mm: replace vma->vm_flags direct modifications with modifier calls
[linux-block.git] / fs / proc / task_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/mm_inline.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27
28 #define SEQ_PUT_DEC(str, val) \
29                 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32         unsigned long text, lib, swap, anon, file, shmem;
33         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34
35         anon = get_mm_counter(mm, MM_ANONPAGES);
36         file = get_mm_counter(mm, MM_FILEPAGES);
37         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38
39         /*
40          * Note: to minimize their overhead, mm maintains hiwater_vm and
41          * hiwater_rss only when about to *lower* total_vm or rss.  Any
42          * collector of these hiwater stats must therefore get total_vm
43          * and rss too, which will usually be the higher.  Barriers? not
44          * worth the effort, such snapshots can always be inconsistent.
45          */
46         hiwater_vm = total_vm = mm->total_vm;
47         if (hiwater_vm < mm->hiwater_vm)
48                 hiwater_vm = mm->hiwater_vm;
49         hiwater_rss = total_rss = anon + file + shmem;
50         if (hiwater_rss < mm->hiwater_rss)
51                 hiwater_rss = mm->hiwater_rss;
52
53         /* split executable areas between text and lib */
54         text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55         text = min(text, mm->exec_vm << PAGE_SHIFT);
56         lib = (mm->exec_vm << PAGE_SHIFT) - text;
57
58         swap = get_mm_counter(mm, MM_SWAPENTS);
59         SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60         SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61         SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62         SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63         SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64         SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65         SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66         SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67         SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68         SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69         SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70         seq_put_decimal_ull_width(m,
71                     " kB\nVmExe:\t", text >> 10, 8);
72         seq_put_decimal_ull_width(m,
73                     " kB\nVmLib:\t", lib >> 10, 8);
74         seq_put_decimal_ull_width(m,
75                     " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76         SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77         seq_puts(m, " kB\n");
78         hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84         return PAGE_SIZE * mm->total_vm;
85 }
86
87 unsigned long task_statm(struct mm_struct *mm,
88                          unsigned long *shared, unsigned long *text,
89                          unsigned long *data, unsigned long *resident)
90 {
91         *shared = get_mm_counter(mm, MM_FILEPAGES) +
92                         get_mm_counter(mm, MM_SHMEMPAGES);
93         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94                                                                 >> PAGE_SHIFT;
95         *data = mm->data_vm + mm->stack_vm;
96         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97         return mm->total_vm;
98 }
99
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106         struct task_struct *task = priv->task;
107
108         task_lock(task);
109         priv->task_mempolicy = get_task_policy(task);
110         mpol_get(priv->task_mempolicy);
111         task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115         mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125
126 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
127                                                 loff_t *ppos)
128 {
129         struct vm_area_struct *vma = vma_next(&priv->iter);
130
131         if (vma) {
132                 *ppos = vma->vm_start;
133         } else {
134                 *ppos = -2UL;
135                 vma = get_gate_vma(priv->mm);
136         }
137
138         return vma;
139 }
140
141 static void *m_start(struct seq_file *m, loff_t *ppos)
142 {
143         struct proc_maps_private *priv = m->private;
144         unsigned long last_addr = *ppos;
145         struct mm_struct *mm;
146
147         /* See m_next(). Zero at the start or after lseek. */
148         if (last_addr == -1UL)
149                 return NULL;
150
151         priv->task = get_proc_task(priv->inode);
152         if (!priv->task)
153                 return ERR_PTR(-ESRCH);
154
155         mm = priv->mm;
156         if (!mm || !mmget_not_zero(mm)) {
157                 put_task_struct(priv->task);
158                 priv->task = NULL;
159                 return NULL;
160         }
161
162         if (mmap_read_lock_killable(mm)) {
163                 mmput(mm);
164                 put_task_struct(priv->task);
165                 priv->task = NULL;
166                 return ERR_PTR(-EINTR);
167         }
168
169         vma_iter_init(&priv->iter, mm, last_addr);
170         hold_task_mempolicy(priv);
171         if (last_addr == -2UL)
172                 return get_gate_vma(mm);
173
174         return proc_get_vma(priv, ppos);
175 }
176
177 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
178 {
179         if (*ppos == -2UL) {
180                 *ppos = -1UL;
181                 return NULL;
182         }
183         return proc_get_vma(m->private, ppos);
184 }
185
186 static void m_stop(struct seq_file *m, void *v)
187 {
188         struct proc_maps_private *priv = m->private;
189         struct mm_struct *mm = priv->mm;
190
191         if (!priv->task)
192                 return;
193
194         release_task_mempolicy(priv);
195         mmap_read_unlock(mm);
196         mmput(mm);
197         put_task_struct(priv->task);
198         priv->task = NULL;
199 }
200
201 static int proc_maps_open(struct inode *inode, struct file *file,
202                         const struct seq_operations *ops, int psize)
203 {
204         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
205
206         if (!priv)
207                 return -ENOMEM;
208
209         priv->inode = inode;
210         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
211         if (IS_ERR(priv->mm)) {
212                 int err = PTR_ERR(priv->mm);
213
214                 seq_release_private(inode, file);
215                 return err;
216         }
217
218         return 0;
219 }
220
221 static int proc_map_release(struct inode *inode, struct file *file)
222 {
223         struct seq_file *seq = file->private_data;
224         struct proc_maps_private *priv = seq->private;
225
226         if (priv->mm)
227                 mmdrop(priv->mm);
228
229         return seq_release_private(inode, file);
230 }
231
232 static int do_maps_open(struct inode *inode, struct file *file,
233                         const struct seq_operations *ops)
234 {
235         return proc_maps_open(inode, file, ops,
236                                 sizeof(struct proc_maps_private));
237 }
238
239 /*
240  * Indicate if the VMA is a stack for the given task; for
241  * /proc/PID/maps that is the stack of the main task.
242  */
243 static int is_stack(struct vm_area_struct *vma)
244 {
245         /*
246          * We make no effort to guess what a given thread considers to be
247          * its "stack".  It's not even well-defined for programs written
248          * languages like Go.
249          */
250         return vma->vm_start <= vma->vm_mm->start_stack &&
251                 vma->vm_end >= vma->vm_mm->start_stack;
252 }
253
254 static void show_vma_header_prefix(struct seq_file *m,
255                                    unsigned long start, unsigned long end,
256                                    vm_flags_t flags, unsigned long long pgoff,
257                                    dev_t dev, unsigned long ino)
258 {
259         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
260         seq_put_hex_ll(m, NULL, start, 8);
261         seq_put_hex_ll(m, "-", end, 8);
262         seq_putc(m, ' ');
263         seq_putc(m, flags & VM_READ ? 'r' : '-');
264         seq_putc(m, flags & VM_WRITE ? 'w' : '-');
265         seq_putc(m, flags & VM_EXEC ? 'x' : '-');
266         seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
267         seq_put_hex_ll(m, " ", pgoff, 8);
268         seq_put_hex_ll(m, " ", MAJOR(dev), 2);
269         seq_put_hex_ll(m, ":", MINOR(dev), 2);
270         seq_put_decimal_ull(m, " ", ino);
271         seq_putc(m, ' ');
272 }
273
274 static void
275 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
276 {
277         struct anon_vma_name *anon_name = NULL;
278         struct mm_struct *mm = vma->vm_mm;
279         struct file *file = vma->vm_file;
280         vm_flags_t flags = vma->vm_flags;
281         unsigned long ino = 0;
282         unsigned long long pgoff = 0;
283         unsigned long start, end;
284         dev_t dev = 0;
285         const char *name = NULL;
286
287         if (file) {
288                 struct inode *inode = file_inode(vma->vm_file);
289                 dev = inode->i_sb->s_dev;
290                 ino = inode->i_ino;
291                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
292         }
293
294         start = vma->vm_start;
295         end = vma->vm_end;
296         show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
297         if (mm)
298                 anon_name = anon_vma_name(vma);
299
300         /*
301          * Print the dentry name for named mappings, and a
302          * special [heap] marker for the heap:
303          */
304         if (file) {
305                 seq_pad(m, ' ');
306                 /*
307                  * If user named this anon shared memory via
308                  * prctl(PR_SET_VMA ..., use the provided name.
309                  */
310                 if (anon_name)
311                         seq_printf(m, "[anon_shmem:%s]", anon_name->name);
312                 else
313                         seq_file_path(m, file, "\n");
314                 goto done;
315         }
316
317         if (vma->vm_ops && vma->vm_ops->name) {
318                 name = vma->vm_ops->name(vma);
319                 if (name)
320                         goto done;
321         }
322
323         name = arch_vma_name(vma);
324         if (!name) {
325                 if (!mm) {
326                         name = "[vdso]";
327                         goto done;
328                 }
329
330                 if (vma->vm_start <= mm->brk &&
331                     vma->vm_end >= mm->start_brk) {
332                         name = "[heap]";
333                         goto done;
334                 }
335
336                 if (is_stack(vma)) {
337                         name = "[stack]";
338                         goto done;
339                 }
340
341                 if (anon_name) {
342                         seq_pad(m, ' ');
343                         seq_printf(m, "[anon:%s]", anon_name->name);
344                 }
345         }
346
347 done:
348         if (name) {
349                 seq_pad(m, ' ');
350                 seq_puts(m, name);
351         }
352         seq_putc(m, '\n');
353 }
354
355 static int show_map(struct seq_file *m, void *v)
356 {
357         show_map_vma(m, v);
358         return 0;
359 }
360
361 static const struct seq_operations proc_pid_maps_op = {
362         .start  = m_start,
363         .next   = m_next,
364         .stop   = m_stop,
365         .show   = show_map
366 };
367
368 static int pid_maps_open(struct inode *inode, struct file *file)
369 {
370         return do_maps_open(inode, file, &proc_pid_maps_op);
371 }
372
373 const struct file_operations proc_pid_maps_operations = {
374         .open           = pid_maps_open,
375         .read           = seq_read,
376         .llseek         = seq_lseek,
377         .release        = proc_map_release,
378 };
379
380 /*
381  * Proportional Set Size(PSS): my share of RSS.
382  *
383  * PSS of a process is the count of pages it has in memory, where each
384  * page is divided by the number of processes sharing it.  So if a
385  * process has 1000 pages all to itself, and 1000 shared with one other
386  * process, its PSS will be 1500.
387  *
388  * To keep (accumulated) division errors low, we adopt a 64bit
389  * fixed-point pss counter to minimize division errors. So (pss >>
390  * PSS_SHIFT) would be the real byte count.
391  *
392  * A shift of 12 before division means (assuming 4K page size):
393  *      - 1M 3-user-pages add up to 8KB errors;
394  *      - supports mapcount up to 2^24, or 16M;
395  *      - supports PSS up to 2^52 bytes, or 4PB.
396  */
397 #define PSS_SHIFT 12
398
399 #ifdef CONFIG_PROC_PAGE_MONITOR
400 struct mem_size_stats {
401         unsigned long resident;
402         unsigned long shared_clean;
403         unsigned long shared_dirty;
404         unsigned long private_clean;
405         unsigned long private_dirty;
406         unsigned long referenced;
407         unsigned long anonymous;
408         unsigned long lazyfree;
409         unsigned long anonymous_thp;
410         unsigned long shmem_thp;
411         unsigned long file_thp;
412         unsigned long swap;
413         unsigned long shared_hugetlb;
414         unsigned long private_hugetlb;
415         u64 pss;
416         u64 pss_anon;
417         u64 pss_file;
418         u64 pss_shmem;
419         u64 pss_dirty;
420         u64 pss_locked;
421         u64 swap_pss;
422 };
423
424 static void smaps_page_accumulate(struct mem_size_stats *mss,
425                 struct page *page, unsigned long size, unsigned long pss,
426                 bool dirty, bool locked, bool private)
427 {
428         mss->pss += pss;
429
430         if (PageAnon(page))
431                 mss->pss_anon += pss;
432         else if (PageSwapBacked(page))
433                 mss->pss_shmem += pss;
434         else
435                 mss->pss_file += pss;
436
437         if (locked)
438                 mss->pss_locked += pss;
439
440         if (dirty || PageDirty(page)) {
441                 mss->pss_dirty += pss;
442                 if (private)
443                         mss->private_dirty += size;
444                 else
445                         mss->shared_dirty += size;
446         } else {
447                 if (private)
448                         mss->private_clean += size;
449                 else
450                         mss->shared_clean += size;
451         }
452 }
453
454 static void smaps_account(struct mem_size_stats *mss, struct page *page,
455                 bool compound, bool young, bool dirty, bool locked,
456                 bool migration)
457 {
458         int i, nr = compound ? compound_nr(page) : 1;
459         unsigned long size = nr * PAGE_SIZE;
460
461         /*
462          * First accumulate quantities that depend only on |size| and the type
463          * of the compound page.
464          */
465         if (PageAnon(page)) {
466                 mss->anonymous += size;
467                 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
468                         mss->lazyfree += size;
469         }
470
471         mss->resident += size;
472         /* Accumulate the size in pages that have been accessed. */
473         if (young || page_is_young(page) || PageReferenced(page))
474                 mss->referenced += size;
475
476         /*
477          * Then accumulate quantities that may depend on sharing, or that may
478          * differ page-by-page.
479          *
480          * page_count(page) == 1 guarantees the page is mapped exactly once.
481          * If any subpage of the compound page mapped with PTE it would elevate
482          * page_count().
483          *
484          * The page_mapcount() is called to get a snapshot of the mapcount.
485          * Without holding the page lock this snapshot can be slightly wrong as
486          * we cannot always read the mapcount atomically.  It is not safe to
487          * call page_mapcount() even with PTL held if the page is not mapped,
488          * especially for migration entries.  Treat regular migration entries
489          * as mapcount == 1.
490          */
491         if ((page_count(page) == 1) || migration) {
492                 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
493                         locked, true);
494                 return;
495         }
496         for (i = 0; i < nr; i++, page++) {
497                 int mapcount = page_mapcount(page);
498                 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
499                 if (mapcount >= 2)
500                         pss /= mapcount;
501                 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
502                                       mapcount < 2);
503         }
504 }
505
506 #ifdef CONFIG_SHMEM
507 static int smaps_pte_hole(unsigned long addr, unsigned long end,
508                           __always_unused int depth, struct mm_walk *walk)
509 {
510         struct mem_size_stats *mss = walk->private;
511         struct vm_area_struct *vma = walk->vma;
512
513         mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
514                                               linear_page_index(vma, addr),
515                                               linear_page_index(vma, end));
516
517         return 0;
518 }
519 #else
520 #define smaps_pte_hole          NULL
521 #endif /* CONFIG_SHMEM */
522
523 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
524 {
525 #ifdef CONFIG_SHMEM
526         if (walk->ops->pte_hole) {
527                 /* depth is not used */
528                 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
529         }
530 #endif
531 }
532
533 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
534                 struct mm_walk *walk)
535 {
536         struct mem_size_stats *mss = walk->private;
537         struct vm_area_struct *vma = walk->vma;
538         bool locked = !!(vma->vm_flags & VM_LOCKED);
539         struct page *page = NULL;
540         bool migration = false, young = false, dirty = false;
541
542         if (pte_present(*pte)) {
543                 page = vm_normal_page(vma, addr, *pte);
544                 young = pte_young(*pte);
545                 dirty = pte_dirty(*pte);
546         } else if (is_swap_pte(*pte)) {
547                 swp_entry_t swpent = pte_to_swp_entry(*pte);
548
549                 if (!non_swap_entry(swpent)) {
550                         int mapcount;
551
552                         mss->swap += PAGE_SIZE;
553                         mapcount = swp_swapcount(swpent);
554                         if (mapcount >= 2) {
555                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
556
557                                 do_div(pss_delta, mapcount);
558                                 mss->swap_pss += pss_delta;
559                         } else {
560                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
561                         }
562                 } else if (is_pfn_swap_entry(swpent)) {
563                         if (is_migration_entry(swpent))
564                                 migration = true;
565                         page = pfn_swap_entry_to_page(swpent);
566                 }
567         } else {
568                 smaps_pte_hole_lookup(addr, walk);
569                 return;
570         }
571
572         if (!page)
573                 return;
574
575         smaps_account(mss, page, false, young, dirty, locked, migration);
576 }
577
578 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
579 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
580                 struct mm_walk *walk)
581 {
582         struct mem_size_stats *mss = walk->private;
583         struct vm_area_struct *vma = walk->vma;
584         bool locked = !!(vma->vm_flags & VM_LOCKED);
585         struct page *page = NULL;
586         bool migration = false;
587
588         if (pmd_present(*pmd)) {
589                 /* FOLL_DUMP will return -EFAULT on huge zero page */
590                 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
591         } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
592                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
593
594                 if (is_migration_entry(entry)) {
595                         migration = true;
596                         page = pfn_swap_entry_to_page(entry);
597                 }
598         }
599         if (IS_ERR_OR_NULL(page))
600                 return;
601         if (PageAnon(page))
602                 mss->anonymous_thp += HPAGE_PMD_SIZE;
603         else if (PageSwapBacked(page))
604                 mss->shmem_thp += HPAGE_PMD_SIZE;
605         else if (is_zone_device_page(page))
606                 /* pass */;
607         else
608                 mss->file_thp += HPAGE_PMD_SIZE;
609
610         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
611                       locked, migration);
612 }
613 #else
614 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
615                 struct mm_walk *walk)
616 {
617 }
618 #endif
619
620 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
621                            struct mm_walk *walk)
622 {
623         struct vm_area_struct *vma = walk->vma;
624         pte_t *pte;
625         spinlock_t *ptl;
626
627         ptl = pmd_trans_huge_lock(pmd, vma);
628         if (ptl) {
629                 smaps_pmd_entry(pmd, addr, walk);
630                 spin_unlock(ptl);
631                 goto out;
632         }
633
634         if (pmd_trans_unstable(pmd))
635                 goto out;
636         /*
637          * The mmap_lock held all the way back in m_start() is what
638          * keeps khugepaged out of here and from collapsing things
639          * in here.
640          */
641         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
642         for (; addr != end; pte++, addr += PAGE_SIZE)
643                 smaps_pte_entry(pte, addr, walk);
644         pte_unmap_unlock(pte - 1, ptl);
645 out:
646         cond_resched();
647         return 0;
648 }
649
650 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
651 {
652         /*
653          * Don't forget to update Documentation/ on changes.
654          */
655         static const char mnemonics[BITS_PER_LONG][2] = {
656                 /*
657                  * In case if we meet a flag we don't know about.
658                  */
659                 [0 ... (BITS_PER_LONG-1)] = "??",
660
661                 [ilog2(VM_READ)]        = "rd",
662                 [ilog2(VM_WRITE)]       = "wr",
663                 [ilog2(VM_EXEC)]        = "ex",
664                 [ilog2(VM_SHARED)]      = "sh",
665                 [ilog2(VM_MAYREAD)]     = "mr",
666                 [ilog2(VM_MAYWRITE)]    = "mw",
667                 [ilog2(VM_MAYEXEC)]     = "me",
668                 [ilog2(VM_MAYSHARE)]    = "ms",
669                 [ilog2(VM_GROWSDOWN)]   = "gd",
670                 [ilog2(VM_PFNMAP)]      = "pf",
671                 [ilog2(VM_LOCKED)]      = "lo",
672                 [ilog2(VM_IO)]          = "io",
673                 [ilog2(VM_SEQ_READ)]    = "sr",
674                 [ilog2(VM_RAND_READ)]   = "rr",
675                 [ilog2(VM_DONTCOPY)]    = "dc",
676                 [ilog2(VM_DONTEXPAND)]  = "de",
677                 [ilog2(VM_LOCKONFAULT)] = "lf",
678                 [ilog2(VM_ACCOUNT)]     = "ac",
679                 [ilog2(VM_NORESERVE)]   = "nr",
680                 [ilog2(VM_HUGETLB)]     = "ht",
681                 [ilog2(VM_SYNC)]        = "sf",
682                 [ilog2(VM_ARCH_1)]      = "ar",
683                 [ilog2(VM_WIPEONFORK)]  = "wf",
684                 [ilog2(VM_DONTDUMP)]    = "dd",
685 #ifdef CONFIG_ARM64_BTI
686                 [ilog2(VM_ARM64_BTI)]   = "bt",
687 #endif
688 #ifdef CONFIG_MEM_SOFT_DIRTY
689                 [ilog2(VM_SOFTDIRTY)]   = "sd",
690 #endif
691                 [ilog2(VM_MIXEDMAP)]    = "mm",
692                 [ilog2(VM_HUGEPAGE)]    = "hg",
693                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
694                 [ilog2(VM_MERGEABLE)]   = "mg",
695                 [ilog2(VM_UFFD_MISSING)]= "um",
696                 [ilog2(VM_UFFD_WP)]     = "uw",
697 #ifdef CONFIG_ARM64_MTE
698                 [ilog2(VM_MTE)]         = "mt",
699                 [ilog2(VM_MTE_ALLOWED)] = "",
700 #endif
701 #ifdef CONFIG_ARCH_HAS_PKEYS
702                 /* These come out via ProtectionKey: */
703                 [ilog2(VM_PKEY_BIT0)]   = "",
704                 [ilog2(VM_PKEY_BIT1)]   = "",
705                 [ilog2(VM_PKEY_BIT2)]   = "",
706                 [ilog2(VM_PKEY_BIT3)]   = "",
707 #if VM_PKEY_BIT4
708                 [ilog2(VM_PKEY_BIT4)]   = "",
709 #endif
710 #endif /* CONFIG_ARCH_HAS_PKEYS */
711 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
712                 [ilog2(VM_UFFD_MINOR)]  = "ui",
713 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
714         };
715         size_t i;
716
717         seq_puts(m, "VmFlags: ");
718         for (i = 0; i < BITS_PER_LONG; i++) {
719                 if (!mnemonics[i][0])
720                         continue;
721                 if (vma->vm_flags & (1UL << i)) {
722                         seq_putc(m, mnemonics[i][0]);
723                         seq_putc(m, mnemonics[i][1]);
724                         seq_putc(m, ' ');
725                 }
726         }
727         seq_putc(m, '\n');
728 }
729
730 #ifdef CONFIG_HUGETLB_PAGE
731 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
732                                  unsigned long addr, unsigned long end,
733                                  struct mm_walk *walk)
734 {
735         struct mem_size_stats *mss = walk->private;
736         struct vm_area_struct *vma = walk->vma;
737         struct page *page = NULL;
738
739         if (pte_present(*pte)) {
740                 page = vm_normal_page(vma, addr, *pte);
741         } else if (is_swap_pte(*pte)) {
742                 swp_entry_t swpent = pte_to_swp_entry(*pte);
743
744                 if (is_pfn_swap_entry(swpent))
745                         page = pfn_swap_entry_to_page(swpent);
746         }
747         if (page) {
748                 if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
749                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
750                 else
751                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
752         }
753         return 0;
754 }
755 #else
756 #define smaps_hugetlb_range     NULL
757 #endif /* HUGETLB_PAGE */
758
759 static const struct mm_walk_ops smaps_walk_ops = {
760         .pmd_entry              = smaps_pte_range,
761         .hugetlb_entry          = smaps_hugetlb_range,
762 };
763
764 static const struct mm_walk_ops smaps_shmem_walk_ops = {
765         .pmd_entry              = smaps_pte_range,
766         .hugetlb_entry          = smaps_hugetlb_range,
767         .pte_hole               = smaps_pte_hole,
768 };
769
770 /*
771  * Gather mem stats from @vma with the indicated beginning
772  * address @start, and keep them in @mss.
773  *
774  * Use vm_start of @vma as the beginning address if @start is 0.
775  */
776 static void smap_gather_stats(struct vm_area_struct *vma,
777                 struct mem_size_stats *mss, unsigned long start)
778 {
779         const struct mm_walk_ops *ops = &smaps_walk_ops;
780
781         /* Invalid start */
782         if (start >= vma->vm_end)
783                 return;
784
785 #ifdef CONFIG_SHMEM
786         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
787                 /*
788                  * For shared or readonly shmem mappings we know that all
789                  * swapped out pages belong to the shmem object, and we can
790                  * obtain the swap value much more efficiently. For private
791                  * writable mappings, we might have COW pages that are
792                  * not affected by the parent swapped out pages of the shmem
793                  * object, so we have to distinguish them during the page walk.
794                  * Unless we know that the shmem object (or the part mapped by
795                  * our VMA) has no swapped out pages at all.
796                  */
797                 unsigned long shmem_swapped = shmem_swap_usage(vma);
798
799                 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
800                                         !(vma->vm_flags & VM_WRITE))) {
801                         mss->swap += shmem_swapped;
802                 } else {
803                         ops = &smaps_shmem_walk_ops;
804                 }
805         }
806 #endif
807         /* mmap_lock is held in m_start */
808         if (!start)
809                 walk_page_vma(vma, ops, mss);
810         else
811                 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
812 }
813
814 #define SEQ_PUT_DEC(str, val) \
815                 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
816
817 /* Show the contents common for smaps and smaps_rollup */
818 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
819         bool rollup_mode)
820 {
821         SEQ_PUT_DEC("Rss:            ", mss->resident);
822         SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
823         SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
824         if (rollup_mode) {
825                 /*
826                  * These are meaningful only for smaps_rollup, otherwise two of
827                  * them are zero, and the other one is the same as Pss.
828                  */
829                 SEQ_PUT_DEC(" kB\nPss_Anon:       ",
830                         mss->pss_anon >> PSS_SHIFT);
831                 SEQ_PUT_DEC(" kB\nPss_File:       ",
832                         mss->pss_file >> PSS_SHIFT);
833                 SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
834                         mss->pss_shmem >> PSS_SHIFT);
835         }
836         SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
837         SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
838         SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
839         SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
840         SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
841         SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
842         SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
843         SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
844         SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
845         SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
846         SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
847         seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
848                                   mss->private_hugetlb >> 10, 7);
849         SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
850         SEQ_PUT_DEC(" kB\nSwapPss:        ",
851                                         mss->swap_pss >> PSS_SHIFT);
852         SEQ_PUT_DEC(" kB\nLocked:         ",
853                                         mss->pss_locked >> PSS_SHIFT);
854         seq_puts(m, " kB\n");
855 }
856
857 static int show_smap(struct seq_file *m, void *v)
858 {
859         struct vm_area_struct *vma = v;
860         struct mem_size_stats mss;
861
862         memset(&mss, 0, sizeof(mss));
863
864         smap_gather_stats(vma, &mss, 0);
865
866         show_map_vma(m, vma);
867
868         SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
869         SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
870         SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
871         seq_puts(m, " kB\n");
872
873         __show_smap(m, &mss, false);
874
875         seq_printf(m, "THPeligible:    %d\n",
876                    hugepage_vma_check(vma, vma->vm_flags, true, false, true));
877
878         if (arch_pkeys_enabled())
879                 seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
880         show_smap_vma_flags(m, vma);
881
882         return 0;
883 }
884
885 static int show_smaps_rollup(struct seq_file *m, void *v)
886 {
887         struct proc_maps_private *priv = m->private;
888         struct mem_size_stats mss;
889         struct mm_struct *mm = priv->mm;
890         struct vm_area_struct *vma;
891         unsigned long vma_start = 0, last_vma_end = 0;
892         int ret = 0;
893         VMA_ITERATOR(vmi, mm, 0);
894
895         priv->task = get_proc_task(priv->inode);
896         if (!priv->task)
897                 return -ESRCH;
898
899         if (!mm || !mmget_not_zero(mm)) {
900                 ret = -ESRCH;
901                 goto out_put_task;
902         }
903
904         memset(&mss, 0, sizeof(mss));
905
906         ret = mmap_read_lock_killable(mm);
907         if (ret)
908                 goto out_put_mm;
909
910         hold_task_mempolicy(priv);
911         vma = vma_next(&vmi);
912
913         if (unlikely(!vma))
914                 goto empty_set;
915
916         vma_start = vma->vm_start;
917         do {
918                 smap_gather_stats(vma, &mss, 0);
919                 last_vma_end = vma->vm_end;
920
921                 /*
922                  * Release mmap_lock temporarily if someone wants to
923                  * access it for write request.
924                  */
925                 if (mmap_lock_is_contended(mm)) {
926                         vma_iter_invalidate(&vmi);
927                         mmap_read_unlock(mm);
928                         ret = mmap_read_lock_killable(mm);
929                         if (ret) {
930                                 release_task_mempolicy(priv);
931                                 goto out_put_mm;
932                         }
933
934                         /*
935                          * After dropping the lock, there are four cases to
936                          * consider. See the following example for explanation.
937                          *
938                          *   +------+------+-----------+
939                          *   | VMA1 | VMA2 | VMA3      |
940                          *   +------+------+-----------+
941                          *   |      |      |           |
942                          *  4k     8k     16k         400k
943                          *
944                          * Suppose we drop the lock after reading VMA2 due to
945                          * contention, then we get:
946                          *
947                          *      last_vma_end = 16k
948                          *
949                          * 1) VMA2 is freed, but VMA3 exists:
950                          *
951                          *    vma_next(vmi) will return VMA3.
952                          *    In this case, just continue from VMA3.
953                          *
954                          * 2) VMA2 still exists:
955                          *
956                          *    vma_next(vmi) will return VMA3.
957                          *    In this case, just continue from VMA3.
958                          *
959                          * 3) No more VMAs can be found:
960                          *
961                          *    vma_next(vmi) will return NULL.
962                          *    No more things to do, just break.
963                          *
964                          * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
965                          *
966                          *    vma_next(vmi) will return VMA' whose range
967                          *    contains last_vma_end.
968                          *    Iterate VMA' from last_vma_end.
969                          */
970                         vma = vma_next(&vmi);
971                         /* Case 3 above */
972                         if (!vma)
973                                 break;
974
975                         /* Case 1 and 2 above */
976                         if (vma->vm_start >= last_vma_end)
977                                 continue;
978
979                         /* Case 4 above */
980                         if (vma->vm_end > last_vma_end)
981                                 smap_gather_stats(vma, &mss, last_vma_end);
982                 }
983         } for_each_vma(vmi, vma);
984
985 empty_set:
986         show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
987         seq_pad(m, ' ');
988         seq_puts(m, "[rollup]\n");
989
990         __show_smap(m, &mss, true);
991
992         release_task_mempolicy(priv);
993         mmap_read_unlock(mm);
994
995 out_put_mm:
996         mmput(mm);
997 out_put_task:
998         put_task_struct(priv->task);
999         priv->task = NULL;
1000
1001         return ret;
1002 }
1003 #undef SEQ_PUT_DEC
1004
1005 static const struct seq_operations proc_pid_smaps_op = {
1006         .start  = m_start,
1007         .next   = m_next,
1008         .stop   = m_stop,
1009         .show   = show_smap
1010 };
1011
1012 static int pid_smaps_open(struct inode *inode, struct file *file)
1013 {
1014         return do_maps_open(inode, file, &proc_pid_smaps_op);
1015 }
1016
1017 static int smaps_rollup_open(struct inode *inode, struct file *file)
1018 {
1019         int ret;
1020         struct proc_maps_private *priv;
1021
1022         priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1023         if (!priv)
1024                 return -ENOMEM;
1025
1026         ret = single_open(file, show_smaps_rollup, priv);
1027         if (ret)
1028                 goto out_free;
1029
1030         priv->inode = inode;
1031         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1032         if (IS_ERR(priv->mm)) {
1033                 ret = PTR_ERR(priv->mm);
1034
1035                 single_release(inode, file);
1036                 goto out_free;
1037         }
1038
1039         return 0;
1040
1041 out_free:
1042         kfree(priv);
1043         return ret;
1044 }
1045
1046 static int smaps_rollup_release(struct inode *inode, struct file *file)
1047 {
1048         struct seq_file *seq = file->private_data;
1049         struct proc_maps_private *priv = seq->private;
1050
1051         if (priv->mm)
1052                 mmdrop(priv->mm);
1053
1054         kfree(priv);
1055         return single_release(inode, file);
1056 }
1057
1058 const struct file_operations proc_pid_smaps_operations = {
1059         .open           = pid_smaps_open,
1060         .read           = seq_read,
1061         .llseek         = seq_lseek,
1062         .release        = proc_map_release,
1063 };
1064
1065 const struct file_operations proc_pid_smaps_rollup_operations = {
1066         .open           = smaps_rollup_open,
1067         .read           = seq_read,
1068         .llseek         = seq_lseek,
1069         .release        = smaps_rollup_release,
1070 };
1071
1072 enum clear_refs_types {
1073         CLEAR_REFS_ALL = 1,
1074         CLEAR_REFS_ANON,
1075         CLEAR_REFS_MAPPED,
1076         CLEAR_REFS_SOFT_DIRTY,
1077         CLEAR_REFS_MM_HIWATER_RSS,
1078         CLEAR_REFS_LAST,
1079 };
1080
1081 struct clear_refs_private {
1082         enum clear_refs_types type;
1083 };
1084
1085 #ifdef CONFIG_MEM_SOFT_DIRTY
1086
1087 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1088 {
1089         struct page *page;
1090
1091         if (!pte_write(pte))
1092                 return false;
1093         if (!is_cow_mapping(vma->vm_flags))
1094                 return false;
1095         if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1096                 return false;
1097         page = vm_normal_page(vma, addr, pte);
1098         if (!page)
1099                 return false;
1100         return page_maybe_dma_pinned(page);
1101 }
1102
1103 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1104                 unsigned long addr, pte_t *pte)
1105 {
1106         /*
1107          * The soft-dirty tracker uses #PF-s to catch writes
1108          * to pages, so write-protect the pte as well. See the
1109          * Documentation/admin-guide/mm/soft-dirty.rst for full description
1110          * of how soft-dirty works.
1111          */
1112         pte_t ptent = *pte;
1113
1114         if (pte_present(ptent)) {
1115                 pte_t old_pte;
1116
1117                 if (pte_is_pinned(vma, addr, ptent))
1118                         return;
1119                 old_pte = ptep_modify_prot_start(vma, addr, pte);
1120                 ptent = pte_wrprotect(old_pte);
1121                 ptent = pte_clear_soft_dirty(ptent);
1122                 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1123         } else if (is_swap_pte(ptent)) {
1124                 ptent = pte_swp_clear_soft_dirty(ptent);
1125                 set_pte_at(vma->vm_mm, addr, pte, ptent);
1126         }
1127 }
1128 #else
1129 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1130                 unsigned long addr, pte_t *pte)
1131 {
1132 }
1133 #endif
1134
1135 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1136 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1137                 unsigned long addr, pmd_t *pmdp)
1138 {
1139         pmd_t old, pmd = *pmdp;
1140
1141         if (pmd_present(pmd)) {
1142                 /* See comment in change_huge_pmd() */
1143                 old = pmdp_invalidate(vma, addr, pmdp);
1144                 if (pmd_dirty(old))
1145                         pmd = pmd_mkdirty(pmd);
1146                 if (pmd_young(old))
1147                         pmd = pmd_mkyoung(pmd);
1148
1149                 pmd = pmd_wrprotect(pmd);
1150                 pmd = pmd_clear_soft_dirty(pmd);
1151
1152                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1153         } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1154                 pmd = pmd_swp_clear_soft_dirty(pmd);
1155                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1156         }
1157 }
1158 #else
1159 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1160                 unsigned long addr, pmd_t *pmdp)
1161 {
1162 }
1163 #endif
1164
1165 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1166                                 unsigned long end, struct mm_walk *walk)
1167 {
1168         struct clear_refs_private *cp = walk->private;
1169         struct vm_area_struct *vma = walk->vma;
1170         pte_t *pte, ptent;
1171         spinlock_t *ptl;
1172         struct page *page;
1173
1174         ptl = pmd_trans_huge_lock(pmd, vma);
1175         if (ptl) {
1176                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1177                         clear_soft_dirty_pmd(vma, addr, pmd);
1178                         goto out;
1179                 }
1180
1181                 if (!pmd_present(*pmd))
1182                         goto out;
1183
1184                 page = pmd_page(*pmd);
1185
1186                 /* Clear accessed and referenced bits. */
1187                 pmdp_test_and_clear_young(vma, addr, pmd);
1188                 test_and_clear_page_young(page);
1189                 ClearPageReferenced(page);
1190 out:
1191                 spin_unlock(ptl);
1192                 return 0;
1193         }
1194
1195         if (pmd_trans_unstable(pmd))
1196                 return 0;
1197
1198         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1199         for (; addr != end; pte++, addr += PAGE_SIZE) {
1200                 ptent = *pte;
1201
1202                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1203                         clear_soft_dirty(vma, addr, pte);
1204                         continue;
1205                 }
1206
1207                 if (!pte_present(ptent))
1208                         continue;
1209
1210                 page = vm_normal_page(vma, addr, ptent);
1211                 if (!page)
1212                         continue;
1213
1214                 /* Clear accessed and referenced bits. */
1215                 ptep_test_and_clear_young(vma, addr, pte);
1216                 test_and_clear_page_young(page);
1217                 ClearPageReferenced(page);
1218         }
1219         pte_unmap_unlock(pte - 1, ptl);
1220         cond_resched();
1221         return 0;
1222 }
1223
1224 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1225                                 struct mm_walk *walk)
1226 {
1227         struct clear_refs_private *cp = walk->private;
1228         struct vm_area_struct *vma = walk->vma;
1229
1230         if (vma->vm_flags & VM_PFNMAP)
1231                 return 1;
1232
1233         /*
1234          * Writing 1 to /proc/pid/clear_refs affects all pages.
1235          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1236          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1237          * Writing 4 to /proc/pid/clear_refs affects all pages.
1238          */
1239         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1240                 return 1;
1241         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1242                 return 1;
1243         return 0;
1244 }
1245
1246 static const struct mm_walk_ops clear_refs_walk_ops = {
1247         .pmd_entry              = clear_refs_pte_range,
1248         .test_walk              = clear_refs_test_walk,
1249 };
1250
1251 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1252                                 size_t count, loff_t *ppos)
1253 {
1254         struct task_struct *task;
1255         char buffer[PROC_NUMBUF];
1256         struct mm_struct *mm;
1257         struct vm_area_struct *vma;
1258         enum clear_refs_types type;
1259         int itype;
1260         int rv;
1261
1262         memset(buffer, 0, sizeof(buffer));
1263         if (count > sizeof(buffer) - 1)
1264                 count = sizeof(buffer) - 1;
1265         if (copy_from_user(buffer, buf, count))
1266                 return -EFAULT;
1267         rv = kstrtoint(strstrip(buffer), 10, &itype);
1268         if (rv < 0)
1269                 return rv;
1270         type = (enum clear_refs_types)itype;
1271         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1272                 return -EINVAL;
1273
1274         task = get_proc_task(file_inode(file));
1275         if (!task)
1276                 return -ESRCH;
1277         mm = get_task_mm(task);
1278         if (mm) {
1279                 VMA_ITERATOR(vmi, mm, 0);
1280                 struct mmu_notifier_range range;
1281                 struct clear_refs_private cp = {
1282                         .type = type,
1283                 };
1284
1285                 if (mmap_write_lock_killable(mm)) {
1286                         count = -EINTR;
1287                         goto out_mm;
1288                 }
1289                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1290                         /*
1291                          * Writing 5 to /proc/pid/clear_refs resets the peak
1292                          * resident set size to this mm's current rss value.
1293                          */
1294                         reset_mm_hiwater_rss(mm);
1295                         goto out_unlock;
1296                 }
1297
1298                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1299                         for_each_vma(vmi, vma) {
1300                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1301                                         continue;
1302                                 vm_flags_clear(vma, VM_SOFTDIRTY);
1303                                 vma_set_page_prot(vma);
1304                         }
1305
1306                         inc_tlb_flush_pending(mm);
1307                         mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1308                                                 0, mm, 0, -1UL);
1309                         mmu_notifier_invalidate_range_start(&range);
1310                 }
1311                 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1312                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1313                         mmu_notifier_invalidate_range_end(&range);
1314                         flush_tlb_mm(mm);
1315                         dec_tlb_flush_pending(mm);
1316                 }
1317 out_unlock:
1318                 mmap_write_unlock(mm);
1319 out_mm:
1320                 mmput(mm);
1321         }
1322         put_task_struct(task);
1323
1324         return count;
1325 }
1326
1327 const struct file_operations proc_clear_refs_operations = {
1328         .write          = clear_refs_write,
1329         .llseek         = noop_llseek,
1330 };
1331
1332 typedef struct {
1333         u64 pme;
1334 } pagemap_entry_t;
1335
1336 struct pagemapread {
1337         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1338         pagemap_entry_t *buffer;
1339         bool show_pfn;
1340 };
1341
1342 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1343 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1344
1345 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1346 #define PM_PFRAME_BITS          55
1347 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1348 #define PM_SOFT_DIRTY           BIT_ULL(55)
1349 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1350 #define PM_UFFD_WP              BIT_ULL(57)
1351 #define PM_FILE                 BIT_ULL(61)
1352 #define PM_SWAP                 BIT_ULL(62)
1353 #define PM_PRESENT              BIT_ULL(63)
1354
1355 #define PM_END_OF_BUFFER    1
1356
1357 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1358 {
1359         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1360 }
1361
1362 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1363                           struct pagemapread *pm)
1364 {
1365         pm->buffer[pm->pos++] = *pme;
1366         if (pm->pos >= pm->len)
1367                 return PM_END_OF_BUFFER;
1368         return 0;
1369 }
1370
1371 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1372                             __always_unused int depth, struct mm_walk *walk)
1373 {
1374         struct pagemapread *pm = walk->private;
1375         unsigned long addr = start;
1376         int err = 0;
1377
1378         while (addr < end) {
1379                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1380                 pagemap_entry_t pme = make_pme(0, 0);
1381                 /* End of address space hole, which we mark as non-present. */
1382                 unsigned long hole_end;
1383
1384                 if (vma)
1385                         hole_end = min(end, vma->vm_start);
1386                 else
1387                         hole_end = end;
1388
1389                 for (; addr < hole_end; addr += PAGE_SIZE) {
1390                         err = add_to_pagemap(addr, &pme, pm);
1391                         if (err)
1392                                 goto out;
1393                 }
1394
1395                 if (!vma)
1396                         break;
1397
1398                 /* Addresses in the VMA. */
1399                 if (vma->vm_flags & VM_SOFTDIRTY)
1400                         pme = make_pme(0, PM_SOFT_DIRTY);
1401                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1402                         err = add_to_pagemap(addr, &pme, pm);
1403                         if (err)
1404                                 goto out;
1405                 }
1406         }
1407 out:
1408         return err;
1409 }
1410
1411 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1412                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1413 {
1414         u64 frame = 0, flags = 0;
1415         struct page *page = NULL;
1416         bool migration = false;
1417
1418         if (pte_present(pte)) {
1419                 if (pm->show_pfn)
1420                         frame = pte_pfn(pte);
1421                 flags |= PM_PRESENT;
1422                 page = vm_normal_page(vma, addr, pte);
1423                 if (pte_soft_dirty(pte))
1424                         flags |= PM_SOFT_DIRTY;
1425                 if (pte_uffd_wp(pte))
1426                         flags |= PM_UFFD_WP;
1427         } else if (is_swap_pte(pte)) {
1428                 swp_entry_t entry;
1429                 if (pte_swp_soft_dirty(pte))
1430                         flags |= PM_SOFT_DIRTY;
1431                 if (pte_swp_uffd_wp(pte))
1432                         flags |= PM_UFFD_WP;
1433                 entry = pte_to_swp_entry(pte);
1434                 if (pm->show_pfn) {
1435                         pgoff_t offset;
1436                         /*
1437                          * For PFN swap offsets, keeping the offset field
1438                          * to be PFN only to be compatible with old smaps.
1439                          */
1440                         if (is_pfn_swap_entry(entry))
1441                                 offset = swp_offset_pfn(entry);
1442                         else
1443                                 offset = swp_offset(entry);
1444                         frame = swp_type(entry) |
1445                             (offset << MAX_SWAPFILES_SHIFT);
1446                 }
1447                 flags |= PM_SWAP;
1448                 migration = is_migration_entry(entry);
1449                 if (is_pfn_swap_entry(entry))
1450                         page = pfn_swap_entry_to_page(entry);
1451                 if (pte_marker_entry_uffd_wp(entry))
1452                         flags |= PM_UFFD_WP;
1453         }
1454
1455         if (page && !PageAnon(page))
1456                 flags |= PM_FILE;
1457         if (page && !migration && page_mapcount(page) == 1)
1458                 flags |= PM_MMAP_EXCLUSIVE;
1459         if (vma->vm_flags & VM_SOFTDIRTY)
1460                 flags |= PM_SOFT_DIRTY;
1461
1462         return make_pme(frame, flags);
1463 }
1464
1465 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1466                              struct mm_walk *walk)
1467 {
1468         struct vm_area_struct *vma = walk->vma;
1469         struct pagemapread *pm = walk->private;
1470         spinlock_t *ptl;
1471         pte_t *pte, *orig_pte;
1472         int err = 0;
1473 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1474         bool migration = false;
1475
1476         ptl = pmd_trans_huge_lock(pmdp, vma);
1477         if (ptl) {
1478                 u64 flags = 0, frame = 0;
1479                 pmd_t pmd = *pmdp;
1480                 struct page *page = NULL;
1481
1482                 if (vma->vm_flags & VM_SOFTDIRTY)
1483                         flags |= PM_SOFT_DIRTY;
1484
1485                 if (pmd_present(pmd)) {
1486                         page = pmd_page(pmd);
1487
1488                         flags |= PM_PRESENT;
1489                         if (pmd_soft_dirty(pmd))
1490                                 flags |= PM_SOFT_DIRTY;
1491                         if (pmd_uffd_wp(pmd))
1492                                 flags |= PM_UFFD_WP;
1493                         if (pm->show_pfn)
1494                                 frame = pmd_pfn(pmd) +
1495                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1496                 }
1497 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1498                 else if (is_swap_pmd(pmd)) {
1499                         swp_entry_t entry = pmd_to_swp_entry(pmd);
1500                         unsigned long offset;
1501
1502                         if (pm->show_pfn) {
1503                                 if (is_pfn_swap_entry(entry))
1504                                         offset = swp_offset_pfn(entry);
1505                                 else
1506                                         offset = swp_offset(entry);
1507                                 offset = offset +
1508                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1509                                 frame = swp_type(entry) |
1510                                         (offset << MAX_SWAPFILES_SHIFT);
1511                         }
1512                         flags |= PM_SWAP;
1513                         if (pmd_swp_soft_dirty(pmd))
1514                                 flags |= PM_SOFT_DIRTY;
1515                         if (pmd_swp_uffd_wp(pmd))
1516                                 flags |= PM_UFFD_WP;
1517                         VM_BUG_ON(!is_pmd_migration_entry(pmd));
1518                         migration = is_migration_entry(entry);
1519                         page = pfn_swap_entry_to_page(entry);
1520                 }
1521 #endif
1522
1523                 if (page && !migration && page_mapcount(page) == 1)
1524                         flags |= PM_MMAP_EXCLUSIVE;
1525
1526                 for (; addr != end; addr += PAGE_SIZE) {
1527                         pagemap_entry_t pme = make_pme(frame, flags);
1528
1529                         err = add_to_pagemap(addr, &pme, pm);
1530                         if (err)
1531                                 break;
1532                         if (pm->show_pfn) {
1533                                 if (flags & PM_PRESENT)
1534                                         frame++;
1535                                 else if (flags & PM_SWAP)
1536                                         frame += (1 << MAX_SWAPFILES_SHIFT);
1537                         }
1538                 }
1539                 spin_unlock(ptl);
1540                 return err;
1541         }
1542
1543         if (pmd_trans_unstable(pmdp))
1544                 return 0;
1545 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1546
1547         /*
1548          * We can assume that @vma always points to a valid one and @end never
1549          * goes beyond vma->vm_end.
1550          */
1551         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1552         for (; addr < end; pte++, addr += PAGE_SIZE) {
1553                 pagemap_entry_t pme;
1554
1555                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1556                 err = add_to_pagemap(addr, &pme, pm);
1557                 if (err)
1558                         break;
1559         }
1560         pte_unmap_unlock(orig_pte, ptl);
1561
1562         cond_resched();
1563
1564         return err;
1565 }
1566
1567 #ifdef CONFIG_HUGETLB_PAGE
1568 /* This function walks within one hugetlb entry in the single call */
1569 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1570                                  unsigned long addr, unsigned long end,
1571                                  struct mm_walk *walk)
1572 {
1573         struct pagemapread *pm = walk->private;
1574         struct vm_area_struct *vma = walk->vma;
1575         u64 flags = 0, frame = 0;
1576         int err = 0;
1577         pte_t pte;
1578
1579         if (vma->vm_flags & VM_SOFTDIRTY)
1580                 flags |= PM_SOFT_DIRTY;
1581
1582         pte = huge_ptep_get(ptep);
1583         if (pte_present(pte)) {
1584                 struct page *page = pte_page(pte);
1585
1586                 if (!PageAnon(page))
1587                         flags |= PM_FILE;
1588
1589                 if (page_mapcount(page) == 1)
1590                         flags |= PM_MMAP_EXCLUSIVE;
1591
1592                 if (huge_pte_uffd_wp(pte))
1593                         flags |= PM_UFFD_WP;
1594
1595                 flags |= PM_PRESENT;
1596                 if (pm->show_pfn)
1597                         frame = pte_pfn(pte) +
1598                                 ((addr & ~hmask) >> PAGE_SHIFT);
1599         } else if (pte_swp_uffd_wp_any(pte)) {
1600                 flags |= PM_UFFD_WP;
1601         }
1602
1603         for (; addr != end; addr += PAGE_SIZE) {
1604                 pagemap_entry_t pme = make_pme(frame, flags);
1605
1606                 err = add_to_pagemap(addr, &pme, pm);
1607                 if (err)
1608                         return err;
1609                 if (pm->show_pfn && (flags & PM_PRESENT))
1610                         frame++;
1611         }
1612
1613         cond_resched();
1614
1615         return err;
1616 }
1617 #else
1618 #define pagemap_hugetlb_range   NULL
1619 #endif /* HUGETLB_PAGE */
1620
1621 static const struct mm_walk_ops pagemap_ops = {
1622         .pmd_entry      = pagemap_pmd_range,
1623         .pte_hole       = pagemap_pte_hole,
1624         .hugetlb_entry  = pagemap_hugetlb_range,
1625 };
1626
1627 /*
1628  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1629  *
1630  * For each page in the address space, this file contains one 64-bit entry
1631  * consisting of the following:
1632  *
1633  * Bits 0-54  page frame number (PFN) if present
1634  * Bits 0-4   swap type if swapped
1635  * Bits 5-54  swap offset if swapped
1636  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1637  * Bit  56    page exclusively mapped
1638  * Bit  57    pte is uffd-wp write-protected
1639  * Bits 58-60 zero
1640  * Bit  61    page is file-page or shared-anon
1641  * Bit  62    page swapped
1642  * Bit  63    page present
1643  *
1644  * If the page is not present but in swap, then the PFN contains an
1645  * encoding of the swap file number and the page's offset into the
1646  * swap. Unmapped pages return a null PFN. This allows determining
1647  * precisely which pages are mapped (or in swap) and comparing mapped
1648  * pages between processes.
1649  *
1650  * Efficient users of this interface will use /proc/pid/maps to
1651  * determine which areas of memory are actually mapped and llseek to
1652  * skip over unmapped regions.
1653  */
1654 static ssize_t pagemap_read(struct file *file, char __user *buf,
1655                             size_t count, loff_t *ppos)
1656 {
1657         struct mm_struct *mm = file->private_data;
1658         struct pagemapread pm;
1659         unsigned long src;
1660         unsigned long svpfn;
1661         unsigned long start_vaddr;
1662         unsigned long end_vaddr;
1663         int ret = 0, copied = 0;
1664
1665         if (!mm || !mmget_not_zero(mm))
1666                 goto out;
1667
1668         ret = -EINVAL;
1669         /* file position must be aligned */
1670         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1671                 goto out_mm;
1672
1673         ret = 0;
1674         if (!count)
1675                 goto out_mm;
1676
1677         /* do not disclose physical addresses: attack vector */
1678         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1679
1680         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1681         pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1682         ret = -ENOMEM;
1683         if (!pm.buffer)
1684                 goto out_mm;
1685
1686         src = *ppos;
1687         svpfn = src / PM_ENTRY_BYTES;
1688         end_vaddr = mm->task_size;
1689
1690         /* watch out for wraparound */
1691         start_vaddr = end_vaddr;
1692         if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1693                 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1694
1695         /* Ensure the address is inside the task */
1696         if (start_vaddr > mm->task_size)
1697                 start_vaddr = end_vaddr;
1698
1699         /*
1700          * The odds are that this will stop walking way
1701          * before end_vaddr, because the length of the
1702          * user buffer is tracked in "pm", and the walk
1703          * will stop when we hit the end of the buffer.
1704          */
1705         ret = 0;
1706         while (count && (start_vaddr < end_vaddr)) {
1707                 int len;
1708                 unsigned long end;
1709
1710                 pm.pos = 0;
1711                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1712                 /* overflow ? */
1713                 if (end < start_vaddr || end > end_vaddr)
1714                         end = end_vaddr;
1715                 ret = mmap_read_lock_killable(mm);
1716                 if (ret)
1717                         goto out_free;
1718                 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1719                 mmap_read_unlock(mm);
1720                 start_vaddr = end;
1721
1722                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1723                 if (copy_to_user(buf, pm.buffer, len)) {
1724                         ret = -EFAULT;
1725                         goto out_free;
1726                 }
1727                 copied += len;
1728                 buf += len;
1729                 count -= len;
1730         }
1731         *ppos += copied;
1732         if (!ret || ret == PM_END_OF_BUFFER)
1733                 ret = copied;
1734
1735 out_free:
1736         kfree(pm.buffer);
1737 out_mm:
1738         mmput(mm);
1739 out:
1740         return ret;
1741 }
1742
1743 static int pagemap_open(struct inode *inode, struct file *file)
1744 {
1745         struct mm_struct *mm;
1746
1747         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1748         if (IS_ERR(mm))
1749                 return PTR_ERR(mm);
1750         file->private_data = mm;
1751         return 0;
1752 }
1753
1754 static int pagemap_release(struct inode *inode, struct file *file)
1755 {
1756         struct mm_struct *mm = file->private_data;
1757
1758         if (mm)
1759                 mmdrop(mm);
1760         return 0;
1761 }
1762
1763 const struct file_operations proc_pagemap_operations = {
1764         .llseek         = mem_lseek, /* borrow this */
1765         .read           = pagemap_read,
1766         .open           = pagemap_open,
1767         .release        = pagemap_release,
1768 };
1769 #endif /* CONFIG_PROC_PAGE_MONITOR */
1770
1771 #ifdef CONFIG_NUMA
1772
1773 struct numa_maps {
1774         unsigned long pages;
1775         unsigned long anon;
1776         unsigned long active;
1777         unsigned long writeback;
1778         unsigned long mapcount_max;
1779         unsigned long dirty;
1780         unsigned long swapcache;
1781         unsigned long node[MAX_NUMNODES];
1782 };
1783
1784 struct numa_maps_private {
1785         struct proc_maps_private proc_maps;
1786         struct numa_maps md;
1787 };
1788
1789 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1790                         unsigned long nr_pages)
1791 {
1792         int count = page_mapcount(page);
1793
1794         md->pages += nr_pages;
1795         if (pte_dirty || PageDirty(page))
1796                 md->dirty += nr_pages;
1797
1798         if (PageSwapCache(page))
1799                 md->swapcache += nr_pages;
1800
1801         if (PageActive(page) || PageUnevictable(page))
1802                 md->active += nr_pages;
1803
1804         if (PageWriteback(page))
1805                 md->writeback += nr_pages;
1806
1807         if (PageAnon(page))
1808                 md->anon += nr_pages;
1809
1810         if (count > md->mapcount_max)
1811                 md->mapcount_max = count;
1812
1813         md->node[page_to_nid(page)] += nr_pages;
1814 }
1815
1816 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1817                 unsigned long addr)
1818 {
1819         struct page *page;
1820         int nid;
1821
1822         if (!pte_present(pte))
1823                 return NULL;
1824
1825         page = vm_normal_page(vma, addr, pte);
1826         if (!page || is_zone_device_page(page))
1827                 return NULL;
1828
1829         if (PageReserved(page))
1830                 return NULL;
1831
1832         nid = page_to_nid(page);
1833         if (!node_isset(nid, node_states[N_MEMORY]))
1834                 return NULL;
1835
1836         return page;
1837 }
1838
1839 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1840 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1841                                               struct vm_area_struct *vma,
1842                                               unsigned long addr)
1843 {
1844         struct page *page;
1845         int nid;
1846
1847         if (!pmd_present(pmd))
1848                 return NULL;
1849
1850         page = vm_normal_page_pmd(vma, addr, pmd);
1851         if (!page)
1852                 return NULL;
1853
1854         if (PageReserved(page))
1855                 return NULL;
1856
1857         nid = page_to_nid(page);
1858         if (!node_isset(nid, node_states[N_MEMORY]))
1859                 return NULL;
1860
1861         return page;
1862 }
1863 #endif
1864
1865 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1866                 unsigned long end, struct mm_walk *walk)
1867 {
1868         struct numa_maps *md = walk->private;
1869         struct vm_area_struct *vma = walk->vma;
1870         spinlock_t *ptl;
1871         pte_t *orig_pte;
1872         pte_t *pte;
1873
1874 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1875         ptl = pmd_trans_huge_lock(pmd, vma);
1876         if (ptl) {
1877                 struct page *page;
1878
1879                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1880                 if (page)
1881                         gather_stats(page, md, pmd_dirty(*pmd),
1882                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1883                 spin_unlock(ptl);
1884                 return 0;
1885         }
1886
1887         if (pmd_trans_unstable(pmd))
1888                 return 0;
1889 #endif
1890         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1891         do {
1892                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1893                 if (!page)
1894                         continue;
1895                 gather_stats(page, md, pte_dirty(*pte), 1);
1896
1897         } while (pte++, addr += PAGE_SIZE, addr != end);
1898         pte_unmap_unlock(orig_pte, ptl);
1899         cond_resched();
1900         return 0;
1901 }
1902 #ifdef CONFIG_HUGETLB_PAGE
1903 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1904                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1905 {
1906         pte_t huge_pte = huge_ptep_get(pte);
1907         struct numa_maps *md;
1908         struct page *page;
1909
1910         if (!pte_present(huge_pte))
1911                 return 0;
1912
1913         page = pte_page(huge_pte);
1914
1915         md = walk->private;
1916         gather_stats(page, md, pte_dirty(huge_pte), 1);
1917         return 0;
1918 }
1919
1920 #else
1921 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1922                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1923 {
1924         return 0;
1925 }
1926 #endif
1927
1928 static const struct mm_walk_ops show_numa_ops = {
1929         .hugetlb_entry = gather_hugetlb_stats,
1930         .pmd_entry = gather_pte_stats,
1931 };
1932
1933 /*
1934  * Display pages allocated per node and memory policy via /proc.
1935  */
1936 static int show_numa_map(struct seq_file *m, void *v)
1937 {
1938         struct numa_maps_private *numa_priv = m->private;
1939         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1940         struct vm_area_struct *vma = v;
1941         struct numa_maps *md = &numa_priv->md;
1942         struct file *file = vma->vm_file;
1943         struct mm_struct *mm = vma->vm_mm;
1944         struct mempolicy *pol;
1945         char buffer[64];
1946         int nid;
1947
1948         if (!mm)
1949                 return 0;
1950
1951         /* Ensure we start with an empty set of numa_maps statistics. */
1952         memset(md, 0, sizeof(*md));
1953
1954         pol = __get_vma_policy(vma, vma->vm_start);
1955         if (pol) {
1956                 mpol_to_str(buffer, sizeof(buffer), pol);
1957                 mpol_cond_put(pol);
1958         } else {
1959                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1960         }
1961
1962         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1963
1964         if (file) {
1965                 seq_puts(m, " file=");
1966                 seq_file_path(m, file, "\n\t= ");
1967         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1968                 seq_puts(m, " heap");
1969         } else if (is_stack(vma)) {
1970                 seq_puts(m, " stack");
1971         }
1972
1973         if (is_vm_hugetlb_page(vma))
1974                 seq_puts(m, " huge");
1975
1976         /* mmap_lock is held by m_start */
1977         walk_page_vma(vma, &show_numa_ops, md);
1978
1979         if (!md->pages)
1980                 goto out;
1981
1982         if (md->anon)
1983                 seq_printf(m, " anon=%lu", md->anon);
1984
1985         if (md->dirty)
1986                 seq_printf(m, " dirty=%lu", md->dirty);
1987
1988         if (md->pages != md->anon && md->pages != md->dirty)
1989                 seq_printf(m, " mapped=%lu", md->pages);
1990
1991         if (md->mapcount_max > 1)
1992                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1993
1994         if (md->swapcache)
1995                 seq_printf(m, " swapcache=%lu", md->swapcache);
1996
1997         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1998                 seq_printf(m, " active=%lu", md->active);
1999
2000         if (md->writeback)
2001                 seq_printf(m, " writeback=%lu", md->writeback);
2002
2003         for_each_node_state(nid, N_MEMORY)
2004                 if (md->node[nid])
2005                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2006
2007         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2008 out:
2009         seq_putc(m, '\n');
2010         return 0;
2011 }
2012
2013 static const struct seq_operations proc_pid_numa_maps_op = {
2014         .start  = m_start,
2015         .next   = m_next,
2016         .stop   = m_stop,
2017         .show   = show_numa_map,
2018 };
2019
2020 static int pid_numa_maps_open(struct inode *inode, struct file *file)
2021 {
2022         return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2023                                 sizeof(struct numa_maps_private));
2024 }
2025
2026 const struct file_operations proc_pid_numa_maps_operations = {
2027         .open           = pid_numa_maps_open,
2028         .read           = seq_read,
2029         .llseek         = seq_lseek,
2030         .release        = proc_map_release,
2031 };
2032
2033 #endif /* CONFIG_NUMA */