Merge tag 'trace-tools-v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[linux-block.git] / fs / proc / task_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/mm_inline.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27
28 #define SEQ_PUT_DEC(str, val) \
29                 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32         unsigned long text, lib, swap, anon, file, shmem;
33         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34
35         anon = get_mm_counter(mm, MM_ANONPAGES);
36         file = get_mm_counter(mm, MM_FILEPAGES);
37         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38
39         /*
40          * Note: to minimize their overhead, mm maintains hiwater_vm and
41          * hiwater_rss only when about to *lower* total_vm or rss.  Any
42          * collector of these hiwater stats must therefore get total_vm
43          * and rss too, which will usually be the higher.  Barriers? not
44          * worth the effort, such snapshots can always be inconsistent.
45          */
46         hiwater_vm = total_vm = mm->total_vm;
47         if (hiwater_vm < mm->hiwater_vm)
48                 hiwater_vm = mm->hiwater_vm;
49         hiwater_rss = total_rss = anon + file + shmem;
50         if (hiwater_rss < mm->hiwater_rss)
51                 hiwater_rss = mm->hiwater_rss;
52
53         /* split executable areas between text and lib */
54         text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55         text = min(text, mm->exec_vm << PAGE_SHIFT);
56         lib = (mm->exec_vm << PAGE_SHIFT) - text;
57
58         swap = get_mm_counter(mm, MM_SWAPENTS);
59         SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60         SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61         SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62         SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63         SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64         SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65         SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66         SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67         SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68         SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69         SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70         seq_put_decimal_ull_width(m,
71                     " kB\nVmExe:\t", text >> 10, 8);
72         seq_put_decimal_ull_width(m,
73                     " kB\nVmLib:\t", lib >> 10, 8);
74         seq_put_decimal_ull_width(m,
75                     " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76         SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77         seq_puts(m, " kB\n");
78         hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84         return PAGE_SIZE * mm->total_vm;
85 }
86
87 unsigned long task_statm(struct mm_struct *mm,
88                          unsigned long *shared, unsigned long *text,
89                          unsigned long *data, unsigned long *resident)
90 {
91         *shared = get_mm_counter(mm, MM_FILEPAGES) +
92                         get_mm_counter(mm, MM_SHMEMPAGES);
93         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94                                                                 >> PAGE_SHIFT;
95         *data = mm->data_vm + mm->stack_vm;
96         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97         return mm->total_vm;
98 }
99
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106         struct task_struct *task = priv->task;
107
108         task_lock(task);
109         priv->task_mempolicy = get_task_policy(task);
110         mpol_get(priv->task_mempolicy);
111         task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115         mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125
126 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
127                                                 loff_t *ppos)
128 {
129         struct vm_area_struct *vma = vma_next(&priv->iter);
130
131         if (vma) {
132                 *ppos = vma->vm_start;
133         } else {
134                 *ppos = -2UL;
135                 vma = get_gate_vma(priv->mm);
136         }
137
138         return vma;
139 }
140
141 static void *m_start(struct seq_file *m, loff_t *ppos)
142 {
143         struct proc_maps_private *priv = m->private;
144         unsigned long last_addr = *ppos;
145         struct mm_struct *mm;
146
147         /* See m_next(). Zero at the start or after lseek. */
148         if (last_addr == -1UL)
149                 return NULL;
150
151         priv->task = get_proc_task(priv->inode);
152         if (!priv->task)
153                 return ERR_PTR(-ESRCH);
154
155         mm = priv->mm;
156         if (!mm || !mmget_not_zero(mm)) {
157                 put_task_struct(priv->task);
158                 priv->task = NULL;
159                 return NULL;
160         }
161
162         if (mmap_read_lock_killable(mm)) {
163                 mmput(mm);
164                 put_task_struct(priv->task);
165                 priv->task = NULL;
166                 return ERR_PTR(-EINTR);
167         }
168
169         vma_iter_init(&priv->iter, mm, last_addr);
170         hold_task_mempolicy(priv);
171         if (last_addr == -2UL)
172                 return get_gate_vma(mm);
173
174         return proc_get_vma(priv, ppos);
175 }
176
177 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
178 {
179         if (*ppos == -2UL) {
180                 *ppos = -1UL;
181                 return NULL;
182         }
183         return proc_get_vma(m->private, ppos);
184 }
185
186 static void m_stop(struct seq_file *m, void *v)
187 {
188         struct proc_maps_private *priv = m->private;
189         struct mm_struct *mm = priv->mm;
190
191         if (!priv->task)
192                 return;
193
194         release_task_mempolicy(priv);
195         mmap_read_unlock(mm);
196         mmput(mm);
197         put_task_struct(priv->task);
198         priv->task = NULL;
199 }
200
201 static int proc_maps_open(struct inode *inode, struct file *file,
202                         const struct seq_operations *ops, int psize)
203 {
204         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
205
206         if (!priv)
207                 return -ENOMEM;
208
209         priv->inode = inode;
210         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
211         if (IS_ERR(priv->mm)) {
212                 int err = PTR_ERR(priv->mm);
213
214                 seq_release_private(inode, file);
215                 return err;
216         }
217
218         return 0;
219 }
220
221 static int proc_map_release(struct inode *inode, struct file *file)
222 {
223         struct seq_file *seq = file->private_data;
224         struct proc_maps_private *priv = seq->private;
225
226         if (priv->mm)
227                 mmdrop(priv->mm);
228
229         return seq_release_private(inode, file);
230 }
231
232 static int do_maps_open(struct inode *inode, struct file *file,
233                         const struct seq_operations *ops)
234 {
235         return proc_maps_open(inode, file, ops,
236                                 sizeof(struct proc_maps_private));
237 }
238
239 /*
240  * Indicate if the VMA is a stack for the given task; for
241  * /proc/PID/maps that is the stack of the main task.
242  */
243 static int is_stack(struct vm_area_struct *vma)
244 {
245         /*
246          * We make no effort to guess what a given thread considers to be
247          * its "stack".  It's not even well-defined for programs written
248          * languages like Go.
249          */
250         return vma->vm_start <= vma->vm_mm->start_stack &&
251                 vma->vm_end >= vma->vm_mm->start_stack;
252 }
253
254 static void show_vma_header_prefix(struct seq_file *m,
255                                    unsigned long start, unsigned long end,
256                                    vm_flags_t flags, unsigned long long pgoff,
257                                    dev_t dev, unsigned long ino)
258 {
259         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
260         seq_put_hex_ll(m, NULL, start, 8);
261         seq_put_hex_ll(m, "-", end, 8);
262         seq_putc(m, ' ');
263         seq_putc(m, flags & VM_READ ? 'r' : '-');
264         seq_putc(m, flags & VM_WRITE ? 'w' : '-');
265         seq_putc(m, flags & VM_EXEC ? 'x' : '-');
266         seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
267         seq_put_hex_ll(m, " ", pgoff, 8);
268         seq_put_hex_ll(m, " ", MAJOR(dev), 2);
269         seq_put_hex_ll(m, ":", MINOR(dev), 2);
270         seq_put_decimal_ull(m, " ", ino);
271         seq_putc(m, ' ');
272 }
273
274 static void
275 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
276 {
277         struct anon_vma_name *anon_name = NULL;
278         struct mm_struct *mm = vma->vm_mm;
279         struct file *file = vma->vm_file;
280         vm_flags_t flags = vma->vm_flags;
281         unsigned long ino = 0;
282         unsigned long long pgoff = 0;
283         unsigned long start, end;
284         dev_t dev = 0;
285         const char *name = NULL;
286
287         if (file) {
288                 struct inode *inode = file_inode(vma->vm_file);
289                 dev = inode->i_sb->s_dev;
290                 ino = inode->i_ino;
291                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
292         }
293
294         start = vma->vm_start;
295         end = vma->vm_end;
296         show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
297         if (mm)
298                 anon_name = anon_vma_name(vma);
299
300         /*
301          * Print the dentry name for named mappings, and a
302          * special [heap] marker for the heap:
303          */
304         if (file) {
305                 seq_pad(m, ' ');
306                 /*
307                  * If user named this anon shared memory via
308                  * prctl(PR_SET_VMA ..., use the provided name.
309                  */
310                 if (anon_name)
311                         seq_printf(m, "[anon_shmem:%s]", anon_name->name);
312                 else
313                         seq_file_path(m, file, "\n");
314                 goto done;
315         }
316
317         if (vma->vm_ops && vma->vm_ops->name) {
318                 name = vma->vm_ops->name(vma);
319                 if (name)
320                         goto done;
321         }
322
323         name = arch_vma_name(vma);
324         if (!name) {
325                 if (!mm) {
326                         name = "[vdso]";
327                         goto done;
328                 }
329
330                 if (vma->vm_start <= mm->brk &&
331                     vma->vm_end >= mm->start_brk) {
332                         name = "[heap]";
333                         goto done;
334                 }
335
336                 if (is_stack(vma)) {
337                         name = "[stack]";
338                         goto done;
339                 }
340
341                 if (anon_name) {
342                         seq_pad(m, ' ');
343                         seq_printf(m, "[anon:%s]", anon_name->name);
344                 }
345         }
346
347 done:
348         if (name) {
349                 seq_pad(m, ' ');
350                 seq_puts(m, name);
351         }
352         seq_putc(m, '\n');
353 }
354
355 static int show_map(struct seq_file *m, void *v)
356 {
357         show_map_vma(m, v);
358         return 0;
359 }
360
361 static const struct seq_operations proc_pid_maps_op = {
362         .start  = m_start,
363         .next   = m_next,
364         .stop   = m_stop,
365         .show   = show_map
366 };
367
368 static int pid_maps_open(struct inode *inode, struct file *file)
369 {
370         return do_maps_open(inode, file, &proc_pid_maps_op);
371 }
372
373 const struct file_operations proc_pid_maps_operations = {
374         .open           = pid_maps_open,
375         .read           = seq_read,
376         .llseek         = seq_lseek,
377         .release        = proc_map_release,
378 };
379
380 /*
381  * Proportional Set Size(PSS): my share of RSS.
382  *
383  * PSS of a process is the count of pages it has in memory, where each
384  * page is divided by the number of processes sharing it.  So if a
385  * process has 1000 pages all to itself, and 1000 shared with one other
386  * process, its PSS will be 1500.
387  *
388  * To keep (accumulated) division errors low, we adopt a 64bit
389  * fixed-point pss counter to minimize division errors. So (pss >>
390  * PSS_SHIFT) would be the real byte count.
391  *
392  * A shift of 12 before division means (assuming 4K page size):
393  *      - 1M 3-user-pages add up to 8KB errors;
394  *      - supports mapcount up to 2^24, or 16M;
395  *      - supports PSS up to 2^52 bytes, or 4PB.
396  */
397 #define PSS_SHIFT 12
398
399 #ifdef CONFIG_PROC_PAGE_MONITOR
400 struct mem_size_stats {
401         unsigned long resident;
402         unsigned long shared_clean;
403         unsigned long shared_dirty;
404         unsigned long private_clean;
405         unsigned long private_dirty;
406         unsigned long referenced;
407         unsigned long anonymous;
408         unsigned long lazyfree;
409         unsigned long anonymous_thp;
410         unsigned long shmem_thp;
411         unsigned long file_thp;
412         unsigned long swap;
413         unsigned long shared_hugetlb;
414         unsigned long private_hugetlb;
415         u64 pss;
416         u64 pss_anon;
417         u64 pss_file;
418         u64 pss_shmem;
419         u64 pss_dirty;
420         u64 pss_locked;
421         u64 swap_pss;
422 };
423
424 static void smaps_page_accumulate(struct mem_size_stats *mss,
425                 struct page *page, unsigned long size, unsigned long pss,
426                 bool dirty, bool locked, bool private)
427 {
428         mss->pss += pss;
429
430         if (PageAnon(page))
431                 mss->pss_anon += pss;
432         else if (PageSwapBacked(page))
433                 mss->pss_shmem += pss;
434         else
435                 mss->pss_file += pss;
436
437         if (locked)
438                 mss->pss_locked += pss;
439
440         if (dirty || PageDirty(page)) {
441                 mss->pss_dirty += pss;
442                 if (private)
443                         mss->private_dirty += size;
444                 else
445                         mss->shared_dirty += size;
446         } else {
447                 if (private)
448                         mss->private_clean += size;
449                 else
450                         mss->shared_clean += size;
451         }
452 }
453
454 static void smaps_account(struct mem_size_stats *mss, struct page *page,
455                 bool compound, bool young, bool dirty, bool locked,
456                 bool migration)
457 {
458         int i, nr = compound ? compound_nr(page) : 1;
459         unsigned long size = nr * PAGE_SIZE;
460
461         /*
462          * First accumulate quantities that depend only on |size| and the type
463          * of the compound page.
464          */
465         if (PageAnon(page)) {
466                 mss->anonymous += size;
467                 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
468                         mss->lazyfree += size;
469         }
470
471         mss->resident += size;
472         /* Accumulate the size in pages that have been accessed. */
473         if (young || page_is_young(page) || PageReferenced(page))
474                 mss->referenced += size;
475
476         /*
477          * Then accumulate quantities that may depend on sharing, or that may
478          * differ page-by-page.
479          *
480          * page_count(page) == 1 guarantees the page is mapped exactly once.
481          * If any subpage of the compound page mapped with PTE it would elevate
482          * page_count().
483          *
484          * The page_mapcount() is called to get a snapshot of the mapcount.
485          * Without holding the page lock this snapshot can be slightly wrong as
486          * we cannot always read the mapcount atomically.  It is not safe to
487          * call page_mapcount() even with PTL held if the page is not mapped,
488          * especially for migration entries.  Treat regular migration entries
489          * as mapcount == 1.
490          */
491         if ((page_count(page) == 1) || migration) {
492                 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
493                         locked, true);
494                 return;
495         }
496         for (i = 0; i < nr; i++, page++) {
497                 int mapcount = page_mapcount(page);
498                 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
499                 if (mapcount >= 2)
500                         pss /= mapcount;
501                 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
502                                       mapcount < 2);
503         }
504 }
505
506 #ifdef CONFIG_SHMEM
507 static int smaps_pte_hole(unsigned long addr, unsigned long end,
508                           __always_unused int depth, struct mm_walk *walk)
509 {
510         struct mem_size_stats *mss = walk->private;
511         struct vm_area_struct *vma = walk->vma;
512
513         mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
514                                               linear_page_index(vma, addr),
515                                               linear_page_index(vma, end));
516
517         return 0;
518 }
519 #else
520 #define smaps_pte_hole          NULL
521 #endif /* CONFIG_SHMEM */
522
523 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
524 {
525 #ifdef CONFIG_SHMEM
526         if (walk->ops->pte_hole) {
527                 /* depth is not used */
528                 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
529         }
530 #endif
531 }
532
533 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
534                 struct mm_walk *walk)
535 {
536         struct mem_size_stats *mss = walk->private;
537         struct vm_area_struct *vma = walk->vma;
538         bool locked = !!(vma->vm_flags & VM_LOCKED);
539         struct page *page = NULL;
540         bool migration = false, young = false, dirty = false;
541
542         if (pte_present(*pte)) {
543                 page = vm_normal_page(vma, addr, *pte);
544                 young = pte_young(*pte);
545                 dirty = pte_dirty(*pte);
546         } else if (is_swap_pte(*pte)) {
547                 swp_entry_t swpent = pte_to_swp_entry(*pte);
548
549                 if (!non_swap_entry(swpent)) {
550                         int mapcount;
551
552                         mss->swap += PAGE_SIZE;
553                         mapcount = swp_swapcount(swpent);
554                         if (mapcount >= 2) {
555                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
556
557                                 do_div(pss_delta, mapcount);
558                                 mss->swap_pss += pss_delta;
559                         } else {
560                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
561                         }
562                 } else if (is_pfn_swap_entry(swpent)) {
563                         if (is_migration_entry(swpent))
564                                 migration = true;
565                         page = pfn_swap_entry_to_page(swpent);
566                 }
567         } else {
568                 smaps_pte_hole_lookup(addr, walk);
569                 return;
570         }
571
572         if (!page)
573                 return;
574
575         smaps_account(mss, page, false, young, dirty, locked, migration);
576 }
577
578 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
579 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
580                 struct mm_walk *walk)
581 {
582         struct mem_size_stats *mss = walk->private;
583         struct vm_area_struct *vma = walk->vma;
584         bool locked = !!(vma->vm_flags & VM_LOCKED);
585         struct page *page = NULL;
586         bool migration = false;
587
588         if (pmd_present(*pmd)) {
589                 /* FOLL_DUMP will return -EFAULT on huge zero page */
590                 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
591         } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
592                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
593
594                 if (is_migration_entry(entry)) {
595                         migration = true;
596                         page = pfn_swap_entry_to_page(entry);
597                 }
598         }
599         if (IS_ERR_OR_NULL(page))
600                 return;
601         if (PageAnon(page))
602                 mss->anonymous_thp += HPAGE_PMD_SIZE;
603         else if (PageSwapBacked(page))
604                 mss->shmem_thp += HPAGE_PMD_SIZE;
605         else if (is_zone_device_page(page))
606                 /* pass */;
607         else
608                 mss->file_thp += HPAGE_PMD_SIZE;
609
610         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
611                       locked, migration);
612 }
613 #else
614 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
615                 struct mm_walk *walk)
616 {
617 }
618 #endif
619
620 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
621                            struct mm_walk *walk)
622 {
623         struct vm_area_struct *vma = walk->vma;
624         pte_t *pte;
625         spinlock_t *ptl;
626
627         ptl = pmd_trans_huge_lock(pmd, vma);
628         if (ptl) {
629                 smaps_pmd_entry(pmd, addr, walk);
630                 spin_unlock(ptl);
631                 goto out;
632         }
633
634         if (pmd_trans_unstable(pmd))
635                 goto out;
636         /*
637          * The mmap_lock held all the way back in m_start() is what
638          * keeps khugepaged out of here and from collapsing things
639          * in here.
640          */
641         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
642         for (; addr != end; pte++, addr += PAGE_SIZE)
643                 smaps_pte_entry(pte, addr, walk);
644         pte_unmap_unlock(pte - 1, ptl);
645 out:
646         cond_resched();
647         return 0;
648 }
649
650 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
651 {
652         /*
653          * Don't forget to update Documentation/ on changes.
654          */
655         static const char mnemonics[BITS_PER_LONG][2] = {
656                 /*
657                  * In case if we meet a flag we don't know about.
658                  */
659                 [0 ... (BITS_PER_LONG-1)] = "??",
660
661                 [ilog2(VM_READ)]        = "rd",
662                 [ilog2(VM_WRITE)]       = "wr",
663                 [ilog2(VM_EXEC)]        = "ex",
664                 [ilog2(VM_SHARED)]      = "sh",
665                 [ilog2(VM_MAYREAD)]     = "mr",
666                 [ilog2(VM_MAYWRITE)]    = "mw",
667                 [ilog2(VM_MAYEXEC)]     = "me",
668                 [ilog2(VM_MAYSHARE)]    = "ms",
669                 [ilog2(VM_GROWSDOWN)]   = "gd",
670                 [ilog2(VM_PFNMAP)]      = "pf",
671                 [ilog2(VM_LOCKED)]      = "lo",
672                 [ilog2(VM_IO)]          = "io",
673                 [ilog2(VM_SEQ_READ)]    = "sr",
674                 [ilog2(VM_RAND_READ)]   = "rr",
675                 [ilog2(VM_DONTCOPY)]    = "dc",
676                 [ilog2(VM_DONTEXPAND)]  = "de",
677                 [ilog2(VM_LOCKONFAULT)] = "lf",
678                 [ilog2(VM_ACCOUNT)]     = "ac",
679                 [ilog2(VM_NORESERVE)]   = "nr",
680                 [ilog2(VM_HUGETLB)]     = "ht",
681                 [ilog2(VM_SYNC)]        = "sf",
682                 [ilog2(VM_ARCH_1)]      = "ar",
683                 [ilog2(VM_WIPEONFORK)]  = "wf",
684                 [ilog2(VM_DONTDUMP)]    = "dd",
685 #ifdef CONFIG_ARM64_BTI
686                 [ilog2(VM_ARM64_BTI)]   = "bt",
687 #endif
688 #ifdef CONFIG_MEM_SOFT_DIRTY
689                 [ilog2(VM_SOFTDIRTY)]   = "sd",
690 #endif
691                 [ilog2(VM_MIXEDMAP)]    = "mm",
692                 [ilog2(VM_HUGEPAGE)]    = "hg",
693                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
694                 [ilog2(VM_MERGEABLE)]   = "mg",
695                 [ilog2(VM_UFFD_MISSING)]= "um",
696                 [ilog2(VM_UFFD_WP)]     = "uw",
697 #ifdef CONFIG_ARM64_MTE
698                 [ilog2(VM_MTE)]         = "mt",
699                 [ilog2(VM_MTE_ALLOWED)] = "",
700 #endif
701 #ifdef CONFIG_ARCH_HAS_PKEYS
702                 /* These come out via ProtectionKey: */
703                 [ilog2(VM_PKEY_BIT0)]   = "",
704                 [ilog2(VM_PKEY_BIT1)]   = "",
705                 [ilog2(VM_PKEY_BIT2)]   = "",
706                 [ilog2(VM_PKEY_BIT3)]   = "",
707 #if VM_PKEY_BIT4
708                 [ilog2(VM_PKEY_BIT4)]   = "",
709 #endif
710 #endif /* CONFIG_ARCH_HAS_PKEYS */
711 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
712                 [ilog2(VM_UFFD_MINOR)]  = "ui",
713 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
714         };
715         size_t i;
716
717         seq_puts(m, "VmFlags: ");
718         for (i = 0; i < BITS_PER_LONG; i++) {
719                 if (!mnemonics[i][0])
720                         continue;
721                 if (vma->vm_flags & (1UL << i)) {
722                         seq_putc(m, mnemonics[i][0]);
723                         seq_putc(m, mnemonics[i][1]);
724                         seq_putc(m, ' ');
725                 }
726         }
727         seq_putc(m, '\n');
728 }
729
730 #ifdef CONFIG_HUGETLB_PAGE
731 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
732                                  unsigned long addr, unsigned long end,
733                                  struct mm_walk *walk)
734 {
735         struct mem_size_stats *mss = walk->private;
736         struct vm_area_struct *vma = walk->vma;
737         struct page *page = NULL;
738
739         if (pte_present(*pte)) {
740                 page = vm_normal_page(vma, addr, *pte);
741         } else if (is_swap_pte(*pte)) {
742                 swp_entry_t swpent = pte_to_swp_entry(*pte);
743
744                 if (is_pfn_swap_entry(swpent))
745                         page = pfn_swap_entry_to_page(swpent);
746         }
747         if (page) {
748                 if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
749                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
750                 else
751                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
752         }
753         return 0;
754 }
755 #else
756 #define smaps_hugetlb_range     NULL
757 #endif /* HUGETLB_PAGE */
758
759 static const struct mm_walk_ops smaps_walk_ops = {
760         .pmd_entry              = smaps_pte_range,
761         .hugetlb_entry          = smaps_hugetlb_range,
762 };
763
764 static const struct mm_walk_ops smaps_shmem_walk_ops = {
765         .pmd_entry              = smaps_pte_range,
766         .hugetlb_entry          = smaps_hugetlb_range,
767         .pte_hole               = smaps_pte_hole,
768 };
769
770 /*
771  * Gather mem stats from @vma with the indicated beginning
772  * address @start, and keep them in @mss.
773  *
774  * Use vm_start of @vma as the beginning address if @start is 0.
775  */
776 static void smap_gather_stats(struct vm_area_struct *vma,
777                 struct mem_size_stats *mss, unsigned long start)
778 {
779         const struct mm_walk_ops *ops = &smaps_walk_ops;
780
781         /* Invalid start */
782         if (start >= vma->vm_end)
783                 return;
784
785 #ifdef CONFIG_SHMEM
786         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
787                 /*
788                  * For shared or readonly shmem mappings we know that all
789                  * swapped out pages belong to the shmem object, and we can
790                  * obtain the swap value much more efficiently. For private
791                  * writable mappings, we might have COW pages that are
792                  * not affected by the parent swapped out pages of the shmem
793                  * object, so we have to distinguish them during the page walk.
794                  * Unless we know that the shmem object (or the part mapped by
795                  * our VMA) has no swapped out pages at all.
796                  */
797                 unsigned long shmem_swapped = shmem_swap_usage(vma);
798
799                 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
800                                         !(vma->vm_flags & VM_WRITE))) {
801                         mss->swap += shmem_swapped;
802                 } else {
803                         ops = &smaps_shmem_walk_ops;
804                 }
805         }
806 #endif
807         /* mmap_lock is held in m_start */
808         if (!start)
809                 walk_page_vma(vma, ops, mss);
810         else
811                 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
812 }
813
814 #define SEQ_PUT_DEC(str, val) \
815                 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
816
817 /* Show the contents common for smaps and smaps_rollup */
818 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
819         bool rollup_mode)
820 {
821         SEQ_PUT_DEC("Rss:            ", mss->resident);
822         SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
823         SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
824         if (rollup_mode) {
825                 /*
826                  * These are meaningful only for smaps_rollup, otherwise two of
827                  * them are zero, and the other one is the same as Pss.
828                  */
829                 SEQ_PUT_DEC(" kB\nPss_Anon:       ",
830                         mss->pss_anon >> PSS_SHIFT);
831                 SEQ_PUT_DEC(" kB\nPss_File:       ",
832                         mss->pss_file >> PSS_SHIFT);
833                 SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
834                         mss->pss_shmem >> PSS_SHIFT);
835         }
836         SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
837         SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
838         SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
839         SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
840         SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
841         SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
842         SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
843         SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
844         SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
845         SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
846         SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
847         seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
848                                   mss->private_hugetlb >> 10, 7);
849         SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
850         SEQ_PUT_DEC(" kB\nSwapPss:        ",
851                                         mss->swap_pss >> PSS_SHIFT);
852         SEQ_PUT_DEC(" kB\nLocked:         ",
853                                         mss->pss_locked >> PSS_SHIFT);
854         seq_puts(m, " kB\n");
855 }
856
857 static int show_smap(struct seq_file *m, void *v)
858 {
859         struct vm_area_struct *vma = v;
860         struct mem_size_stats mss;
861
862         memset(&mss, 0, sizeof(mss));
863
864         smap_gather_stats(vma, &mss, 0);
865
866         show_map_vma(m, vma);
867
868         SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
869         SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
870         SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
871         seq_puts(m, " kB\n");
872
873         __show_smap(m, &mss, false);
874
875         seq_printf(m, "THPeligible:    %d\n",
876                    hugepage_vma_check(vma, vma->vm_flags, true, false, true));
877
878         if (arch_pkeys_enabled())
879                 seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
880         show_smap_vma_flags(m, vma);
881
882         return 0;
883 }
884
885 static int show_smaps_rollup(struct seq_file *m, void *v)
886 {
887         struct proc_maps_private *priv = m->private;
888         struct mem_size_stats mss;
889         struct mm_struct *mm = priv->mm;
890         struct vm_area_struct *vma;
891         unsigned long vma_start = 0, last_vma_end = 0;
892         int ret = 0;
893         MA_STATE(mas, &mm->mm_mt, 0, 0);
894
895         priv->task = get_proc_task(priv->inode);
896         if (!priv->task)
897                 return -ESRCH;
898
899         if (!mm || !mmget_not_zero(mm)) {
900                 ret = -ESRCH;
901                 goto out_put_task;
902         }
903
904         memset(&mss, 0, sizeof(mss));
905
906         ret = mmap_read_lock_killable(mm);
907         if (ret)
908                 goto out_put_mm;
909
910         hold_task_mempolicy(priv);
911         vma = mas_find(&mas, ULONG_MAX);
912
913         if (unlikely(!vma))
914                 goto empty_set;
915
916         vma_start = vma->vm_start;
917         do {
918                 smap_gather_stats(vma, &mss, 0);
919                 last_vma_end = vma->vm_end;
920
921                 /*
922                  * Release mmap_lock temporarily if someone wants to
923                  * access it for write request.
924                  */
925                 if (mmap_lock_is_contended(mm)) {
926                         mas_pause(&mas);
927                         mmap_read_unlock(mm);
928                         ret = mmap_read_lock_killable(mm);
929                         if (ret) {
930                                 release_task_mempolicy(priv);
931                                 goto out_put_mm;
932                         }
933
934                         /*
935                          * After dropping the lock, there are four cases to
936                          * consider. See the following example for explanation.
937                          *
938                          *   +------+------+-----------+
939                          *   | VMA1 | VMA2 | VMA3      |
940                          *   +------+------+-----------+
941                          *   |      |      |           |
942                          *  4k     8k     16k         400k
943                          *
944                          * Suppose we drop the lock after reading VMA2 due to
945                          * contention, then we get:
946                          *
947                          *      last_vma_end = 16k
948                          *
949                          * 1) VMA2 is freed, but VMA3 exists:
950                          *
951                          *    find_vma(mm, 16k - 1) will return VMA3.
952                          *    In this case, just continue from VMA3.
953                          *
954                          * 2) VMA2 still exists:
955                          *
956                          *    find_vma(mm, 16k - 1) will return VMA2.
957                          *    Iterate the loop like the original one.
958                          *
959                          * 3) No more VMAs can be found:
960                          *
961                          *    find_vma(mm, 16k - 1) will return NULL.
962                          *    No more things to do, just break.
963                          *
964                          * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
965                          *
966                          *    find_vma(mm, 16k - 1) will return VMA' whose range
967                          *    contains last_vma_end.
968                          *    Iterate VMA' from last_vma_end.
969                          */
970                         vma = mas_find(&mas, ULONG_MAX);
971                         /* Case 3 above */
972                         if (!vma)
973                                 break;
974
975                         /* Case 1 above */
976                         if (vma->vm_start >= last_vma_end)
977                                 continue;
978
979                         /* Case 4 above */
980                         if (vma->vm_end > last_vma_end)
981                                 smap_gather_stats(vma, &mss, last_vma_end);
982                 }
983                 /* Case 2 above */
984         } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
985
986 empty_set:
987         show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
988         seq_pad(m, ' ');
989         seq_puts(m, "[rollup]\n");
990
991         __show_smap(m, &mss, true);
992
993         release_task_mempolicy(priv);
994         mmap_read_unlock(mm);
995
996 out_put_mm:
997         mmput(mm);
998 out_put_task:
999         put_task_struct(priv->task);
1000         priv->task = NULL;
1001
1002         return ret;
1003 }
1004 #undef SEQ_PUT_DEC
1005
1006 static const struct seq_operations proc_pid_smaps_op = {
1007         .start  = m_start,
1008         .next   = m_next,
1009         .stop   = m_stop,
1010         .show   = show_smap
1011 };
1012
1013 static int pid_smaps_open(struct inode *inode, struct file *file)
1014 {
1015         return do_maps_open(inode, file, &proc_pid_smaps_op);
1016 }
1017
1018 static int smaps_rollup_open(struct inode *inode, struct file *file)
1019 {
1020         int ret;
1021         struct proc_maps_private *priv;
1022
1023         priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1024         if (!priv)
1025                 return -ENOMEM;
1026
1027         ret = single_open(file, show_smaps_rollup, priv);
1028         if (ret)
1029                 goto out_free;
1030
1031         priv->inode = inode;
1032         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1033         if (IS_ERR(priv->mm)) {
1034                 ret = PTR_ERR(priv->mm);
1035
1036                 single_release(inode, file);
1037                 goto out_free;
1038         }
1039
1040         return 0;
1041
1042 out_free:
1043         kfree(priv);
1044         return ret;
1045 }
1046
1047 static int smaps_rollup_release(struct inode *inode, struct file *file)
1048 {
1049         struct seq_file *seq = file->private_data;
1050         struct proc_maps_private *priv = seq->private;
1051
1052         if (priv->mm)
1053                 mmdrop(priv->mm);
1054
1055         kfree(priv);
1056         return single_release(inode, file);
1057 }
1058
1059 const struct file_operations proc_pid_smaps_operations = {
1060         .open           = pid_smaps_open,
1061         .read           = seq_read,
1062         .llseek         = seq_lseek,
1063         .release        = proc_map_release,
1064 };
1065
1066 const struct file_operations proc_pid_smaps_rollup_operations = {
1067         .open           = smaps_rollup_open,
1068         .read           = seq_read,
1069         .llseek         = seq_lseek,
1070         .release        = smaps_rollup_release,
1071 };
1072
1073 enum clear_refs_types {
1074         CLEAR_REFS_ALL = 1,
1075         CLEAR_REFS_ANON,
1076         CLEAR_REFS_MAPPED,
1077         CLEAR_REFS_SOFT_DIRTY,
1078         CLEAR_REFS_MM_HIWATER_RSS,
1079         CLEAR_REFS_LAST,
1080 };
1081
1082 struct clear_refs_private {
1083         enum clear_refs_types type;
1084 };
1085
1086 #ifdef CONFIG_MEM_SOFT_DIRTY
1087
1088 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1089 {
1090         struct page *page;
1091
1092         if (!pte_write(pte))
1093                 return false;
1094         if (!is_cow_mapping(vma->vm_flags))
1095                 return false;
1096         if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1097                 return false;
1098         page = vm_normal_page(vma, addr, pte);
1099         if (!page)
1100                 return false;
1101         return page_maybe_dma_pinned(page);
1102 }
1103
1104 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1105                 unsigned long addr, pte_t *pte)
1106 {
1107         /*
1108          * The soft-dirty tracker uses #PF-s to catch writes
1109          * to pages, so write-protect the pte as well. See the
1110          * Documentation/admin-guide/mm/soft-dirty.rst for full description
1111          * of how soft-dirty works.
1112          */
1113         pte_t ptent = *pte;
1114
1115         if (pte_present(ptent)) {
1116                 pte_t old_pte;
1117
1118                 if (pte_is_pinned(vma, addr, ptent))
1119                         return;
1120                 old_pte = ptep_modify_prot_start(vma, addr, pte);
1121                 ptent = pte_wrprotect(old_pte);
1122                 ptent = pte_clear_soft_dirty(ptent);
1123                 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1124         } else if (is_swap_pte(ptent)) {
1125                 ptent = pte_swp_clear_soft_dirty(ptent);
1126                 set_pte_at(vma->vm_mm, addr, pte, ptent);
1127         }
1128 }
1129 #else
1130 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1131                 unsigned long addr, pte_t *pte)
1132 {
1133 }
1134 #endif
1135
1136 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1137 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1138                 unsigned long addr, pmd_t *pmdp)
1139 {
1140         pmd_t old, pmd = *pmdp;
1141
1142         if (pmd_present(pmd)) {
1143                 /* See comment in change_huge_pmd() */
1144                 old = pmdp_invalidate(vma, addr, pmdp);
1145                 if (pmd_dirty(old))
1146                         pmd = pmd_mkdirty(pmd);
1147                 if (pmd_young(old))
1148                         pmd = pmd_mkyoung(pmd);
1149
1150                 pmd = pmd_wrprotect(pmd);
1151                 pmd = pmd_clear_soft_dirty(pmd);
1152
1153                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1154         } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1155                 pmd = pmd_swp_clear_soft_dirty(pmd);
1156                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1157         }
1158 }
1159 #else
1160 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1161                 unsigned long addr, pmd_t *pmdp)
1162 {
1163 }
1164 #endif
1165
1166 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1167                                 unsigned long end, struct mm_walk *walk)
1168 {
1169         struct clear_refs_private *cp = walk->private;
1170         struct vm_area_struct *vma = walk->vma;
1171         pte_t *pte, ptent;
1172         spinlock_t *ptl;
1173         struct page *page;
1174
1175         ptl = pmd_trans_huge_lock(pmd, vma);
1176         if (ptl) {
1177                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1178                         clear_soft_dirty_pmd(vma, addr, pmd);
1179                         goto out;
1180                 }
1181
1182                 if (!pmd_present(*pmd))
1183                         goto out;
1184
1185                 page = pmd_page(*pmd);
1186
1187                 /* Clear accessed and referenced bits. */
1188                 pmdp_test_and_clear_young(vma, addr, pmd);
1189                 test_and_clear_page_young(page);
1190                 ClearPageReferenced(page);
1191 out:
1192                 spin_unlock(ptl);
1193                 return 0;
1194         }
1195
1196         if (pmd_trans_unstable(pmd))
1197                 return 0;
1198
1199         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1200         for (; addr != end; pte++, addr += PAGE_SIZE) {
1201                 ptent = *pte;
1202
1203                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1204                         clear_soft_dirty(vma, addr, pte);
1205                         continue;
1206                 }
1207
1208                 if (!pte_present(ptent))
1209                         continue;
1210
1211                 page = vm_normal_page(vma, addr, ptent);
1212                 if (!page)
1213                         continue;
1214
1215                 /* Clear accessed and referenced bits. */
1216                 ptep_test_and_clear_young(vma, addr, pte);
1217                 test_and_clear_page_young(page);
1218                 ClearPageReferenced(page);
1219         }
1220         pte_unmap_unlock(pte - 1, ptl);
1221         cond_resched();
1222         return 0;
1223 }
1224
1225 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1226                                 struct mm_walk *walk)
1227 {
1228         struct clear_refs_private *cp = walk->private;
1229         struct vm_area_struct *vma = walk->vma;
1230
1231         if (vma->vm_flags & VM_PFNMAP)
1232                 return 1;
1233
1234         /*
1235          * Writing 1 to /proc/pid/clear_refs affects all pages.
1236          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1237          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1238          * Writing 4 to /proc/pid/clear_refs affects all pages.
1239          */
1240         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1241                 return 1;
1242         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1243                 return 1;
1244         return 0;
1245 }
1246
1247 static const struct mm_walk_ops clear_refs_walk_ops = {
1248         .pmd_entry              = clear_refs_pte_range,
1249         .test_walk              = clear_refs_test_walk,
1250 };
1251
1252 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1253                                 size_t count, loff_t *ppos)
1254 {
1255         struct task_struct *task;
1256         char buffer[PROC_NUMBUF];
1257         struct mm_struct *mm;
1258         struct vm_area_struct *vma;
1259         enum clear_refs_types type;
1260         int itype;
1261         int rv;
1262
1263         memset(buffer, 0, sizeof(buffer));
1264         if (count > sizeof(buffer) - 1)
1265                 count = sizeof(buffer) - 1;
1266         if (copy_from_user(buffer, buf, count))
1267                 return -EFAULT;
1268         rv = kstrtoint(strstrip(buffer), 10, &itype);
1269         if (rv < 0)
1270                 return rv;
1271         type = (enum clear_refs_types)itype;
1272         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1273                 return -EINVAL;
1274
1275         task = get_proc_task(file_inode(file));
1276         if (!task)
1277                 return -ESRCH;
1278         mm = get_task_mm(task);
1279         if (mm) {
1280                 MA_STATE(mas, &mm->mm_mt, 0, 0);
1281                 struct mmu_notifier_range range;
1282                 struct clear_refs_private cp = {
1283                         .type = type,
1284                 };
1285
1286                 if (mmap_write_lock_killable(mm)) {
1287                         count = -EINTR;
1288                         goto out_mm;
1289                 }
1290                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1291                         /*
1292                          * Writing 5 to /proc/pid/clear_refs resets the peak
1293                          * resident set size to this mm's current rss value.
1294                          */
1295                         reset_mm_hiwater_rss(mm);
1296                         goto out_unlock;
1297                 }
1298
1299                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1300                         mas_for_each(&mas, vma, ULONG_MAX) {
1301                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1302                                         continue;
1303                                 vma->vm_flags &= ~VM_SOFTDIRTY;
1304                                 vma_set_page_prot(vma);
1305                         }
1306
1307                         inc_tlb_flush_pending(mm);
1308                         mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1309                                                 0, NULL, mm, 0, -1UL);
1310                         mmu_notifier_invalidate_range_start(&range);
1311                 }
1312                 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1313                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1314                         mmu_notifier_invalidate_range_end(&range);
1315                         flush_tlb_mm(mm);
1316                         dec_tlb_flush_pending(mm);
1317                 }
1318 out_unlock:
1319                 mmap_write_unlock(mm);
1320 out_mm:
1321                 mmput(mm);
1322         }
1323         put_task_struct(task);
1324
1325         return count;
1326 }
1327
1328 const struct file_operations proc_clear_refs_operations = {
1329         .write          = clear_refs_write,
1330         .llseek         = noop_llseek,
1331 };
1332
1333 typedef struct {
1334         u64 pme;
1335 } pagemap_entry_t;
1336
1337 struct pagemapread {
1338         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1339         pagemap_entry_t *buffer;
1340         bool show_pfn;
1341 };
1342
1343 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1344 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1345
1346 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1347 #define PM_PFRAME_BITS          55
1348 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1349 #define PM_SOFT_DIRTY           BIT_ULL(55)
1350 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1351 #define PM_UFFD_WP              BIT_ULL(57)
1352 #define PM_FILE                 BIT_ULL(61)
1353 #define PM_SWAP                 BIT_ULL(62)
1354 #define PM_PRESENT              BIT_ULL(63)
1355
1356 #define PM_END_OF_BUFFER    1
1357
1358 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1359 {
1360         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1361 }
1362
1363 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1364                           struct pagemapread *pm)
1365 {
1366         pm->buffer[pm->pos++] = *pme;
1367         if (pm->pos >= pm->len)
1368                 return PM_END_OF_BUFFER;
1369         return 0;
1370 }
1371
1372 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1373                             __always_unused int depth, struct mm_walk *walk)
1374 {
1375         struct pagemapread *pm = walk->private;
1376         unsigned long addr = start;
1377         int err = 0;
1378
1379         while (addr < end) {
1380                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1381                 pagemap_entry_t pme = make_pme(0, 0);
1382                 /* End of address space hole, which we mark as non-present. */
1383                 unsigned long hole_end;
1384
1385                 if (vma)
1386                         hole_end = min(end, vma->vm_start);
1387                 else
1388                         hole_end = end;
1389
1390                 for (; addr < hole_end; addr += PAGE_SIZE) {
1391                         err = add_to_pagemap(addr, &pme, pm);
1392                         if (err)
1393                                 goto out;
1394                 }
1395
1396                 if (!vma)
1397                         break;
1398
1399                 /* Addresses in the VMA. */
1400                 if (vma->vm_flags & VM_SOFTDIRTY)
1401                         pme = make_pme(0, PM_SOFT_DIRTY);
1402                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1403                         err = add_to_pagemap(addr, &pme, pm);
1404                         if (err)
1405                                 goto out;
1406                 }
1407         }
1408 out:
1409         return err;
1410 }
1411
1412 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1413                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1414 {
1415         u64 frame = 0, flags = 0;
1416         struct page *page = NULL;
1417         bool migration = false;
1418
1419         if (pte_present(pte)) {
1420                 if (pm->show_pfn)
1421                         frame = pte_pfn(pte);
1422                 flags |= PM_PRESENT;
1423                 page = vm_normal_page(vma, addr, pte);
1424                 if (pte_soft_dirty(pte))
1425                         flags |= PM_SOFT_DIRTY;
1426                 if (pte_uffd_wp(pte))
1427                         flags |= PM_UFFD_WP;
1428         } else if (is_swap_pte(pte)) {
1429                 swp_entry_t entry;
1430                 if (pte_swp_soft_dirty(pte))
1431                         flags |= PM_SOFT_DIRTY;
1432                 if (pte_swp_uffd_wp(pte))
1433                         flags |= PM_UFFD_WP;
1434                 entry = pte_to_swp_entry(pte);
1435                 if (pm->show_pfn) {
1436                         pgoff_t offset;
1437                         /*
1438                          * For PFN swap offsets, keeping the offset field
1439                          * to be PFN only to be compatible with old smaps.
1440                          */
1441                         if (is_pfn_swap_entry(entry))
1442                                 offset = swp_offset_pfn(entry);
1443                         else
1444                                 offset = swp_offset(entry);
1445                         frame = swp_type(entry) |
1446                             (offset << MAX_SWAPFILES_SHIFT);
1447                 }
1448                 flags |= PM_SWAP;
1449                 migration = is_migration_entry(entry);
1450                 if (is_pfn_swap_entry(entry))
1451                         page = pfn_swap_entry_to_page(entry);
1452                 if (pte_marker_entry_uffd_wp(entry))
1453                         flags |= PM_UFFD_WP;
1454         }
1455
1456         if (page && !PageAnon(page))
1457                 flags |= PM_FILE;
1458         if (page && !migration && page_mapcount(page) == 1)
1459                 flags |= PM_MMAP_EXCLUSIVE;
1460         if (vma->vm_flags & VM_SOFTDIRTY)
1461                 flags |= PM_SOFT_DIRTY;
1462
1463         return make_pme(frame, flags);
1464 }
1465
1466 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1467                              struct mm_walk *walk)
1468 {
1469         struct vm_area_struct *vma = walk->vma;
1470         struct pagemapread *pm = walk->private;
1471         spinlock_t *ptl;
1472         pte_t *pte, *orig_pte;
1473         int err = 0;
1474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1475         bool migration = false;
1476
1477         ptl = pmd_trans_huge_lock(pmdp, vma);
1478         if (ptl) {
1479                 u64 flags = 0, frame = 0;
1480                 pmd_t pmd = *pmdp;
1481                 struct page *page = NULL;
1482
1483                 if (vma->vm_flags & VM_SOFTDIRTY)
1484                         flags |= PM_SOFT_DIRTY;
1485
1486                 if (pmd_present(pmd)) {
1487                         page = pmd_page(pmd);
1488
1489                         flags |= PM_PRESENT;
1490                         if (pmd_soft_dirty(pmd))
1491                                 flags |= PM_SOFT_DIRTY;
1492                         if (pmd_uffd_wp(pmd))
1493                                 flags |= PM_UFFD_WP;
1494                         if (pm->show_pfn)
1495                                 frame = pmd_pfn(pmd) +
1496                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1497                 }
1498 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1499                 else if (is_swap_pmd(pmd)) {
1500                         swp_entry_t entry = pmd_to_swp_entry(pmd);
1501                         unsigned long offset;
1502
1503                         if (pm->show_pfn) {
1504                                 if (is_pfn_swap_entry(entry))
1505                                         offset = swp_offset_pfn(entry);
1506                                 else
1507                                         offset = swp_offset(entry);
1508                                 offset = offset +
1509                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1510                                 frame = swp_type(entry) |
1511                                         (offset << MAX_SWAPFILES_SHIFT);
1512                         }
1513                         flags |= PM_SWAP;
1514                         if (pmd_swp_soft_dirty(pmd))
1515                                 flags |= PM_SOFT_DIRTY;
1516                         if (pmd_swp_uffd_wp(pmd))
1517                                 flags |= PM_UFFD_WP;
1518                         VM_BUG_ON(!is_pmd_migration_entry(pmd));
1519                         migration = is_migration_entry(entry);
1520                         page = pfn_swap_entry_to_page(entry);
1521                 }
1522 #endif
1523
1524                 if (page && !migration && page_mapcount(page) == 1)
1525                         flags |= PM_MMAP_EXCLUSIVE;
1526
1527                 for (; addr != end; addr += PAGE_SIZE) {
1528                         pagemap_entry_t pme = make_pme(frame, flags);
1529
1530                         err = add_to_pagemap(addr, &pme, pm);
1531                         if (err)
1532                                 break;
1533                         if (pm->show_pfn) {
1534                                 if (flags & PM_PRESENT)
1535                                         frame++;
1536                                 else if (flags & PM_SWAP)
1537                                         frame += (1 << MAX_SWAPFILES_SHIFT);
1538                         }
1539                 }
1540                 spin_unlock(ptl);
1541                 return err;
1542         }
1543
1544         if (pmd_trans_unstable(pmdp))
1545                 return 0;
1546 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1547
1548         /*
1549          * We can assume that @vma always points to a valid one and @end never
1550          * goes beyond vma->vm_end.
1551          */
1552         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1553         for (; addr < end; pte++, addr += PAGE_SIZE) {
1554                 pagemap_entry_t pme;
1555
1556                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1557                 err = add_to_pagemap(addr, &pme, pm);
1558                 if (err)
1559                         break;
1560         }
1561         pte_unmap_unlock(orig_pte, ptl);
1562
1563         cond_resched();
1564
1565         return err;
1566 }
1567
1568 #ifdef CONFIG_HUGETLB_PAGE
1569 /* This function walks within one hugetlb entry in the single call */
1570 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1571                                  unsigned long addr, unsigned long end,
1572                                  struct mm_walk *walk)
1573 {
1574         struct pagemapread *pm = walk->private;
1575         struct vm_area_struct *vma = walk->vma;
1576         u64 flags = 0, frame = 0;
1577         int err = 0;
1578         pte_t pte;
1579
1580         if (vma->vm_flags & VM_SOFTDIRTY)
1581                 flags |= PM_SOFT_DIRTY;
1582
1583         pte = huge_ptep_get(ptep);
1584         if (pte_present(pte)) {
1585                 struct page *page = pte_page(pte);
1586
1587                 if (!PageAnon(page))
1588                         flags |= PM_FILE;
1589
1590                 if (page_mapcount(page) == 1)
1591                         flags |= PM_MMAP_EXCLUSIVE;
1592
1593                 if (huge_pte_uffd_wp(pte))
1594                         flags |= PM_UFFD_WP;
1595
1596                 flags |= PM_PRESENT;
1597                 if (pm->show_pfn)
1598                         frame = pte_pfn(pte) +
1599                                 ((addr & ~hmask) >> PAGE_SHIFT);
1600         } else if (pte_swp_uffd_wp_any(pte)) {
1601                 flags |= PM_UFFD_WP;
1602         }
1603
1604         for (; addr != end; addr += PAGE_SIZE) {
1605                 pagemap_entry_t pme = make_pme(frame, flags);
1606
1607                 err = add_to_pagemap(addr, &pme, pm);
1608                 if (err)
1609                         return err;
1610                 if (pm->show_pfn && (flags & PM_PRESENT))
1611                         frame++;
1612         }
1613
1614         cond_resched();
1615
1616         return err;
1617 }
1618 #else
1619 #define pagemap_hugetlb_range   NULL
1620 #endif /* HUGETLB_PAGE */
1621
1622 static const struct mm_walk_ops pagemap_ops = {
1623         .pmd_entry      = pagemap_pmd_range,
1624         .pte_hole       = pagemap_pte_hole,
1625         .hugetlb_entry  = pagemap_hugetlb_range,
1626 };
1627
1628 /*
1629  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1630  *
1631  * For each page in the address space, this file contains one 64-bit entry
1632  * consisting of the following:
1633  *
1634  * Bits 0-54  page frame number (PFN) if present
1635  * Bits 0-4   swap type if swapped
1636  * Bits 5-54  swap offset if swapped
1637  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1638  * Bit  56    page exclusively mapped
1639  * Bit  57    pte is uffd-wp write-protected
1640  * Bits 58-60 zero
1641  * Bit  61    page is file-page or shared-anon
1642  * Bit  62    page swapped
1643  * Bit  63    page present
1644  *
1645  * If the page is not present but in swap, then the PFN contains an
1646  * encoding of the swap file number and the page's offset into the
1647  * swap. Unmapped pages return a null PFN. This allows determining
1648  * precisely which pages are mapped (or in swap) and comparing mapped
1649  * pages between processes.
1650  *
1651  * Efficient users of this interface will use /proc/pid/maps to
1652  * determine which areas of memory are actually mapped and llseek to
1653  * skip over unmapped regions.
1654  */
1655 static ssize_t pagemap_read(struct file *file, char __user *buf,
1656                             size_t count, loff_t *ppos)
1657 {
1658         struct mm_struct *mm = file->private_data;
1659         struct pagemapread pm;
1660         unsigned long src;
1661         unsigned long svpfn;
1662         unsigned long start_vaddr;
1663         unsigned long end_vaddr;
1664         int ret = 0, copied = 0;
1665
1666         if (!mm || !mmget_not_zero(mm))
1667                 goto out;
1668
1669         ret = -EINVAL;
1670         /* file position must be aligned */
1671         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1672                 goto out_mm;
1673
1674         ret = 0;
1675         if (!count)
1676                 goto out_mm;
1677
1678         /* do not disclose physical addresses: attack vector */
1679         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1680
1681         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1682         pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1683         ret = -ENOMEM;
1684         if (!pm.buffer)
1685                 goto out_mm;
1686
1687         src = *ppos;
1688         svpfn = src / PM_ENTRY_BYTES;
1689         end_vaddr = mm->task_size;
1690
1691         /* watch out for wraparound */
1692         start_vaddr = end_vaddr;
1693         if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1694                 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1695
1696         /* Ensure the address is inside the task */
1697         if (start_vaddr > mm->task_size)
1698                 start_vaddr = end_vaddr;
1699
1700         /*
1701          * The odds are that this will stop walking way
1702          * before end_vaddr, because the length of the
1703          * user buffer is tracked in "pm", and the walk
1704          * will stop when we hit the end of the buffer.
1705          */
1706         ret = 0;
1707         while (count && (start_vaddr < end_vaddr)) {
1708                 int len;
1709                 unsigned long end;
1710
1711                 pm.pos = 0;
1712                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1713                 /* overflow ? */
1714                 if (end < start_vaddr || end > end_vaddr)
1715                         end = end_vaddr;
1716                 ret = mmap_read_lock_killable(mm);
1717                 if (ret)
1718                         goto out_free;
1719                 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1720                 mmap_read_unlock(mm);
1721                 start_vaddr = end;
1722
1723                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1724                 if (copy_to_user(buf, pm.buffer, len)) {
1725                         ret = -EFAULT;
1726                         goto out_free;
1727                 }
1728                 copied += len;
1729                 buf += len;
1730                 count -= len;
1731         }
1732         *ppos += copied;
1733         if (!ret || ret == PM_END_OF_BUFFER)
1734                 ret = copied;
1735
1736 out_free:
1737         kfree(pm.buffer);
1738 out_mm:
1739         mmput(mm);
1740 out:
1741         return ret;
1742 }
1743
1744 static int pagemap_open(struct inode *inode, struct file *file)
1745 {
1746         struct mm_struct *mm;
1747
1748         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1749         if (IS_ERR(mm))
1750                 return PTR_ERR(mm);
1751         file->private_data = mm;
1752         return 0;
1753 }
1754
1755 static int pagemap_release(struct inode *inode, struct file *file)
1756 {
1757         struct mm_struct *mm = file->private_data;
1758
1759         if (mm)
1760                 mmdrop(mm);
1761         return 0;
1762 }
1763
1764 const struct file_operations proc_pagemap_operations = {
1765         .llseek         = mem_lseek, /* borrow this */
1766         .read           = pagemap_read,
1767         .open           = pagemap_open,
1768         .release        = pagemap_release,
1769 };
1770 #endif /* CONFIG_PROC_PAGE_MONITOR */
1771
1772 #ifdef CONFIG_NUMA
1773
1774 struct numa_maps {
1775         unsigned long pages;
1776         unsigned long anon;
1777         unsigned long active;
1778         unsigned long writeback;
1779         unsigned long mapcount_max;
1780         unsigned long dirty;
1781         unsigned long swapcache;
1782         unsigned long node[MAX_NUMNODES];
1783 };
1784
1785 struct numa_maps_private {
1786         struct proc_maps_private proc_maps;
1787         struct numa_maps md;
1788 };
1789
1790 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1791                         unsigned long nr_pages)
1792 {
1793         int count = page_mapcount(page);
1794
1795         md->pages += nr_pages;
1796         if (pte_dirty || PageDirty(page))
1797                 md->dirty += nr_pages;
1798
1799         if (PageSwapCache(page))
1800                 md->swapcache += nr_pages;
1801
1802         if (PageActive(page) || PageUnevictable(page))
1803                 md->active += nr_pages;
1804
1805         if (PageWriteback(page))
1806                 md->writeback += nr_pages;
1807
1808         if (PageAnon(page))
1809                 md->anon += nr_pages;
1810
1811         if (count > md->mapcount_max)
1812                 md->mapcount_max = count;
1813
1814         md->node[page_to_nid(page)] += nr_pages;
1815 }
1816
1817 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1818                 unsigned long addr)
1819 {
1820         struct page *page;
1821         int nid;
1822
1823         if (!pte_present(pte))
1824                 return NULL;
1825
1826         page = vm_normal_page(vma, addr, pte);
1827         if (!page || is_zone_device_page(page))
1828                 return NULL;
1829
1830         if (PageReserved(page))
1831                 return NULL;
1832
1833         nid = page_to_nid(page);
1834         if (!node_isset(nid, node_states[N_MEMORY]))
1835                 return NULL;
1836
1837         return page;
1838 }
1839
1840 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1841 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1842                                               struct vm_area_struct *vma,
1843                                               unsigned long addr)
1844 {
1845         struct page *page;
1846         int nid;
1847
1848         if (!pmd_present(pmd))
1849                 return NULL;
1850
1851         page = vm_normal_page_pmd(vma, addr, pmd);
1852         if (!page)
1853                 return NULL;
1854
1855         if (PageReserved(page))
1856                 return NULL;
1857
1858         nid = page_to_nid(page);
1859         if (!node_isset(nid, node_states[N_MEMORY]))
1860                 return NULL;
1861
1862         return page;
1863 }
1864 #endif
1865
1866 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1867                 unsigned long end, struct mm_walk *walk)
1868 {
1869         struct numa_maps *md = walk->private;
1870         struct vm_area_struct *vma = walk->vma;
1871         spinlock_t *ptl;
1872         pte_t *orig_pte;
1873         pte_t *pte;
1874
1875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1876         ptl = pmd_trans_huge_lock(pmd, vma);
1877         if (ptl) {
1878                 struct page *page;
1879
1880                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1881                 if (page)
1882                         gather_stats(page, md, pmd_dirty(*pmd),
1883                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1884                 spin_unlock(ptl);
1885                 return 0;
1886         }
1887
1888         if (pmd_trans_unstable(pmd))
1889                 return 0;
1890 #endif
1891         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1892         do {
1893                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1894                 if (!page)
1895                         continue;
1896                 gather_stats(page, md, pte_dirty(*pte), 1);
1897
1898         } while (pte++, addr += PAGE_SIZE, addr != end);
1899         pte_unmap_unlock(orig_pte, ptl);
1900         cond_resched();
1901         return 0;
1902 }
1903 #ifdef CONFIG_HUGETLB_PAGE
1904 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1905                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1906 {
1907         pte_t huge_pte = huge_ptep_get(pte);
1908         struct numa_maps *md;
1909         struct page *page;
1910
1911         if (!pte_present(huge_pte))
1912                 return 0;
1913
1914         page = pte_page(huge_pte);
1915
1916         md = walk->private;
1917         gather_stats(page, md, pte_dirty(huge_pte), 1);
1918         return 0;
1919 }
1920
1921 #else
1922 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1923                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1924 {
1925         return 0;
1926 }
1927 #endif
1928
1929 static const struct mm_walk_ops show_numa_ops = {
1930         .hugetlb_entry = gather_hugetlb_stats,
1931         .pmd_entry = gather_pte_stats,
1932 };
1933
1934 /*
1935  * Display pages allocated per node and memory policy via /proc.
1936  */
1937 static int show_numa_map(struct seq_file *m, void *v)
1938 {
1939         struct numa_maps_private *numa_priv = m->private;
1940         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1941         struct vm_area_struct *vma = v;
1942         struct numa_maps *md = &numa_priv->md;
1943         struct file *file = vma->vm_file;
1944         struct mm_struct *mm = vma->vm_mm;
1945         struct mempolicy *pol;
1946         char buffer[64];
1947         int nid;
1948
1949         if (!mm)
1950                 return 0;
1951
1952         /* Ensure we start with an empty set of numa_maps statistics. */
1953         memset(md, 0, sizeof(*md));
1954
1955         pol = __get_vma_policy(vma, vma->vm_start);
1956         if (pol) {
1957                 mpol_to_str(buffer, sizeof(buffer), pol);
1958                 mpol_cond_put(pol);
1959         } else {
1960                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1961         }
1962
1963         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1964
1965         if (file) {
1966                 seq_puts(m, " file=");
1967                 seq_file_path(m, file, "\n\t= ");
1968         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1969                 seq_puts(m, " heap");
1970         } else if (is_stack(vma)) {
1971                 seq_puts(m, " stack");
1972         }
1973
1974         if (is_vm_hugetlb_page(vma))
1975                 seq_puts(m, " huge");
1976
1977         /* mmap_lock is held by m_start */
1978         walk_page_vma(vma, &show_numa_ops, md);
1979
1980         if (!md->pages)
1981                 goto out;
1982
1983         if (md->anon)
1984                 seq_printf(m, " anon=%lu", md->anon);
1985
1986         if (md->dirty)
1987                 seq_printf(m, " dirty=%lu", md->dirty);
1988
1989         if (md->pages != md->anon && md->pages != md->dirty)
1990                 seq_printf(m, " mapped=%lu", md->pages);
1991
1992         if (md->mapcount_max > 1)
1993                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1994
1995         if (md->swapcache)
1996                 seq_printf(m, " swapcache=%lu", md->swapcache);
1997
1998         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1999                 seq_printf(m, " active=%lu", md->active);
2000
2001         if (md->writeback)
2002                 seq_printf(m, " writeback=%lu", md->writeback);
2003
2004         for_each_node_state(nid, N_MEMORY)
2005                 if (md->node[nid])
2006                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2007
2008         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2009 out:
2010         seq_putc(m, '\n');
2011         return 0;
2012 }
2013
2014 static const struct seq_operations proc_pid_numa_maps_op = {
2015         .start  = m_start,
2016         .next   = m_next,
2017         .stop   = m_stop,
2018         .show   = show_numa_map,
2019 };
2020
2021 static int pid_numa_maps_open(struct inode *inode, struct file *file)
2022 {
2023         return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2024                                 sizeof(struct numa_maps_private));
2025 }
2026
2027 const struct file_operations proc_pid_numa_maps_operations = {
2028         .open           = pid_numa_maps_open,
2029         .read           = seq_read,
2030         .llseek         = seq_lseek,
2031         .release        = proc_map_release,
2032 };
2033
2034 #endif /* CONFIG_NUMA */