Merge branches 'pm-cpuidle', 'pm-sleep' and 'pm-powercap'
[linux-block.git] / fs / smb / client / misc.c
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #include "dfs.h"
26 #endif
27 #include "fs_context.h"
28 #include "cached_dir.h"
29
30 /* The xid serves as a useful identifier for each incoming vfs request,
31    in a similar way to the mid which is useful to track each sent smb,
32    and CurrentXid can also provide a running counter (although it
33    will eventually wrap past zero) of the total vfs operations handled
34    since the cifs fs was mounted */
35
36 unsigned int
37 _get_xid(void)
38 {
39         unsigned int xid;
40
41         spin_lock(&GlobalMid_Lock);
42         GlobalTotalActiveXid++;
43
44         /* keep high water mark for number of simultaneous ops in filesystem */
45         if (GlobalTotalActiveXid > GlobalMaxActiveXid)
46                 GlobalMaxActiveXid = GlobalTotalActiveXid;
47         if (GlobalTotalActiveXid > 65000)
48                 cifs_dbg(FYI, "warning: more than 65000 requests active\n");
49         xid = GlobalCurrentXid++;
50         spin_unlock(&GlobalMid_Lock);
51         return xid;
52 }
53
54 void
55 _free_xid(unsigned int xid)
56 {
57         spin_lock(&GlobalMid_Lock);
58         /* if (GlobalTotalActiveXid == 0)
59                 BUG(); */
60         GlobalTotalActiveXid--;
61         spin_unlock(&GlobalMid_Lock);
62 }
63
64 struct cifs_ses *
65 sesInfoAlloc(void)
66 {
67         struct cifs_ses *ret_buf;
68
69         ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
70         if (ret_buf) {
71                 atomic_inc(&sesInfoAllocCount);
72                 spin_lock_init(&ret_buf->ses_lock);
73                 ret_buf->ses_status = SES_NEW;
74                 ++ret_buf->ses_count;
75                 INIT_LIST_HEAD(&ret_buf->smb_ses_list);
76                 INIT_LIST_HEAD(&ret_buf->tcon_list);
77                 mutex_init(&ret_buf->session_mutex);
78                 spin_lock_init(&ret_buf->iface_lock);
79                 INIT_LIST_HEAD(&ret_buf->iface_list);
80                 spin_lock_init(&ret_buf->chan_lock);
81         }
82         return ret_buf;
83 }
84
85 void
86 sesInfoFree(struct cifs_ses *buf_to_free)
87 {
88         struct cifs_server_iface *iface = NULL, *niface = NULL;
89
90         if (buf_to_free == NULL) {
91                 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
92                 return;
93         }
94
95         unload_nls(buf_to_free->local_nls);
96         atomic_dec(&sesInfoAllocCount);
97         kfree(buf_to_free->serverOS);
98         kfree(buf_to_free->serverDomain);
99         kfree(buf_to_free->serverNOS);
100         kfree_sensitive(buf_to_free->password);
101         kfree_sensitive(buf_to_free->password2);
102         kfree(buf_to_free->user_name);
103         kfree(buf_to_free->domainName);
104         kfree_sensitive(buf_to_free->auth_key.response);
105         spin_lock(&buf_to_free->iface_lock);
106         list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
107                                  iface_head)
108                 kref_put(&iface->refcount, release_iface);
109         spin_unlock(&buf_to_free->iface_lock);
110         kfree_sensitive(buf_to_free);
111 }
112
113 struct cifs_tcon *
114 tcon_info_alloc(bool dir_leases_enabled, enum smb3_tcon_ref_trace trace)
115 {
116         struct cifs_tcon *ret_buf;
117         static atomic_t tcon_debug_id;
118
119         ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
120         if (!ret_buf)
121                 return NULL;
122
123         if (dir_leases_enabled == true) {
124                 ret_buf->cfids = init_cached_dirs();
125                 if (!ret_buf->cfids) {
126                         kfree(ret_buf);
127                         return NULL;
128                 }
129         }
130         /* else ret_buf->cfids is already set to NULL above */
131
132         atomic_inc(&tconInfoAllocCount);
133         ret_buf->status = TID_NEW;
134         ret_buf->debug_id = atomic_inc_return(&tcon_debug_id);
135         ret_buf->tc_count = 1;
136         spin_lock_init(&ret_buf->tc_lock);
137         INIT_LIST_HEAD(&ret_buf->openFileList);
138         INIT_LIST_HEAD(&ret_buf->tcon_list);
139         spin_lock_init(&ret_buf->open_file_lock);
140         spin_lock_init(&ret_buf->stat_lock);
141         atomic_set(&ret_buf->num_local_opens, 0);
142         atomic_set(&ret_buf->num_remote_opens, 0);
143         ret_buf->stats_from_time = ktime_get_real_seconds();
144 #ifdef CONFIG_CIFS_FSCACHE
145         mutex_init(&ret_buf->fscache_lock);
146 #endif
147         trace_smb3_tcon_ref(ret_buf->debug_id, ret_buf->tc_count, trace);
148
149         return ret_buf;
150 }
151
152 void
153 tconInfoFree(struct cifs_tcon *tcon, enum smb3_tcon_ref_trace trace)
154 {
155         if (tcon == NULL) {
156                 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
157                 return;
158         }
159         trace_smb3_tcon_ref(tcon->debug_id, tcon->tc_count, trace);
160         free_cached_dirs(tcon->cfids);
161         atomic_dec(&tconInfoAllocCount);
162         kfree(tcon->nativeFileSystem);
163         kfree_sensitive(tcon->password);
164         kfree(tcon->origin_fullpath);
165         kfree(tcon);
166 }
167
168 struct smb_hdr *
169 cifs_buf_get(void)
170 {
171         struct smb_hdr *ret_buf = NULL;
172         /*
173          * SMB2 header is bigger than CIFS one - no problems to clean some
174          * more bytes for CIFS.
175          */
176         size_t buf_size = sizeof(struct smb2_hdr);
177
178         /*
179          * We could use negotiated size instead of max_msgsize -
180          * but it may be more efficient to always alloc same size
181          * albeit slightly larger than necessary and maxbuffersize
182          * defaults to this and can not be bigger.
183          */
184         ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
185
186         /* clear the first few header bytes */
187         /* for most paths, more is cleared in header_assemble */
188         memset(ret_buf, 0, buf_size + 3);
189         atomic_inc(&buf_alloc_count);
190 #ifdef CONFIG_CIFS_STATS2
191         atomic_inc(&total_buf_alloc_count);
192 #endif /* CONFIG_CIFS_STATS2 */
193
194         return ret_buf;
195 }
196
197 void
198 cifs_buf_release(void *buf_to_free)
199 {
200         if (buf_to_free == NULL) {
201                 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
202                 return;
203         }
204         mempool_free(buf_to_free, cifs_req_poolp);
205
206         atomic_dec(&buf_alloc_count);
207         return;
208 }
209
210 struct smb_hdr *
211 cifs_small_buf_get(void)
212 {
213         struct smb_hdr *ret_buf = NULL;
214
215 /* We could use negotiated size instead of max_msgsize -
216    but it may be more efficient to always alloc same size
217    albeit slightly larger than necessary and maxbuffersize
218    defaults to this and can not be bigger */
219         ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
220         /* No need to clear memory here, cleared in header assemble */
221         /*      memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
222         atomic_inc(&small_buf_alloc_count);
223 #ifdef CONFIG_CIFS_STATS2
224         atomic_inc(&total_small_buf_alloc_count);
225 #endif /* CONFIG_CIFS_STATS2 */
226
227         return ret_buf;
228 }
229
230 void
231 cifs_small_buf_release(void *buf_to_free)
232 {
233
234         if (buf_to_free == NULL) {
235                 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
236                 return;
237         }
238         mempool_free(buf_to_free, cifs_sm_req_poolp);
239
240         atomic_dec(&small_buf_alloc_count);
241         return;
242 }
243
244 void
245 free_rsp_buf(int resp_buftype, void *rsp)
246 {
247         if (resp_buftype == CIFS_SMALL_BUFFER)
248                 cifs_small_buf_release(rsp);
249         else if (resp_buftype == CIFS_LARGE_BUFFER)
250                 cifs_buf_release(rsp);
251 }
252
253 /* NB: MID can not be set if treeCon not passed in, in that
254    case it is responsbility of caller to set the mid */
255 void
256 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
257                 const struct cifs_tcon *treeCon, int word_count
258                 /* length of fixed section (word count) in two byte units  */)
259 {
260         char *temp = (char *) buffer;
261
262         memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
263
264         buffer->smb_buf_length = cpu_to_be32(
265             (2 * word_count) + sizeof(struct smb_hdr) -
266             4 /*  RFC 1001 length field does not count */  +
267             2 /* for bcc field itself */) ;
268
269         buffer->Protocol[0] = 0xFF;
270         buffer->Protocol[1] = 'S';
271         buffer->Protocol[2] = 'M';
272         buffer->Protocol[3] = 'B';
273         buffer->Command = smb_command;
274         buffer->Flags = 0x00;   /* case sensitive */
275         buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
276         buffer->Pid = cpu_to_le16((__u16)current->tgid);
277         buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
278         if (treeCon) {
279                 buffer->Tid = treeCon->tid;
280                 if (treeCon->ses) {
281                         if (treeCon->ses->capabilities & CAP_UNICODE)
282                                 buffer->Flags2 |= SMBFLG2_UNICODE;
283                         if (treeCon->ses->capabilities & CAP_STATUS32)
284                                 buffer->Flags2 |= SMBFLG2_ERR_STATUS;
285
286                         /* Uid is not converted */
287                         buffer->Uid = treeCon->ses->Suid;
288                         if (treeCon->ses->server)
289                                 buffer->Mid = get_next_mid(treeCon->ses->server);
290                 }
291                 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
292                         buffer->Flags2 |= SMBFLG2_DFS;
293                 if (treeCon->nocase)
294                         buffer->Flags  |= SMBFLG_CASELESS;
295                 if ((treeCon->ses) && (treeCon->ses->server))
296                         if (treeCon->ses->server->sign)
297                                 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
298         }
299
300 /*  endian conversion of flags is now done just before sending */
301         buffer->WordCount = (char) word_count;
302         return;
303 }
304
305 static int
306 check_smb_hdr(struct smb_hdr *smb)
307 {
308         /* does it have the right SMB "signature" ? */
309         if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
310                 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
311                          *(unsigned int *)smb->Protocol);
312                 return 1;
313         }
314
315         /* if it's a response then accept */
316         if (smb->Flags & SMBFLG_RESPONSE)
317                 return 0;
318
319         /* only one valid case where server sends us request */
320         if (smb->Command == SMB_COM_LOCKING_ANDX)
321                 return 0;
322
323         cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
324                  get_mid(smb));
325         return 1;
326 }
327
328 int
329 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
330 {
331         struct smb_hdr *smb = (struct smb_hdr *)buf;
332         __u32 rfclen = be32_to_cpu(smb->smb_buf_length);
333         __u32 clc_len;  /* calculated length */
334         cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
335                  total_read, rfclen);
336
337         /* is this frame too small to even get to a BCC? */
338         if (total_read < 2 + sizeof(struct smb_hdr)) {
339                 if ((total_read >= sizeof(struct smb_hdr) - 1)
340                             && (smb->Status.CifsError != 0)) {
341                         /* it's an error return */
342                         smb->WordCount = 0;
343                         /* some error cases do not return wct and bcc */
344                         return 0;
345                 } else if ((total_read == sizeof(struct smb_hdr) + 1) &&
346                                 (smb->WordCount == 0)) {
347                         char *tmp = (char *)smb;
348                         /* Need to work around a bug in two servers here */
349                         /* First, check if the part of bcc they sent was zero */
350                         if (tmp[sizeof(struct smb_hdr)] == 0) {
351                                 /* some servers return only half of bcc
352                                  * on simple responses (wct, bcc both zero)
353                                  * in particular have seen this on
354                                  * ulogoffX and FindClose. This leaves
355                                  * one byte of bcc potentially unitialized
356                                  */
357                                 /* zero rest of bcc */
358                                 tmp[sizeof(struct smb_hdr)+1] = 0;
359                                 return 0;
360                         }
361                         cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
362                 } else {
363                         cifs_dbg(VFS, "Length less than smb header size\n");
364                 }
365                 return -EIO;
366         } else if (total_read < sizeof(*smb) + 2 * smb->WordCount) {
367                 cifs_dbg(VFS, "%s: can't read BCC due to invalid WordCount(%u)\n",
368                          __func__, smb->WordCount);
369                 return -EIO;
370         }
371
372         /* otherwise, there is enough to get to the BCC */
373         if (check_smb_hdr(smb))
374                 return -EIO;
375         clc_len = smbCalcSize(smb);
376
377         if (4 + rfclen != total_read) {
378                 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
379                          rfclen);
380                 return -EIO;
381         }
382
383         if (4 + rfclen != clc_len) {
384                 __u16 mid = get_mid(smb);
385                 /* check if bcc wrapped around for large read responses */
386                 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
387                         /* check if lengths match mod 64K */
388                         if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
389                                 return 0; /* bcc wrapped */
390                 }
391                 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
392                          clc_len, 4 + rfclen, mid);
393
394                 if (4 + rfclen < clc_len) {
395                         cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
396                                  rfclen, mid);
397                         return -EIO;
398                 } else if (rfclen > clc_len + 512) {
399                         /*
400                          * Some servers (Windows XP in particular) send more
401                          * data than the lengths in the SMB packet would
402                          * indicate on certain calls (byte range locks and
403                          * trans2 find first calls in particular). While the
404                          * client can handle such a frame by ignoring the
405                          * trailing data, we choose limit the amount of extra
406                          * data to 512 bytes.
407                          */
408                         cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
409                                  rfclen, mid);
410                         return -EIO;
411                 }
412         }
413         return 0;
414 }
415
416 bool
417 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
418 {
419         struct smb_hdr *buf = (struct smb_hdr *)buffer;
420         struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
421         struct TCP_Server_Info *pserver;
422         struct cifs_ses *ses;
423         struct cifs_tcon *tcon;
424         struct cifsInodeInfo *pCifsInode;
425         struct cifsFileInfo *netfile;
426
427         cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
428         if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
429            (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
430                 struct smb_com_transaction_change_notify_rsp *pSMBr =
431                         (struct smb_com_transaction_change_notify_rsp *)buf;
432                 struct file_notify_information *pnotify;
433                 __u32 data_offset = 0;
434                 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
435
436                 if (get_bcc(buf) > sizeof(struct file_notify_information)) {
437                         data_offset = le32_to_cpu(pSMBr->DataOffset);
438
439                         if (data_offset >
440                             len - sizeof(struct file_notify_information)) {
441                                 cifs_dbg(FYI, "Invalid data_offset %u\n",
442                                          data_offset);
443                                 return true;
444                         }
445                         pnotify = (struct file_notify_information *)
446                                 ((char *)&pSMBr->hdr.Protocol + data_offset);
447                         cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
448                                  pnotify->FileName, pnotify->Action);
449                         /*   cifs_dump_mem("Rcvd notify Data: ",buf,
450                                 sizeof(struct smb_hdr)+60); */
451                         return true;
452                 }
453                 if (pSMBr->hdr.Status.CifsError) {
454                         cifs_dbg(FYI, "notify err 0x%x\n",
455                                  pSMBr->hdr.Status.CifsError);
456                         return true;
457                 }
458                 return false;
459         }
460         if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
461                 return false;
462         if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
463                 /* no sense logging error on invalid handle on oplock
464                    break - harmless race between close request and oplock
465                    break response is expected from time to time writing out
466                    large dirty files cached on the client */
467                 if ((NT_STATUS_INVALID_HANDLE) ==
468                    le32_to_cpu(pSMB->hdr.Status.CifsError)) {
469                         cifs_dbg(FYI, "Invalid handle on oplock break\n");
470                         return true;
471                 } else if (ERRbadfid ==
472                    le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
473                         return true;
474                 } else {
475                         return false; /* on valid oplock brk we get "request" */
476                 }
477         }
478         if (pSMB->hdr.WordCount != 8)
479                 return false;
480
481         cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
482                  pSMB->LockType, pSMB->OplockLevel);
483         if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
484                 return false;
485
486         /* If server is a channel, select the primary channel */
487         pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
488
489         /* look up tcon based on tid & uid */
490         spin_lock(&cifs_tcp_ses_lock);
491         list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
492                 if (cifs_ses_exiting(ses))
493                         continue;
494                 list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
495                         if (tcon->tid != buf->Tid)
496                                 continue;
497
498                         cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
499                         spin_lock(&tcon->open_file_lock);
500                         list_for_each_entry(netfile, &tcon->openFileList, tlist) {
501                                 if (pSMB->Fid != netfile->fid.netfid)
502                                         continue;
503
504                                 cifs_dbg(FYI, "file id match, oplock break\n");
505                                 pCifsInode = CIFS_I(d_inode(netfile->dentry));
506
507                                 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
508                                         &pCifsInode->flags);
509
510                                 netfile->oplock_epoch = 0;
511                                 netfile->oplock_level = pSMB->OplockLevel;
512                                 netfile->oplock_break_cancelled = false;
513                                 cifs_queue_oplock_break(netfile);
514
515                                 spin_unlock(&tcon->open_file_lock);
516                                 spin_unlock(&cifs_tcp_ses_lock);
517                                 return true;
518                         }
519                         spin_unlock(&tcon->open_file_lock);
520                         spin_unlock(&cifs_tcp_ses_lock);
521                         cifs_dbg(FYI, "No matching file for oplock break\n");
522                         return true;
523                 }
524         }
525         spin_unlock(&cifs_tcp_ses_lock);
526         cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
527         return true;
528 }
529
530 void
531 dump_smb(void *buf, int smb_buf_length)
532 {
533         if (traceSMB == 0)
534                 return;
535
536         print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
537                        smb_buf_length, true);
538 }
539
540 void
541 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
542 {
543         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
544                 struct cifs_tcon *tcon = NULL;
545
546                 if (cifs_sb->master_tlink)
547                         tcon = cifs_sb_master_tcon(cifs_sb);
548
549                 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
550                 cifs_sb->mnt_cifs_serverino_autodisabled = true;
551                 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
552                          tcon ? tcon->tree_name : "new server");
553                 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
554                 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
555
556         }
557 }
558
559 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
560 {
561         oplock &= 0xF;
562
563         if (oplock == OPLOCK_EXCLUSIVE) {
564                 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
565                 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
566                          &cinode->netfs.inode);
567         } else if (oplock == OPLOCK_READ) {
568                 cinode->oplock = CIFS_CACHE_READ_FLG;
569                 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
570                          &cinode->netfs.inode);
571         } else
572                 cinode->oplock = 0;
573 }
574
575 /*
576  * We wait for oplock breaks to be processed before we attempt to perform
577  * writes.
578  */
579 int cifs_get_writer(struct cifsInodeInfo *cinode)
580 {
581         int rc;
582
583 start:
584         rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
585                          TASK_KILLABLE);
586         if (rc)
587                 return rc;
588
589         spin_lock(&cinode->writers_lock);
590         if (!cinode->writers)
591                 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
592         cinode->writers++;
593         /* Check to see if we have started servicing an oplock break */
594         if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
595                 cinode->writers--;
596                 if (cinode->writers == 0) {
597                         clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
598                         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
599                 }
600                 spin_unlock(&cinode->writers_lock);
601                 goto start;
602         }
603         spin_unlock(&cinode->writers_lock);
604         return 0;
605 }
606
607 void cifs_put_writer(struct cifsInodeInfo *cinode)
608 {
609         spin_lock(&cinode->writers_lock);
610         cinode->writers--;
611         if (cinode->writers == 0) {
612                 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
613                 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
614         }
615         spin_unlock(&cinode->writers_lock);
616 }
617
618 /**
619  * cifs_queue_oplock_break - queue the oplock break handler for cfile
620  * @cfile: The file to break the oplock on
621  *
622  * This function is called from the demultiplex thread when it
623  * receives an oplock break for @cfile.
624  *
625  * Assumes the tcon->open_file_lock is held.
626  * Assumes cfile->file_info_lock is NOT held.
627  */
628 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
629 {
630         /*
631          * Bump the handle refcount now while we hold the
632          * open_file_lock to enforce the validity of it for the oplock
633          * break handler. The matching put is done at the end of the
634          * handler.
635          */
636         cifsFileInfo_get(cfile);
637
638         queue_work(cifsoplockd_wq, &cfile->oplock_break);
639 }
640
641 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
642 {
643         clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
644         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
645 }
646
647 bool
648 backup_cred(struct cifs_sb_info *cifs_sb)
649 {
650         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
651                 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
652                         return true;
653         }
654         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
655                 if (in_group_p(cifs_sb->ctx->backupgid))
656                         return true;
657         }
658
659         return false;
660 }
661
662 void
663 cifs_del_pending_open(struct cifs_pending_open *open)
664 {
665         spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
666         list_del(&open->olist);
667         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
668 }
669
670 void
671 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
672                              struct cifs_pending_open *open)
673 {
674         memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
675         open->oplock = CIFS_OPLOCK_NO_CHANGE;
676         open->tlink = tlink;
677         fid->pending_open = open;
678         list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
679 }
680
681 void
682 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
683                       struct cifs_pending_open *open)
684 {
685         spin_lock(&tlink_tcon(tlink)->open_file_lock);
686         cifs_add_pending_open_locked(fid, tlink, open);
687         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
688 }
689
690 /*
691  * Critical section which runs after acquiring deferred_lock.
692  * As there is no reference count on cifs_deferred_close, pdclose
693  * should not be used outside deferred_lock.
694  */
695 bool
696 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
697 {
698         struct cifs_deferred_close *dclose;
699
700         list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
701                 if ((dclose->netfid == cfile->fid.netfid) &&
702                         (dclose->persistent_fid == cfile->fid.persistent_fid) &&
703                         (dclose->volatile_fid == cfile->fid.volatile_fid)) {
704                         *pdclose = dclose;
705                         return true;
706                 }
707         }
708         return false;
709 }
710
711 /*
712  * Critical section which runs after acquiring deferred_lock.
713  */
714 void
715 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
716 {
717         bool is_deferred = false;
718         struct cifs_deferred_close *pdclose;
719
720         is_deferred = cifs_is_deferred_close(cfile, &pdclose);
721         if (is_deferred) {
722                 kfree(dclose);
723                 return;
724         }
725
726         dclose->tlink = cfile->tlink;
727         dclose->netfid = cfile->fid.netfid;
728         dclose->persistent_fid = cfile->fid.persistent_fid;
729         dclose->volatile_fid = cfile->fid.volatile_fid;
730         list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
731 }
732
733 /*
734  * Critical section which runs after acquiring deferred_lock.
735  */
736 void
737 cifs_del_deferred_close(struct cifsFileInfo *cfile)
738 {
739         bool is_deferred = false;
740         struct cifs_deferred_close *dclose;
741
742         is_deferred = cifs_is_deferred_close(cfile, &dclose);
743         if (!is_deferred)
744                 return;
745         list_del(&dclose->dlist);
746         kfree(dclose);
747 }
748
749 void
750 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
751 {
752         struct cifsFileInfo *cfile = NULL;
753         struct file_list *tmp_list, *tmp_next_list;
754         struct list_head file_head;
755
756         if (cifs_inode == NULL)
757                 return;
758
759         INIT_LIST_HEAD(&file_head);
760         spin_lock(&cifs_inode->open_file_lock);
761         list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
762                 if (delayed_work_pending(&cfile->deferred)) {
763                         if (cancel_delayed_work(&cfile->deferred)) {
764                                 spin_lock(&cifs_inode->deferred_lock);
765                                 cifs_del_deferred_close(cfile);
766                                 spin_unlock(&cifs_inode->deferred_lock);
767
768                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
769                                 if (tmp_list == NULL)
770                                         break;
771                                 tmp_list->cfile = cfile;
772                                 list_add_tail(&tmp_list->list, &file_head);
773                         }
774                 }
775         }
776         spin_unlock(&cifs_inode->open_file_lock);
777
778         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
779                 _cifsFileInfo_put(tmp_list->cfile, false, false);
780                 list_del(&tmp_list->list);
781                 kfree(tmp_list);
782         }
783 }
784
785 void
786 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
787 {
788         struct cifsFileInfo *cfile;
789         struct file_list *tmp_list, *tmp_next_list;
790         struct list_head file_head;
791
792         INIT_LIST_HEAD(&file_head);
793         spin_lock(&tcon->open_file_lock);
794         list_for_each_entry(cfile, &tcon->openFileList, tlist) {
795                 if (delayed_work_pending(&cfile->deferred)) {
796                         if (cancel_delayed_work(&cfile->deferred)) {
797                                 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
798                                 cifs_del_deferred_close(cfile);
799                                 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
800
801                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
802                                 if (tmp_list == NULL)
803                                         break;
804                                 tmp_list->cfile = cfile;
805                                 list_add_tail(&tmp_list->list, &file_head);
806                         }
807                 }
808         }
809         spin_unlock(&tcon->open_file_lock);
810
811         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
812                 _cifsFileInfo_put(tmp_list->cfile, true, false);
813                 list_del(&tmp_list->list);
814                 kfree(tmp_list);
815         }
816 }
817 void
818 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
819 {
820         struct cifsFileInfo *cfile;
821         struct file_list *tmp_list, *tmp_next_list;
822         struct list_head file_head;
823         void *page;
824         const char *full_path;
825
826         INIT_LIST_HEAD(&file_head);
827         page = alloc_dentry_path();
828         spin_lock(&tcon->open_file_lock);
829         list_for_each_entry(cfile, &tcon->openFileList, tlist) {
830                 full_path = build_path_from_dentry(cfile->dentry, page);
831                 if (strstr(full_path, path)) {
832                         if (delayed_work_pending(&cfile->deferred)) {
833                                 if (cancel_delayed_work(&cfile->deferred)) {
834                                         spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
835                                         cifs_del_deferred_close(cfile);
836                                         spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
837
838                                         tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
839                                         if (tmp_list == NULL)
840                                                 break;
841                                         tmp_list->cfile = cfile;
842                                         list_add_tail(&tmp_list->list, &file_head);
843                                 }
844                         }
845                 }
846         }
847         spin_unlock(&tcon->open_file_lock);
848
849         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
850                 _cifsFileInfo_put(tmp_list->cfile, true, false);
851                 list_del(&tmp_list->list);
852                 kfree(tmp_list);
853         }
854         free_dentry_path(page);
855 }
856
857 /*
858  * If a dentry has been deleted, all corresponding open handles should know that
859  * so that we do not defer close them.
860  */
861 void cifs_mark_open_handles_for_deleted_file(struct inode *inode,
862                                              const char *path)
863 {
864         struct cifsFileInfo *cfile;
865         void *page;
866         const char *full_path;
867         struct cifsInodeInfo *cinode = CIFS_I(inode);
868
869         page = alloc_dentry_path();
870         spin_lock(&cinode->open_file_lock);
871
872         /*
873          * note: we need to construct path from dentry and compare only if the
874          * inode has any hardlinks. When number of hardlinks is 1, we can just
875          * mark all open handles since they are going to be from the same file.
876          */
877         if (inode->i_nlink > 1) {
878                 list_for_each_entry(cfile, &cinode->openFileList, flist) {
879                         full_path = build_path_from_dentry(cfile->dentry, page);
880                         if (!IS_ERR(full_path) && strcmp(full_path, path) == 0)
881                                 cfile->status_file_deleted = true;
882                 }
883         } else {
884                 list_for_each_entry(cfile, &cinode->openFileList, flist)
885                         cfile->status_file_deleted = true;
886         }
887         spin_unlock(&cinode->open_file_lock);
888         free_dentry_path(page);
889 }
890
891 /* parses DFS referral V3 structure
892  * caller is responsible for freeing target_nodes
893  * returns:
894  * - on success - 0
895  * - on failure - errno
896  */
897 int
898 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
899                     unsigned int *num_of_nodes,
900                     struct dfs_info3_param **target_nodes,
901                     const struct nls_table *nls_codepage, int remap,
902                     const char *searchName, bool is_unicode)
903 {
904         int i, rc = 0;
905         char *data_end;
906         struct dfs_referral_level_3 *ref;
907
908         *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
909
910         if (*num_of_nodes < 1) {
911                 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
912                          *num_of_nodes);
913                 rc = -EINVAL;
914                 goto parse_DFS_referrals_exit;
915         }
916
917         ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
918         if (ref->VersionNumber != cpu_to_le16(3)) {
919                 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
920                          le16_to_cpu(ref->VersionNumber));
921                 rc = -EINVAL;
922                 goto parse_DFS_referrals_exit;
923         }
924
925         /* get the upper boundary of the resp buffer */
926         data_end = (char *)rsp + rsp_size;
927
928         cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
929                  *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
930
931         *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
932                                 GFP_KERNEL);
933         if (*target_nodes == NULL) {
934                 rc = -ENOMEM;
935                 goto parse_DFS_referrals_exit;
936         }
937
938         /* collect necessary data from referrals */
939         for (i = 0; i < *num_of_nodes; i++) {
940                 char *temp;
941                 int max_len;
942                 struct dfs_info3_param *node = (*target_nodes)+i;
943
944                 node->flags = le32_to_cpu(rsp->DFSFlags);
945                 if (is_unicode) {
946                         __le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
947                                                 GFP_KERNEL);
948                         if (tmp == NULL) {
949                                 rc = -ENOMEM;
950                                 goto parse_DFS_referrals_exit;
951                         }
952                         cifsConvertToUTF16((__le16 *) tmp, searchName,
953                                            PATH_MAX, nls_codepage, remap);
954                         node->path_consumed = cifs_utf16_bytes(tmp,
955                                         le16_to_cpu(rsp->PathConsumed),
956                                         nls_codepage);
957                         kfree(tmp);
958                 } else
959                         node->path_consumed = le16_to_cpu(rsp->PathConsumed);
960
961                 node->server_type = le16_to_cpu(ref->ServerType);
962                 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
963
964                 /* copy DfsPath */
965                 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
966                 max_len = data_end - temp;
967                 node->path_name = cifs_strndup_from_utf16(temp, max_len,
968                                                 is_unicode, nls_codepage);
969                 if (!node->path_name) {
970                         rc = -ENOMEM;
971                         goto parse_DFS_referrals_exit;
972                 }
973
974                 /* copy link target UNC */
975                 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
976                 max_len = data_end - temp;
977                 node->node_name = cifs_strndup_from_utf16(temp, max_len,
978                                                 is_unicode, nls_codepage);
979                 if (!node->node_name) {
980                         rc = -ENOMEM;
981                         goto parse_DFS_referrals_exit;
982                 }
983
984                 node->ttl = le32_to_cpu(ref->TimeToLive);
985
986                 ref++;
987         }
988
989 parse_DFS_referrals_exit:
990         if (rc) {
991                 free_dfs_info_array(*target_nodes, *num_of_nodes);
992                 *target_nodes = NULL;
993                 *num_of_nodes = 0;
994         }
995         return rc;
996 }
997
998 struct cifs_aio_ctx *
999 cifs_aio_ctx_alloc(void)
1000 {
1001         struct cifs_aio_ctx *ctx;
1002
1003         /*
1004          * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
1005          * to false so that we know when we have to unreference pages within
1006          * cifs_aio_ctx_release()
1007          */
1008         ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
1009         if (!ctx)
1010                 return NULL;
1011
1012         INIT_LIST_HEAD(&ctx->list);
1013         mutex_init(&ctx->aio_mutex);
1014         init_completion(&ctx->done);
1015         kref_init(&ctx->refcount);
1016         return ctx;
1017 }
1018
1019 void
1020 cifs_aio_ctx_release(struct kref *refcount)
1021 {
1022         struct cifs_aio_ctx *ctx = container_of(refcount,
1023                                         struct cifs_aio_ctx, refcount);
1024
1025         cifsFileInfo_put(ctx->cfile);
1026
1027         /*
1028          * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
1029          * which means that iov_iter_extract_pages() was a success and thus
1030          * that we may have references or pins on pages that we need to
1031          * release.
1032          */
1033         if (ctx->bv) {
1034                 if (ctx->should_dirty || ctx->bv_need_unpin) {
1035                         unsigned int i;
1036
1037                         for (i = 0; i < ctx->nr_pinned_pages; i++) {
1038                                 struct page *page = ctx->bv[i].bv_page;
1039
1040                                 if (ctx->should_dirty)
1041                                         set_page_dirty(page);
1042                                 if (ctx->bv_need_unpin)
1043                                         unpin_user_page(page);
1044                         }
1045                 }
1046                 kvfree(ctx->bv);
1047         }
1048
1049         kfree(ctx);
1050 }
1051
1052 /**
1053  * cifs_alloc_hash - allocate hash and hash context together
1054  * @name: The name of the crypto hash algo
1055  * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1056  *
1057  * The caller has to make sure @sdesc is initialized to either NULL or
1058  * a valid context. It can be freed via cifs_free_hash().
1059  */
1060 int
1061 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1062 {
1063         int rc = 0;
1064         struct crypto_shash *alg = NULL;
1065
1066         if (*sdesc)
1067                 return 0;
1068
1069         alg = crypto_alloc_shash(name, 0, 0);
1070         if (IS_ERR(alg)) {
1071                 cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1072                 rc = PTR_ERR(alg);
1073                 *sdesc = NULL;
1074                 return rc;
1075         }
1076
1077         *sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1078         if (*sdesc == NULL) {
1079                 cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1080                 crypto_free_shash(alg);
1081                 return -ENOMEM;
1082         }
1083
1084         (*sdesc)->tfm = alg;
1085         return 0;
1086 }
1087
1088 /**
1089  * cifs_free_hash - free hash and hash context together
1090  * @sdesc: Where to find the pointer to the hash TFM
1091  *
1092  * Freeing a NULL descriptor is safe.
1093  */
1094 void
1095 cifs_free_hash(struct shash_desc **sdesc)
1096 {
1097         if (unlikely(!sdesc) || !*sdesc)
1098                 return;
1099
1100         if ((*sdesc)->tfm) {
1101                 crypto_free_shash((*sdesc)->tfm);
1102                 (*sdesc)->tfm = NULL;
1103         }
1104
1105         kfree_sensitive(*sdesc);
1106         *sdesc = NULL;
1107 }
1108
1109 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1110 {
1111         const char *end;
1112
1113         /* skip initial slashes */
1114         while (*unc && (*unc == '\\' || *unc == '/'))
1115                 unc++;
1116
1117         end = unc;
1118
1119         while (*end && !(*end == '\\' || *end == '/'))
1120                 end++;
1121
1122         *h = unc;
1123         *len = end - unc;
1124 }
1125
1126 /**
1127  * copy_path_name - copy src path to dst, possibly truncating
1128  * @dst: The destination buffer
1129  * @src: The source name
1130  *
1131  * returns number of bytes written (including trailing nul)
1132  */
1133 int copy_path_name(char *dst, const char *src)
1134 {
1135         int name_len;
1136
1137         /*
1138          * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1139          * will truncate and strlen(dst) will be PATH_MAX-1
1140          */
1141         name_len = strscpy(dst, src, PATH_MAX);
1142         if (WARN_ON_ONCE(name_len < 0))
1143                 name_len = PATH_MAX-1;
1144
1145         /* we count the trailing nul */
1146         name_len++;
1147         return name_len;
1148 }
1149
1150 struct super_cb_data {
1151         void *data;
1152         struct super_block *sb;
1153 };
1154
1155 static void tcon_super_cb(struct super_block *sb, void *arg)
1156 {
1157         struct super_cb_data *sd = arg;
1158         struct cifs_sb_info *cifs_sb;
1159         struct cifs_tcon *t1 = sd->data, *t2;
1160
1161         if (sd->sb)
1162                 return;
1163
1164         cifs_sb = CIFS_SB(sb);
1165         t2 = cifs_sb_master_tcon(cifs_sb);
1166
1167         spin_lock(&t2->tc_lock);
1168         if (t1->ses == t2->ses &&
1169             t1->ses->server == t2->ses->server &&
1170             t2->origin_fullpath &&
1171             dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath))
1172                 sd->sb = sb;
1173         spin_unlock(&t2->tc_lock);
1174 }
1175
1176 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1177                                             void *data)
1178 {
1179         struct super_cb_data sd = {
1180                 .data = data,
1181                 .sb = NULL,
1182         };
1183         struct file_system_type **fs_type = (struct file_system_type *[]) {
1184                 &cifs_fs_type, &smb3_fs_type, NULL,
1185         };
1186
1187         for (; *fs_type; fs_type++) {
1188                 iterate_supers_type(*fs_type, f, &sd);
1189                 if (sd.sb) {
1190                         /*
1191                          * Grab an active reference in order to prevent automounts (DFS links)
1192                          * of expiring and then freeing up our cifs superblock pointer while
1193                          * we're doing failover.
1194                          */
1195                         cifs_sb_active(sd.sb);
1196                         return sd.sb;
1197                 }
1198         }
1199         pr_warn_once("%s: could not find dfs superblock\n", __func__);
1200         return ERR_PTR(-EINVAL);
1201 }
1202
1203 static void __cifs_put_super(struct super_block *sb)
1204 {
1205         if (!IS_ERR_OR_NULL(sb))
1206                 cifs_sb_deactive(sb);
1207 }
1208
1209 struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon)
1210 {
1211         spin_lock(&tcon->tc_lock);
1212         if (!tcon->origin_fullpath) {
1213                 spin_unlock(&tcon->tc_lock);
1214                 return ERR_PTR(-ENOENT);
1215         }
1216         spin_unlock(&tcon->tc_lock);
1217         return __cifs_get_super(tcon_super_cb, tcon);
1218 }
1219
1220 void cifs_put_tcp_super(struct super_block *sb)
1221 {
1222         __cifs_put_super(sb);
1223 }
1224
1225 #ifdef CONFIG_CIFS_DFS_UPCALL
1226 int match_target_ip(struct TCP_Server_Info *server,
1227                     const char *share, size_t share_len,
1228                     bool *result)
1229 {
1230         int rc;
1231         char *target;
1232         struct sockaddr_storage ss;
1233
1234         *result = false;
1235
1236         target = kzalloc(share_len + 3, GFP_KERNEL);
1237         if (!target)
1238                 return -ENOMEM;
1239
1240         scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1241
1242         cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1243
1244         rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1245         kfree(target);
1246
1247         if (rc < 0)
1248                 return rc;
1249
1250         spin_lock(&server->srv_lock);
1251         *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1252         spin_unlock(&server->srv_lock);
1253         cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1254         return 0;
1255 }
1256
1257 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1258 {
1259         int rc;
1260
1261         kfree(cifs_sb->prepath);
1262         cifs_sb->prepath = NULL;
1263
1264         if (prefix && *prefix) {
1265                 cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1266                 if (IS_ERR(cifs_sb->prepath)) {
1267                         rc = PTR_ERR(cifs_sb->prepath);
1268                         cifs_sb->prepath = NULL;
1269                         return rc;
1270                 }
1271                 if (cifs_sb->prepath)
1272                         convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1273         }
1274
1275         cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1276         return 0;
1277 }
1278
1279 /*
1280  * Handle weird Windows SMB server behaviour. It responds with
1281  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1282  * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1283  * non-ASCII unicode symbols.
1284  */
1285 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1286                                    struct cifs_tcon *tcon,
1287                                    struct cifs_sb_info *cifs_sb,
1288                                    const char *full_path,
1289                                    bool *islink)
1290 {
1291         struct cifs_ses *ses = tcon->ses;
1292         size_t len;
1293         char *path;
1294         char *ref_path;
1295
1296         *islink = false;
1297
1298         /*
1299          * Fast path - skip check when @full_path doesn't have a prefix path to
1300          * look up or tcon is not DFS.
1301          */
1302         if (strlen(full_path) < 2 || !cifs_sb ||
1303             (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1304             !is_tcon_dfs(tcon))
1305                 return 0;
1306
1307         spin_lock(&tcon->tc_lock);
1308         if (!tcon->origin_fullpath) {
1309                 spin_unlock(&tcon->tc_lock);
1310                 return 0;
1311         }
1312         spin_unlock(&tcon->tc_lock);
1313
1314         /*
1315          * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1316          * to get a referral to figure out whether it is an DFS link.
1317          */
1318         len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1319         path = kmalloc(len, GFP_KERNEL);
1320         if (!path)
1321                 return -ENOMEM;
1322
1323         scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1324         ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1325                                             cifs_remap(cifs_sb));
1326         kfree(path);
1327
1328         if (IS_ERR(ref_path)) {
1329                 if (PTR_ERR(ref_path) != -EINVAL)
1330                         return PTR_ERR(ref_path);
1331         } else {
1332                 struct dfs_info3_param *refs = NULL;
1333                 int num_refs = 0;
1334
1335                 /*
1336                  * XXX: we are not using dfs_cache_find() here because we might
1337                  * end up filling all the DFS cache and thus potentially
1338                  * removing cached DFS targets that the client would eventually
1339                  * need during failover.
1340                  */
1341                 ses = CIFS_DFS_ROOT_SES(ses);
1342                 if (ses->server->ops->get_dfs_refer &&
1343                     !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1344                                                      &num_refs, cifs_sb->local_nls,
1345                                                      cifs_remap(cifs_sb)))
1346                         *islink = refs[0].server_type == DFS_TYPE_LINK;
1347                 free_dfs_info_array(refs, num_refs);
1348                 kfree(ref_path);
1349         }
1350         return 0;
1351 }
1352 #endif
1353
1354 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1355 {
1356         int timeout = 10;
1357         int rc;
1358
1359         spin_lock(&server->srv_lock);
1360         if (server->tcpStatus != CifsNeedReconnect) {
1361                 spin_unlock(&server->srv_lock);
1362                 return 0;
1363         }
1364         timeout *= server->nr_targets;
1365         spin_unlock(&server->srv_lock);
1366
1367         /*
1368          * Give demultiplex thread up to 10 seconds to each target available for
1369          * reconnect -- should be greater than cifs socket timeout which is 7
1370          * seconds.
1371          *
1372          * On "soft" mounts we wait once. Hard mounts keep retrying until
1373          * process is killed or server comes back on-line.
1374          */
1375         do {
1376                 rc = wait_event_interruptible_timeout(server->response_q,
1377                                                       (server->tcpStatus != CifsNeedReconnect),
1378                                                       timeout * HZ);
1379                 if (rc < 0) {
1380                         cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1381                                  __func__);
1382                         return -ERESTARTSYS;
1383                 }
1384
1385                 /* are we still trying to reconnect? */
1386                 spin_lock(&server->srv_lock);
1387                 if (server->tcpStatus != CifsNeedReconnect) {
1388                         spin_unlock(&server->srv_lock);
1389                         return 0;
1390                 }
1391                 spin_unlock(&server->srv_lock);
1392         } while (retry);
1393
1394         cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1395         return -EHOSTDOWN;
1396 }