Merge branch 'for-4.1/drivers' of git://git.kernel.dk/linux-block
[linux-2.6-block.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57                                    struct buffer_head *bh_result, int create)
58 {
59         int err = -EIO;
60         int status;
61         struct ocfs2_dinode *fe = NULL;
62         struct buffer_head *bh = NULL;
63         struct buffer_head *buffer_cache_bh = NULL;
64         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65         void *kaddr;
66
67         trace_ocfs2_symlink_get_block(
68                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
69                         (unsigned long long)iblock, bh_result, create);
70
71         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75                      (unsigned long long)iblock);
76                 goto bail;
77         }
78
79         status = ocfs2_read_inode_block(inode, &bh);
80         if (status < 0) {
81                 mlog_errno(status);
82                 goto bail;
83         }
84         fe = (struct ocfs2_dinode *) bh->b_data;
85
86         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87                                                     le32_to_cpu(fe->i_clusters))) {
88                 err = -ENOMEM;
89                 mlog(ML_ERROR, "block offset is outside the allocated size: "
90                      "%llu\n", (unsigned long long)iblock);
91                 goto bail;
92         }
93
94         /* We don't use the page cache to create symlink data, so if
95          * need be, copy it over from the buffer cache. */
96         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98                             iblock;
99                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100                 if (!buffer_cache_bh) {
101                         err = -ENOMEM;
102                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103                         goto bail;
104                 }
105
106                 /* we haven't locked out transactions, so a commit
107                  * could've happened. Since we've got a reference on
108                  * the bh, even if it commits while we're doing the
109                  * copy, the data is still good. */
110                 if (buffer_jbd(buffer_cache_bh)
111                     && ocfs2_inode_is_new(inode)) {
112                         kaddr = kmap_atomic(bh_result->b_page);
113                         if (!kaddr) {
114                                 mlog(ML_ERROR, "couldn't kmap!\n");
115                                 goto bail;
116                         }
117                         memcpy(kaddr + (bh_result->b_size * iblock),
118                                buffer_cache_bh->b_data,
119                                bh_result->b_size);
120                         kunmap_atomic(kaddr);
121                         set_buffer_uptodate(bh_result);
122                 }
123                 brelse(buffer_cache_bh);
124         }
125
126         map_bh(bh_result, inode->i_sb,
127                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129         err = 0;
130
131 bail:
132         brelse(bh);
133
134         return err;
135 }
136
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138                     struct buffer_head *bh_result, int create)
139 {
140         int err = 0;
141         unsigned int ext_flags;
142         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143         u64 p_blkno, count, past_eof;
144         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147                               (unsigned long long)iblock, bh_result, create);
148
149         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151                      inode, inode->i_ino);
152
153         if (S_ISLNK(inode->i_mode)) {
154                 /* this always does I/O for some reason. */
155                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156                 goto bail;
157         }
158
159         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160                                           &ext_flags);
161         if (err) {
162                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164                      (unsigned long long)p_blkno);
165                 goto bail;
166         }
167
168         if (max_blocks < count)
169                 count = max_blocks;
170
171         /*
172          * ocfs2 never allocates in this function - the only time we
173          * need to use BH_New is when we're extending i_size on a file
174          * system which doesn't support holes, in which case BH_New
175          * allows __block_write_begin() to zero.
176          *
177          * If we see this on a sparse file system, then a truncate has
178          * raced us and removed the cluster. In this case, we clear
179          * the buffers dirty and uptodate bits and let the buffer code
180          * ignore it as a hole.
181          */
182         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183                 clear_buffer_dirty(bh_result);
184                 clear_buffer_uptodate(bh_result);
185                 goto bail;
186         }
187
188         /* Treat the unwritten extent as a hole for zeroing purposes. */
189         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190                 map_bh(bh_result, inode->i_sb, p_blkno);
191
192         bh_result->b_size = count << inode->i_blkbits;
193
194         if (!ocfs2_sparse_alloc(osb)) {
195                 if (p_blkno == 0) {
196                         err = -EIO;
197                         mlog(ML_ERROR,
198                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199                              (unsigned long long)iblock,
200                              (unsigned long long)p_blkno,
201                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
202                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203                         dump_stack();
204                         goto bail;
205                 }
206         }
207
208         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209
210         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211                                   (unsigned long long)past_eof);
212         if (create && (iblock >= past_eof))
213                 set_buffer_new(bh_result);
214
215 bail:
216         if (err < 0)
217                 err = -EIO;
218
219         return err;
220 }
221
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223                            struct buffer_head *di_bh)
224 {
225         void *kaddr;
226         loff_t size;
227         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
232                 return -EROFS;
233         }
234
235         size = i_size_read(inode);
236
237         if (size > PAGE_CACHE_SIZE ||
238             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239                 ocfs2_error(inode->i_sb,
240                             "Inode %llu has with inline data has bad size: %Lu",
241                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
242                             (unsigned long long)size);
243                 return -EROFS;
244         }
245
246         kaddr = kmap_atomic(page);
247         if (size)
248                 memcpy(kaddr, di->id2.i_data.id_data, size);
249         /* Clear the remaining part of the page */
250         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251         flush_dcache_page(page);
252         kunmap_atomic(kaddr);
253
254         SetPageUptodate(page);
255
256         return 0;
257 }
258
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261         int ret;
262         struct buffer_head *di_bh = NULL;
263
264         BUG_ON(!PageLocked(page));
265         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266
267         ret = ocfs2_read_inode_block(inode, &di_bh);
268         if (ret) {
269                 mlog_errno(ret);
270                 goto out;
271         }
272
273         ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275         unlock_page(page);
276
277         brelse(di_bh);
278         return ret;
279 }
280
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283         struct inode *inode = page->mapping->host;
284         struct ocfs2_inode_info *oi = OCFS2_I(inode);
285         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286         int ret, unlock = 1;
287
288         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289                              (page ? page->index : 0));
290
291         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292         if (ret != 0) {
293                 if (ret == AOP_TRUNCATED_PAGE)
294                         unlock = 0;
295                 mlog_errno(ret);
296                 goto out;
297         }
298
299         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300                 /*
301                  * Unlock the page and cycle ip_alloc_sem so that we don't
302                  * busyloop waiting for ip_alloc_sem to unlock
303                  */
304                 ret = AOP_TRUNCATED_PAGE;
305                 unlock_page(page);
306                 unlock = 0;
307                 down_read(&oi->ip_alloc_sem);
308                 up_read(&oi->ip_alloc_sem);
309                 goto out_inode_unlock;
310         }
311
312         /*
313          * i_size might have just been updated as we grabed the meta lock.  We
314          * might now be discovering a truncate that hit on another node.
315          * block_read_full_page->get_block freaks out if it is asked to read
316          * beyond the end of a file, so we check here.  Callers
317          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318          * and notice that the page they just read isn't needed.
319          *
320          * XXX sys_readahead() seems to get that wrong?
321          */
322         if (start >= i_size_read(inode)) {
323                 zero_user(page, 0, PAGE_SIZE);
324                 SetPageUptodate(page);
325                 ret = 0;
326                 goto out_alloc;
327         }
328
329         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330                 ret = ocfs2_readpage_inline(inode, page);
331         else
332                 ret = block_read_full_page(page, ocfs2_get_block);
333         unlock = 0;
334
335 out_alloc:
336         up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338         ocfs2_inode_unlock(inode, 0);
339 out:
340         if (unlock)
341                 unlock_page(page);
342         return ret;
343 }
344
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355                            struct list_head *pages, unsigned nr_pages)
356 {
357         int ret, err = -EIO;
358         struct inode *inode = mapping->host;
359         struct ocfs2_inode_info *oi = OCFS2_I(inode);
360         loff_t start;
361         struct page *last;
362
363         /*
364          * Use the nonblocking flag for the dlm code to avoid page
365          * lock inversion, but don't bother with retrying.
366          */
367         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368         if (ret)
369                 return err;
370
371         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372                 ocfs2_inode_unlock(inode, 0);
373                 return err;
374         }
375
376         /*
377          * Don't bother with inline-data. There isn't anything
378          * to read-ahead in that case anyway...
379          */
380         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381                 goto out_unlock;
382
383         /*
384          * Check whether a remote node truncated this file - we just
385          * drop out in that case as it's not worth handling here.
386          */
387         last = list_entry(pages->prev, struct page, lru);
388         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389         if (start >= i_size_read(inode))
390                 goto out_unlock;
391
392         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394 out_unlock:
395         up_read(&oi->ip_alloc_sem);
396         ocfs2_inode_unlock(inode, 0);
397
398         return err;
399 }
400
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414         trace_ocfs2_writepage(
415                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416                 page->index);
417
418         return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
425 int walk_page_buffers(  handle_t *handle,
426                         struct buffer_head *head,
427                         unsigned from,
428                         unsigned to,
429                         int *partial,
430                         int (*fn)(      handle_t *handle,
431                                         struct buffer_head *bh))
432 {
433         struct buffer_head *bh;
434         unsigned block_start, block_end;
435         unsigned blocksize = head->b_size;
436         int err, ret = 0;
437         struct buffer_head *next;
438
439         for (   bh = head, block_start = 0;
440                 ret == 0 && (bh != head || !block_start);
441                 block_start = block_end, bh = next)
442         {
443                 next = bh->b_this_page;
444                 block_end = block_start + blocksize;
445                 if (block_end <= from || block_start >= to) {
446                         if (partial && !buffer_uptodate(bh))
447                                 *partial = 1;
448                         continue;
449                 }
450                 err = (*fn)(handle, bh);
451                 if (!ret)
452                         ret = err;
453         }
454         return ret;
455 }
456
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459         sector_t status;
460         u64 p_blkno = 0;
461         int err = 0;
462         struct inode *inode = mapping->host;
463
464         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465                          (unsigned long long)block);
466
467         /* We don't need to lock journal system files, since they aren't
468          * accessed concurrently from multiple nodes.
469          */
470         if (!INODE_JOURNAL(inode)) {
471                 err = ocfs2_inode_lock(inode, NULL, 0);
472                 if (err) {
473                         if (err != -ENOENT)
474                                 mlog_errno(err);
475                         goto bail;
476                 }
477                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478         }
479
480         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482                                                   NULL);
483
484         if (!INODE_JOURNAL(inode)) {
485                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
486                 ocfs2_inode_unlock(inode, 0);
487         }
488
489         if (err) {
490                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491                      (unsigned long long)block);
492                 mlog_errno(err);
493                 goto bail;
494         }
495
496 bail:
497         status = err ? 0 : p_blkno;
498
499         return status;
500 }
501
502 /*
503  * TODO: Make this into a generic get_blocks function.
504  *
505  * From do_direct_io in direct-io.c:
506  *  "So what we do is to permit the ->get_blocks function to populate
507  *   bh.b_size with the size of IO which is permitted at this offset and
508  *   this i_blkbits."
509  *
510  * This function is called directly from get_more_blocks in direct-io.c.
511  *
512  * called like this: dio->get_blocks(dio->inode, fs_startblk,
513  *                                      fs_count, map_bh, dio->rw == WRITE);
514  */
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516                                      struct buffer_head *bh_result, int create)
517 {
518         int ret;
519         u32 cpos = 0;
520         int alloc_locked = 0;
521         u64 p_blkno, inode_blocks, contig_blocks;
522         unsigned int ext_flags;
523         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525         unsigned long len = bh_result->b_size;
526         unsigned int clusters_to_alloc = 0;
527
528         cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529
530         /* This function won't even be called if the request isn't all
531          * nicely aligned and of the right size, so there's no need
532          * for us to check any of that. */
533
534         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535
536         /* This figures out the size of the next contiguous block, and
537          * our logical offset */
538         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
539                                           &contig_blocks, &ext_flags);
540         if (ret) {
541                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
542                      (unsigned long long)iblock);
543                 ret = -EIO;
544                 goto bail;
545         }
546
547         /* We should already CoW the refcounted extent in case of create. */
548         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
549
550         /* allocate blocks if no p_blkno is found, and create == 1 */
551         if (!p_blkno && create) {
552                 ret = ocfs2_inode_lock(inode, NULL, 1);
553                 if (ret < 0) {
554                         mlog_errno(ret);
555                         goto bail;
556                 }
557
558                 alloc_locked = 1;
559
560                 /* fill hole, allocate blocks can't be larger than the size
561                  * of the hole */
562                 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
563                 if (clusters_to_alloc > contig_blocks)
564                         clusters_to_alloc = contig_blocks;
565
566                 /* allocate extent and insert them into the extent tree */
567                 ret = ocfs2_extend_allocation(inode, cpos,
568                                 clusters_to_alloc, 0);
569                 if (ret < 0) {
570                         mlog_errno(ret);
571                         goto bail;
572                 }
573
574                 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
575                                 &contig_blocks, &ext_flags);
576                 if (ret < 0) {
577                         mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
578                                         (unsigned long long)iblock);
579                         ret = -EIO;
580                         goto bail;
581                 }
582         }
583
584         /*
585          * get_more_blocks() expects us to describe a hole by clearing
586          * the mapped bit on bh_result().
587          *
588          * Consider an unwritten extent as a hole.
589          */
590         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
591                 map_bh(bh_result, inode->i_sb, p_blkno);
592         else
593                 clear_buffer_mapped(bh_result);
594
595         /* make sure we don't map more than max_blocks blocks here as
596            that's all the kernel will handle at this point. */
597         if (max_blocks < contig_blocks)
598                 contig_blocks = max_blocks;
599         bh_result->b_size = contig_blocks << blocksize_bits;
600 bail:
601         if (alloc_locked)
602                 ocfs2_inode_unlock(inode, 1);
603         return ret;
604 }
605
606 /*
607  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
608  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
609  * to protect io on one node from truncation on another.
610  */
611 static void ocfs2_dio_end_io(struct kiocb *iocb,
612                              loff_t offset,
613                              ssize_t bytes,
614                              void *private)
615 {
616         struct inode *inode = file_inode(iocb->ki_filp);
617         int level;
618
619         /* this io's submitter should not have unlocked this before we could */
620         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
621
622         if (ocfs2_iocb_is_sem_locked(iocb))
623                 ocfs2_iocb_clear_sem_locked(iocb);
624
625         if (ocfs2_iocb_is_unaligned_aio(iocb)) {
626                 ocfs2_iocb_clear_unaligned_aio(iocb);
627
628                 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
629         }
630
631         ocfs2_iocb_clear_rw_locked(iocb);
632
633         level = ocfs2_iocb_rw_locked_level(iocb);
634         ocfs2_rw_unlock(inode, level);
635 }
636
637 static int ocfs2_releasepage(struct page *page, gfp_t wait)
638 {
639         if (!page_has_buffers(page))
640                 return 0;
641         return try_to_free_buffers(page);
642 }
643
644 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
645                 struct inode *inode, loff_t offset)
646 {
647         int ret = 0;
648         u32 v_cpos = 0;
649         u32 p_cpos = 0;
650         unsigned int num_clusters = 0;
651         unsigned int ext_flags = 0;
652
653         v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
654         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
655                         &num_clusters, &ext_flags);
656         if (ret < 0) {
657                 mlog_errno(ret);
658                 return ret;
659         }
660
661         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
662                 return 1;
663
664         return 0;
665 }
666
667 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
668                 struct inode *inode, loff_t offset,
669                 u64 zero_len, int cluster_align)
670 {
671         u32 p_cpos = 0;
672         u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
673         unsigned int num_clusters = 0;
674         unsigned int ext_flags = 0;
675         int ret = 0;
676
677         if (offset <= i_size_read(inode) || cluster_align)
678                 return 0;
679
680         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
681                         &ext_flags);
682         if (ret < 0) {
683                 mlog_errno(ret);
684                 return ret;
685         }
686
687         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
688                 u64 s = i_size_read(inode);
689                 sector_t sector = (p_cpos << (osb->s_clustersize_bits - 9)) +
690                         (do_div(s, osb->s_clustersize) >> 9);
691
692                 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
693                                 zero_len >> 9, GFP_NOFS, false);
694                 if (ret < 0)
695                         mlog_errno(ret);
696         }
697
698         return ret;
699 }
700
701 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
702                 struct inode *inode, loff_t offset)
703 {
704         u64 zero_start, zero_len, total_zero_len;
705         u32 p_cpos = 0, clusters_to_add;
706         u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
707         unsigned int num_clusters = 0;
708         unsigned int ext_flags = 0;
709         u32 size_div, offset_div;
710         int ret = 0;
711
712         {
713                 u64 o = offset;
714                 u64 s = i_size_read(inode);
715
716                 offset_div = do_div(o, osb->s_clustersize);
717                 size_div = do_div(s, osb->s_clustersize);
718         }
719
720         if (offset <= i_size_read(inode))
721                 return 0;
722
723         clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
724                 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
725         total_zero_len = offset - i_size_read(inode);
726         if (clusters_to_add)
727                 total_zero_len -= offset_div;
728
729         /* Allocate clusters to fill out holes, and this is only needed
730          * when we add more than one clusters. Otherwise the cluster will
731          * be allocated during direct IO */
732         if (clusters_to_add > 1) {
733                 ret = ocfs2_extend_allocation(inode,
734                                 OCFS2_I(inode)->ip_clusters,
735                                 clusters_to_add - 1, 0);
736                 if (ret) {
737                         mlog_errno(ret);
738                         goto out;
739                 }
740         }
741
742         while (total_zero_len) {
743                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
744                                 &ext_flags);
745                 if (ret < 0) {
746                         mlog_errno(ret);
747                         goto out;
748                 }
749
750                 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
751                         size_div;
752                 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
753                         size_div;
754                 zero_len = min(total_zero_len, zero_len);
755
756                 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
757                         ret = blkdev_issue_zeroout(osb->sb->s_bdev,
758                                         zero_start >> 9, zero_len >> 9,
759                                         GFP_NOFS, false);
760                         if (ret < 0) {
761                                 mlog_errno(ret);
762                                 goto out;
763                         }
764                 }
765
766                 total_zero_len -= zero_len;
767                 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
768
769                 /* Only at first iteration can be cluster not aligned.
770                  * So set size_div to 0 for the rest */
771                 size_div = 0;
772         }
773
774 out:
775         return ret;
776 }
777
778 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
779                 struct iov_iter *iter,
780                 loff_t offset)
781 {
782         ssize_t ret = 0;
783         ssize_t written = 0;
784         bool orphaned = false;
785         int is_overwrite = 0;
786         struct file *file = iocb->ki_filp;
787         struct inode *inode = file_inode(file)->i_mapping->host;
788         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
789         struct buffer_head *di_bh = NULL;
790         size_t count = iter->count;
791         journal_t *journal = osb->journal->j_journal;
792         u64 zero_len_head, zero_len_tail;
793         int cluster_align_head, cluster_align_tail;
794         loff_t final_size = offset + count;
795         int append_write = offset >= i_size_read(inode) ? 1 : 0;
796         unsigned int num_clusters = 0;
797         unsigned int ext_flags = 0;
798
799         {
800                 u64 o = offset;
801                 u64 s = i_size_read(inode);
802
803                 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
804                 cluster_align_head = !zero_len_head;
805
806                 zero_len_tail = osb->s_clustersize -
807                         do_div(s, osb->s_clustersize);
808                 if ((offset - i_size_read(inode)) < zero_len_tail)
809                         zero_len_tail = offset - i_size_read(inode);
810                 cluster_align_tail = !zero_len_tail;
811         }
812
813         /*
814          * when final_size > inode->i_size, inode->i_size will be
815          * updated after direct write, so add the inode to orphan
816          * dir first.
817          */
818         if (final_size > i_size_read(inode)) {
819                 ret = ocfs2_add_inode_to_orphan(osb, inode);
820                 if (ret < 0) {
821                         mlog_errno(ret);
822                         goto out;
823                 }
824                 orphaned = true;
825         }
826
827         if (append_write) {
828                 ret = ocfs2_inode_lock(inode, NULL, 1);
829                 if (ret < 0) {
830                         mlog_errno(ret);
831                         goto clean_orphan;
832                 }
833
834                 /* zeroing out the previously allocated cluster tail
835                  * that but not zeroed */
836                 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
837                         ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
838                                         zero_len_tail, cluster_align_tail);
839                 else
840                         ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
841                                         offset);
842                 if (ret < 0) {
843                         mlog_errno(ret);
844                         ocfs2_inode_unlock(inode, 1);
845                         goto clean_orphan;
846                 }
847
848                 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
849                 if (is_overwrite < 0) {
850                         mlog_errno(is_overwrite);
851                         ocfs2_inode_unlock(inode, 1);
852                         goto clean_orphan;
853                 }
854
855                 ocfs2_inode_unlock(inode, 1);
856         }
857
858         written = __blockdev_direct_IO(WRITE, iocb, inode, inode->i_sb->s_bdev,
859                         iter, offset,
860                         ocfs2_direct_IO_get_blocks,
861                         ocfs2_dio_end_io, NULL, 0);
862         if (unlikely(written < 0)) {
863                 loff_t i_size = i_size_read(inode);
864
865                 if (offset + count > i_size) {
866                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
867                         if (ret < 0) {
868                                 mlog_errno(ret);
869                                 goto clean_orphan;
870                         }
871
872                         if (i_size == i_size_read(inode)) {
873                                 ret = ocfs2_truncate_file(inode, di_bh,
874                                                 i_size);
875                                 if (ret < 0) {
876                                         if (ret != -ENOSPC)
877                                                 mlog_errno(ret);
878
879                                         ocfs2_inode_unlock(inode, 1);
880                                         brelse(di_bh);
881                                         goto clean_orphan;
882                                 }
883                         }
884
885                         ocfs2_inode_unlock(inode, 1);
886                         brelse(di_bh);
887
888                         ret = jbd2_journal_force_commit(journal);
889                         if (ret < 0)
890                                 mlog_errno(ret);
891                 }
892         } else if (written > 0 && append_write && !is_overwrite &&
893                         !cluster_align_head) {
894                 /* zeroing out the allocated cluster head */
895                 u32 p_cpos = 0;
896                 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
897
898                 ret = ocfs2_inode_lock(inode, NULL, 0);
899                 if (ret < 0) {
900                         mlog_errno(ret);
901                         goto clean_orphan;
902                 }
903
904                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
905                                 &num_clusters, &ext_flags);
906                 if (ret < 0) {
907                         mlog_errno(ret);
908                         ocfs2_inode_unlock(inode, 0);
909                         goto clean_orphan;
910                 }
911
912                 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
913
914                 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
915                                 p_cpos << (osb->s_clustersize_bits - 9),
916                                 zero_len_head >> 9, GFP_NOFS, false);
917                 if (ret < 0)
918                         mlog_errno(ret);
919
920                 ocfs2_inode_unlock(inode, 0);
921         }
922
923 clean_orphan:
924         if (orphaned) {
925                 int tmp_ret;
926                 int update_isize = written > 0 ? 1 : 0;
927                 loff_t end = update_isize ? offset + written : 0;
928
929                 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
930                                 update_isize, end);
931                 if (tmp_ret < 0) {
932                         ret = tmp_ret;
933                         goto out;
934                 }
935
936                 tmp_ret = jbd2_journal_force_commit(journal);
937                 if (tmp_ret < 0) {
938                         ret = tmp_ret;
939                         mlog_errno(tmp_ret);
940                 }
941         }
942
943 out:
944         if (ret >= 0)
945                 ret = written;
946         return ret;
947 }
948
949 static ssize_t ocfs2_direct_IO(int rw,
950                                struct kiocb *iocb,
951                                struct iov_iter *iter,
952                                loff_t offset)
953 {
954         struct file *file = iocb->ki_filp;
955         struct inode *inode = file_inode(file)->i_mapping->host;
956         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
957         int full_coherency = !(osb->s_mount_opt &
958                         OCFS2_MOUNT_COHERENCY_BUFFERED);
959
960         /*
961          * Fallback to buffered I/O if we see an inode without
962          * extents.
963          */
964         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
965                 return 0;
966
967         /* Fallback to buffered I/O if we are appending and
968          * concurrent O_DIRECT writes are allowed.
969          */
970         if (i_size_read(inode) <= offset && !full_coherency)
971                 return 0;
972
973         if (rw == READ)
974                 return __blockdev_direct_IO(rw, iocb, inode,
975                                     inode->i_sb->s_bdev,
976                                     iter, offset,
977                                     ocfs2_direct_IO_get_blocks,
978                                     ocfs2_dio_end_io, NULL, 0);
979         else
980                 return ocfs2_direct_IO_write(iocb, iter, offset);
981 }
982
983 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
984                                             u32 cpos,
985                                             unsigned int *start,
986                                             unsigned int *end)
987 {
988         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
989
990         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
991                 unsigned int cpp;
992
993                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
994
995                 cluster_start = cpos % cpp;
996                 cluster_start = cluster_start << osb->s_clustersize_bits;
997
998                 cluster_end = cluster_start + osb->s_clustersize;
999         }
1000
1001         BUG_ON(cluster_start > PAGE_SIZE);
1002         BUG_ON(cluster_end > PAGE_SIZE);
1003
1004         if (start)
1005                 *start = cluster_start;
1006         if (end)
1007                 *end = cluster_end;
1008 }
1009
1010 /*
1011  * 'from' and 'to' are the region in the page to avoid zeroing.
1012  *
1013  * If pagesize > clustersize, this function will avoid zeroing outside
1014  * of the cluster boundary.
1015  *
1016  * from == to == 0 is code for "zero the entire cluster region"
1017  */
1018 static void ocfs2_clear_page_regions(struct page *page,
1019                                      struct ocfs2_super *osb, u32 cpos,
1020                                      unsigned from, unsigned to)
1021 {
1022         void *kaddr;
1023         unsigned int cluster_start, cluster_end;
1024
1025         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1026
1027         kaddr = kmap_atomic(page);
1028
1029         if (from || to) {
1030                 if (from > cluster_start)
1031                         memset(kaddr + cluster_start, 0, from - cluster_start);
1032                 if (to < cluster_end)
1033                         memset(kaddr + to, 0, cluster_end - to);
1034         } else {
1035                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1036         }
1037
1038         kunmap_atomic(kaddr);
1039 }
1040
1041 /*
1042  * Nonsparse file systems fully allocate before we get to the write
1043  * code. This prevents ocfs2_write() from tagging the write as an
1044  * allocating one, which means ocfs2_map_page_blocks() might try to
1045  * read-in the blocks at the tail of our file. Avoid reading them by
1046  * testing i_size against each block offset.
1047  */
1048 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1049                                  unsigned int block_start)
1050 {
1051         u64 offset = page_offset(page) + block_start;
1052
1053         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1054                 return 1;
1055
1056         if (i_size_read(inode) > offset)
1057                 return 1;
1058
1059         return 0;
1060 }
1061
1062 /*
1063  * Some of this taken from __block_write_begin(). We already have our
1064  * mapping by now though, and the entire write will be allocating or
1065  * it won't, so not much need to use BH_New.
1066  *
1067  * This will also skip zeroing, which is handled externally.
1068  */
1069 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1070                           struct inode *inode, unsigned int from,
1071                           unsigned int to, int new)
1072 {
1073         int ret = 0;
1074         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1075         unsigned int block_end, block_start;
1076         unsigned int bsize = 1 << inode->i_blkbits;
1077
1078         if (!page_has_buffers(page))
1079                 create_empty_buffers(page, bsize, 0);
1080
1081         head = page_buffers(page);
1082         for (bh = head, block_start = 0; bh != head || !block_start;
1083              bh = bh->b_this_page, block_start += bsize) {
1084                 block_end = block_start + bsize;
1085
1086                 clear_buffer_new(bh);
1087
1088                 /*
1089                  * Ignore blocks outside of our i/o range -
1090                  * they may belong to unallocated clusters.
1091                  */
1092                 if (block_start >= to || block_end <= from) {
1093                         if (PageUptodate(page))
1094                                 set_buffer_uptodate(bh);
1095                         continue;
1096                 }
1097
1098                 /*
1099                  * For an allocating write with cluster size >= page
1100                  * size, we always write the entire page.
1101                  */
1102                 if (new)
1103                         set_buffer_new(bh);
1104
1105                 if (!buffer_mapped(bh)) {
1106                         map_bh(bh, inode->i_sb, *p_blkno);
1107                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1108                 }
1109
1110                 if (PageUptodate(page)) {
1111                         if (!buffer_uptodate(bh))
1112                                 set_buffer_uptodate(bh);
1113                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1114                            !buffer_new(bh) &&
1115                            ocfs2_should_read_blk(inode, page, block_start) &&
1116                            (block_start < from || block_end > to)) {
1117                         ll_rw_block(READ, 1, &bh);
1118                         *wait_bh++=bh;
1119                 }
1120
1121                 *p_blkno = *p_blkno + 1;
1122         }
1123
1124         /*
1125          * If we issued read requests - let them complete.
1126          */
1127         while(wait_bh > wait) {
1128                 wait_on_buffer(*--wait_bh);
1129                 if (!buffer_uptodate(*wait_bh))
1130                         ret = -EIO;
1131         }
1132
1133         if (ret == 0 || !new)
1134                 return ret;
1135
1136         /*
1137          * If we get -EIO above, zero out any newly allocated blocks
1138          * to avoid exposing stale data.
1139          */
1140         bh = head;
1141         block_start = 0;
1142         do {
1143                 block_end = block_start + bsize;
1144                 if (block_end <= from)
1145                         goto next_bh;
1146                 if (block_start >= to)
1147                         break;
1148
1149                 zero_user(page, block_start, bh->b_size);
1150                 set_buffer_uptodate(bh);
1151                 mark_buffer_dirty(bh);
1152
1153 next_bh:
1154                 block_start = block_end;
1155                 bh = bh->b_this_page;
1156         } while (bh != head);
1157
1158         return ret;
1159 }
1160
1161 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1162 #define OCFS2_MAX_CTXT_PAGES    1
1163 #else
1164 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1165 #endif
1166
1167 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1168
1169 /*
1170  * Describe the state of a single cluster to be written to.
1171  */
1172 struct ocfs2_write_cluster_desc {
1173         u32             c_cpos;
1174         u32             c_phys;
1175         /*
1176          * Give this a unique field because c_phys eventually gets
1177          * filled.
1178          */
1179         unsigned        c_new;
1180         unsigned        c_unwritten;
1181         unsigned        c_needs_zero;
1182 };
1183
1184 struct ocfs2_write_ctxt {
1185         /* Logical cluster position / len of write */
1186         u32                             w_cpos;
1187         u32                             w_clen;
1188
1189         /* First cluster allocated in a nonsparse extend */
1190         u32                             w_first_new_cpos;
1191
1192         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1193
1194         /*
1195          * This is true if page_size > cluster_size.
1196          *
1197          * It triggers a set of special cases during write which might
1198          * have to deal with allocating writes to partial pages.
1199          */
1200         unsigned int                    w_large_pages;
1201
1202         /*
1203          * Pages involved in this write.
1204          *
1205          * w_target_page is the page being written to by the user.
1206          *
1207          * w_pages is an array of pages which always contains
1208          * w_target_page, and in the case of an allocating write with
1209          * page_size < cluster size, it will contain zero'd and mapped
1210          * pages adjacent to w_target_page which need to be written
1211          * out in so that future reads from that region will get
1212          * zero's.
1213          */
1214         unsigned int                    w_num_pages;
1215         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
1216         struct page                     *w_target_page;
1217
1218         /*
1219          * w_target_locked is used for page_mkwrite path indicating no unlocking
1220          * against w_target_page in ocfs2_write_end_nolock.
1221          */
1222         unsigned int                    w_target_locked:1;
1223
1224         /*
1225          * ocfs2_write_end() uses this to know what the real range to
1226          * write in the target should be.
1227          */
1228         unsigned int                    w_target_from;
1229         unsigned int                    w_target_to;
1230
1231         /*
1232          * We could use journal_current_handle() but this is cleaner,
1233          * IMHO -Mark
1234          */
1235         handle_t                        *w_handle;
1236
1237         struct buffer_head              *w_di_bh;
1238
1239         struct ocfs2_cached_dealloc_ctxt w_dealloc;
1240 };
1241
1242 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1243 {
1244         int i;
1245
1246         for(i = 0; i < num_pages; i++) {
1247                 if (pages[i]) {
1248                         unlock_page(pages[i]);
1249                         mark_page_accessed(pages[i]);
1250                         page_cache_release(pages[i]);
1251                 }
1252         }
1253 }
1254
1255 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1256 {
1257         int i;
1258
1259         /*
1260          * w_target_locked is only set to true in the page_mkwrite() case.
1261          * The intent is to allow us to lock the target page from write_begin()
1262          * to write_end(). The caller must hold a ref on w_target_page.
1263          */
1264         if (wc->w_target_locked) {
1265                 BUG_ON(!wc->w_target_page);
1266                 for (i = 0; i < wc->w_num_pages; i++) {
1267                         if (wc->w_target_page == wc->w_pages[i]) {
1268                                 wc->w_pages[i] = NULL;
1269                                 break;
1270                         }
1271                 }
1272                 mark_page_accessed(wc->w_target_page);
1273                 page_cache_release(wc->w_target_page);
1274         }
1275         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1276 }
1277
1278 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1279 {
1280         ocfs2_unlock_pages(wc);
1281         brelse(wc->w_di_bh);
1282         kfree(wc);
1283 }
1284
1285 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1286                                   struct ocfs2_super *osb, loff_t pos,
1287                                   unsigned len, struct buffer_head *di_bh)
1288 {
1289         u32 cend;
1290         struct ocfs2_write_ctxt *wc;
1291
1292         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1293         if (!wc)
1294                 return -ENOMEM;
1295
1296         wc->w_cpos = pos >> osb->s_clustersize_bits;
1297         wc->w_first_new_cpos = UINT_MAX;
1298         cend = (pos + len - 1) >> osb->s_clustersize_bits;
1299         wc->w_clen = cend - wc->w_cpos + 1;
1300         get_bh(di_bh);
1301         wc->w_di_bh = di_bh;
1302
1303         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1304                 wc->w_large_pages = 1;
1305         else
1306                 wc->w_large_pages = 0;
1307
1308         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1309
1310         *wcp = wc;
1311
1312         return 0;
1313 }
1314
1315 /*
1316  * If a page has any new buffers, zero them out here, and mark them uptodate
1317  * and dirty so they'll be written out (in order to prevent uninitialised
1318  * block data from leaking). And clear the new bit.
1319  */
1320 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1321 {
1322         unsigned int block_start, block_end;
1323         struct buffer_head *head, *bh;
1324
1325         BUG_ON(!PageLocked(page));
1326         if (!page_has_buffers(page))
1327                 return;
1328
1329         bh = head = page_buffers(page);
1330         block_start = 0;
1331         do {
1332                 block_end = block_start + bh->b_size;
1333
1334                 if (buffer_new(bh)) {
1335                         if (block_end > from && block_start < to) {
1336                                 if (!PageUptodate(page)) {
1337                                         unsigned start, end;
1338
1339                                         start = max(from, block_start);
1340                                         end = min(to, block_end);
1341
1342                                         zero_user_segment(page, start, end);
1343                                         set_buffer_uptodate(bh);
1344                                 }
1345
1346                                 clear_buffer_new(bh);
1347                                 mark_buffer_dirty(bh);
1348                         }
1349                 }
1350
1351                 block_start = block_end;
1352                 bh = bh->b_this_page;
1353         } while (bh != head);
1354 }
1355
1356 /*
1357  * Only called when we have a failure during allocating write to write
1358  * zero's to the newly allocated region.
1359  */
1360 static void ocfs2_write_failure(struct inode *inode,
1361                                 struct ocfs2_write_ctxt *wc,
1362                                 loff_t user_pos, unsigned user_len)
1363 {
1364         int i;
1365         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1366                 to = user_pos + user_len;
1367         struct page *tmppage;
1368
1369         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1370
1371         for(i = 0; i < wc->w_num_pages; i++) {
1372                 tmppage = wc->w_pages[i];
1373
1374                 if (page_has_buffers(tmppage)) {
1375                         if (ocfs2_should_order_data(inode))
1376                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1377
1378                         block_commit_write(tmppage, from, to);
1379                 }
1380         }
1381 }
1382
1383 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1384                                         struct ocfs2_write_ctxt *wc,
1385                                         struct page *page, u32 cpos,
1386                                         loff_t user_pos, unsigned user_len,
1387                                         int new)
1388 {
1389         int ret;
1390         unsigned int map_from = 0, map_to = 0;
1391         unsigned int cluster_start, cluster_end;
1392         unsigned int user_data_from = 0, user_data_to = 0;
1393
1394         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1395                                         &cluster_start, &cluster_end);
1396
1397         /* treat the write as new if the a hole/lseek spanned across
1398          * the page boundary.
1399          */
1400         new = new | ((i_size_read(inode) <= page_offset(page)) &&
1401                         (page_offset(page) <= user_pos));
1402
1403         if (page == wc->w_target_page) {
1404                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1405                 map_to = map_from + user_len;
1406
1407                 if (new)
1408                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1409                                                     cluster_start, cluster_end,
1410                                                     new);
1411                 else
1412                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1413                                                     map_from, map_to, new);
1414                 if (ret) {
1415                         mlog_errno(ret);
1416                         goto out;
1417                 }
1418
1419                 user_data_from = map_from;
1420                 user_data_to = map_to;
1421                 if (new) {
1422                         map_from = cluster_start;
1423                         map_to = cluster_end;
1424                 }
1425         } else {
1426                 /*
1427                  * If we haven't allocated the new page yet, we
1428                  * shouldn't be writing it out without copying user
1429                  * data. This is likely a math error from the caller.
1430                  */
1431                 BUG_ON(!new);
1432
1433                 map_from = cluster_start;
1434                 map_to = cluster_end;
1435
1436                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1437                                             cluster_start, cluster_end, new);
1438                 if (ret) {
1439                         mlog_errno(ret);
1440                         goto out;
1441                 }
1442         }
1443
1444         /*
1445          * Parts of newly allocated pages need to be zero'd.
1446          *
1447          * Above, we have also rewritten 'to' and 'from' - as far as
1448          * the rest of the function is concerned, the entire cluster
1449          * range inside of a page needs to be written.
1450          *
1451          * We can skip this if the page is up to date - it's already
1452          * been zero'd from being read in as a hole.
1453          */
1454         if (new && !PageUptodate(page))
1455                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1456                                          cpos, user_data_from, user_data_to);
1457
1458         flush_dcache_page(page);
1459
1460 out:
1461         return ret;
1462 }
1463
1464 /*
1465  * This function will only grab one clusters worth of pages.
1466  */
1467 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1468                                       struct ocfs2_write_ctxt *wc,
1469                                       u32 cpos, loff_t user_pos,
1470                                       unsigned user_len, int new,
1471                                       struct page *mmap_page)
1472 {
1473         int ret = 0, i;
1474         unsigned long start, target_index, end_index, index;
1475         struct inode *inode = mapping->host;
1476         loff_t last_byte;
1477
1478         target_index = user_pos >> PAGE_CACHE_SHIFT;
1479
1480         /*
1481          * Figure out how many pages we'll be manipulating here. For
1482          * non allocating write, we just change the one
1483          * page. Otherwise, we'll need a whole clusters worth.  If we're
1484          * writing past i_size, we only need enough pages to cover the
1485          * last page of the write.
1486          */
1487         if (new) {
1488                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1489                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1490                 /*
1491                  * We need the index *past* the last page we could possibly
1492                  * touch.  This is the page past the end of the write or
1493                  * i_size, whichever is greater.
1494                  */
1495                 last_byte = max(user_pos + user_len, i_size_read(inode));
1496                 BUG_ON(last_byte < 1);
1497                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1498                 if ((start + wc->w_num_pages) > end_index)
1499                         wc->w_num_pages = end_index - start;
1500         } else {
1501                 wc->w_num_pages = 1;
1502                 start = target_index;
1503         }
1504
1505         for(i = 0; i < wc->w_num_pages; i++) {
1506                 index = start + i;
1507
1508                 if (index == target_index && mmap_page) {
1509                         /*
1510                          * ocfs2_pagemkwrite() is a little different
1511                          * and wants us to directly use the page
1512                          * passed in.
1513                          */
1514                         lock_page(mmap_page);
1515
1516                         /* Exit and let the caller retry */
1517                         if (mmap_page->mapping != mapping) {
1518                                 WARN_ON(mmap_page->mapping);
1519                                 unlock_page(mmap_page);
1520                                 ret = -EAGAIN;
1521                                 goto out;
1522                         }
1523
1524                         page_cache_get(mmap_page);
1525                         wc->w_pages[i] = mmap_page;
1526                         wc->w_target_locked = true;
1527                 } else {
1528                         wc->w_pages[i] = find_or_create_page(mapping, index,
1529                                                              GFP_NOFS);
1530                         if (!wc->w_pages[i]) {
1531                                 ret = -ENOMEM;
1532                                 mlog_errno(ret);
1533                                 goto out;
1534                         }
1535                 }
1536                 wait_for_stable_page(wc->w_pages[i]);
1537
1538                 if (index == target_index)
1539                         wc->w_target_page = wc->w_pages[i];
1540         }
1541 out:
1542         if (ret)
1543                 wc->w_target_locked = false;
1544         return ret;
1545 }
1546
1547 /*
1548  * Prepare a single cluster for write one cluster into the file.
1549  */
1550 static int ocfs2_write_cluster(struct address_space *mapping,
1551                                u32 phys, unsigned int unwritten,
1552                                unsigned int should_zero,
1553                                struct ocfs2_alloc_context *data_ac,
1554                                struct ocfs2_alloc_context *meta_ac,
1555                                struct ocfs2_write_ctxt *wc, u32 cpos,
1556                                loff_t user_pos, unsigned user_len)
1557 {
1558         int ret, i, new;
1559         u64 v_blkno, p_blkno;
1560         struct inode *inode = mapping->host;
1561         struct ocfs2_extent_tree et;
1562
1563         new = phys == 0 ? 1 : 0;
1564         if (new) {
1565                 u32 tmp_pos;
1566
1567                 /*
1568                  * This is safe to call with the page locks - it won't take
1569                  * any additional semaphores or cluster locks.
1570                  */
1571                 tmp_pos = cpos;
1572                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1573                                            &tmp_pos, 1, 0, wc->w_di_bh,
1574                                            wc->w_handle, data_ac,
1575                                            meta_ac, NULL);
1576                 /*
1577                  * This shouldn't happen because we must have already
1578                  * calculated the correct meta data allocation required. The
1579                  * internal tree allocation code should know how to increase
1580                  * transaction credits itself.
1581                  *
1582                  * If need be, we could handle -EAGAIN for a
1583                  * RESTART_TRANS here.
1584                  */
1585                 mlog_bug_on_msg(ret == -EAGAIN,
1586                                 "Inode %llu: EAGAIN return during allocation.\n",
1587                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1588                 if (ret < 0) {
1589                         mlog_errno(ret);
1590                         goto out;
1591                 }
1592         } else if (unwritten) {
1593                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1594                                               wc->w_di_bh);
1595                 ret = ocfs2_mark_extent_written(inode, &et,
1596                                                 wc->w_handle, cpos, 1, phys,
1597                                                 meta_ac, &wc->w_dealloc);
1598                 if (ret < 0) {
1599                         mlog_errno(ret);
1600                         goto out;
1601                 }
1602         }
1603
1604         if (should_zero)
1605                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1606         else
1607                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1608
1609         /*
1610          * The only reason this should fail is due to an inability to
1611          * find the extent added.
1612          */
1613         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1614                                           NULL);
1615         if (ret < 0) {
1616                 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1617                             "at logical block %llu",
1618                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1619                             (unsigned long long)v_blkno);
1620                 goto out;
1621         }
1622
1623         BUG_ON(p_blkno == 0);
1624
1625         for(i = 0; i < wc->w_num_pages; i++) {
1626                 int tmpret;
1627
1628                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1629                                                       wc->w_pages[i], cpos,
1630                                                       user_pos, user_len,
1631                                                       should_zero);
1632                 if (tmpret) {
1633                         mlog_errno(tmpret);
1634                         if (ret == 0)
1635                                 ret = tmpret;
1636                 }
1637         }
1638
1639         /*
1640          * We only have cleanup to do in case of allocating write.
1641          */
1642         if (ret && new)
1643                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1644
1645 out:
1646
1647         return ret;
1648 }
1649
1650 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1651                                        struct ocfs2_alloc_context *data_ac,
1652                                        struct ocfs2_alloc_context *meta_ac,
1653                                        struct ocfs2_write_ctxt *wc,
1654                                        loff_t pos, unsigned len)
1655 {
1656         int ret, i;
1657         loff_t cluster_off;
1658         unsigned int local_len = len;
1659         struct ocfs2_write_cluster_desc *desc;
1660         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1661
1662         for (i = 0; i < wc->w_clen; i++) {
1663                 desc = &wc->w_desc[i];
1664
1665                 /*
1666                  * We have to make sure that the total write passed in
1667                  * doesn't extend past a single cluster.
1668                  */
1669                 local_len = len;
1670                 cluster_off = pos & (osb->s_clustersize - 1);
1671                 if ((cluster_off + local_len) > osb->s_clustersize)
1672                         local_len = osb->s_clustersize - cluster_off;
1673
1674                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1675                                           desc->c_unwritten,
1676                                           desc->c_needs_zero,
1677                                           data_ac, meta_ac,
1678                                           wc, desc->c_cpos, pos, local_len);
1679                 if (ret) {
1680                         mlog_errno(ret);
1681                         goto out;
1682                 }
1683
1684                 len -= local_len;
1685                 pos += local_len;
1686         }
1687
1688         ret = 0;
1689 out:
1690         return ret;
1691 }
1692
1693 /*
1694  * ocfs2_write_end() wants to know which parts of the target page it
1695  * should complete the write on. It's easiest to compute them ahead of
1696  * time when a more complete view of the write is available.
1697  */
1698 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1699                                         struct ocfs2_write_ctxt *wc,
1700                                         loff_t pos, unsigned len, int alloc)
1701 {
1702         struct ocfs2_write_cluster_desc *desc;
1703
1704         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1705         wc->w_target_to = wc->w_target_from + len;
1706
1707         if (alloc == 0)
1708                 return;
1709
1710         /*
1711          * Allocating write - we may have different boundaries based
1712          * on page size and cluster size.
1713          *
1714          * NOTE: We can no longer compute one value from the other as
1715          * the actual write length and user provided length may be
1716          * different.
1717          */
1718
1719         if (wc->w_large_pages) {
1720                 /*
1721                  * We only care about the 1st and last cluster within
1722                  * our range and whether they should be zero'd or not. Either
1723                  * value may be extended out to the start/end of a
1724                  * newly allocated cluster.
1725                  */
1726                 desc = &wc->w_desc[0];
1727                 if (desc->c_needs_zero)
1728                         ocfs2_figure_cluster_boundaries(osb,
1729                                                         desc->c_cpos,
1730                                                         &wc->w_target_from,
1731                                                         NULL);
1732
1733                 desc = &wc->w_desc[wc->w_clen - 1];
1734                 if (desc->c_needs_zero)
1735                         ocfs2_figure_cluster_boundaries(osb,
1736                                                         desc->c_cpos,
1737                                                         NULL,
1738                                                         &wc->w_target_to);
1739         } else {
1740                 wc->w_target_from = 0;
1741                 wc->w_target_to = PAGE_CACHE_SIZE;
1742         }
1743 }
1744
1745 /*
1746  * Populate each single-cluster write descriptor in the write context
1747  * with information about the i/o to be done.
1748  *
1749  * Returns the number of clusters that will have to be allocated, as
1750  * well as a worst case estimate of the number of extent records that
1751  * would have to be created during a write to an unwritten region.
1752  */
1753 static int ocfs2_populate_write_desc(struct inode *inode,
1754                                      struct ocfs2_write_ctxt *wc,
1755                                      unsigned int *clusters_to_alloc,
1756                                      unsigned int *extents_to_split)
1757 {
1758         int ret;
1759         struct ocfs2_write_cluster_desc *desc;
1760         unsigned int num_clusters = 0;
1761         unsigned int ext_flags = 0;
1762         u32 phys = 0;
1763         int i;
1764
1765         *clusters_to_alloc = 0;
1766         *extents_to_split = 0;
1767
1768         for (i = 0; i < wc->w_clen; i++) {
1769                 desc = &wc->w_desc[i];
1770                 desc->c_cpos = wc->w_cpos + i;
1771
1772                 if (num_clusters == 0) {
1773                         /*
1774                          * Need to look up the next extent record.
1775                          */
1776                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1777                                                  &num_clusters, &ext_flags);
1778                         if (ret) {
1779                                 mlog_errno(ret);
1780                                 goto out;
1781                         }
1782
1783                         /* We should already CoW the refcountd extent. */
1784                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1785
1786                         /*
1787                          * Assume worst case - that we're writing in
1788                          * the middle of the extent.
1789                          *
1790                          * We can assume that the write proceeds from
1791                          * left to right, in which case the extent
1792                          * insert code is smart enough to coalesce the
1793                          * next splits into the previous records created.
1794                          */
1795                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1796                                 *extents_to_split = *extents_to_split + 2;
1797                 } else if (phys) {
1798                         /*
1799                          * Only increment phys if it doesn't describe
1800                          * a hole.
1801                          */
1802                         phys++;
1803                 }
1804
1805                 /*
1806                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1807                  * file that got extended.  w_first_new_cpos tells us
1808                  * where the newly allocated clusters are so we can
1809                  * zero them.
1810                  */
1811                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1812                         BUG_ON(phys == 0);
1813                         desc->c_needs_zero = 1;
1814                 }
1815
1816                 desc->c_phys = phys;
1817                 if (phys == 0) {
1818                         desc->c_new = 1;
1819                         desc->c_needs_zero = 1;
1820                         *clusters_to_alloc = *clusters_to_alloc + 1;
1821                 }
1822
1823                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1824                         desc->c_unwritten = 1;
1825                         desc->c_needs_zero = 1;
1826                 }
1827
1828                 num_clusters--;
1829         }
1830
1831         ret = 0;
1832 out:
1833         return ret;
1834 }
1835
1836 static int ocfs2_write_begin_inline(struct address_space *mapping,
1837                                     struct inode *inode,
1838                                     struct ocfs2_write_ctxt *wc)
1839 {
1840         int ret;
1841         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1842         struct page *page;
1843         handle_t *handle;
1844         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1845
1846         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1847         if (IS_ERR(handle)) {
1848                 ret = PTR_ERR(handle);
1849                 mlog_errno(ret);
1850                 goto out;
1851         }
1852
1853         page = find_or_create_page(mapping, 0, GFP_NOFS);
1854         if (!page) {
1855                 ocfs2_commit_trans(osb, handle);
1856                 ret = -ENOMEM;
1857                 mlog_errno(ret);
1858                 goto out;
1859         }
1860         /*
1861          * If we don't set w_num_pages then this page won't get unlocked
1862          * and freed on cleanup of the write context.
1863          */
1864         wc->w_pages[0] = wc->w_target_page = page;
1865         wc->w_num_pages = 1;
1866
1867         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1868                                       OCFS2_JOURNAL_ACCESS_WRITE);
1869         if (ret) {
1870                 ocfs2_commit_trans(osb, handle);
1871
1872                 mlog_errno(ret);
1873                 goto out;
1874         }
1875
1876         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1877                 ocfs2_set_inode_data_inline(inode, di);
1878
1879         if (!PageUptodate(page)) {
1880                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1881                 if (ret) {
1882                         ocfs2_commit_trans(osb, handle);
1883
1884                         goto out;
1885                 }
1886         }
1887
1888         wc->w_handle = handle;
1889 out:
1890         return ret;
1891 }
1892
1893 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1894 {
1895         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1896
1897         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1898                 return 1;
1899         return 0;
1900 }
1901
1902 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1903                                           struct inode *inode, loff_t pos,
1904                                           unsigned len, struct page *mmap_page,
1905                                           struct ocfs2_write_ctxt *wc)
1906 {
1907         int ret, written = 0;
1908         loff_t end = pos + len;
1909         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1910         struct ocfs2_dinode *di = NULL;
1911
1912         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1913                                              len, (unsigned long long)pos,
1914                                              oi->ip_dyn_features);
1915
1916         /*
1917          * Handle inodes which already have inline data 1st.
1918          */
1919         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1920                 if (mmap_page == NULL &&
1921                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1922                         goto do_inline_write;
1923
1924                 /*
1925                  * The write won't fit - we have to give this inode an
1926                  * inline extent list now.
1927                  */
1928                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1929                 if (ret)
1930                         mlog_errno(ret);
1931                 goto out;
1932         }
1933
1934         /*
1935          * Check whether the inode can accept inline data.
1936          */
1937         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1938                 return 0;
1939
1940         /*
1941          * Check whether the write can fit.
1942          */
1943         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1944         if (mmap_page ||
1945             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1946                 return 0;
1947
1948 do_inline_write:
1949         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1950         if (ret) {
1951                 mlog_errno(ret);
1952                 goto out;
1953         }
1954
1955         /*
1956          * This signals to the caller that the data can be written
1957          * inline.
1958          */
1959         written = 1;
1960 out:
1961         return written ? written : ret;
1962 }
1963
1964 /*
1965  * This function only does anything for file systems which can't
1966  * handle sparse files.
1967  *
1968  * What we want to do here is fill in any hole between the current end
1969  * of allocation and the end of our write. That way the rest of the
1970  * write path can treat it as an non-allocating write, which has no
1971  * special case code for sparse/nonsparse files.
1972  */
1973 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1974                                         struct buffer_head *di_bh,
1975                                         loff_t pos, unsigned len,
1976                                         struct ocfs2_write_ctxt *wc)
1977 {
1978         int ret;
1979         loff_t newsize = pos + len;
1980
1981         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1982
1983         if (newsize <= i_size_read(inode))
1984                 return 0;
1985
1986         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1987         if (ret)
1988                 mlog_errno(ret);
1989
1990         wc->w_first_new_cpos =
1991                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1992
1993         return ret;
1994 }
1995
1996 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1997                            loff_t pos)
1998 {
1999         int ret = 0;
2000
2001         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2002         if (pos > i_size_read(inode))
2003                 ret = ocfs2_zero_extend(inode, di_bh, pos);
2004
2005         return ret;
2006 }
2007
2008 /*
2009  * Try to flush truncate logs if we can free enough clusters from it.
2010  * As for return value, "< 0" means error, "0" no space and "1" means
2011  * we have freed enough spaces and let the caller try to allocate again.
2012  */
2013 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2014                                           unsigned int needed)
2015 {
2016         tid_t target;
2017         int ret = 0;
2018         unsigned int truncated_clusters;
2019
2020         mutex_lock(&osb->osb_tl_inode->i_mutex);
2021         truncated_clusters = osb->truncated_clusters;
2022         mutex_unlock(&osb->osb_tl_inode->i_mutex);
2023
2024         /*
2025          * Check whether we can succeed in allocating if we free
2026          * the truncate log.
2027          */
2028         if (truncated_clusters < needed)
2029                 goto out;
2030
2031         ret = ocfs2_flush_truncate_log(osb);
2032         if (ret) {
2033                 mlog_errno(ret);
2034                 goto out;
2035         }
2036
2037         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2038                 jbd2_log_wait_commit(osb->journal->j_journal, target);
2039                 ret = 1;
2040         }
2041 out:
2042         return ret;
2043 }
2044
2045 int ocfs2_write_begin_nolock(struct file *filp,
2046                              struct address_space *mapping,
2047                              loff_t pos, unsigned len, unsigned flags,
2048                              struct page **pagep, void **fsdata,
2049                              struct buffer_head *di_bh, struct page *mmap_page)
2050 {
2051         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2052         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2053         struct ocfs2_write_ctxt *wc;
2054         struct inode *inode = mapping->host;
2055         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2056         struct ocfs2_dinode *di;
2057         struct ocfs2_alloc_context *data_ac = NULL;
2058         struct ocfs2_alloc_context *meta_ac = NULL;
2059         handle_t *handle;
2060         struct ocfs2_extent_tree et;
2061         int try_free = 1, ret1;
2062
2063 try_again:
2064         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2065         if (ret) {
2066                 mlog_errno(ret);
2067                 return ret;
2068         }
2069
2070         if (ocfs2_supports_inline_data(osb)) {
2071                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2072                                                      mmap_page, wc);
2073                 if (ret == 1) {
2074                         ret = 0;
2075                         goto success;
2076                 }
2077                 if (ret < 0) {
2078                         mlog_errno(ret);
2079                         goto out;
2080                 }
2081         }
2082
2083         if (ocfs2_sparse_alloc(osb))
2084                 ret = ocfs2_zero_tail(inode, di_bh, pos);
2085         else
2086                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2087                                                    wc);
2088         if (ret) {
2089                 mlog_errno(ret);
2090                 goto out;
2091         }
2092
2093         ret = ocfs2_check_range_for_refcount(inode, pos, len);
2094         if (ret < 0) {
2095                 mlog_errno(ret);
2096                 goto out;
2097         } else if (ret == 1) {
2098                 clusters_need = wc->w_clen;
2099                 ret = ocfs2_refcount_cow(inode, di_bh,
2100                                          wc->w_cpos, wc->w_clen, UINT_MAX);
2101                 if (ret) {
2102                         mlog_errno(ret);
2103                         goto out;
2104                 }
2105         }
2106
2107         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2108                                         &extents_to_split);
2109         if (ret) {
2110                 mlog_errno(ret);
2111                 goto out;
2112         }
2113         clusters_need += clusters_to_alloc;
2114
2115         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2116
2117         trace_ocfs2_write_begin_nolock(
2118                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2119                         (long long)i_size_read(inode),
2120                         le32_to_cpu(di->i_clusters),
2121                         pos, len, flags, mmap_page,
2122                         clusters_to_alloc, extents_to_split);
2123
2124         /*
2125          * We set w_target_from, w_target_to here so that
2126          * ocfs2_write_end() knows which range in the target page to
2127          * write out. An allocation requires that we write the entire
2128          * cluster range.
2129          */
2130         if (clusters_to_alloc || extents_to_split) {
2131                 /*
2132                  * XXX: We are stretching the limits of
2133                  * ocfs2_lock_allocators(). It greatly over-estimates
2134                  * the work to be done.
2135                  */
2136                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2137                                               wc->w_di_bh);
2138                 ret = ocfs2_lock_allocators(inode, &et,
2139                                             clusters_to_alloc, extents_to_split,
2140                                             &data_ac, &meta_ac);
2141                 if (ret) {
2142                         mlog_errno(ret);
2143                         goto out;
2144                 }
2145
2146                 if (data_ac)
2147                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2148
2149                 credits = ocfs2_calc_extend_credits(inode->i_sb,
2150                                                     &di->id2.i_list);
2151
2152         }
2153
2154         /*
2155          * We have to zero sparse allocated clusters, unwritten extent clusters,
2156          * and non-sparse clusters we just extended.  For non-sparse writes,
2157          * we know zeros will only be needed in the first and/or last cluster.
2158          */
2159         if (clusters_to_alloc || extents_to_split ||
2160             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2161                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2162                 cluster_of_pages = 1;
2163         else
2164                 cluster_of_pages = 0;
2165
2166         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2167
2168         handle = ocfs2_start_trans(osb, credits);
2169         if (IS_ERR(handle)) {
2170                 ret = PTR_ERR(handle);
2171                 mlog_errno(ret);
2172                 goto out;
2173         }
2174
2175         wc->w_handle = handle;
2176
2177         if (clusters_to_alloc) {
2178                 ret = dquot_alloc_space_nodirty(inode,
2179                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2180                 if (ret)
2181                         goto out_commit;
2182         }
2183         /*
2184          * We don't want this to fail in ocfs2_write_end(), so do it
2185          * here.
2186          */
2187         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2188                                       OCFS2_JOURNAL_ACCESS_WRITE);
2189         if (ret) {
2190                 mlog_errno(ret);
2191                 goto out_quota;
2192         }
2193
2194         /*
2195          * Fill our page array first. That way we've grabbed enough so
2196          * that we can zero and flush if we error after adding the
2197          * extent.
2198          */
2199         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2200                                          cluster_of_pages, mmap_page);
2201         if (ret && ret != -EAGAIN) {
2202                 mlog_errno(ret);
2203                 goto out_quota;
2204         }
2205
2206         /*
2207          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2208          * the target page. In this case, we exit with no error and no target
2209          * page. This will trigger the caller, page_mkwrite(), to re-try
2210          * the operation.
2211          */
2212         if (ret == -EAGAIN) {
2213                 BUG_ON(wc->w_target_page);
2214                 ret = 0;
2215                 goto out_quota;
2216         }
2217
2218         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2219                                           len);
2220         if (ret) {
2221                 mlog_errno(ret);
2222                 goto out_quota;
2223         }
2224
2225         if (data_ac)
2226                 ocfs2_free_alloc_context(data_ac);
2227         if (meta_ac)
2228                 ocfs2_free_alloc_context(meta_ac);
2229
2230 success:
2231         *pagep = wc->w_target_page;
2232         *fsdata = wc;
2233         return 0;
2234 out_quota:
2235         if (clusters_to_alloc)
2236                 dquot_free_space(inode,
2237                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2238 out_commit:
2239         ocfs2_commit_trans(osb, handle);
2240
2241 out:
2242         ocfs2_free_write_ctxt(wc);
2243
2244         if (data_ac) {
2245                 ocfs2_free_alloc_context(data_ac);
2246                 data_ac = NULL;
2247         }
2248         if (meta_ac) {
2249                 ocfs2_free_alloc_context(meta_ac);
2250                 meta_ac = NULL;
2251         }
2252
2253         if (ret == -ENOSPC && try_free) {
2254                 /*
2255                  * Try to free some truncate log so that we can have enough
2256                  * clusters to allocate.
2257                  */
2258                 try_free = 0;
2259
2260                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2261                 if (ret1 == 1)
2262                         goto try_again;
2263
2264                 if (ret1 < 0)
2265                         mlog_errno(ret1);
2266         }
2267
2268         return ret;
2269 }
2270
2271 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2272                              loff_t pos, unsigned len, unsigned flags,
2273                              struct page **pagep, void **fsdata)
2274 {
2275         int ret;
2276         struct buffer_head *di_bh = NULL;
2277         struct inode *inode = mapping->host;
2278
2279         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2280         if (ret) {
2281                 mlog_errno(ret);
2282                 return ret;
2283         }
2284
2285         /*
2286          * Take alloc sem here to prevent concurrent lookups. That way
2287          * the mapping, zeroing and tree manipulation within
2288          * ocfs2_write() will be safe against ->readpage(). This
2289          * should also serve to lock out allocation from a shared
2290          * writeable region.
2291          */
2292         down_write(&OCFS2_I(inode)->ip_alloc_sem);
2293
2294         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2295                                        fsdata, di_bh, NULL);
2296         if (ret) {
2297                 mlog_errno(ret);
2298                 goto out_fail;
2299         }
2300
2301         brelse(di_bh);
2302
2303         return 0;
2304
2305 out_fail:
2306         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2307
2308         brelse(di_bh);
2309         ocfs2_inode_unlock(inode, 1);
2310
2311         return ret;
2312 }
2313
2314 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2315                                    unsigned len, unsigned *copied,
2316                                    struct ocfs2_dinode *di,
2317                                    struct ocfs2_write_ctxt *wc)
2318 {
2319         void *kaddr;
2320
2321         if (unlikely(*copied < len)) {
2322                 if (!PageUptodate(wc->w_target_page)) {
2323                         *copied = 0;
2324                         return;
2325                 }
2326         }
2327
2328         kaddr = kmap_atomic(wc->w_target_page);
2329         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2330         kunmap_atomic(kaddr);
2331
2332         trace_ocfs2_write_end_inline(
2333              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2334              (unsigned long long)pos, *copied,
2335              le16_to_cpu(di->id2.i_data.id_count),
2336              le16_to_cpu(di->i_dyn_features));
2337 }
2338
2339 int ocfs2_write_end_nolock(struct address_space *mapping,
2340                            loff_t pos, unsigned len, unsigned copied,
2341                            struct page *page, void *fsdata)
2342 {
2343         int i;
2344         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2345         struct inode *inode = mapping->host;
2346         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2347         struct ocfs2_write_ctxt *wc = fsdata;
2348         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2349         handle_t *handle = wc->w_handle;
2350         struct page *tmppage;
2351
2352         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2353                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2354                 goto out_write_size;
2355         }
2356
2357         if (unlikely(copied < len)) {
2358                 if (!PageUptodate(wc->w_target_page))
2359                         copied = 0;
2360
2361                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2362                                        start+len);
2363         }
2364         flush_dcache_page(wc->w_target_page);
2365
2366         for(i = 0; i < wc->w_num_pages; i++) {
2367                 tmppage = wc->w_pages[i];
2368
2369                 if (tmppage == wc->w_target_page) {
2370                         from = wc->w_target_from;
2371                         to = wc->w_target_to;
2372
2373                         BUG_ON(from > PAGE_CACHE_SIZE ||
2374                                to > PAGE_CACHE_SIZE ||
2375                                to < from);
2376                 } else {
2377                         /*
2378                          * Pages adjacent to the target (if any) imply
2379                          * a hole-filling write in which case we want
2380                          * to flush their entire range.
2381                          */
2382                         from = 0;
2383                         to = PAGE_CACHE_SIZE;
2384                 }
2385
2386                 if (page_has_buffers(tmppage)) {
2387                         if (ocfs2_should_order_data(inode))
2388                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2389                         block_commit_write(tmppage, from, to);
2390                 }
2391         }
2392
2393 out_write_size:
2394         pos += copied;
2395         if (pos > i_size_read(inode)) {
2396                 i_size_write(inode, pos);
2397                 mark_inode_dirty(inode);
2398         }
2399         inode->i_blocks = ocfs2_inode_sector_count(inode);
2400         di->i_size = cpu_to_le64((u64)i_size_read(inode));
2401         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2402         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2403         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2404         ocfs2_update_inode_fsync_trans(handle, inode, 1);
2405         ocfs2_journal_dirty(handle, wc->w_di_bh);
2406
2407         /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2408          * lock, or it will cause a deadlock since journal commit threads holds
2409          * this lock and will ask for the page lock when flushing the data.
2410          * put it here to preserve the unlock order.
2411          */
2412         ocfs2_unlock_pages(wc);
2413
2414         ocfs2_commit_trans(osb, handle);
2415
2416         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2417
2418         brelse(wc->w_di_bh);
2419         kfree(wc);
2420
2421         return copied;
2422 }
2423
2424 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2425                            loff_t pos, unsigned len, unsigned copied,
2426                            struct page *page, void *fsdata)
2427 {
2428         int ret;
2429         struct inode *inode = mapping->host;
2430
2431         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2432
2433         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2434         ocfs2_inode_unlock(inode, 1);
2435
2436         return ret;
2437 }
2438
2439 const struct address_space_operations ocfs2_aops = {
2440         .readpage               = ocfs2_readpage,
2441         .readpages              = ocfs2_readpages,
2442         .writepage              = ocfs2_writepage,
2443         .write_begin            = ocfs2_write_begin,
2444         .write_end              = ocfs2_write_end,
2445         .bmap                   = ocfs2_bmap,
2446         .direct_IO              = ocfs2_direct_IO,
2447         .invalidatepage         = block_invalidatepage,
2448         .releasepage            = ocfs2_releasepage,
2449         .migratepage            = buffer_migrate_page,
2450         .is_partially_uptodate  = block_is_partially_uptodate,
2451         .error_remove_page      = generic_error_remove_page,
2452 };