kill xfs_buf_iostart
[linux-2.6-block.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 static kmem_zone_t *xfs_buf_zone;
38 STATIC int xfsbufd(void *);
39 STATIC int xfsbufd_wakeup(int, gfp_t);
40 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
41 static struct shrinker xfs_buf_shake = {
42         .shrink = xfsbufd_wakeup,
43         .seeks = DEFAULT_SEEKS,
44 };
45
46 static struct workqueue_struct *xfslogd_workqueue;
47 struct workqueue_struct *xfsdatad_workqueue;
48
49 #ifdef XFS_BUF_TRACE
50 void
51 xfs_buf_trace(
52         xfs_buf_t       *bp,
53         char            *id,
54         void            *data,
55         void            *ra)
56 {
57         ktrace_enter(xfs_buf_trace_buf,
58                 bp, id,
59                 (void *)(unsigned long)bp->b_flags,
60                 (void *)(unsigned long)bp->b_hold.counter,
61                 (void *)(unsigned long)bp->b_sema.count,
62                 (void *)current,
63                 data, ra,
64                 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
65                 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
66                 (void *)(unsigned long)bp->b_buffer_length,
67                 NULL, NULL, NULL, NULL, NULL);
68 }
69 ktrace_t *xfs_buf_trace_buf;
70 #define XFS_BUF_TRACE_SIZE      4096
71 #define XB_TRACE(bp, id, data)  \
72         xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
73 #else
74 #define XB_TRACE(bp, id, data)  do { } while (0)
75 #endif
76
77 #ifdef XFS_BUF_LOCK_TRACKING
78 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
79 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
80 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
81 #else
82 # define XB_SET_OWNER(bp)       do { } while (0)
83 # define XB_CLEAR_OWNER(bp)     do { } while (0)
84 # define XB_GET_OWNER(bp)       do { } while (0)
85 #endif
86
87 #define xb_to_gfp(flags) \
88         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
89           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
90
91 #define xb_to_km(flags) \
92          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
93
94 #define xfs_buf_allocate(flags) \
95         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
96 #define xfs_buf_deallocate(bp) \
97         kmem_zone_free(xfs_buf_zone, (bp));
98
99 /*
100  *      Page Region interfaces.
101  *
102  *      For pages in filesystems where the blocksize is smaller than the
103  *      pagesize, we use the page->private field (long) to hold a bitmap
104  *      of uptodate regions within the page.
105  *
106  *      Each such region is "bytes per page / bits per long" bytes long.
107  *
108  *      NBPPR == number-of-bytes-per-page-region
109  *      BTOPR == bytes-to-page-region (rounded up)
110  *      BTOPRT == bytes-to-page-region-truncated (rounded down)
111  */
112 #if (BITS_PER_LONG == 32)
113 #define PRSHIFT         (PAGE_CACHE_SHIFT - 5)  /* (32 == 1<<5) */
114 #elif (BITS_PER_LONG == 64)
115 #define PRSHIFT         (PAGE_CACHE_SHIFT - 6)  /* (64 == 1<<6) */
116 #else
117 #error BITS_PER_LONG must be 32 or 64
118 #endif
119 #define NBPPR           (PAGE_CACHE_SIZE/BITS_PER_LONG)
120 #define BTOPR(b)        (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
121 #define BTOPRT(b)       (((unsigned int)(b) >> PRSHIFT))
122
123 STATIC unsigned long
124 page_region_mask(
125         size_t          offset,
126         size_t          length)
127 {
128         unsigned long   mask;
129         int             first, final;
130
131         first = BTOPR(offset);
132         final = BTOPRT(offset + length - 1);
133         first = min(first, final);
134
135         mask = ~0UL;
136         mask <<= BITS_PER_LONG - (final - first);
137         mask >>= BITS_PER_LONG - (final);
138
139         ASSERT(offset + length <= PAGE_CACHE_SIZE);
140         ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
141
142         return mask;
143 }
144
145 STATIC_INLINE void
146 set_page_region(
147         struct page     *page,
148         size_t          offset,
149         size_t          length)
150 {
151         set_page_private(page,
152                 page_private(page) | page_region_mask(offset, length));
153         if (page_private(page) == ~0UL)
154                 SetPageUptodate(page);
155 }
156
157 STATIC_INLINE int
158 test_page_region(
159         struct page     *page,
160         size_t          offset,
161         size_t          length)
162 {
163         unsigned long   mask = page_region_mask(offset, length);
164
165         return (mask && (page_private(page) & mask) == mask);
166 }
167
168 /*
169  *      Mapping of multi-page buffers into contiguous virtual space
170  */
171
172 typedef struct a_list {
173         void            *vm_addr;
174         struct a_list   *next;
175 } a_list_t;
176
177 static a_list_t         *as_free_head;
178 static int              as_list_len;
179 static DEFINE_SPINLOCK(as_lock);
180
181 /*
182  *      Try to batch vunmaps because they are costly.
183  */
184 STATIC void
185 free_address(
186         void            *addr)
187 {
188         a_list_t        *aentry;
189
190 #ifdef CONFIG_XEN
191         /*
192          * Xen needs to be able to make sure it can get an exclusive
193          * RO mapping of pages it wants to turn into a pagetable.  If
194          * a newly allocated page is also still being vmap()ed by xfs,
195          * it will cause pagetable construction to fail.  This is a
196          * quick workaround to always eagerly unmap pages so that Xen
197          * is happy.
198          */
199         vunmap(addr);
200         return;
201 #endif
202
203         aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
204         if (likely(aentry)) {
205                 spin_lock(&as_lock);
206                 aentry->next = as_free_head;
207                 aentry->vm_addr = addr;
208                 as_free_head = aentry;
209                 as_list_len++;
210                 spin_unlock(&as_lock);
211         } else {
212                 vunmap(addr);
213         }
214 }
215
216 STATIC void
217 purge_addresses(void)
218 {
219         a_list_t        *aentry, *old;
220
221         if (as_free_head == NULL)
222                 return;
223
224         spin_lock(&as_lock);
225         aentry = as_free_head;
226         as_free_head = NULL;
227         as_list_len = 0;
228         spin_unlock(&as_lock);
229
230         while ((old = aentry) != NULL) {
231                 vunmap(aentry->vm_addr);
232                 aentry = aentry->next;
233                 kfree(old);
234         }
235 }
236
237 /*
238  *      Internal xfs_buf_t object manipulation
239  */
240
241 STATIC void
242 _xfs_buf_initialize(
243         xfs_buf_t               *bp,
244         xfs_buftarg_t           *target,
245         xfs_off_t               range_base,
246         size_t                  range_length,
247         xfs_buf_flags_t         flags)
248 {
249         /*
250          * We don't want certain flags to appear in b_flags.
251          */
252         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
253
254         memset(bp, 0, sizeof(xfs_buf_t));
255         atomic_set(&bp->b_hold, 1);
256         init_completion(&bp->b_iowait);
257         INIT_LIST_HEAD(&bp->b_list);
258         INIT_LIST_HEAD(&bp->b_hash_list);
259         init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
260         XB_SET_OWNER(bp);
261         bp->b_target = target;
262         bp->b_file_offset = range_base;
263         /*
264          * Set buffer_length and count_desired to the same value initially.
265          * I/O routines should use count_desired, which will be the same in
266          * most cases but may be reset (e.g. XFS recovery).
267          */
268         bp->b_buffer_length = bp->b_count_desired = range_length;
269         bp->b_flags = flags;
270         bp->b_bn = XFS_BUF_DADDR_NULL;
271         atomic_set(&bp->b_pin_count, 0);
272         init_waitqueue_head(&bp->b_waiters);
273
274         XFS_STATS_INC(xb_create);
275         XB_TRACE(bp, "initialize", target);
276 }
277
278 /*
279  *      Allocate a page array capable of holding a specified number
280  *      of pages, and point the page buf at it.
281  */
282 STATIC int
283 _xfs_buf_get_pages(
284         xfs_buf_t               *bp,
285         int                     page_count,
286         xfs_buf_flags_t         flags)
287 {
288         /* Make sure that we have a page list */
289         if (bp->b_pages == NULL) {
290                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
291                 bp->b_page_count = page_count;
292                 if (page_count <= XB_PAGES) {
293                         bp->b_pages = bp->b_page_array;
294                 } else {
295                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
296                                         page_count, xb_to_km(flags));
297                         if (bp->b_pages == NULL)
298                                 return -ENOMEM;
299                 }
300                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
301         }
302         return 0;
303 }
304
305 /*
306  *      Frees b_pages if it was allocated.
307  */
308 STATIC void
309 _xfs_buf_free_pages(
310         xfs_buf_t       *bp)
311 {
312         if (bp->b_pages != bp->b_page_array) {
313                 kmem_free(bp->b_pages);
314         }
315 }
316
317 /*
318  *      Releases the specified buffer.
319  *
320  *      The modification state of any associated pages is left unchanged.
321  *      The buffer most not be on any hash - use xfs_buf_rele instead for
322  *      hashed and refcounted buffers
323  */
324 void
325 xfs_buf_free(
326         xfs_buf_t               *bp)
327 {
328         XB_TRACE(bp, "free", 0);
329
330         ASSERT(list_empty(&bp->b_hash_list));
331
332         if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
333                 uint            i;
334
335                 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
336                         free_address(bp->b_addr - bp->b_offset);
337
338                 for (i = 0; i < bp->b_page_count; i++) {
339                         struct page     *page = bp->b_pages[i];
340
341                         if (bp->b_flags & _XBF_PAGE_CACHE)
342                                 ASSERT(!PagePrivate(page));
343                         page_cache_release(page);
344                 }
345                 _xfs_buf_free_pages(bp);
346         }
347
348         xfs_buf_deallocate(bp);
349 }
350
351 /*
352  *      Finds all pages for buffer in question and builds it's page list.
353  */
354 STATIC int
355 _xfs_buf_lookup_pages(
356         xfs_buf_t               *bp,
357         uint                    flags)
358 {
359         struct address_space    *mapping = bp->b_target->bt_mapping;
360         size_t                  blocksize = bp->b_target->bt_bsize;
361         size_t                  size = bp->b_count_desired;
362         size_t                  nbytes, offset;
363         gfp_t                   gfp_mask = xb_to_gfp(flags);
364         unsigned short          page_count, i;
365         pgoff_t                 first;
366         xfs_off_t               end;
367         int                     error;
368
369         end = bp->b_file_offset + bp->b_buffer_length;
370         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
371
372         error = _xfs_buf_get_pages(bp, page_count, flags);
373         if (unlikely(error))
374                 return error;
375         bp->b_flags |= _XBF_PAGE_CACHE;
376
377         offset = bp->b_offset;
378         first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
379
380         for (i = 0; i < bp->b_page_count; i++) {
381                 struct page     *page;
382                 uint            retries = 0;
383
384               retry:
385                 page = find_or_create_page(mapping, first + i, gfp_mask);
386                 if (unlikely(page == NULL)) {
387                         if (flags & XBF_READ_AHEAD) {
388                                 bp->b_page_count = i;
389                                 for (i = 0; i < bp->b_page_count; i++)
390                                         unlock_page(bp->b_pages[i]);
391                                 return -ENOMEM;
392                         }
393
394                         /*
395                          * This could deadlock.
396                          *
397                          * But until all the XFS lowlevel code is revamped to
398                          * handle buffer allocation failures we can't do much.
399                          */
400                         if (!(++retries % 100))
401                                 printk(KERN_ERR
402                                         "XFS: possible memory allocation "
403                                         "deadlock in %s (mode:0x%x)\n",
404                                         __func__, gfp_mask);
405
406                         XFS_STATS_INC(xb_page_retries);
407                         xfsbufd_wakeup(0, gfp_mask);
408                         congestion_wait(WRITE, HZ/50);
409                         goto retry;
410                 }
411
412                 XFS_STATS_INC(xb_page_found);
413
414                 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
415                 size -= nbytes;
416
417                 ASSERT(!PagePrivate(page));
418                 if (!PageUptodate(page)) {
419                         page_count--;
420                         if (blocksize >= PAGE_CACHE_SIZE) {
421                                 if (flags & XBF_READ)
422                                         bp->b_flags |= _XBF_PAGE_LOCKED;
423                         } else if (!PagePrivate(page)) {
424                                 if (test_page_region(page, offset, nbytes))
425                                         page_count++;
426                         }
427                 }
428
429                 bp->b_pages[i] = page;
430                 offset = 0;
431         }
432
433         if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
434                 for (i = 0; i < bp->b_page_count; i++)
435                         unlock_page(bp->b_pages[i]);
436         }
437
438         if (page_count == bp->b_page_count)
439                 bp->b_flags |= XBF_DONE;
440
441         XB_TRACE(bp, "lookup_pages", (long)page_count);
442         return error;
443 }
444
445 /*
446  *      Map buffer into kernel address-space if nessecary.
447  */
448 STATIC int
449 _xfs_buf_map_pages(
450         xfs_buf_t               *bp,
451         uint                    flags)
452 {
453         /* A single page buffer is always mappable */
454         if (bp->b_page_count == 1) {
455                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
456                 bp->b_flags |= XBF_MAPPED;
457         } else if (flags & XBF_MAPPED) {
458                 if (as_list_len > 64)
459                         purge_addresses();
460                 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
461                                         VM_MAP, PAGE_KERNEL);
462                 if (unlikely(bp->b_addr == NULL))
463                         return -ENOMEM;
464                 bp->b_addr += bp->b_offset;
465                 bp->b_flags |= XBF_MAPPED;
466         }
467
468         return 0;
469 }
470
471 /*
472  *      Finding and Reading Buffers
473  */
474
475 /*
476  *      Look up, and creates if absent, a lockable buffer for
477  *      a given range of an inode.  The buffer is returned
478  *      locked.  If other overlapping buffers exist, they are
479  *      released before the new buffer is created and locked,
480  *      which may imply that this call will block until those buffers
481  *      are unlocked.  No I/O is implied by this call.
482  */
483 xfs_buf_t *
484 _xfs_buf_find(
485         xfs_buftarg_t           *btp,   /* block device target          */
486         xfs_off_t               ioff,   /* starting offset of range     */
487         size_t                  isize,  /* length of range              */
488         xfs_buf_flags_t         flags,
489         xfs_buf_t               *new_bp)
490 {
491         xfs_off_t               range_base;
492         size_t                  range_length;
493         xfs_bufhash_t           *hash;
494         xfs_buf_t               *bp, *n;
495
496         range_base = (ioff << BBSHIFT);
497         range_length = (isize << BBSHIFT);
498
499         /* Check for IOs smaller than the sector size / not sector aligned */
500         ASSERT(!(range_length < (1 << btp->bt_sshift)));
501         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
502
503         hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
504
505         spin_lock(&hash->bh_lock);
506
507         list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
508                 ASSERT(btp == bp->b_target);
509                 if (bp->b_file_offset == range_base &&
510                     bp->b_buffer_length == range_length) {
511                         /*
512                          * If we look at something, bring it to the
513                          * front of the list for next time.
514                          */
515                         atomic_inc(&bp->b_hold);
516                         list_move(&bp->b_hash_list, &hash->bh_list);
517                         goto found;
518                 }
519         }
520
521         /* No match found */
522         if (new_bp) {
523                 _xfs_buf_initialize(new_bp, btp, range_base,
524                                 range_length, flags);
525                 new_bp->b_hash = hash;
526                 list_add(&new_bp->b_hash_list, &hash->bh_list);
527         } else {
528                 XFS_STATS_INC(xb_miss_locked);
529         }
530
531         spin_unlock(&hash->bh_lock);
532         return new_bp;
533
534 found:
535         spin_unlock(&hash->bh_lock);
536
537         /* Attempt to get the semaphore without sleeping,
538          * if this does not work then we need to drop the
539          * spinlock and do a hard attempt on the semaphore.
540          */
541         if (down_trylock(&bp->b_sema)) {
542                 if (!(flags & XBF_TRYLOCK)) {
543                         /* wait for buffer ownership */
544                         XB_TRACE(bp, "get_lock", 0);
545                         xfs_buf_lock(bp);
546                         XFS_STATS_INC(xb_get_locked_waited);
547                 } else {
548                         /* We asked for a trylock and failed, no need
549                          * to look at file offset and length here, we
550                          * know that this buffer at least overlaps our
551                          * buffer and is locked, therefore our buffer
552                          * either does not exist, or is this buffer.
553                          */
554                         xfs_buf_rele(bp);
555                         XFS_STATS_INC(xb_busy_locked);
556                         return NULL;
557                 }
558         } else {
559                 /* trylock worked */
560                 XB_SET_OWNER(bp);
561         }
562
563         if (bp->b_flags & XBF_STALE) {
564                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
565                 bp->b_flags &= XBF_MAPPED;
566         }
567         XB_TRACE(bp, "got_lock", 0);
568         XFS_STATS_INC(xb_get_locked);
569         return bp;
570 }
571
572 /*
573  *      Assembles a buffer covering the specified range.
574  *      Storage in memory for all portions of the buffer will be allocated,
575  *      although backing storage may not be.
576  */
577 xfs_buf_t *
578 xfs_buf_get_flags(
579         xfs_buftarg_t           *target,/* target for buffer            */
580         xfs_off_t               ioff,   /* starting offset of range     */
581         size_t                  isize,  /* length of range              */
582         xfs_buf_flags_t         flags)
583 {
584         xfs_buf_t               *bp, *new_bp;
585         int                     error = 0, i;
586
587         new_bp = xfs_buf_allocate(flags);
588         if (unlikely(!new_bp))
589                 return NULL;
590
591         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
592         if (bp == new_bp) {
593                 error = _xfs_buf_lookup_pages(bp, flags);
594                 if (error)
595                         goto no_buffer;
596         } else {
597                 xfs_buf_deallocate(new_bp);
598                 if (unlikely(bp == NULL))
599                         return NULL;
600         }
601
602         for (i = 0; i < bp->b_page_count; i++)
603                 mark_page_accessed(bp->b_pages[i]);
604
605         if (!(bp->b_flags & XBF_MAPPED)) {
606                 error = _xfs_buf_map_pages(bp, flags);
607                 if (unlikely(error)) {
608                         printk(KERN_WARNING "%s: failed to map pages\n",
609                                         __func__);
610                         goto no_buffer;
611                 }
612         }
613
614         XFS_STATS_INC(xb_get);
615
616         /*
617          * Always fill in the block number now, the mapped cases can do
618          * their own overlay of this later.
619          */
620         bp->b_bn = ioff;
621         bp->b_count_desired = bp->b_buffer_length;
622
623         XB_TRACE(bp, "get", (unsigned long)flags);
624         return bp;
625
626  no_buffer:
627         if (flags & (XBF_LOCK | XBF_TRYLOCK))
628                 xfs_buf_unlock(bp);
629         xfs_buf_rele(bp);
630         return NULL;
631 }
632
633 STATIC int
634 _xfs_buf_read(
635         xfs_buf_t               *bp,
636         xfs_buf_flags_t         flags)
637 {
638         int                     status;
639
640         XB_TRACE(bp, "_xfs_buf_read", (unsigned long)flags);
641
642         ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
643         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
644
645         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
646                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
647         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
648                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
649
650         status = xfs_buf_iorequest(bp);
651         if (!status && !(flags & XBF_ASYNC))
652                 status = xfs_buf_iowait(bp);
653         return status;
654 }
655
656 xfs_buf_t *
657 xfs_buf_read_flags(
658         xfs_buftarg_t           *target,
659         xfs_off_t               ioff,
660         size_t                  isize,
661         xfs_buf_flags_t         flags)
662 {
663         xfs_buf_t               *bp;
664
665         flags |= XBF_READ;
666
667         bp = xfs_buf_get_flags(target, ioff, isize, flags);
668         if (bp) {
669                 if (!XFS_BUF_ISDONE(bp)) {
670                         XB_TRACE(bp, "read", (unsigned long)flags);
671                         XFS_STATS_INC(xb_get_read);
672                         _xfs_buf_read(bp, flags);
673                 } else if (flags & XBF_ASYNC) {
674                         XB_TRACE(bp, "read_async", (unsigned long)flags);
675                         /*
676                          * Read ahead call which is already satisfied,
677                          * drop the buffer
678                          */
679                         goto no_buffer;
680                 } else {
681                         XB_TRACE(bp, "read_done", (unsigned long)flags);
682                         /* We do not want read in the flags */
683                         bp->b_flags &= ~XBF_READ;
684                 }
685         }
686
687         return bp;
688
689  no_buffer:
690         if (flags & (XBF_LOCK | XBF_TRYLOCK))
691                 xfs_buf_unlock(bp);
692         xfs_buf_rele(bp);
693         return NULL;
694 }
695
696 /*
697  *      If we are not low on memory then do the readahead in a deadlock
698  *      safe manner.
699  */
700 void
701 xfs_buf_readahead(
702         xfs_buftarg_t           *target,
703         xfs_off_t               ioff,
704         size_t                  isize,
705         xfs_buf_flags_t         flags)
706 {
707         struct backing_dev_info *bdi;
708
709         bdi = target->bt_mapping->backing_dev_info;
710         if (bdi_read_congested(bdi))
711                 return;
712
713         flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
714         xfs_buf_read_flags(target, ioff, isize, flags);
715 }
716
717 xfs_buf_t *
718 xfs_buf_get_empty(
719         size_t                  len,
720         xfs_buftarg_t           *target)
721 {
722         xfs_buf_t               *bp;
723
724         bp = xfs_buf_allocate(0);
725         if (bp)
726                 _xfs_buf_initialize(bp, target, 0, len, 0);
727         return bp;
728 }
729
730 static inline struct page *
731 mem_to_page(
732         void                    *addr)
733 {
734         if ((!is_vmalloc_addr(addr))) {
735                 return virt_to_page(addr);
736         } else {
737                 return vmalloc_to_page(addr);
738         }
739 }
740
741 int
742 xfs_buf_associate_memory(
743         xfs_buf_t               *bp,
744         void                    *mem,
745         size_t                  len)
746 {
747         int                     rval;
748         int                     i = 0;
749         unsigned long           pageaddr;
750         unsigned long           offset;
751         size_t                  buflen;
752         int                     page_count;
753
754         pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
755         offset = (unsigned long)mem - pageaddr;
756         buflen = PAGE_CACHE_ALIGN(len + offset);
757         page_count = buflen >> PAGE_CACHE_SHIFT;
758
759         /* Free any previous set of page pointers */
760         if (bp->b_pages)
761                 _xfs_buf_free_pages(bp);
762
763         bp->b_pages = NULL;
764         bp->b_addr = mem;
765
766         rval = _xfs_buf_get_pages(bp, page_count, 0);
767         if (rval)
768                 return rval;
769
770         bp->b_offset = offset;
771
772         for (i = 0; i < bp->b_page_count; i++) {
773                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
774                 pageaddr += PAGE_CACHE_SIZE;
775         }
776
777         bp->b_count_desired = len;
778         bp->b_buffer_length = buflen;
779         bp->b_flags |= XBF_MAPPED;
780         bp->b_flags &= ~_XBF_PAGE_LOCKED;
781
782         return 0;
783 }
784
785 xfs_buf_t *
786 xfs_buf_get_noaddr(
787         size_t                  len,
788         xfs_buftarg_t           *target)
789 {
790         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
791         int                     error, i;
792         xfs_buf_t               *bp;
793
794         bp = xfs_buf_allocate(0);
795         if (unlikely(bp == NULL))
796                 goto fail;
797         _xfs_buf_initialize(bp, target, 0, len, 0);
798
799         error = _xfs_buf_get_pages(bp, page_count, 0);
800         if (error)
801                 goto fail_free_buf;
802
803         for (i = 0; i < page_count; i++) {
804                 bp->b_pages[i] = alloc_page(GFP_KERNEL);
805                 if (!bp->b_pages[i])
806                         goto fail_free_mem;
807         }
808         bp->b_flags |= _XBF_PAGES;
809
810         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
811         if (unlikely(error)) {
812                 printk(KERN_WARNING "%s: failed to map pages\n",
813                                 __func__);
814                 goto fail_free_mem;
815         }
816
817         xfs_buf_unlock(bp);
818
819         XB_TRACE(bp, "no_daddr", len);
820         return bp;
821
822  fail_free_mem:
823         while (--i >= 0)
824                 __free_page(bp->b_pages[i]);
825         _xfs_buf_free_pages(bp);
826  fail_free_buf:
827         xfs_buf_deallocate(bp);
828  fail:
829         return NULL;
830 }
831
832 /*
833  *      Increment reference count on buffer, to hold the buffer concurrently
834  *      with another thread which may release (free) the buffer asynchronously.
835  *      Must hold the buffer already to call this function.
836  */
837 void
838 xfs_buf_hold(
839         xfs_buf_t               *bp)
840 {
841         atomic_inc(&bp->b_hold);
842         XB_TRACE(bp, "hold", 0);
843 }
844
845 /*
846  *      Releases a hold on the specified buffer.  If the
847  *      the hold count is 1, calls xfs_buf_free.
848  */
849 void
850 xfs_buf_rele(
851         xfs_buf_t               *bp)
852 {
853         xfs_bufhash_t           *hash = bp->b_hash;
854
855         XB_TRACE(bp, "rele", bp->b_relse);
856
857         if (unlikely(!hash)) {
858                 ASSERT(!bp->b_relse);
859                 if (atomic_dec_and_test(&bp->b_hold))
860                         xfs_buf_free(bp);
861                 return;
862         }
863
864         ASSERT(atomic_read(&bp->b_hold) > 0);
865         if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
866                 if (bp->b_relse) {
867                         atomic_inc(&bp->b_hold);
868                         spin_unlock(&hash->bh_lock);
869                         (*(bp->b_relse)) (bp);
870                 } else if (bp->b_flags & XBF_FS_MANAGED) {
871                         spin_unlock(&hash->bh_lock);
872                 } else {
873                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
874                         list_del_init(&bp->b_hash_list);
875                         spin_unlock(&hash->bh_lock);
876                         xfs_buf_free(bp);
877                 }
878         }
879 }
880
881
882 /*
883  *      Mutual exclusion on buffers.  Locking model:
884  *
885  *      Buffers associated with inodes for which buffer locking
886  *      is not enabled are not protected by semaphores, and are
887  *      assumed to be exclusively owned by the caller.  There is a
888  *      spinlock in the buffer, used by the caller when concurrent
889  *      access is possible.
890  */
891
892 /*
893  *      Locks a buffer object, if it is not already locked.
894  *      Note that this in no way locks the underlying pages, so it is only
895  *      useful for synchronizing concurrent use of buffer objects, not for
896  *      synchronizing independent access to the underlying pages.
897  */
898 int
899 xfs_buf_cond_lock(
900         xfs_buf_t               *bp)
901 {
902         int                     locked;
903
904         locked = down_trylock(&bp->b_sema) == 0;
905         if (locked) {
906                 XB_SET_OWNER(bp);
907         }
908         XB_TRACE(bp, "cond_lock", (long)locked);
909         return locked ? 0 : -EBUSY;
910 }
911
912 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
913 int
914 xfs_buf_lock_value(
915         xfs_buf_t               *bp)
916 {
917         return bp->b_sema.count;
918 }
919 #endif
920
921 /*
922  *      Locks a buffer object.
923  *      Note that this in no way locks the underlying pages, so it is only
924  *      useful for synchronizing concurrent use of buffer objects, not for
925  *      synchronizing independent access to the underlying pages.
926  */
927 void
928 xfs_buf_lock(
929         xfs_buf_t               *bp)
930 {
931         XB_TRACE(bp, "lock", 0);
932         if (atomic_read(&bp->b_io_remaining))
933                 blk_run_address_space(bp->b_target->bt_mapping);
934         down(&bp->b_sema);
935         XB_SET_OWNER(bp);
936         XB_TRACE(bp, "locked", 0);
937 }
938
939 /*
940  *      Releases the lock on the buffer object.
941  *      If the buffer is marked delwri but is not queued, do so before we
942  *      unlock the buffer as we need to set flags correctly.  We also need to
943  *      take a reference for the delwri queue because the unlocker is going to
944  *      drop their's and they don't know we just queued it.
945  */
946 void
947 xfs_buf_unlock(
948         xfs_buf_t               *bp)
949 {
950         if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
951                 atomic_inc(&bp->b_hold);
952                 bp->b_flags |= XBF_ASYNC;
953                 xfs_buf_delwri_queue(bp, 0);
954         }
955
956         XB_CLEAR_OWNER(bp);
957         up(&bp->b_sema);
958         XB_TRACE(bp, "unlock", 0);
959 }
960
961
962 /*
963  *      Pinning Buffer Storage in Memory
964  *      Ensure that no attempt to force a buffer to disk will succeed.
965  */
966 void
967 xfs_buf_pin(
968         xfs_buf_t               *bp)
969 {
970         atomic_inc(&bp->b_pin_count);
971         XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
972 }
973
974 void
975 xfs_buf_unpin(
976         xfs_buf_t               *bp)
977 {
978         if (atomic_dec_and_test(&bp->b_pin_count))
979                 wake_up_all(&bp->b_waiters);
980         XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
981 }
982
983 int
984 xfs_buf_ispin(
985         xfs_buf_t               *bp)
986 {
987         return atomic_read(&bp->b_pin_count);
988 }
989
990 STATIC void
991 xfs_buf_wait_unpin(
992         xfs_buf_t               *bp)
993 {
994         DECLARE_WAITQUEUE       (wait, current);
995
996         if (atomic_read(&bp->b_pin_count) == 0)
997                 return;
998
999         add_wait_queue(&bp->b_waiters, &wait);
1000         for (;;) {
1001                 set_current_state(TASK_UNINTERRUPTIBLE);
1002                 if (atomic_read(&bp->b_pin_count) == 0)
1003                         break;
1004                 if (atomic_read(&bp->b_io_remaining))
1005                         blk_run_address_space(bp->b_target->bt_mapping);
1006                 schedule();
1007         }
1008         remove_wait_queue(&bp->b_waiters, &wait);
1009         set_current_state(TASK_RUNNING);
1010 }
1011
1012 /*
1013  *      Buffer Utility Routines
1014  */
1015
1016 STATIC void
1017 xfs_buf_iodone_work(
1018         struct work_struct      *work)
1019 {
1020         xfs_buf_t               *bp =
1021                 container_of(work, xfs_buf_t, b_iodone_work);
1022
1023         /*
1024          * We can get an EOPNOTSUPP to ordered writes.  Here we clear the
1025          * ordered flag and reissue them.  Because we can't tell the higher
1026          * layers directly that they should not issue ordered I/O anymore, they
1027          * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
1028          */
1029         if ((bp->b_error == EOPNOTSUPP) &&
1030             (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
1031                 XB_TRACE(bp, "ordered_retry", bp->b_iodone);
1032                 bp->b_flags &= ~XBF_ORDERED;
1033                 bp->b_flags |= _XFS_BARRIER_FAILED;
1034                 xfs_buf_iorequest(bp);
1035         } else if (bp->b_iodone)
1036                 (*(bp->b_iodone))(bp);
1037         else if (bp->b_flags & XBF_ASYNC)
1038                 xfs_buf_relse(bp);
1039 }
1040
1041 void
1042 xfs_buf_ioend(
1043         xfs_buf_t               *bp,
1044         int                     schedule)
1045 {
1046         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1047         if (bp->b_error == 0)
1048                 bp->b_flags |= XBF_DONE;
1049
1050         XB_TRACE(bp, "iodone", bp->b_iodone);
1051
1052         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1053                 if (schedule) {
1054                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1055                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1056                 } else {
1057                         xfs_buf_iodone_work(&bp->b_iodone_work);
1058                 }
1059         } else {
1060                 complete(&bp->b_iowait);
1061         }
1062 }
1063
1064 void
1065 xfs_buf_ioerror(
1066         xfs_buf_t               *bp,
1067         int                     error)
1068 {
1069         ASSERT(error >= 0 && error <= 0xffff);
1070         bp->b_error = (unsigned short)error;
1071         XB_TRACE(bp, "ioerror", (unsigned long)error);
1072 }
1073
1074 int
1075 xfs_bawrite(
1076         void                    *mp,
1077         struct xfs_buf          *bp)
1078 {
1079         XB_TRACE(bp, "bawrite", 0);
1080
1081         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
1082
1083         xfs_buf_delwri_dequeue(bp);
1084
1085         bp->b_flags &= ~(XBF_READ | XBF_DELWRI | XBF_READ_AHEAD);
1086         bp->b_flags |= (XBF_WRITE | XBF_ASYNC | _XBF_RUN_QUEUES);
1087
1088         bp->b_fspriv3 = mp;
1089         bp->b_strat = xfs_bdstrat_cb;
1090         return xfs_bdstrat_cb(bp);
1091 }
1092
1093 void
1094 xfs_bdwrite(
1095         void                    *mp,
1096         struct xfs_buf          *bp)
1097 {
1098         XB_TRACE(bp, "bdwrite", 0);
1099
1100         bp->b_strat = xfs_bdstrat_cb;
1101         bp->b_fspriv3 = mp;
1102
1103         bp->b_flags &= ~XBF_READ;
1104         bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1105
1106         xfs_buf_delwri_queue(bp, 1);
1107 }
1108
1109 STATIC_INLINE void
1110 _xfs_buf_ioend(
1111         xfs_buf_t               *bp,
1112         int                     schedule)
1113 {
1114         if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1115                 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1116                 xfs_buf_ioend(bp, schedule);
1117         }
1118 }
1119
1120 STATIC void
1121 xfs_buf_bio_end_io(
1122         struct bio              *bio,
1123         int                     error)
1124 {
1125         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1126         unsigned int            blocksize = bp->b_target->bt_bsize;
1127         struct bio_vec          *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1128
1129         if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1130                 bp->b_error = EIO;
1131
1132         do {
1133                 struct page     *page = bvec->bv_page;
1134
1135                 ASSERT(!PagePrivate(page));
1136                 if (unlikely(bp->b_error)) {
1137                         if (bp->b_flags & XBF_READ)
1138                                 ClearPageUptodate(page);
1139                 } else if (blocksize >= PAGE_CACHE_SIZE) {
1140                         SetPageUptodate(page);
1141                 } else if (!PagePrivate(page) &&
1142                                 (bp->b_flags & _XBF_PAGE_CACHE)) {
1143                         set_page_region(page, bvec->bv_offset, bvec->bv_len);
1144                 }
1145
1146                 if (--bvec >= bio->bi_io_vec)
1147                         prefetchw(&bvec->bv_page->flags);
1148
1149                 if (bp->b_flags & _XBF_PAGE_LOCKED)
1150                         unlock_page(page);
1151         } while (bvec >= bio->bi_io_vec);
1152
1153         _xfs_buf_ioend(bp, 1);
1154         bio_put(bio);
1155 }
1156
1157 STATIC void
1158 _xfs_buf_ioapply(
1159         xfs_buf_t               *bp)
1160 {
1161         int                     rw, map_i, total_nr_pages, nr_pages;
1162         struct bio              *bio;
1163         int                     offset = bp->b_offset;
1164         int                     size = bp->b_count_desired;
1165         sector_t                sector = bp->b_bn;
1166         unsigned int            blocksize = bp->b_target->bt_bsize;
1167
1168         total_nr_pages = bp->b_page_count;
1169         map_i = 0;
1170
1171         if (bp->b_flags & XBF_ORDERED) {
1172                 ASSERT(!(bp->b_flags & XBF_READ));
1173                 rw = WRITE_BARRIER;
1174         } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1175                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1176                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1177                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1178         } else {
1179                 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1180                      (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1181         }
1182
1183         /* Special code path for reading a sub page size buffer in --
1184          * we populate up the whole page, and hence the other metadata
1185          * in the same page.  This optimization is only valid when the
1186          * filesystem block size is not smaller than the page size.
1187          */
1188         if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1189             ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1190               (XBF_READ|_XBF_PAGE_LOCKED)) &&
1191             (blocksize >= PAGE_CACHE_SIZE)) {
1192                 bio = bio_alloc(GFP_NOIO, 1);
1193
1194                 bio->bi_bdev = bp->b_target->bt_bdev;
1195                 bio->bi_sector = sector - (offset >> BBSHIFT);
1196                 bio->bi_end_io = xfs_buf_bio_end_io;
1197                 bio->bi_private = bp;
1198
1199                 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1200                 size = 0;
1201
1202                 atomic_inc(&bp->b_io_remaining);
1203
1204                 goto submit_io;
1205         }
1206
1207 next_chunk:
1208         atomic_inc(&bp->b_io_remaining);
1209         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1210         if (nr_pages > total_nr_pages)
1211                 nr_pages = total_nr_pages;
1212
1213         bio = bio_alloc(GFP_NOIO, nr_pages);
1214         bio->bi_bdev = bp->b_target->bt_bdev;
1215         bio->bi_sector = sector;
1216         bio->bi_end_io = xfs_buf_bio_end_io;
1217         bio->bi_private = bp;
1218
1219         for (; size && nr_pages; nr_pages--, map_i++) {
1220                 int     rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1221
1222                 if (nbytes > size)
1223                         nbytes = size;
1224
1225                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1226                 if (rbytes < nbytes)
1227                         break;
1228
1229                 offset = 0;
1230                 sector += nbytes >> BBSHIFT;
1231                 size -= nbytes;
1232                 total_nr_pages--;
1233         }
1234
1235 submit_io:
1236         if (likely(bio->bi_size)) {
1237                 submit_bio(rw, bio);
1238                 if (size)
1239                         goto next_chunk;
1240         } else {
1241                 bio_put(bio);
1242                 xfs_buf_ioerror(bp, EIO);
1243         }
1244 }
1245
1246 int
1247 xfs_buf_iorequest(
1248         xfs_buf_t               *bp)
1249 {
1250         XB_TRACE(bp, "iorequest", 0);
1251
1252         if (bp->b_flags & XBF_DELWRI) {
1253                 xfs_buf_delwri_queue(bp, 1);
1254                 return 0;
1255         }
1256
1257         if (bp->b_flags & XBF_WRITE) {
1258                 xfs_buf_wait_unpin(bp);
1259         }
1260
1261         xfs_buf_hold(bp);
1262
1263         /* Set the count to 1 initially, this will stop an I/O
1264          * completion callout which happens before we have started
1265          * all the I/O from calling xfs_buf_ioend too early.
1266          */
1267         atomic_set(&bp->b_io_remaining, 1);
1268         _xfs_buf_ioapply(bp);
1269         _xfs_buf_ioend(bp, 0);
1270
1271         xfs_buf_rele(bp);
1272         return 0;
1273 }
1274
1275 /*
1276  *      Waits for I/O to complete on the buffer supplied.
1277  *      It returns immediately if no I/O is pending.
1278  *      It returns the I/O error code, if any, or 0 if there was no error.
1279  */
1280 int
1281 xfs_buf_iowait(
1282         xfs_buf_t               *bp)
1283 {
1284         XB_TRACE(bp, "iowait", 0);
1285         if (atomic_read(&bp->b_io_remaining))
1286                 blk_run_address_space(bp->b_target->bt_mapping);
1287         wait_for_completion(&bp->b_iowait);
1288         XB_TRACE(bp, "iowaited", (long)bp->b_error);
1289         return bp->b_error;
1290 }
1291
1292 xfs_caddr_t
1293 xfs_buf_offset(
1294         xfs_buf_t               *bp,
1295         size_t                  offset)
1296 {
1297         struct page             *page;
1298
1299         if (bp->b_flags & XBF_MAPPED)
1300                 return XFS_BUF_PTR(bp) + offset;
1301
1302         offset += bp->b_offset;
1303         page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1304         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1305 }
1306
1307 /*
1308  *      Move data into or out of a buffer.
1309  */
1310 void
1311 xfs_buf_iomove(
1312         xfs_buf_t               *bp,    /* buffer to process            */
1313         size_t                  boff,   /* starting buffer offset       */
1314         size_t                  bsize,  /* length to copy               */
1315         caddr_t                 data,   /* data address                 */
1316         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1317 {
1318         size_t                  bend, cpoff, csize;
1319         struct page             *page;
1320
1321         bend = boff + bsize;
1322         while (boff < bend) {
1323                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1324                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1325                 csize = min_t(size_t,
1326                               PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1327
1328                 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1329
1330                 switch (mode) {
1331                 case XBRW_ZERO:
1332                         memset(page_address(page) + cpoff, 0, csize);
1333                         break;
1334                 case XBRW_READ:
1335                         memcpy(data, page_address(page) + cpoff, csize);
1336                         break;
1337                 case XBRW_WRITE:
1338                         memcpy(page_address(page) + cpoff, data, csize);
1339                 }
1340
1341                 boff += csize;
1342                 data += csize;
1343         }
1344 }
1345
1346 /*
1347  *      Handling of buffer targets (buftargs).
1348  */
1349
1350 /*
1351  *      Wait for any bufs with callbacks that have been submitted but
1352  *      have not yet returned... walk the hash list for the target.
1353  */
1354 void
1355 xfs_wait_buftarg(
1356         xfs_buftarg_t   *btp)
1357 {
1358         xfs_buf_t       *bp, *n;
1359         xfs_bufhash_t   *hash;
1360         uint            i;
1361
1362         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1363                 hash = &btp->bt_hash[i];
1364 again:
1365                 spin_lock(&hash->bh_lock);
1366                 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1367                         ASSERT(btp == bp->b_target);
1368                         if (!(bp->b_flags & XBF_FS_MANAGED)) {
1369                                 spin_unlock(&hash->bh_lock);
1370                                 /*
1371                                  * Catch superblock reference count leaks
1372                                  * immediately
1373                                  */
1374                                 BUG_ON(bp->b_bn == 0);
1375                                 delay(100);
1376                                 goto again;
1377                         }
1378                 }
1379                 spin_unlock(&hash->bh_lock);
1380         }
1381 }
1382
1383 /*
1384  *      Allocate buffer hash table for a given target.
1385  *      For devices containing metadata (i.e. not the log/realtime devices)
1386  *      we need to allocate a much larger hash table.
1387  */
1388 STATIC void
1389 xfs_alloc_bufhash(
1390         xfs_buftarg_t           *btp,
1391         int                     external)
1392 {
1393         unsigned int            i;
1394
1395         btp->bt_hashshift = external ? 3 : 8;   /* 8 or 256 buckets */
1396         btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1397         btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1398                                         sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1399         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1400                 spin_lock_init(&btp->bt_hash[i].bh_lock);
1401                 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1402         }
1403 }
1404
1405 STATIC void
1406 xfs_free_bufhash(
1407         xfs_buftarg_t           *btp)
1408 {
1409         kmem_free(btp->bt_hash);
1410         btp->bt_hash = NULL;
1411 }
1412
1413 /*
1414  *      buftarg list for delwrite queue processing
1415  */
1416 static LIST_HEAD(xfs_buftarg_list);
1417 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1418
1419 STATIC void
1420 xfs_register_buftarg(
1421         xfs_buftarg_t           *btp)
1422 {
1423         spin_lock(&xfs_buftarg_lock);
1424         list_add(&btp->bt_list, &xfs_buftarg_list);
1425         spin_unlock(&xfs_buftarg_lock);
1426 }
1427
1428 STATIC void
1429 xfs_unregister_buftarg(
1430         xfs_buftarg_t           *btp)
1431 {
1432         spin_lock(&xfs_buftarg_lock);
1433         list_del(&btp->bt_list);
1434         spin_unlock(&xfs_buftarg_lock);
1435 }
1436
1437 void
1438 xfs_free_buftarg(
1439         xfs_buftarg_t           *btp)
1440 {
1441         xfs_flush_buftarg(btp, 1);
1442         xfs_blkdev_issue_flush(btp);
1443         xfs_free_bufhash(btp);
1444         iput(btp->bt_mapping->host);
1445
1446         /* Unregister the buftarg first so that we don't get a
1447          * wakeup finding a non-existent task
1448          */
1449         xfs_unregister_buftarg(btp);
1450         kthread_stop(btp->bt_task);
1451
1452         kmem_free(btp);
1453 }
1454
1455 STATIC int
1456 xfs_setsize_buftarg_flags(
1457         xfs_buftarg_t           *btp,
1458         unsigned int            blocksize,
1459         unsigned int            sectorsize,
1460         int                     verbose)
1461 {
1462         btp->bt_bsize = blocksize;
1463         btp->bt_sshift = ffs(sectorsize) - 1;
1464         btp->bt_smask = sectorsize - 1;
1465
1466         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1467                 printk(KERN_WARNING
1468                         "XFS: Cannot set_blocksize to %u on device %s\n",
1469                         sectorsize, XFS_BUFTARG_NAME(btp));
1470                 return EINVAL;
1471         }
1472
1473         if (verbose &&
1474             (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1475                 printk(KERN_WARNING
1476                         "XFS: %u byte sectors in use on device %s.  "
1477                         "This is suboptimal; %u or greater is ideal.\n",
1478                         sectorsize, XFS_BUFTARG_NAME(btp),
1479                         (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1480         }
1481
1482         return 0;
1483 }
1484
1485 /*
1486  *      When allocating the initial buffer target we have not yet
1487  *      read in the superblock, so don't know what sized sectors
1488  *      are being used is at this early stage.  Play safe.
1489  */
1490 STATIC int
1491 xfs_setsize_buftarg_early(
1492         xfs_buftarg_t           *btp,
1493         struct block_device     *bdev)
1494 {
1495         return xfs_setsize_buftarg_flags(btp,
1496                         PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1497 }
1498
1499 int
1500 xfs_setsize_buftarg(
1501         xfs_buftarg_t           *btp,
1502         unsigned int            blocksize,
1503         unsigned int            sectorsize)
1504 {
1505         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1506 }
1507
1508 STATIC int
1509 xfs_mapping_buftarg(
1510         xfs_buftarg_t           *btp,
1511         struct block_device     *bdev)
1512 {
1513         struct backing_dev_info *bdi;
1514         struct inode            *inode;
1515         struct address_space    *mapping;
1516         static const struct address_space_operations mapping_aops = {
1517                 .sync_page = block_sync_page,
1518                 .migratepage = fail_migrate_page,
1519         };
1520
1521         inode = new_inode(bdev->bd_inode->i_sb);
1522         if (!inode) {
1523                 printk(KERN_WARNING
1524                         "XFS: Cannot allocate mapping inode for device %s\n",
1525                         XFS_BUFTARG_NAME(btp));
1526                 return ENOMEM;
1527         }
1528         inode->i_mode = S_IFBLK;
1529         inode->i_bdev = bdev;
1530         inode->i_rdev = bdev->bd_dev;
1531         bdi = blk_get_backing_dev_info(bdev);
1532         if (!bdi)
1533                 bdi = &default_backing_dev_info;
1534         mapping = &inode->i_data;
1535         mapping->a_ops = &mapping_aops;
1536         mapping->backing_dev_info = bdi;
1537         mapping_set_gfp_mask(mapping, GFP_NOFS);
1538         btp->bt_mapping = mapping;
1539         return 0;
1540 }
1541
1542 STATIC int
1543 xfs_alloc_delwrite_queue(
1544         xfs_buftarg_t           *btp)
1545 {
1546         int     error = 0;
1547
1548         INIT_LIST_HEAD(&btp->bt_list);
1549         INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1550         spin_lock_init(&btp->bt_delwrite_lock);
1551         btp->bt_flags = 0;
1552         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1553         if (IS_ERR(btp->bt_task)) {
1554                 error = PTR_ERR(btp->bt_task);
1555                 goto out_error;
1556         }
1557         xfs_register_buftarg(btp);
1558 out_error:
1559         return error;
1560 }
1561
1562 xfs_buftarg_t *
1563 xfs_alloc_buftarg(
1564         struct block_device     *bdev,
1565         int                     external)
1566 {
1567         xfs_buftarg_t           *btp;
1568
1569         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1570
1571         btp->bt_dev =  bdev->bd_dev;
1572         btp->bt_bdev = bdev;
1573         if (xfs_setsize_buftarg_early(btp, bdev))
1574                 goto error;
1575         if (xfs_mapping_buftarg(btp, bdev))
1576                 goto error;
1577         if (xfs_alloc_delwrite_queue(btp))
1578                 goto error;
1579         xfs_alloc_bufhash(btp, external);
1580         return btp;
1581
1582 error:
1583         kmem_free(btp);
1584         return NULL;
1585 }
1586
1587
1588 /*
1589  *      Delayed write buffer handling
1590  */
1591 STATIC void
1592 xfs_buf_delwri_queue(
1593         xfs_buf_t               *bp,
1594         int                     unlock)
1595 {
1596         struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1597         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1598
1599         XB_TRACE(bp, "delwri_q", (long)unlock);
1600         ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1601
1602         spin_lock(dwlk);
1603         /* If already in the queue, dequeue and place at tail */
1604         if (!list_empty(&bp->b_list)) {
1605                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1606                 if (unlock)
1607                         atomic_dec(&bp->b_hold);
1608                 list_del(&bp->b_list);
1609         }
1610
1611         bp->b_flags |= _XBF_DELWRI_Q;
1612         list_add_tail(&bp->b_list, dwq);
1613         bp->b_queuetime = jiffies;
1614         spin_unlock(dwlk);
1615
1616         if (unlock)
1617                 xfs_buf_unlock(bp);
1618 }
1619
1620 void
1621 xfs_buf_delwri_dequeue(
1622         xfs_buf_t               *bp)
1623 {
1624         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1625         int                     dequeued = 0;
1626
1627         spin_lock(dwlk);
1628         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1629                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1630                 list_del_init(&bp->b_list);
1631                 dequeued = 1;
1632         }
1633         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1634         spin_unlock(dwlk);
1635
1636         if (dequeued)
1637                 xfs_buf_rele(bp);
1638
1639         XB_TRACE(bp, "delwri_dq", (long)dequeued);
1640 }
1641
1642 STATIC void
1643 xfs_buf_runall_queues(
1644         struct workqueue_struct *queue)
1645 {
1646         flush_workqueue(queue);
1647 }
1648
1649 STATIC int
1650 xfsbufd_wakeup(
1651         int                     priority,
1652         gfp_t                   mask)
1653 {
1654         xfs_buftarg_t           *btp;
1655
1656         spin_lock(&xfs_buftarg_lock);
1657         list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1658                 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1659                         continue;
1660                 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1661                 wake_up_process(btp->bt_task);
1662         }
1663         spin_unlock(&xfs_buftarg_lock);
1664         return 0;
1665 }
1666
1667 /*
1668  * Move as many buffers as specified to the supplied list
1669  * idicating if we skipped any buffers to prevent deadlocks.
1670  */
1671 STATIC int
1672 xfs_buf_delwri_split(
1673         xfs_buftarg_t   *target,
1674         struct list_head *list,
1675         unsigned long   age)
1676 {
1677         xfs_buf_t       *bp, *n;
1678         struct list_head *dwq = &target->bt_delwrite_queue;
1679         spinlock_t      *dwlk = &target->bt_delwrite_lock;
1680         int             skipped = 0;
1681         int             force;
1682
1683         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1684         INIT_LIST_HEAD(list);
1685         spin_lock(dwlk);
1686         list_for_each_entry_safe(bp, n, dwq, b_list) {
1687                 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1688                 ASSERT(bp->b_flags & XBF_DELWRI);
1689
1690                 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1691                         if (!force &&
1692                             time_before(jiffies, bp->b_queuetime + age)) {
1693                                 xfs_buf_unlock(bp);
1694                                 break;
1695                         }
1696
1697                         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1698                                          _XBF_RUN_QUEUES);
1699                         bp->b_flags |= XBF_WRITE;
1700                         list_move_tail(&bp->b_list, list);
1701                 } else
1702                         skipped++;
1703         }
1704         spin_unlock(dwlk);
1705
1706         return skipped;
1707
1708 }
1709
1710 STATIC int
1711 xfsbufd(
1712         void            *data)
1713 {
1714         struct list_head tmp;
1715         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1716         int             count;
1717         xfs_buf_t       *bp;
1718
1719         current->flags |= PF_MEMALLOC;
1720
1721         set_freezable();
1722
1723         do {
1724                 if (unlikely(freezing(current))) {
1725                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1726                         refrigerator();
1727                 } else {
1728                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1729                 }
1730
1731                 schedule_timeout_interruptible(
1732                         xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1733
1734                 xfs_buf_delwri_split(target, &tmp,
1735                                 xfs_buf_age_centisecs * msecs_to_jiffies(10));
1736
1737                 count = 0;
1738                 while (!list_empty(&tmp)) {
1739                         bp = list_entry(tmp.next, xfs_buf_t, b_list);
1740                         ASSERT(target == bp->b_target);
1741
1742                         list_del_init(&bp->b_list);
1743                         xfs_buf_iostrategy(bp);
1744                         count++;
1745                 }
1746
1747                 if (as_list_len > 0)
1748                         purge_addresses();
1749                 if (count)
1750                         blk_run_address_space(target->bt_mapping);
1751
1752         } while (!kthread_should_stop());
1753
1754         return 0;
1755 }
1756
1757 /*
1758  *      Go through all incore buffers, and release buffers if they belong to
1759  *      the given device. This is used in filesystem error handling to
1760  *      preserve the consistency of its metadata.
1761  */
1762 int
1763 xfs_flush_buftarg(
1764         xfs_buftarg_t   *target,
1765         int             wait)
1766 {
1767         struct list_head tmp;
1768         xfs_buf_t       *bp, *n;
1769         int             pincount = 0;
1770
1771         xfs_buf_runall_queues(xfsdatad_workqueue);
1772         xfs_buf_runall_queues(xfslogd_workqueue);
1773
1774         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1775         pincount = xfs_buf_delwri_split(target, &tmp, 0);
1776
1777         /*
1778          * Dropped the delayed write list lock, now walk the temporary list
1779          */
1780         list_for_each_entry_safe(bp, n, &tmp, b_list) {
1781                 ASSERT(target == bp->b_target);
1782                 if (wait)
1783                         bp->b_flags &= ~XBF_ASYNC;
1784                 else
1785                         list_del_init(&bp->b_list);
1786
1787                 xfs_buf_iostrategy(bp);
1788         }
1789
1790         if (wait)
1791                 blk_run_address_space(target->bt_mapping);
1792
1793         /*
1794          * Remaining list items must be flushed before returning
1795          */
1796         while (!list_empty(&tmp)) {
1797                 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1798
1799                 list_del_init(&bp->b_list);
1800                 xfs_iowait(bp);
1801                 xfs_buf_relse(bp);
1802         }
1803
1804         return pincount;
1805 }
1806
1807 int __init
1808 xfs_buf_init(void)
1809 {
1810 #ifdef XFS_BUF_TRACE
1811         xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_NOFS);
1812 #endif
1813
1814         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1815                                                 KM_ZONE_HWALIGN, NULL);
1816         if (!xfs_buf_zone)
1817                 goto out_free_trace_buf;
1818
1819         xfslogd_workqueue = create_workqueue("xfslogd");
1820         if (!xfslogd_workqueue)
1821                 goto out_free_buf_zone;
1822
1823         xfsdatad_workqueue = create_workqueue("xfsdatad");
1824         if (!xfsdatad_workqueue)
1825                 goto out_destroy_xfslogd_workqueue;
1826
1827         register_shrinker(&xfs_buf_shake);
1828         return 0;
1829
1830  out_destroy_xfslogd_workqueue:
1831         destroy_workqueue(xfslogd_workqueue);
1832  out_free_buf_zone:
1833         kmem_zone_destroy(xfs_buf_zone);
1834  out_free_trace_buf:
1835 #ifdef XFS_BUF_TRACE
1836         ktrace_free(xfs_buf_trace_buf);
1837 #endif
1838         return -ENOMEM;
1839 }
1840
1841 void
1842 xfs_buf_terminate(void)
1843 {
1844         unregister_shrinker(&xfs_buf_shake);
1845         destroy_workqueue(xfsdatad_workqueue);
1846         destroy_workqueue(xfslogd_workqueue);
1847         kmem_zone_destroy(xfs_buf_zone);
1848 #ifdef XFS_BUF_TRACE
1849         ktrace_free(xfs_buf_trace_buf);
1850 #endif
1851 }
1852
1853 #ifdef CONFIG_KDB_MODULES
1854 struct list_head *
1855 xfs_get_buftarg_list(void)
1856 {
1857         return &xfs_buftarg_list;
1858 }
1859 #endif