages[i]);
797         _xfs_buf_free_pages(bp);
798  fail_free_buf:
799         xfs_buf_deallocate(bp);
800  fail:
801         return NULL;
802 }
803
804 /*
805  *      Increment reference count on buffer, to hold the buffer concurrently
806  *      with another thread which may release (free) the buffer asynchronously.
807  *      Must hold the buffer already to call this function.
808  */
809 void
810 xfs_buf_hold(
811         xfs_buf_t               *bp)
812 {
813         trace_xfs_buf_hold(bp, _RET_IP_);
814         atomic_inc(&bp->b_hold);
815 }
816
817 /*
818  *      Releases a hold on the specified buffer.  If the
819  *      the hold count is 1, calls xfs_buf_free.
820  */
821 void
822 xfs_buf_rele(
823         xfs_buf_t               *bp)
824 {
825         struct xfs_perag        *pag = bp->b_pag;
826
827         trace_xfs_buf_rele(bp, _RET_IP_);
828
829         if (!pag) {
830                 ASSERT(!bp->b_relse);
831                 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
832                 if (atomic_dec_and_test(&bp->b_hold))
833                         xfs_buf_free(bp);
834                 return;
835         }
836
837         ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
838         ASSERT(atomic_read(&bp->b_hold) > 0);
839         if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
840                 if (bp->b_relse) {
841                         atomic_inc(&bp->b_hold);
842                         spin_unlock(&pag->pag_buf_lock);
843                         bp->b_relse(bp);
844                 } else {
845                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
846                         rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
847                         spin_unlock(&pag->pag_buf_lock);
848                         xfs_perag_put(pag);
849                         xfs_buf_free(bp);
850                 }
851         }
852 }
853
854
855 /*
856  *      Mutual exclusion on buffers.  Locking model:
857  *
858  *      Buffers associated with inodes for which buffer locking
859  *      is not enabled are not protected by semaphores, and are
860  *      assumed to be exclusively owned by the caller.  There is a
861  *      spinlock in the buffer, used by the caller when concurrent
862  *      access is possible.
863  */
864
865 /*
866  *      Locks a buffer object, if it is not already locked.  Note that this in
867  *      no way locks the underlying pages, so it is only useful for
868  *      synchronizing concurrent use of buffer objects, not for synchronizing
869  *      independent access to the underlying pages.
870  *
871  *      If we come across a stale, pinned, locked buffer, we know that we are
872  *      being asked to lock a buffer that has been reallocated. Because it is
873  *      pinned, we know that the log has not been pushed to disk and hence it
874  *      will still be locked.  Rather than continuing to have trylock attempts
875  *      fail until someone else pushes the log, push it ourselves before
876  *      returning.  This means that the xfsaild will not get stuck trying
877  *      to push on stale inode buffers.
878  */
879 int
880 xfs_buf_cond_lock(
881         xfs_buf_t               *bp)
882 {
883         int                     locked;
884
885         locked = down_trylock(&bp->b_sema) == 0;
886         if (locked)
887                 XB_SET_OWNER(bp);
888         else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
889                 xfs_log_force(bp->b_target->bt_mount, 0);
890
891         trace_xfs_buf_cond_lock(bp, _RET_IP_);
892         return locked ? 0 : -EBUSY;
893 }
894
895 int
896 xfs_buf_lock_value(
897         xfs_buf_t               *bp)
898 {
899         return bp->b_sema.count;
900 }
901
902 /*
903  *      Locks a buffer object.
904  *      Note that this in no way locks the underlying pages, so it is only
905  *      useful for synchronizing concurrent use of buffer objects, not for
906  *      synchronizing independent access to the underlying pages.
907  *
908  *      If we come across a stale, pinned, locked buffer, we know that we
909  *      are being asked to lock a buffer that has been reallocated. Because
910  *      it is pinned, we know that the log has not been pushed to disk and
911  *      hence it will still be locked. Rather than sleeping until someone
912  *      else pushes the log, push it ourselves before trying to get the lock.
913  */
914 void
915 xfs_buf_lock(
916         xfs_buf_t               *bp)
917 {
918         trace_xfs_buf_lock(bp, _RET_IP_);
919
920         if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
921                 xfs_log_force(bp->b_target->bt_mount, 0);
922         if (atomic_read(&bp->b_io_remaining))
923                 blk_run_address_space(bp->b_target->bt_mapping);
924         down(&bp->b_sema);
925         XB_SET_OWNER(bp);
926
927         trace_xfs_buf_lock_done(bp, _RET_IP_);
928 }
929
930 /*
931  *      Releases the lock on the buffer object.
932  *      If the buffer is marked delwri but is not queued, do so before we
933  *      unlock the buffer as we need to set flags correctly.  We also need to
934  *      take a reference for the delwri queue because the unlocker is going to
935  *      drop their's and they don't know we just queued it.
936  */
937 void
938 xfs_buf_unlock(
939         xfs_buf_t               *bp)
940 {
941         if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
942                 atomic_inc(&bp->b_hold);
943                 bp->b_flags |= XBF_ASYNC;
944                 xfs_buf_delwri_queue(bp, 0);
945         }
946
947         XB_CLEAR_OWNER(bp);
948         up(&bp->b_sema);
949
950         trace_xfs_buf_unlock(bp, _RET_IP_);
951 }
952
953 STATIC void
954 xfs_buf_wait_unpin(
955         xfs_buf_t               *bp)
956 {
957         DECLARE_WAITQUEUE       (wait, current);
958
959         if (atomic_read(&bp->b_pin_count) == 0)
960                 return;
961
962         add_wait_queue(&bp->b_waiters, &wait);
963         for (;;) {
964                 set_current_state(TASK_UNINTERRUPTIBLE);
965                 if (atomic_read(&bp->b_pin_count) == 0)
966                         break;
967                 if (atomic_read(&bp->b_io_remaining))
968                         blk_run_address_space(bp->b_target->bt_mapping);
969                 schedule();
970         }
971         remove_wait_queue(&bp->b_waiters, &wait);
972         set_current_state(TASK_RUNNING);
973 }
974
975 /*
976  *      Buffer Utility Routines
977  */
978
979 STATIC void
980 xfs_buf_iodone_work(
981         struct work_struct      *work)
982 {
983         xfs_buf_t               *bp =
984                 container_of(work, xfs_buf_t, b_iodone_work);
985
986         if (bp->b_iodone)
987                 (*(bp->b_iodone))(bp);
988         else if (bp->b_flags & XBF_ASYNC)
989                 xfs_buf_relse(bp);
990 }
991
992 void
993 xfs_buf_ioend(
994         xfs_buf_t               *bp,
995         int                     schedule)
996 {
997         trace_xfs_buf_iodone(bp, _RET_IP_);
998
999         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1000         if (bp->b_error == 0)
1001                 bp->b_flags |= XBF_DONE;
1002
1003         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1004                 if (schedule) {
1005                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1006                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1007                 } else {
1008                         xfs_buf_iodone_work(&bp->b_iodone_work);
1009                 }
1010         } else {
1011                 complete(&bp->b_iowait);
1012         }
1013 }
1014
1015 void
1016 xfs_buf_ioerror(
1017         xfs_buf_t               *bp,
1018         int                     error)
1019 {
1020         ASSERT(error >= 0 && error <= 0xffff);
1021         bp->b_error = (unsigned short)error;
1022         trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1023 }
1024
1025 int
1026 xfs_bwrite(
1027         struct xfs_mount        *mp,
1028         struct xfs_buf          *bp)
1029 {
1030         int                     error;
1031
1032         bp->b_flags |= XBF_WRITE;
1033         bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1034
1035         xfs_buf_delwri_dequeue(bp);
1036         xfs_bdstrat_cb(bp);
1037
1038         error = xfs_buf_iowait(bp);
1039         if (error)
1040                 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1041         xfs_buf_relse(bp);
1042         return error;
1043 }
1044
1045 void
1046 xfs_bdwrite(
1047         void                    *mp,
1048         struct xfs_buf          *bp)
1049 {
1050         trace_xfs_buf_bdwrite(bp, _RET_IP_);
1051
1052         bp->b_flags &= ~XBF_READ;
1053         bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1054
1055         xfs_buf_delwri_queue(bp, 1);
1056 }
1057
1058 /*
1059  * Called when we want to stop a buffer from getting written or read.
1060  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1061  * so that the proper iodone callbacks get called.
1062  */
1063 STATIC int
1064 xfs_bioerror(
1065         xfs_buf_t *bp)
1066 {
1067 #ifdef XFSERRORDEBUG
1068         ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1069 #endif
1070
1071         /*
1072          * No need to wait until the buffer is unpinned, we aren't flushing it.
1073          */
1074         XFS_BUF_ERROR(bp, EIO);
1075
1076         /*
1077          * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1078          */
1079         XFS_BUF_UNREAD(bp);
1080         XFS_BUF_UNDELAYWRITE(bp);
1081         XFS_BUF_UNDONE(bp);
1082         XFS_BUF_STALE(bp);
1083
1084         xfs_buf_ioend(bp, 0);
1085
1086         return EIO;
1087 }
1088
1089 /*
1090  * Same as xfs_bioerror, except that we are releasing the buffer
1091  * here ourselves, and avoiding the xfs_buf_ioend call.
1092  * This is meant for userdata errors; metadata bufs come with
1093  * iodone functions attached, so that we can track down errors.
1094  */
1095 STATIC int
1096 xfs_bioerror_relse(
1097         struct xfs_buf  *bp)
1098 {
1099         int64_t         fl = XFS_BUF_BFLAGS(bp);
1100         /*
1101          * No need to wait until the buffer is unpinned.
1102          * We aren't flushing it.
1103          *
1104          * chunkhold expects B_DONE to be set, whether
1105          * we actually finish the I/O or not. We don't want to
1106          * change that interface.
1107          */
1108         XFS_BUF_UNREAD(bp);
1109         XFS_BUF_UNDELAYWRITE(bp);
1110         XFS_BUF_DONE(bp);
1111         XFS_BUF_STALE(bp);
1112         XFS_BUF_CLR_IODONE_FUNC(bp);
1113         if (!(fl & XBF_ASYNC)) {
1114                 /*
1115                  * Mark b_error and B_ERROR _both_.
1116                  * Lot's of chunkcache code assumes that.
1117                  * There's no reason to mark error for
1118                  * ASYNC buffers.
1119                  */
1120                 XFS_BUF_ERROR(bp, EIO);
1121                 XFS_BUF_FINISH_IOWAIT(bp);
1122         } else {
1123                 xfs_buf_relse(bp);
1124         }
1125
1126         return EIO;
1127 }
1128
1129
1130 /*
1131  * All xfs metadata buffers except log state machine buffers
1132  * get this attached as their b_bdstrat callback function.
1133  * This is so that we can catch a buffer
1134  * after prematurely unpinning it to forcibly shutdown the filesystem.
1135  */
1136 int
1137 xfs_bdstrat_cb(
1138         struct xfs_buf  *bp)
1139 {
1140         if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1141                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1142                 /*
1143                  * Metadata write that didn't get logged but
1144                  * written delayed anyway. These aren't associated
1145                  * with a transaction, and can be ignored.
1146                  */
1147                 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1148                         return xfs_bioerror_relse(bp);
1149                 else
1150                         return xfs_bioerror(bp);
1151         }
1152
1153         xfs_buf_iorequest(bp);
1154         return 0;
1155 }
1156
1157 /*
1158  * Wrapper around bdstrat so that we can stop data from going to disk in case
1159  * we are shutting down the filesystem.  Typically user data goes thru this
1160  * path; one of the exceptions is the superblock.
1161  */
1162 void
1163 xfsbdstrat(
1164         struct xfs_mount        *mp,
1165         struct xfs_buf          *bp)
1166 {
1167         if (XFS_FORCED_SHUTDOWN(mp)) {
1168                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1169                 xfs_bioerror_relse(bp);
1170                 return;
1171         }
1172
1173         xfs_buf_iorequest(bp);
1174 }
1175
1176 STATIC void
1177 _xfs_buf_ioend(
1178         xfs_buf_t               *bp,
1179         int                     schedule)
1180 {
1181         if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1182                 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1183                 xfs_buf_ioend(bp, schedule);
1184         }
1185 }
1186
1187 STATIC void
1188 xfs_buf_bio_end_io(
1189         struct bio              *bio,
1190         int                     error)
1191 {
1192         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1193         unsigned int            blocksize = bp->b_target->bt_bsize;
1194         struct bio_vec          *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1195
1196         xfs_buf_ioerror(bp, -error);
1197
1198         if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1199                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1200
1201         do {
1202                 struct page     *page = bvec->bv_page;
1203
1204                 ASSERT(!PagePrivate(page));
1205                 if (unlikely(bp->b_error)) {
1206                         if (bp->b_flags & XBF_READ)
1207                                 ClearPageUptodate(page);
1208                 } else if (blocksize >= PAGE_CACHE_SIZE) {
1209                         SetPageUptodate(page);
1210                 } else if (!PagePrivate(page) &&
1211                                 (bp->b_flags & _XBF_PAGE_CACHE)) {
1212                         set_page_region(page, bvec->bv_offset, bvec->bv_len);
1213                 }
1214
1215                 if (--bvec >= bio->bi_io_vec)
1216                         prefetchw(&bvec->bv_page->flags);
1217
1218                 if (bp->b_flags & _XBF_PAGE_LOCKED)
1219                         unlock_page(page);
1220         } while (bvec >= bio->bi_io_vec);
1221
1222         _xfs_buf_ioend(bp, 1);
1223         bio_put(bio);
1224 }
1225
1226 STATIC void
1227 _xfs_buf_ioapply(
1228         xfs_buf_t               *bp)
1229 {
1230         int                     rw, map_i, total_nr_pages, nr_pages;
1231         struct bio              *bio;
1232         int                     offset = bp->b_offset;
1233         int                     size = bp->b_count_desired;
1234         sector_t                sector = bp->b_bn;
1235         unsigned int            blocksize = bp->b_target->bt_bsize;
1236
1237         total_nr_pages = bp->b_page_count;
1238         map_i = 0;
1239
1240         if (bp->b_flags & XBF_ORDERED) {
1241                 ASSERT(!(bp->b_flags & XBF_READ));
1242                 rw = WRITE_FLUSH_FUA;
1243         } else if (bp->b_flags & XBF_LOG_BUFFER) {
1244                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1245                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1246                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1247         } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1248                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1249                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1250                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1251         } else {
1252                 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1253                      (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1254         }
1255
1256         /* Special code path for reading a sub page size buffer in --
1257          * we populate up the whole page, and hence the other metadata
1258          * in the same page.  This optimization is only valid when the
1259          * filesystem block size is not smaller than the page size.
1260          */
1261         if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1262             ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1263               (XBF_READ|_XBF_PAGE_LOCKED)) &&
1264             (blocksize >= PAGE_CACHE_SIZE)) {
1265                 bio = bio_alloc(GFP_NOIO, 1);
1266
1267                 bio->bi_bdev = bp->b_target->bt_bdev;
1268                 bio->bi_sector = sector - (offset >> BBSHIFT);
1269                 bio->bi_end_io = xfs_buf_bio_end_io;
1270                 bio->bi_private = bp;
1271
1272                 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1273                 size = 0;
1274
1275                 atomic_inc(&bp->b_io_remaining);
1276
1277                 goto submit_io;
1278         }
1279
1280 next_chunk:
1281         atomic_inc(&bp->b_io_remaining);
1282         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1283         if (nr_pages > total_nr_pages)
1284                 nr_pages = total_nr_pages;
1285
1286         bio = bio_alloc(GFP_NOIO, nr_pages);
1287         bio->bi_bdev = bp->b_target->bt_bdev;
1288         bio->bi_sector = sector;
1289         bio->bi_end_io = xfs_buf_bio_end_io;
1290         bio->bi_private = bp;
1291
1292         for (; size && nr_pages; nr_pages--, map_i++) {
1293                 int     rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1294
1295                 if (nbytes > size)
1296                         nbytes = size;
1297
1298                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1299                 if (rbytes < nbytes)
1300                         break;
1301
1302                 offset = 0;
1303                 sector += nbytes >> BBSHIFT;
1304                 size -= nbytes;
1305                 total_nr_pages--;
1306         }
1307
1308 submit_io:
1309         if (likely(bio->bi_size)) {
1310                 if (xfs_buf_is_vmapped(bp)) {
1311                         flush_kernel_vmap_range(bp->b_addr,
1312                                                 xfs_buf_vmap_len(bp));
1313                 }
1314                 submit_bio(rw, bio);
1315                 if (size)
1316                         goto next_chunk;
1317         } else {
1318                 /*
1319                  * if we get here, no pages were added to the bio. However,
1320                  * we can't just error out here - if the pages are locked then
1321                  * we have to unlock them otherwise we can hang on a later
1322                  * access to the page.
1323                  */
1324                 xfs_buf_ioerror(bp, EIO);
1325                 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1326                         int i;
1327                         for (i = 0; i < bp->b_page_count; i++)
1328                                 unlock_page(bp->b_pages[i]);
1329                 }
1330                 bio_put(bio);
1331         }
1332 }
1333
1334 int
1335 xfs_buf_iorequest(
1336         xfs_buf_t               *bp)
1337 {
1338         trace_xfs_buf_iorequest(bp, _RET_IP_);
1339
1340         if (bp->b_flags & XBF_DELWRI) {
1341                 xfs_buf_delwri_queue(bp, 1);
1342                 return 0;
1343         }
1344
1345         if (bp->b_flags & XBF_WRITE) {
1346                 xfs_buf_wait_unpin(bp);
1347         }
1348
1349         xfs_buf_hold(bp);
1350
1351         /* Set the count to 1 initially, this will stop an I/O
1352          * completion callout which happens before we have started
1353          * all the I/O from calling xfs_buf_ioend too early.
1354          */
1355         atomic_set(&bp->b_io_remaining, 1);
1356         _xfs_buf_ioapply(bp);
1357         _xfs_buf_ioend(bp, 0);
1358
1359         xfs_buf_rele(bp);
1360         return 0;
1361 }
1362
1363 /*
1364  *      Waits for I/O to complete on the buffer supplied.
1365  *      It returns immediately if no I/O is pending.
1366  *      It returns the I/O error code, if any, or 0 if there was no error.
1367  */
1368 int
1369 xfs_buf_iowait(
1370         xfs_buf_t               *bp)
1371 {
1372         trace_xfs_buf_iowait(bp, _RET_IP_);
1373
1374         if (atomic_read(&bp->b_io_remaining))
1375                 blk_run_address_space(bp->b_target->bt_mapping);
1376         wait_for_completion(&bp->b_iowait);
1377
1378         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1379         return bp->b_error;
1380 }
1381
1382 xfs_caddr_t
1383 xfs_buf_offset(
1384         xfs_buf_t               *bp,
1385         size_t                  offset)
1386 {
1387         struct page             *page;
1388
1389         if (bp->b_flags & XBF_MAPPED)
1390                 return XFS_BUF_PTR(bp) + offset;
1391
1392         offset += bp->b_offset;
1393         page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1394         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1395 }
1396
1397 /*
1398  *      Move data into or out of a buffer.
1399  */
1400 void
1401 xfs_buf_iomove(
1402         xfs_buf_t               *bp,    /* buffer to process            */
1403         size_t                  boff,   /* starting buffer offset       */
1404         size_t                  bsize,  /* length to copy               */
1405         void                    *data,  /* data address                 */
1406         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1407 {
1408         size_t                  bend, cpoff, csize;
1409         struct page             *page;
1410
1411         bend = boff + bsize;
1412         while (boff < bend) {
1413                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1414                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1415                 csize = min_t(size_t,
1416                               PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1417
1418                 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1419
1420                 switch (mode) {
1421                 case XBRW_ZERO:
1422                         memset(page_address(page) + cpoff, 0, csize);
1423                         break;
1424                 case XBRW_READ:
1425                         memcpy(data, page_address(page) + cpoff, csize);
1426                         break;
1427                 case XBRW_WRITE:
1428                         memcpy(page_address(page) + cpoff, data, csize);
1429                 }
1430
1431                 boff += csize;
1432                 data += csize;
1433         }
1434 }
1435
1436 /*
1437  *      Handling of buffer targets (buftargs).
1438  */
1439
1440 /*
1441  *      Wait for any bufs with callbacks that have been submitted but
1442  *      have not yet returned... walk the hash list for the target.
1443  */
1444 void
1445 xfs_wait_buftarg(
1446         struct xfs_buftarg      *btp)
1447 {
1448         struct xfs_perag        *pag;
1449         uint                    i;
1450
1451         for (i = 0; i < btp->bt_mount->m_sb.sb_agcount; i++) {
1452                 pag = xfs_perag_get(btp->bt_mount, i);
1453                 spin_lock(&pag->pag_buf_lock);
1454                 while (rb_first(&pag->pag_buf_tree)) {
1455                         spin_unlock(&pag->pag_buf_lock);
1456                         delay(100);
1457                         spin_lock(&pag->pag_buf_lock);
1458                 }
1459                 spin_unlock(&pag->pag_buf_lock);
1460                 xfs_perag_put(pag);
1461         }
1462 }
1463
1464 /*
1465  *      buftarg list for delwrite queue processing
1466  */
1467 static LIST_HEAD(xfs_buftarg_list);
1468 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1469
1470 STATIC void
1471 xfs_register_buftarg(
1472         xfs_buftarg_t           *btp)
1473 {
1474         spin_lock(&xfs_buftarg_lock);
1475         list_add(&btp->bt_list, &xfs_buftarg_list);
1476         spin_unlock(&xfs_buftarg_lock);
1477 }
1478
1479 STATIC void
1480 xfs_unregister_buftarg(
1481         xfs_buftarg_t           *btp)
1482 {
1483         spin_lock(&xfs_buftarg_lock);
1484         list_del(&btp->bt_list);
1485         spin_unlock(&xfs_buftarg_lock);
1486 }
1487
1488 void
1489 xfs_free_buftarg(
1490         struct xfs_mount        *mp,
1491         struct xfs_buftarg      *btp)
1492 {
1493         xfs_flush_buftarg(btp, 1);
1494         if (mp->m_flags & XFS_MOUNT_BARRIER)
1495                 xfs_blkdev_issue_flush(btp);
1496         iput(btp->bt_mapping->host);
1497
1498         /* Unregister the buftarg first so that we don't get a
1499          * wakeup finding a non-existent task
1500          */
1501         xfs_unregister_buftarg(btp);
1502         kthread_stop(btp->bt_task);
1503
1504         kmem_free(btp);
1505 }
1506
1507 STATIC int
1508 xfs_setsize_buftarg_flags(
1509         xfs_buftarg_t           *btp,
1510         unsigned int            blocksize,
1511         unsigned int            sectorsize,
1512         int                     verbose)
1513 {
1514         btp->bt_bsize = blocksize;
1515         btp->bt_sshift = ffs(sectorsize) - 1;
1516         btp->bt_smask = sectorsize - 1;
1517
1518         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1519                 printk(KERN_WARNING
1520                         "XFS: Cannot set_blocksize to %u on device %s\n",
1521                         sectorsize, XFS_BUFTARG_NAME(btp));
1522                 return EINVAL;
1523         }
1524
1525         if (verbose &&
1526             (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1527                 printk(KERN_WARNING
1528                         "XFS: %u byte sectors in use on device %s.  "
1529                         "This is suboptimal; %u or greater is ideal.\n",
1530                         sectorsize, XFS_BUFTARG_NAME(btp),
1531                         (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1532         }
1533
1534         return 0;
1535 }
1536
1537 /*
1538  *      When allocating the initial buffer target we have not yet
1539  *      read in the superblock, so don't know what sized sectors
1540  *      are being used is at this early stage.  Play safe.
1541  */
1542 STATIC int
1543 xfs_setsize_buftarg_early(
1544         xfs_buftarg_t           *btp,
1545         struct block_device     *bdev)
1546 {
1547         return xfs_setsize_buftarg_flags(btp,
1548                         PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1549 }
1550
1551 int
1552 xfs_setsize_buftarg(
1553         xfs_buftarg_t           *btp,
1554         unsigned int            blocksize,
1555         unsigned int            sectorsize)
1556 {
1557         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1558 }
1559
1560 STATIC int
1561 xfs_mapping_buftarg(
1562         xfs_buftarg_t           *btp,
1563         struct block_device     *bdev)
1564 {
1565         struct backing_dev_info *bdi;
1566         struct inode            *inode;
1567         struct address_space    *mapping;
1568         static const struct address_space_operations mapping_aops = {
1569                 .sync_page = block_sync_page,
1570                 .migratepage = fail_migrate_page,
1571         };
1572
1573         inode = new_inode(bdev->bd_inode->i_sb);
1574         if (!inode) {
1575                 printk(KERN_WARNING
1576                         "XFS: Cannot allocate mapping inode for device %s\n",
1577                         XFS_BUFTARG_NAME(btp));
1578                 return ENOMEM;
1579         }
1580         inode->i_ino = get_next_ino();
1581         inode->i_mode = S_IFBLK;
1582         inode->i_bdev = bdev;
1583         inode->i_rdev = bdev->bd_dev;
1584         bdi = blk_get_backing_dev_info(bdev);
1585         if (!bdi)
1586                 bdi = &default_backing_dev_info;
1587         mapping = &inode->i_data;
1588         mapping->a_ops = &mapping_aops;
1589         mapping->backing_dev_info = bdi;
1590         mapping_set_gfp_mask(mapping, GFP_NOFS);
1591         btp->bt_mapping = mapping;
1592         return 0;
1593 }
1594
1595 STATIC int
1596 xfs_alloc_delwrite_queue(
1597         xfs_buftarg_t           *btp,
1598         const char              *fsname)
1599 {
1600         int     error = 0;
1601
1602         INIT_LIST_HEAD(&btp->bt_list);
1603         INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1604         spin_lock_init(&btp->bt_delwrite_lock);
1605         btp->bt_flags = 0;
1606         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1607         if (IS_ERR(btp->bt_task)) {
1608                 error = PTR_ERR(btp->bt_task);
1609                 goto out_error;
1610         }
1611         xfs_register_buftarg(btp);
1612 out_error:
1613         return error;
1614 }
1615
1616 xfs_buftarg_t *
1617 xfs_alloc_buftarg(
1618         struct xfs_mount        *mp,
1619         struct block_device     *bdev,
1620         int                     external,
1621         const char              *fsname)
1622 {
1623         xfs_buftarg_t           *btp;
1624
1625         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1626
1627         btp->bt_mount = mp;
1628         btp->bt_dev =  bdev->bd_dev;
1629         btp->bt_bdev = bdev;
1630         if (xfs_setsize_buftarg_early(btp, bdev))
1631                 goto error;
1632         if (xfs_mapping_buftarg(btp, bdev))
1633                 goto error;
1634         if (xfs_alloc_delwrite_queue(btp, fsname))
1635                 goto error;
1636         return btp;
1637
1638 error:
1639         kmem_free(btp);
1640         return NULL;
1641 }
1642
1643
1644 /*
1645  *      Delayed write buffer handling
1646  */
1647 STATIC void
1648 xfs_buf_delwri_queue(
1649         xfs_buf_t               *bp,
1650         int                     unlock)
1651 {
1652         struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1653         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1654
1655         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1656
1657         ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1658
1659         spin_lock(dwlk);
1660         /* If already in the queue, dequeue and place at tail */
1661         if (!list_empty(&bp->b_list)) {
1662                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1663                 if (unlock)
1664                         atomic_dec(&bp->b_hold);
1665                 list_del(&bp->b_list);
1666         }
1667
1668         if (list_empty(dwq)) {
1669                 /* start xfsbufd as it is about to have something to do */
1670                 wake_up_process(bp->b_target->bt_task);
1671         }
1672
1673         bp->b_flags |= _XBF_DELWRI_Q;
1674         list_add_tail(&bp->b_list, dwq);
1675         bp->b_queuetime = jiffies;
1676         spin_unlock(dwlk);
1677
1678         if (unlock)
1679                 xfs_buf_unlock(bp);
1680 }
1681
1682 void
1683 xfs_buf_delwri_dequeue(
1684         xfs_buf_t               *bp)
1685 {
1686         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1687         int                     dequeued = 0;
1688
1689         spin_lock(dwlk);
1690         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1691                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1692                 list_del_init(&bp->b_list);
1693                 dequeued = 1;
1694         }
1695         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1696         spin_unlock(dwlk);
1697
1698         if (dequeued)
1699                 xfs_buf_rele(bp);
1700
1701         trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1702 }
1703
1704 /*
1705  * If a delwri buffer needs to be pushed before it has aged out, then promote
1706  * it to the head of the delwri queue so that it will be flushed on the next
1707  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1708  * than the age currently needed to flush the buffer. Hence the next time the
1709  * xfsbufd sees it is guaranteed to be considered old enough to flush.
1710  */
1711 void
1712 xfs_buf_delwri_promote(
1713         struct xfs_buf  *bp)
1714 {
1715         struct xfs_buftarg *btp = bp->b_target;
1716         long            age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1717
1718         ASSERT(bp->b_flags & XBF_DELWRI);
1719         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1720
1721         /*
1722          * Check the buffer age before locking the delayed write queue as we
1723          * don't need to promote buffers that are already past the flush age.
1724          */
1725         if (bp->b_queuetime < jiffies - age)
1726                 return;
1727         bp->b_queuetime = jiffies - age;
1728         spin_lock(&btp->bt_delwrite_lock);
1729         list_move(&bp->b_list, &btp->bt_delwrite_queue);
1730         spin_unlock(&btp->bt_delwrite_lock);
1731 }
1732
1733 STATIC void
1734 xfs_buf_runall_queues(
1735         struct workqueue_struct *queue)
1736 {
1737         flush_workqueue(queue);
1738 }
1739
1740 STATIC int
1741 xfsbufd_wakeup(
1742         struct shrinker         *shrink,
1743         int                     priority,
1744         gfp_t                   mask)
1745 {
1746         xfs_buftarg_t           *btp;
1747
1748         spin_lock(&xfs_buftarg_lock);
1749         list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1750                 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1751                         continue;
1752                 if (list_empty(&btp->bt_delwrite_queue))
1753                         continue;
1754                 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1755                 wake_up_process(btp->bt_task);
1756         }
1757         spin_unlock(&xfs_buftarg_lock);
1758         return 0;
1759 }
1760
1761 /*
1762  * Move as many buffers as specified to the supplied list
1763  * idicating if we skipped any buffers to prevent deadlocks.
1764  */
1765 STATIC int
1766 xfs_buf_delwri_split(
1767         xfs_buftarg_t   *target,
1768         struct list_head *list,
1769         unsigned long   age)
1770 {
1771         xfs_buf_t       *bp, *n;
1772         struct list_head *dwq = &target->bt_delwrite_queue;
1773         spinlock_t      *dwlk = &target->bt_delwrite_lock;
1774         int             skipped = 0;
1775         int             force;
1776
1777         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1778         INIT_LIST_HEAD(list);
1779         spin_lock(dwlk);
1780         list_for_each_entry_safe(bp, n, dwq, b_list) {
1781                 ASSERT(bp->b_flags & XBF_DELWRI);
1782
1783                 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1784                         if (!force &&
1785                             time_before(jiffies, bp->b_queuetime + age)) {
1786                                 xfs_buf_unlock(bp);
1787                                 break;
1788                         }
1789
1790                         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1791                                          _XBF_RUN_QUEUES);
1792                         bp->b_flags |= XBF_WRITE;
1793                         list_move_tail(&bp->b_list, list);
1794                         trace_xfs_buf_delwri_split(bp, _RET_IP_);
1795                 } else
1796                         skipped++;
1797         }
1798         spin_unlock(dwlk);
1799
1800         return skipped;
1801
1802 }
1803
1804 /*
1805  * Compare function is more complex than it needs to be because
1806  * the return value is only 32 bits and we are doing comparisons
1807  * on 64 bit values
1808  */
1809 static int
1810 xfs_buf_cmp(
1811         void            *priv,
1812         struct list_head *a,
1813         struct list_head *b)
1814 {
1815         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1816         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1817         xfs_daddr_t             diff;
1818
1819         diff = ap->b_bn - bp->b_bn;
1820         if (diff < 0)
1821                 return -1;
1822         if (diff > 0)
1823                 return 1;
1824         return 0;
1825 }
1826
1827 void
1828 xfs_buf_delwri_sort(
1829         xfs_buftarg_t   *target,
1830         struct list_head *list)
1831 {
1832         list_sort(NULL, list, xfs_buf_cmp);
1833 }
1834
1835 STATIC int
1836 xfsbufd(
1837         void            *data)
1838 {
1839         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1840
1841         current->flags |= PF_MEMALLOC;
1842
1843         set_freezable();
1844
1845         do {
1846                 long    age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1847                 long    tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1848                 int     count = 0;
1849                 struct list_head tmp;
1850
1851                 if (unlikely(freezing(current))) {
1852                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1853                         refrigerator();
1854                 } else {
1855                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1856                 }
1857
1858                 /* sleep for a long time if there is nothing to do. */
1859                 if (list_empty(&target->bt_delwrite_queue))
1860                         tout = MAX_SCHEDULE_TIMEOUT;
1861                 schedule_timeout_interruptible(tout);
1862
1863                 xfs_buf_delwri_split(target, &tmp, age);
1864                 list_sort(NULL, &tmp, xfs_buf_cmp);
1865                 while (!list_empty(&tmp)) {
1866                         struct xfs_buf *bp;
1867                         bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1868                         list_del_init(&bp->b_list);
1869                         xfs_bdstrat_cb(bp);
1870                         count++;
1871                 }
1872                 if (count)
1873                         blk_run_address_space(target->bt_mapping);
1874
1875         } while (!kthread_should_stop());
1876
1877         return 0;
1878 }
1879
1880 /*
1881  *      Go through all incore buffers, and release buffers if they belong to
1882  *      the given device. This is used in filesystem error handling to
1883  *      preserve the consistency of its metadata.
1884  */
1885 int
1886 xfs_flush_buftarg(
1887         xfs_buftarg_t   *target,
1888         int             wait)
1889 {
1890         xfs_buf_t       *bp;
1891         int             pincount = 0;
1892         LIST_HEAD(tmp_list);
1893         LIST_HEAD(wait_list);
1894
1895         xfs_buf_runall_queues(xfsconvertd_workqueue);
1896         xfs_buf_runall_queues(xfsdatad_workqueue);
1897         xfs_buf_runall_queues(xfslogd_workqueue);
1898
1899         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1900         pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1901
1902         /*
1903          * Dropped the delayed write list lock, now walk the temporary list.
1904          * All I/O is issued async and then if we need to wait for completion
1905          * we do that after issuing all the IO.
1906          */
1907         list_sort(NULL, &tmp_list, xfs_buf_cmp);
1908         while (!list_empty(&tmp_list)) {
1909                 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1910                 ASSERT(target == bp->b_target);
1911                 list_del_init(&bp->b_list);
1912                 if (wait) {
1913                         bp->b_flags &= ~XBF_ASYNC;
1914                         list_add(&bp->b_list, &wait_list);
1915                 }
1916                 xfs_bdstrat_cb(bp);
1917         }
1918
1919         if (wait) {
1920                 /* Expedite and wait for IO to complete. */
1921                 blk_run_address_space(target->bt_mapping);
1922                 while (!list_empty(&wait_list)) {
1923                         bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1924
1925                         list_del_init(&bp->b_list);
1926                         xfs_buf_iowait(bp);
1927                         xfs_buf_relse(bp);
1928                 }
1929         }
1930
1931         return pincount;
1932 }
1933
1934 int __init
1935 xfs_buf_init(void)
1936 {
1937         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1938                                                 KM_ZONE_HWALIGN, NULL);
1939         if (!xfs_buf_zone)
1940                 goto out;
1941
1942         xfslogd_workqueue = alloc_workqueue("xfslogd",
1943                                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1944         if (!xfslogd_workqueue)
1945                 goto out_free_buf_zone;
1946
1947         xfsdatad_workqueue = create_workqueue("xfsdatad");
1948         if (!xfsdatad_workqueue)
1949                 goto out_destroy_xfslogd_workqueue;
1950
1951         xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1952         if (!xfsconvertd_workqueue)
1953                 goto out_destroy_xfsdatad_workqueue;
1954
1955         register_shrinker(&xfs_buf_shake);
1956         return 0;
1957
1958  out_destroy_xfsdatad_workqueue:
1959         destroy_workqueue(xfsdatad_workqueue);
1960  out_destroy_xfslogd_workqueue:
1961         destroy_workqueue(xfslogd_workqueue);
1962  out_free_buf_zone:
1963         kmem_zone_destroy(xfs_buf_zone);
1964  out:
1965         return -ENOMEM;
1966 }
1967
1968 void
1969 xfs_buf_terminate(void)
1970 {
1971         unregister_shrinker(&xfs_buf_shake);
1972         destroy_workqueue(xfsconvertd_workqueue);
1973         destroy_workqueue(xfsdatad_workqueue);
1974         destroy_workqueue(xfslogd_workqueue);
1975         kmem_zone_destroy(xfs_buf_zone);
1976 }
1977
1978 #ifdef CONFIG_KDB_MODULES
1979 struct list_head *
1980 xfs_get_buftarg_list(void)
1981 {
1982         return &xfs_buftarg_list;
1983 }
1984 #endif