mm: anonymous shared memory naming
[linux-block.git] / fs / proc / task_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/mm_inline.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27
28 #define SEQ_PUT_DEC(str, val) \
29                 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32         unsigned long text, lib, swap, anon, file, shmem;
33         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34
35         anon = get_mm_counter(mm, MM_ANONPAGES);
36         file = get_mm_counter(mm, MM_FILEPAGES);
37         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38
39         /*
40          * Note: to minimize their overhead, mm maintains hiwater_vm and
41          * hiwater_rss only when about to *lower* total_vm or rss.  Any
42          * collector of these hiwater stats must therefore get total_vm
43          * and rss too, which will usually be the higher.  Barriers? not
44          * worth the effort, such snapshots can always be inconsistent.
45          */
46         hiwater_vm = total_vm = mm->total_vm;
47         if (hiwater_vm < mm->hiwater_vm)
48                 hiwater_vm = mm->hiwater_vm;
49         hiwater_rss = total_rss = anon + file + shmem;
50         if (hiwater_rss < mm->hiwater_rss)
51                 hiwater_rss = mm->hiwater_rss;
52
53         /* split executable areas between text and lib */
54         text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55         text = min(text, mm->exec_vm << PAGE_SHIFT);
56         lib = (mm->exec_vm << PAGE_SHIFT) - text;
57
58         swap = get_mm_counter(mm, MM_SWAPENTS);
59         SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60         SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61         SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62         SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63         SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64         SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65         SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66         SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67         SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68         SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69         SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70         seq_put_decimal_ull_width(m,
71                     " kB\nVmExe:\t", text >> 10, 8);
72         seq_put_decimal_ull_width(m,
73                     " kB\nVmLib:\t", lib >> 10, 8);
74         seq_put_decimal_ull_width(m,
75                     " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76         SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77         seq_puts(m, " kB\n");
78         hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84         return PAGE_SIZE * mm->total_vm;
85 }
86
87 unsigned long task_statm(struct mm_struct *mm,
88                          unsigned long *shared, unsigned long *text,
89                          unsigned long *data, unsigned long *resident)
90 {
91         *shared = get_mm_counter(mm, MM_FILEPAGES) +
92                         get_mm_counter(mm, MM_SHMEMPAGES);
93         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94                                                                 >> PAGE_SHIFT;
95         *data = mm->data_vm + mm->stack_vm;
96         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97         return mm->total_vm;
98 }
99
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106         struct task_struct *task = priv->task;
107
108         task_lock(task);
109         priv->task_mempolicy = get_task_policy(task);
110         mpol_get(priv->task_mempolicy);
111         task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115         mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125
126 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
127                                                 loff_t *ppos)
128 {
129         struct vm_area_struct *vma = vma_next(&priv->iter);
130
131         if (vma) {
132                 *ppos = vma->vm_start;
133         } else {
134                 *ppos = -2UL;
135                 vma = get_gate_vma(priv->mm);
136         }
137
138         return vma;
139 }
140
141 static void *m_start(struct seq_file *m, loff_t *ppos)
142 {
143         struct proc_maps_private *priv = m->private;
144         unsigned long last_addr = *ppos;
145         struct mm_struct *mm;
146
147         /* See m_next(). Zero at the start or after lseek. */
148         if (last_addr == -1UL)
149                 return NULL;
150
151         priv->task = get_proc_task(priv->inode);
152         if (!priv->task)
153                 return ERR_PTR(-ESRCH);
154
155         mm = priv->mm;
156         if (!mm || !mmget_not_zero(mm)) {
157                 put_task_struct(priv->task);
158                 priv->task = NULL;
159                 return NULL;
160         }
161
162         if (mmap_read_lock_killable(mm)) {
163                 mmput(mm);
164                 put_task_struct(priv->task);
165                 priv->task = NULL;
166                 return ERR_PTR(-EINTR);
167         }
168
169         vma_iter_init(&priv->iter, mm, last_addr);
170         hold_task_mempolicy(priv);
171         if (last_addr == -2UL)
172                 return get_gate_vma(mm);
173
174         return proc_get_vma(priv, ppos);
175 }
176
177 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
178 {
179         if (*ppos == -2UL) {
180                 *ppos = -1UL;
181                 return NULL;
182         }
183         return proc_get_vma(m->private, ppos);
184 }
185
186 static void m_stop(struct seq_file *m, void *v)
187 {
188         struct proc_maps_private *priv = m->private;
189         struct mm_struct *mm = priv->mm;
190
191         if (!priv->task)
192                 return;
193
194         release_task_mempolicy(priv);
195         mmap_read_unlock(mm);
196         mmput(mm);
197         put_task_struct(priv->task);
198         priv->task = NULL;
199 }
200
201 static int proc_maps_open(struct inode *inode, struct file *file,
202                         const struct seq_operations *ops, int psize)
203 {
204         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
205
206         if (!priv)
207                 return -ENOMEM;
208
209         priv->inode = inode;
210         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
211         if (IS_ERR(priv->mm)) {
212                 int err = PTR_ERR(priv->mm);
213
214                 seq_release_private(inode, file);
215                 return err;
216         }
217
218         return 0;
219 }
220
221 static int proc_map_release(struct inode *inode, struct file *file)
222 {
223         struct seq_file *seq = file->private_data;
224         struct proc_maps_private *priv = seq->private;
225
226         if (priv->mm)
227                 mmdrop(priv->mm);
228
229         return seq_release_private(inode, file);
230 }
231
232 static int do_maps_open(struct inode *inode, struct file *file,
233                         const struct seq_operations *ops)
234 {
235         return proc_maps_open(inode, file, ops,
236                                 sizeof(struct proc_maps_private));
237 }
238
239 /*
240  * Indicate if the VMA is a stack for the given task; for
241  * /proc/PID/maps that is the stack of the main task.
242  */
243 static int is_stack(struct vm_area_struct *vma)
244 {
245         /*
246          * We make no effort to guess what a given thread considers to be
247          * its "stack".  It's not even well-defined for programs written
248          * languages like Go.
249          */
250         return vma->vm_start <= vma->vm_mm->start_stack &&
251                 vma->vm_end >= vma->vm_mm->start_stack;
252 }
253
254 static void show_vma_header_prefix(struct seq_file *m,
255                                    unsigned long start, unsigned long end,
256                                    vm_flags_t flags, unsigned long long pgoff,
257                                    dev_t dev, unsigned long ino)
258 {
259         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
260         seq_put_hex_ll(m, NULL, start, 8);
261         seq_put_hex_ll(m, "-", end, 8);
262         seq_putc(m, ' ');
263         seq_putc(m, flags & VM_READ ? 'r' : '-');
264         seq_putc(m, flags & VM_WRITE ? 'w' : '-');
265         seq_putc(m, flags & VM_EXEC ? 'x' : '-');
266         seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
267         seq_put_hex_ll(m, " ", pgoff, 8);
268         seq_put_hex_ll(m, " ", MAJOR(dev), 2);
269         seq_put_hex_ll(m, ":", MINOR(dev), 2);
270         seq_put_decimal_ull(m, " ", ino);
271         seq_putc(m, ' ');
272 }
273
274 static void
275 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
276 {
277         struct anon_vma_name *anon_name = NULL;
278         struct mm_struct *mm = vma->vm_mm;
279         struct file *file = vma->vm_file;
280         vm_flags_t flags = vma->vm_flags;
281         unsigned long ino = 0;
282         unsigned long long pgoff = 0;
283         unsigned long start, end;
284         dev_t dev = 0;
285         const char *name = NULL;
286
287         if (file) {
288                 struct inode *inode = file_inode(vma->vm_file);
289                 dev = inode->i_sb->s_dev;
290                 ino = inode->i_ino;
291                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
292         }
293
294         start = vma->vm_start;
295         end = vma->vm_end;
296         show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
297         if (mm)
298                 anon_name = anon_vma_name(vma);
299
300         /*
301          * Print the dentry name for named mappings, and a
302          * special [heap] marker for the heap:
303          */
304         if (file) {
305                 seq_pad(m, ' ');
306                 /*
307                  * If user named this anon shared memory via
308                  * prctl(PR_SET_VMA ..., use the provided name.
309                  */
310                 if (anon_name)
311                         seq_printf(m, "[anon_shmem:%s]", anon_name->name);
312                 else
313                         seq_file_path(m, file, "\n");
314                 goto done;
315         }
316
317         if (vma->vm_ops && vma->vm_ops->name) {
318                 name = vma->vm_ops->name(vma);
319                 if (name)
320                         goto done;
321         }
322
323         name = arch_vma_name(vma);
324         if (!name) {
325                 if (!mm) {
326                         name = "[vdso]";
327                         goto done;
328                 }
329
330                 if (vma->vm_start <= mm->brk &&
331                     vma->vm_end >= mm->start_brk) {
332                         name = "[heap]";
333                         goto done;
334                 }
335
336                 if (is_stack(vma)) {
337                         name = "[stack]";
338                         goto done;
339                 }
340
341                 if (anon_name) {
342                         seq_pad(m, ' ');
343                         seq_printf(m, "[anon:%s]", anon_name->name);
344                 }
345         }
346
347 done:
348         if (name) {
349                 seq_pad(m, ' ');
350                 seq_puts(m, name);
351         }
352         seq_putc(m, '\n');
353 }
354
355 static int show_map(struct seq_file *m, void *v)
356 {
357         show_map_vma(m, v);
358         return 0;
359 }
360
361 static const struct seq_operations proc_pid_maps_op = {
362         .start  = m_start,
363         .next   = m_next,
364         .stop   = m_stop,
365         .show   = show_map
366 };
367
368 static int pid_maps_open(struct inode *inode, struct file *file)
369 {
370         return do_maps_open(inode, file, &proc_pid_maps_op);
371 }
372
373 const struct file_operations proc_pid_maps_operations = {
374         .open           = pid_maps_open,
375         .read           = seq_read,
376         .llseek         = seq_lseek,
377         .release        = proc_map_release,
378 };
379
380 /*
381  * Proportional Set Size(PSS): my share of RSS.
382  *
383  * PSS of a process is the count of pages it has in memory, where each
384  * page is divided by the number of processes sharing it.  So if a
385  * process has 1000 pages all to itself, and 1000 shared with one other
386  * process, its PSS will be 1500.
387  *
388  * To keep (accumulated) division errors low, we adopt a 64bit
389  * fixed-point pss counter to minimize division errors. So (pss >>
390  * PSS_SHIFT) would be the real byte count.
391  *
392  * A shift of 12 before division means (assuming 4K page size):
393  *      - 1M 3-user-pages add up to 8KB errors;
394  *      - supports mapcount up to 2^24, or 16M;
395  *      - supports PSS up to 2^52 bytes, or 4PB.
396  */
397 #define PSS_SHIFT 12
398
399 #ifdef CONFIG_PROC_PAGE_MONITOR
400 struct mem_size_stats {
401         unsigned long resident;
402         unsigned long shared_clean;
403         unsigned long shared_dirty;
404         unsigned long private_clean;
405         unsigned long private_dirty;
406         unsigned long referenced;
407         unsigned long anonymous;
408         unsigned long lazyfree;
409         unsigned long anonymous_thp;
410         unsigned long shmem_thp;
411         unsigned long file_thp;
412         unsigned long swap;
413         unsigned long shared_hugetlb;
414         unsigned long private_hugetlb;
415         u64 pss;
416         u64 pss_anon;
417         u64 pss_file;
418         u64 pss_shmem;
419         u64 pss_dirty;
420         u64 pss_locked;
421         u64 swap_pss;
422 };
423
424 static void smaps_page_accumulate(struct mem_size_stats *mss,
425                 struct page *page, unsigned long size, unsigned long pss,
426                 bool dirty, bool locked, bool private)
427 {
428         mss->pss += pss;
429
430         if (PageAnon(page))
431                 mss->pss_anon += pss;
432         else if (PageSwapBacked(page))
433                 mss->pss_shmem += pss;
434         else
435                 mss->pss_file += pss;
436
437         if (locked)
438                 mss->pss_locked += pss;
439
440         if (dirty || PageDirty(page)) {
441                 mss->pss_dirty += pss;
442                 if (private)
443                         mss->private_dirty += size;
444                 else
445                         mss->shared_dirty += size;
446         } else {
447                 if (private)
448                         mss->private_clean += size;
449                 else
450                         mss->shared_clean += size;
451         }
452 }
453
454 static void smaps_account(struct mem_size_stats *mss, struct page *page,
455                 bool compound, bool young, bool dirty, bool locked,
456                 bool migration)
457 {
458         int i, nr = compound ? compound_nr(page) : 1;
459         unsigned long size = nr * PAGE_SIZE;
460
461         /*
462          * First accumulate quantities that depend only on |size| and the type
463          * of the compound page.
464          */
465         if (PageAnon(page)) {
466                 mss->anonymous += size;
467                 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
468                         mss->lazyfree += size;
469         }
470
471         mss->resident += size;
472         /* Accumulate the size in pages that have been accessed. */
473         if (young || page_is_young(page) || PageReferenced(page))
474                 mss->referenced += size;
475
476         /*
477          * Then accumulate quantities that may depend on sharing, or that may
478          * differ page-by-page.
479          *
480          * page_count(page) == 1 guarantees the page is mapped exactly once.
481          * If any subpage of the compound page mapped with PTE it would elevate
482          * page_count().
483          *
484          * The page_mapcount() is called to get a snapshot of the mapcount.
485          * Without holding the page lock this snapshot can be slightly wrong as
486          * we cannot always read the mapcount atomically.  It is not safe to
487          * call page_mapcount() even with PTL held if the page is not mapped,
488          * especially for migration entries.  Treat regular migration entries
489          * as mapcount == 1.
490          */
491         if ((page_count(page) == 1) || migration) {
492                 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
493                         locked, true);
494                 return;
495         }
496         for (i = 0; i < nr; i++, page++) {
497                 int mapcount = page_mapcount(page);
498                 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
499                 if (mapcount >= 2)
500                         pss /= mapcount;
501                 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
502                                       mapcount < 2);
503         }
504 }
505
506 #ifdef CONFIG_SHMEM
507 static int smaps_pte_hole(unsigned long addr, unsigned long end,
508                           __always_unused int depth, struct mm_walk *walk)
509 {
510         struct mem_size_stats *mss = walk->private;
511         struct vm_area_struct *vma = walk->vma;
512
513         mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
514                                               linear_page_index(vma, addr),
515                                               linear_page_index(vma, end));
516
517         return 0;
518 }
519 #else
520 #define smaps_pte_hole          NULL
521 #endif /* CONFIG_SHMEM */
522
523 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
524 {
525 #ifdef CONFIG_SHMEM
526         if (walk->ops->pte_hole) {
527                 /* depth is not used */
528                 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
529         }
530 #endif
531 }
532
533 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
534                 struct mm_walk *walk)
535 {
536         struct mem_size_stats *mss = walk->private;
537         struct vm_area_struct *vma = walk->vma;
538         bool locked = !!(vma->vm_flags & VM_LOCKED);
539         struct page *page = NULL;
540         bool migration = false, young = false, dirty = false;
541
542         if (pte_present(*pte)) {
543                 page = vm_normal_page(vma, addr, *pte);
544                 young = pte_young(*pte);
545                 dirty = pte_dirty(*pte);
546         } else if (is_swap_pte(*pte)) {
547                 swp_entry_t swpent = pte_to_swp_entry(*pte);
548
549                 if (!non_swap_entry(swpent)) {
550                         int mapcount;
551
552                         mss->swap += PAGE_SIZE;
553                         mapcount = swp_swapcount(swpent);
554                         if (mapcount >= 2) {
555                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
556
557                                 do_div(pss_delta, mapcount);
558                                 mss->swap_pss += pss_delta;
559                         } else {
560                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
561                         }
562                 } else if (is_pfn_swap_entry(swpent)) {
563                         if (is_migration_entry(swpent))
564                                 migration = true;
565                         page = pfn_swap_entry_to_page(swpent);
566                 }
567         } else {
568                 smaps_pte_hole_lookup(addr, walk);
569                 return;
570         }
571
572         if (!page)
573                 return;
574
575         smaps_account(mss, page, false, young, dirty, locked, migration);
576 }
577
578 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
579 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
580                 struct mm_walk *walk)
581 {
582         struct mem_size_stats *mss = walk->private;
583         struct vm_area_struct *vma = walk->vma;
584         bool locked = !!(vma->vm_flags & VM_LOCKED);
585         struct page *page = NULL;
586         bool migration = false;
587
588         if (pmd_present(*pmd)) {
589                 /* FOLL_DUMP will return -EFAULT on huge zero page */
590                 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
591         } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
592                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
593
594                 if (is_migration_entry(entry)) {
595                         migration = true;
596                         page = pfn_swap_entry_to_page(entry);
597                 }
598         }
599         if (IS_ERR_OR_NULL(page))
600                 return;
601         if (PageAnon(page))
602                 mss->anonymous_thp += HPAGE_PMD_SIZE;
603         else if (PageSwapBacked(page))
604                 mss->shmem_thp += HPAGE_PMD_SIZE;
605         else if (is_zone_device_page(page))
606                 /* pass */;
607         else
608                 mss->file_thp += HPAGE_PMD_SIZE;
609
610         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
611                       locked, migration);
612 }
613 #else
614 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
615                 struct mm_walk *walk)
616 {
617 }
618 #endif
619
620 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
621                            struct mm_walk *walk)
622 {
623         struct vm_area_struct *vma = walk->vma;
624         pte_t *pte;
625         spinlock_t *ptl;
626
627         ptl = pmd_trans_huge_lock(pmd, vma);
628         if (ptl) {
629                 smaps_pmd_entry(pmd, addr, walk);
630                 spin_unlock(ptl);
631                 goto out;
632         }
633
634         if (pmd_trans_unstable(pmd))
635                 goto out;
636         /*
637          * The mmap_lock held all the way back in m_start() is what
638          * keeps khugepaged out of here and from collapsing things
639          * in here.
640          */
641         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
642         for (; addr != end; pte++, addr += PAGE_SIZE)
643                 smaps_pte_entry(pte, addr, walk);
644         pte_unmap_unlock(pte - 1, ptl);
645 out:
646         cond_resched();
647         return 0;
648 }
649
650 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
651 {
652         /*
653          * Don't forget to update Documentation/ on changes.
654          */
655         static const char mnemonics[BITS_PER_LONG][2] = {
656                 /*
657                  * In case if we meet a flag we don't know about.
658                  */
659                 [0 ... (BITS_PER_LONG-1)] = "??",
660
661                 [ilog2(VM_READ)]        = "rd",
662                 [ilog2(VM_WRITE)]       = "wr",
663                 [ilog2(VM_EXEC)]        = "ex",
664                 [ilog2(VM_SHARED)]      = "sh",
665                 [ilog2(VM_MAYREAD)]     = "mr",
666                 [ilog2(VM_MAYWRITE)]    = "mw",
667                 [ilog2(VM_MAYEXEC)]     = "me",
668                 [ilog2(VM_MAYSHARE)]    = "ms",
669                 [ilog2(VM_GROWSDOWN)]   = "gd",
670                 [ilog2(VM_PFNMAP)]      = "pf",
671                 [ilog2(VM_LOCKED)]      = "lo",
672                 [ilog2(VM_IO)]          = "io",
673                 [ilog2(VM_SEQ_READ)]    = "sr",
674                 [ilog2(VM_RAND_READ)]   = "rr",
675                 [ilog2(VM_DONTCOPY)]    = "dc",
676                 [ilog2(VM_DONTEXPAND)]  = "de",
677                 [ilog2(VM_ACCOUNT)]     = "ac",
678                 [ilog2(VM_NORESERVE)]   = "nr",
679                 [ilog2(VM_HUGETLB)]     = "ht",
680                 [ilog2(VM_SYNC)]        = "sf",
681                 [ilog2(VM_ARCH_1)]      = "ar",
682                 [ilog2(VM_WIPEONFORK)]  = "wf",
683                 [ilog2(VM_DONTDUMP)]    = "dd",
684 #ifdef CONFIG_ARM64_BTI
685                 [ilog2(VM_ARM64_BTI)]   = "bt",
686 #endif
687 #ifdef CONFIG_MEM_SOFT_DIRTY
688                 [ilog2(VM_SOFTDIRTY)]   = "sd",
689 #endif
690                 [ilog2(VM_MIXEDMAP)]    = "mm",
691                 [ilog2(VM_HUGEPAGE)]    = "hg",
692                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
693                 [ilog2(VM_MERGEABLE)]   = "mg",
694                 [ilog2(VM_UFFD_MISSING)]= "um",
695                 [ilog2(VM_UFFD_WP)]     = "uw",
696 #ifdef CONFIG_ARM64_MTE
697                 [ilog2(VM_MTE)]         = "mt",
698                 [ilog2(VM_MTE_ALLOWED)] = "",
699 #endif
700 #ifdef CONFIG_ARCH_HAS_PKEYS
701                 /* These come out via ProtectionKey: */
702                 [ilog2(VM_PKEY_BIT0)]   = "",
703                 [ilog2(VM_PKEY_BIT1)]   = "",
704                 [ilog2(VM_PKEY_BIT2)]   = "",
705                 [ilog2(VM_PKEY_BIT3)]   = "",
706 #if VM_PKEY_BIT4
707                 [ilog2(VM_PKEY_BIT4)]   = "",
708 #endif
709 #endif /* CONFIG_ARCH_HAS_PKEYS */
710 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
711                 [ilog2(VM_UFFD_MINOR)]  = "ui",
712 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
713         };
714         size_t i;
715
716         seq_puts(m, "VmFlags: ");
717         for (i = 0; i < BITS_PER_LONG; i++) {
718                 if (!mnemonics[i][0])
719                         continue;
720                 if (vma->vm_flags & (1UL << i)) {
721                         seq_putc(m, mnemonics[i][0]);
722                         seq_putc(m, mnemonics[i][1]);
723                         seq_putc(m, ' ');
724                 }
725         }
726         seq_putc(m, '\n');
727 }
728
729 #ifdef CONFIG_HUGETLB_PAGE
730 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
731                                  unsigned long addr, unsigned long end,
732                                  struct mm_walk *walk)
733 {
734         struct mem_size_stats *mss = walk->private;
735         struct vm_area_struct *vma = walk->vma;
736         struct page *page = NULL;
737
738         if (pte_present(*pte)) {
739                 page = vm_normal_page(vma, addr, *pte);
740         } else if (is_swap_pte(*pte)) {
741                 swp_entry_t swpent = pte_to_swp_entry(*pte);
742
743                 if (is_pfn_swap_entry(swpent))
744                         page = pfn_swap_entry_to_page(swpent);
745         }
746         if (page) {
747                 int mapcount = page_mapcount(page);
748
749                 if (mapcount >= 2)
750                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
751                 else
752                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
753         }
754         return 0;
755 }
756 #else
757 #define smaps_hugetlb_range     NULL
758 #endif /* HUGETLB_PAGE */
759
760 static const struct mm_walk_ops smaps_walk_ops = {
761         .pmd_entry              = smaps_pte_range,
762         .hugetlb_entry          = smaps_hugetlb_range,
763 };
764
765 static const struct mm_walk_ops smaps_shmem_walk_ops = {
766         .pmd_entry              = smaps_pte_range,
767         .hugetlb_entry          = smaps_hugetlb_range,
768         .pte_hole               = smaps_pte_hole,
769 };
770
771 /*
772  * Gather mem stats from @vma with the indicated beginning
773  * address @start, and keep them in @mss.
774  *
775  * Use vm_start of @vma as the beginning address if @start is 0.
776  */
777 static void smap_gather_stats(struct vm_area_struct *vma,
778                 struct mem_size_stats *mss, unsigned long start)
779 {
780         const struct mm_walk_ops *ops = &smaps_walk_ops;
781
782         /* Invalid start */
783         if (start >= vma->vm_end)
784                 return;
785
786 #ifdef CONFIG_SHMEM
787         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
788                 /*
789                  * For shared or readonly shmem mappings we know that all
790                  * swapped out pages belong to the shmem object, and we can
791                  * obtain the swap value much more efficiently. For private
792                  * writable mappings, we might have COW pages that are
793                  * not affected by the parent swapped out pages of the shmem
794                  * object, so we have to distinguish them during the page walk.
795                  * Unless we know that the shmem object (or the part mapped by
796                  * our VMA) has no swapped out pages at all.
797                  */
798                 unsigned long shmem_swapped = shmem_swap_usage(vma);
799
800                 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
801                                         !(vma->vm_flags & VM_WRITE))) {
802                         mss->swap += shmem_swapped;
803                 } else {
804                         ops = &smaps_shmem_walk_ops;
805                 }
806         }
807 #endif
808         /* mmap_lock is held in m_start */
809         if (!start)
810                 walk_page_vma(vma, ops, mss);
811         else
812                 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
813 }
814
815 #define SEQ_PUT_DEC(str, val) \
816                 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
817
818 /* Show the contents common for smaps and smaps_rollup */
819 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
820         bool rollup_mode)
821 {
822         SEQ_PUT_DEC("Rss:            ", mss->resident);
823         SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
824         SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
825         if (rollup_mode) {
826                 /*
827                  * These are meaningful only for smaps_rollup, otherwise two of
828                  * them are zero, and the other one is the same as Pss.
829                  */
830                 SEQ_PUT_DEC(" kB\nPss_Anon:       ",
831                         mss->pss_anon >> PSS_SHIFT);
832                 SEQ_PUT_DEC(" kB\nPss_File:       ",
833                         mss->pss_file >> PSS_SHIFT);
834                 SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
835                         mss->pss_shmem >> PSS_SHIFT);
836         }
837         SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
838         SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
839         SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
840         SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
841         SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
842         SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
843         SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
844         SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
845         SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
846         SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
847         SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
848         seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
849                                   mss->private_hugetlb >> 10, 7);
850         SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
851         SEQ_PUT_DEC(" kB\nSwapPss:        ",
852                                         mss->swap_pss >> PSS_SHIFT);
853         SEQ_PUT_DEC(" kB\nLocked:         ",
854                                         mss->pss_locked >> PSS_SHIFT);
855         seq_puts(m, " kB\n");
856 }
857
858 static int show_smap(struct seq_file *m, void *v)
859 {
860         struct vm_area_struct *vma = v;
861         struct mem_size_stats mss;
862
863         memset(&mss, 0, sizeof(mss));
864
865         smap_gather_stats(vma, &mss, 0);
866
867         show_map_vma(m, vma);
868
869         SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
870         SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
871         SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
872         seq_puts(m, " kB\n");
873
874         __show_smap(m, &mss, false);
875
876         seq_printf(m, "THPeligible:    %d\n",
877                    hugepage_vma_check(vma, vma->vm_flags, true, false, true));
878
879         if (arch_pkeys_enabled())
880                 seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
881         show_smap_vma_flags(m, vma);
882
883         return 0;
884 }
885
886 static int show_smaps_rollup(struct seq_file *m, void *v)
887 {
888         struct proc_maps_private *priv = m->private;
889         struct mem_size_stats mss;
890         struct mm_struct *mm = priv->mm;
891         struct vm_area_struct *vma;
892         unsigned long vma_start = 0, last_vma_end = 0;
893         int ret = 0;
894         MA_STATE(mas, &mm->mm_mt, 0, 0);
895
896         priv->task = get_proc_task(priv->inode);
897         if (!priv->task)
898                 return -ESRCH;
899
900         if (!mm || !mmget_not_zero(mm)) {
901                 ret = -ESRCH;
902                 goto out_put_task;
903         }
904
905         memset(&mss, 0, sizeof(mss));
906
907         ret = mmap_read_lock_killable(mm);
908         if (ret)
909                 goto out_put_mm;
910
911         hold_task_mempolicy(priv);
912         vma = mas_find(&mas, ULONG_MAX);
913
914         if (unlikely(!vma))
915                 goto empty_set;
916
917         vma_start = vma->vm_start;
918         do {
919                 smap_gather_stats(vma, &mss, 0);
920                 last_vma_end = vma->vm_end;
921
922                 /*
923                  * Release mmap_lock temporarily if someone wants to
924                  * access it for write request.
925                  */
926                 if (mmap_lock_is_contended(mm)) {
927                         mas_pause(&mas);
928                         mmap_read_unlock(mm);
929                         ret = mmap_read_lock_killable(mm);
930                         if (ret) {
931                                 release_task_mempolicy(priv);
932                                 goto out_put_mm;
933                         }
934
935                         /*
936                          * After dropping the lock, there are four cases to
937                          * consider. See the following example for explanation.
938                          *
939                          *   +------+------+-----------+
940                          *   | VMA1 | VMA2 | VMA3      |
941                          *   +------+------+-----------+
942                          *   |      |      |           |
943                          *  4k     8k     16k         400k
944                          *
945                          * Suppose we drop the lock after reading VMA2 due to
946                          * contention, then we get:
947                          *
948                          *      last_vma_end = 16k
949                          *
950                          * 1) VMA2 is freed, but VMA3 exists:
951                          *
952                          *    find_vma(mm, 16k - 1) will return VMA3.
953                          *    In this case, just continue from VMA3.
954                          *
955                          * 2) VMA2 still exists:
956                          *
957                          *    find_vma(mm, 16k - 1) will return VMA2.
958                          *    Iterate the loop like the original one.
959                          *
960                          * 3) No more VMAs can be found:
961                          *
962                          *    find_vma(mm, 16k - 1) will return NULL.
963                          *    No more things to do, just break.
964                          *
965                          * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
966                          *
967                          *    find_vma(mm, 16k - 1) will return VMA' whose range
968                          *    contains last_vma_end.
969                          *    Iterate VMA' from last_vma_end.
970                          */
971                         vma = mas_find(&mas, ULONG_MAX);
972                         /* Case 3 above */
973                         if (!vma)
974                                 break;
975
976                         /* Case 1 above */
977                         if (vma->vm_start >= last_vma_end)
978                                 continue;
979
980                         /* Case 4 above */
981                         if (vma->vm_end > last_vma_end)
982                                 smap_gather_stats(vma, &mss, last_vma_end);
983                 }
984                 /* Case 2 above */
985         } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
986
987 empty_set:
988         show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
989         seq_pad(m, ' ');
990         seq_puts(m, "[rollup]\n");
991
992         __show_smap(m, &mss, true);
993
994         release_task_mempolicy(priv);
995         mmap_read_unlock(mm);
996
997 out_put_mm:
998         mmput(mm);
999 out_put_task:
1000         put_task_struct(priv->task);
1001         priv->task = NULL;
1002
1003         return ret;
1004 }
1005 #undef SEQ_PUT_DEC
1006
1007 static const struct seq_operations proc_pid_smaps_op = {
1008         .start  = m_start,
1009         .next   = m_next,
1010         .stop   = m_stop,
1011         .show   = show_smap
1012 };
1013
1014 static int pid_smaps_open(struct inode *inode, struct file *file)
1015 {
1016         return do_maps_open(inode, file, &proc_pid_smaps_op);
1017 }
1018
1019 static int smaps_rollup_open(struct inode *inode, struct file *file)
1020 {
1021         int ret;
1022         struct proc_maps_private *priv;
1023
1024         priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1025         if (!priv)
1026                 return -ENOMEM;
1027
1028         ret = single_open(file, show_smaps_rollup, priv);
1029         if (ret)
1030                 goto out_free;
1031
1032         priv->inode = inode;
1033         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1034         if (IS_ERR(priv->mm)) {
1035                 ret = PTR_ERR(priv->mm);
1036
1037                 single_release(inode, file);
1038                 goto out_free;
1039         }
1040
1041         return 0;
1042
1043 out_free:
1044         kfree(priv);
1045         return ret;
1046 }
1047
1048 static int smaps_rollup_release(struct inode *inode, struct file *file)
1049 {
1050         struct seq_file *seq = file->private_data;
1051         struct proc_maps_private *priv = seq->private;
1052
1053         if (priv->mm)
1054                 mmdrop(priv->mm);
1055
1056         kfree(priv);
1057         return single_release(inode, file);
1058 }
1059
1060 const struct file_operations proc_pid_smaps_operations = {
1061         .open           = pid_smaps_open,
1062         .read           = seq_read,
1063         .llseek         = seq_lseek,
1064         .release        = proc_map_release,
1065 };
1066
1067 const struct file_operations proc_pid_smaps_rollup_operations = {
1068         .open           = smaps_rollup_open,
1069         .read           = seq_read,
1070         .llseek         = seq_lseek,
1071         .release        = smaps_rollup_release,
1072 };
1073
1074 enum clear_refs_types {
1075         CLEAR_REFS_ALL = 1,
1076         CLEAR_REFS_ANON,
1077         CLEAR_REFS_MAPPED,
1078         CLEAR_REFS_SOFT_DIRTY,
1079         CLEAR_REFS_MM_HIWATER_RSS,
1080         CLEAR_REFS_LAST,
1081 };
1082
1083 struct clear_refs_private {
1084         enum clear_refs_types type;
1085 };
1086
1087 #ifdef CONFIG_MEM_SOFT_DIRTY
1088
1089 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1090 {
1091         struct page *page;
1092
1093         if (!pte_write(pte))
1094                 return false;
1095         if (!is_cow_mapping(vma->vm_flags))
1096                 return false;
1097         if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1098                 return false;
1099         page = vm_normal_page(vma, addr, pte);
1100         if (!page)
1101                 return false;
1102         return page_maybe_dma_pinned(page);
1103 }
1104
1105 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1106                 unsigned long addr, pte_t *pte)
1107 {
1108         /*
1109          * The soft-dirty tracker uses #PF-s to catch writes
1110          * to pages, so write-protect the pte as well. See the
1111          * Documentation/admin-guide/mm/soft-dirty.rst for full description
1112          * of how soft-dirty works.
1113          */
1114         pte_t ptent = *pte;
1115
1116         if (pte_present(ptent)) {
1117                 pte_t old_pte;
1118
1119                 if (pte_is_pinned(vma, addr, ptent))
1120                         return;
1121                 old_pte = ptep_modify_prot_start(vma, addr, pte);
1122                 ptent = pte_wrprotect(old_pte);
1123                 ptent = pte_clear_soft_dirty(ptent);
1124                 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1125         } else if (is_swap_pte(ptent)) {
1126                 ptent = pte_swp_clear_soft_dirty(ptent);
1127                 set_pte_at(vma->vm_mm, addr, pte, ptent);
1128         }
1129 }
1130 #else
1131 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1132                 unsigned long addr, pte_t *pte)
1133 {
1134 }
1135 #endif
1136
1137 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1138 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1139                 unsigned long addr, pmd_t *pmdp)
1140 {
1141         pmd_t old, pmd = *pmdp;
1142
1143         if (pmd_present(pmd)) {
1144                 /* See comment in change_huge_pmd() */
1145                 old = pmdp_invalidate(vma, addr, pmdp);
1146                 if (pmd_dirty(old))
1147                         pmd = pmd_mkdirty(pmd);
1148                 if (pmd_young(old))
1149                         pmd = pmd_mkyoung(pmd);
1150
1151                 pmd = pmd_wrprotect(pmd);
1152                 pmd = pmd_clear_soft_dirty(pmd);
1153
1154                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1155         } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1156                 pmd = pmd_swp_clear_soft_dirty(pmd);
1157                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1158         }
1159 }
1160 #else
1161 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1162                 unsigned long addr, pmd_t *pmdp)
1163 {
1164 }
1165 #endif
1166
1167 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1168                                 unsigned long end, struct mm_walk *walk)
1169 {
1170         struct clear_refs_private *cp = walk->private;
1171         struct vm_area_struct *vma = walk->vma;
1172         pte_t *pte, ptent;
1173         spinlock_t *ptl;
1174         struct page *page;
1175
1176         ptl = pmd_trans_huge_lock(pmd, vma);
1177         if (ptl) {
1178                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1179                         clear_soft_dirty_pmd(vma, addr, pmd);
1180                         goto out;
1181                 }
1182
1183                 if (!pmd_present(*pmd))
1184                         goto out;
1185
1186                 page = pmd_page(*pmd);
1187
1188                 /* Clear accessed and referenced bits. */
1189                 pmdp_test_and_clear_young(vma, addr, pmd);
1190                 test_and_clear_page_young(page);
1191                 ClearPageReferenced(page);
1192 out:
1193                 spin_unlock(ptl);
1194                 return 0;
1195         }
1196
1197         if (pmd_trans_unstable(pmd))
1198                 return 0;
1199
1200         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1201         for (; addr != end; pte++, addr += PAGE_SIZE) {
1202                 ptent = *pte;
1203
1204                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1205                         clear_soft_dirty(vma, addr, pte);
1206                         continue;
1207                 }
1208
1209                 if (!pte_present(ptent))
1210                         continue;
1211
1212                 page = vm_normal_page(vma, addr, ptent);
1213                 if (!page)
1214                         continue;
1215
1216                 /* Clear accessed and referenced bits. */
1217                 ptep_test_and_clear_young(vma, addr, pte);
1218                 test_and_clear_page_young(page);
1219                 ClearPageReferenced(page);
1220         }
1221         pte_unmap_unlock(pte - 1, ptl);
1222         cond_resched();
1223         return 0;
1224 }
1225
1226 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1227                                 struct mm_walk *walk)
1228 {
1229         struct clear_refs_private *cp = walk->private;
1230         struct vm_area_struct *vma = walk->vma;
1231
1232         if (vma->vm_flags & VM_PFNMAP)
1233                 return 1;
1234
1235         /*
1236          * Writing 1 to /proc/pid/clear_refs affects all pages.
1237          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1238          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1239          * Writing 4 to /proc/pid/clear_refs affects all pages.
1240          */
1241         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1242                 return 1;
1243         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1244                 return 1;
1245         return 0;
1246 }
1247
1248 static const struct mm_walk_ops clear_refs_walk_ops = {
1249         .pmd_entry              = clear_refs_pte_range,
1250         .test_walk              = clear_refs_test_walk,
1251 };
1252
1253 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1254                                 size_t count, loff_t *ppos)
1255 {
1256         struct task_struct *task;
1257         char buffer[PROC_NUMBUF];
1258         struct mm_struct *mm;
1259         struct vm_area_struct *vma;
1260         enum clear_refs_types type;
1261         int itype;
1262         int rv;
1263
1264         memset(buffer, 0, sizeof(buffer));
1265         if (count > sizeof(buffer) - 1)
1266                 count = sizeof(buffer) - 1;
1267         if (copy_from_user(buffer, buf, count))
1268                 return -EFAULT;
1269         rv = kstrtoint(strstrip(buffer), 10, &itype);
1270         if (rv < 0)
1271                 return rv;
1272         type = (enum clear_refs_types)itype;
1273         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1274                 return -EINVAL;
1275
1276         task = get_proc_task(file_inode(file));
1277         if (!task)
1278                 return -ESRCH;
1279         mm = get_task_mm(task);
1280         if (mm) {
1281                 MA_STATE(mas, &mm->mm_mt, 0, 0);
1282                 struct mmu_notifier_range range;
1283                 struct clear_refs_private cp = {
1284                         .type = type,
1285                 };
1286
1287                 if (mmap_write_lock_killable(mm)) {
1288                         count = -EINTR;
1289                         goto out_mm;
1290                 }
1291                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1292                         /*
1293                          * Writing 5 to /proc/pid/clear_refs resets the peak
1294                          * resident set size to this mm's current rss value.
1295                          */
1296                         reset_mm_hiwater_rss(mm);
1297                         goto out_unlock;
1298                 }
1299
1300                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1301                         mas_for_each(&mas, vma, ULONG_MAX) {
1302                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1303                                         continue;
1304                                 vma->vm_flags &= ~VM_SOFTDIRTY;
1305                                 vma_set_page_prot(vma);
1306                         }
1307
1308                         inc_tlb_flush_pending(mm);
1309                         mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1310                                                 0, NULL, mm, 0, -1UL);
1311                         mmu_notifier_invalidate_range_start(&range);
1312                 }
1313                 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1314                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1315                         mmu_notifier_invalidate_range_end(&range);
1316                         flush_tlb_mm(mm);
1317                         dec_tlb_flush_pending(mm);
1318                 }
1319 out_unlock:
1320                 mmap_write_unlock(mm);
1321 out_mm:
1322                 mmput(mm);
1323         }
1324         put_task_struct(task);
1325
1326         return count;
1327 }
1328
1329 const struct file_operations proc_clear_refs_operations = {
1330         .write          = clear_refs_write,
1331         .llseek         = noop_llseek,
1332 };
1333
1334 typedef struct {
1335         u64 pme;
1336 } pagemap_entry_t;
1337
1338 struct pagemapread {
1339         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1340         pagemap_entry_t *buffer;
1341         bool show_pfn;
1342 };
1343
1344 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1345 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1346
1347 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1348 #define PM_PFRAME_BITS          55
1349 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1350 #define PM_SOFT_DIRTY           BIT_ULL(55)
1351 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1352 #define PM_UFFD_WP              BIT_ULL(57)
1353 #define PM_FILE                 BIT_ULL(61)
1354 #define PM_SWAP                 BIT_ULL(62)
1355 #define PM_PRESENT              BIT_ULL(63)
1356
1357 #define PM_END_OF_BUFFER    1
1358
1359 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1360 {
1361         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1362 }
1363
1364 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1365                           struct pagemapread *pm)
1366 {
1367         pm->buffer[pm->pos++] = *pme;
1368         if (pm->pos >= pm->len)
1369                 return PM_END_OF_BUFFER;
1370         return 0;
1371 }
1372
1373 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1374                             __always_unused int depth, struct mm_walk *walk)
1375 {
1376         struct pagemapread *pm = walk->private;
1377         unsigned long addr = start;
1378         int err = 0;
1379
1380         while (addr < end) {
1381                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1382                 pagemap_entry_t pme = make_pme(0, 0);
1383                 /* End of address space hole, which we mark as non-present. */
1384                 unsigned long hole_end;
1385
1386                 if (vma)
1387                         hole_end = min(end, vma->vm_start);
1388                 else
1389                         hole_end = end;
1390
1391                 for (; addr < hole_end; addr += PAGE_SIZE) {
1392                         err = add_to_pagemap(addr, &pme, pm);
1393                         if (err)
1394                                 goto out;
1395                 }
1396
1397                 if (!vma)
1398                         break;
1399
1400                 /* Addresses in the VMA. */
1401                 if (vma->vm_flags & VM_SOFTDIRTY)
1402                         pme = make_pme(0, PM_SOFT_DIRTY);
1403                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1404                         err = add_to_pagemap(addr, &pme, pm);
1405                         if (err)
1406                                 goto out;
1407                 }
1408         }
1409 out:
1410         return err;
1411 }
1412
1413 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1414                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1415 {
1416         u64 frame = 0, flags = 0;
1417         struct page *page = NULL;
1418         bool migration = false;
1419
1420         if (pte_present(pte)) {
1421                 if (pm->show_pfn)
1422                         frame = pte_pfn(pte);
1423                 flags |= PM_PRESENT;
1424                 page = vm_normal_page(vma, addr, pte);
1425                 if (pte_soft_dirty(pte))
1426                         flags |= PM_SOFT_DIRTY;
1427                 if (pte_uffd_wp(pte))
1428                         flags |= PM_UFFD_WP;
1429         } else if (is_swap_pte(pte)) {
1430                 swp_entry_t entry;
1431                 if (pte_swp_soft_dirty(pte))
1432                         flags |= PM_SOFT_DIRTY;
1433                 if (pte_swp_uffd_wp(pte))
1434                         flags |= PM_UFFD_WP;
1435                 entry = pte_to_swp_entry(pte);
1436                 if (pm->show_pfn) {
1437                         pgoff_t offset;
1438                         /*
1439                          * For PFN swap offsets, keeping the offset field
1440                          * to be PFN only to be compatible with old smaps.
1441                          */
1442                         if (is_pfn_swap_entry(entry))
1443                                 offset = swp_offset_pfn(entry);
1444                         else
1445                                 offset = swp_offset(entry);
1446                         frame = swp_type(entry) |
1447                             (offset << MAX_SWAPFILES_SHIFT);
1448                 }
1449                 flags |= PM_SWAP;
1450                 migration = is_migration_entry(entry);
1451                 if (is_pfn_swap_entry(entry))
1452                         page = pfn_swap_entry_to_page(entry);
1453                 if (pte_marker_entry_uffd_wp(entry))
1454                         flags |= PM_UFFD_WP;
1455         }
1456
1457         if (page && !PageAnon(page))
1458                 flags |= PM_FILE;
1459         if (page && !migration && page_mapcount(page) == 1)
1460                 flags |= PM_MMAP_EXCLUSIVE;
1461         if (vma->vm_flags & VM_SOFTDIRTY)
1462                 flags |= PM_SOFT_DIRTY;
1463
1464         return make_pme(frame, flags);
1465 }
1466
1467 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1468                              struct mm_walk *walk)
1469 {
1470         struct vm_area_struct *vma = walk->vma;
1471         struct pagemapread *pm = walk->private;
1472         spinlock_t *ptl;
1473         pte_t *pte, *orig_pte;
1474         int err = 0;
1475 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1476         bool migration = false;
1477
1478         ptl = pmd_trans_huge_lock(pmdp, vma);
1479         if (ptl) {
1480                 u64 flags = 0, frame = 0;
1481                 pmd_t pmd = *pmdp;
1482                 struct page *page = NULL;
1483
1484                 if (vma->vm_flags & VM_SOFTDIRTY)
1485                         flags |= PM_SOFT_DIRTY;
1486
1487                 if (pmd_present(pmd)) {
1488                         page = pmd_page(pmd);
1489
1490                         flags |= PM_PRESENT;
1491                         if (pmd_soft_dirty(pmd))
1492                                 flags |= PM_SOFT_DIRTY;
1493                         if (pmd_uffd_wp(pmd))
1494                                 flags |= PM_UFFD_WP;
1495                         if (pm->show_pfn)
1496                                 frame = pmd_pfn(pmd) +
1497                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1498                 }
1499 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1500                 else if (is_swap_pmd(pmd)) {
1501                         swp_entry_t entry = pmd_to_swp_entry(pmd);
1502                         unsigned long offset;
1503
1504                         if (pm->show_pfn) {
1505                                 if (is_pfn_swap_entry(entry))
1506                                         offset = swp_offset_pfn(entry);
1507                                 else
1508                                         offset = swp_offset(entry);
1509                                 offset = offset +
1510                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1511                                 frame = swp_type(entry) |
1512                                         (offset << MAX_SWAPFILES_SHIFT);
1513                         }
1514                         flags |= PM_SWAP;
1515                         if (pmd_swp_soft_dirty(pmd))
1516                                 flags |= PM_SOFT_DIRTY;
1517                         if (pmd_swp_uffd_wp(pmd))
1518                                 flags |= PM_UFFD_WP;
1519                         VM_BUG_ON(!is_pmd_migration_entry(pmd));
1520                         migration = is_migration_entry(entry);
1521                         page = pfn_swap_entry_to_page(entry);
1522                 }
1523 #endif
1524
1525                 if (page && !migration && page_mapcount(page) == 1)
1526                         flags |= PM_MMAP_EXCLUSIVE;
1527
1528                 for (; addr != end; addr += PAGE_SIZE) {
1529                         pagemap_entry_t pme = make_pme(frame, flags);
1530
1531                         err = add_to_pagemap(addr, &pme, pm);
1532                         if (err)
1533                                 break;
1534                         if (pm->show_pfn) {
1535                                 if (flags & PM_PRESENT)
1536                                         frame++;
1537                                 else if (flags & PM_SWAP)
1538                                         frame += (1 << MAX_SWAPFILES_SHIFT);
1539                         }
1540                 }
1541                 spin_unlock(ptl);
1542                 return err;
1543         }
1544
1545         if (pmd_trans_unstable(pmdp))
1546                 return 0;
1547 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1548
1549         /*
1550          * We can assume that @vma always points to a valid one and @end never
1551          * goes beyond vma->vm_end.
1552          */
1553         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1554         for (; addr < end; pte++, addr += PAGE_SIZE) {
1555                 pagemap_entry_t pme;
1556
1557                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1558                 err = add_to_pagemap(addr, &pme, pm);
1559                 if (err)
1560                         break;
1561         }
1562         pte_unmap_unlock(orig_pte, ptl);
1563
1564         cond_resched();
1565
1566         return err;
1567 }
1568
1569 #ifdef CONFIG_HUGETLB_PAGE
1570 /* This function walks within one hugetlb entry in the single call */
1571 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1572                                  unsigned long addr, unsigned long end,
1573                                  struct mm_walk *walk)
1574 {
1575         struct pagemapread *pm = walk->private;
1576         struct vm_area_struct *vma = walk->vma;
1577         u64 flags = 0, frame = 0;
1578         int err = 0;
1579         pte_t pte;
1580
1581         if (vma->vm_flags & VM_SOFTDIRTY)
1582                 flags |= PM_SOFT_DIRTY;
1583
1584         pte = huge_ptep_get(ptep);
1585         if (pte_present(pte)) {
1586                 struct page *page = pte_page(pte);
1587
1588                 if (!PageAnon(page))
1589                         flags |= PM_FILE;
1590
1591                 if (page_mapcount(page) == 1)
1592                         flags |= PM_MMAP_EXCLUSIVE;
1593
1594                 if (huge_pte_uffd_wp(pte))
1595                         flags |= PM_UFFD_WP;
1596
1597                 flags |= PM_PRESENT;
1598                 if (pm->show_pfn)
1599                         frame = pte_pfn(pte) +
1600                                 ((addr & ~hmask) >> PAGE_SHIFT);
1601         } else if (pte_swp_uffd_wp_any(pte)) {
1602                 flags |= PM_UFFD_WP;
1603         }
1604
1605         for (; addr != end; addr += PAGE_SIZE) {
1606                 pagemap_entry_t pme = make_pme(frame, flags);
1607
1608                 err = add_to_pagemap(addr, &pme, pm);
1609                 if (err)
1610                         return err;
1611                 if (pm->show_pfn && (flags & PM_PRESENT))
1612                         frame++;
1613         }
1614
1615         cond_resched();
1616
1617         return err;
1618 }
1619 #else
1620 #define pagemap_hugetlb_range   NULL
1621 #endif /* HUGETLB_PAGE */
1622
1623 static const struct mm_walk_ops pagemap_ops = {
1624         .pmd_entry      = pagemap_pmd_range,
1625         .pte_hole       = pagemap_pte_hole,
1626         .hugetlb_entry  = pagemap_hugetlb_range,
1627 };
1628
1629 /*
1630  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1631  *
1632  * For each page in the address space, this file contains one 64-bit entry
1633  * consisting of the following:
1634  *
1635  * Bits 0-54  page frame number (PFN) if present
1636  * Bits 0-4   swap type if swapped
1637  * Bits 5-54  swap offset if swapped
1638  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1639  * Bit  56    page exclusively mapped
1640  * Bit  57    pte is uffd-wp write-protected
1641  * Bits 58-60 zero
1642  * Bit  61    page is file-page or shared-anon
1643  * Bit  62    page swapped
1644  * Bit  63    page present
1645  *
1646  * If the page is not present but in swap, then the PFN contains an
1647  * encoding of the swap file number and the page's offset into the
1648  * swap. Unmapped pages return a null PFN. This allows determining
1649  * precisely which pages are mapped (or in swap) and comparing mapped
1650  * pages between processes.
1651  *
1652  * Efficient users of this interface will use /proc/pid/maps to
1653  * determine which areas of memory are actually mapped and llseek to
1654  * skip over unmapped regions.
1655  */
1656 static ssize_t pagemap_read(struct file *file, char __user *buf,
1657                             size_t count, loff_t *ppos)
1658 {
1659         struct mm_struct *mm = file->private_data;
1660         struct pagemapread pm;
1661         unsigned long src;
1662         unsigned long svpfn;
1663         unsigned long start_vaddr;
1664         unsigned long end_vaddr;
1665         int ret = 0, copied = 0;
1666
1667         if (!mm || !mmget_not_zero(mm))
1668                 goto out;
1669
1670         ret = -EINVAL;
1671         /* file position must be aligned */
1672         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1673                 goto out_mm;
1674
1675         ret = 0;
1676         if (!count)
1677                 goto out_mm;
1678
1679         /* do not disclose physical addresses: attack vector */
1680         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1681
1682         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1683         pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1684         ret = -ENOMEM;
1685         if (!pm.buffer)
1686                 goto out_mm;
1687
1688         src = *ppos;
1689         svpfn = src / PM_ENTRY_BYTES;
1690         end_vaddr = mm->task_size;
1691
1692         /* watch out for wraparound */
1693         start_vaddr = end_vaddr;
1694         if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1695                 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1696
1697         /* Ensure the address is inside the task */
1698         if (start_vaddr > mm->task_size)
1699                 start_vaddr = end_vaddr;
1700
1701         /*
1702          * The odds are that this will stop walking way
1703          * before end_vaddr, because the length of the
1704          * user buffer is tracked in "pm", and the walk
1705          * will stop when we hit the end of the buffer.
1706          */
1707         ret = 0;
1708         while (count && (start_vaddr < end_vaddr)) {
1709                 int len;
1710                 unsigned long end;
1711
1712                 pm.pos = 0;
1713                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1714                 /* overflow ? */
1715                 if (end < start_vaddr || end > end_vaddr)
1716                         end = end_vaddr;
1717                 ret = mmap_read_lock_killable(mm);
1718                 if (ret)
1719                         goto out_free;
1720                 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1721                 mmap_read_unlock(mm);
1722                 start_vaddr = end;
1723
1724                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1725                 if (copy_to_user(buf, pm.buffer, len)) {
1726                         ret = -EFAULT;
1727                         goto out_free;
1728                 }
1729                 copied += len;
1730                 buf += len;
1731                 count -= len;
1732         }
1733         *ppos += copied;
1734         if (!ret || ret == PM_END_OF_BUFFER)
1735                 ret = copied;
1736
1737 out_free:
1738         kfree(pm.buffer);
1739 out_mm:
1740         mmput(mm);
1741 out:
1742         return ret;
1743 }
1744
1745 static int pagemap_open(struct inode *inode, struct file *file)
1746 {
1747         struct mm_struct *mm;
1748
1749         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1750         if (IS_ERR(mm))
1751                 return PTR_ERR(mm);
1752         file->private_data = mm;
1753         return 0;
1754 }
1755
1756 static int pagemap_release(struct inode *inode, struct file *file)
1757 {
1758         struct mm_struct *mm = file->private_data;
1759
1760         if (mm)
1761                 mmdrop(mm);
1762         return 0;
1763 }
1764
1765 const struct file_operations proc_pagemap_operations = {
1766         .llseek         = mem_lseek, /* borrow this */
1767         .read           = pagemap_read,
1768         .open           = pagemap_open,
1769         .release        = pagemap_release,
1770 };
1771 #endif /* CONFIG_PROC_PAGE_MONITOR */
1772
1773 #ifdef CONFIG_NUMA
1774
1775 struct numa_maps {
1776         unsigned long pages;
1777         unsigned long anon;
1778         unsigned long active;
1779         unsigned long writeback;
1780         unsigned long mapcount_max;
1781         unsigned long dirty;
1782         unsigned long swapcache;
1783         unsigned long node[MAX_NUMNODES];
1784 };
1785
1786 struct numa_maps_private {
1787         struct proc_maps_private proc_maps;
1788         struct numa_maps md;
1789 };
1790
1791 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1792                         unsigned long nr_pages)
1793 {
1794         int count = page_mapcount(page);
1795
1796         md->pages += nr_pages;
1797         if (pte_dirty || PageDirty(page))
1798                 md->dirty += nr_pages;
1799
1800         if (PageSwapCache(page))
1801                 md->swapcache += nr_pages;
1802
1803         if (PageActive(page) || PageUnevictable(page))
1804                 md->active += nr_pages;
1805
1806         if (PageWriteback(page))
1807                 md->writeback += nr_pages;
1808
1809         if (PageAnon(page))
1810                 md->anon += nr_pages;
1811
1812         if (count > md->mapcount_max)
1813                 md->mapcount_max = count;
1814
1815         md->node[page_to_nid(page)] += nr_pages;
1816 }
1817
1818 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1819                 unsigned long addr)
1820 {
1821         struct page *page;
1822         int nid;
1823
1824         if (!pte_present(pte))
1825                 return NULL;
1826
1827         page = vm_normal_page(vma, addr, pte);
1828         if (!page || is_zone_device_page(page))
1829                 return NULL;
1830
1831         if (PageReserved(page))
1832                 return NULL;
1833
1834         nid = page_to_nid(page);
1835         if (!node_isset(nid, node_states[N_MEMORY]))
1836                 return NULL;
1837
1838         return page;
1839 }
1840
1841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1842 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1843                                               struct vm_area_struct *vma,
1844                                               unsigned long addr)
1845 {
1846         struct page *page;
1847         int nid;
1848
1849         if (!pmd_present(pmd))
1850                 return NULL;
1851
1852         page = vm_normal_page_pmd(vma, addr, pmd);
1853         if (!page)
1854                 return NULL;
1855
1856         if (PageReserved(page))
1857                 return NULL;
1858
1859         nid = page_to_nid(page);
1860         if (!node_isset(nid, node_states[N_MEMORY]))
1861                 return NULL;
1862
1863         return page;
1864 }
1865 #endif
1866
1867 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1868                 unsigned long end, struct mm_walk *walk)
1869 {
1870         struct numa_maps *md = walk->private;
1871         struct vm_area_struct *vma = walk->vma;
1872         spinlock_t *ptl;
1873         pte_t *orig_pte;
1874         pte_t *pte;
1875
1876 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1877         ptl = pmd_trans_huge_lock(pmd, vma);
1878         if (ptl) {
1879                 struct page *page;
1880
1881                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1882                 if (page)
1883                         gather_stats(page, md, pmd_dirty(*pmd),
1884                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1885                 spin_unlock(ptl);
1886                 return 0;
1887         }
1888
1889         if (pmd_trans_unstable(pmd))
1890                 return 0;
1891 #endif
1892         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1893         do {
1894                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1895                 if (!page)
1896                         continue;
1897                 gather_stats(page, md, pte_dirty(*pte), 1);
1898
1899         } while (pte++, addr += PAGE_SIZE, addr != end);
1900         pte_unmap_unlock(orig_pte, ptl);
1901         cond_resched();
1902         return 0;
1903 }
1904 #ifdef CONFIG_HUGETLB_PAGE
1905 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1906                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1907 {
1908         pte_t huge_pte = huge_ptep_get(pte);
1909         struct numa_maps *md;
1910         struct page *page;
1911
1912         if (!pte_present(huge_pte))
1913                 return 0;
1914
1915         page = pte_page(huge_pte);
1916
1917         md = walk->private;
1918         gather_stats(page, md, pte_dirty(huge_pte), 1);
1919         return 0;
1920 }
1921
1922 #else
1923 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1924                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1925 {
1926         return 0;
1927 }
1928 #endif
1929
1930 static const struct mm_walk_ops show_numa_ops = {
1931         .hugetlb_entry = gather_hugetlb_stats,
1932         .pmd_entry = gather_pte_stats,
1933 };
1934
1935 /*
1936  * Display pages allocated per node and memory policy via /proc.
1937  */
1938 static int show_numa_map(struct seq_file *m, void *v)
1939 {
1940         struct numa_maps_private *numa_priv = m->private;
1941         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1942         struct vm_area_struct *vma = v;
1943         struct numa_maps *md = &numa_priv->md;
1944         struct file *file = vma->vm_file;
1945         struct mm_struct *mm = vma->vm_mm;
1946         struct mempolicy *pol;
1947         char buffer[64];
1948         int nid;
1949
1950         if (!mm)
1951                 return 0;
1952
1953         /* Ensure we start with an empty set of numa_maps statistics. */
1954         memset(md, 0, sizeof(*md));
1955
1956         pol = __get_vma_policy(vma, vma->vm_start);
1957         if (pol) {
1958                 mpol_to_str(buffer, sizeof(buffer), pol);
1959                 mpol_cond_put(pol);
1960         } else {
1961                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1962         }
1963
1964         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1965
1966         if (file) {
1967                 seq_puts(m, " file=");
1968                 seq_file_path(m, file, "\n\t= ");
1969         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1970                 seq_puts(m, " heap");
1971         } else if (is_stack(vma)) {
1972                 seq_puts(m, " stack");
1973         }
1974
1975         if (is_vm_hugetlb_page(vma))
1976                 seq_puts(m, " huge");
1977
1978         /* mmap_lock is held by m_start */
1979         walk_page_vma(vma, &show_numa_ops, md);
1980
1981         if (!md->pages)
1982                 goto out;
1983
1984         if (md->anon)
1985                 seq_printf(m, " anon=%lu", md->anon);
1986
1987         if (md->dirty)
1988                 seq_printf(m, " dirty=%lu", md->dirty);
1989
1990         if (md->pages != md->anon && md->pages != md->dirty)
1991                 seq_printf(m, " mapped=%lu", md->pages);
1992
1993         if (md->mapcount_max > 1)
1994                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1995
1996         if (md->swapcache)
1997                 seq_printf(m, " swapcache=%lu", md->swapcache);
1998
1999         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2000                 seq_printf(m, " active=%lu", md->active);
2001
2002         if (md->writeback)
2003                 seq_printf(m, " writeback=%lu", md->writeback);
2004
2005         for_each_node_state(nid, N_MEMORY)
2006                 if (md->node[nid])
2007                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2008
2009         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2010 out:
2011         seq_putc(m, '\n');
2012         return 0;
2013 }
2014
2015 static const struct seq_operations proc_pid_numa_maps_op = {
2016         .start  = m_start,
2017         .next   = m_next,
2018         .stop   = m_stop,
2019         .show   = show_numa_map,
2020 };
2021
2022 static int pid_numa_maps_open(struct inode *inode, struct file *file)
2023 {
2024         return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2025                                 sizeof(struct numa_maps_private));
2026 }
2027
2028 const struct file_operations proc_pid_numa_maps_operations = {
2029         .open           = pid_numa_maps_open,
2030         .read           = seq_read,
2031         .llseek         = seq_lseek,
2032         .release        = proc_map_release,
2033 };
2034
2035 #endif /* CONFIG_NUMA */