4d6df083e0c06a774fd421806a3e40de6d32447f
[linux-2.6-block.git] / fs / splice.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * "splice": joining two ropes together by interweaving their strands.
4  *
5  * This is the "extended pipe" functionality, where a pipe is used as
6  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7  * buffer that you can use to transfer data from one end to the other.
8  *
9  * The traditional unix read/write is extended with a "splice()" operation
10  * that transfers data buffers to or from a pipe buffer.
11  *
12  * Named by Larry McVoy, original implementation from Linus, extended by
13  * Jens to support splicing to files, network, direct splicing, etc and
14  * fixing lots of bugs.
15  *
16  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19  *
20  */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/fsnotify.h>
34 #include <linux/security.h>
35 #include <linux/gfp.h>
36 #include <linux/net.h>
37 #include <linux/socket.h>
38 #include <linux/sched/signal.h>
39
40 #include "internal.h"
41
42 /*
43  * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
44  * indicate they support non-blocking reads or writes, we must clear it
45  * here if set to avoid blocking other users of this pipe if splice is
46  * being done on it.
47  */
48 static noinline void pipe_clear_nowait(struct file *file)
49 {
50         fmode_t fmode = READ_ONCE(file->f_mode);
51
52         do {
53                 if (!(fmode & FMODE_NOWAIT))
54                         break;
55         } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
56 }
57
58 /*
59  * Attempt to steal a page from a pipe buffer. This should perhaps go into
60  * a vm helper function, it's already simplified quite a bit by the
61  * addition of remove_mapping(). If success is returned, the caller may
62  * attempt to reuse this page for another destination.
63  */
64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
65                 struct pipe_buffer *buf)
66 {
67         struct folio *folio = page_folio(buf->page);
68         struct address_space *mapping;
69
70         folio_lock(folio);
71
72         mapping = folio_mapping(folio);
73         if (mapping) {
74                 WARN_ON(!folio_test_uptodate(folio));
75
76                 /*
77                  * At least for ext2 with nobh option, we need to wait on
78                  * writeback completing on this folio, since we'll remove it
79                  * from the pagecache.  Otherwise truncate wont wait on the
80                  * folio, allowing the disk blocks to be reused by someone else
81                  * before we actually wrote our data to them. fs corruption
82                  * ensues.
83                  */
84                 folio_wait_writeback(folio);
85
86                 if (!filemap_release_folio(folio, GFP_KERNEL))
87                         goto out_unlock;
88
89                 /*
90                  * If we succeeded in removing the mapping, set LRU flag
91                  * and return good.
92                  */
93                 if (remove_mapping(mapping, folio)) {
94                         buf->flags |= PIPE_BUF_FLAG_LRU;
95                         return true;
96                 }
97         }
98
99         /*
100          * Raced with truncate or failed to remove folio from current
101          * address space, unlock and return failure.
102          */
103 out_unlock:
104         folio_unlock(folio);
105         return false;
106 }
107
108 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
109                                         struct pipe_buffer *buf)
110 {
111         put_page(buf->page);
112         buf->flags &= ~PIPE_BUF_FLAG_LRU;
113 }
114
115 /*
116  * Check whether the contents of buf is OK to access. Since the content
117  * is a page cache page, IO may be in flight.
118  */
119 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
120                                        struct pipe_buffer *buf)
121 {
122         struct folio *folio = page_folio(buf->page);
123         int err;
124
125         if (!folio_test_uptodate(folio)) {
126                 folio_lock(folio);
127
128                 /*
129                  * Folio got truncated/unhashed. This will cause a 0-byte
130                  * splice, if this is the first page.
131                  */
132                 if (!folio->mapping) {
133                         err = -ENODATA;
134                         goto error;
135                 }
136
137                 /*
138                  * Uh oh, read-error from disk.
139                  */
140                 if (!folio_test_uptodate(folio)) {
141                         err = -EIO;
142                         goto error;
143                 }
144
145                 /* Folio is ok after all, we are done */
146                 folio_unlock(folio);
147         }
148
149         return 0;
150 error:
151         folio_unlock(folio);
152         return err;
153 }
154
155 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
156         .confirm        = page_cache_pipe_buf_confirm,
157         .release        = page_cache_pipe_buf_release,
158         .try_steal      = page_cache_pipe_buf_try_steal,
159         .get            = generic_pipe_buf_get,
160 };
161
162 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
163                 struct pipe_buffer *buf)
164 {
165         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
166                 return false;
167
168         buf->flags |= PIPE_BUF_FLAG_LRU;
169         return generic_pipe_buf_try_steal(pipe, buf);
170 }
171
172 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
173         .release        = page_cache_pipe_buf_release,
174         .try_steal      = user_page_pipe_buf_try_steal,
175         .get            = generic_pipe_buf_get,
176 };
177
178 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
179 {
180         smp_mb();
181         if (waitqueue_active(&pipe->rd_wait))
182                 wake_up_interruptible(&pipe->rd_wait);
183         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
184 }
185
186 /**
187  * splice_to_pipe - fill passed data into a pipe
188  * @pipe:       pipe to fill
189  * @spd:        data to fill
190  *
191  * Description:
192  *    @spd contains a map of pages and len/offset tuples, along with
193  *    the struct pipe_buf_operations associated with these pages. This
194  *    function will link that data to the pipe.
195  *
196  */
197 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
198                        struct splice_pipe_desc *spd)
199 {
200         unsigned int spd_pages = spd->nr_pages;
201         unsigned int tail = pipe->tail;
202         unsigned int head = pipe->head;
203         ssize_t ret = 0;
204         int page_nr = 0;
205
206         if (!spd_pages)
207                 return 0;
208
209         if (unlikely(!pipe->readers)) {
210                 send_sig(SIGPIPE, current, 0);
211                 ret = -EPIPE;
212                 goto out;
213         }
214
215         while (!pipe_full(head, tail, pipe->max_usage)) {
216                 struct pipe_buffer *buf = pipe_buf(pipe, head);
217
218                 buf->page = spd->pages[page_nr];
219                 buf->offset = spd->partial[page_nr].offset;
220                 buf->len = spd->partial[page_nr].len;
221                 buf->private = spd->partial[page_nr].private;
222                 buf->ops = spd->ops;
223                 buf->flags = 0;
224
225                 head++;
226                 pipe->head = head;
227                 page_nr++;
228                 ret += buf->len;
229
230                 if (!--spd->nr_pages)
231                         break;
232         }
233
234         if (!ret)
235                 ret = -EAGAIN;
236
237 out:
238         while (page_nr < spd_pages)
239                 spd->spd_release(spd, page_nr++);
240
241         return ret;
242 }
243 EXPORT_SYMBOL_GPL(splice_to_pipe);
244
245 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
246 {
247         unsigned int head = pipe->head;
248         unsigned int tail = pipe->tail;
249         int ret;
250
251         if (unlikely(!pipe->readers)) {
252                 send_sig(SIGPIPE, current, 0);
253                 ret = -EPIPE;
254         } else if (pipe_full(head, tail, pipe->max_usage)) {
255                 ret = -EAGAIN;
256         } else {
257                 *pipe_buf(pipe, head) = *buf;
258                 pipe->head = head + 1;
259                 return buf->len;
260         }
261         pipe_buf_release(pipe, buf);
262         return ret;
263 }
264 EXPORT_SYMBOL(add_to_pipe);
265
266 /*
267  * Check if we need to grow the arrays holding pages and partial page
268  * descriptions.
269  */
270 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
271 {
272         unsigned int max_usage = READ_ONCE(pipe->max_usage);
273
274         spd->nr_pages_max = max_usage;
275         if (max_usage <= PIPE_DEF_BUFFERS)
276                 return 0;
277
278         spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
279         spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
280                                      GFP_KERNEL);
281
282         if (spd->pages && spd->partial)
283                 return 0;
284
285         kfree(spd->pages);
286         kfree(spd->partial);
287         return -ENOMEM;
288 }
289
290 void splice_shrink_spd(struct splice_pipe_desc *spd)
291 {
292         if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
293                 return;
294
295         kfree(spd->pages);
296         kfree(spd->partial);
297 }
298
299 /**
300  * copy_splice_read -  Copy data from a file and splice the copy into a pipe
301  * @in: The file to read from
302  * @ppos: Pointer to the file position to read from
303  * @pipe: The pipe to splice into
304  * @len: The amount to splice
305  * @flags: The SPLICE_F_* flags
306  *
307  * This function allocates a bunch of pages sufficient to hold the requested
308  * amount of data (but limited by the remaining pipe capacity), passes it to
309  * the file's ->read_iter() to read into and then splices the used pages into
310  * the pipe.
311  *
312  * Return: On success, the number of bytes read will be returned and *@ppos
313  * will be updated if appropriate; 0 will be returned if there is no more data
314  * to be read; -EAGAIN will be returned if the pipe had no space, and some
315  * other negative error code will be returned on error.  A short read may occur
316  * if the pipe has insufficient space, we reach the end of the data or we hit a
317  * hole.
318  */
319 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
320                          struct pipe_inode_info *pipe,
321                          size_t len, unsigned int flags)
322 {
323         struct iov_iter to;
324         struct bio_vec *bv;
325         struct kiocb kiocb;
326         struct page **pages;
327         ssize_t ret;
328         size_t used, npages, chunk, remain, keep = 0;
329         int i;
330
331         /* Work out how much data we can actually add into the pipe */
332         used = pipe_buf_usage(pipe);
333         npages = max_t(ssize_t, pipe->max_usage - used, 0);
334         len = min_t(size_t, len, npages * PAGE_SIZE);
335         npages = DIV_ROUND_UP(len, PAGE_SIZE);
336
337         bv = kzalloc(array_size(npages, sizeof(bv[0])) +
338                      array_size(npages, sizeof(struct page *)), GFP_KERNEL);
339         if (!bv)
340                 return -ENOMEM;
341
342         pages = (struct page **)(bv + npages);
343         npages = alloc_pages_bulk(GFP_USER, npages, pages);
344         if (!npages) {
345                 kfree(bv);
346                 return -ENOMEM;
347         }
348
349         remain = len = min_t(size_t, len, npages * PAGE_SIZE);
350
351         for (i = 0; i < npages; i++) {
352                 chunk = min_t(size_t, PAGE_SIZE, remain);
353                 bv[i].bv_page = pages[i];
354                 bv[i].bv_offset = 0;
355                 bv[i].bv_len = chunk;
356                 remain -= chunk;
357         }
358
359         /* Do the I/O */
360         iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
361         init_sync_kiocb(&kiocb, in);
362         kiocb.ki_pos = *ppos;
363         ret = in->f_op->read_iter(&kiocb, &to);
364
365         if (ret > 0) {
366                 keep = DIV_ROUND_UP(ret, PAGE_SIZE);
367                 *ppos = kiocb.ki_pos;
368         }
369
370         /*
371          * Callers of ->splice_read() expect -EAGAIN on "can't put anything in
372          * there", rather than -EFAULT.
373          */
374         if (ret == -EFAULT)
375                 ret = -EAGAIN;
376
377         /* Free any pages that didn't get touched at all. */
378         if (keep < npages)
379                 release_pages(pages + keep, npages - keep);
380
381         /* Push the remaining pages into the pipe. */
382         remain = ret;
383         for (i = 0; i < keep; i++) {
384                 struct pipe_buffer *buf = pipe_head_buf(pipe);
385
386                 chunk = min_t(size_t, remain, PAGE_SIZE);
387                 *buf = (struct pipe_buffer) {
388                         .ops    = &default_pipe_buf_ops,
389                         .page   = bv[i].bv_page,
390                         .offset = 0,
391                         .len    = chunk,
392                 };
393                 pipe->head++;
394                 remain -= chunk;
395         }
396
397         kfree(bv);
398         return ret;
399 }
400 EXPORT_SYMBOL(copy_splice_read);
401
402 const struct pipe_buf_operations default_pipe_buf_ops = {
403         .release        = generic_pipe_buf_release,
404         .try_steal      = generic_pipe_buf_try_steal,
405         .get            = generic_pipe_buf_get,
406 };
407
408 /* Pipe buffer operations for a socket and similar. */
409 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
410         .release        = generic_pipe_buf_release,
411         .get            = generic_pipe_buf_get,
412 };
413 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
414
415 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
416 {
417         smp_mb();
418         if (waitqueue_active(&pipe->wr_wait))
419                 wake_up_interruptible(&pipe->wr_wait);
420         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
421 }
422
423 /**
424  * splice_from_pipe_feed - feed available data from a pipe to a file
425  * @pipe:       pipe to splice from
426  * @sd:         information to @actor
427  * @actor:      handler that splices the data
428  *
429  * Description:
430  *    This function loops over the pipe and calls @actor to do the
431  *    actual moving of a single struct pipe_buffer to the desired
432  *    destination.  It returns when there's no more buffers left in
433  *    the pipe or if the requested number of bytes (@sd->total_len)
434  *    have been copied.  It returns a positive number (one) if the
435  *    pipe needs to be filled with more data, zero if the required
436  *    number of bytes have been copied and -errno on error.
437  *
438  *    This, together with splice_from_pipe_{begin,end,next}, may be
439  *    used to implement the functionality of __splice_from_pipe() when
440  *    locking is required around copying the pipe buffers to the
441  *    destination.
442  */
443 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
444                           splice_actor *actor)
445 {
446         unsigned int head = pipe->head;
447         unsigned int tail = pipe->tail;
448         int ret;
449
450         while (!pipe_empty(head, tail)) {
451                 struct pipe_buffer *buf = pipe_buf(pipe, tail);
452
453                 sd->len = buf->len;
454                 if (sd->len > sd->total_len)
455                         sd->len = sd->total_len;
456
457                 ret = pipe_buf_confirm(pipe, buf);
458                 if (unlikely(ret)) {
459                         if (ret == -ENODATA)
460                                 ret = 0;
461                         return ret;
462                 }
463
464                 ret = actor(pipe, buf, sd);
465                 if (ret <= 0)
466                         return ret;
467
468                 buf->offset += ret;
469                 buf->len -= ret;
470
471                 sd->num_spliced += ret;
472                 sd->len -= ret;
473                 sd->pos += ret;
474                 sd->total_len -= ret;
475
476                 if (!buf->len) {
477                         pipe_buf_release(pipe, buf);
478                         tail++;
479                         pipe->tail = tail;
480                         if (pipe->files)
481                                 sd->need_wakeup = true;
482                 }
483
484                 if (!sd->total_len)
485                         return 0;
486         }
487
488         return 1;
489 }
490
491 /* We know we have a pipe buffer, but maybe it's empty? */
492 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
493 {
494         unsigned int tail = pipe->tail;
495         struct pipe_buffer *buf = pipe_buf(pipe, tail);
496
497         if (unlikely(!buf->len)) {
498                 pipe_buf_release(pipe, buf);
499                 pipe->tail = tail+1;
500                 return true;
501         }
502
503         return false;
504 }
505
506 /**
507  * splice_from_pipe_next - wait for some data to splice from
508  * @pipe:       pipe to splice from
509  * @sd:         information about the splice operation
510  *
511  * Description:
512  *    This function will wait for some data and return a positive
513  *    value (one) if pipe buffers are available.  It will return zero
514  *    or -errno if no more data needs to be spliced.
515  */
516 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
517 {
518         /*
519          * Check for signal early to make process killable when there are
520          * always buffers available
521          */
522         if (signal_pending(current))
523                 return -ERESTARTSYS;
524
525 repeat:
526         while (pipe_is_empty(pipe)) {
527                 if (!pipe->writers)
528                         return 0;
529
530                 if (sd->num_spliced)
531                         return 0;
532
533                 if (sd->flags & SPLICE_F_NONBLOCK)
534                         return -EAGAIN;
535
536                 if (signal_pending(current))
537                         return -ERESTARTSYS;
538
539                 if (sd->need_wakeup) {
540                         wakeup_pipe_writers(pipe);
541                         sd->need_wakeup = false;
542                 }
543
544                 pipe_wait_readable(pipe);
545         }
546
547         if (eat_empty_buffer(pipe))
548                 goto repeat;
549
550         return 1;
551 }
552
553 /**
554  * splice_from_pipe_begin - start splicing from pipe
555  * @sd:         information about the splice operation
556  *
557  * Description:
558  *    This function should be called before a loop containing
559  *    splice_from_pipe_next() and splice_from_pipe_feed() to
560  *    initialize the necessary fields of @sd.
561  */
562 static void splice_from_pipe_begin(struct splice_desc *sd)
563 {
564         sd->num_spliced = 0;
565         sd->need_wakeup = false;
566 }
567
568 /**
569  * splice_from_pipe_end - finish splicing from pipe
570  * @pipe:       pipe to splice from
571  * @sd:         information about the splice operation
572  *
573  * Description:
574  *    This function will wake up pipe writers if necessary.  It should
575  *    be called after a loop containing splice_from_pipe_next() and
576  *    splice_from_pipe_feed().
577  */
578 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
579 {
580         if (sd->need_wakeup)
581                 wakeup_pipe_writers(pipe);
582 }
583
584 /**
585  * __splice_from_pipe - splice data from a pipe to given actor
586  * @pipe:       pipe to splice from
587  * @sd:         information to @actor
588  * @actor:      handler that splices the data
589  *
590  * Description:
591  *    This function does little more than loop over the pipe and call
592  *    @actor to do the actual moving of a single struct pipe_buffer to
593  *    the desired destination. See pipe_to_file, pipe_to_sendmsg, or
594  *    pipe_to_user.
595  *
596  */
597 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
598                            splice_actor *actor)
599 {
600         int ret;
601
602         splice_from_pipe_begin(sd);
603         do {
604                 cond_resched();
605                 ret = splice_from_pipe_next(pipe, sd);
606                 if (ret > 0)
607                         ret = splice_from_pipe_feed(pipe, sd, actor);
608         } while (ret > 0);
609         splice_from_pipe_end(pipe, sd);
610
611         return sd->num_spliced ? sd->num_spliced : ret;
612 }
613 EXPORT_SYMBOL(__splice_from_pipe);
614
615 /**
616  * splice_from_pipe - splice data from a pipe to a file
617  * @pipe:       pipe to splice from
618  * @out:        file to splice to
619  * @ppos:       position in @out
620  * @len:        how many bytes to splice
621  * @flags:      splice modifier flags
622  * @actor:      handler that splices the data
623  *
624  * Description:
625  *    See __splice_from_pipe. This function locks the pipe inode,
626  *    otherwise it's identical to __splice_from_pipe().
627  *
628  */
629 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
630                          loff_t *ppos, size_t len, unsigned int flags,
631                          splice_actor *actor)
632 {
633         ssize_t ret;
634         struct splice_desc sd = {
635                 .total_len = len,
636                 .flags = flags,
637                 .pos = *ppos,
638                 .u.file = out,
639         };
640
641         pipe_lock(pipe);
642         ret = __splice_from_pipe(pipe, &sd, actor);
643         pipe_unlock(pipe);
644
645         return ret;
646 }
647
648 /**
649  * iter_file_splice_write - splice data from a pipe to a file
650  * @pipe:       pipe info
651  * @out:        file to write to
652  * @ppos:       position in @out
653  * @len:        number of bytes to splice
654  * @flags:      splice modifier flags
655  *
656  * Description:
657  *    Will either move or copy pages (determined by @flags options) from
658  *    the given pipe inode to the given file.
659  *    This one is ->write_iter-based.
660  *
661  */
662 ssize_t
663 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
664                           loff_t *ppos, size_t len, unsigned int flags)
665 {
666         struct splice_desc sd = {
667                 .total_len = len,
668                 .flags = flags,
669                 .pos = *ppos,
670                 .u.file = out,
671         };
672         int nbufs = pipe->max_usage;
673         struct bio_vec *array;
674         ssize_t ret;
675
676         if (!out->f_op->write_iter)
677                 return -EINVAL;
678
679         array = kcalloc(nbufs, sizeof(struct bio_vec), GFP_KERNEL);
680         if (unlikely(!array))
681                 return -ENOMEM;
682
683         pipe_lock(pipe);
684
685         splice_from_pipe_begin(&sd);
686         while (sd.total_len) {
687                 struct kiocb kiocb;
688                 struct iov_iter from;
689                 unsigned int head, tail;
690                 size_t left;
691                 int n;
692
693                 ret = splice_from_pipe_next(pipe, &sd);
694                 if (ret <= 0)
695                         break;
696
697                 if (unlikely(nbufs < pipe->max_usage)) {
698                         kfree(array);
699                         nbufs = pipe->max_usage;
700                         array = kcalloc(nbufs, sizeof(struct bio_vec),
701                                         GFP_KERNEL);
702                         if (!array) {
703                                 ret = -ENOMEM;
704                                 break;
705                         }
706                 }
707
708                 head = pipe->head;
709                 tail = pipe->tail;
710
711                 /* build the vector */
712                 left = sd.total_len;
713                 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
714                         struct pipe_buffer *buf = pipe_buf(pipe, tail);
715                         size_t this_len = buf->len;
716
717                         /* zero-length bvecs are not supported, skip them */
718                         if (!this_len)
719                                 continue;
720                         this_len = min(this_len, left);
721
722                         ret = pipe_buf_confirm(pipe, buf);
723                         if (unlikely(ret)) {
724                                 if (ret == -ENODATA)
725                                         ret = 0;
726                                 goto done;
727                         }
728
729                         bvec_set_page(&array[n], buf->page, this_len,
730                                       buf->offset);
731                         left -= this_len;
732                         n++;
733                 }
734
735                 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
736                 init_sync_kiocb(&kiocb, out);
737                 kiocb.ki_pos = sd.pos;
738                 ret = out->f_op->write_iter(&kiocb, &from);
739                 sd.pos = kiocb.ki_pos;
740                 if (ret <= 0)
741                         break;
742
743                 sd.num_spliced += ret;
744                 sd.total_len -= ret;
745                 *ppos = sd.pos;
746
747                 /* dismiss the fully eaten buffers, adjust the partial one */
748                 tail = pipe->tail;
749                 while (ret) {
750                         struct pipe_buffer *buf = pipe_buf(pipe, tail);
751                         if (ret >= buf->len) {
752                                 ret -= buf->len;
753                                 buf->len = 0;
754                                 pipe_buf_release(pipe, buf);
755                                 tail++;
756                                 pipe->tail = tail;
757                                 if (pipe->files)
758                                         sd.need_wakeup = true;
759                         } else {
760                                 buf->offset += ret;
761                                 buf->len -= ret;
762                                 ret = 0;
763                         }
764                 }
765         }
766 done:
767         kfree(array);
768         splice_from_pipe_end(pipe, &sd);
769
770         pipe_unlock(pipe);
771
772         if (sd.num_spliced)
773                 ret = sd.num_spliced;
774
775         return ret;
776 }
777
778 EXPORT_SYMBOL(iter_file_splice_write);
779
780 #ifdef CONFIG_NET
781 /**
782  * splice_to_socket - splice data from a pipe to a socket
783  * @pipe:       pipe to splice from
784  * @out:        socket to write to
785  * @ppos:       position in @out
786  * @len:        number of bytes to splice
787  * @flags:      splice modifier flags
788  *
789  * Description:
790  *    Will send @len bytes from the pipe to a network socket. No data copying
791  *    is involved.
792  *
793  */
794 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out,
795                          loff_t *ppos, size_t len, unsigned int flags)
796 {
797         struct socket *sock = sock_from_file(out);
798         struct bio_vec bvec[16];
799         struct msghdr msg = {};
800         ssize_t ret = 0;
801         size_t spliced = 0;
802         bool need_wakeup = false;
803
804         pipe_lock(pipe);
805
806         while (len > 0) {
807                 unsigned int head, tail, bc = 0;
808                 size_t remain = len;
809
810                 /*
811                  * Check for signal early to make process killable when there
812                  * are always buffers available
813                  */
814                 ret = -ERESTARTSYS;
815                 if (signal_pending(current))
816                         break;
817
818                 while (pipe_is_empty(pipe)) {
819                         ret = 0;
820                         if (!pipe->writers)
821                                 goto out;
822
823                         if (spliced)
824                                 goto out;
825
826                         ret = -EAGAIN;
827                         if (flags & SPLICE_F_NONBLOCK)
828                                 goto out;
829
830                         ret = -ERESTARTSYS;
831                         if (signal_pending(current))
832                                 goto out;
833
834                         if (need_wakeup) {
835                                 wakeup_pipe_writers(pipe);
836                                 need_wakeup = false;
837                         }
838
839                         pipe_wait_readable(pipe);
840                 }
841
842                 head = pipe->head;
843                 tail = pipe->tail;
844
845                 while (!pipe_empty(head, tail)) {
846                         struct pipe_buffer *buf = pipe_buf(pipe, tail);
847                         size_t seg;
848
849                         if (!buf->len) {
850                                 tail++;
851                                 continue;
852                         }
853
854                         seg = min_t(size_t, remain, buf->len);
855
856                         ret = pipe_buf_confirm(pipe, buf);
857                         if (unlikely(ret)) {
858                                 if (ret == -ENODATA)
859                                         ret = 0;
860                                 break;
861                         }
862
863                         bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset);
864                         remain -= seg;
865                         if (remain == 0 || bc >= ARRAY_SIZE(bvec))
866                                 break;
867                         tail++;
868                 }
869
870                 if (!bc)
871                         break;
872
873                 msg.msg_flags = MSG_SPLICE_PAGES;
874                 if (flags & SPLICE_F_MORE)
875                         msg.msg_flags |= MSG_MORE;
876                 if (remain && pipe_occupancy(pipe->head, tail) > 0)
877                         msg.msg_flags |= MSG_MORE;
878                 if (out->f_flags & O_NONBLOCK)
879                         msg.msg_flags |= MSG_DONTWAIT;
880
881                 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc,
882                               len - remain);
883                 ret = sock_sendmsg(sock, &msg);
884                 if (ret <= 0)
885                         break;
886
887                 spliced += ret;
888                 len -= ret;
889                 tail = pipe->tail;
890                 while (ret > 0) {
891                         struct pipe_buffer *buf = pipe_buf(pipe, tail);
892                         size_t seg = min_t(size_t, ret, buf->len);
893
894                         buf->offset += seg;
895                         buf->len -= seg;
896                         ret -= seg;
897
898                         if (!buf->len) {
899                                 pipe_buf_release(pipe, buf);
900                                 tail++;
901                         }
902                 }
903
904                 if (tail != pipe->tail) {
905                         pipe->tail = tail;
906                         if (pipe->files)
907                                 need_wakeup = true;
908                 }
909         }
910
911 out:
912         pipe_unlock(pipe);
913         if (need_wakeup)
914                 wakeup_pipe_writers(pipe);
915         return spliced ?: ret;
916 }
917 #endif
918
919 static int warn_unsupported(struct file *file, const char *op)
920 {
921         pr_debug_ratelimited(
922                 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
923                 op, file, current->pid, current->comm);
924         return -EINVAL;
925 }
926
927 /*
928  * Attempt to initiate a splice from pipe to file.
929  */
930 static ssize_t do_splice_from(struct pipe_inode_info *pipe, struct file *out,
931                               loff_t *ppos, size_t len, unsigned int flags)
932 {
933         if (unlikely(!out->f_op->splice_write))
934                 return warn_unsupported(out, "write");
935         return out->f_op->splice_write(pipe, out, ppos, len, flags);
936 }
937
938 /*
939  * Indicate to the caller that there was a premature EOF when reading from the
940  * source and the caller didn't indicate they would be sending more data after
941  * this.
942  */
943 static void do_splice_eof(struct splice_desc *sd)
944 {
945         if (sd->splice_eof)
946                 sd->splice_eof(sd);
947 }
948
949 /*
950  * Callers already called rw_verify_area() on the entire range.
951  * No need to call it for sub ranges.
952  */
953 static ssize_t do_splice_read(struct file *in, loff_t *ppos,
954                               struct pipe_inode_info *pipe, size_t len,
955                               unsigned int flags)
956 {
957         unsigned int p_space;
958
959         if (unlikely(!(in->f_mode & FMODE_READ)))
960                 return -EBADF;
961         if (!len)
962                 return 0;
963
964         /* Don't try to read more the pipe has space for. */
965         p_space = pipe->max_usage - pipe_buf_usage(pipe);
966         len = min_t(size_t, len, p_space << PAGE_SHIFT);
967
968         if (unlikely(len > MAX_RW_COUNT))
969                 len = MAX_RW_COUNT;
970
971         if (unlikely(!in->f_op->splice_read))
972                 return warn_unsupported(in, "read");
973         /*
974          * O_DIRECT and DAX don't deal with the pagecache, so we allocate a
975          * buffer, copy into it and splice that into the pipe.
976          */
977         if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host))
978                 return copy_splice_read(in, ppos, pipe, len, flags);
979         return in->f_op->splice_read(in, ppos, pipe, len, flags);
980 }
981
982 /**
983  * vfs_splice_read - Read data from a file and splice it into a pipe
984  * @in:         File to splice from
985  * @ppos:       Input file offset
986  * @pipe:       Pipe to splice to
987  * @len:        Number of bytes to splice
988  * @flags:      Splice modifier flags (SPLICE_F_*)
989  *
990  * Splice the requested amount of data from the input file to the pipe.  This
991  * is synchronous as the caller must hold the pipe lock across the entire
992  * operation.
993  *
994  * If successful, it returns the amount of data spliced, 0 if it hit the EOF or
995  * a hole and a negative error code otherwise.
996  */
997 ssize_t vfs_splice_read(struct file *in, loff_t *ppos,
998                         struct pipe_inode_info *pipe, size_t len,
999                         unsigned int flags)
1000 {
1001         ssize_t ret;
1002
1003         ret = rw_verify_area(READ, in, ppos, len);
1004         if (unlikely(ret < 0))
1005                 return ret;
1006
1007         return do_splice_read(in, ppos, pipe, len, flags);
1008 }
1009 EXPORT_SYMBOL_GPL(vfs_splice_read);
1010
1011 /**
1012  * splice_direct_to_actor - splices data directly between two non-pipes
1013  * @in:         file to splice from
1014  * @sd:         actor information on where to splice to
1015  * @actor:      handles the data splicing
1016  *
1017  * Description:
1018  *    This is a special case helper to splice directly between two
1019  *    points, without requiring an explicit pipe. Internally an allocated
1020  *    pipe is cached in the process, and reused during the lifetime of
1021  *    that process.
1022  *
1023  */
1024 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1025                                splice_direct_actor *actor)
1026 {
1027         struct pipe_inode_info *pipe;
1028         ssize_t ret, bytes;
1029         size_t len;
1030         int i, flags, more;
1031
1032         /*
1033          * We require the input to be seekable, as we don't want to randomly
1034          * drop data for eg socket -> socket splicing. Use the piped splicing
1035          * for that!
1036          */
1037         if (unlikely(!(in->f_mode & FMODE_LSEEK)))
1038                 return -EINVAL;
1039
1040         /*
1041          * neither in nor out is a pipe, setup an internal pipe attached to
1042          * 'out' and transfer the wanted data from 'in' to 'out' through that
1043          */
1044         pipe = current->splice_pipe;
1045         if (unlikely(!pipe)) {
1046                 pipe = alloc_pipe_info();
1047                 if (!pipe)
1048                         return -ENOMEM;
1049
1050                 /*
1051                  * We don't have an immediate reader, but we'll read the stuff
1052                  * out of the pipe right after the splice_to_pipe(). So set
1053                  * PIPE_READERS appropriately.
1054                  */
1055                 pipe->readers = 1;
1056
1057                 current->splice_pipe = pipe;
1058         }
1059
1060         /*
1061          * Do the splice.
1062          */
1063         bytes = 0;
1064         len = sd->total_len;
1065
1066         /* Don't block on output, we have to drain the direct pipe. */
1067         flags = sd->flags;
1068         sd->flags &= ~SPLICE_F_NONBLOCK;
1069
1070         /*
1071          * We signal MORE until we've read sufficient data to fulfill the
1072          * request and we keep signalling it if the caller set it.
1073          */
1074         more = sd->flags & SPLICE_F_MORE;
1075         sd->flags |= SPLICE_F_MORE;
1076
1077         WARN_ON_ONCE(!pipe_is_empty(pipe));
1078
1079         while (len) {
1080                 size_t read_len;
1081                 loff_t pos = sd->pos, prev_pos = pos;
1082
1083                 ret = do_splice_read(in, &pos, pipe, len, flags);
1084                 if (unlikely(ret <= 0))
1085                         goto read_failure;
1086
1087                 read_len = ret;
1088                 sd->total_len = read_len;
1089
1090                 /*
1091                  * If we now have sufficient data to fulfill the request then
1092                  * we clear SPLICE_F_MORE if it was not set initially.
1093                  */
1094                 if (read_len >= len && !more)
1095                         sd->flags &= ~SPLICE_F_MORE;
1096
1097                 /*
1098                  * NOTE: nonblocking mode only applies to the input. We
1099                  * must not do the output in nonblocking mode as then we
1100                  * could get stuck data in the internal pipe:
1101                  */
1102                 ret = actor(pipe, sd);
1103                 if (unlikely(ret <= 0)) {
1104                         sd->pos = prev_pos;
1105                         goto out_release;
1106                 }
1107
1108                 bytes += ret;
1109                 len -= ret;
1110                 sd->pos = pos;
1111
1112                 if (ret < read_len) {
1113                         sd->pos = prev_pos + ret;
1114                         goto out_release;
1115                 }
1116         }
1117
1118 done:
1119         pipe->tail = pipe->head = 0;
1120         file_accessed(in);
1121         return bytes;
1122
1123 read_failure:
1124         /*
1125          * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that
1126          * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a
1127          * "->splice_in()" that returned EOF (ie zero) *and* we have sent at
1128          * least 1 byte *then* we will also do the ->splice_eof() call.
1129          */
1130         if (ret == 0 && !more && len > 0 && bytes)
1131                 do_splice_eof(sd);
1132 out_release:
1133         /*
1134          * If we did an incomplete transfer we must release
1135          * the pipe buffers in question:
1136          */
1137         for (i = 0; i < pipe->ring_size; i++) {
1138                 struct pipe_buffer *buf = &pipe->bufs[i];
1139
1140                 if (buf->ops)
1141                         pipe_buf_release(pipe, buf);
1142         }
1143
1144         if (!bytes)
1145                 bytes = ret;
1146
1147         goto done;
1148 }
1149 EXPORT_SYMBOL(splice_direct_to_actor);
1150
1151 static int direct_splice_actor(struct pipe_inode_info *pipe,
1152                                struct splice_desc *sd)
1153 {
1154         struct file *file = sd->u.file;
1155         long ret;
1156
1157         file_start_write(file);
1158         ret = do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
1159         file_end_write(file);
1160         return ret;
1161 }
1162
1163 static int splice_file_range_actor(struct pipe_inode_info *pipe,
1164                                         struct splice_desc *sd)
1165 {
1166         struct file *file = sd->u.file;
1167
1168         return do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
1169 }
1170
1171 static void direct_file_splice_eof(struct splice_desc *sd)
1172 {
1173         struct file *file = sd->u.file;
1174
1175         if (file->f_op->splice_eof)
1176                 file->f_op->splice_eof(file);
1177 }
1178
1179 static ssize_t do_splice_direct_actor(struct file *in, loff_t *ppos,
1180                                       struct file *out, loff_t *opos,
1181                                       size_t len, unsigned int flags,
1182                                       splice_direct_actor *actor)
1183 {
1184         struct splice_desc sd = {
1185                 .len            = len,
1186                 .total_len      = len,
1187                 .flags          = flags,
1188                 .pos            = *ppos,
1189                 .u.file         = out,
1190                 .splice_eof     = direct_file_splice_eof,
1191                 .opos           = opos,
1192         };
1193         ssize_t ret;
1194
1195         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1196                 return -EBADF;
1197
1198         if (unlikely(out->f_flags & O_APPEND))
1199                 return -EINVAL;
1200
1201         ret = splice_direct_to_actor(in, &sd, actor);
1202         if (ret > 0)
1203                 *ppos = sd.pos;
1204
1205         return ret;
1206 }
1207 /**
1208  * do_splice_direct - splices data directly between two files
1209  * @in:         file to splice from
1210  * @ppos:       input file offset
1211  * @out:        file to splice to
1212  * @opos:       output file offset
1213  * @len:        number of bytes to splice
1214  * @flags:      splice modifier flags
1215  *
1216  * Description:
1217  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1218  *    doing it in the application would incur an extra system call
1219  *    (splice in + splice out, as compared to just sendfile()). So this helper
1220  *    can splice directly through a process-private pipe.
1221  *
1222  * Callers already called rw_verify_area() on the entire range.
1223  */
1224 ssize_t do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1225                          loff_t *opos, size_t len, unsigned int flags)
1226 {
1227         return do_splice_direct_actor(in, ppos, out, opos, len, flags,
1228                                       direct_splice_actor);
1229 }
1230 EXPORT_SYMBOL(do_splice_direct);
1231
1232 /**
1233  * splice_file_range - splices data between two files for copy_file_range()
1234  * @in:         file to splice from
1235  * @ppos:       input file offset
1236  * @out:        file to splice to
1237  * @opos:       output file offset
1238  * @len:        number of bytes to splice
1239  *
1240  * Description:
1241  *    For use by ->copy_file_range() methods.
1242  *    Like do_splice_direct(), but vfs_copy_file_range() already holds
1243  *    start_file_write() on @out file.
1244  *
1245  * Callers already called rw_verify_area() on the entire range.
1246  */
1247 ssize_t splice_file_range(struct file *in, loff_t *ppos, struct file *out,
1248                           loff_t *opos, size_t len)
1249 {
1250         lockdep_assert(file_write_started(out));
1251
1252         return do_splice_direct_actor(in, ppos, out, opos,
1253                                       min_t(size_t, len, MAX_RW_COUNT),
1254                                       0, splice_file_range_actor);
1255 }
1256 EXPORT_SYMBOL(splice_file_range);
1257
1258 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1259 {
1260         for (;;) {
1261                 if (unlikely(!pipe->readers)) {
1262                         send_sig(SIGPIPE, current, 0);
1263                         return -EPIPE;
1264                 }
1265                 if (!pipe_is_full(pipe))
1266                         return 0;
1267                 if (flags & SPLICE_F_NONBLOCK)
1268                         return -EAGAIN;
1269                 if (signal_pending(current))
1270                         return -ERESTARTSYS;
1271                 pipe_wait_writable(pipe);
1272         }
1273 }
1274
1275 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1276                                struct pipe_inode_info *opipe,
1277                                size_t len, unsigned int flags);
1278
1279 ssize_t splice_file_to_pipe(struct file *in,
1280                             struct pipe_inode_info *opipe,
1281                             loff_t *offset,
1282                             size_t len, unsigned int flags)
1283 {
1284         ssize_t ret;
1285
1286         pipe_lock(opipe);
1287         ret = wait_for_space(opipe, flags);
1288         if (!ret)
1289                 ret = do_splice_read(in, offset, opipe, len, flags);
1290         pipe_unlock(opipe);
1291         if (ret > 0)
1292                 wakeup_pipe_readers(opipe);
1293         return ret;
1294 }
1295
1296 /*
1297  * Determine where to splice to/from.
1298  */
1299 ssize_t do_splice(struct file *in, loff_t *off_in, struct file *out,
1300                   loff_t *off_out, size_t len, unsigned int flags)
1301 {
1302         struct pipe_inode_info *ipipe;
1303         struct pipe_inode_info *opipe;
1304         loff_t offset;
1305         ssize_t ret;
1306
1307         if (unlikely(!(in->f_mode & FMODE_READ) ||
1308                      !(out->f_mode & FMODE_WRITE)))
1309                 return -EBADF;
1310
1311         ipipe = get_pipe_info(in, true);
1312         opipe = get_pipe_info(out, true);
1313
1314         if (ipipe && opipe) {
1315                 if (off_in || off_out)
1316                         return -ESPIPE;
1317
1318                 /* Splicing to self would be fun, but... */
1319                 if (ipipe == opipe)
1320                         return -EINVAL;
1321
1322                 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1323                         flags |= SPLICE_F_NONBLOCK;
1324
1325                 ret = splice_pipe_to_pipe(ipipe, opipe, len, flags);
1326         } else if (ipipe) {
1327                 if (off_in)
1328                         return -ESPIPE;
1329                 if (off_out) {
1330                         if (!(out->f_mode & FMODE_PWRITE))
1331                                 return -EINVAL;
1332                         offset = *off_out;
1333                 } else {
1334                         offset = out->f_pos;
1335                 }
1336
1337                 if (unlikely(out->f_flags & O_APPEND))
1338                         return -EINVAL;
1339
1340                 ret = rw_verify_area(WRITE, out, &offset, len);
1341                 if (unlikely(ret < 0))
1342                         return ret;
1343
1344                 if (in->f_flags & O_NONBLOCK)
1345                         flags |= SPLICE_F_NONBLOCK;
1346
1347                 file_start_write(out);
1348                 ret = do_splice_from(ipipe, out, &offset, len, flags);
1349                 file_end_write(out);
1350
1351                 if (!off_out)
1352                         out->f_pos = offset;
1353                 else
1354                         *off_out = offset;
1355         } else if (opipe) {
1356                 if (off_out)
1357                         return -ESPIPE;
1358                 if (off_in) {
1359                         if (!(in->f_mode & FMODE_PREAD))
1360                                 return -EINVAL;
1361                         offset = *off_in;
1362                 } else {
1363                         offset = in->f_pos;
1364                 }
1365
1366                 ret = rw_verify_area(READ, in, &offset, len);
1367                 if (unlikely(ret < 0))
1368                         return ret;
1369
1370                 if (out->f_flags & O_NONBLOCK)
1371                         flags |= SPLICE_F_NONBLOCK;
1372
1373                 ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1374
1375                 if (!off_in)
1376                         in->f_pos = offset;
1377                 else
1378                         *off_in = offset;
1379         } else {
1380                 ret = -EINVAL;
1381         }
1382
1383         if (ret > 0) {
1384                 /*
1385                  * Generate modify out before access in:
1386                  * do_splice_from() may've already sent modify out,
1387                  * and this ensures the events get merged.
1388                  */
1389                 fsnotify_modify(out);
1390                 fsnotify_access(in);
1391         }
1392
1393         return ret;
1394 }
1395
1396 static ssize_t __do_splice(struct file *in, loff_t __user *off_in,
1397                            struct file *out, loff_t __user *off_out,
1398                            size_t len, unsigned int flags)
1399 {
1400         struct pipe_inode_info *ipipe;
1401         struct pipe_inode_info *opipe;
1402         loff_t offset, *__off_in = NULL, *__off_out = NULL;
1403         ssize_t ret;
1404
1405         ipipe = get_pipe_info(in, true);
1406         opipe = get_pipe_info(out, true);
1407
1408         if (ipipe) {
1409                 if (off_in)
1410                         return -ESPIPE;
1411                 pipe_clear_nowait(in);
1412         }
1413         if (opipe) {
1414                 if (off_out)
1415                         return -ESPIPE;
1416                 pipe_clear_nowait(out);
1417         }
1418
1419         if (off_out) {
1420                 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1421                         return -EFAULT;
1422                 __off_out = &offset;
1423         }
1424         if (off_in) {
1425                 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1426                         return -EFAULT;
1427                 __off_in = &offset;
1428         }
1429
1430         ret = do_splice(in, __off_in, out, __off_out, len, flags);
1431         if (ret < 0)
1432                 return ret;
1433
1434         if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1435                 return -EFAULT;
1436         if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1437                 return -EFAULT;
1438
1439         return ret;
1440 }
1441
1442 static ssize_t iter_to_pipe(struct iov_iter *from,
1443                             struct pipe_inode_info *pipe,
1444                             unsigned int flags)
1445 {
1446         struct pipe_buffer buf = {
1447                 .ops = &user_page_pipe_buf_ops,
1448                 .flags = flags
1449         };
1450         size_t total = 0;
1451         ssize_t ret = 0;
1452
1453         while (iov_iter_count(from)) {
1454                 struct page *pages[16];
1455                 ssize_t left;
1456                 size_t start;
1457                 int i, n;
1458
1459                 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1460                 if (left <= 0) {
1461                         ret = left;
1462                         break;
1463                 }
1464
1465                 n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1466                 for (i = 0; i < n; i++) {
1467                         int size = min_t(int, left, PAGE_SIZE - start);
1468
1469                         buf.page = pages[i];
1470                         buf.offset = start;
1471                         buf.len = size;
1472                         ret = add_to_pipe(pipe, &buf);
1473                         if (unlikely(ret < 0)) {
1474                                 iov_iter_revert(from, left);
1475                                 // this one got dropped by add_to_pipe()
1476                                 while (++i < n)
1477                                         put_page(pages[i]);
1478                                 goto out;
1479                         }
1480                         total += ret;
1481                         left -= size;
1482                         start = 0;
1483                 }
1484         }
1485 out:
1486         return total ? total : ret;
1487 }
1488
1489 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1490                         struct splice_desc *sd)
1491 {
1492         int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1493         return n == sd->len ? n : -EFAULT;
1494 }
1495
1496 /*
1497  * For lack of a better implementation, implement vmsplice() to userspace
1498  * as a simple copy of the pipes pages to the user iov.
1499  */
1500 static ssize_t vmsplice_to_user(struct file *file, struct iov_iter *iter,
1501                                 unsigned int flags)
1502 {
1503         struct pipe_inode_info *pipe = get_pipe_info(file, true);
1504         struct splice_desc sd = {
1505                 .total_len = iov_iter_count(iter),
1506                 .flags = flags,
1507                 .u.data = iter
1508         };
1509         ssize_t ret = 0;
1510
1511         if (!pipe)
1512                 return -EBADF;
1513
1514         pipe_clear_nowait(file);
1515
1516         if (sd.total_len) {
1517                 pipe_lock(pipe);
1518                 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1519                 pipe_unlock(pipe);
1520         }
1521
1522         if (ret > 0)
1523                 fsnotify_access(file);
1524
1525         return ret;
1526 }
1527
1528 /*
1529  * vmsplice splices a user address range into a pipe. It can be thought of
1530  * as splice-from-memory, where the regular splice is splice-from-file (or
1531  * to file). In both cases the output is a pipe, naturally.
1532  */
1533 static ssize_t vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1534                                 unsigned int flags)
1535 {
1536         struct pipe_inode_info *pipe;
1537         ssize_t ret = 0;
1538         unsigned buf_flag = 0;
1539
1540         if (flags & SPLICE_F_GIFT)
1541                 buf_flag = PIPE_BUF_FLAG_GIFT;
1542
1543         pipe = get_pipe_info(file, true);
1544         if (!pipe)
1545                 return -EBADF;
1546
1547         pipe_clear_nowait(file);
1548
1549         pipe_lock(pipe);
1550         ret = wait_for_space(pipe, flags);
1551         if (!ret)
1552                 ret = iter_to_pipe(iter, pipe, buf_flag);
1553         pipe_unlock(pipe);
1554         if (ret > 0) {
1555                 wakeup_pipe_readers(pipe);
1556                 fsnotify_modify(file);
1557         }
1558         return ret;
1559 }
1560
1561 /*
1562  * Note that vmsplice only really supports true splicing _from_ user memory
1563  * to a pipe, not the other way around. Splicing from user memory is a simple
1564  * operation that can be supported without any funky alignment restrictions
1565  * or nasty vm tricks. We simply map in the user memory and fill them into
1566  * a pipe. The reverse isn't quite as easy, though. There are two possible
1567  * solutions for that:
1568  *
1569  *      - memcpy() the data internally, at which point we might as well just
1570  *        do a regular read() on the buffer anyway.
1571  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1572  *        has restriction limitations on both ends of the pipe).
1573  *
1574  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1575  *
1576  */
1577 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1578                 unsigned long, nr_segs, unsigned int, flags)
1579 {
1580         struct iovec iovstack[UIO_FASTIOV];
1581         struct iovec *iov = iovstack;
1582         struct iov_iter iter;
1583         ssize_t error;
1584         int type;
1585
1586         if (unlikely(flags & ~SPLICE_F_ALL))
1587                 return -EINVAL;
1588
1589         CLASS(fd, f)(fd);
1590         if (fd_empty(f))
1591                 return -EBADF;
1592         if (fd_file(f)->f_mode & FMODE_WRITE)
1593                 type = ITER_SOURCE;
1594         else if (fd_file(f)->f_mode & FMODE_READ)
1595                 type = ITER_DEST;
1596         else
1597                 return -EBADF;
1598
1599         error = import_iovec(type, uiov, nr_segs,
1600                              ARRAY_SIZE(iovstack), &iov, &iter);
1601         if (error < 0)
1602                 return error;
1603
1604         if (!iov_iter_count(&iter))
1605                 error = 0;
1606         else if (type == ITER_SOURCE)
1607                 error = vmsplice_to_pipe(fd_file(f), &iter, flags);
1608         else
1609                 error = vmsplice_to_user(fd_file(f), &iter, flags);
1610
1611         kfree(iov);
1612         return error;
1613 }
1614
1615 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1616                 int, fd_out, loff_t __user *, off_out,
1617                 size_t, len, unsigned int, flags)
1618 {
1619         if (unlikely(!len))
1620                 return 0;
1621
1622         if (unlikely(flags & ~SPLICE_F_ALL))
1623                 return -EINVAL;
1624
1625         CLASS(fd, in)(fd_in);
1626         if (fd_empty(in))
1627                 return -EBADF;
1628
1629         CLASS(fd, out)(fd_out);
1630         if (fd_empty(out))
1631                 return -EBADF;
1632
1633         return __do_splice(fd_file(in), off_in, fd_file(out), off_out,
1634                                             len, flags);
1635 }
1636
1637 /*
1638  * Make sure there's data to read. Wait for input if we can, otherwise
1639  * return an appropriate error.
1640  */
1641 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1642 {
1643         int ret;
1644
1645         /*
1646          * Check the pipe occupancy without the inode lock first. This function
1647          * is speculative anyways, so missing one is ok.
1648          */
1649         if (!pipe_is_empty(pipe))
1650                 return 0;
1651
1652         ret = 0;
1653         pipe_lock(pipe);
1654
1655         while (pipe_is_empty(pipe)) {
1656                 if (signal_pending(current)) {
1657                         ret = -ERESTARTSYS;
1658                         break;
1659                 }
1660                 if (!pipe->writers)
1661                         break;
1662                 if (flags & SPLICE_F_NONBLOCK) {
1663                         ret = -EAGAIN;
1664                         break;
1665                 }
1666                 pipe_wait_readable(pipe);
1667         }
1668
1669         pipe_unlock(pipe);
1670         return ret;
1671 }
1672
1673 /*
1674  * Make sure there's writeable room. Wait for room if we can, otherwise
1675  * return an appropriate error.
1676  */
1677 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1678 {
1679         int ret;
1680
1681         /*
1682          * Check pipe occupancy without the inode lock first. This function
1683          * is speculative anyways, so missing one is ok.
1684          */
1685         if (!pipe_is_full(pipe))
1686                 return 0;
1687
1688         ret = 0;
1689         pipe_lock(pipe);
1690
1691         while (pipe_is_full(pipe)) {
1692                 if (!pipe->readers) {
1693                         send_sig(SIGPIPE, current, 0);
1694                         ret = -EPIPE;
1695                         break;
1696                 }
1697                 if (flags & SPLICE_F_NONBLOCK) {
1698                         ret = -EAGAIN;
1699                         break;
1700                 }
1701                 if (signal_pending(current)) {
1702                         ret = -ERESTARTSYS;
1703                         break;
1704                 }
1705                 pipe_wait_writable(pipe);
1706         }
1707
1708         pipe_unlock(pipe);
1709         return ret;
1710 }
1711
1712 /*
1713  * Splice contents of ipipe to opipe.
1714  */
1715 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1716                                struct pipe_inode_info *opipe,
1717                                size_t len, unsigned int flags)
1718 {
1719         struct pipe_buffer *ibuf, *obuf;
1720         unsigned int i_head, o_head;
1721         unsigned int i_tail, o_tail;
1722         int ret = 0;
1723         bool input_wakeup = false;
1724
1725
1726 retry:
1727         ret = ipipe_prep(ipipe, flags);
1728         if (ret)
1729                 return ret;
1730
1731         ret = opipe_prep(opipe, flags);
1732         if (ret)
1733                 return ret;
1734
1735         /*
1736          * Potential ABBA deadlock, work around it by ordering lock
1737          * grabbing by pipe info address. Otherwise two different processes
1738          * could deadlock (one doing tee from A -> B, the other from B -> A).
1739          */
1740         pipe_double_lock(ipipe, opipe);
1741
1742         i_tail = ipipe->tail;
1743         o_head = opipe->head;
1744
1745         do {
1746                 size_t o_len;
1747
1748                 if (!opipe->readers) {
1749                         send_sig(SIGPIPE, current, 0);
1750                         if (!ret)
1751                                 ret = -EPIPE;
1752                         break;
1753                 }
1754
1755                 i_head = ipipe->head;
1756                 o_tail = opipe->tail;
1757
1758                 if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1759                         break;
1760
1761                 /*
1762                  * Cannot make any progress, because either the input
1763                  * pipe is empty or the output pipe is full.
1764                  */
1765                 if (pipe_empty(i_head, i_tail) ||
1766                     pipe_full(o_head, o_tail, opipe->max_usage)) {
1767                         /* Already processed some buffers, break */
1768                         if (ret)
1769                                 break;
1770
1771                         if (flags & SPLICE_F_NONBLOCK) {
1772                                 ret = -EAGAIN;
1773                                 break;
1774                         }
1775
1776                         /*
1777                          * We raced with another reader/writer and haven't
1778                          * managed to process any buffers.  A zero return
1779                          * value means EOF, so retry instead.
1780                          */
1781                         pipe_unlock(ipipe);
1782                         pipe_unlock(opipe);
1783                         goto retry;
1784                 }
1785
1786                 ibuf = pipe_buf(ipipe, i_tail);
1787                 obuf = pipe_buf(opipe, o_head);
1788
1789                 if (len >= ibuf->len) {
1790                         /*
1791                          * Simply move the whole buffer from ipipe to opipe
1792                          */
1793                         *obuf = *ibuf;
1794                         ibuf->ops = NULL;
1795                         i_tail++;
1796                         ipipe->tail = i_tail;
1797                         input_wakeup = true;
1798                         o_len = obuf->len;
1799                         o_head++;
1800                         opipe->head = o_head;
1801                 } else {
1802                         /*
1803                          * Get a reference to this pipe buffer,
1804                          * so we can copy the contents over.
1805                          */
1806                         if (!pipe_buf_get(ipipe, ibuf)) {
1807                                 if (ret == 0)
1808                                         ret = -EFAULT;
1809                                 break;
1810                         }
1811                         *obuf = *ibuf;
1812
1813                         /*
1814                          * Don't inherit the gift and merge flags, we need to
1815                          * prevent multiple steals of this page.
1816                          */
1817                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1818                         obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1819
1820                         obuf->len = len;
1821                         ibuf->offset += len;
1822                         ibuf->len -= len;
1823                         o_len = len;
1824                         o_head++;
1825                         opipe->head = o_head;
1826                 }
1827                 ret += o_len;
1828                 len -= o_len;
1829         } while (len);
1830
1831         pipe_unlock(ipipe);
1832         pipe_unlock(opipe);
1833
1834         /*
1835          * If we put data in the output pipe, wakeup any potential readers.
1836          */
1837         if (ret > 0)
1838                 wakeup_pipe_readers(opipe);
1839
1840         if (input_wakeup)
1841                 wakeup_pipe_writers(ipipe);
1842
1843         return ret;
1844 }
1845
1846 /*
1847  * Link contents of ipipe to opipe.
1848  */
1849 static ssize_t link_pipe(struct pipe_inode_info *ipipe,
1850                          struct pipe_inode_info *opipe,
1851                          size_t len, unsigned int flags)
1852 {
1853         struct pipe_buffer *ibuf, *obuf;
1854         unsigned int i_head, o_head;
1855         unsigned int i_tail, o_tail;
1856         ssize_t ret = 0;
1857
1858         /*
1859          * Potential ABBA deadlock, work around it by ordering lock
1860          * grabbing by pipe info address. Otherwise two different processes
1861          * could deadlock (one doing tee from A -> B, the other from B -> A).
1862          */
1863         pipe_double_lock(ipipe, opipe);
1864
1865         i_tail = ipipe->tail;
1866         o_head = opipe->head;
1867
1868         do {
1869                 if (!opipe->readers) {
1870                         send_sig(SIGPIPE, current, 0);
1871                         if (!ret)
1872                                 ret = -EPIPE;
1873                         break;
1874                 }
1875
1876                 i_head = ipipe->head;
1877                 o_tail = opipe->tail;
1878
1879                 /*
1880                  * If we have iterated all input buffers or run out of
1881                  * output room, break.
1882                  */
1883                 if (pipe_empty(i_head, i_tail) ||
1884                     pipe_full(o_head, o_tail, opipe->max_usage))
1885                         break;
1886
1887                 ibuf = pipe_buf(ipipe, i_tail);
1888                 obuf = pipe_buf(opipe, o_head);
1889
1890                 /*
1891                  * Get a reference to this pipe buffer,
1892                  * so we can copy the contents over.
1893                  */
1894                 if (!pipe_buf_get(ipipe, ibuf)) {
1895                         if (ret == 0)
1896                                 ret = -EFAULT;
1897                         break;
1898                 }
1899
1900                 *obuf = *ibuf;
1901
1902                 /*
1903                  * Don't inherit the gift and merge flag, we need to prevent
1904                  * multiple steals of this page.
1905                  */
1906                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1907                 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1908
1909                 if (obuf->len > len)
1910                         obuf->len = len;
1911                 ret += obuf->len;
1912                 len -= obuf->len;
1913
1914                 o_head++;
1915                 opipe->head = o_head;
1916                 i_tail++;
1917         } while (len);
1918
1919         pipe_unlock(ipipe);
1920         pipe_unlock(opipe);
1921
1922         /*
1923          * If we put data in the output pipe, wakeup any potential readers.
1924          */
1925         if (ret > 0)
1926                 wakeup_pipe_readers(opipe);
1927
1928         return ret;
1929 }
1930
1931 /*
1932  * This is a tee(1) implementation that works on pipes. It doesn't copy
1933  * any data, it simply references the 'in' pages on the 'out' pipe.
1934  * The 'flags' used are the SPLICE_F_* variants, currently the only
1935  * applicable one is SPLICE_F_NONBLOCK.
1936  */
1937 ssize_t do_tee(struct file *in, struct file *out, size_t len,
1938                unsigned int flags)
1939 {
1940         struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1941         struct pipe_inode_info *opipe = get_pipe_info(out, true);
1942         ssize_t ret = -EINVAL;
1943
1944         if (unlikely(!(in->f_mode & FMODE_READ) ||
1945                      !(out->f_mode & FMODE_WRITE)))
1946                 return -EBADF;
1947
1948         /*
1949          * Duplicate the contents of ipipe to opipe without actually
1950          * copying the data.
1951          */
1952         if (ipipe && opipe && ipipe != opipe) {
1953                 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1954                         flags |= SPLICE_F_NONBLOCK;
1955
1956                 /*
1957                  * Keep going, unless we encounter an error. The ipipe/opipe
1958                  * ordering doesn't really matter.
1959                  */
1960                 ret = ipipe_prep(ipipe, flags);
1961                 if (!ret) {
1962                         ret = opipe_prep(opipe, flags);
1963                         if (!ret)
1964                                 ret = link_pipe(ipipe, opipe, len, flags);
1965                 }
1966         }
1967
1968         if (ret > 0) {
1969                 fsnotify_access(in);
1970                 fsnotify_modify(out);
1971         }
1972
1973         return ret;
1974 }
1975
1976 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1977 {
1978         if (unlikely(flags & ~SPLICE_F_ALL))
1979                 return -EINVAL;
1980
1981         if (unlikely(!len))
1982                 return 0;
1983
1984         CLASS(fd, in)(fdin);
1985         if (fd_empty(in))
1986                 return -EBADF;
1987
1988         CLASS(fd, out)(fdout);
1989         if (fd_empty(out))
1990                 return -EBADF;
1991
1992         return do_tee(fd_file(in), fd_file(out), len, flags);
1993 }