Merge tag 'nfsd-5.2' of git://linux-nfs.org/~bfields/linux
[linux-2.6-block.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 enum {
68         VDS_POS_PRIMARY_VOL_DESC,
69         VDS_POS_UNALLOC_SPACE_DESC,
70         VDS_POS_LOGICAL_VOL_DESC,
71         VDS_POS_IMP_USE_VOL_DESC,
72         VDS_POS_LENGTH
73 };
74
75 #define VSD_FIRST_SECTOR_OFFSET         32768
76 #define VSD_MAX_SECTOR_OFFSET           0x800000
77
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86
87 enum { UDF_MAX_LINKS = 0xffff };
88
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96                             struct kernel_lb_addr *);
97 static void udf_load_fileset(struct super_block *, struct buffer_head *,
98                              struct kernel_lb_addr *);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
104
105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106 {
107         struct logicalVolIntegrityDesc *lvid;
108         unsigned int partnum;
109         unsigned int offset;
110
111         if (!UDF_SB(sb)->s_lvid_bh)
112                 return NULL;
113         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114         partnum = le32_to_cpu(lvid->numOfPartitions);
115         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116              offsetof(struct logicalVolIntegrityDesc, impUse)) /
117              (2 * sizeof(uint32_t)) < partnum) {
118                 udf_err(sb, "Logical volume integrity descriptor corrupted "
119                         "(numOfPartitions = %u)!\n", partnum);
120                 return NULL;
121         }
122         /* The offset is to skip freeSpaceTable and sizeTable arrays */
123         offset = partnum * 2 * sizeof(uint32_t);
124         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
125 }
126
127 /* UDF filesystem type */
128 static struct dentry *udf_mount(struct file_system_type *fs_type,
129                       int flags, const char *dev_name, void *data)
130 {
131         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
132 }
133
134 static struct file_system_type udf_fstype = {
135         .owner          = THIS_MODULE,
136         .name           = "udf",
137         .mount          = udf_mount,
138         .kill_sb        = kill_block_super,
139         .fs_flags       = FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("udf");
142
143 static struct kmem_cache *udf_inode_cachep;
144
145 static struct inode *udf_alloc_inode(struct super_block *sb)
146 {
147         struct udf_inode_info *ei;
148         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
149         if (!ei)
150                 return NULL;
151
152         ei->i_unique = 0;
153         ei->i_lenExtents = 0;
154         ei->i_next_alloc_block = 0;
155         ei->i_next_alloc_goal = 0;
156         ei->i_strat4096 = 0;
157         init_rwsem(&ei->i_data_sem);
158         ei->cached_extent.lstart = -1;
159         spin_lock_init(&ei->i_extent_cache_lock);
160
161         return &ei->vfs_inode;
162 }
163
164 static void udf_free_in_core_inode(struct inode *inode)
165 {
166         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
167 }
168
169 static void init_once(void *foo)
170 {
171         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
172
173         ei->i_ext.i_data = NULL;
174         inode_init_once(&ei->vfs_inode);
175 }
176
177 static int __init init_inodecache(void)
178 {
179         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
180                                              sizeof(struct udf_inode_info),
181                                              0, (SLAB_RECLAIM_ACCOUNT |
182                                                  SLAB_MEM_SPREAD |
183                                                  SLAB_ACCOUNT),
184                                              init_once);
185         if (!udf_inode_cachep)
186                 return -ENOMEM;
187         return 0;
188 }
189
190 static void destroy_inodecache(void)
191 {
192         /*
193          * Make sure all delayed rcu free inodes are flushed before we
194          * destroy cache.
195          */
196         rcu_barrier();
197         kmem_cache_destroy(udf_inode_cachep);
198 }
199
200 /* Superblock operations */
201 static const struct super_operations udf_sb_ops = {
202         .alloc_inode    = udf_alloc_inode,
203         .free_inode     = udf_free_in_core_inode,
204         .write_inode    = udf_write_inode,
205         .evict_inode    = udf_evict_inode,
206         .put_super      = udf_put_super,
207         .sync_fs        = udf_sync_fs,
208         .statfs         = udf_statfs,
209         .remount_fs     = udf_remount_fs,
210         .show_options   = udf_show_options,
211 };
212
213 struct udf_options {
214         unsigned char novrs;
215         unsigned int blocksize;
216         unsigned int session;
217         unsigned int lastblock;
218         unsigned int anchor;
219         unsigned int flags;
220         umode_t umask;
221         kgid_t gid;
222         kuid_t uid;
223         umode_t fmode;
224         umode_t dmode;
225         struct nls_table *nls_map;
226 };
227
228 static int __init init_udf_fs(void)
229 {
230         int err;
231
232         err = init_inodecache();
233         if (err)
234                 goto out1;
235         err = register_filesystem(&udf_fstype);
236         if (err)
237                 goto out;
238
239         return 0;
240
241 out:
242         destroy_inodecache();
243
244 out1:
245         return err;
246 }
247
248 static void __exit exit_udf_fs(void)
249 {
250         unregister_filesystem(&udf_fstype);
251         destroy_inodecache();
252 }
253
254 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
255 {
256         struct udf_sb_info *sbi = UDF_SB(sb);
257
258         sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
259         if (!sbi->s_partmaps) {
260                 sbi->s_partitions = 0;
261                 return -ENOMEM;
262         }
263
264         sbi->s_partitions = count;
265         return 0;
266 }
267
268 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
269 {
270         int i;
271         int nr_groups = bitmap->s_nr_groups;
272
273         for (i = 0; i < nr_groups; i++)
274                 if (bitmap->s_block_bitmap[i])
275                         brelse(bitmap->s_block_bitmap[i]);
276
277         kvfree(bitmap);
278 }
279
280 static void udf_free_partition(struct udf_part_map *map)
281 {
282         int i;
283         struct udf_meta_data *mdata;
284
285         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
286                 iput(map->s_uspace.s_table);
287         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
288                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
289         if (map->s_partition_type == UDF_SPARABLE_MAP15)
290                 for (i = 0; i < 4; i++)
291                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
292         else if (map->s_partition_type == UDF_METADATA_MAP25) {
293                 mdata = &map->s_type_specific.s_metadata;
294                 iput(mdata->s_metadata_fe);
295                 mdata->s_metadata_fe = NULL;
296
297                 iput(mdata->s_mirror_fe);
298                 mdata->s_mirror_fe = NULL;
299
300                 iput(mdata->s_bitmap_fe);
301                 mdata->s_bitmap_fe = NULL;
302         }
303 }
304
305 static void udf_sb_free_partitions(struct super_block *sb)
306 {
307         struct udf_sb_info *sbi = UDF_SB(sb);
308         int i;
309
310         if (!sbi->s_partmaps)
311                 return;
312         for (i = 0; i < sbi->s_partitions; i++)
313                 udf_free_partition(&sbi->s_partmaps[i]);
314         kfree(sbi->s_partmaps);
315         sbi->s_partmaps = NULL;
316 }
317
318 static int udf_show_options(struct seq_file *seq, struct dentry *root)
319 {
320         struct super_block *sb = root->d_sb;
321         struct udf_sb_info *sbi = UDF_SB(sb);
322
323         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
324                 seq_puts(seq, ",nostrict");
325         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
326                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
327         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
328                 seq_puts(seq, ",unhide");
329         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
330                 seq_puts(seq, ",undelete");
331         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
332                 seq_puts(seq, ",noadinicb");
333         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
334                 seq_puts(seq, ",shortad");
335         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
336                 seq_puts(seq, ",uid=forget");
337         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
338                 seq_puts(seq, ",gid=forget");
339         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
340                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
341         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
342                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
343         if (sbi->s_umask != 0)
344                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
345         if (sbi->s_fmode != UDF_INVALID_MODE)
346                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
347         if (sbi->s_dmode != UDF_INVALID_MODE)
348                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
349         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
350                 seq_printf(seq, ",session=%d", sbi->s_session);
351         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
352                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
353         if (sbi->s_anchor != 0)
354                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
355         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
356                 seq_puts(seq, ",utf8");
357         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
358                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
359
360         return 0;
361 }
362
363 /*
364  * udf_parse_options
365  *
366  * PURPOSE
367  *      Parse mount options.
368  *
369  * DESCRIPTION
370  *      The following mount options are supported:
371  *
372  *      gid=            Set the default group.
373  *      umask=          Set the default umask.
374  *      mode=           Set the default file permissions.
375  *      dmode=          Set the default directory permissions.
376  *      uid=            Set the default user.
377  *      bs=             Set the block size.
378  *      unhide          Show otherwise hidden files.
379  *      undelete        Show deleted files in lists.
380  *      adinicb         Embed data in the inode (default)
381  *      noadinicb       Don't embed data in the inode
382  *      shortad         Use short ad's
383  *      longad          Use long ad's (default)
384  *      nostrict        Unset strict conformance
385  *      iocharset=      Set the NLS character set
386  *
387  *      The remaining are for debugging and disaster recovery:
388  *
389  *      novrs           Skip volume sequence recognition
390  *
391  *      The following expect a offset from 0.
392  *
393  *      session=        Set the CDROM session (default= last session)
394  *      anchor=         Override standard anchor location. (default= 256)
395  *      volume=         Override the VolumeDesc location. (unused)
396  *      partition=      Override the PartitionDesc location. (unused)
397  *      lastblock=      Set the last block of the filesystem/
398  *
399  *      The following expect a offset from the partition root.
400  *
401  *      fileset=        Override the fileset block location. (unused)
402  *      rootdir=        Override the root directory location. (unused)
403  *              WARNING: overriding the rootdir to a non-directory may
404  *              yield highly unpredictable results.
405  *
406  * PRE-CONDITIONS
407  *      options         Pointer to mount options string.
408  *      uopts           Pointer to mount options variable.
409  *
410  * POST-CONDITIONS
411  *      <return>        1       Mount options parsed okay.
412  *      <return>        0       Error parsing mount options.
413  *
414  * HISTORY
415  *      July 1, 1997 - Andrew E. Mileski
416  *      Written, tested, and released.
417  */
418
419 enum {
420         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
421         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
422         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
423         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
424         Opt_rootdir, Opt_utf8, Opt_iocharset,
425         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
426         Opt_fmode, Opt_dmode
427 };
428
429 static const match_table_t tokens = {
430         {Opt_novrs,     "novrs"},
431         {Opt_nostrict,  "nostrict"},
432         {Opt_bs,        "bs=%u"},
433         {Opt_unhide,    "unhide"},
434         {Opt_undelete,  "undelete"},
435         {Opt_noadinicb, "noadinicb"},
436         {Opt_adinicb,   "adinicb"},
437         {Opt_shortad,   "shortad"},
438         {Opt_longad,    "longad"},
439         {Opt_uforget,   "uid=forget"},
440         {Opt_uignore,   "uid=ignore"},
441         {Opt_gforget,   "gid=forget"},
442         {Opt_gignore,   "gid=ignore"},
443         {Opt_gid,       "gid=%u"},
444         {Opt_uid,       "uid=%u"},
445         {Opt_umask,     "umask=%o"},
446         {Opt_session,   "session=%u"},
447         {Opt_lastblock, "lastblock=%u"},
448         {Opt_anchor,    "anchor=%u"},
449         {Opt_volume,    "volume=%u"},
450         {Opt_partition, "partition=%u"},
451         {Opt_fileset,   "fileset=%u"},
452         {Opt_rootdir,   "rootdir=%u"},
453         {Opt_utf8,      "utf8"},
454         {Opt_iocharset, "iocharset=%s"},
455         {Opt_fmode,     "mode=%o"},
456         {Opt_dmode,     "dmode=%o"},
457         {Opt_err,       NULL}
458 };
459
460 static int udf_parse_options(char *options, struct udf_options *uopt,
461                              bool remount)
462 {
463         char *p;
464         int option;
465
466         uopt->novrs = 0;
467         uopt->session = 0xFFFFFFFF;
468         uopt->lastblock = 0;
469         uopt->anchor = 0;
470
471         if (!options)
472                 return 1;
473
474         while ((p = strsep(&options, ",")) != NULL) {
475                 substring_t args[MAX_OPT_ARGS];
476                 int token;
477                 unsigned n;
478                 if (!*p)
479                         continue;
480
481                 token = match_token(p, tokens, args);
482                 switch (token) {
483                 case Opt_novrs:
484                         uopt->novrs = 1;
485                         break;
486                 case Opt_bs:
487                         if (match_int(&args[0], &option))
488                                 return 0;
489                         n = option;
490                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
491                                 return 0;
492                         uopt->blocksize = n;
493                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
494                         break;
495                 case Opt_unhide:
496                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
497                         break;
498                 case Opt_undelete:
499                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
500                         break;
501                 case Opt_noadinicb:
502                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
503                         break;
504                 case Opt_adinicb:
505                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
506                         break;
507                 case Opt_shortad:
508                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
509                         break;
510                 case Opt_longad:
511                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
512                         break;
513                 case Opt_gid:
514                         if (match_int(args, &option))
515                                 return 0;
516                         uopt->gid = make_kgid(current_user_ns(), option);
517                         if (!gid_valid(uopt->gid))
518                                 return 0;
519                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
520                         break;
521                 case Opt_uid:
522                         if (match_int(args, &option))
523                                 return 0;
524                         uopt->uid = make_kuid(current_user_ns(), option);
525                         if (!uid_valid(uopt->uid))
526                                 return 0;
527                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
528                         break;
529                 case Opt_umask:
530                         if (match_octal(args, &option))
531                                 return 0;
532                         uopt->umask = option;
533                         break;
534                 case Opt_nostrict:
535                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
536                         break;
537                 case Opt_session:
538                         if (match_int(args, &option))
539                                 return 0;
540                         uopt->session = option;
541                         if (!remount)
542                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
543                         break;
544                 case Opt_lastblock:
545                         if (match_int(args, &option))
546                                 return 0;
547                         uopt->lastblock = option;
548                         if (!remount)
549                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
550                         break;
551                 case Opt_anchor:
552                         if (match_int(args, &option))
553                                 return 0;
554                         uopt->anchor = option;
555                         break;
556                 case Opt_volume:
557                 case Opt_partition:
558                 case Opt_fileset:
559                 case Opt_rootdir:
560                         /* Ignored (never implemented properly) */
561                         break;
562                 case Opt_utf8:
563                         uopt->flags |= (1 << UDF_FLAG_UTF8);
564                         break;
565                 case Opt_iocharset:
566                         if (!remount) {
567                                 if (uopt->nls_map)
568                                         unload_nls(uopt->nls_map);
569                                 /*
570                                  * load_nls() failure is handled later in
571                                  * udf_fill_super() after all options are
572                                  * parsed.
573                                  */
574                                 uopt->nls_map = load_nls(args[0].from);
575                                 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
576                         }
577                         break;
578                 case Opt_uforget:
579                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
580                         break;
581                 case Opt_uignore:
582                 case Opt_gignore:
583                         /* These options are superseeded by uid=<number> */
584                         break;
585                 case Opt_gforget:
586                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
587                         break;
588                 case Opt_fmode:
589                         if (match_octal(args, &option))
590                                 return 0;
591                         uopt->fmode = option & 0777;
592                         break;
593                 case Opt_dmode:
594                         if (match_octal(args, &option))
595                                 return 0;
596                         uopt->dmode = option & 0777;
597                         break;
598                 default:
599                         pr_err("bad mount option \"%s\" or missing value\n", p);
600                         return 0;
601                 }
602         }
603         return 1;
604 }
605
606 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
607 {
608         struct udf_options uopt;
609         struct udf_sb_info *sbi = UDF_SB(sb);
610         int error = 0;
611
612         if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
613                 return -EACCES;
614
615         sync_filesystem(sb);
616
617         uopt.flags = sbi->s_flags;
618         uopt.uid   = sbi->s_uid;
619         uopt.gid   = sbi->s_gid;
620         uopt.umask = sbi->s_umask;
621         uopt.fmode = sbi->s_fmode;
622         uopt.dmode = sbi->s_dmode;
623         uopt.nls_map = NULL;
624
625         if (!udf_parse_options(options, &uopt, true))
626                 return -EINVAL;
627
628         write_lock(&sbi->s_cred_lock);
629         sbi->s_flags = uopt.flags;
630         sbi->s_uid   = uopt.uid;
631         sbi->s_gid   = uopt.gid;
632         sbi->s_umask = uopt.umask;
633         sbi->s_fmode = uopt.fmode;
634         sbi->s_dmode = uopt.dmode;
635         write_unlock(&sbi->s_cred_lock);
636
637         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
638                 goto out_unlock;
639
640         if (*flags & SB_RDONLY)
641                 udf_close_lvid(sb);
642         else
643                 udf_open_lvid(sb);
644
645 out_unlock:
646         return error;
647 }
648
649 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
650 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
651 static loff_t udf_check_vsd(struct super_block *sb)
652 {
653         struct volStructDesc *vsd = NULL;
654         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
655         int sectorsize;
656         struct buffer_head *bh = NULL;
657         int nsr02 = 0;
658         int nsr03 = 0;
659         struct udf_sb_info *sbi;
660
661         sbi = UDF_SB(sb);
662         if (sb->s_blocksize < sizeof(struct volStructDesc))
663                 sectorsize = sizeof(struct volStructDesc);
664         else
665                 sectorsize = sb->s_blocksize;
666
667         sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
668
669         udf_debug("Starting at sector %u (%lu byte sectors)\n",
670                   (unsigned int)(sector >> sb->s_blocksize_bits),
671                   sb->s_blocksize);
672         /* Process the sequence (if applicable). The hard limit on the sector
673          * offset is arbitrary, hopefully large enough so that all valid UDF
674          * filesystems will be recognised. There is no mention of an upper
675          * bound to the size of the volume recognition area in the standard.
676          *  The limit will prevent the code to read all the sectors of a
677          * specially crafted image (like a bluray disc full of CD001 sectors),
678          * potentially causing minutes or even hours of uninterruptible I/O
679          * activity. This actually happened with uninitialised SSD partitions
680          * (all 0xFF) before the check for the limit and all valid IDs were
681          * added */
682         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
683              sector += sectorsize) {
684                 /* Read a block */
685                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
686                 if (!bh)
687                         break;
688
689                 /* Look for ISO  descriptors */
690                 vsd = (struct volStructDesc *)(bh->b_data +
691                                               (sector & (sb->s_blocksize - 1)));
692
693                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
694                                     VSD_STD_ID_LEN)) {
695                         switch (vsd->structType) {
696                         case 0:
697                                 udf_debug("ISO9660 Boot Record found\n");
698                                 break;
699                         case 1:
700                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
701                                 break;
702                         case 2:
703                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
704                                 break;
705                         case 3:
706                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
707                                 break;
708                         case 255:
709                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
710                                 break;
711                         default:
712                                 udf_debug("ISO9660 VRS (%u) found\n",
713                                           vsd->structType);
714                                 break;
715                         }
716                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
717                                     VSD_STD_ID_LEN))
718                         ; /* nothing */
719                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
720                                     VSD_STD_ID_LEN)) {
721                         brelse(bh);
722                         break;
723                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
724                                     VSD_STD_ID_LEN))
725                         nsr02 = sector;
726                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
727                                     VSD_STD_ID_LEN))
728                         nsr03 = sector;
729                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
730                                     VSD_STD_ID_LEN))
731                         ; /* nothing */
732                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
733                                     VSD_STD_ID_LEN))
734                         ; /* nothing */
735                 else {
736                         /* invalid id : end of volume recognition area */
737                         brelse(bh);
738                         break;
739                 }
740                 brelse(bh);
741         }
742
743         if (nsr03)
744                 return nsr03;
745         else if (nsr02)
746                 return nsr02;
747         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
748                         VSD_FIRST_SECTOR_OFFSET)
749                 return -1;
750         else
751                 return 0;
752 }
753
754 static int udf_find_fileset(struct super_block *sb,
755                             struct kernel_lb_addr *fileset,
756                             struct kernel_lb_addr *root)
757 {
758         struct buffer_head *bh = NULL;
759         uint16_t ident;
760
761         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
762             fileset->partitionReferenceNum != 0xFFFF) {
763                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
764
765                 if (!bh) {
766                         return 1;
767                 } else if (ident != TAG_IDENT_FSD) {
768                         brelse(bh);
769                         return 1;
770                 }
771
772                 udf_debug("Fileset at block=%u, partition=%u\n",
773                           fileset->logicalBlockNum,
774                           fileset->partitionReferenceNum);
775
776                 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
777                 udf_load_fileset(sb, bh, root);
778                 brelse(bh);
779                 return 0;
780         }
781         return 1;
782 }
783
784 /*
785  * Load primary Volume Descriptor Sequence
786  *
787  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
788  * should be tried.
789  */
790 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
791 {
792         struct primaryVolDesc *pvoldesc;
793         uint8_t *outstr;
794         struct buffer_head *bh;
795         uint16_t ident;
796         int ret = -ENOMEM;
797 #ifdef UDFFS_DEBUG
798         struct timestamp *ts;
799 #endif
800
801         outstr = kmalloc(128, GFP_NOFS);
802         if (!outstr)
803                 return -ENOMEM;
804
805         bh = udf_read_tagged(sb, block, block, &ident);
806         if (!bh) {
807                 ret = -EAGAIN;
808                 goto out2;
809         }
810
811         if (ident != TAG_IDENT_PVD) {
812                 ret = -EIO;
813                 goto out_bh;
814         }
815
816         pvoldesc = (struct primaryVolDesc *)bh->b_data;
817
818         udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
819                               pvoldesc->recordingDateAndTime);
820 #ifdef UDFFS_DEBUG
821         ts = &pvoldesc->recordingDateAndTime;
822         udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
823                   le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
824                   ts->minute, le16_to_cpu(ts->typeAndTimezone));
825 #endif
826
827
828         ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
829         if (ret < 0) {
830                 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
831                 pr_warn("incorrect volume identification, setting to "
832                         "'InvalidName'\n");
833         } else {
834                 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
835         }
836         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
837
838         ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
839         if (ret < 0) {
840                 ret = 0;
841                 goto out_bh;
842         }
843         outstr[ret] = 0;
844         udf_debug("volSetIdent[] = '%s'\n", outstr);
845
846         ret = 0;
847 out_bh:
848         brelse(bh);
849 out2:
850         kfree(outstr);
851         return ret;
852 }
853
854 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
855                                         u32 meta_file_loc, u32 partition_ref)
856 {
857         struct kernel_lb_addr addr;
858         struct inode *metadata_fe;
859
860         addr.logicalBlockNum = meta_file_loc;
861         addr.partitionReferenceNum = partition_ref;
862
863         metadata_fe = udf_iget_special(sb, &addr);
864
865         if (IS_ERR(metadata_fe)) {
866                 udf_warn(sb, "metadata inode efe not found\n");
867                 return metadata_fe;
868         }
869         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
870                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
871                 iput(metadata_fe);
872                 return ERR_PTR(-EIO);
873         }
874
875         return metadata_fe;
876 }
877
878 static int udf_load_metadata_files(struct super_block *sb, int partition,
879                                    int type1_index)
880 {
881         struct udf_sb_info *sbi = UDF_SB(sb);
882         struct udf_part_map *map;
883         struct udf_meta_data *mdata;
884         struct kernel_lb_addr addr;
885         struct inode *fe;
886
887         map = &sbi->s_partmaps[partition];
888         mdata = &map->s_type_specific.s_metadata;
889         mdata->s_phys_partition_ref = type1_index;
890
891         /* metadata address */
892         udf_debug("Metadata file location: block = %u part = %u\n",
893                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
894
895         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
896                                          mdata->s_phys_partition_ref);
897         if (IS_ERR(fe)) {
898                 /* mirror file entry */
899                 udf_debug("Mirror metadata file location: block = %u part = %u\n",
900                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
901
902                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
903                                                  mdata->s_phys_partition_ref);
904
905                 if (IS_ERR(fe)) {
906                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
907                         return PTR_ERR(fe);
908                 }
909                 mdata->s_mirror_fe = fe;
910         } else
911                 mdata->s_metadata_fe = fe;
912
913
914         /*
915          * bitmap file entry
916          * Note:
917          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
918         */
919         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
920                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
921                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
922
923                 udf_debug("Bitmap file location: block = %u part = %u\n",
924                           addr.logicalBlockNum, addr.partitionReferenceNum);
925
926                 fe = udf_iget_special(sb, &addr);
927                 if (IS_ERR(fe)) {
928                         if (sb_rdonly(sb))
929                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
930                         else {
931                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
932                                 return PTR_ERR(fe);
933                         }
934                 } else
935                         mdata->s_bitmap_fe = fe;
936         }
937
938         udf_debug("udf_load_metadata_files Ok\n");
939         return 0;
940 }
941
942 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
943                              struct kernel_lb_addr *root)
944 {
945         struct fileSetDesc *fset;
946
947         fset = (struct fileSetDesc *)bh->b_data;
948
949         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
950
951         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
952
953         udf_debug("Rootdir at block=%u, partition=%u\n",
954                   root->logicalBlockNum, root->partitionReferenceNum);
955 }
956
957 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
958 {
959         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
960         return DIV_ROUND_UP(map->s_partition_len +
961                             (sizeof(struct spaceBitmapDesc) << 3),
962                             sb->s_blocksize * 8);
963 }
964
965 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
966 {
967         struct udf_bitmap *bitmap;
968         int nr_groups;
969         int size;
970
971         nr_groups = udf_compute_nr_groups(sb, index);
972         size = sizeof(struct udf_bitmap) +
973                 (sizeof(struct buffer_head *) * nr_groups);
974
975         if (size <= PAGE_SIZE)
976                 bitmap = kzalloc(size, GFP_KERNEL);
977         else
978                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
979
980         if (!bitmap)
981                 return NULL;
982
983         bitmap->s_nr_groups = nr_groups;
984         return bitmap;
985 }
986
987 static int check_partition_desc(struct super_block *sb,
988                                 struct partitionDesc *p,
989                                 struct udf_part_map *map)
990 {
991         bool umap, utable, fmap, ftable;
992         struct partitionHeaderDesc *phd;
993
994         switch (le32_to_cpu(p->accessType)) {
995         case PD_ACCESS_TYPE_READ_ONLY:
996         case PD_ACCESS_TYPE_WRITE_ONCE:
997         case PD_ACCESS_TYPE_REWRITABLE:
998         case PD_ACCESS_TYPE_NONE:
999                 goto force_ro;
1000         }
1001
1002         /* No Partition Header Descriptor? */
1003         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1004             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1005                 goto force_ro;
1006
1007         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1008         utable = phd->unallocSpaceTable.extLength;
1009         umap = phd->unallocSpaceBitmap.extLength;
1010         ftable = phd->freedSpaceTable.extLength;
1011         fmap = phd->freedSpaceBitmap.extLength;
1012
1013         /* No allocation info? */
1014         if (!utable && !umap && !ftable && !fmap)
1015                 goto force_ro;
1016
1017         /* We don't support blocks that require erasing before overwrite */
1018         if (ftable || fmap)
1019                 goto force_ro;
1020         /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1021         if (utable && umap)
1022                 goto force_ro;
1023
1024         if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1025             map->s_partition_type == UDF_VIRTUAL_MAP20)
1026                 goto force_ro;
1027
1028         return 0;
1029 force_ro:
1030         if (!sb_rdonly(sb))
1031                 return -EACCES;
1032         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1033         return 0;
1034 }
1035
1036 static int udf_fill_partdesc_info(struct super_block *sb,
1037                 struct partitionDesc *p, int p_index)
1038 {
1039         struct udf_part_map *map;
1040         struct udf_sb_info *sbi = UDF_SB(sb);
1041         struct partitionHeaderDesc *phd;
1042         int err;
1043
1044         map = &sbi->s_partmaps[p_index];
1045
1046         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1047         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1048
1049         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1050                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1051         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1052                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1053         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1054                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1055         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1056                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1057
1058         udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1059                   p_index, map->s_partition_type,
1060                   map->s_partition_root, map->s_partition_len);
1061
1062         err = check_partition_desc(sb, p, map);
1063         if (err)
1064                 return err;
1065
1066         /*
1067          * Skip loading allocation info it we cannot ever write to the fs.
1068          * This is a correctness thing as we may have decided to force ro mount
1069          * to avoid allocation info we don't support.
1070          */
1071         if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1072                 return 0;
1073
1074         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1075         if (phd->unallocSpaceTable.extLength) {
1076                 struct kernel_lb_addr loc = {
1077                         .logicalBlockNum = le32_to_cpu(
1078                                 phd->unallocSpaceTable.extPosition),
1079                         .partitionReferenceNum = p_index,
1080                 };
1081                 struct inode *inode;
1082
1083                 inode = udf_iget_special(sb, &loc);
1084                 if (IS_ERR(inode)) {
1085                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1086                                   p_index);
1087                         return PTR_ERR(inode);
1088                 }
1089                 map->s_uspace.s_table = inode;
1090                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1091                 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1092                           p_index, map->s_uspace.s_table->i_ino);
1093         }
1094
1095         if (phd->unallocSpaceBitmap.extLength) {
1096                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1097                 if (!bitmap)
1098                         return -ENOMEM;
1099                 map->s_uspace.s_bitmap = bitmap;
1100                 bitmap->s_extPosition = le32_to_cpu(
1101                                 phd->unallocSpaceBitmap.extPosition);
1102                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1103                 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1104                           p_index, bitmap->s_extPosition);
1105         }
1106
1107         return 0;
1108 }
1109
1110 static void udf_find_vat_block(struct super_block *sb, int p_index,
1111                                int type1_index, sector_t start_block)
1112 {
1113         struct udf_sb_info *sbi = UDF_SB(sb);
1114         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1115         sector_t vat_block;
1116         struct kernel_lb_addr ino;
1117         struct inode *inode;
1118
1119         /*
1120          * VAT file entry is in the last recorded block. Some broken disks have
1121          * it a few blocks before so try a bit harder...
1122          */
1123         ino.partitionReferenceNum = type1_index;
1124         for (vat_block = start_block;
1125              vat_block >= map->s_partition_root &&
1126              vat_block >= start_block - 3; vat_block--) {
1127                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1128                 inode = udf_iget_special(sb, &ino);
1129                 if (!IS_ERR(inode)) {
1130                         sbi->s_vat_inode = inode;
1131                         break;
1132                 }
1133         }
1134 }
1135
1136 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1137 {
1138         struct udf_sb_info *sbi = UDF_SB(sb);
1139         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1140         struct buffer_head *bh = NULL;
1141         struct udf_inode_info *vati;
1142         uint32_t pos;
1143         struct virtualAllocationTable20 *vat20;
1144         sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1145                           sb->s_blocksize_bits;
1146
1147         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1148         if (!sbi->s_vat_inode &&
1149             sbi->s_last_block != blocks - 1) {
1150                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1151                           (unsigned long)sbi->s_last_block,
1152                           (unsigned long)blocks - 1);
1153                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1154         }
1155         if (!sbi->s_vat_inode)
1156                 return -EIO;
1157
1158         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1159                 map->s_type_specific.s_virtual.s_start_offset = 0;
1160                 map->s_type_specific.s_virtual.s_num_entries =
1161                         (sbi->s_vat_inode->i_size - 36) >> 2;
1162         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1163                 vati = UDF_I(sbi->s_vat_inode);
1164                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1165                         pos = udf_block_map(sbi->s_vat_inode, 0);
1166                         bh = sb_bread(sb, pos);
1167                         if (!bh)
1168                                 return -EIO;
1169                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1170                 } else {
1171                         vat20 = (struct virtualAllocationTable20 *)
1172                                                         vati->i_ext.i_data;
1173                 }
1174
1175                 map->s_type_specific.s_virtual.s_start_offset =
1176                         le16_to_cpu(vat20->lengthHeader);
1177                 map->s_type_specific.s_virtual.s_num_entries =
1178                         (sbi->s_vat_inode->i_size -
1179                                 map->s_type_specific.s_virtual.
1180                                         s_start_offset) >> 2;
1181                 brelse(bh);
1182         }
1183         return 0;
1184 }
1185
1186 /*
1187  * Load partition descriptor block
1188  *
1189  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1190  * sequence.
1191  */
1192 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1193 {
1194         struct buffer_head *bh;
1195         struct partitionDesc *p;
1196         struct udf_part_map *map;
1197         struct udf_sb_info *sbi = UDF_SB(sb);
1198         int i, type1_idx;
1199         uint16_t partitionNumber;
1200         uint16_t ident;
1201         int ret;
1202
1203         bh = udf_read_tagged(sb, block, block, &ident);
1204         if (!bh)
1205                 return -EAGAIN;
1206         if (ident != TAG_IDENT_PD) {
1207                 ret = 0;
1208                 goto out_bh;
1209         }
1210
1211         p = (struct partitionDesc *)bh->b_data;
1212         partitionNumber = le16_to_cpu(p->partitionNumber);
1213
1214         /* First scan for TYPE1 and SPARABLE partitions */
1215         for (i = 0; i < sbi->s_partitions; i++) {
1216                 map = &sbi->s_partmaps[i];
1217                 udf_debug("Searching map: (%u == %u)\n",
1218                           map->s_partition_num, partitionNumber);
1219                 if (map->s_partition_num == partitionNumber &&
1220                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1221                      map->s_partition_type == UDF_SPARABLE_MAP15))
1222                         break;
1223         }
1224
1225         if (i >= sbi->s_partitions) {
1226                 udf_debug("Partition (%u) not found in partition map\n",
1227                           partitionNumber);
1228                 ret = 0;
1229                 goto out_bh;
1230         }
1231
1232         ret = udf_fill_partdesc_info(sb, p, i);
1233         if (ret < 0)
1234                 goto out_bh;
1235
1236         /*
1237          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1238          * PHYSICAL partitions are already set up
1239          */
1240         type1_idx = i;
1241 #ifdef UDFFS_DEBUG
1242         map = NULL; /* supress 'maybe used uninitialized' warning */
1243 #endif
1244         for (i = 0; i < sbi->s_partitions; i++) {
1245                 map = &sbi->s_partmaps[i];
1246
1247                 if (map->s_partition_num == partitionNumber &&
1248                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1249                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1250                      map->s_partition_type == UDF_METADATA_MAP25))
1251                         break;
1252         }
1253
1254         if (i >= sbi->s_partitions) {
1255                 ret = 0;
1256                 goto out_bh;
1257         }
1258
1259         ret = udf_fill_partdesc_info(sb, p, i);
1260         if (ret < 0)
1261                 goto out_bh;
1262
1263         if (map->s_partition_type == UDF_METADATA_MAP25) {
1264                 ret = udf_load_metadata_files(sb, i, type1_idx);
1265                 if (ret < 0) {
1266                         udf_err(sb, "error loading MetaData partition map %d\n",
1267                                 i);
1268                         goto out_bh;
1269                 }
1270         } else {
1271                 /*
1272                  * If we have a partition with virtual map, we don't handle
1273                  * writing to it (we overwrite blocks instead of relocating
1274                  * them).
1275                  */
1276                 if (!sb_rdonly(sb)) {
1277                         ret = -EACCES;
1278                         goto out_bh;
1279                 }
1280                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1281                 ret = udf_load_vat(sb, i, type1_idx);
1282                 if (ret < 0)
1283                         goto out_bh;
1284         }
1285         ret = 0;
1286 out_bh:
1287         /* In case loading failed, we handle cleanup in udf_fill_super */
1288         brelse(bh);
1289         return ret;
1290 }
1291
1292 static int udf_load_sparable_map(struct super_block *sb,
1293                                  struct udf_part_map *map,
1294                                  struct sparablePartitionMap *spm)
1295 {
1296         uint32_t loc;
1297         uint16_t ident;
1298         struct sparingTable *st;
1299         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1300         int i;
1301         struct buffer_head *bh;
1302
1303         map->s_partition_type = UDF_SPARABLE_MAP15;
1304         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1305         if (!is_power_of_2(sdata->s_packet_len)) {
1306                 udf_err(sb, "error loading logical volume descriptor: "
1307                         "Invalid packet length %u\n",
1308                         (unsigned)sdata->s_packet_len);
1309                 return -EIO;
1310         }
1311         if (spm->numSparingTables > 4) {
1312                 udf_err(sb, "error loading logical volume descriptor: "
1313                         "Too many sparing tables (%d)\n",
1314                         (int)spm->numSparingTables);
1315                 return -EIO;
1316         }
1317
1318         for (i = 0; i < spm->numSparingTables; i++) {
1319                 loc = le32_to_cpu(spm->locSparingTable[i]);
1320                 bh = udf_read_tagged(sb, loc, loc, &ident);
1321                 if (!bh)
1322                         continue;
1323
1324                 st = (struct sparingTable *)bh->b_data;
1325                 if (ident != 0 ||
1326                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1327                             strlen(UDF_ID_SPARING)) ||
1328                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1329                                                         sb->s_blocksize) {
1330                         brelse(bh);
1331                         continue;
1332                 }
1333
1334                 sdata->s_spar_map[i] = bh;
1335         }
1336         map->s_partition_func = udf_get_pblock_spar15;
1337         return 0;
1338 }
1339
1340 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1341                                struct kernel_lb_addr *fileset)
1342 {
1343         struct logicalVolDesc *lvd;
1344         int i, offset;
1345         uint8_t type;
1346         struct udf_sb_info *sbi = UDF_SB(sb);
1347         struct genericPartitionMap *gpm;
1348         uint16_t ident;
1349         struct buffer_head *bh;
1350         unsigned int table_len;
1351         int ret;
1352
1353         bh = udf_read_tagged(sb, block, block, &ident);
1354         if (!bh)
1355                 return -EAGAIN;
1356         BUG_ON(ident != TAG_IDENT_LVD);
1357         lvd = (struct logicalVolDesc *)bh->b_data;
1358         table_len = le32_to_cpu(lvd->mapTableLength);
1359         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1360                 udf_err(sb, "error loading logical volume descriptor: "
1361                         "Partition table too long (%u > %lu)\n", table_len,
1362                         sb->s_blocksize - sizeof(*lvd));
1363                 ret = -EIO;
1364                 goto out_bh;
1365         }
1366
1367         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1368         if (ret)
1369                 goto out_bh;
1370
1371         for (i = 0, offset = 0;
1372              i < sbi->s_partitions && offset < table_len;
1373              i++, offset += gpm->partitionMapLength) {
1374                 struct udf_part_map *map = &sbi->s_partmaps[i];
1375                 gpm = (struct genericPartitionMap *)
1376                                 &(lvd->partitionMaps[offset]);
1377                 type = gpm->partitionMapType;
1378                 if (type == 1) {
1379                         struct genericPartitionMap1 *gpm1 =
1380                                 (struct genericPartitionMap1 *)gpm;
1381                         map->s_partition_type = UDF_TYPE1_MAP15;
1382                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1383                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1384                         map->s_partition_func = NULL;
1385                 } else if (type == 2) {
1386                         struct udfPartitionMap2 *upm2 =
1387                                                 (struct udfPartitionMap2 *)gpm;
1388                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1389                                                 strlen(UDF_ID_VIRTUAL))) {
1390                                 u16 suf =
1391                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1392                                                         identSuffix)[0]);
1393                                 if (suf < 0x0200) {
1394                                         map->s_partition_type =
1395                                                         UDF_VIRTUAL_MAP15;
1396                                         map->s_partition_func =
1397                                                         udf_get_pblock_virt15;
1398                                 } else {
1399                                         map->s_partition_type =
1400                                                         UDF_VIRTUAL_MAP20;
1401                                         map->s_partition_func =
1402                                                         udf_get_pblock_virt20;
1403                                 }
1404                         } else if (!strncmp(upm2->partIdent.ident,
1405                                                 UDF_ID_SPARABLE,
1406                                                 strlen(UDF_ID_SPARABLE))) {
1407                                 ret = udf_load_sparable_map(sb, map,
1408                                         (struct sparablePartitionMap *)gpm);
1409                                 if (ret < 0)
1410                                         goto out_bh;
1411                         } else if (!strncmp(upm2->partIdent.ident,
1412                                                 UDF_ID_METADATA,
1413                                                 strlen(UDF_ID_METADATA))) {
1414                                 struct udf_meta_data *mdata =
1415                                         &map->s_type_specific.s_metadata;
1416                                 struct metadataPartitionMap *mdm =
1417                                                 (struct metadataPartitionMap *)
1418                                                 &(lvd->partitionMaps[offset]);
1419                                 udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1420                                           i, type, UDF_ID_METADATA);
1421
1422                                 map->s_partition_type = UDF_METADATA_MAP25;
1423                                 map->s_partition_func = udf_get_pblock_meta25;
1424
1425                                 mdata->s_meta_file_loc   =
1426                                         le32_to_cpu(mdm->metadataFileLoc);
1427                                 mdata->s_mirror_file_loc =
1428                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1429                                 mdata->s_bitmap_file_loc =
1430                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1431                                 mdata->s_alloc_unit_size =
1432                                         le32_to_cpu(mdm->allocUnitSize);
1433                                 mdata->s_align_unit_size =
1434                                         le16_to_cpu(mdm->alignUnitSize);
1435                                 if (mdm->flags & 0x01)
1436                                         mdata->s_flags |= MF_DUPLICATE_MD;
1437
1438                                 udf_debug("Metadata Ident suffix=0x%x\n",
1439                                           le16_to_cpu(*(__le16 *)
1440                                                       mdm->partIdent.identSuffix));
1441                                 udf_debug("Metadata part num=%u\n",
1442                                           le16_to_cpu(mdm->partitionNum));
1443                                 udf_debug("Metadata part alloc unit size=%u\n",
1444                                           le32_to_cpu(mdm->allocUnitSize));
1445                                 udf_debug("Metadata file loc=%u\n",
1446                                           le32_to_cpu(mdm->metadataFileLoc));
1447                                 udf_debug("Mirror file loc=%u\n",
1448                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1449                                 udf_debug("Bitmap file loc=%u\n",
1450                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1451                                 udf_debug("Flags: %d %u\n",
1452                                           mdata->s_flags, mdm->flags);
1453                         } else {
1454                                 udf_debug("Unknown ident: %s\n",
1455                                           upm2->partIdent.ident);
1456                                 continue;
1457                         }
1458                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1459                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1460                 }
1461                 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1462                           i, map->s_partition_num, type, map->s_volumeseqnum);
1463         }
1464
1465         if (fileset) {
1466                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1467
1468                 *fileset = lelb_to_cpu(la->extLocation);
1469                 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1470                           fileset->logicalBlockNum,
1471                           fileset->partitionReferenceNum);
1472         }
1473         if (lvd->integritySeqExt.extLength)
1474                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1475         ret = 0;
1476
1477         if (!sbi->s_lvid_bh) {
1478                 /* We can't generate unique IDs without a valid LVID */
1479                 if (sb_rdonly(sb)) {
1480                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1481                 } else {
1482                         udf_warn(sb, "Damaged or missing LVID, forcing "
1483                                      "readonly mount\n");
1484                         ret = -EACCES;
1485                 }
1486         }
1487 out_bh:
1488         brelse(bh);
1489         return ret;
1490 }
1491
1492 /*
1493  * Find the prevailing Logical Volume Integrity Descriptor.
1494  */
1495 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1496 {
1497         struct buffer_head *bh, *final_bh;
1498         uint16_t ident;
1499         struct udf_sb_info *sbi = UDF_SB(sb);
1500         struct logicalVolIntegrityDesc *lvid;
1501         int indirections = 0;
1502
1503         while (++indirections <= UDF_MAX_LVID_NESTING) {
1504                 final_bh = NULL;
1505                 while (loc.extLength > 0 &&
1506                         (bh = udf_read_tagged(sb, loc.extLocation,
1507                                         loc.extLocation, &ident))) {
1508                         if (ident != TAG_IDENT_LVID) {
1509                                 brelse(bh);
1510                                 break;
1511                         }
1512
1513                         brelse(final_bh);
1514                         final_bh = bh;
1515
1516                         loc.extLength -= sb->s_blocksize;
1517                         loc.extLocation++;
1518                 }
1519
1520                 if (!final_bh)
1521                         return;
1522
1523                 brelse(sbi->s_lvid_bh);
1524                 sbi->s_lvid_bh = final_bh;
1525
1526                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1527                 if (lvid->nextIntegrityExt.extLength == 0)
1528                         return;
1529
1530                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1531         }
1532
1533         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1534                 UDF_MAX_LVID_NESTING);
1535         brelse(sbi->s_lvid_bh);
1536         sbi->s_lvid_bh = NULL;
1537 }
1538
1539 /*
1540  * Step for reallocation of table of partition descriptor sequence numbers.
1541  * Must be power of 2.
1542  */
1543 #define PART_DESC_ALLOC_STEP 32
1544
1545 struct part_desc_seq_scan_data {
1546         struct udf_vds_record rec;
1547         u32 partnum;
1548 };
1549
1550 struct desc_seq_scan_data {
1551         struct udf_vds_record vds[VDS_POS_LENGTH];
1552         unsigned int size_part_descs;
1553         unsigned int num_part_descs;
1554         struct part_desc_seq_scan_data *part_descs_loc;
1555 };
1556
1557 static struct udf_vds_record *handle_partition_descriptor(
1558                                 struct buffer_head *bh,
1559                                 struct desc_seq_scan_data *data)
1560 {
1561         struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1562         int partnum;
1563         int i;
1564
1565         partnum = le16_to_cpu(desc->partitionNumber);
1566         for (i = 0; i < data->num_part_descs; i++)
1567                 if (partnum == data->part_descs_loc[i].partnum)
1568                         return &(data->part_descs_loc[i].rec);
1569         if (data->num_part_descs >= data->size_part_descs) {
1570                 struct part_desc_seq_scan_data *new_loc;
1571                 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1572
1573                 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1574                 if (!new_loc)
1575                         return ERR_PTR(-ENOMEM);
1576                 memcpy(new_loc, data->part_descs_loc,
1577                        data->size_part_descs * sizeof(*new_loc));
1578                 kfree(data->part_descs_loc);
1579                 data->part_descs_loc = new_loc;
1580                 data->size_part_descs = new_size;
1581         }
1582         return &(data->part_descs_loc[data->num_part_descs++].rec);
1583 }
1584
1585
1586 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1587                 struct buffer_head *bh, struct desc_seq_scan_data *data)
1588 {
1589         switch (ident) {
1590         case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1591                 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1592         case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1593                 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1594         case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1595                 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1596         case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1597                 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1598         case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1599                 return handle_partition_descriptor(bh, data);
1600         }
1601         return NULL;
1602 }
1603
1604 /*
1605  * Process a main/reserve volume descriptor sequence.
1606  *   @block             First block of first extent of the sequence.
1607  *   @lastblock         Lastblock of first extent of the sequence.
1608  *   @fileset           There we store extent containing root fileset
1609  *
1610  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1611  * sequence
1612  */
1613 static noinline int udf_process_sequence(
1614                 struct super_block *sb,
1615                 sector_t block, sector_t lastblock,
1616                 struct kernel_lb_addr *fileset)
1617 {
1618         struct buffer_head *bh = NULL;
1619         struct udf_vds_record *curr;
1620         struct generic_desc *gd;
1621         struct volDescPtr *vdp;
1622         bool done = false;
1623         uint32_t vdsn;
1624         uint16_t ident;
1625         int ret;
1626         unsigned int indirections = 0;
1627         struct desc_seq_scan_data data;
1628         unsigned int i;
1629
1630         memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1631         data.size_part_descs = PART_DESC_ALLOC_STEP;
1632         data.num_part_descs = 0;
1633         data.part_descs_loc = kcalloc(data.size_part_descs,
1634                                       sizeof(*data.part_descs_loc),
1635                                       GFP_KERNEL);
1636         if (!data.part_descs_loc)
1637                 return -ENOMEM;
1638
1639         /*
1640          * Read the main descriptor sequence and find which descriptors
1641          * are in it.
1642          */
1643         for (; (!done && block <= lastblock); block++) {
1644                 bh = udf_read_tagged(sb, block, block, &ident);
1645                 if (!bh)
1646                         break;
1647
1648                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1649                 gd = (struct generic_desc *)bh->b_data;
1650                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1651                 switch (ident) {
1652                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1653                         if (++indirections > UDF_MAX_TD_NESTING) {
1654                                 udf_err(sb, "too many Volume Descriptor "
1655                                         "Pointers (max %u supported)\n",
1656                                         UDF_MAX_TD_NESTING);
1657                                 brelse(bh);
1658                                 return -EIO;
1659                         }
1660
1661                         vdp = (struct volDescPtr *)bh->b_data;
1662                         block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1663                         lastblock = le32_to_cpu(
1664                                 vdp->nextVolDescSeqExt.extLength) >>
1665                                 sb->s_blocksize_bits;
1666                         lastblock += block - 1;
1667                         /* For loop is going to increment 'block' again */
1668                         block--;
1669                         break;
1670                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1671                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1672                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1673                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1674                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1675                         curr = get_volume_descriptor_record(ident, bh, &data);
1676                         if (IS_ERR(curr)) {
1677                                 brelse(bh);
1678                                 return PTR_ERR(curr);
1679                         }
1680                         /* Descriptor we don't care about? */
1681                         if (!curr)
1682                                 break;
1683                         if (vdsn >= curr->volDescSeqNum) {
1684                                 curr->volDescSeqNum = vdsn;
1685                                 curr->block = block;
1686                         }
1687                         break;
1688                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1689                         done = true;
1690                         break;
1691                 }
1692                 brelse(bh);
1693         }
1694         /*
1695          * Now read interesting descriptors again and process them
1696          * in a suitable order
1697          */
1698         if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1699                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1700                 return -EAGAIN;
1701         }
1702         ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1703         if (ret < 0)
1704                 return ret;
1705
1706         if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1707                 ret = udf_load_logicalvol(sb,
1708                                 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1709                                 fileset);
1710                 if (ret < 0)
1711                         return ret;
1712         }
1713
1714         /* Now handle prevailing Partition Descriptors */
1715         for (i = 0; i < data.num_part_descs; i++) {
1716                 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1717                 if (ret < 0)
1718                         return ret;
1719         }
1720
1721         return 0;
1722 }
1723
1724 /*
1725  * Load Volume Descriptor Sequence described by anchor in bh
1726  *
1727  * Returns <0 on error, 0 on success
1728  */
1729 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1730                              struct kernel_lb_addr *fileset)
1731 {
1732         struct anchorVolDescPtr *anchor;
1733         sector_t main_s, main_e, reserve_s, reserve_e;
1734         int ret;
1735
1736         anchor = (struct anchorVolDescPtr *)bh->b_data;
1737
1738         /* Locate the main sequence */
1739         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1740         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1741         main_e = main_e >> sb->s_blocksize_bits;
1742         main_e += main_s - 1;
1743
1744         /* Locate the reserve sequence */
1745         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1746         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1747         reserve_e = reserve_e >> sb->s_blocksize_bits;
1748         reserve_e += reserve_s - 1;
1749
1750         /* Process the main & reserve sequences */
1751         /* responsible for finding the PartitionDesc(s) */
1752         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1753         if (ret != -EAGAIN)
1754                 return ret;
1755         udf_sb_free_partitions(sb);
1756         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1757         if (ret < 0) {
1758                 udf_sb_free_partitions(sb);
1759                 /* No sequence was OK, return -EIO */
1760                 if (ret == -EAGAIN)
1761                         ret = -EIO;
1762         }
1763         return ret;
1764 }
1765
1766 /*
1767  * Check whether there is an anchor block in the given block and
1768  * load Volume Descriptor Sequence if so.
1769  *
1770  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1771  * block
1772  */
1773 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1774                                   struct kernel_lb_addr *fileset)
1775 {
1776         struct buffer_head *bh;
1777         uint16_t ident;
1778         int ret;
1779
1780         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1781             udf_fixed_to_variable(block) >=
1782             i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1783                 return -EAGAIN;
1784
1785         bh = udf_read_tagged(sb, block, block, &ident);
1786         if (!bh)
1787                 return -EAGAIN;
1788         if (ident != TAG_IDENT_AVDP) {
1789                 brelse(bh);
1790                 return -EAGAIN;
1791         }
1792         ret = udf_load_sequence(sb, bh, fileset);
1793         brelse(bh);
1794         return ret;
1795 }
1796
1797 /*
1798  * Search for an anchor volume descriptor pointer.
1799  *
1800  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1801  * of anchors.
1802  */
1803 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1804                             struct kernel_lb_addr *fileset)
1805 {
1806         sector_t last[6];
1807         int i;
1808         struct udf_sb_info *sbi = UDF_SB(sb);
1809         int last_count = 0;
1810         int ret;
1811
1812         /* First try user provided anchor */
1813         if (sbi->s_anchor) {
1814                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1815                 if (ret != -EAGAIN)
1816                         return ret;
1817         }
1818         /*
1819          * according to spec, anchor is in either:
1820          *     block 256
1821          *     lastblock-256
1822          *     lastblock
1823          *  however, if the disc isn't closed, it could be 512.
1824          */
1825         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1826         if (ret != -EAGAIN)
1827                 return ret;
1828         /*
1829          * The trouble is which block is the last one. Drives often misreport
1830          * this so we try various possibilities.
1831          */
1832         last[last_count++] = *lastblock;
1833         if (*lastblock >= 1)
1834                 last[last_count++] = *lastblock - 1;
1835         last[last_count++] = *lastblock + 1;
1836         if (*lastblock >= 2)
1837                 last[last_count++] = *lastblock - 2;
1838         if (*lastblock >= 150)
1839                 last[last_count++] = *lastblock - 150;
1840         if (*lastblock >= 152)
1841                 last[last_count++] = *lastblock - 152;
1842
1843         for (i = 0; i < last_count; i++) {
1844                 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1845                                 sb->s_blocksize_bits)
1846                         continue;
1847                 ret = udf_check_anchor_block(sb, last[i], fileset);
1848                 if (ret != -EAGAIN) {
1849                         if (!ret)
1850                                 *lastblock = last[i];
1851                         return ret;
1852                 }
1853                 if (last[i] < 256)
1854                         continue;
1855                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1856                 if (ret != -EAGAIN) {
1857                         if (!ret)
1858                                 *lastblock = last[i];
1859                         return ret;
1860                 }
1861         }
1862
1863         /* Finally try block 512 in case media is open */
1864         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1865 }
1866
1867 /*
1868  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1869  * area specified by it. The function expects sbi->s_lastblock to be the last
1870  * block on the media.
1871  *
1872  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1873  * was not found.
1874  */
1875 static int udf_find_anchor(struct super_block *sb,
1876                            struct kernel_lb_addr *fileset)
1877 {
1878         struct udf_sb_info *sbi = UDF_SB(sb);
1879         sector_t lastblock = sbi->s_last_block;
1880         int ret;
1881
1882         ret = udf_scan_anchors(sb, &lastblock, fileset);
1883         if (ret != -EAGAIN)
1884                 goto out;
1885
1886         /* No anchor found? Try VARCONV conversion of block numbers */
1887         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1888         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1889         /* Firstly, we try to not convert number of the last block */
1890         ret = udf_scan_anchors(sb, &lastblock, fileset);
1891         if (ret != -EAGAIN)
1892                 goto out;
1893
1894         lastblock = sbi->s_last_block;
1895         /* Secondly, we try with converted number of the last block */
1896         ret = udf_scan_anchors(sb, &lastblock, fileset);
1897         if (ret < 0) {
1898                 /* VARCONV didn't help. Clear it. */
1899                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1900         }
1901 out:
1902         if (ret == 0)
1903                 sbi->s_last_block = lastblock;
1904         return ret;
1905 }
1906
1907 /*
1908  * Check Volume Structure Descriptor, find Anchor block and load Volume
1909  * Descriptor Sequence.
1910  *
1911  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1912  * block was not found.
1913  */
1914 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1915                         int silent, struct kernel_lb_addr *fileset)
1916 {
1917         struct udf_sb_info *sbi = UDF_SB(sb);
1918         loff_t nsr_off;
1919         int ret;
1920
1921         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1922                 if (!silent)
1923                         udf_warn(sb, "Bad block size\n");
1924                 return -EINVAL;
1925         }
1926         sbi->s_last_block = uopt->lastblock;
1927         if (!uopt->novrs) {
1928                 /* Check that it is NSR02 compliant */
1929                 nsr_off = udf_check_vsd(sb);
1930                 if (!nsr_off) {
1931                         if (!silent)
1932                                 udf_warn(sb, "No VRS found\n");
1933                         return -EINVAL;
1934                 }
1935                 if (nsr_off == -1)
1936                         udf_debug("Failed to read sector at offset %d. "
1937                                   "Assuming open disc. Skipping validity "
1938                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1939                 if (!sbi->s_last_block)
1940                         sbi->s_last_block = udf_get_last_block(sb);
1941         } else {
1942                 udf_debug("Validity check skipped because of novrs option\n");
1943         }
1944
1945         /* Look for anchor block and load Volume Descriptor Sequence */
1946         sbi->s_anchor = uopt->anchor;
1947         ret = udf_find_anchor(sb, fileset);
1948         if (ret < 0) {
1949                 if (!silent && ret == -EAGAIN)
1950                         udf_warn(sb, "No anchor found\n");
1951                 return ret;
1952         }
1953         return 0;
1954 }
1955
1956 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
1957 {
1958         struct timespec64 ts;
1959
1960         ktime_get_real_ts64(&ts);
1961         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1962         lvid->descTag.descCRC = cpu_to_le16(
1963                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1964                         le16_to_cpu(lvid->descTag.descCRCLength)));
1965         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1966 }
1967
1968 static void udf_open_lvid(struct super_block *sb)
1969 {
1970         struct udf_sb_info *sbi = UDF_SB(sb);
1971         struct buffer_head *bh = sbi->s_lvid_bh;
1972         struct logicalVolIntegrityDesc *lvid;
1973         struct logicalVolIntegrityDescImpUse *lvidiu;
1974
1975         if (!bh)
1976                 return;
1977         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1978         lvidiu = udf_sb_lvidiu(sb);
1979         if (!lvidiu)
1980                 return;
1981
1982         mutex_lock(&sbi->s_alloc_mutex);
1983         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1984         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1985         if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1986                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1987         else
1988                 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
1989
1990         udf_finalize_lvid(lvid);
1991         mark_buffer_dirty(bh);
1992         sbi->s_lvid_dirty = 0;
1993         mutex_unlock(&sbi->s_alloc_mutex);
1994         /* Make opening of filesystem visible on the media immediately */
1995         sync_dirty_buffer(bh);
1996 }
1997
1998 static void udf_close_lvid(struct super_block *sb)
1999 {
2000         struct udf_sb_info *sbi = UDF_SB(sb);
2001         struct buffer_head *bh = sbi->s_lvid_bh;
2002         struct logicalVolIntegrityDesc *lvid;
2003         struct logicalVolIntegrityDescImpUse *lvidiu;
2004
2005         if (!bh)
2006                 return;
2007         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2008         lvidiu = udf_sb_lvidiu(sb);
2009         if (!lvidiu)
2010                 return;
2011
2012         mutex_lock(&sbi->s_alloc_mutex);
2013         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2014         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2015         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2016                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2017         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2018                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2019         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2020                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2021         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2022                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2023
2024         /*
2025          * We set buffer uptodate unconditionally here to avoid spurious
2026          * warnings from mark_buffer_dirty() when previous EIO has marked
2027          * the buffer as !uptodate
2028          */
2029         set_buffer_uptodate(bh);
2030         udf_finalize_lvid(lvid);
2031         mark_buffer_dirty(bh);
2032         sbi->s_lvid_dirty = 0;
2033         mutex_unlock(&sbi->s_alloc_mutex);
2034         /* Make closing of filesystem visible on the media immediately */
2035         sync_dirty_buffer(bh);
2036 }
2037
2038 u64 lvid_get_unique_id(struct super_block *sb)
2039 {
2040         struct buffer_head *bh;
2041         struct udf_sb_info *sbi = UDF_SB(sb);
2042         struct logicalVolIntegrityDesc *lvid;
2043         struct logicalVolHeaderDesc *lvhd;
2044         u64 uniqueID;
2045         u64 ret;
2046
2047         bh = sbi->s_lvid_bh;
2048         if (!bh)
2049                 return 0;
2050
2051         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2052         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2053
2054         mutex_lock(&sbi->s_alloc_mutex);
2055         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2056         if (!(++uniqueID & 0xFFFFFFFF))
2057                 uniqueID += 16;
2058         lvhd->uniqueID = cpu_to_le64(uniqueID);
2059         udf_updated_lvid(sb);
2060         mutex_unlock(&sbi->s_alloc_mutex);
2061
2062         return ret;
2063 }
2064
2065 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2066 {
2067         int ret = -EINVAL;
2068         struct inode *inode = NULL;
2069         struct udf_options uopt;
2070         struct kernel_lb_addr rootdir, fileset;
2071         struct udf_sb_info *sbi;
2072         bool lvid_open = false;
2073
2074         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2075         /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2076         uopt.uid = make_kuid(current_user_ns(), overflowuid);
2077         uopt.gid = make_kgid(current_user_ns(), overflowgid);
2078         uopt.umask = 0;
2079         uopt.fmode = UDF_INVALID_MODE;
2080         uopt.dmode = UDF_INVALID_MODE;
2081         uopt.nls_map = NULL;
2082
2083         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2084         if (!sbi)
2085                 return -ENOMEM;
2086
2087         sb->s_fs_info = sbi;
2088
2089         mutex_init(&sbi->s_alloc_mutex);
2090
2091         if (!udf_parse_options((char *)options, &uopt, false))
2092                 goto parse_options_failure;
2093
2094         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2095             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2096                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2097                 goto parse_options_failure;
2098         }
2099         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2100                 uopt.nls_map = load_nls_default();
2101                 if (!uopt.nls_map)
2102                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2103                 else
2104                         udf_debug("Using default NLS map\n");
2105         }
2106         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2107                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2108
2109         fileset.logicalBlockNum = 0xFFFFFFFF;
2110         fileset.partitionReferenceNum = 0xFFFF;
2111
2112         sbi->s_flags = uopt.flags;
2113         sbi->s_uid = uopt.uid;
2114         sbi->s_gid = uopt.gid;
2115         sbi->s_umask = uopt.umask;
2116         sbi->s_fmode = uopt.fmode;
2117         sbi->s_dmode = uopt.dmode;
2118         sbi->s_nls_map = uopt.nls_map;
2119         rwlock_init(&sbi->s_cred_lock);
2120
2121         if (uopt.session == 0xFFFFFFFF)
2122                 sbi->s_session = udf_get_last_session(sb);
2123         else
2124                 sbi->s_session = uopt.session;
2125
2126         udf_debug("Multi-session=%d\n", sbi->s_session);
2127
2128         /* Fill in the rest of the superblock */
2129         sb->s_op = &udf_sb_ops;
2130         sb->s_export_op = &udf_export_ops;
2131
2132         sb->s_magic = UDF_SUPER_MAGIC;
2133         sb->s_time_gran = 1000;
2134
2135         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2136                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2137         } else {
2138                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2139                 while (uopt.blocksize <= 4096) {
2140                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2141                         if (ret < 0) {
2142                                 if (!silent && ret != -EACCES) {
2143                                         pr_notice("Scanning with blocksize %u failed\n",
2144                                                   uopt.blocksize);
2145                                 }
2146                                 brelse(sbi->s_lvid_bh);
2147                                 sbi->s_lvid_bh = NULL;
2148                                 /*
2149                                  * EACCES is special - we want to propagate to
2150                                  * upper layers that we cannot handle RW mount.
2151                                  */
2152                                 if (ret == -EACCES)
2153                                         break;
2154                         } else
2155                                 break;
2156
2157                         uopt.blocksize <<= 1;
2158                 }
2159         }
2160         if (ret < 0) {
2161                 if (ret == -EAGAIN) {
2162                         udf_warn(sb, "No partition found (1)\n");
2163                         ret = -EINVAL;
2164                 }
2165                 goto error_out;
2166         }
2167
2168         udf_debug("Lastblock=%u\n", sbi->s_last_block);
2169
2170         if (sbi->s_lvid_bh) {
2171                 struct logicalVolIntegrityDescImpUse *lvidiu =
2172                                                         udf_sb_lvidiu(sb);
2173                 uint16_t minUDFReadRev;
2174                 uint16_t minUDFWriteRev;
2175
2176                 if (!lvidiu) {
2177                         ret = -EINVAL;
2178                         goto error_out;
2179                 }
2180                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2181                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2182                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2183                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2184                                 minUDFReadRev,
2185                                 UDF_MAX_READ_VERSION);
2186                         ret = -EINVAL;
2187                         goto error_out;
2188                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2189                         if (!sb_rdonly(sb)) {
2190                                 ret = -EACCES;
2191                                 goto error_out;
2192                         }
2193                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2194                 }
2195
2196                 sbi->s_udfrev = minUDFWriteRev;
2197
2198                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2199                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2200                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2201                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2202         }
2203
2204         if (!sbi->s_partitions) {
2205                 udf_warn(sb, "No partition found (2)\n");
2206                 ret = -EINVAL;
2207                 goto error_out;
2208         }
2209
2210         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2211                         UDF_PART_FLAG_READ_ONLY) {
2212                 if (!sb_rdonly(sb)) {
2213                         ret = -EACCES;
2214                         goto error_out;
2215                 }
2216                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2217         }
2218
2219         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2220                 udf_warn(sb, "No fileset found\n");
2221                 ret = -EINVAL;
2222                 goto error_out;
2223         }
2224
2225         if (!silent) {
2226                 struct timestamp ts;
2227                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2228                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2229                          sbi->s_volume_ident,
2230                          le16_to_cpu(ts.year), ts.month, ts.day,
2231                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2232         }
2233         if (!sb_rdonly(sb)) {
2234                 udf_open_lvid(sb);
2235                 lvid_open = true;
2236         }
2237
2238         /* Assign the root inode */
2239         /* assign inodes by physical block number */
2240         /* perhaps it's not extensible enough, but for now ... */
2241         inode = udf_iget(sb, &rootdir);
2242         if (IS_ERR(inode)) {
2243                 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2244                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2245                 ret = PTR_ERR(inode);
2246                 goto error_out;
2247         }
2248
2249         /* Allocate a dentry for the root inode */
2250         sb->s_root = d_make_root(inode);
2251         if (!sb->s_root) {
2252                 udf_err(sb, "Couldn't allocate root dentry\n");
2253                 ret = -ENOMEM;
2254                 goto error_out;
2255         }
2256         sb->s_maxbytes = MAX_LFS_FILESIZE;
2257         sb->s_max_links = UDF_MAX_LINKS;
2258         return 0;
2259
2260 error_out:
2261         iput(sbi->s_vat_inode);
2262 parse_options_failure:
2263         if (uopt.nls_map)
2264                 unload_nls(uopt.nls_map);
2265         if (lvid_open)
2266                 udf_close_lvid(sb);
2267         brelse(sbi->s_lvid_bh);
2268         udf_sb_free_partitions(sb);
2269         kfree(sbi);
2270         sb->s_fs_info = NULL;
2271
2272         return ret;
2273 }
2274
2275 void _udf_err(struct super_block *sb, const char *function,
2276               const char *fmt, ...)
2277 {
2278         struct va_format vaf;
2279         va_list args;
2280
2281         va_start(args, fmt);
2282
2283         vaf.fmt = fmt;
2284         vaf.va = &args;
2285
2286         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2287
2288         va_end(args);
2289 }
2290
2291 void _udf_warn(struct super_block *sb, const char *function,
2292                const char *fmt, ...)
2293 {
2294         struct va_format vaf;
2295         va_list args;
2296
2297         va_start(args, fmt);
2298
2299         vaf.fmt = fmt;
2300         vaf.va = &args;
2301
2302         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2303
2304         va_end(args);
2305 }
2306
2307 static void udf_put_super(struct super_block *sb)
2308 {
2309         struct udf_sb_info *sbi;
2310
2311         sbi = UDF_SB(sb);
2312
2313         iput(sbi->s_vat_inode);
2314         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2315                 unload_nls(sbi->s_nls_map);
2316         if (!sb_rdonly(sb))
2317                 udf_close_lvid(sb);
2318         brelse(sbi->s_lvid_bh);
2319         udf_sb_free_partitions(sb);
2320         mutex_destroy(&sbi->s_alloc_mutex);
2321         kfree(sb->s_fs_info);
2322         sb->s_fs_info = NULL;
2323 }
2324
2325 static int udf_sync_fs(struct super_block *sb, int wait)
2326 {
2327         struct udf_sb_info *sbi = UDF_SB(sb);
2328
2329         mutex_lock(&sbi->s_alloc_mutex);
2330         if (sbi->s_lvid_dirty) {
2331                 struct buffer_head *bh = sbi->s_lvid_bh;
2332                 struct logicalVolIntegrityDesc *lvid;
2333
2334                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2335                 udf_finalize_lvid(lvid);
2336
2337                 /*
2338                  * Blockdevice will be synced later so we don't have to submit
2339                  * the buffer for IO
2340                  */
2341                 mark_buffer_dirty(bh);
2342                 sbi->s_lvid_dirty = 0;
2343         }
2344         mutex_unlock(&sbi->s_alloc_mutex);
2345
2346         return 0;
2347 }
2348
2349 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2350 {
2351         struct super_block *sb = dentry->d_sb;
2352         struct udf_sb_info *sbi = UDF_SB(sb);
2353         struct logicalVolIntegrityDescImpUse *lvidiu;
2354         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2355
2356         lvidiu = udf_sb_lvidiu(sb);
2357         buf->f_type = UDF_SUPER_MAGIC;
2358         buf->f_bsize = sb->s_blocksize;
2359         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2360         buf->f_bfree = udf_count_free(sb);
2361         buf->f_bavail = buf->f_bfree;
2362         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2363                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2364                         + buf->f_bfree;
2365         buf->f_ffree = buf->f_bfree;
2366         buf->f_namelen = UDF_NAME_LEN;
2367         buf->f_fsid.val[0] = (u32)id;
2368         buf->f_fsid.val[1] = (u32)(id >> 32);
2369
2370         return 0;
2371 }
2372
2373 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2374                                           struct udf_bitmap *bitmap)
2375 {
2376         struct buffer_head *bh = NULL;
2377         unsigned int accum = 0;
2378         int index;
2379         udf_pblk_t block = 0, newblock;
2380         struct kernel_lb_addr loc;
2381         uint32_t bytes;
2382         uint8_t *ptr;
2383         uint16_t ident;
2384         struct spaceBitmapDesc *bm;
2385
2386         loc.logicalBlockNum = bitmap->s_extPosition;
2387         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2388         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2389
2390         if (!bh) {
2391                 udf_err(sb, "udf_count_free failed\n");
2392                 goto out;
2393         } else if (ident != TAG_IDENT_SBD) {
2394                 brelse(bh);
2395                 udf_err(sb, "udf_count_free failed\n");
2396                 goto out;
2397         }
2398
2399         bm = (struct spaceBitmapDesc *)bh->b_data;
2400         bytes = le32_to_cpu(bm->numOfBytes);
2401         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2402         ptr = (uint8_t *)bh->b_data;
2403
2404         while (bytes > 0) {
2405                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2406                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2407                                         cur_bytes * 8);
2408                 bytes -= cur_bytes;
2409                 if (bytes) {
2410                         brelse(bh);
2411                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2412                         bh = udf_tread(sb, newblock);
2413                         if (!bh) {
2414                                 udf_debug("read failed\n");
2415                                 goto out;
2416                         }
2417                         index = 0;
2418                         ptr = (uint8_t *)bh->b_data;
2419                 }
2420         }
2421         brelse(bh);
2422 out:
2423         return accum;
2424 }
2425
2426 static unsigned int udf_count_free_table(struct super_block *sb,
2427                                          struct inode *table)
2428 {
2429         unsigned int accum = 0;
2430         uint32_t elen;
2431         struct kernel_lb_addr eloc;
2432         int8_t etype;
2433         struct extent_position epos;
2434
2435         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2436         epos.block = UDF_I(table)->i_location;
2437         epos.offset = sizeof(struct unallocSpaceEntry);
2438         epos.bh = NULL;
2439
2440         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2441                 accum += (elen >> table->i_sb->s_blocksize_bits);
2442
2443         brelse(epos.bh);
2444         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2445
2446         return accum;
2447 }
2448
2449 static unsigned int udf_count_free(struct super_block *sb)
2450 {
2451         unsigned int accum = 0;
2452         struct udf_sb_info *sbi;
2453         struct udf_part_map *map;
2454
2455         sbi = UDF_SB(sb);
2456         if (sbi->s_lvid_bh) {
2457                 struct logicalVolIntegrityDesc *lvid =
2458                         (struct logicalVolIntegrityDesc *)
2459                         sbi->s_lvid_bh->b_data;
2460                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2461                         accum = le32_to_cpu(
2462                                         lvid->freeSpaceTable[sbi->s_partition]);
2463                         if (accum == 0xFFFFFFFF)
2464                                 accum = 0;
2465                 }
2466         }
2467
2468         if (accum)
2469                 return accum;
2470
2471         map = &sbi->s_partmaps[sbi->s_partition];
2472         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2473                 accum += udf_count_free_bitmap(sb,
2474                                                map->s_uspace.s_bitmap);
2475         }
2476         if (accum)
2477                 return accum;
2478
2479         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2480                 accum += udf_count_free_table(sb,
2481                                               map->s_uspace.s_table);
2482         }
2483         return accum;
2484 }
2485
2486 MODULE_AUTHOR("Ben Fennema");
2487 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2488 MODULE_LICENSE("GPL");
2489 module_init(init_udf_fs)
2490 module_exit(exit_udf_fs)