Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-2.6-block.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC        0
68 #define VDS_POS_UNALLOC_SPACE_DESC      1
69 #define VDS_POS_LOGICAL_VOL_DESC        2
70 #define VDS_POS_PARTITION_DESC          3
71 #define VDS_POS_IMP_USE_VOL_DESC        4
72 #define VDS_POS_VOL_DESC_PTR            5
73 #define VDS_POS_TERMINATING_DESC        6
74 #define VDS_POS_LENGTH                  7
75
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77
78 #define VSD_FIRST_SECTOR_OFFSET         32768
79 #define VSD_MAX_SECTOR_OFFSET           0x800000
80
81 enum { UDF_MAX_LINKS = 0xffff };
82
83 /* These are the "meat" - everything else is stuffing */
84 static int udf_fill_super(struct super_block *, void *, int);
85 static void udf_put_super(struct super_block *);
86 static int udf_sync_fs(struct super_block *, int);
87 static int udf_remount_fs(struct super_block *, int *, char *);
88 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
89 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
90                             struct kernel_lb_addr *);
91 static void udf_load_fileset(struct super_block *, struct buffer_head *,
92                              struct kernel_lb_addr *);
93 static void udf_open_lvid(struct super_block *);
94 static void udf_close_lvid(struct super_block *);
95 static unsigned int udf_count_free(struct super_block *);
96 static int udf_statfs(struct dentry *, struct kstatfs *);
97 static int udf_show_options(struct seq_file *, struct dentry *);
98
99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
100 {
101         struct logicalVolIntegrityDesc *lvid;
102         unsigned int partnum;
103         unsigned int offset;
104
105         if (!UDF_SB(sb)->s_lvid_bh)
106                 return NULL;
107         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
108         partnum = le32_to_cpu(lvid->numOfPartitions);
109         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
110              offsetof(struct logicalVolIntegrityDesc, impUse)) /
111              (2 * sizeof(uint32_t)) < partnum) {
112                 udf_err(sb, "Logical volume integrity descriptor corrupted "
113                         "(numOfPartitions = %u)!\n", partnum);
114                 return NULL;
115         }
116         /* The offset is to skip freeSpaceTable and sizeTable arrays */
117         offset = partnum * 2 * sizeof(uint32_t);
118         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
119 }
120
121 /* UDF filesystem type */
122 static struct dentry *udf_mount(struct file_system_type *fs_type,
123                       int flags, const char *dev_name, void *data)
124 {
125         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
126 }
127
128 static struct file_system_type udf_fstype = {
129         .owner          = THIS_MODULE,
130         .name           = "udf",
131         .mount          = udf_mount,
132         .kill_sb        = kill_block_super,
133         .fs_flags       = FS_REQUIRES_DEV,
134 };
135 MODULE_ALIAS_FS("udf");
136
137 static struct kmem_cache *udf_inode_cachep;
138
139 static struct inode *udf_alloc_inode(struct super_block *sb)
140 {
141         struct udf_inode_info *ei;
142         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
143         if (!ei)
144                 return NULL;
145
146         ei->i_unique = 0;
147         ei->i_lenExtents = 0;
148         ei->i_next_alloc_block = 0;
149         ei->i_next_alloc_goal = 0;
150         ei->i_strat4096 = 0;
151         init_rwsem(&ei->i_data_sem);
152         ei->cached_extent.lstart = -1;
153         spin_lock_init(&ei->i_extent_cache_lock);
154
155         return &ei->vfs_inode;
156 }
157
158 static void udf_i_callback(struct rcu_head *head)
159 {
160         struct inode *inode = container_of(head, struct inode, i_rcu);
161         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
162 }
163
164 static void udf_destroy_inode(struct inode *inode)
165 {
166         call_rcu(&inode->i_rcu, udf_i_callback);
167 }
168
169 static void init_once(void *foo)
170 {
171         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
172
173         ei->i_ext.i_data = NULL;
174         inode_init_once(&ei->vfs_inode);
175 }
176
177 static int __init init_inodecache(void)
178 {
179         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
180                                              sizeof(struct udf_inode_info),
181                                              0, (SLAB_RECLAIM_ACCOUNT |
182                                                  SLAB_MEM_SPREAD |
183                                                  SLAB_ACCOUNT),
184                                              init_once);
185         if (!udf_inode_cachep)
186                 return -ENOMEM;
187         return 0;
188 }
189
190 static void destroy_inodecache(void)
191 {
192         /*
193          * Make sure all delayed rcu free inodes are flushed before we
194          * destroy cache.
195          */
196         rcu_barrier();
197         kmem_cache_destroy(udf_inode_cachep);
198 }
199
200 /* Superblock operations */
201 static const struct super_operations udf_sb_ops = {
202         .alloc_inode    = udf_alloc_inode,
203         .destroy_inode  = udf_destroy_inode,
204         .write_inode    = udf_write_inode,
205         .evict_inode    = udf_evict_inode,
206         .put_super      = udf_put_super,
207         .sync_fs        = udf_sync_fs,
208         .statfs         = udf_statfs,
209         .remount_fs     = udf_remount_fs,
210         .show_options   = udf_show_options,
211 };
212
213 struct udf_options {
214         unsigned char novrs;
215         unsigned int blocksize;
216         unsigned int session;
217         unsigned int lastblock;
218         unsigned int anchor;
219         unsigned int volume;
220         unsigned short partition;
221         unsigned int fileset;
222         unsigned int rootdir;
223         unsigned int flags;
224         umode_t umask;
225         kgid_t gid;
226         kuid_t uid;
227         umode_t fmode;
228         umode_t dmode;
229         struct nls_table *nls_map;
230 };
231
232 static int __init init_udf_fs(void)
233 {
234         int err;
235
236         err = init_inodecache();
237         if (err)
238                 goto out1;
239         err = register_filesystem(&udf_fstype);
240         if (err)
241                 goto out;
242
243         return 0;
244
245 out:
246         destroy_inodecache();
247
248 out1:
249         return err;
250 }
251
252 static void __exit exit_udf_fs(void)
253 {
254         unregister_filesystem(&udf_fstype);
255         destroy_inodecache();
256 }
257
258 module_init(init_udf_fs)
259 module_exit(exit_udf_fs)
260
261 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
262 {
263         struct udf_sb_info *sbi = UDF_SB(sb);
264
265         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
266                                   GFP_KERNEL);
267         if (!sbi->s_partmaps) {
268                 udf_err(sb, "Unable to allocate space for %d partition maps\n",
269                         count);
270                 sbi->s_partitions = 0;
271                 return -ENOMEM;
272         }
273
274         sbi->s_partitions = count;
275         return 0;
276 }
277
278 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
279 {
280         int i;
281         int nr_groups = bitmap->s_nr_groups;
282         int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
283                                                 nr_groups);
284
285         for (i = 0; i < nr_groups; i++)
286                 if (bitmap->s_block_bitmap[i])
287                         brelse(bitmap->s_block_bitmap[i]);
288
289         if (size <= PAGE_SIZE)
290                 kfree(bitmap);
291         else
292                 vfree(bitmap);
293 }
294
295 static void udf_free_partition(struct udf_part_map *map)
296 {
297         int i;
298         struct udf_meta_data *mdata;
299
300         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
301                 iput(map->s_uspace.s_table);
302         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
303                 iput(map->s_fspace.s_table);
304         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
305                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
306         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
307                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
308         if (map->s_partition_type == UDF_SPARABLE_MAP15)
309                 for (i = 0; i < 4; i++)
310                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
311         else if (map->s_partition_type == UDF_METADATA_MAP25) {
312                 mdata = &map->s_type_specific.s_metadata;
313                 iput(mdata->s_metadata_fe);
314                 mdata->s_metadata_fe = NULL;
315
316                 iput(mdata->s_mirror_fe);
317                 mdata->s_mirror_fe = NULL;
318
319                 iput(mdata->s_bitmap_fe);
320                 mdata->s_bitmap_fe = NULL;
321         }
322 }
323
324 static void udf_sb_free_partitions(struct super_block *sb)
325 {
326         struct udf_sb_info *sbi = UDF_SB(sb);
327         int i;
328         if (sbi->s_partmaps == NULL)
329                 return;
330         for (i = 0; i < sbi->s_partitions; i++)
331                 udf_free_partition(&sbi->s_partmaps[i]);
332         kfree(sbi->s_partmaps);
333         sbi->s_partmaps = NULL;
334 }
335
336 static int udf_show_options(struct seq_file *seq, struct dentry *root)
337 {
338         struct super_block *sb = root->d_sb;
339         struct udf_sb_info *sbi = UDF_SB(sb);
340
341         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
342                 seq_puts(seq, ",nostrict");
343         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
344                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
345         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
346                 seq_puts(seq, ",unhide");
347         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
348                 seq_puts(seq, ",undelete");
349         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
350                 seq_puts(seq, ",noadinicb");
351         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
352                 seq_puts(seq, ",shortad");
353         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
354                 seq_puts(seq, ",uid=forget");
355         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
356                 seq_puts(seq, ",uid=ignore");
357         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
358                 seq_puts(seq, ",gid=forget");
359         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
360                 seq_puts(seq, ",gid=ignore");
361         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
362                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
363         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
364                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
365         if (sbi->s_umask != 0)
366                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
367         if (sbi->s_fmode != UDF_INVALID_MODE)
368                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
369         if (sbi->s_dmode != UDF_INVALID_MODE)
370                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
371         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
372                 seq_printf(seq, ",session=%u", sbi->s_session);
373         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
374                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
375         if (sbi->s_anchor != 0)
376                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
377         /*
378          * volume, partition, fileset and rootdir seem to be ignored
379          * currently
380          */
381         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
382                 seq_puts(seq, ",utf8");
383         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
384                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
385
386         return 0;
387 }
388
389 /*
390  * udf_parse_options
391  *
392  * PURPOSE
393  *      Parse mount options.
394  *
395  * DESCRIPTION
396  *      The following mount options are supported:
397  *
398  *      gid=            Set the default group.
399  *      umask=          Set the default umask.
400  *      mode=           Set the default file permissions.
401  *      dmode=          Set the default directory permissions.
402  *      uid=            Set the default user.
403  *      bs=             Set the block size.
404  *      unhide          Show otherwise hidden files.
405  *      undelete        Show deleted files in lists.
406  *      adinicb         Embed data in the inode (default)
407  *      noadinicb       Don't embed data in the inode
408  *      shortad         Use short ad's
409  *      longad          Use long ad's (default)
410  *      nostrict        Unset strict conformance
411  *      iocharset=      Set the NLS character set
412  *
413  *      The remaining are for debugging and disaster recovery:
414  *
415  *      novrs           Skip volume sequence recognition
416  *
417  *      The following expect a offset from 0.
418  *
419  *      session=        Set the CDROM session (default= last session)
420  *      anchor=         Override standard anchor location. (default= 256)
421  *      volume=         Override the VolumeDesc location. (unused)
422  *      partition=      Override the PartitionDesc location. (unused)
423  *      lastblock=      Set the last block of the filesystem/
424  *
425  *      The following expect a offset from the partition root.
426  *
427  *      fileset=        Override the fileset block location. (unused)
428  *      rootdir=        Override the root directory location. (unused)
429  *              WARNING: overriding the rootdir to a non-directory may
430  *              yield highly unpredictable results.
431  *
432  * PRE-CONDITIONS
433  *      options         Pointer to mount options string.
434  *      uopts           Pointer to mount options variable.
435  *
436  * POST-CONDITIONS
437  *      <return>        1       Mount options parsed okay.
438  *      <return>        0       Error parsing mount options.
439  *
440  * HISTORY
441  *      July 1, 1997 - Andrew E. Mileski
442  *      Written, tested, and released.
443  */
444
445 enum {
446         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
447         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
448         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
449         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
450         Opt_rootdir, Opt_utf8, Opt_iocharset,
451         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
452         Opt_fmode, Opt_dmode
453 };
454
455 static const match_table_t tokens = {
456         {Opt_novrs,     "novrs"},
457         {Opt_nostrict,  "nostrict"},
458         {Opt_bs,        "bs=%u"},
459         {Opt_unhide,    "unhide"},
460         {Opt_undelete,  "undelete"},
461         {Opt_noadinicb, "noadinicb"},
462         {Opt_adinicb,   "adinicb"},
463         {Opt_shortad,   "shortad"},
464         {Opt_longad,    "longad"},
465         {Opt_uforget,   "uid=forget"},
466         {Opt_uignore,   "uid=ignore"},
467         {Opt_gforget,   "gid=forget"},
468         {Opt_gignore,   "gid=ignore"},
469         {Opt_gid,       "gid=%u"},
470         {Opt_uid,       "uid=%u"},
471         {Opt_umask,     "umask=%o"},
472         {Opt_session,   "session=%u"},
473         {Opt_lastblock, "lastblock=%u"},
474         {Opt_anchor,    "anchor=%u"},
475         {Opt_volume,    "volume=%u"},
476         {Opt_partition, "partition=%u"},
477         {Opt_fileset,   "fileset=%u"},
478         {Opt_rootdir,   "rootdir=%u"},
479         {Opt_utf8,      "utf8"},
480         {Opt_iocharset, "iocharset=%s"},
481         {Opt_fmode,     "mode=%o"},
482         {Opt_dmode,     "dmode=%o"},
483         {Opt_err,       NULL}
484 };
485
486 static int udf_parse_options(char *options, struct udf_options *uopt,
487                              bool remount)
488 {
489         char *p;
490         int option;
491
492         uopt->novrs = 0;
493         uopt->partition = 0xFFFF;
494         uopt->session = 0xFFFFFFFF;
495         uopt->lastblock = 0;
496         uopt->anchor = 0;
497         uopt->volume = 0xFFFFFFFF;
498         uopt->rootdir = 0xFFFFFFFF;
499         uopt->fileset = 0xFFFFFFFF;
500         uopt->nls_map = NULL;
501
502         if (!options)
503                 return 1;
504
505         while ((p = strsep(&options, ",")) != NULL) {
506                 substring_t args[MAX_OPT_ARGS];
507                 int token;
508                 unsigned n;
509                 if (!*p)
510                         continue;
511
512                 token = match_token(p, tokens, args);
513                 switch (token) {
514                 case Opt_novrs:
515                         uopt->novrs = 1;
516                         break;
517                 case Opt_bs:
518                         if (match_int(&args[0], &option))
519                                 return 0;
520                         n = option;
521                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
522                                 return 0;
523                         uopt->blocksize = n;
524                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
525                         break;
526                 case Opt_unhide:
527                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
528                         break;
529                 case Opt_undelete:
530                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
531                         break;
532                 case Opt_noadinicb:
533                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
534                         break;
535                 case Opt_adinicb:
536                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
537                         break;
538                 case Opt_shortad:
539                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
540                         break;
541                 case Opt_longad:
542                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
543                         break;
544                 case Opt_gid:
545                         if (match_int(args, &option))
546                                 return 0;
547                         uopt->gid = make_kgid(current_user_ns(), option);
548                         if (!gid_valid(uopt->gid))
549                                 return 0;
550                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
551                         break;
552                 case Opt_uid:
553                         if (match_int(args, &option))
554                                 return 0;
555                         uopt->uid = make_kuid(current_user_ns(), option);
556                         if (!uid_valid(uopt->uid))
557                                 return 0;
558                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
559                         break;
560                 case Opt_umask:
561                         if (match_octal(args, &option))
562                                 return 0;
563                         uopt->umask = option;
564                         break;
565                 case Opt_nostrict:
566                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
567                         break;
568                 case Opt_session:
569                         if (match_int(args, &option))
570                                 return 0;
571                         uopt->session = option;
572                         if (!remount)
573                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
574                         break;
575                 case Opt_lastblock:
576                         if (match_int(args, &option))
577                                 return 0;
578                         uopt->lastblock = option;
579                         if (!remount)
580                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
581                         break;
582                 case Opt_anchor:
583                         if (match_int(args, &option))
584                                 return 0;
585                         uopt->anchor = option;
586                         break;
587                 case Opt_volume:
588                         if (match_int(args, &option))
589                                 return 0;
590                         uopt->volume = option;
591                         break;
592                 case Opt_partition:
593                         if (match_int(args, &option))
594                                 return 0;
595                         uopt->partition = option;
596                         break;
597                 case Opt_fileset:
598                         if (match_int(args, &option))
599                                 return 0;
600                         uopt->fileset = option;
601                         break;
602                 case Opt_rootdir:
603                         if (match_int(args, &option))
604                                 return 0;
605                         uopt->rootdir = option;
606                         break;
607                 case Opt_utf8:
608                         uopt->flags |= (1 << UDF_FLAG_UTF8);
609                         break;
610 #ifdef CONFIG_UDF_NLS
611                 case Opt_iocharset:
612                         uopt->nls_map = load_nls(args[0].from);
613                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
614                         break;
615 #endif
616                 case Opt_uignore:
617                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
618                         break;
619                 case Opt_uforget:
620                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
621                         break;
622                 case Opt_gignore:
623                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
624                         break;
625                 case Opt_gforget:
626                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
627                         break;
628                 case Opt_fmode:
629                         if (match_octal(args, &option))
630                                 return 0;
631                         uopt->fmode = option & 0777;
632                         break;
633                 case Opt_dmode:
634                         if (match_octal(args, &option))
635                                 return 0;
636                         uopt->dmode = option & 0777;
637                         break;
638                 default:
639                         pr_err("bad mount option \"%s\" or missing value\n", p);
640                         return 0;
641                 }
642         }
643         return 1;
644 }
645
646 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
647 {
648         struct udf_options uopt;
649         struct udf_sb_info *sbi = UDF_SB(sb);
650         int error = 0;
651         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
652
653         sync_filesystem(sb);
654         if (lvidiu) {
655                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
656                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
657                         return -EACCES;
658         }
659
660         uopt.flags = sbi->s_flags;
661         uopt.uid   = sbi->s_uid;
662         uopt.gid   = sbi->s_gid;
663         uopt.umask = sbi->s_umask;
664         uopt.fmode = sbi->s_fmode;
665         uopt.dmode = sbi->s_dmode;
666
667         if (!udf_parse_options(options, &uopt, true))
668                 return -EINVAL;
669
670         write_lock(&sbi->s_cred_lock);
671         sbi->s_flags = uopt.flags;
672         sbi->s_uid   = uopt.uid;
673         sbi->s_gid   = uopt.gid;
674         sbi->s_umask = uopt.umask;
675         sbi->s_fmode = uopt.fmode;
676         sbi->s_dmode = uopt.dmode;
677         write_unlock(&sbi->s_cred_lock);
678
679         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
680                 goto out_unlock;
681
682         if (*flags & MS_RDONLY)
683                 udf_close_lvid(sb);
684         else
685                 udf_open_lvid(sb);
686
687 out_unlock:
688         return error;
689 }
690
691 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
692 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
693 static loff_t udf_check_vsd(struct super_block *sb)
694 {
695         struct volStructDesc *vsd = NULL;
696         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
697         int sectorsize;
698         struct buffer_head *bh = NULL;
699         int nsr02 = 0;
700         int nsr03 = 0;
701         struct udf_sb_info *sbi;
702
703         sbi = UDF_SB(sb);
704         if (sb->s_blocksize < sizeof(struct volStructDesc))
705                 sectorsize = sizeof(struct volStructDesc);
706         else
707                 sectorsize = sb->s_blocksize;
708
709         sector += (sbi->s_session << sb->s_blocksize_bits);
710
711         udf_debug("Starting at sector %u (%ld byte sectors)\n",
712                   (unsigned int)(sector >> sb->s_blocksize_bits),
713                   sb->s_blocksize);
714         /* Process the sequence (if applicable). The hard limit on the sector
715          * offset is arbitrary, hopefully large enough so that all valid UDF
716          * filesystems will be recognised. There is no mention of an upper
717          * bound to the size of the volume recognition area in the standard.
718          *  The limit will prevent the code to read all the sectors of a
719          * specially crafted image (like a bluray disc full of CD001 sectors),
720          * potentially causing minutes or even hours of uninterruptible I/O
721          * activity. This actually happened with uninitialised SSD partitions
722          * (all 0xFF) before the check for the limit and all valid IDs were
723          * added */
724         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
725              sector += sectorsize) {
726                 /* Read a block */
727                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
728                 if (!bh)
729                         break;
730
731                 /* Look for ISO  descriptors */
732                 vsd = (struct volStructDesc *)(bh->b_data +
733                                               (sector & (sb->s_blocksize - 1)));
734
735                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
736                                     VSD_STD_ID_LEN)) {
737                         switch (vsd->structType) {
738                         case 0:
739                                 udf_debug("ISO9660 Boot Record found\n");
740                                 break;
741                         case 1:
742                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
743                                 break;
744                         case 2:
745                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
746                                 break;
747                         case 3:
748                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
749                                 break;
750                         case 255:
751                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
752                                 break;
753                         default:
754                                 udf_debug("ISO9660 VRS (%u) found\n",
755                                           vsd->structType);
756                                 break;
757                         }
758                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
759                                     VSD_STD_ID_LEN))
760                         ; /* nothing */
761                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
762                                     VSD_STD_ID_LEN)) {
763                         brelse(bh);
764                         break;
765                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
766                                     VSD_STD_ID_LEN))
767                         nsr02 = sector;
768                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
769                                     VSD_STD_ID_LEN))
770                         nsr03 = sector;
771                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
772                                     VSD_STD_ID_LEN))
773                         ; /* nothing */
774                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
775                                     VSD_STD_ID_LEN))
776                         ; /* nothing */
777                 else {
778                         /* invalid id : end of volume recognition area */
779                         brelse(bh);
780                         break;
781                 }
782                 brelse(bh);
783         }
784
785         if (nsr03)
786                 return nsr03;
787         else if (nsr02)
788                 return nsr02;
789         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
790                         VSD_FIRST_SECTOR_OFFSET)
791                 return -1;
792         else
793                 return 0;
794 }
795
796 static int udf_find_fileset(struct super_block *sb,
797                             struct kernel_lb_addr *fileset,
798                             struct kernel_lb_addr *root)
799 {
800         struct buffer_head *bh = NULL;
801         long lastblock;
802         uint16_t ident;
803         struct udf_sb_info *sbi;
804
805         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
806             fileset->partitionReferenceNum != 0xFFFF) {
807                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
808
809                 if (!bh) {
810                         return 1;
811                 } else if (ident != TAG_IDENT_FSD) {
812                         brelse(bh);
813                         return 1;
814                 }
815
816         }
817
818         sbi = UDF_SB(sb);
819         if (!bh) {
820                 /* Search backwards through the partitions */
821                 struct kernel_lb_addr newfileset;
822
823 /* --> cvg: FIXME - is it reasonable? */
824                 return 1;
825
826                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
827                      (newfileset.partitionReferenceNum != 0xFFFF &&
828                       fileset->logicalBlockNum == 0xFFFFFFFF &&
829                       fileset->partitionReferenceNum == 0xFFFF);
830                      newfileset.partitionReferenceNum--) {
831                         lastblock = sbi->s_partmaps
832                                         [newfileset.partitionReferenceNum]
833                                                 .s_partition_len;
834                         newfileset.logicalBlockNum = 0;
835
836                         do {
837                                 bh = udf_read_ptagged(sb, &newfileset, 0,
838                                                       &ident);
839                                 if (!bh) {
840                                         newfileset.logicalBlockNum++;
841                                         continue;
842                                 }
843
844                                 switch (ident) {
845                                 case TAG_IDENT_SBD:
846                                 {
847                                         struct spaceBitmapDesc *sp;
848                                         sp = (struct spaceBitmapDesc *)
849                                                                 bh->b_data;
850                                         newfileset.logicalBlockNum += 1 +
851                                                 ((le32_to_cpu(sp->numOfBytes) +
852                                                   sizeof(struct spaceBitmapDesc)
853                                                   - 1) >> sb->s_blocksize_bits);
854                                         brelse(bh);
855                                         break;
856                                 }
857                                 case TAG_IDENT_FSD:
858                                         *fileset = newfileset;
859                                         break;
860                                 default:
861                                         newfileset.logicalBlockNum++;
862                                         brelse(bh);
863                                         bh = NULL;
864                                         break;
865                                 }
866                         } while (newfileset.logicalBlockNum < lastblock &&
867                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
868                                  fileset->partitionReferenceNum == 0xFFFF);
869                 }
870         }
871
872         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
873              fileset->partitionReferenceNum != 0xFFFF) && bh) {
874                 udf_debug("Fileset at block=%d, partition=%d\n",
875                           fileset->logicalBlockNum,
876                           fileset->partitionReferenceNum);
877
878                 sbi->s_partition = fileset->partitionReferenceNum;
879                 udf_load_fileset(sb, bh, root);
880                 brelse(bh);
881                 return 0;
882         }
883         return 1;
884 }
885
886 /*
887  * Load primary Volume Descriptor Sequence
888  *
889  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
890  * should be tried.
891  */
892 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
893 {
894         struct primaryVolDesc *pvoldesc;
895         struct ustr *instr, *outstr;
896         struct buffer_head *bh;
897         uint16_t ident;
898         int ret = -ENOMEM;
899
900         instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
901         if (!instr)
902                 return -ENOMEM;
903
904         outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
905         if (!outstr)
906                 goto out1;
907
908         bh = udf_read_tagged(sb, block, block, &ident);
909         if (!bh) {
910                 ret = -EAGAIN;
911                 goto out2;
912         }
913
914         if (ident != TAG_IDENT_PVD) {
915                 ret = -EIO;
916                 goto out_bh;
917         }
918
919         pvoldesc = (struct primaryVolDesc *)bh->b_data;
920
921         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
922                               pvoldesc->recordingDateAndTime)) {
923 #ifdef UDFFS_DEBUG
924                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
925                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
926                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
927                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
928 #endif
929         }
930
931         if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) {
932                 ret = udf_CS0toUTF8(outstr, instr);
933                 if (ret < 0)
934                         goto out_bh;
935
936                 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
937                         outstr->u_len > 31 ? 31 : outstr->u_len);
938                 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
939         }
940
941         if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) {
942                 ret = udf_CS0toUTF8(outstr, instr);
943                 if (ret < 0)
944                         goto out_bh;
945
946                 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
947         }
948
949         ret = 0;
950 out_bh:
951         brelse(bh);
952 out2:
953         kfree(outstr);
954 out1:
955         kfree(instr);
956         return ret;
957 }
958
959 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
960                                         u32 meta_file_loc, u32 partition_num)
961 {
962         struct kernel_lb_addr addr;
963         struct inode *metadata_fe;
964
965         addr.logicalBlockNum = meta_file_loc;
966         addr.partitionReferenceNum = partition_num;
967
968         metadata_fe = udf_iget_special(sb, &addr);
969
970         if (IS_ERR(metadata_fe)) {
971                 udf_warn(sb, "metadata inode efe not found\n");
972                 return metadata_fe;
973         }
974         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
975                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
976                 iput(metadata_fe);
977                 return ERR_PTR(-EIO);
978         }
979
980         return metadata_fe;
981 }
982
983 static int udf_load_metadata_files(struct super_block *sb, int partition)
984 {
985         struct udf_sb_info *sbi = UDF_SB(sb);
986         struct udf_part_map *map;
987         struct udf_meta_data *mdata;
988         struct kernel_lb_addr addr;
989         struct inode *fe;
990
991         map = &sbi->s_partmaps[partition];
992         mdata = &map->s_type_specific.s_metadata;
993
994         /* metadata address */
995         udf_debug("Metadata file location: block = %d part = %d\n",
996                   mdata->s_meta_file_loc, map->s_partition_num);
997
998         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
999                                          map->s_partition_num);
1000         if (IS_ERR(fe)) {
1001                 /* mirror file entry */
1002                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
1003                           mdata->s_mirror_file_loc, map->s_partition_num);
1004
1005                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1006                                                  map->s_partition_num);
1007
1008                 if (IS_ERR(fe)) {
1009                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1010                         return PTR_ERR(fe);
1011                 }
1012                 mdata->s_mirror_fe = fe;
1013         } else
1014                 mdata->s_metadata_fe = fe;
1015
1016
1017         /*
1018          * bitmap file entry
1019          * Note:
1020          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1021         */
1022         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1023                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1024                 addr.partitionReferenceNum = map->s_partition_num;
1025
1026                 udf_debug("Bitmap file location: block = %d part = %d\n",
1027                           addr.logicalBlockNum, addr.partitionReferenceNum);
1028
1029                 fe = udf_iget_special(sb, &addr);
1030                 if (IS_ERR(fe)) {
1031                         if (sb->s_flags & MS_RDONLY)
1032                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1033                         else {
1034                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1035                                 return PTR_ERR(fe);
1036                         }
1037                 } else
1038                         mdata->s_bitmap_fe = fe;
1039         }
1040
1041         udf_debug("udf_load_metadata_files Ok\n");
1042         return 0;
1043 }
1044
1045 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1046                              struct kernel_lb_addr *root)
1047 {
1048         struct fileSetDesc *fset;
1049
1050         fset = (struct fileSetDesc *)bh->b_data;
1051
1052         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1053
1054         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1055
1056         udf_debug("Rootdir at block=%d, partition=%d\n",
1057                   root->logicalBlockNum, root->partitionReferenceNum);
1058 }
1059
1060 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1061 {
1062         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1063         return DIV_ROUND_UP(map->s_partition_len +
1064                             (sizeof(struct spaceBitmapDesc) << 3),
1065                             sb->s_blocksize * 8);
1066 }
1067
1068 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1069 {
1070         struct udf_bitmap *bitmap;
1071         int nr_groups;
1072         int size;
1073
1074         nr_groups = udf_compute_nr_groups(sb, index);
1075         size = sizeof(struct udf_bitmap) +
1076                 (sizeof(struct buffer_head *) * nr_groups);
1077
1078         if (size <= PAGE_SIZE)
1079                 bitmap = kzalloc(size, GFP_KERNEL);
1080         else
1081                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1082
1083         if (bitmap == NULL)
1084                 return NULL;
1085
1086         bitmap->s_nr_groups = nr_groups;
1087         return bitmap;
1088 }
1089
1090 static int udf_fill_partdesc_info(struct super_block *sb,
1091                 struct partitionDesc *p, int p_index)
1092 {
1093         struct udf_part_map *map;
1094         struct udf_sb_info *sbi = UDF_SB(sb);
1095         struct partitionHeaderDesc *phd;
1096
1097         map = &sbi->s_partmaps[p_index];
1098
1099         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1100         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1101
1102         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1103                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1104         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1105                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1106         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1107                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1108         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1109                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1110
1111         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1112                   p_index, map->s_partition_type,
1113                   map->s_partition_root, map->s_partition_len);
1114
1115         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1116             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1117                 return 0;
1118
1119         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1120         if (phd->unallocSpaceTable.extLength) {
1121                 struct kernel_lb_addr loc = {
1122                         .logicalBlockNum = le32_to_cpu(
1123                                 phd->unallocSpaceTable.extPosition),
1124                         .partitionReferenceNum = p_index,
1125                 };
1126                 struct inode *inode;
1127
1128                 inode = udf_iget_special(sb, &loc);
1129                 if (IS_ERR(inode)) {
1130                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1131                                   p_index);
1132                         return PTR_ERR(inode);
1133                 }
1134                 map->s_uspace.s_table = inode;
1135                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1136                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1137                           p_index, map->s_uspace.s_table->i_ino);
1138         }
1139
1140         if (phd->unallocSpaceBitmap.extLength) {
1141                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1142                 if (!bitmap)
1143                         return -ENOMEM;
1144                 map->s_uspace.s_bitmap = bitmap;
1145                 bitmap->s_extPosition = le32_to_cpu(
1146                                 phd->unallocSpaceBitmap.extPosition);
1147                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1148                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1149                           p_index, bitmap->s_extPosition);
1150         }
1151
1152         if (phd->partitionIntegrityTable.extLength)
1153                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1154
1155         if (phd->freedSpaceTable.extLength) {
1156                 struct kernel_lb_addr loc = {
1157                         .logicalBlockNum = le32_to_cpu(
1158                                 phd->freedSpaceTable.extPosition),
1159                         .partitionReferenceNum = p_index,
1160                 };
1161                 struct inode *inode;
1162
1163                 inode = udf_iget_special(sb, &loc);
1164                 if (IS_ERR(inode)) {
1165                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1166                                   p_index);
1167                         return PTR_ERR(inode);
1168                 }
1169                 map->s_fspace.s_table = inode;
1170                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1171                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1172                           p_index, map->s_fspace.s_table->i_ino);
1173         }
1174
1175         if (phd->freedSpaceBitmap.extLength) {
1176                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1177                 if (!bitmap)
1178                         return -ENOMEM;
1179                 map->s_fspace.s_bitmap = bitmap;
1180                 bitmap->s_extPosition = le32_to_cpu(
1181                                 phd->freedSpaceBitmap.extPosition);
1182                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1183                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1184                           p_index, bitmap->s_extPosition);
1185         }
1186         return 0;
1187 }
1188
1189 static void udf_find_vat_block(struct super_block *sb, int p_index,
1190                                int type1_index, sector_t start_block)
1191 {
1192         struct udf_sb_info *sbi = UDF_SB(sb);
1193         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1194         sector_t vat_block;
1195         struct kernel_lb_addr ino;
1196         struct inode *inode;
1197
1198         /*
1199          * VAT file entry is in the last recorded block. Some broken disks have
1200          * it a few blocks before so try a bit harder...
1201          */
1202         ino.partitionReferenceNum = type1_index;
1203         for (vat_block = start_block;
1204              vat_block >= map->s_partition_root &&
1205              vat_block >= start_block - 3; vat_block--) {
1206                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1207                 inode = udf_iget_special(sb, &ino);
1208                 if (!IS_ERR(inode)) {
1209                         sbi->s_vat_inode = inode;
1210                         break;
1211                 }
1212         }
1213 }
1214
1215 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1216 {
1217         struct udf_sb_info *sbi = UDF_SB(sb);
1218         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1219         struct buffer_head *bh = NULL;
1220         struct udf_inode_info *vati;
1221         uint32_t pos;
1222         struct virtualAllocationTable20 *vat20;
1223         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1224
1225         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1226         if (!sbi->s_vat_inode &&
1227             sbi->s_last_block != blocks - 1) {
1228                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1229                           (unsigned long)sbi->s_last_block,
1230                           (unsigned long)blocks - 1);
1231                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1232         }
1233         if (!sbi->s_vat_inode)
1234                 return -EIO;
1235
1236         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1237                 map->s_type_specific.s_virtual.s_start_offset = 0;
1238                 map->s_type_specific.s_virtual.s_num_entries =
1239                         (sbi->s_vat_inode->i_size - 36) >> 2;
1240         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1241                 vati = UDF_I(sbi->s_vat_inode);
1242                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1243                         pos = udf_block_map(sbi->s_vat_inode, 0);
1244                         bh = sb_bread(sb, pos);
1245                         if (!bh)
1246                                 return -EIO;
1247                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1248                 } else {
1249                         vat20 = (struct virtualAllocationTable20 *)
1250                                                         vati->i_ext.i_data;
1251                 }
1252
1253                 map->s_type_specific.s_virtual.s_start_offset =
1254                         le16_to_cpu(vat20->lengthHeader);
1255                 map->s_type_specific.s_virtual.s_num_entries =
1256                         (sbi->s_vat_inode->i_size -
1257                                 map->s_type_specific.s_virtual.
1258                                         s_start_offset) >> 2;
1259                 brelse(bh);
1260         }
1261         return 0;
1262 }
1263
1264 /*
1265  * Load partition descriptor block
1266  *
1267  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1268  * sequence.
1269  */
1270 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1271 {
1272         struct buffer_head *bh;
1273         struct partitionDesc *p;
1274         struct udf_part_map *map;
1275         struct udf_sb_info *sbi = UDF_SB(sb);
1276         int i, type1_idx;
1277         uint16_t partitionNumber;
1278         uint16_t ident;
1279         int ret;
1280
1281         bh = udf_read_tagged(sb, block, block, &ident);
1282         if (!bh)
1283                 return -EAGAIN;
1284         if (ident != TAG_IDENT_PD) {
1285                 ret = 0;
1286                 goto out_bh;
1287         }
1288
1289         p = (struct partitionDesc *)bh->b_data;
1290         partitionNumber = le16_to_cpu(p->partitionNumber);
1291
1292         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1293         for (i = 0; i < sbi->s_partitions; i++) {
1294                 map = &sbi->s_partmaps[i];
1295                 udf_debug("Searching map: (%d == %d)\n",
1296                           map->s_partition_num, partitionNumber);
1297                 if (map->s_partition_num == partitionNumber &&
1298                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1299                      map->s_partition_type == UDF_SPARABLE_MAP15))
1300                         break;
1301         }
1302
1303         if (i >= sbi->s_partitions) {
1304                 udf_debug("Partition (%d) not found in partition map\n",
1305                           partitionNumber);
1306                 ret = 0;
1307                 goto out_bh;
1308         }
1309
1310         ret = udf_fill_partdesc_info(sb, p, i);
1311         if (ret < 0)
1312                 goto out_bh;
1313
1314         /*
1315          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1316          * PHYSICAL partitions are already set up
1317          */
1318         type1_idx = i;
1319 #ifdef UDFFS_DEBUG
1320         map = NULL; /* supress 'maybe used uninitialized' warning */
1321 #endif
1322         for (i = 0; i < sbi->s_partitions; i++) {
1323                 map = &sbi->s_partmaps[i];
1324
1325                 if (map->s_partition_num == partitionNumber &&
1326                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1327                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1328                      map->s_partition_type == UDF_METADATA_MAP25))
1329                         break;
1330         }
1331
1332         if (i >= sbi->s_partitions) {
1333                 ret = 0;
1334                 goto out_bh;
1335         }
1336
1337         ret = udf_fill_partdesc_info(sb, p, i);
1338         if (ret < 0)
1339                 goto out_bh;
1340
1341         if (map->s_partition_type == UDF_METADATA_MAP25) {
1342                 ret = udf_load_metadata_files(sb, i);
1343                 if (ret < 0) {
1344                         udf_err(sb, "error loading MetaData partition map %d\n",
1345                                 i);
1346                         goto out_bh;
1347                 }
1348         } else {
1349                 /*
1350                  * If we have a partition with virtual map, we don't handle
1351                  * writing to it (we overwrite blocks instead of relocating
1352                  * them).
1353                  */
1354                 if (!(sb->s_flags & MS_RDONLY)) {
1355                         ret = -EACCES;
1356                         goto out_bh;
1357                 }
1358                 ret = udf_load_vat(sb, i, type1_idx);
1359                 if (ret < 0)
1360                         goto out_bh;
1361         }
1362         ret = 0;
1363 out_bh:
1364         /* In case loading failed, we handle cleanup in udf_fill_super */
1365         brelse(bh);
1366         return ret;
1367 }
1368
1369 static int udf_load_sparable_map(struct super_block *sb,
1370                                  struct udf_part_map *map,
1371                                  struct sparablePartitionMap *spm)
1372 {
1373         uint32_t loc;
1374         uint16_t ident;
1375         struct sparingTable *st;
1376         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1377         int i;
1378         struct buffer_head *bh;
1379
1380         map->s_partition_type = UDF_SPARABLE_MAP15;
1381         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1382         if (!is_power_of_2(sdata->s_packet_len)) {
1383                 udf_err(sb, "error loading logical volume descriptor: "
1384                         "Invalid packet length %u\n",
1385                         (unsigned)sdata->s_packet_len);
1386                 return -EIO;
1387         }
1388         if (spm->numSparingTables > 4) {
1389                 udf_err(sb, "error loading logical volume descriptor: "
1390                         "Too many sparing tables (%d)\n",
1391                         (int)spm->numSparingTables);
1392                 return -EIO;
1393         }
1394
1395         for (i = 0; i < spm->numSparingTables; i++) {
1396                 loc = le32_to_cpu(spm->locSparingTable[i]);
1397                 bh = udf_read_tagged(sb, loc, loc, &ident);
1398                 if (!bh)
1399                         continue;
1400
1401                 st = (struct sparingTable *)bh->b_data;
1402                 if (ident != 0 ||
1403                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1404                             strlen(UDF_ID_SPARING)) ||
1405                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1406                                                         sb->s_blocksize) {
1407                         brelse(bh);
1408                         continue;
1409                 }
1410
1411                 sdata->s_spar_map[i] = bh;
1412         }
1413         map->s_partition_func = udf_get_pblock_spar15;
1414         return 0;
1415 }
1416
1417 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1418                                struct kernel_lb_addr *fileset)
1419 {
1420         struct logicalVolDesc *lvd;
1421         int i, offset;
1422         uint8_t type;
1423         struct udf_sb_info *sbi = UDF_SB(sb);
1424         struct genericPartitionMap *gpm;
1425         uint16_t ident;
1426         struct buffer_head *bh;
1427         unsigned int table_len;
1428         int ret;
1429
1430         bh = udf_read_tagged(sb, block, block, &ident);
1431         if (!bh)
1432                 return -EAGAIN;
1433         BUG_ON(ident != TAG_IDENT_LVD);
1434         lvd = (struct logicalVolDesc *)bh->b_data;
1435         table_len = le32_to_cpu(lvd->mapTableLength);
1436         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1437                 udf_err(sb, "error loading logical volume descriptor: "
1438                         "Partition table too long (%u > %lu)\n", table_len,
1439                         sb->s_blocksize - sizeof(*lvd));
1440                 ret = -EIO;
1441                 goto out_bh;
1442         }
1443
1444         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1445         if (ret)
1446                 goto out_bh;
1447
1448         for (i = 0, offset = 0;
1449              i < sbi->s_partitions && offset < table_len;
1450              i++, offset += gpm->partitionMapLength) {
1451                 struct udf_part_map *map = &sbi->s_partmaps[i];
1452                 gpm = (struct genericPartitionMap *)
1453                                 &(lvd->partitionMaps[offset]);
1454                 type = gpm->partitionMapType;
1455                 if (type == 1) {
1456                         struct genericPartitionMap1 *gpm1 =
1457                                 (struct genericPartitionMap1 *)gpm;
1458                         map->s_partition_type = UDF_TYPE1_MAP15;
1459                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1460                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1461                         map->s_partition_func = NULL;
1462                 } else if (type == 2) {
1463                         struct udfPartitionMap2 *upm2 =
1464                                                 (struct udfPartitionMap2 *)gpm;
1465                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1466                                                 strlen(UDF_ID_VIRTUAL))) {
1467                                 u16 suf =
1468                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1469                                                         identSuffix)[0]);
1470                                 if (suf < 0x0200) {
1471                                         map->s_partition_type =
1472                                                         UDF_VIRTUAL_MAP15;
1473                                         map->s_partition_func =
1474                                                         udf_get_pblock_virt15;
1475                                 } else {
1476                                         map->s_partition_type =
1477                                                         UDF_VIRTUAL_MAP20;
1478                                         map->s_partition_func =
1479                                                         udf_get_pblock_virt20;
1480                                 }
1481                         } else if (!strncmp(upm2->partIdent.ident,
1482                                                 UDF_ID_SPARABLE,
1483                                                 strlen(UDF_ID_SPARABLE))) {
1484                                 ret = udf_load_sparable_map(sb, map,
1485                                         (struct sparablePartitionMap *)gpm);
1486                                 if (ret < 0)
1487                                         goto out_bh;
1488                         } else if (!strncmp(upm2->partIdent.ident,
1489                                                 UDF_ID_METADATA,
1490                                                 strlen(UDF_ID_METADATA))) {
1491                                 struct udf_meta_data *mdata =
1492                                         &map->s_type_specific.s_metadata;
1493                                 struct metadataPartitionMap *mdm =
1494                                                 (struct metadataPartitionMap *)
1495                                                 &(lvd->partitionMaps[offset]);
1496                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1497                                           i, type, UDF_ID_METADATA);
1498
1499                                 map->s_partition_type = UDF_METADATA_MAP25;
1500                                 map->s_partition_func = udf_get_pblock_meta25;
1501
1502                                 mdata->s_meta_file_loc   =
1503                                         le32_to_cpu(mdm->metadataFileLoc);
1504                                 mdata->s_mirror_file_loc =
1505                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1506                                 mdata->s_bitmap_file_loc =
1507                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1508                                 mdata->s_alloc_unit_size =
1509                                         le32_to_cpu(mdm->allocUnitSize);
1510                                 mdata->s_align_unit_size =
1511                                         le16_to_cpu(mdm->alignUnitSize);
1512                                 if (mdm->flags & 0x01)
1513                                         mdata->s_flags |= MF_DUPLICATE_MD;
1514
1515                                 udf_debug("Metadata Ident suffix=0x%x\n",
1516                                           le16_to_cpu(*(__le16 *)
1517                                                       mdm->partIdent.identSuffix));
1518                                 udf_debug("Metadata part num=%d\n",
1519                                           le16_to_cpu(mdm->partitionNum));
1520                                 udf_debug("Metadata part alloc unit size=%d\n",
1521                                           le32_to_cpu(mdm->allocUnitSize));
1522                                 udf_debug("Metadata file loc=%d\n",
1523                                           le32_to_cpu(mdm->metadataFileLoc));
1524                                 udf_debug("Mirror file loc=%d\n",
1525                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1526                                 udf_debug("Bitmap file loc=%d\n",
1527                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1528                                 udf_debug("Flags: %d %d\n",
1529                                           mdata->s_flags, mdm->flags);
1530                         } else {
1531                                 udf_debug("Unknown ident: %s\n",
1532                                           upm2->partIdent.ident);
1533                                 continue;
1534                         }
1535                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1536                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1537                 }
1538                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1539                           i, map->s_partition_num, type, map->s_volumeseqnum);
1540         }
1541
1542         if (fileset) {
1543                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1544
1545                 *fileset = lelb_to_cpu(la->extLocation);
1546                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1547                           fileset->logicalBlockNum,
1548                           fileset->partitionReferenceNum);
1549         }
1550         if (lvd->integritySeqExt.extLength)
1551                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1552         ret = 0;
1553 out_bh:
1554         brelse(bh);
1555         return ret;
1556 }
1557
1558 /*
1559  * udf_load_logicalvolint
1560  *
1561  */
1562 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1563 {
1564         struct buffer_head *bh = NULL;
1565         uint16_t ident;
1566         struct udf_sb_info *sbi = UDF_SB(sb);
1567         struct logicalVolIntegrityDesc *lvid;
1568
1569         while (loc.extLength > 0 &&
1570                (bh = udf_read_tagged(sb, loc.extLocation,
1571                                      loc.extLocation, &ident)) &&
1572                ident == TAG_IDENT_LVID) {
1573                 sbi->s_lvid_bh = bh;
1574                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1575
1576                 if (lvid->nextIntegrityExt.extLength)
1577                         udf_load_logicalvolint(sb,
1578                                 leea_to_cpu(lvid->nextIntegrityExt));
1579
1580                 if (sbi->s_lvid_bh != bh)
1581                         brelse(bh);
1582                 loc.extLength -= sb->s_blocksize;
1583                 loc.extLocation++;
1584         }
1585         if (sbi->s_lvid_bh != bh)
1586                 brelse(bh);
1587 }
1588
1589 /*
1590  * Maximum number of Terminating Descriptor redirections. The chosen number is
1591  * arbitrary - just that we hopefully don't limit any real use of rewritten
1592  * inode on write-once media but avoid looping for too long on corrupted media.
1593  */
1594 #define UDF_MAX_TD_NESTING 64
1595
1596 /*
1597  * Process a main/reserve volume descriptor sequence.
1598  *   @block             First block of first extent of the sequence.
1599  *   @lastblock         Lastblock of first extent of the sequence.
1600  *   @fileset           There we store extent containing root fileset
1601  *
1602  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1603  * sequence
1604  */
1605 static noinline int udf_process_sequence(
1606                 struct super_block *sb,
1607                 sector_t block, sector_t lastblock,
1608                 struct kernel_lb_addr *fileset)
1609 {
1610         struct buffer_head *bh = NULL;
1611         struct udf_vds_record vds[VDS_POS_LENGTH];
1612         struct udf_vds_record *curr;
1613         struct generic_desc *gd;
1614         struct volDescPtr *vdp;
1615         bool done = false;
1616         uint32_t vdsn;
1617         uint16_t ident;
1618         long next_s = 0, next_e = 0;
1619         int ret;
1620         unsigned int indirections = 0;
1621
1622         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1623
1624         /*
1625          * Read the main descriptor sequence and find which descriptors
1626          * are in it.
1627          */
1628         for (; (!done && block <= lastblock); block++) {
1629
1630                 bh = udf_read_tagged(sb, block, block, &ident);
1631                 if (!bh) {
1632                         udf_err(sb,
1633                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1634                                 (unsigned long long)block);
1635                         return -EAGAIN;
1636                 }
1637
1638                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1639                 gd = (struct generic_desc *)bh->b_data;
1640                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1641                 switch (ident) {
1642                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1643                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1644                         if (vdsn >= curr->volDescSeqNum) {
1645                                 curr->volDescSeqNum = vdsn;
1646                                 curr->block = block;
1647                         }
1648                         break;
1649                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1650                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1651                         if (vdsn >= curr->volDescSeqNum) {
1652                                 curr->volDescSeqNum = vdsn;
1653                                 curr->block = block;
1654
1655                                 vdp = (struct volDescPtr *)bh->b_data;
1656                                 next_s = le32_to_cpu(
1657                                         vdp->nextVolDescSeqExt.extLocation);
1658                                 next_e = le32_to_cpu(
1659                                         vdp->nextVolDescSeqExt.extLength);
1660                                 next_e = next_e >> sb->s_blocksize_bits;
1661                                 next_e += next_s;
1662                         }
1663                         break;
1664                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1665                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1666                         if (vdsn >= curr->volDescSeqNum) {
1667                                 curr->volDescSeqNum = vdsn;
1668                                 curr->block = block;
1669                         }
1670                         break;
1671                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1672                         curr = &vds[VDS_POS_PARTITION_DESC];
1673                         if (!curr->block)
1674                                 curr->block = block;
1675                         break;
1676                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1677                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1678                         if (vdsn >= curr->volDescSeqNum) {
1679                                 curr->volDescSeqNum = vdsn;
1680                                 curr->block = block;
1681                         }
1682                         break;
1683                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1684                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1685                         if (vdsn >= curr->volDescSeqNum) {
1686                                 curr->volDescSeqNum = vdsn;
1687                                 curr->block = block;
1688                         }
1689                         break;
1690                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1691                         if (++indirections > UDF_MAX_TD_NESTING) {
1692                                 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1693                                 brelse(bh);
1694                                 return -EIO;
1695                         }
1696
1697                         vds[VDS_POS_TERMINATING_DESC].block = block;
1698                         if (next_e) {
1699                                 block = next_s;
1700                                 lastblock = next_e;
1701                                 next_s = next_e = 0;
1702                         } else
1703                                 done = true;
1704                         break;
1705                 }
1706                 brelse(bh);
1707         }
1708         /*
1709          * Now read interesting descriptors again and process them
1710          * in a suitable order
1711          */
1712         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1713                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1714                 return -EAGAIN;
1715         }
1716         ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1717         if (ret < 0)
1718                 return ret;
1719
1720         if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1721                 ret = udf_load_logicalvol(sb,
1722                                           vds[VDS_POS_LOGICAL_VOL_DESC].block,
1723                                           fileset);
1724                 if (ret < 0)
1725                         return ret;
1726         }
1727
1728         if (vds[VDS_POS_PARTITION_DESC].block) {
1729                 /*
1730                  * We rescan the whole descriptor sequence to find
1731                  * partition descriptor blocks and process them.
1732                  */
1733                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1734                      block < vds[VDS_POS_TERMINATING_DESC].block;
1735                      block++) {
1736                         ret = udf_load_partdesc(sb, block);
1737                         if (ret < 0)
1738                                 return ret;
1739                 }
1740         }
1741
1742         return 0;
1743 }
1744
1745 /*
1746  * Load Volume Descriptor Sequence described by anchor in bh
1747  *
1748  * Returns <0 on error, 0 on success
1749  */
1750 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1751                              struct kernel_lb_addr *fileset)
1752 {
1753         struct anchorVolDescPtr *anchor;
1754         sector_t main_s, main_e, reserve_s, reserve_e;
1755         int ret;
1756
1757         anchor = (struct anchorVolDescPtr *)bh->b_data;
1758
1759         /* Locate the main sequence */
1760         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1761         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1762         main_e = main_e >> sb->s_blocksize_bits;
1763         main_e += main_s;
1764
1765         /* Locate the reserve sequence */
1766         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1767         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1768         reserve_e = reserve_e >> sb->s_blocksize_bits;
1769         reserve_e += reserve_s;
1770
1771         /* Process the main & reserve sequences */
1772         /* responsible for finding the PartitionDesc(s) */
1773         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1774         if (ret != -EAGAIN)
1775                 return ret;
1776         udf_sb_free_partitions(sb);
1777         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1778         if (ret < 0) {
1779                 udf_sb_free_partitions(sb);
1780                 /* No sequence was OK, return -EIO */
1781                 if (ret == -EAGAIN)
1782                         ret = -EIO;
1783         }
1784         return ret;
1785 }
1786
1787 /*
1788  * Check whether there is an anchor block in the given block and
1789  * load Volume Descriptor Sequence if so.
1790  *
1791  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1792  * block
1793  */
1794 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1795                                   struct kernel_lb_addr *fileset)
1796 {
1797         struct buffer_head *bh;
1798         uint16_t ident;
1799         int ret;
1800
1801         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1802             udf_fixed_to_variable(block) >=
1803             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1804                 return -EAGAIN;
1805
1806         bh = udf_read_tagged(sb, block, block, &ident);
1807         if (!bh)
1808                 return -EAGAIN;
1809         if (ident != TAG_IDENT_AVDP) {
1810                 brelse(bh);
1811                 return -EAGAIN;
1812         }
1813         ret = udf_load_sequence(sb, bh, fileset);
1814         brelse(bh);
1815         return ret;
1816 }
1817
1818 /*
1819  * Search for an anchor volume descriptor pointer.
1820  *
1821  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1822  * of anchors.
1823  */
1824 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1825                             struct kernel_lb_addr *fileset)
1826 {
1827         sector_t last[6];
1828         int i;
1829         struct udf_sb_info *sbi = UDF_SB(sb);
1830         int last_count = 0;
1831         int ret;
1832
1833         /* First try user provided anchor */
1834         if (sbi->s_anchor) {
1835                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1836                 if (ret != -EAGAIN)
1837                         return ret;
1838         }
1839         /*
1840          * according to spec, anchor is in either:
1841          *     block 256
1842          *     lastblock-256
1843          *     lastblock
1844          *  however, if the disc isn't closed, it could be 512.
1845          */
1846         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1847         if (ret != -EAGAIN)
1848                 return ret;
1849         /*
1850          * The trouble is which block is the last one. Drives often misreport
1851          * this so we try various possibilities.
1852          */
1853         last[last_count++] = *lastblock;
1854         if (*lastblock >= 1)
1855                 last[last_count++] = *lastblock - 1;
1856         last[last_count++] = *lastblock + 1;
1857         if (*lastblock >= 2)
1858                 last[last_count++] = *lastblock - 2;
1859         if (*lastblock >= 150)
1860                 last[last_count++] = *lastblock - 150;
1861         if (*lastblock >= 152)
1862                 last[last_count++] = *lastblock - 152;
1863
1864         for (i = 0; i < last_count; i++) {
1865                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1866                                 sb->s_blocksize_bits)
1867                         continue;
1868                 ret = udf_check_anchor_block(sb, last[i], fileset);
1869                 if (ret != -EAGAIN) {
1870                         if (!ret)
1871                                 *lastblock = last[i];
1872                         return ret;
1873                 }
1874                 if (last[i] < 256)
1875                         continue;
1876                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1877                 if (ret != -EAGAIN) {
1878                         if (!ret)
1879                                 *lastblock = last[i];
1880                         return ret;
1881                 }
1882         }
1883
1884         /* Finally try block 512 in case media is open */
1885         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1886 }
1887
1888 /*
1889  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1890  * area specified by it. The function expects sbi->s_lastblock to be the last
1891  * block on the media.
1892  *
1893  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1894  * was not found.
1895  */
1896 static int udf_find_anchor(struct super_block *sb,
1897                            struct kernel_lb_addr *fileset)
1898 {
1899         struct udf_sb_info *sbi = UDF_SB(sb);
1900         sector_t lastblock = sbi->s_last_block;
1901         int ret;
1902
1903         ret = udf_scan_anchors(sb, &lastblock, fileset);
1904         if (ret != -EAGAIN)
1905                 goto out;
1906
1907         /* No anchor found? Try VARCONV conversion of block numbers */
1908         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1909         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1910         /* Firstly, we try to not convert number of the last block */
1911         ret = udf_scan_anchors(sb, &lastblock, fileset);
1912         if (ret != -EAGAIN)
1913                 goto out;
1914
1915         lastblock = sbi->s_last_block;
1916         /* Secondly, we try with converted number of the last block */
1917         ret = udf_scan_anchors(sb, &lastblock, fileset);
1918         if (ret < 0) {
1919                 /* VARCONV didn't help. Clear it. */
1920                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1921         }
1922 out:
1923         if (ret == 0)
1924                 sbi->s_last_block = lastblock;
1925         return ret;
1926 }
1927
1928 /*
1929  * Check Volume Structure Descriptor, find Anchor block and load Volume
1930  * Descriptor Sequence.
1931  *
1932  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1933  * block was not found.
1934  */
1935 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1936                         int silent, struct kernel_lb_addr *fileset)
1937 {
1938         struct udf_sb_info *sbi = UDF_SB(sb);
1939         loff_t nsr_off;
1940         int ret;
1941
1942         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1943                 if (!silent)
1944                         udf_warn(sb, "Bad block size\n");
1945                 return -EINVAL;
1946         }
1947         sbi->s_last_block = uopt->lastblock;
1948         if (!uopt->novrs) {
1949                 /* Check that it is NSR02 compliant */
1950                 nsr_off = udf_check_vsd(sb);
1951                 if (!nsr_off) {
1952                         if (!silent)
1953                                 udf_warn(sb, "No VRS found\n");
1954                         return 0;
1955                 }
1956                 if (nsr_off == -1)
1957                         udf_debug("Failed to read sector at offset %d. "
1958                                   "Assuming open disc. Skipping validity "
1959                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1960                 if (!sbi->s_last_block)
1961                         sbi->s_last_block = udf_get_last_block(sb);
1962         } else {
1963                 udf_debug("Validity check skipped because of novrs option\n");
1964         }
1965
1966         /* Look for anchor block and load Volume Descriptor Sequence */
1967         sbi->s_anchor = uopt->anchor;
1968         ret = udf_find_anchor(sb, fileset);
1969         if (ret < 0) {
1970                 if (!silent && ret == -EAGAIN)
1971                         udf_warn(sb, "No anchor found\n");
1972                 return ret;
1973         }
1974         return 0;
1975 }
1976
1977 static void udf_open_lvid(struct super_block *sb)
1978 {
1979         struct udf_sb_info *sbi = UDF_SB(sb);
1980         struct buffer_head *bh = sbi->s_lvid_bh;
1981         struct logicalVolIntegrityDesc *lvid;
1982         struct logicalVolIntegrityDescImpUse *lvidiu;
1983
1984         if (!bh)
1985                 return;
1986         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1987         lvidiu = udf_sb_lvidiu(sb);
1988         if (!lvidiu)
1989                 return;
1990
1991         mutex_lock(&sbi->s_alloc_mutex);
1992         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1993         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1994         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1995                                 CURRENT_TIME);
1996         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1997
1998         lvid->descTag.descCRC = cpu_to_le16(
1999                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2000                         le16_to_cpu(lvid->descTag.descCRCLength)));
2001
2002         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2003         mark_buffer_dirty(bh);
2004         sbi->s_lvid_dirty = 0;
2005         mutex_unlock(&sbi->s_alloc_mutex);
2006         /* Make opening of filesystem visible on the media immediately */
2007         sync_dirty_buffer(bh);
2008 }
2009
2010 static void udf_close_lvid(struct super_block *sb)
2011 {
2012         struct udf_sb_info *sbi = UDF_SB(sb);
2013         struct buffer_head *bh = sbi->s_lvid_bh;
2014         struct logicalVolIntegrityDesc *lvid;
2015         struct logicalVolIntegrityDescImpUse *lvidiu;
2016
2017         if (!bh)
2018                 return;
2019         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2020         lvidiu = udf_sb_lvidiu(sb);
2021         if (!lvidiu)
2022                 return;
2023
2024         mutex_lock(&sbi->s_alloc_mutex);
2025         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2026         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2027         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2028         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2029                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2030         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2031                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2032         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2033                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2034         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2035
2036         lvid->descTag.descCRC = cpu_to_le16(
2037                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2038                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2039
2040         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2041         /*
2042          * We set buffer uptodate unconditionally here to avoid spurious
2043          * warnings from mark_buffer_dirty() when previous EIO has marked
2044          * the buffer as !uptodate
2045          */
2046         set_buffer_uptodate(bh);
2047         mark_buffer_dirty(bh);
2048         sbi->s_lvid_dirty = 0;
2049         mutex_unlock(&sbi->s_alloc_mutex);
2050         /* Make closing of filesystem visible on the media immediately */
2051         sync_dirty_buffer(bh);
2052 }
2053
2054 u64 lvid_get_unique_id(struct super_block *sb)
2055 {
2056         struct buffer_head *bh;
2057         struct udf_sb_info *sbi = UDF_SB(sb);
2058         struct logicalVolIntegrityDesc *lvid;
2059         struct logicalVolHeaderDesc *lvhd;
2060         u64 uniqueID;
2061         u64 ret;
2062
2063         bh = sbi->s_lvid_bh;
2064         if (!bh)
2065                 return 0;
2066
2067         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2068         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2069
2070         mutex_lock(&sbi->s_alloc_mutex);
2071         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2072         if (!(++uniqueID & 0xFFFFFFFF))
2073                 uniqueID += 16;
2074         lvhd->uniqueID = cpu_to_le64(uniqueID);
2075         mutex_unlock(&sbi->s_alloc_mutex);
2076         mark_buffer_dirty(bh);
2077
2078         return ret;
2079 }
2080
2081 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2082 {
2083         int ret = -EINVAL;
2084         struct inode *inode = NULL;
2085         struct udf_options uopt;
2086         struct kernel_lb_addr rootdir, fileset;
2087         struct udf_sb_info *sbi;
2088         bool lvid_open = false;
2089
2090         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2091         uopt.uid = INVALID_UID;
2092         uopt.gid = INVALID_GID;
2093         uopt.umask = 0;
2094         uopt.fmode = UDF_INVALID_MODE;
2095         uopt.dmode = UDF_INVALID_MODE;
2096
2097         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2098         if (!sbi)
2099                 return -ENOMEM;
2100
2101         sb->s_fs_info = sbi;
2102
2103         mutex_init(&sbi->s_alloc_mutex);
2104
2105         if (!udf_parse_options((char *)options, &uopt, false))
2106                 goto parse_options_failure;
2107
2108         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2109             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2110                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2111                 goto parse_options_failure;
2112         }
2113 #ifdef CONFIG_UDF_NLS
2114         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2115                 uopt.nls_map = load_nls_default();
2116                 if (!uopt.nls_map)
2117                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2118                 else
2119                         udf_debug("Using default NLS map\n");
2120         }
2121 #endif
2122         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2123                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2124
2125         fileset.logicalBlockNum = 0xFFFFFFFF;
2126         fileset.partitionReferenceNum = 0xFFFF;
2127
2128         sbi->s_flags = uopt.flags;
2129         sbi->s_uid = uopt.uid;
2130         sbi->s_gid = uopt.gid;
2131         sbi->s_umask = uopt.umask;
2132         sbi->s_fmode = uopt.fmode;
2133         sbi->s_dmode = uopt.dmode;
2134         sbi->s_nls_map = uopt.nls_map;
2135         rwlock_init(&sbi->s_cred_lock);
2136
2137         if (uopt.session == 0xFFFFFFFF)
2138                 sbi->s_session = udf_get_last_session(sb);
2139         else
2140                 sbi->s_session = uopt.session;
2141
2142         udf_debug("Multi-session=%d\n", sbi->s_session);
2143
2144         /* Fill in the rest of the superblock */
2145         sb->s_op = &udf_sb_ops;
2146         sb->s_export_op = &udf_export_ops;
2147
2148         sb->s_magic = UDF_SUPER_MAGIC;
2149         sb->s_time_gran = 1000;
2150
2151         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2152                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2153         } else {
2154                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2155                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2156                 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2157                         if (!silent)
2158                                 pr_notice("Rescanning with blocksize %d\n",
2159                                           UDF_DEFAULT_BLOCKSIZE);
2160                         brelse(sbi->s_lvid_bh);
2161                         sbi->s_lvid_bh = NULL;
2162                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2163                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2164                 }
2165         }
2166         if (ret < 0) {
2167                 if (ret == -EAGAIN) {
2168                         udf_warn(sb, "No partition found (1)\n");
2169                         ret = -EINVAL;
2170                 }
2171                 goto error_out;
2172         }
2173
2174         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2175
2176         if (sbi->s_lvid_bh) {
2177                 struct logicalVolIntegrityDescImpUse *lvidiu =
2178                                                         udf_sb_lvidiu(sb);
2179                 uint16_t minUDFReadRev;
2180                 uint16_t minUDFWriteRev;
2181
2182                 if (!lvidiu) {
2183                         ret = -EINVAL;
2184                         goto error_out;
2185                 }
2186                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2187                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2188                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2189                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2190                                 minUDFReadRev,
2191                                 UDF_MAX_READ_VERSION);
2192                         ret = -EINVAL;
2193                         goto error_out;
2194                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2195                            !(sb->s_flags & MS_RDONLY)) {
2196                         ret = -EACCES;
2197                         goto error_out;
2198                 }
2199
2200                 sbi->s_udfrev = minUDFWriteRev;
2201
2202                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2203                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2204                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2205                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2206         }
2207
2208         if (!sbi->s_partitions) {
2209                 udf_warn(sb, "No partition found (2)\n");
2210                 ret = -EINVAL;
2211                 goto error_out;
2212         }
2213
2214         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2215                         UDF_PART_FLAG_READ_ONLY &&
2216             !(sb->s_flags & MS_RDONLY)) {
2217                 ret = -EACCES;
2218                 goto error_out;
2219         }
2220
2221         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2222                 udf_warn(sb, "No fileset found\n");
2223                 ret = -EINVAL;
2224                 goto error_out;
2225         }
2226
2227         if (!silent) {
2228                 struct timestamp ts;
2229                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2230                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2231                          sbi->s_volume_ident,
2232                          le16_to_cpu(ts.year), ts.month, ts.day,
2233                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2234         }
2235         if (!(sb->s_flags & MS_RDONLY)) {
2236                 udf_open_lvid(sb);
2237                 lvid_open = true;
2238         }
2239
2240         /* Assign the root inode */
2241         /* assign inodes by physical block number */
2242         /* perhaps it's not extensible enough, but for now ... */
2243         inode = udf_iget(sb, &rootdir);
2244         if (IS_ERR(inode)) {
2245                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2246                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2247                 ret = PTR_ERR(inode);
2248                 goto error_out;
2249         }
2250
2251         /* Allocate a dentry for the root inode */
2252         sb->s_root = d_make_root(inode);
2253         if (!sb->s_root) {
2254                 udf_err(sb, "Couldn't allocate root dentry\n");
2255                 ret = -ENOMEM;
2256                 goto error_out;
2257         }
2258         sb->s_maxbytes = MAX_LFS_FILESIZE;
2259         sb->s_max_links = UDF_MAX_LINKS;
2260         return 0;
2261
2262 error_out:
2263         iput(sbi->s_vat_inode);
2264 parse_options_failure:
2265 #ifdef CONFIG_UDF_NLS
2266         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2267                 unload_nls(sbi->s_nls_map);
2268 #endif
2269         if (lvid_open)
2270                 udf_close_lvid(sb);
2271         brelse(sbi->s_lvid_bh);
2272         udf_sb_free_partitions(sb);
2273         kfree(sbi);
2274         sb->s_fs_info = NULL;
2275
2276         return ret;
2277 }
2278
2279 void _udf_err(struct super_block *sb, const char *function,
2280               const char *fmt, ...)
2281 {
2282         struct va_format vaf;
2283         va_list args;
2284
2285         va_start(args, fmt);
2286
2287         vaf.fmt = fmt;
2288         vaf.va = &args;
2289
2290         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2291
2292         va_end(args);
2293 }
2294
2295 void _udf_warn(struct super_block *sb, const char *function,
2296                const char *fmt, ...)
2297 {
2298         struct va_format vaf;
2299         va_list args;
2300
2301         va_start(args, fmt);
2302
2303         vaf.fmt = fmt;
2304         vaf.va = &args;
2305
2306         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2307
2308         va_end(args);
2309 }
2310
2311 static void udf_put_super(struct super_block *sb)
2312 {
2313         struct udf_sb_info *sbi;
2314
2315         sbi = UDF_SB(sb);
2316
2317         iput(sbi->s_vat_inode);
2318 #ifdef CONFIG_UDF_NLS
2319         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2320                 unload_nls(sbi->s_nls_map);
2321 #endif
2322         if (!(sb->s_flags & MS_RDONLY))
2323                 udf_close_lvid(sb);
2324         brelse(sbi->s_lvid_bh);
2325         udf_sb_free_partitions(sb);
2326         mutex_destroy(&sbi->s_alloc_mutex);
2327         kfree(sb->s_fs_info);
2328         sb->s_fs_info = NULL;
2329 }
2330
2331 static int udf_sync_fs(struct super_block *sb, int wait)
2332 {
2333         struct udf_sb_info *sbi = UDF_SB(sb);
2334
2335         mutex_lock(&sbi->s_alloc_mutex);
2336         if (sbi->s_lvid_dirty) {
2337                 /*
2338                  * Blockdevice will be synced later so we don't have to submit
2339                  * the buffer for IO
2340                  */
2341                 mark_buffer_dirty(sbi->s_lvid_bh);
2342                 sbi->s_lvid_dirty = 0;
2343         }
2344         mutex_unlock(&sbi->s_alloc_mutex);
2345
2346         return 0;
2347 }
2348
2349 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2350 {
2351         struct super_block *sb = dentry->d_sb;
2352         struct udf_sb_info *sbi = UDF_SB(sb);
2353         struct logicalVolIntegrityDescImpUse *lvidiu;
2354         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2355
2356         lvidiu = udf_sb_lvidiu(sb);
2357         buf->f_type = UDF_SUPER_MAGIC;
2358         buf->f_bsize = sb->s_blocksize;
2359         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2360         buf->f_bfree = udf_count_free(sb);
2361         buf->f_bavail = buf->f_bfree;
2362         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2363                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2364                         + buf->f_bfree;
2365         buf->f_ffree = buf->f_bfree;
2366         buf->f_namelen = UDF_NAME_LEN - 2;
2367         buf->f_fsid.val[0] = (u32)id;
2368         buf->f_fsid.val[1] = (u32)(id >> 32);
2369
2370         return 0;
2371 }
2372
2373 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2374                                           struct udf_bitmap *bitmap)
2375 {
2376         struct buffer_head *bh = NULL;
2377         unsigned int accum = 0;
2378         int index;
2379         int block = 0, newblock;
2380         struct kernel_lb_addr loc;
2381         uint32_t bytes;
2382         uint8_t *ptr;
2383         uint16_t ident;
2384         struct spaceBitmapDesc *bm;
2385
2386         loc.logicalBlockNum = bitmap->s_extPosition;
2387         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2388         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2389
2390         if (!bh) {
2391                 udf_err(sb, "udf_count_free failed\n");
2392                 goto out;
2393         } else if (ident != TAG_IDENT_SBD) {
2394                 brelse(bh);
2395                 udf_err(sb, "udf_count_free failed\n");
2396                 goto out;
2397         }
2398
2399         bm = (struct spaceBitmapDesc *)bh->b_data;
2400         bytes = le32_to_cpu(bm->numOfBytes);
2401         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2402         ptr = (uint8_t *)bh->b_data;
2403
2404         while (bytes > 0) {
2405                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2406                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2407                                         cur_bytes * 8);
2408                 bytes -= cur_bytes;
2409                 if (bytes) {
2410                         brelse(bh);
2411                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2412                         bh = udf_tread(sb, newblock);
2413                         if (!bh) {
2414                                 udf_debug("read failed\n");
2415                                 goto out;
2416                         }
2417                         index = 0;
2418                         ptr = (uint8_t *)bh->b_data;
2419                 }
2420         }
2421         brelse(bh);
2422 out:
2423         return accum;
2424 }
2425
2426 static unsigned int udf_count_free_table(struct super_block *sb,
2427                                          struct inode *table)
2428 {
2429         unsigned int accum = 0;
2430         uint32_t elen;
2431         struct kernel_lb_addr eloc;
2432         int8_t etype;
2433         struct extent_position epos;
2434
2435         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2436         epos.block = UDF_I(table)->i_location;
2437         epos.offset = sizeof(struct unallocSpaceEntry);
2438         epos.bh = NULL;
2439
2440         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2441                 accum += (elen >> table->i_sb->s_blocksize_bits);
2442
2443         brelse(epos.bh);
2444         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2445
2446         return accum;
2447 }
2448
2449 static unsigned int udf_count_free(struct super_block *sb)
2450 {
2451         unsigned int accum = 0;
2452         struct udf_sb_info *sbi;
2453         struct udf_part_map *map;
2454
2455         sbi = UDF_SB(sb);
2456         if (sbi->s_lvid_bh) {
2457                 struct logicalVolIntegrityDesc *lvid =
2458                         (struct logicalVolIntegrityDesc *)
2459                         sbi->s_lvid_bh->b_data;
2460                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2461                         accum = le32_to_cpu(
2462                                         lvid->freeSpaceTable[sbi->s_partition]);
2463                         if (accum == 0xFFFFFFFF)
2464                                 accum = 0;
2465                 }
2466         }
2467
2468         if (accum)
2469                 return accum;
2470
2471         map = &sbi->s_partmaps[sbi->s_partition];
2472         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2473                 accum += udf_count_free_bitmap(sb,
2474                                                map->s_uspace.s_bitmap);
2475         }
2476         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2477                 accum += udf_count_free_bitmap(sb,
2478                                                map->s_fspace.s_bitmap);
2479         }
2480         if (accum)
2481                 return accum;
2482
2483         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2484                 accum += udf_count_free_table(sb,
2485                                               map->s_uspace.s_table);
2486         }
2487         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2488                 accum += udf_count_free_table(sb,
2489                                               map->s_fspace.s_table);
2490         }
2491
2492         return accum;
2493 }