fs: port ->getattr() to pass mnt_idmap
[linux-block.git] / fs / ocfs2 / file.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * file.c
4  *
5  * File open, close, extend, truncate
6  *
7  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
8  */
9
10 #include <linux/capability.h>
11 #include <linux/fs.h>
12 #include <linux/types.h>
13 #include <linux/slab.h>
14 #include <linux/highmem.h>
15 #include <linux/pagemap.h>
16 #include <linux/uio.h>
17 #include <linux/sched.h>
18 #include <linux/splice.h>
19 #include <linux/mount.h>
20 #include <linux/writeback.h>
21 #include <linux/falloc.h>
22 #include <linux/quotaops.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25
26 #include <cluster/masklog.h>
27
28 #include "ocfs2.h"
29
30 #include "alloc.h"
31 #include "aops.h"
32 #include "dir.h"
33 #include "dlmglue.h"
34 #include "extent_map.h"
35 #include "file.h"
36 #include "sysfile.h"
37 #include "inode.h"
38 #include "ioctl.h"
39 #include "journal.h"
40 #include "locks.h"
41 #include "mmap.h"
42 #include "suballoc.h"
43 #include "super.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "quota.h"
47 #include "refcounttree.h"
48 #include "ocfs2_trace.h"
49
50 #include "buffer_head_io.h"
51
52 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
53 {
54         struct ocfs2_file_private *fp;
55
56         fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
57         if (!fp)
58                 return -ENOMEM;
59
60         fp->fp_file = file;
61         mutex_init(&fp->fp_mutex);
62         ocfs2_file_lock_res_init(&fp->fp_flock, fp);
63         file->private_data = fp;
64
65         return 0;
66 }
67
68 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
69 {
70         struct ocfs2_file_private *fp = file->private_data;
71         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
72
73         if (fp) {
74                 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
75                 ocfs2_lock_res_free(&fp->fp_flock);
76                 kfree(fp);
77                 file->private_data = NULL;
78         }
79 }
80
81 static int ocfs2_file_open(struct inode *inode, struct file *file)
82 {
83         int status;
84         int mode = file->f_flags;
85         struct ocfs2_inode_info *oi = OCFS2_I(inode);
86
87         trace_ocfs2_file_open(inode, file, file->f_path.dentry,
88                               (unsigned long long)oi->ip_blkno,
89                               file->f_path.dentry->d_name.len,
90                               file->f_path.dentry->d_name.name, mode);
91
92         if (file->f_mode & FMODE_WRITE) {
93                 status = dquot_initialize(inode);
94                 if (status)
95                         goto leave;
96         }
97
98         spin_lock(&oi->ip_lock);
99
100         /* Check that the inode hasn't been wiped from disk by another
101          * node. If it hasn't then we're safe as long as we hold the
102          * spin lock until our increment of open count. */
103         if (oi->ip_flags & OCFS2_INODE_DELETED) {
104                 spin_unlock(&oi->ip_lock);
105
106                 status = -ENOENT;
107                 goto leave;
108         }
109
110         if (mode & O_DIRECT)
111                 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
112
113         oi->ip_open_count++;
114         spin_unlock(&oi->ip_lock);
115
116         status = ocfs2_init_file_private(inode, file);
117         if (status) {
118                 /*
119                  * We want to set open count back if we're failing the
120                  * open.
121                  */
122                 spin_lock(&oi->ip_lock);
123                 oi->ip_open_count--;
124                 spin_unlock(&oi->ip_lock);
125         }
126
127         file->f_mode |= FMODE_NOWAIT;
128
129 leave:
130         return status;
131 }
132
133 static int ocfs2_file_release(struct inode *inode, struct file *file)
134 {
135         struct ocfs2_inode_info *oi = OCFS2_I(inode);
136
137         spin_lock(&oi->ip_lock);
138         if (!--oi->ip_open_count)
139                 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
140
141         trace_ocfs2_file_release(inode, file, file->f_path.dentry,
142                                  oi->ip_blkno,
143                                  file->f_path.dentry->d_name.len,
144                                  file->f_path.dentry->d_name.name,
145                                  oi->ip_open_count);
146         spin_unlock(&oi->ip_lock);
147
148         ocfs2_free_file_private(inode, file);
149
150         return 0;
151 }
152
153 static int ocfs2_dir_open(struct inode *inode, struct file *file)
154 {
155         return ocfs2_init_file_private(inode, file);
156 }
157
158 static int ocfs2_dir_release(struct inode *inode, struct file *file)
159 {
160         ocfs2_free_file_private(inode, file);
161         return 0;
162 }
163
164 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
165                            int datasync)
166 {
167         int err = 0;
168         struct inode *inode = file->f_mapping->host;
169         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
170         struct ocfs2_inode_info *oi = OCFS2_I(inode);
171         journal_t *journal = osb->journal->j_journal;
172         int ret;
173         tid_t commit_tid;
174         bool needs_barrier = false;
175
176         trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
177                               oi->ip_blkno,
178                               file->f_path.dentry->d_name.len,
179                               file->f_path.dentry->d_name.name,
180                               (unsigned long long)datasync);
181
182         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
183                 return -EROFS;
184
185         err = file_write_and_wait_range(file, start, end);
186         if (err)
187                 return err;
188
189         commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
190         if (journal->j_flags & JBD2_BARRIER &&
191             !jbd2_trans_will_send_data_barrier(journal, commit_tid))
192                 needs_barrier = true;
193         err = jbd2_complete_transaction(journal, commit_tid);
194         if (needs_barrier) {
195                 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
196                 if (!err)
197                         err = ret;
198         }
199
200         if (err)
201                 mlog_errno(err);
202
203         return (err < 0) ? -EIO : 0;
204 }
205
206 int ocfs2_should_update_atime(struct inode *inode,
207                               struct vfsmount *vfsmnt)
208 {
209         struct timespec64 now;
210         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
211
212         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
213                 return 0;
214
215         if ((inode->i_flags & S_NOATIME) ||
216             ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
217                 return 0;
218
219         /*
220          * We can be called with no vfsmnt structure - NFSD will
221          * sometimes do this.
222          *
223          * Note that our action here is different than touch_atime() -
224          * if we can't tell whether this is a noatime mount, then we
225          * don't know whether to trust the value of s_atime_quantum.
226          */
227         if (vfsmnt == NULL)
228                 return 0;
229
230         if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
231             ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
232                 return 0;
233
234         if (vfsmnt->mnt_flags & MNT_RELATIME) {
235                 if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
236                     (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0))
237                         return 1;
238
239                 return 0;
240         }
241
242         now = current_time(inode);
243         if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
244                 return 0;
245         else
246                 return 1;
247 }
248
249 int ocfs2_update_inode_atime(struct inode *inode,
250                              struct buffer_head *bh)
251 {
252         int ret;
253         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
254         handle_t *handle;
255         struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
256
257         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
258         if (IS_ERR(handle)) {
259                 ret = PTR_ERR(handle);
260                 mlog_errno(ret);
261                 goto out;
262         }
263
264         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
265                                       OCFS2_JOURNAL_ACCESS_WRITE);
266         if (ret) {
267                 mlog_errno(ret);
268                 goto out_commit;
269         }
270
271         /*
272          * Don't use ocfs2_mark_inode_dirty() here as we don't always
273          * have i_rwsem to guard against concurrent changes to other
274          * inode fields.
275          */
276         inode->i_atime = current_time(inode);
277         di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
278         di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
279         ocfs2_update_inode_fsync_trans(handle, inode, 0);
280         ocfs2_journal_dirty(handle, bh);
281
282 out_commit:
283         ocfs2_commit_trans(osb, handle);
284 out:
285         return ret;
286 }
287
288 int ocfs2_set_inode_size(handle_t *handle,
289                                 struct inode *inode,
290                                 struct buffer_head *fe_bh,
291                                 u64 new_i_size)
292 {
293         int status;
294
295         i_size_write(inode, new_i_size);
296         inode->i_blocks = ocfs2_inode_sector_count(inode);
297         inode->i_ctime = inode->i_mtime = current_time(inode);
298
299         status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
300         if (status < 0) {
301                 mlog_errno(status);
302                 goto bail;
303         }
304
305 bail:
306         return status;
307 }
308
309 int ocfs2_simple_size_update(struct inode *inode,
310                              struct buffer_head *di_bh,
311                              u64 new_i_size)
312 {
313         int ret;
314         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
315         handle_t *handle = NULL;
316
317         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
318         if (IS_ERR(handle)) {
319                 ret = PTR_ERR(handle);
320                 mlog_errno(ret);
321                 goto out;
322         }
323
324         ret = ocfs2_set_inode_size(handle, inode, di_bh,
325                                    new_i_size);
326         if (ret < 0)
327                 mlog_errno(ret);
328
329         ocfs2_update_inode_fsync_trans(handle, inode, 0);
330         ocfs2_commit_trans(osb, handle);
331 out:
332         return ret;
333 }
334
335 static int ocfs2_cow_file_pos(struct inode *inode,
336                               struct buffer_head *fe_bh,
337                               u64 offset)
338 {
339         int status;
340         u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
341         unsigned int num_clusters = 0;
342         unsigned int ext_flags = 0;
343
344         /*
345          * If the new offset is aligned to the range of the cluster, there is
346          * no space for ocfs2_zero_range_for_truncate to fill, so no need to
347          * CoW either.
348          */
349         if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
350                 return 0;
351
352         status = ocfs2_get_clusters(inode, cpos, &phys,
353                                     &num_clusters, &ext_flags);
354         if (status) {
355                 mlog_errno(status);
356                 goto out;
357         }
358
359         if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
360                 goto out;
361
362         return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
363
364 out:
365         return status;
366 }
367
368 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
369                                      struct inode *inode,
370                                      struct buffer_head *fe_bh,
371                                      u64 new_i_size)
372 {
373         int status;
374         handle_t *handle;
375         struct ocfs2_dinode *di;
376         u64 cluster_bytes;
377
378         /*
379          * We need to CoW the cluster contains the offset if it is reflinked
380          * since we will call ocfs2_zero_range_for_truncate later which will
381          * write "0" from offset to the end of the cluster.
382          */
383         status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
384         if (status) {
385                 mlog_errno(status);
386                 return status;
387         }
388
389         /* TODO: This needs to actually orphan the inode in this
390          * transaction. */
391
392         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
393         if (IS_ERR(handle)) {
394                 status = PTR_ERR(handle);
395                 mlog_errno(status);
396                 goto out;
397         }
398
399         status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
400                                          OCFS2_JOURNAL_ACCESS_WRITE);
401         if (status < 0) {
402                 mlog_errno(status);
403                 goto out_commit;
404         }
405
406         /*
407          * Do this before setting i_size.
408          */
409         cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
410         status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
411                                                cluster_bytes);
412         if (status) {
413                 mlog_errno(status);
414                 goto out_commit;
415         }
416
417         i_size_write(inode, new_i_size);
418         inode->i_ctime = inode->i_mtime = current_time(inode);
419
420         di = (struct ocfs2_dinode *) fe_bh->b_data;
421         di->i_size = cpu_to_le64(new_i_size);
422         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
423         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
424         ocfs2_update_inode_fsync_trans(handle, inode, 0);
425
426         ocfs2_journal_dirty(handle, fe_bh);
427
428 out_commit:
429         ocfs2_commit_trans(osb, handle);
430 out:
431         return status;
432 }
433
434 int ocfs2_truncate_file(struct inode *inode,
435                                struct buffer_head *di_bh,
436                                u64 new_i_size)
437 {
438         int status = 0;
439         struct ocfs2_dinode *fe = NULL;
440         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
441
442         /* We trust di_bh because it comes from ocfs2_inode_lock(), which
443          * already validated it */
444         fe = (struct ocfs2_dinode *) di_bh->b_data;
445
446         trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
447                                   (unsigned long long)le64_to_cpu(fe->i_size),
448                                   (unsigned long long)new_i_size);
449
450         mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
451                         "Inode %llu, inode i_size = %lld != di "
452                         "i_size = %llu, i_flags = 0x%x\n",
453                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
454                         i_size_read(inode),
455                         (unsigned long long)le64_to_cpu(fe->i_size),
456                         le32_to_cpu(fe->i_flags));
457
458         if (new_i_size > le64_to_cpu(fe->i_size)) {
459                 trace_ocfs2_truncate_file_error(
460                         (unsigned long long)le64_to_cpu(fe->i_size),
461                         (unsigned long long)new_i_size);
462                 status = -EINVAL;
463                 mlog_errno(status);
464                 goto bail;
465         }
466
467         down_write(&OCFS2_I(inode)->ip_alloc_sem);
468
469         ocfs2_resv_discard(&osb->osb_la_resmap,
470                            &OCFS2_I(inode)->ip_la_data_resv);
471
472         /*
473          * The inode lock forced other nodes to sync and drop their
474          * pages, which (correctly) happens even if we have a truncate
475          * without allocation change - ocfs2 cluster sizes can be much
476          * greater than page size, so we have to truncate them
477          * anyway.
478          */
479
480         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
481                 unmap_mapping_range(inode->i_mapping,
482                                     new_i_size + PAGE_SIZE - 1, 0, 1);
483                 truncate_inode_pages(inode->i_mapping, new_i_size);
484                 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
485                                                i_size_read(inode), 1);
486                 if (status)
487                         mlog_errno(status);
488
489                 goto bail_unlock_sem;
490         }
491
492         /* alright, we're going to need to do a full blown alloc size
493          * change. Orphan the inode so that recovery can complete the
494          * truncate if necessary. This does the task of marking
495          * i_size. */
496         status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
497         if (status < 0) {
498                 mlog_errno(status);
499                 goto bail_unlock_sem;
500         }
501
502         unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
503         truncate_inode_pages(inode->i_mapping, new_i_size);
504
505         status = ocfs2_commit_truncate(osb, inode, di_bh);
506         if (status < 0) {
507                 mlog_errno(status);
508                 goto bail_unlock_sem;
509         }
510
511         /* TODO: orphan dir cleanup here. */
512 bail_unlock_sem:
513         up_write(&OCFS2_I(inode)->ip_alloc_sem);
514
515 bail:
516         if (!status && OCFS2_I(inode)->ip_clusters == 0)
517                 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
518
519         return status;
520 }
521
522 /*
523  * extend file allocation only here.
524  * we'll update all the disk stuff, and oip->alloc_size
525  *
526  * expect stuff to be locked, a transaction started and enough data /
527  * metadata reservations in the contexts.
528  *
529  * Will return -EAGAIN, and a reason if a restart is needed.
530  * If passed in, *reason will always be set, even in error.
531  */
532 int ocfs2_add_inode_data(struct ocfs2_super *osb,
533                          struct inode *inode,
534                          u32 *logical_offset,
535                          u32 clusters_to_add,
536                          int mark_unwritten,
537                          struct buffer_head *fe_bh,
538                          handle_t *handle,
539                          struct ocfs2_alloc_context *data_ac,
540                          struct ocfs2_alloc_context *meta_ac,
541                          enum ocfs2_alloc_restarted *reason_ret)
542 {
543         struct ocfs2_extent_tree et;
544
545         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
546         return ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
547                                            clusters_to_add, mark_unwritten,
548                                            data_ac, meta_ac, reason_ret);
549 }
550
551 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
552                                    u32 clusters_to_add, int mark_unwritten)
553 {
554         int status = 0;
555         int restart_func = 0;
556         int credits;
557         u32 prev_clusters;
558         struct buffer_head *bh = NULL;
559         struct ocfs2_dinode *fe = NULL;
560         handle_t *handle = NULL;
561         struct ocfs2_alloc_context *data_ac = NULL;
562         struct ocfs2_alloc_context *meta_ac = NULL;
563         enum ocfs2_alloc_restarted why = RESTART_NONE;
564         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
565         struct ocfs2_extent_tree et;
566         int did_quota = 0;
567
568         /*
569          * Unwritten extent only exists for file systems which
570          * support holes.
571          */
572         BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
573
574         status = ocfs2_read_inode_block(inode, &bh);
575         if (status < 0) {
576                 mlog_errno(status);
577                 goto leave;
578         }
579         fe = (struct ocfs2_dinode *) bh->b_data;
580
581 restart_all:
582         BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
583
584         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
585         status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
586                                        &data_ac, &meta_ac);
587         if (status) {
588                 mlog_errno(status);
589                 goto leave;
590         }
591
592         credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
593         handle = ocfs2_start_trans(osb, credits);
594         if (IS_ERR(handle)) {
595                 status = PTR_ERR(handle);
596                 handle = NULL;
597                 mlog_errno(status);
598                 goto leave;
599         }
600
601 restarted_transaction:
602         trace_ocfs2_extend_allocation(
603                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
604                 (unsigned long long)i_size_read(inode),
605                 le32_to_cpu(fe->i_clusters), clusters_to_add,
606                 why, restart_func);
607
608         status = dquot_alloc_space_nodirty(inode,
609                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
610         if (status)
611                 goto leave;
612         did_quota = 1;
613
614         /* reserve a write to the file entry early on - that we if we
615          * run out of credits in the allocation path, we can still
616          * update i_size. */
617         status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
618                                          OCFS2_JOURNAL_ACCESS_WRITE);
619         if (status < 0) {
620                 mlog_errno(status);
621                 goto leave;
622         }
623
624         prev_clusters = OCFS2_I(inode)->ip_clusters;
625
626         status = ocfs2_add_inode_data(osb,
627                                       inode,
628                                       &logical_start,
629                                       clusters_to_add,
630                                       mark_unwritten,
631                                       bh,
632                                       handle,
633                                       data_ac,
634                                       meta_ac,
635                                       &why);
636         if ((status < 0) && (status != -EAGAIN)) {
637                 if (status != -ENOSPC)
638                         mlog_errno(status);
639                 goto leave;
640         }
641         ocfs2_update_inode_fsync_trans(handle, inode, 1);
642         ocfs2_journal_dirty(handle, bh);
643
644         spin_lock(&OCFS2_I(inode)->ip_lock);
645         clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
646         spin_unlock(&OCFS2_I(inode)->ip_lock);
647         /* Release unused quota reservation */
648         dquot_free_space(inode,
649                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
650         did_quota = 0;
651
652         if (why != RESTART_NONE && clusters_to_add) {
653                 if (why == RESTART_META) {
654                         restart_func = 1;
655                         status = 0;
656                 } else {
657                         BUG_ON(why != RESTART_TRANS);
658
659                         status = ocfs2_allocate_extend_trans(handle, 1);
660                         if (status < 0) {
661                                 /* handle still has to be committed at
662                                  * this point. */
663                                 status = -ENOMEM;
664                                 mlog_errno(status);
665                                 goto leave;
666                         }
667                         goto restarted_transaction;
668                 }
669         }
670
671         trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
672              le32_to_cpu(fe->i_clusters),
673              (unsigned long long)le64_to_cpu(fe->i_size),
674              OCFS2_I(inode)->ip_clusters,
675              (unsigned long long)i_size_read(inode));
676
677 leave:
678         if (status < 0 && did_quota)
679                 dquot_free_space(inode,
680                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
681         if (handle) {
682                 ocfs2_commit_trans(osb, handle);
683                 handle = NULL;
684         }
685         if (data_ac) {
686                 ocfs2_free_alloc_context(data_ac);
687                 data_ac = NULL;
688         }
689         if (meta_ac) {
690                 ocfs2_free_alloc_context(meta_ac);
691                 meta_ac = NULL;
692         }
693         if ((!status) && restart_func) {
694                 restart_func = 0;
695                 goto restart_all;
696         }
697         brelse(bh);
698         bh = NULL;
699
700         return status;
701 }
702
703 /*
704  * While a write will already be ordering the data, a truncate will not.
705  * Thus, we need to explicitly order the zeroed pages.
706  */
707 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
708                                                       struct buffer_head *di_bh,
709                                                       loff_t start_byte,
710                                                       loff_t length)
711 {
712         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
713         handle_t *handle = NULL;
714         int ret = 0;
715
716         if (!ocfs2_should_order_data(inode))
717                 goto out;
718
719         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
720         if (IS_ERR(handle)) {
721                 ret = -ENOMEM;
722                 mlog_errno(ret);
723                 goto out;
724         }
725
726         ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
727         if (ret < 0) {
728                 mlog_errno(ret);
729                 goto out;
730         }
731
732         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
733                                       OCFS2_JOURNAL_ACCESS_WRITE);
734         if (ret)
735                 mlog_errno(ret);
736         ocfs2_update_inode_fsync_trans(handle, inode, 1);
737
738 out:
739         if (ret) {
740                 if (!IS_ERR(handle))
741                         ocfs2_commit_trans(osb, handle);
742                 handle = ERR_PTR(ret);
743         }
744         return handle;
745 }
746
747 /* Some parts of this taken from generic_cont_expand, which turned out
748  * to be too fragile to do exactly what we need without us having to
749  * worry about recursive locking in ->write_begin() and ->write_end(). */
750 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
751                                  u64 abs_to, struct buffer_head *di_bh)
752 {
753         struct address_space *mapping = inode->i_mapping;
754         struct page *page;
755         unsigned long index = abs_from >> PAGE_SHIFT;
756         handle_t *handle;
757         int ret = 0;
758         unsigned zero_from, zero_to, block_start, block_end;
759         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
760
761         BUG_ON(abs_from >= abs_to);
762         BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
763         BUG_ON(abs_from & (inode->i_blkbits - 1));
764
765         handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
766                                                       abs_from,
767                                                       abs_to - abs_from);
768         if (IS_ERR(handle)) {
769                 ret = PTR_ERR(handle);
770                 goto out;
771         }
772
773         page = find_or_create_page(mapping, index, GFP_NOFS);
774         if (!page) {
775                 ret = -ENOMEM;
776                 mlog_errno(ret);
777                 goto out_commit_trans;
778         }
779
780         /* Get the offsets within the page that we want to zero */
781         zero_from = abs_from & (PAGE_SIZE - 1);
782         zero_to = abs_to & (PAGE_SIZE - 1);
783         if (!zero_to)
784                 zero_to = PAGE_SIZE;
785
786         trace_ocfs2_write_zero_page(
787                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
788                         (unsigned long long)abs_from,
789                         (unsigned long long)abs_to,
790                         index, zero_from, zero_to);
791
792         /* We know that zero_from is block aligned */
793         for (block_start = zero_from; block_start < zero_to;
794              block_start = block_end) {
795                 block_end = block_start + i_blocksize(inode);
796
797                 /*
798                  * block_start is block-aligned.  Bump it by one to force
799                  * __block_write_begin and block_commit_write to zero the
800                  * whole block.
801                  */
802                 ret = __block_write_begin(page, block_start + 1, 0,
803                                           ocfs2_get_block);
804                 if (ret < 0) {
805                         mlog_errno(ret);
806                         goto out_unlock;
807                 }
808
809
810                 /* must not update i_size! */
811                 ret = block_commit_write(page, block_start + 1,
812                                          block_start + 1);
813                 if (ret < 0)
814                         mlog_errno(ret);
815                 else
816                         ret = 0;
817         }
818
819         /*
820          * fs-writeback will release the dirty pages without page lock
821          * whose offset are over inode size, the release happens at
822          * block_write_full_page().
823          */
824         i_size_write(inode, abs_to);
825         inode->i_blocks = ocfs2_inode_sector_count(inode);
826         di->i_size = cpu_to_le64((u64)i_size_read(inode));
827         inode->i_mtime = inode->i_ctime = current_time(inode);
828         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
829         di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
830         di->i_mtime_nsec = di->i_ctime_nsec;
831         if (handle) {
832                 ocfs2_journal_dirty(handle, di_bh);
833                 ocfs2_update_inode_fsync_trans(handle, inode, 1);
834         }
835
836 out_unlock:
837         unlock_page(page);
838         put_page(page);
839 out_commit_trans:
840         if (handle)
841                 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
842 out:
843         return ret;
844 }
845
846 /*
847  * Find the next range to zero.  We do this in terms of bytes because
848  * that's what ocfs2_zero_extend() wants, and it is dealing with the
849  * pagecache.  We may return multiple extents.
850  *
851  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
852  * needs to be zeroed.  range_start and range_end return the next zeroing
853  * range.  A subsequent call should pass the previous range_end as its
854  * zero_start.  If range_end is 0, there's nothing to do.
855  *
856  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
857  */
858 static int ocfs2_zero_extend_get_range(struct inode *inode,
859                                        struct buffer_head *di_bh,
860                                        u64 zero_start, u64 zero_end,
861                                        u64 *range_start, u64 *range_end)
862 {
863         int rc = 0, needs_cow = 0;
864         u32 p_cpos, zero_clusters = 0;
865         u32 zero_cpos =
866                 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
867         u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
868         unsigned int num_clusters = 0;
869         unsigned int ext_flags = 0;
870
871         while (zero_cpos < last_cpos) {
872                 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
873                                         &num_clusters, &ext_flags);
874                 if (rc) {
875                         mlog_errno(rc);
876                         goto out;
877                 }
878
879                 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
880                         zero_clusters = num_clusters;
881                         if (ext_flags & OCFS2_EXT_REFCOUNTED)
882                                 needs_cow = 1;
883                         break;
884                 }
885
886                 zero_cpos += num_clusters;
887         }
888         if (!zero_clusters) {
889                 *range_end = 0;
890                 goto out;
891         }
892
893         while ((zero_cpos + zero_clusters) < last_cpos) {
894                 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
895                                         &p_cpos, &num_clusters,
896                                         &ext_flags);
897                 if (rc) {
898                         mlog_errno(rc);
899                         goto out;
900                 }
901
902                 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
903                         break;
904                 if (ext_flags & OCFS2_EXT_REFCOUNTED)
905                         needs_cow = 1;
906                 zero_clusters += num_clusters;
907         }
908         if ((zero_cpos + zero_clusters) > last_cpos)
909                 zero_clusters = last_cpos - zero_cpos;
910
911         if (needs_cow) {
912                 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
913                                         zero_clusters, UINT_MAX);
914                 if (rc) {
915                         mlog_errno(rc);
916                         goto out;
917                 }
918         }
919
920         *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
921         *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
922                                              zero_cpos + zero_clusters);
923
924 out:
925         return rc;
926 }
927
928 /*
929  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
930  * has made sure that the entire range needs zeroing.
931  */
932 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
933                                    u64 range_end, struct buffer_head *di_bh)
934 {
935         int rc = 0;
936         u64 next_pos;
937         u64 zero_pos = range_start;
938
939         trace_ocfs2_zero_extend_range(
940                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
941                         (unsigned long long)range_start,
942                         (unsigned long long)range_end);
943         BUG_ON(range_start >= range_end);
944
945         while (zero_pos < range_end) {
946                 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
947                 if (next_pos > range_end)
948                         next_pos = range_end;
949                 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
950                 if (rc < 0) {
951                         mlog_errno(rc);
952                         break;
953                 }
954                 zero_pos = next_pos;
955
956                 /*
957                  * Very large extends have the potential to lock up
958                  * the cpu for extended periods of time.
959                  */
960                 cond_resched();
961         }
962
963         return rc;
964 }
965
966 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
967                       loff_t zero_to_size)
968 {
969         int ret = 0;
970         u64 zero_start, range_start = 0, range_end = 0;
971         struct super_block *sb = inode->i_sb;
972
973         zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
974         trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
975                                 (unsigned long long)zero_start,
976                                 (unsigned long long)i_size_read(inode));
977         while (zero_start < zero_to_size) {
978                 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
979                                                   zero_to_size,
980                                                   &range_start,
981                                                   &range_end);
982                 if (ret) {
983                         mlog_errno(ret);
984                         break;
985                 }
986                 if (!range_end)
987                         break;
988                 /* Trim the ends */
989                 if (range_start < zero_start)
990                         range_start = zero_start;
991                 if (range_end > zero_to_size)
992                         range_end = zero_to_size;
993
994                 ret = ocfs2_zero_extend_range(inode, range_start,
995                                               range_end, di_bh);
996                 if (ret) {
997                         mlog_errno(ret);
998                         break;
999                 }
1000                 zero_start = range_end;
1001         }
1002
1003         return ret;
1004 }
1005
1006 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1007                           u64 new_i_size, u64 zero_to)
1008 {
1009         int ret;
1010         u32 clusters_to_add;
1011         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1012
1013         /*
1014          * Only quota files call this without a bh, and they can't be
1015          * refcounted.
1016          */
1017         BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1018         BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1019
1020         clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1021         if (clusters_to_add < oi->ip_clusters)
1022                 clusters_to_add = 0;
1023         else
1024                 clusters_to_add -= oi->ip_clusters;
1025
1026         if (clusters_to_add) {
1027                 ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1028                                               clusters_to_add, 0);
1029                 if (ret) {
1030                         mlog_errno(ret);
1031                         goto out;
1032                 }
1033         }
1034
1035         /*
1036          * Call this even if we don't add any clusters to the tree. We
1037          * still need to zero the area between the old i_size and the
1038          * new i_size.
1039          */
1040         ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1041         if (ret < 0)
1042                 mlog_errno(ret);
1043
1044 out:
1045         return ret;
1046 }
1047
1048 static int ocfs2_extend_file(struct inode *inode,
1049                              struct buffer_head *di_bh,
1050                              u64 new_i_size)
1051 {
1052         int ret = 0;
1053         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1054
1055         BUG_ON(!di_bh);
1056
1057         /* setattr sometimes calls us like this. */
1058         if (new_i_size == 0)
1059                 goto out;
1060
1061         if (i_size_read(inode) == new_i_size)
1062                 goto out;
1063         BUG_ON(new_i_size < i_size_read(inode));
1064
1065         /*
1066          * The alloc sem blocks people in read/write from reading our
1067          * allocation until we're done changing it. We depend on
1068          * i_rwsem to block other extend/truncate calls while we're
1069          * here.  We even have to hold it for sparse files because there
1070          * might be some tail zeroing.
1071          */
1072         down_write(&oi->ip_alloc_sem);
1073
1074         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1075                 /*
1076                  * We can optimize small extends by keeping the inodes
1077                  * inline data.
1078                  */
1079                 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1080                         up_write(&oi->ip_alloc_sem);
1081                         goto out_update_size;
1082                 }
1083
1084                 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1085                 if (ret) {
1086                         up_write(&oi->ip_alloc_sem);
1087                         mlog_errno(ret);
1088                         goto out;
1089                 }
1090         }
1091
1092         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1093                 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1094         else
1095                 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1096                                             new_i_size);
1097
1098         up_write(&oi->ip_alloc_sem);
1099
1100         if (ret < 0) {
1101                 mlog_errno(ret);
1102                 goto out;
1103         }
1104
1105 out_update_size:
1106         ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1107         if (ret < 0)
1108                 mlog_errno(ret);
1109
1110 out:
1111         return ret;
1112 }
1113
1114 int ocfs2_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1115                   struct iattr *attr)
1116 {
1117         struct user_namespace *mnt_userns = mnt_idmap_owner(idmap);
1118         int status = 0, size_change;
1119         int inode_locked = 0;
1120         struct inode *inode = d_inode(dentry);
1121         struct super_block *sb = inode->i_sb;
1122         struct ocfs2_super *osb = OCFS2_SB(sb);
1123         struct buffer_head *bh = NULL;
1124         handle_t *handle = NULL;
1125         struct dquot *transfer_to[MAXQUOTAS] = { };
1126         int qtype;
1127         int had_lock;
1128         struct ocfs2_lock_holder oh;
1129
1130         trace_ocfs2_setattr(inode, dentry,
1131                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1132                             dentry->d_name.len, dentry->d_name.name,
1133                             attr->ia_valid, attr->ia_mode,
1134                             from_kuid(&init_user_ns, attr->ia_uid),
1135                             from_kgid(&init_user_ns, attr->ia_gid));
1136
1137         /* ensuring we don't even attempt to truncate a symlink */
1138         if (S_ISLNK(inode->i_mode))
1139                 attr->ia_valid &= ~ATTR_SIZE;
1140
1141 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1142                            | ATTR_GID | ATTR_UID | ATTR_MODE)
1143         if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1144                 return 0;
1145
1146         status = setattr_prepare(&nop_mnt_idmap, dentry, attr);
1147         if (status)
1148                 return status;
1149
1150         if (is_quota_modification(mnt_userns, inode, attr)) {
1151                 status = dquot_initialize(inode);
1152                 if (status)
1153                         return status;
1154         }
1155         size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1156         if (size_change) {
1157                 /*
1158                  * Here we should wait dio to finish before inode lock
1159                  * to avoid a deadlock between ocfs2_setattr() and
1160                  * ocfs2_dio_end_io_write()
1161                  */
1162                 inode_dio_wait(inode);
1163
1164                 status = ocfs2_rw_lock(inode, 1);
1165                 if (status < 0) {
1166                         mlog_errno(status);
1167                         goto bail;
1168                 }
1169         }
1170
1171         had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1172         if (had_lock < 0) {
1173                 status = had_lock;
1174                 goto bail_unlock_rw;
1175         } else if (had_lock) {
1176                 /*
1177                  * As far as we know, ocfs2_setattr() could only be the first
1178                  * VFS entry point in the call chain of recursive cluster
1179                  * locking issue.
1180                  *
1181                  * For instance:
1182                  * chmod_common()
1183                  *  notify_change()
1184                  *   ocfs2_setattr()
1185                  *    posix_acl_chmod()
1186                  *     ocfs2_iop_get_acl()
1187                  *
1188                  * But, we're not 100% sure if it's always true, because the
1189                  * ordering of the VFS entry points in the call chain is out
1190                  * of our control. So, we'd better dump the stack here to
1191                  * catch the other cases of recursive locking.
1192                  */
1193                 mlog(ML_ERROR, "Another case of recursive locking:\n");
1194                 dump_stack();
1195         }
1196         inode_locked = 1;
1197
1198         if (size_change) {
1199                 status = inode_newsize_ok(inode, attr->ia_size);
1200                 if (status)
1201                         goto bail_unlock;
1202
1203                 if (i_size_read(inode) >= attr->ia_size) {
1204                         if (ocfs2_should_order_data(inode)) {
1205                                 status = ocfs2_begin_ordered_truncate(inode,
1206                                                                       attr->ia_size);
1207                                 if (status)
1208                                         goto bail_unlock;
1209                         }
1210                         status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1211                 } else
1212                         status = ocfs2_extend_file(inode, bh, attr->ia_size);
1213                 if (status < 0) {
1214                         if (status != -ENOSPC)
1215                                 mlog_errno(status);
1216                         status = -ENOSPC;
1217                         goto bail_unlock;
1218                 }
1219         }
1220
1221         if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1222             (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1223                 /*
1224                  * Gather pointers to quota structures so that allocation /
1225                  * freeing of quota structures happens here and not inside
1226                  * dquot_transfer() where we have problems with lock ordering
1227                  */
1228                 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1229                     && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1230                     OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1231                         transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1232                         if (IS_ERR(transfer_to[USRQUOTA])) {
1233                                 status = PTR_ERR(transfer_to[USRQUOTA]);
1234                                 transfer_to[USRQUOTA] = NULL;
1235                                 goto bail_unlock;
1236                         }
1237                 }
1238                 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1239                     && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1240                     OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1241                         transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1242                         if (IS_ERR(transfer_to[GRPQUOTA])) {
1243                                 status = PTR_ERR(transfer_to[GRPQUOTA]);
1244                                 transfer_to[GRPQUOTA] = NULL;
1245                                 goto bail_unlock;
1246                         }
1247                 }
1248                 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1249                 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1250                                            2 * ocfs2_quota_trans_credits(sb));
1251                 if (IS_ERR(handle)) {
1252                         status = PTR_ERR(handle);
1253                         mlog_errno(status);
1254                         goto bail_unlock_alloc;
1255                 }
1256                 status = __dquot_transfer(inode, transfer_to);
1257                 if (status < 0)
1258                         goto bail_commit;
1259         } else {
1260                 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1261                 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1262                 if (IS_ERR(handle)) {
1263                         status = PTR_ERR(handle);
1264                         mlog_errno(status);
1265                         goto bail_unlock_alloc;
1266                 }
1267         }
1268
1269         setattr_copy(&nop_mnt_idmap, inode, attr);
1270         mark_inode_dirty(inode);
1271
1272         status = ocfs2_mark_inode_dirty(handle, inode, bh);
1273         if (status < 0)
1274                 mlog_errno(status);
1275
1276 bail_commit:
1277         ocfs2_commit_trans(osb, handle);
1278 bail_unlock_alloc:
1279         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1280 bail_unlock:
1281         if (status && inode_locked) {
1282                 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1283                 inode_locked = 0;
1284         }
1285 bail_unlock_rw:
1286         if (size_change)
1287                 ocfs2_rw_unlock(inode, 1);
1288 bail:
1289
1290         /* Release quota pointers in case we acquired them */
1291         for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1292                 dqput(transfer_to[qtype]);
1293
1294         if (!status && attr->ia_valid & ATTR_MODE) {
1295                 status = ocfs2_acl_chmod(inode, bh);
1296                 if (status < 0)
1297                         mlog_errno(status);
1298         }
1299         if (inode_locked)
1300                 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1301
1302         brelse(bh);
1303         return status;
1304 }
1305
1306 int ocfs2_getattr(struct mnt_idmap *idmap, const struct path *path,
1307                   struct kstat *stat, u32 request_mask, unsigned int flags)
1308 {
1309         struct inode *inode = d_inode(path->dentry);
1310         struct super_block *sb = path->dentry->d_sb;
1311         struct ocfs2_super *osb = sb->s_fs_info;
1312         int err;
1313
1314         err = ocfs2_inode_revalidate(path->dentry);
1315         if (err) {
1316                 if (err != -ENOENT)
1317                         mlog_errno(err);
1318                 goto bail;
1319         }
1320
1321         generic_fillattr(&nop_mnt_idmap, inode, stat);
1322         /*
1323          * If there is inline data in the inode, the inode will normally not
1324          * have data blocks allocated (it may have an external xattr block).
1325          * Report at least one sector for such files, so tools like tar, rsync,
1326          * others don't incorrectly think the file is completely sparse.
1327          */
1328         if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1329                 stat->blocks += (stat->size + 511)>>9;
1330
1331         /* We set the blksize from the cluster size for performance */
1332         stat->blksize = osb->s_clustersize;
1333
1334 bail:
1335         return err;
1336 }
1337
1338 int ocfs2_permission(struct user_namespace *mnt_userns, struct inode *inode,
1339                      int mask)
1340 {
1341         int ret, had_lock;
1342         struct ocfs2_lock_holder oh;
1343
1344         if (mask & MAY_NOT_BLOCK)
1345                 return -ECHILD;
1346
1347         had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1348         if (had_lock < 0) {
1349                 ret = had_lock;
1350                 goto out;
1351         } else if (had_lock) {
1352                 /* See comments in ocfs2_setattr() for details.
1353                  * The call chain of this case could be:
1354                  * do_sys_open()
1355                  *  may_open()
1356                  *   inode_permission()
1357                  *    ocfs2_permission()
1358                  *     ocfs2_iop_get_acl()
1359                  */
1360                 mlog(ML_ERROR, "Another case of recursive locking:\n");
1361                 dump_stack();
1362         }
1363
1364         ret = generic_permission(&init_user_ns, inode, mask);
1365
1366         ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1367 out:
1368         return ret;
1369 }
1370
1371 static int __ocfs2_write_remove_suid(struct inode *inode,
1372                                      struct buffer_head *bh)
1373 {
1374         int ret;
1375         handle_t *handle;
1376         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1377         struct ocfs2_dinode *di;
1378
1379         trace_ocfs2_write_remove_suid(
1380                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1381                         inode->i_mode);
1382
1383         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1384         if (IS_ERR(handle)) {
1385                 ret = PTR_ERR(handle);
1386                 mlog_errno(ret);
1387                 goto out;
1388         }
1389
1390         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1391                                       OCFS2_JOURNAL_ACCESS_WRITE);
1392         if (ret < 0) {
1393                 mlog_errno(ret);
1394                 goto out_trans;
1395         }
1396
1397         inode->i_mode &= ~S_ISUID;
1398         if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1399                 inode->i_mode &= ~S_ISGID;
1400
1401         di = (struct ocfs2_dinode *) bh->b_data;
1402         di->i_mode = cpu_to_le16(inode->i_mode);
1403         ocfs2_update_inode_fsync_trans(handle, inode, 0);
1404
1405         ocfs2_journal_dirty(handle, bh);
1406
1407 out_trans:
1408         ocfs2_commit_trans(osb, handle);
1409 out:
1410         return ret;
1411 }
1412
1413 static int ocfs2_write_remove_suid(struct inode *inode)
1414 {
1415         int ret;
1416         struct buffer_head *bh = NULL;
1417
1418         ret = ocfs2_read_inode_block(inode, &bh);
1419         if (ret < 0) {
1420                 mlog_errno(ret);
1421                 goto out;
1422         }
1423
1424         ret =  __ocfs2_write_remove_suid(inode, bh);
1425 out:
1426         brelse(bh);
1427         return ret;
1428 }
1429
1430 /*
1431  * Allocate enough extents to cover the region starting at byte offset
1432  * start for len bytes. Existing extents are skipped, any extents
1433  * added are marked as "unwritten".
1434  */
1435 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1436                                             u64 start, u64 len)
1437 {
1438         int ret;
1439         u32 cpos, phys_cpos, clusters, alloc_size;
1440         u64 end = start + len;
1441         struct buffer_head *di_bh = NULL;
1442
1443         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1444                 ret = ocfs2_read_inode_block(inode, &di_bh);
1445                 if (ret) {
1446                         mlog_errno(ret);
1447                         goto out;
1448                 }
1449
1450                 /*
1451                  * Nothing to do if the requested reservation range
1452                  * fits within the inode.
1453                  */
1454                 if (ocfs2_size_fits_inline_data(di_bh, end))
1455                         goto out;
1456
1457                 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1458                 if (ret) {
1459                         mlog_errno(ret);
1460                         goto out;
1461                 }
1462         }
1463
1464         /*
1465          * We consider both start and len to be inclusive.
1466          */
1467         cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1468         clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1469         clusters -= cpos;
1470
1471         while (clusters) {
1472                 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1473                                          &alloc_size, NULL);
1474                 if (ret) {
1475                         mlog_errno(ret);
1476                         goto out;
1477                 }
1478
1479                 /*
1480                  * Hole or existing extent len can be arbitrary, so
1481                  * cap it to our own allocation request.
1482                  */
1483                 if (alloc_size > clusters)
1484                         alloc_size = clusters;
1485
1486                 if (phys_cpos) {
1487                         /*
1488                          * We already have an allocation at this
1489                          * region so we can safely skip it.
1490                          */
1491                         goto next;
1492                 }
1493
1494                 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1495                 if (ret) {
1496                         if (ret != -ENOSPC)
1497                                 mlog_errno(ret);
1498                         goto out;
1499                 }
1500
1501 next:
1502                 cpos += alloc_size;
1503                 clusters -= alloc_size;
1504         }
1505
1506         ret = 0;
1507 out:
1508
1509         brelse(di_bh);
1510         return ret;
1511 }
1512
1513 /*
1514  * Truncate a byte range, avoiding pages within partial clusters. This
1515  * preserves those pages for the zeroing code to write to.
1516  */
1517 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1518                                          u64 byte_len)
1519 {
1520         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1521         loff_t start, end;
1522         struct address_space *mapping = inode->i_mapping;
1523
1524         start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1525         end = byte_start + byte_len;
1526         end = end & ~(osb->s_clustersize - 1);
1527
1528         if (start < end) {
1529                 unmap_mapping_range(mapping, start, end - start, 0);
1530                 truncate_inode_pages_range(mapping, start, end - 1);
1531         }
1532 }
1533
1534 /*
1535  * zero out partial blocks of one cluster.
1536  *
1537  * start: file offset where zero starts, will be made upper block aligned.
1538  * len: it will be trimmed to the end of current cluster if "start + len"
1539  *      is bigger than it.
1540  */
1541 static int ocfs2_zeroout_partial_cluster(struct inode *inode,
1542                                         u64 start, u64 len)
1543 {
1544         int ret;
1545         u64 start_block, end_block, nr_blocks;
1546         u64 p_block, offset;
1547         u32 cluster, p_cluster, nr_clusters;
1548         struct super_block *sb = inode->i_sb;
1549         u64 end = ocfs2_align_bytes_to_clusters(sb, start);
1550
1551         if (start + len < end)
1552                 end = start + len;
1553
1554         start_block = ocfs2_blocks_for_bytes(sb, start);
1555         end_block = ocfs2_blocks_for_bytes(sb, end);
1556         nr_blocks = end_block - start_block;
1557         if (!nr_blocks)
1558                 return 0;
1559
1560         cluster = ocfs2_bytes_to_clusters(sb, start);
1561         ret = ocfs2_get_clusters(inode, cluster, &p_cluster,
1562                                 &nr_clusters, NULL);
1563         if (ret)
1564                 return ret;
1565         if (!p_cluster)
1566                 return 0;
1567
1568         offset = start_block - ocfs2_clusters_to_blocks(sb, cluster);
1569         p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset;
1570         return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS);
1571 }
1572
1573 static int ocfs2_zero_partial_clusters(struct inode *inode,
1574                                        u64 start, u64 len)
1575 {
1576         int ret = 0;
1577         u64 tmpend = 0;
1578         u64 end = start + len;
1579         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1580         unsigned int csize = osb->s_clustersize;
1581         handle_t *handle;
1582         loff_t isize = i_size_read(inode);
1583
1584         /*
1585          * The "start" and "end" values are NOT necessarily part of
1586          * the range whose allocation is being deleted. Rather, this
1587          * is what the user passed in with the request. We must zero
1588          * partial clusters here. There's no need to worry about
1589          * physical allocation - the zeroing code knows to skip holes.
1590          */
1591         trace_ocfs2_zero_partial_clusters(
1592                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1593                 (unsigned long long)start, (unsigned long long)end);
1594
1595         /*
1596          * If both edges are on a cluster boundary then there's no
1597          * zeroing required as the region is part of the allocation to
1598          * be truncated.
1599          */
1600         if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1601                 goto out;
1602
1603         /* No page cache for EOF blocks, issue zero out to disk. */
1604         if (end > isize) {
1605                 /*
1606                  * zeroout eof blocks in last cluster starting from
1607                  * "isize" even "start" > "isize" because it is
1608                  * complicated to zeroout just at "start" as "start"
1609                  * may be not aligned with block size, buffer write
1610                  * would be required to do that, but out of eof buffer
1611                  * write is not supported.
1612                  */
1613                 ret = ocfs2_zeroout_partial_cluster(inode, isize,
1614                                         end - isize);
1615                 if (ret) {
1616                         mlog_errno(ret);
1617                         goto out;
1618                 }
1619                 if (start >= isize)
1620                         goto out;
1621                 end = isize;
1622         }
1623         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1624         if (IS_ERR(handle)) {
1625                 ret = PTR_ERR(handle);
1626                 mlog_errno(ret);
1627                 goto out;
1628         }
1629
1630         /*
1631          * If start is on a cluster boundary and end is somewhere in another
1632          * cluster, we have not COWed the cluster starting at start, unless
1633          * end is also within the same cluster. So, in this case, we skip this
1634          * first call to ocfs2_zero_range_for_truncate() truncate and move on
1635          * to the next one.
1636          */
1637         if ((start & (csize - 1)) != 0) {
1638                 /*
1639                  * We want to get the byte offset of the end of the 1st
1640                  * cluster.
1641                  */
1642                 tmpend = (u64)osb->s_clustersize +
1643                         (start & ~(osb->s_clustersize - 1));
1644                 if (tmpend > end)
1645                         tmpend = end;
1646
1647                 trace_ocfs2_zero_partial_clusters_range1(
1648                         (unsigned long long)start,
1649                         (unsigned long long)tmpend);
1650
1651                 ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1652                                                     tmpend);
1653                 if (ret)
1654                         mlog_errno(ret);
1655         }
1656
1657         if (tmpend < end) {
1658                 /*
1659                  * This may make start and end equal, but the zeroing
1660                  * code will skip any work in that case so there's no
1661                  * need to catch it up here.
1662                  */
1663                 start = end & ~(osb->s_clustersize - 1);
1664
1665                 trace_ocfs2_zero_partial_clusters_range2(
1666                         (unsigned long long)start, (unsigned long long)end);
1667
1668                 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1669                 if (ret)
1670                         mlog_errno(ret);
1671         }
1672         ocfs2_update_inode_fsync_trans(handle, inode, 1);
1673
1674         ocfs2_commit_trans(osb, handle);
1675 out:
1676         return ret;
1677 }
1678
1679 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1680 {
1681         int i;
1682         struct ocfs2_extent_rec *rec = NULL;
1683
1684         for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1685
1686                 rec = &el->l_recs[i];
1687
1688                 if (le32_to_cpu(rec->e_cpos) < pos)
1689                         break;
1690         }
1691
1692         return i;
1693 }
1694
1695 /*
1696  * Helper to calculate the punching pos and length in one run, we handle the
1697  * following three cases in order:
1698  *
1699  * - remove the entire record
1700  * - remove a partial record
1701  * - no record needs to be removed (hole-punching completed)
1702 */
1703 static void ocfs2_calc_trunc_pos(struct inode *inode,
1704                                  struct ocfs2_extent_list *el,
1705                                  struct ocfs2_extent_rec *rec,
1706                                  u32 trunc_start, u32 *trunc_cpos,
1707                                  u32 *trunc_len, u32 *trunc_end,
1708                                  u64 *blkno, int *done)
1709 {
1710         int ret = 0;
1711         u32 coff, range;
1712
1713         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1714
1715         if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1716                 /*
1717                  * remove an entire extent record.
1718                  */
1719                 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1720                 /*
1721                  * Skip holes if any.
1722                  */
1723                 if (range < *trunc_end)
1724                         *trunc_end = range;
1725                 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1726                 *blkno = le64_to_cpu(rec->e_blkno);
1727                 *trunc_end = le32_to_cpu(rec->e_cpos);
1728         } else if (range > trunc_start) {
1729                 /*
1730                  * remove a partial extent record, which means we're
1731                  * removing the last extent record.
1732                  */
1733                 *trunc_cpos = trunc_start;
1734                 /*
1735                  * skip hole if any.
1736                  */
1737                 if (range < *trunc_end)
1738                         *trunc_end = range;
1739                 *trunc_len = *trunc_end - trunc_start;
1740                 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1741                 *blkno = le64_to_cpu(rec->e_blkno) +
1742                                 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1743                 *trunc_end = trunc_start;
1744         } else {
1745                 /*
1746                  * It may have two following possibilities:
1747                  *
1748                  * - last record has been removed
1749                  * - trunc_start was within a hole
1750                  *
1751                  * both two cases mean the completion of hole punching.
1752                  */
1753                 ret = 1;
1754         }
1755
1756         *done = ret;
1757 }
1758
1759 int ocfs2_remove_inode_range(struct inode *inode,
1760                              struct buffer_head *di_bh, u64 byte_start,
1761                              u64 byte_len)
1762 {
1763         int ret = 0, flags = 0, done = 0, i;
1764         u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1765         u32 cluster_in_el;
1766         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1767         struct ocfs2_cached_dealloc_ctxt dealloc;
1768         struct address_space *mapping = inode->i_mapping;
1769         struct ocfs2_extent_tree et;
1770         struct ocfs2_path *path = NULL;
1771         struct ocfs2_extent_list *el = NULL;
1772         struct ocfs2_extent_rec *rec = NULL;
1773         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1774         u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1775
1776         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1777         ocfs2_init_dealloc_ctxt(&dealloc);
1778
1779         trace_ocfs2_remove_inode_range(
1780                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1781                         (unsigned long long)byte_start,
1782                         (unsigned long long)byte_len);
1783
1784         if (byte_len == 0)
1785                 return 0;
1786
1787         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1788                 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1789                                             byte_start + byte_len, 0);
1790                 if (ret) {
1791                         mlog_errno(ret);
1792                         goto out;
1793                 }
1794                 /*
1795                  * There's no need to get fancy with the page cache
1796                  * truncate of an inline-data inode. We're talking
1797                  * about less than a page here, which will be cached
1798                  * in the dinode buffer anyway.
1799                  */
1800                 unmap_mapping_range(mapping, 0, 0, 0);
1801                 truncate_inode_pages(mapping, 0);
1802                 goto out;
1803         }
1804
1805         /*
1806          * For reflinks, we may need to CoW 2 clusters which might be
1807          * partially zero'd later, if hole's start and end offset were
1808          * within one cluster(means is not exactly aligned to clustersize).
1809          */
1810
1811         if (ocfs2_is_refcount_inode(inode)) {
1812                 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1813                 if (ret) {
1814                         mlog_errno(ret);
1815                         goto out;
1816                 }
1817
1818                 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1819                 if (ret) {
1820                         mlog_errno(ret);
1821                         goto out;
1822                 }
1823         }
1824
1825         trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1826         trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1827         cluster_in_el = trunc_end;
1828
1829         ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1830         if (ret) {
1831                 mlog_errno(ret);
1832                 goto out;
1833         }
1834
1835         path = ocfs2_new_path_from_et(&et);
1836         if (!path) {
1837                 ret = -ENOMEM;
1838                 mlog_errno(ret);
1839                 goto out;
1840         }
1841
1842         while (trunc_end > trunc_start) {
1843
1844                 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1845                                       cluster_in_el);
1846                 if (ret) {
1847                         mlog_errno(ret);
1848                         goto out;
1849                 }
1850
1851                 el = path_leaf_el(path);
1852
1853                 i = ocfs2_find_rec(el, trunc_end);
1854                 /*
1855                  * Need to go to previous extent block.
1856                  */
1857                 if (i < 0) {
1858                         if (path->p_tree_depth == 0)
1859                                 break;
1860
1861                         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1862                                                             path,
1863                                                             &cluster_in_el);
1864                         if (ret) {
1865                                 mlog_errno(ret);
1866                                 goto out;
1867                         }
1868
1869                         /*
1870                          * We've reached the leftmost extent block,
1871                          * it's safe to leave.
1872                          */
1873                         if (cluster_in_el == 0)
1874                                 break;
1875
1876                         /*
1877                          * The 'pos' searched for previous extent block is
1878                          * always one cluster less than actual trunc_end.
1879                          */
1880                         trunc_end = cluster_in_el + 1;
1881
1882                         ocfs2_reinit_path(path, 1);
1883
1884                         continue;
1885
1886                 } else
1887                         rec = &el->l_recs[i];
1888
1889                 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1890                                      &trunc_len, &trunc_end, &blkno, &done);
1891                 if (done)
1892                         break;
1893
1894                 flags = rec->e_flags;
1895                 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1896
1897                 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1898                                                phys_cpos, trunc_len, flags,
1899                                                &dealloc, refcount_loc, false);
1900                 if (ret < 0) {
1901                         mlog_errno(ret);
1902                         goto out;
1903                 }
1904
1905                 cluster_in_el = trunc_end;
1906
1907                 ocfs2_reinit_path(path, 1);
1908         }
1909
1910         ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1911
1912 out:
1913         ocfs2_free_path(path);
1914         ocfs2_schedule_truncate_log_flush(osb, 1);
1915         ocfs2_run_deallocs(osb, &dealloc);
1916
1917         return ret;
1918 }
1919
1920 /*
1921  * Parts of this function taken from xfs_change_file_space()
1922  */
1923 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1924                                      loff_t f_pos, unsigned int cmd,
1925                                      struct ocfs2_space_resv *sr,
1926                                      int change_size)
1927 {
1928         int ret;
1929         s64 llen;
1930         loff_t size, orig_isize;
1931         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1932         struct buffer_head *di_bh = NULL;
1933         handle_t *handle;
1934         unsigned long long max_off = inode->i_sb->s_maxbytes;
1935
1936         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1937                 return -EROFS;
1938
1939         inode_lock(inode);
1940
1941         /*
1942          * This prevents concurrent writes on other nodes
1943          */
1944         ret = ocfs2_rw_lock(inode, 1);
1945         if (ret) {
1946                 mlog_errno(ret);
1947                 goto out;
1948         }
1949
1950         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1951         if (ret) {
1952                 mlog_errno(ret);
1953                 goto out_rw_unlock;
1954         }
1955
1956         if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1957                 ret = -EPERM;
1958                 goto out_inode_unlock;
1959         }
1960
1961         switch (sr->l_whence) {
1962         case 0: /*SEEK_SET*/
1963                 break;
1964         case 1: /*SEEK_CUR*/
1965                 sr->l_start += f_pos;
1966                 break;
1967         case 2: /*SEEK_END*/
1968                 sr->l_start += i_size_read(inode);
1969                 break;
1970         default:
1971                 ret = -EINVAL;
1972                 goto out_inode_unlock;
1973         }
1974         sr->l_whence = 0;
1975
1976         llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1977
1978         if (sr->l_start < 0
1979             || sr->l_start > max_off
1980             || (sr->l_start + llen) < 0
1981             || (sr->l_start + llen) > max_off) {
1982                 ret = -EINVAL;
1983                 goto out_inode_unlock;
1984         }
1985         size = sr->l_start + sr->l_len;
1986
1987         if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1988             cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1989                 if (sr->l_len <= 0) {
1990                         ret = -EINVAL;
1991                         goto out_inode_unlock;
1992                 }
1993         }
1994
1995         if (file && setattr_should_drop_suidgid(&init_user_ns, file_inode(file))) {
1996                 ret = __ocfs2_write_remove_suid(inode, di_bh);
1997                 if (ret) {
1998                         mlog_errno(ret);
1999                         goto out_inode_unlock;
2000                 }
2001         }
2002
2003         down_write(&OCFS2_I(inode)->ip_alloc_sem);
2004         switch (cmd) {
2005         case OCFS2_IOC_RESVSP:
2006         case OCFS2_IOC_RESVSP64:
2007                 /*
2008                  * This takes unsigned offsets, but the signed ones we
2009                  * pass have been checked against overflow above.
2010                  */
2011                 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
2012                                                        sr->l_len);
2013                 break;
2014         case OCFS2_IOC_UNRESVSP:
2015         case OCFS2_IOC_UNRESVSP64:
2016                 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
2017                                                sr->l_len);
2018                 break;
2019         default:
2020                 ret = -EINVAL;
2021         }
2022
2023         orig_isize = i_size_read(inode);
2024         /* zeroout eof blocks in the cluster. */
2025         if (!ret && change_size && orig_isize < size) {
2026                 ret = ocfs2_zeroout_partial_cluster(inode, orig_isize,
2027                                         size - orig_isize);
2028                 if (!ret)
2029                         i_size_write(inode, size);
2030         }
2031         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2032         if (ret) {
2033                 mlog_errno(ret);
2034                 goto out_inode_unlock;
2035         }
2036
2037         /*
2038          * We update c/mtime for these changes
2039          */
2040         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
2041         if (IS_ERR(handle)) {
2042                 ret = PTR_ERR(handle);
2043                 mlog_errno(ret);
2044                 goto out_inode_unlock;
2045         }
2046
2047         inode->i_ctime = inode->i_mtime = current_time(inode);
2048         ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
2049         if (ret < 0)
2050                 mlog_errno(ret);
2051
2052         if (file && (file->f_flags & O_SYNC))
2053                 handle->h_sync = 1;
2054
2055         ocfs2_commit_trans(osb, handle);
2056
2057 out_inode_unlock:
2058         brelse(di_bh);
2059         ocfs2_inode_unlock(inode, 1);
2060 out_rw_unlock:
2061         ocfs2_rw_unlock(inode, 1);
2062
2063 out:
2064         inode_unlock(inode);
2065         return ret;
2066 }
2067
2068 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2069                             struct ocfs2_space_resv *sr)
2070 {
2071         struct inode *inode = file_inode(file);
2072         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2073         int ret;
2074
2075         if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2076             !ocfs2_writes_unwritten_extents(osb))
2077                 return -ENOTTY;
2078         else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2079                  !ocfs2_sparse_alloc(osb))
2080                 return -ENOTTY;
2081
2082         if (!S_ISREG(inode->i_mode))
2083                 return -EINVAL;
2084
2085         if (!(file->f_mode & FMODE_WRITE))
2086                 return -EBADF;
2087
2088         ret = mnt_want_write_file(file);
2089         if (ret)
2090                 return ret;
2091         ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2092         mnt_drop_write_file(file);
2093         return ret;
2094 }
2095
2096 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2097                             loff_t len)
2098 {
2099         struct inode *inode = file_inode(file);
2100         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2101         struct ocfs2_space_resv sr;
2102         int change_size = 1;
2103         int cmd = OCFS2_IOC_RESVSP64;
2104
2105         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2106                 return -EOPNOTSUPP;
2107         if (!ocfs2_writes_unwritten_extents(osb))
2108                 return -EOPNOTSUPP;
2109
2110         if (mode & FALLOC_FL_KEEP_SIZE)
2111                 change_size = 0;
2112
2113         if (mode & FALLOC_FL_PUNCH_HOLE)
2114                 cmd = OCFS2_IOC_UNRESVSP64;
2115
2116         sr.l_whence = 0;
2117         sr.l_start = (s64)offset;
2118         sr.l_len = (s64)len;
2119
2120         return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2121                                          change_size);
2122 }
2123
2124 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2125                                    size_t count)
2126 {
2127         int ret = 0;
2128         unsigned int extent_flags;
2129         u32 cpos, clusters, extent_len, phys_cpos;
2130         struct super_block *sb = inode->i_sb;
2131
2132         if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2133             !ocfs2_is_refcount_inode(inode) ||
2134             OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2135                 return 0;
2136
2137         cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2138         clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2139
2140         while (clusters) {
2141                 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2142                                          &extent_flags);
2143                 if (ret < 0) {
2144                         mlog_errno(ret);
2145                         goto out;
2146                 }
2147
2148                 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2149                         ret = 1;
2150                         break;
2151                 }
2152
2153                 if (extent_len > clusters)
2154                         extent_len = clusters;
2155
2156                 clusters -= extent_len;
2157                 cpos += extent_len;
2158         }
2159 out:
2160         return ret;
2161 }
2162
2163 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2164 {
2165         int blockmask = inode->i_sb->s_blocksize - 1;
2166         loff_t final_size = pos + count;
2167
2168         if ((pos & blockmask) || (final_size & blockmask))
2169                 return 1;
2170         return 0;
2171 }
2172
2173 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2174                                             struct buffer_head **di_bh,
2175                                             int meta_level,
2176                                             int write_sem,
2177                                             int wait)
2178 {
2179         int ret = 0;
2180
2181         if (wait)
2182                 ret = ocfs2_inode_lock(inode, di_bh, meta_level);
2183         else
2184                 ret = ocfs2_try_inode_lock(inode, di_bh, meta_level);
2185         if (ret < 0)
2186                 goto out;
2187
2188         if (wait) {
2189                 if (write_sem)
2190                         down_write(&OCFS2_I(inode)->ip_alloc_sem);
2191                 else
2192                         down_read(&OCFS2_I(inode)->ip_alloc_sem);
2193         } else {
2194                 if (write_sem)
2195                         ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2196                 else
2197                         ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2198
2199                 if (!ret) {
2200                         ret = -EAGAIN;
2201                         goto out_unlock;
2202                 }
2203         }
2204
2205         return ret;
2206
2207 out_unlock:
2208         brelse(*di_bh);
2209         *di_bh = NULL;
2210         ocfs2_inode_unlock(inode, meta_level);
2211 out:
2212         return ret;
2213 }
2214
2215 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2216                                                struct buffer_head **di_bh,
2217                                                int meta_level,
2218                                                int write_sem)
2219 {
2220         if (write_sem)
2221                 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2222         else
2223                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
2224
2225         brelse(*di_bh);
2226         *di_bh = NULL;
2227
2228         if (meta_level >= 0)
2229                 ocfs2_inode_unlock(inode, meta_level);
2230 }
2231
2232 static int ocfs2_prepare_inode_for_write(struct file *file,
2233                                          loff_t pos, size_t count, int wait)
2234 {
2235         int ret = 0, meta_level = 0, overwrite_io = 0;
2236         int write_sem = 0;
2237         struct dentry *dentry = file->f_path.dentry;
2238         struct inode *inode = d_inode(dentry);
2239         struct buffer_head *di_bh = NULL;
2240         u32 cpos;
2241         u32 clusters;
2242
2243         /*
2244          * We start with a read level meta lock and only jump to an ex
2245          * if we need to make modifications here.
2246          */
2247         for(;;) {
2248                 ret = ocfs2_inode_lock_for_extent_tree(inode,
2249                                                        &di_bh,
2250                                                        meta_level,
2251                                                        write_sem,
2252                                                        wait);
2253                 if (ret < 0) {
2254                         if (ret != -EAGAIN)
2255                                 mlog_errno(ret);
2256                         goto out;
2257                 }
2258
2259                 /*
2260                  * Check if IO will overwrite allocated blocks in case
2261                  * IOCB_NOWAIT flag is set.
2262                  */
2263                 if (!wait && !overwrite_io) {
2264                         overwrite_io = 1;
2265
2266                         ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2267                         if (ret < 0) {
2268                                 if (ret != -EAGAIN)
2269                                         mlog_errno(ret);
2270                                 goto out_unlock;
2271                         }
2272                 }
2273
2274                 /* Clear suid / sgid if necessary. We do this here
2275                  * instead of later in the write path because
2276                  * remove_suid() calls ->setattr without any hint that
2277                  * we may have already done our cluster locking. Since
2278                  * ocfs2_setattr() *must* take cluster locks to
2279                  * proceed, this will lead us to recursively lock the
2280                  * inode. There's also the dinode i_size state which
2281                  * can be lost via setattr during extending writes (we
2282                  * set inode->i_size at the end of a write. */
2283                 if (setattr_should_drop_suidgid(&init_user_ns, inode)) {
2284                         if (meta_level == 0) {
2285                                 ocfs2_inode_unlock_for_extent_tree(inode,
2286                                                                    &di_bh,
2287                                                                    meta_level,
2288                                                                    write_sem);
2289                                 meta_level = 1;
2290                                 continue;
2291                         }
2292
2293                         ret = ocfs2_write_remove_suid(inode);
2294                         if (ret < 0) {
2295                                 mlog_errno(ret);
2296                                 goto out_unlock;
2297                         }
2298                 }
2299
2300                 ret = ocfs2_check_range_for_refcount(inode, pos, count);
2301                 if (ret == 1) {
2302                         ocfs2_inode_unlock_for_extent_tree(inode,
2303                                                            &di_bh,
2304                                                            meta_level,
2305                                                            write_sem);
2306                         meta_level = 1;
2307                         write_sem = 1;
2308                         ret = ocfs2_inode_lock_for_extent_tree(inode,
2309                                                                &di_bh,
2310                                                                meta_level,
2311                                                                write_sem,
2312                                                                wait);
2313                         if (ret < 0) {
2314                                 if (ret != -EAGAIN)
2315                                         mlog_errno(ret);
2316                                 goto out;
2317                         }
2318
2319                         cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2320                         clusters =
2321                                 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2322                         ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2323                 }
2324
2325                 if (ret < 0) {
2326                         if (ret != -EAGAIN)
2327                                 mlog_errno(ret);
2328                         goto out_unlock;
2329                 }
2330
2331                 break;
2332         }
2333
2334 out_unlock:
2335         trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2336                                             pos, count, wait);
2337
2338         ocfs2_inode_unlock_for_extent_tree(inode,
2339                                            &di_bh,
2340                                            meta_level,
2341                                            write_sem);
2342
2343 out:
2344         return ret;
2345 }
2346
2347 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2348                                     struct iov_iter *from)
2349 {
2350         int rw_level;
2351         ssize_t written = 0;
2352         ssize_t ret;
2353         size_t count = iov_iter_count(from);
2354         struct file *file = iocb->ki_filp;
2355         struct inode *inode = file_inode(file);
2356         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2357         int full_coherency = !(osb->s_mount_opt &
2358                                OCFS2_MOUNT_COHERENCY_BUFFERED);
2359         void *saved_ki_complete = NULL;
2360         int append_write = ((iocb->ki_pos + count) >=
2361                         i_size_read(inode) ? 1 : 0);
2362         int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2363         int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2364
2365         trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2366                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2367                 file->f_path.dentry->d_name.len,
2368                 file->f_path.dentry->d_name.name,
2369                 (unsigned int)from->nr_segs);   /* GRRRRR */
2370
2371         if (!direct_io && nowait)
2372                 return -EOPNOTSUPP;
2373
2374         if (count == 0)
2375                 return 0;
2376
2377         if (nowait) {
2378                 if (!inode_trylock(inode))
2379                         return -EAGAIN;
2380         } else
2381                 inode_lock(inode);
2382
2383         /*
2384          * Concurrent O_DIRECT writes are allowed with
2385          * mount_option "coherency=buffered".
2386          * For append write, we must take rw EX.
2387          */
2388         rw_level = (!direct_io || full_coherency || append_write);
2389
2390         if (nowait)
2391                 ret = ocfs2_try_rw_lock(inode, rw_level);
2392         else
2393                 ret = ocfs2_rw_lock(inode, rw_level);
2394         if (ret < 0) {
2395                 if (ret != -EAGAIN)
2396                         mlog_errno(ret);
2397                 goto out_mutex;
2398         }
2399
2400         /*
2401          * O_DIRECT writes with "coherency=full" need to take EX cluster
2402          * inode_lock to guarantee coherency.
2403          */
2404         if (direct_io && full_coherency) {
2405                 /*
2406                  * We need to take and drop the inode lock to force
2407                  * other nodes to drop their caches.  Buffered I/O
2408                  * already does this in write_begin().
2409                  */
2410                 if (nowait)
2411                         ret = ocfs2_try_inode_lock(inode, NULL, 1);
2412                 else
2413                         ret = ocfs2_inode_lock(inode, NULL, 1);
2414                 if (ret < 0) {
2415                         if (ret != -EAGAIN)
2416                                 mlog_errno(ret);
2417                         goto out;
2418                 }
2419
2420                 ocfs2_inode_unlock(inode, 1);
2421         }
2422
2423         ret = generic_write_checks(iocb, from);
2424         if (ret <= 0) {
2425                 if (ret)
2426                         mlog_errno(ret);
2427                 goto out;
2428         }
2429         count = ret;
2430
2431         ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2432         if (ret < 0) {
2433                 if (ret != -EAGAIN)
2434                         mlog_errno(ret);
2435                 goto out;
2436         }
2437
2438         if (direct_io && !is_sync_kiocb(iocb) &&
2439             ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2440                 /*
2441                  * Make it a sync io if it's an unaligned aio.
2442                  */
2443                 saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2444         }
2445
2446         /* communicate with ocfs2_dio_end_io */
2447         ocfs2_iocb_set_rw_locked(iocb, rw_level);
2448
2449         written = __generic_file_write_iter(iocb, from);
2450         /* buffered aio wouldn't have proper lock coverage today */
2451         BUG_ON(written == -EIOCBQUEUED && !direct_io);
2452
2453         /*
2454          * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2455          * function pointer which is called when o_direct io completes so that
2456          * it can unlock our rw lock.
2457          * Unfortunately there are error cases which call end_io and others
2458          * that don't.  so we don't have to unlock the rw_lock if either an
2459          * async dio is going to do it in the future or an end_io after an
2460          * error has already done it.
2461          */
2462         if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2463                 rw_level = -1;
2464         }
2465
2466         if (unlikely(written <= 0))
2467                 goto out;
2468
2469         if (((file->f_flags & O_DSYNC) && !direct_io) ||
2470             IS_SYNC(inode)) {
2471                 ret = filemap_fdatawrite_range(file->f_mapping,
2472                                                iocb->ki_pos - written,
2473                                                iocb->ki_pos - 1);
2474                 if (ret < 0)
2475                         written = ret;
2476
2477                 if (!ret) {
2478                         ret = jbd2_journal_force_commit(osb->journal->j_journal);
2479                         if (ret < 0)
2480                                 written = ret;
2481                 }
2482
2483                 if (!ret)
2484                         ret = filemap_fdatawait_range(file->f_mapping,
2485                                                       iocb->ki_pos - written,
2486                                                       iocb->ki_pos - 1);
2487         }
2488
2489 out:
2490         if (saved_ki_complete)
2491                 xchg(&iocb->ki_complete, saved_ki_complete);
2492
2493         if (rw_level != -1)
2494                 ocfs2_rw_unlock(inode, rw_level);
2495
2496 out_mutex:
2497         inode_unlock(inode);
2498
2499         if (written)
2500                 ret = written;
2501         return ret;
2502 }
2503
2504 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2505                                    struct iov_iter *to)
2506 {
2507         int ret = 0, rw_level = -1, lock_level = 0;
2508         struct file *filp = iocb->ki_filp;
2509         struct inode *inode = file_inode(filp);
2510         int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2511         int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2512
2513         trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2514                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2515                         filp->f_path.dentry->d_name.len,
2516                         filp->f_path.dentry->d_name.name,
2517                         to->nr_segs);   /* GRRRRR */
2518
2519
2520         if (!inode) {
2521                 ret = -EINVAL;
2522                 mlog_errno(ret);
2523                 goto bail;
2524         }
2525
2526         if (!direct_io && nowait)
2527                 return -EOPNOTSUPP;
2528
2529         /*
2530          * buffered reads protect themselves in ->read_folio().  O_DIRECT reads
2531          * need locks to protect pending reads from racing with truncate.
2532          */
2533         if (direct_io) {
2534                 if (nowait)
2535                         ret = ocfs2_try_rw_lock(inode, 0);
2536                 else
2537                         ret = ocfs2_rw_lock(inode, 0);
2538
2539                 if (ret < 0) {
2540                         if (ret != -EAGAIN)
2541                                 mlog_errno(ret);
2542                         goto bail;
2543                 }
2544                 rw_level = 0;
2545                 /* communicate with ocfs2_dio_end_io */
2546                 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2547         }
2548
2549         /*
2550          * We're fine letting folks race truncates and extending
2551          * writes with read across the cluster, just like they can
2552          * locally. Hence no rw_lock during read.
2553          *
2554          * Take and drop the meta data lock to update inode fields
2555          * like i_size. This allows the checks down below
2556          * generic_file_read_iter() a chance of actually working.
2557          */
2558         ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2559                                      !nowait);
2560         if (ret < 0) {
2561                 if (ret != -EAGAIN)
2562                         mlog_errno(ret);
2563                 goto bail;
2564         }
2565         ocfs2_inode_unlock(inode, lock_level);
2566
2567         ret = generic_file_read_iter(iocb, to);
2568         trace_generic_file_read_iter_ret(ret);
2569
2570         /* buffered aio wouldn't have proper lock coverage today */
2571         BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2572
2573         /* see ocfs2_file_write_iter */
2574         if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2575                 rw_level = -1;
2576         }
2577
2578 bail:
2579         if (rw_level != -1)
2580                 ocfs2_rw_unlock(inode, rw_level);
2581
2582         return ret;
2583 }
2584
2585 /* Refer generic_file_llseek_unlocked() */
2586 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2587 {
2588         struct inode *inode = file->f_mapping->host;
2589         int ret = 0;
2590
2591         inode_lock(inode);
2592
2593         switch (whence) {
2594         case SEEK_SET:
2595                 break;
2596         case SEEK_END:
2597                 /* SEEK_END requires the OCFS2 inode lock for the file
2598                  * because it references the file's size.
2599                  */
2600                 ret = ocfs2_inode_lock(inode, NULL, 0);
2601                 if (ret < 0) {
2602                         mlog_errno(ret);
2603                         goto out;
2604                 }
2605                 offset += i_size_read(inode);
2606                 ocfs2_inode_unlock(inode, 0);
2607                 break;
2608         case SEEK_CUR:
2609                 if (offset == 0) {
2610                         offset = file->f_pos;
2611                         goto out;
2612                 }
2613                 offset += file->f_pos;
2614                 break;
2615         case SEEK_DATA:
2616         case SEEK_HOLE:
2617                 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2618                 if (ret)
2619                         goto out;
2620                 break;
2621         default:
2622                 ret = -EINVAL;
2623                 goto out;
2624         }
2625
2626         offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2627
2628 out:
2629         inode_unlock(inode);
2630         if (ret)
2631                 return ret;
2632         return offset;
2633 }
2634
2635 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2636                                      struct file *file_out, loff_t pos_out,
2637                                      loff_t len, unsigned int remap_flags)
2638 {
2639         struct inode *inode_in = file_inode(file_in);
2640         struct inode *inode_out = file_inode(file_out);
2641         struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2642         struct buffer_head *in_bh = NULL, *out_bh = NULL;
2643         bool same_inode = (inode_in == inode_out);
2644         loff_t remapped = 0;
2645         ssize_t ret;
2646
2647         if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2648                 return -EINVAL;
2649         if (!ocfs2_refcount_tree(osb))
2650                 return -EOPNOTSUPP;
2651         if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2652                 return -EROFS;
2653
2654         /* Lock both files against IO */
2655         ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2656         if (ret)
2657                 return ret;
2658
2659         /* Check file eligibility and prepare for block sharing. */
2660         ret = -EINVAL;
2661         if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2662             (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2663                 goto out_unlock;
2664
2665         ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2666                         &len, remap_flags);
2667         if (ret < 0 || len == 0)
2668                 goto out_unlock;
2669
2670         /* Lock out changes to the allocation maps and remap. */
2671         down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2672         if (!same_inode)
2673                 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2674                                   SINGLE_DEPTH_NESTING);
2675
2676         /* Zap any page cache for the destination file's range. */
2677         truncate_inode_pages_range(&inode_out->i_data,
2678                                    round_down(pos_out, PAGE_SIZE),
2679                                    round_up(pos_out + len, PAGE_SIZE) - 1);
2680
2681         remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2682                         inode_out, out_bh, pos_out, len);
2683         up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2684         if (!same_inode)
2685                 up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2686         if (remapped < 0) {
2687                 ret = remapped;
2688                 mlog_errno(ret);
2689                 goto out_unlock;
2690         }
2691
2692         /*
2693          * Empty the extent map so that we may get the right extent
2694          * record from the disk.
2695          */
2696         ocfs2_extent_map_trunc(inode_in, 0);
2697         ocfs2_extent_map_trunc(inode_out, 0);
2698
2699         ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2700         if (ret) {
2701                 mlog_errno(ret);
2702                 goto out_unlock;
2703         }
2704
2705 out_unlock:
2706         ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2707         return remapped > 0 ? remapped : ret;
2708 }
2709
2710 const struct inode_operations ocfs2_file_iops = {
2711         .setattr        = ocfs2_setattr,
2712         .getattr        = ocfs2_getattr,
2713         .permission     = ocfs2_permission,
2714         .listxattr      = ocfs2_listxattr,
2715         .fiemap         = ocfs2_fiemap,
2716         .get_inode_acl  = ocfs2_iop_get_acl,
2717         .set_acl        = ocfs2_iop_set_acl,
2718         .fileattr_get   = ocfs2_fileattr_get,
2719         .fileattr_set   = ocfs2_fileattr_set,
2720 };
2721
2722 const struct inode_operations ocfs2_special_file_iops = {
2723         .setattr        = ocfs2_setattr,
2724         .getattr        = ocfs2_getattr,
2725         .permission     = ocfs2_permission,
2726         .get_inode_acl  = ocfs2_iop_get_acl,
2727         .set_acl        = ocfs2_iop_set_acl,
2728 };
2729
2730 /*
2731  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2732  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2733  */
2734 const struct file_operations ocfs2_fops = {
2735         .llseek         = ocfs2_file_llseek,
2736         .mmap           = ocfs2_mmap,
2737         .fsync          = ocfs2_sync_file,
2738         .release        = ocfs2_file_release,
2739         .open           = ocfs2_file_open,
2740         .read_iter      = ocfs2_file_read_iter,
2741         .write_iter     = ocfs2_file_write_iter,
2742         .unlocked_ioctl = ocfs2_ioctl,
2743 #ifdef CONFIG_COMPAT
2744         .compat_ioctl   = ocfs2_compat_ioctl,
2745 #endif
2746         .lock           = ocfs2_lock,
2747         .flock          = ocfs2_flock,
2748         .splice_read    = generic_file_splice_read,
2749         .splice_write   = iter_file_splice_write,
2750         .fallocate      = ocfs2_fallocate,
2751         .remap_file_range = ocfs2_remap_file_range,
2752 };
2753
2754 const struct file_operations ocfs2_dops = {
2755         .llseek         = generic_file_llseek,
2756         .read           = generic_read_dir,
2757         .iterate        = ocfs2_readdir,
2758         .fsync          = ocfs2_sync_file,
2759         .release        = ocfs2_dir_release,
2760         .open           = ocfs2_dir_open,
2761         .unlocked_ioctl = ocfs2_ioctl,
2762 #ifdef CONFIG_COMPAT
2763         .compat_ioctl   = ocfs2_compat_ioctl,
2764 #endif
2765         .lock           = ocfs2_lock,
2766         .flock          = ocfs2_flock,
2767 };
2768
2769 /*
2770  * POSIX-lockless variants of our file_operations.
2771  *
2772  * These will be used if the underlying cluster stack does not support
2773  * posix file locking, if the user passes the "localflocks" mount
2774  * option, or if we have a local-only fs.
2775  *
2776  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2777  * so we still want it in the case of no stack support for
2778  * plocks. Internally, it will do the right thing when asked to ignore
2779  * the cluster.
2780  */
2781 const struct file_operations ocfs2_fops_no_plocks = {
2782         .llseek         = ocfs2_file_llseek,
2783         .mmap           = ocfs2_mmap,
2784         .fsync          = ocfs2_sync_file,
2785         .release        = ocfs2_file_release,
2786         .open           = ocfs2_file_open,
2787         .read_iter      = ocfs2_file_read_iter,
2788         .write_iter     = ocfs2_file_write_iter,
2789         .unlocked_ioctl = ocfs2_ioctl,
2790 #ifdef CONFIG_COMPAT
2791         .compat_ioctl   = ocfs2_compat_ioctl,
2792 #endif
2793         .flock          = ocfs2_flock,
2794         .splice_read    = generic_file_splice_read,
2795         .splice_write   = iter_file_splice_write,
2796         .fallocate      = ocfs2_fallocate,
2797         .remap_file_range = ocfs2_remap_file_range,
2798 };
2799
2800 const struct file_operations ocfs2_dops_no_plocks = {
2801         .llseek         = generic_file_llseek,
2802         .read           = generic_read_dir,
2803         .iterate        = ocfs2_readdir,
2804         .fsync          = ocfs2_sync_file,
2805         .release        = ocfs2_dir_release,
2806         .open           = ocfs2_dir_open,
2807         .unlocked_ioctl = ocfs2_ioctl,
2808 #ifdef CONFIG_COMPAT
2809         .compat_ioctl   = ocfs2_compat_ioctl,
2810 #endif
2811         .flock          = ocfs2_flock,
2812 };