zram: use __bio_add_page for adding single page to bio
[linux-block.git] / fs / ocfs2 / aops.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/highmem.h>
9 #include <linux/pagemap.h>
10 #include <asm/byteorder.h>
11 #include <linux/swap.h>
12 #include <linux/mpage.h>
13 #include <linux/quotaops.h>
14 #include <linux/blkdev.h>
15 #include <linux/uio.h>
16 #include <linux/mm.h>
17
18 #include <cluster/masklog.h>
19
20 #include "ocfs2.h"
21
22 #include "alloc.h"
23 #include "aops.h"
24 #include "dlmglue.h"
25 #include "extent_map.h"
26 #include "file.h"
27 #include "inode.h"
28 #include "journal.h"
29 #include "suballoc.h"
30 #include "super.h"
31 #include "symlink.h"
32 #include "refcounttree.h"
33 #include "ocfs2_trace.h"
34
35 #include "buffer_head_io.h"
36 #include "dir.h"
37 #include "namei.h"
38 #include "sysfile.h"
39
40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
41                                    struct buffer_head *bh_result, int create)
42 {
43         int err = -EIO;
44         int status;
45         struct ocfs2_dinode *fe = NULL;
46         struct buffer_head *bh = NULL;
47         struct buffer_head *buffer_cache_bh = NULL;
48         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
49         void *kaddr;
50
51         trace_ocfs2_symlink_get_block(
52                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
53                         (unsigned long long)iblock, bh_result, create);
54
55         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
56
57         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
58                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
59                      (unsigned long long)iblock);
60                 goto bail;
61         }
62
63         status = ocfs2_read_inode_block(inode, &bh);
64         if (status < 0) {
65                 mlog_errno(status);
66                 goto bail;
67         }
68         fe = (struct ocfs2_dinode *) bh->b_data;
69
70         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
71                                                     le32_to_cpu(fe->i_clusters))) {
72                 err = -ENOMEM;
73                 mlog(ML_ERROR, "block offset is outside the allocated size: "
74                      "%llu\n", (unsigned long long)iblock);
75                 goto bail;
76         }
77
78         /* We don't use the page cache to create symlink data, so if
79          * need be, copy it over from the buffer cache. */
80         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
81                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
82                             iblock;
83                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
84                 if (!buffer_cache_bh) {
85                         err = -ENOMEM;
86                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
87                         goto bail;
88                 }
89
90                 /* we haven't locked out transactions, so a commit
91                  * could've happened. Since we've got a reference on
92                  * the bh, even if it commits while we're doing the
93                  * copy, the data is still good. */
94                 if (buffer_jbd(buffer_cache_bh)
95                     && ocfs2_inode_is_new(inode)) {
96                         kaddr = kmap_atomic(bh_result->b_page);
97                         if (!kaddr) {
98                                 mlog(ML_ERROR, "couldn't kmap!\n");
99                                 goto bail;
100                         }
101                         memcpy(kaddr + (bh_result->b_size * iblock),
102                                buffer_cache_bh->b_data,
103                                bh_result->b_size);
104                         kunmap_atomic(kaddr);
105                         set_buffer_uptodate(bh_result);
106                 }
107                 brelse(buffer_cache_bh);
108         }
109
110         map_bh(bh_result, inode->i_sb,
111                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
112
113         err = 0;
114
115 bail:
116         brelse(bh);
117
118         return err;
119 }
120
121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
122                     struct buffer_head *bh_result, int create)
123 {
124         int ret = 0;
125         struct ocfs2_inode_info *oi = OCFS2_I(inode);
126
127         down_read(&oi->ip_alloc_sem);
128         ret = ocfs2_get_block(inode, iblock, bh_result, create);
129         up_read(&oi->ip_alloc_sem);
130
131         return ret;
132 }
133
134 int ocfs2_get_block(struct inode *inode, sector_t iblock,
135                     struct buffer_head *bh_result, int create)
136 {
137         int err = 0;
138         unsigned int ext_flags;
139         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
140         u64 p_blkno, count, past_eof;
141         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
142
143         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
144                               (unsigned long long)iblock, bh_result, create);
145
146         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148                      inode, inode->i_ino);
149
150         if (S_ISLNK(inode->i_mode)) {
151                 /* this always does I/O for some reason. */
152                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
153                 goto bail;
154         }
155
156         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
157                                           &ext_flags);
158         if (err) {
159                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
160                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
161                      (unsigned long long)p_blkno);
162                 goto bail;
163         }
164
165         if (max_blocks < count)
166                 count = max_blocks;
167
168         /*
169          * ocfs2 never allocates in this function - the only time we
170          * need to use BH_New is when we're extending i_size on a file
171          * system which doesn't support holes, in which case BH_New
172          * allows __block_write_begin() to zero.
173          *
174          * If we see this on a sparse file system, then a truncate has
175          * raced us and removed the cluster. In this case, we clear
176          * the buffers dirty and uptodate bits and let the buffer code
177          * ignore it as a hole.
178          */
179         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
180                 clear_buffer_dirty(bh_result);
181                 clear_buffer_uptodate(bh_result);
182                 goto bail;
183         }
184
185         /* Treat the unwritten extent as a hole for zeroing purposes. */
186         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
187                 map_bh(bh_result, inode->i_sb, p_blkno);
188
189         bh_result->b_size = count << inode->i_blkbits;
190
191         if (!ocfs2_sparse_alloc(osb)) {
192                 if (p_blkno == 0) {
193                         err = -EIO;
194                         mlog(ML_ERROR,
195                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
196                              (unsigned long long)iblock,
197                              (unsigned long long)p_blkno,
198                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
199                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
200                         dump_stack();
201                         goto bail;
202                 }
203         }
204
205         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
206
207         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
208                                   (unsigned long long)past_eof);
209         if (create && (iblock >= past_eof))
210                 set_buffer_new(bh_result);
211
212 bail:
213         if (err < 0)
214                 err = -EIO;
215
216         return err;
217 }
218
219 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
220                            struct buffer_head *di_bh)
221 {
222         void *kaddr;
223         loff_t size;
224         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
225
226         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
227                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
228                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
229                 return -EROFS;
230         }
231
232         size = i_size_read(inode);
233
234         if (size > PAGE_SIZE ||
235             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
236                 ocfs2_error(inode->i_sb,
237                             "Inode %llu has with inline data has bad size: %Lu\n",
238                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
239                             (unsigned long long)size);
240                 return -EROFS;
241         }
242
243         kaddr = kmap_atomic(page);
244         if (size)
245                 memcpy(kaddr, di->id2.i_data.id_data, size);
246         /* Clear the remaining part of the page */
247         memset(kaddr + size, 0, PAGE_SIZE - size);
248         flush_dcache_page(page);
249         kunmap_atomic(kaddr);
250
251         SetPageUptodate(page);
252
253         return 0;
254 }
255
256 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
257 {
258         int ret;
259         struct buffer_head *di_bh = NULL;
260
261         BUG_ON(!PageLocked(page));
262         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
263
264         ret = ocfs2_read_inode_block(inode, &di_bh);
265         if (ret) {
266                 mlog_errno(ret);
267                 goto out;
268         }
269
270         ret = ocfs2_read_inline_data(inode, page, di_bh);
271 out:
272         unlock_page(page);
273
274         brelse(di_bh);
275         return ret;
276 }
277
278 static int ocfs2_read_folio(struct file *file, struct folio *folio)
279 {
280         struct inode *inode = folio->mapping->host;
281         struct ocfs2_inode_info *oi = OCFS2_I(inode);
282         loff_t start = folio_pos(folio);
283         int ret, unlock = 1;
284
285         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index);
286
287         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, &folio->page);
288         if (ret != 0) {
289                 if (ret == AOP_TRUNCATED_PAGE)
290                         unlock = 0;
291                 mlog_errno(ret);
292                 goto out;
293         }
294
295         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
296                 /*
297                  * Unlock the folio and cycle ip_alloc_sem so that we don't
298                  * busyloop waiting for ip_alloc_sem to unlock
299                  */
300                 ret = AOP_TRUNCATED_PAGE;
301                 folio_unlock(folio);
302                 unlock = 0;
303                 down_read(&oi->ip_alloc_sem);
304                 up_read(&oi->ip_alloc_sem);
305                 goto out_inode_unlock;
306         }
307
308         /*
309          * i_size might have just been updated as we grabed the meta lock.  We
310          * might now be discovering a truncate that hit on another node.
311          * block_read_full_folio->get_block freaks out if it is asked to read
312          * beyond the end of a file, so we check here.  Callers
313          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
314          * and notice that the folio they just read isn't needed.
315          *
316          * XXX sys_readahead() seems to get that wrong?
317          */
318         if (start >= i_size_read(inode)) {
319                 folio_zero_segment(folio, 0, folio_size(folio));
320                 folio_mark_uptodate(folio);
321                 ret = 0;
322                 goto out_alloc;
323         }
324
325         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
326                 ret = ocfs2_readpage_inline(inode, &folio->page);
327         else
328                 ret = block_read_full_folio(folio, ocfs2_get_block);
329         unlock = 0;
330
331 out_alloc:
332         up_read(&oi->ip_alloc_sem);
333 out_inode_unlock:
334         ocfs2_inode_unlock(inode, 0);
335 out:
336         if (unlock)
337                 folio_unlock(folio);
338         return ret;
339 }
340
341 /*
342  * This is used only for read-ahead. Failures or difficult to handle
343  * situations are safe to ignore.
344  *
345  * Right now, we don't bother with BH_Boundary - in-inode extent lists
346  * are quite large (243 extents on 4k blocks), so most inodes don't
347  * grow out to a tree. If need be, detecting boundary extents could
348  * trivially be added in a future version of ocfs2_get_block().
349  */
350 static void ocfs2_readahead(struct readahead_control *rac)
351 {
352         int ret;
353         struct inode *inode = rac->mapping->host;
354         struct ocfs2_inode_info *oi = OCFS2_I(inode);
355
356         /*
357          * Use the nonblocking flag for the dlm code to avoid page
358          * lock inversion, but don't bother with retrying.
359          */
360         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361         if (ret)
362                 return;
363
364         if (down_read_trylock(&oi->ip_alloc_sem) == 0)
365                 goto out_unlock;
366
367         /*
368          * Don't bother with inline-data. There isn't anything
369          * to read-ahead in that case anyway...
370          */
371         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
372                 goto out_up;
373
374         /*
375          * Check whether a remote node truncated this file - we just
376          * drop out in that case as it's not worth handling here.
377          */
378         if (readahead_pos(rac) >= i_size_read(inode))
379                 goto out_up;
380
381         mpage_readahead(rac, ocfs2_get_block);
382
383 out_up:
384         up_read(&oi->ip_alloc_sem);
385 out_unlock:
386         ocfs2_inode_unlock(inode, 0);
387 }
388
389 /* Note: Because we don't support holes, our allocation has
390  * already happened (allocation writes zeros to the file data)
391  * so we don't have to worry about ordered writes in
392  * ocfs2_writepage.
393  *
394  * ->writepage is called during the process of invalidating the page cache
395  * during blocked lock processing.  It can't block on any cluster locks
396  * to during block mapping.  It's relying on the fact that the block
397  * mapping can't have disappeared under the dirty pages that it is
398  * being asked to write back.
399  */
400 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
401 {
402         trace_ocfs2_writepage(
403                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
404                 page->index);
405
406         return block_write_full_page(page, ocfs2_get_block, wbc);
407 }
408
409 /* Taken from ext3. We don't necessarily need the full blown
410  * functionality yet, but IMHO it's better to cut and paste the whole
411  * thing so we can avoid introducing our own bugs (and easily pick up
412  * their fixes when they happen) --Mark */
413 int walk_page_buffers(  handle_t *handle,
414                         struct buffer_head *head,
415                         unsigned from,
416                         unsigned to,
417                         int *partial,
418                         int (*fn)(      handle_t *handle,
419                                         struct buffer_head *bh))
420 {
421         struct buffer_head *bh;
422         unsigned block_start, block_end;
423         unsigned blocksize = head->b_size;
424         int err, ret = 0;
425         struct buffer_head *next;
426
427         for (   bh = head, block_start = 0;
428                 ret == 0 && (bh != head || !block_start);
429                 block_start = block_end, bh = next)
430         {
431                 next = bh->b_this_page;
432                 block_end = block_start + blocksize;
433                 if (block_end <= from || block_start >= to) {
434                         if (partial && !buffer_uptodate(bh))
435                                 *partial = 1;
436                         continue;
437                 }
438                 err = (*fn)(handle, bh);
439                 if (!ret)
440                         ret = err;
441         }
442         return ret;
443 }
444
445 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
446 {
447         sector_t status;
448         u64 p_blkno = 0;
449         int err = 0;
450         struct inode *inode = mapping->host;
451
452         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
453                          (unsigned long long)block);
454
455         /*
456          * The swap code (ab-)uses ->bmap to get a block mapping and then
457          * bypasseÑ• the file system for actual I/O.  We really can't allow
458          * that on refcounted inodes, so we have to skip out here.  And yes,
459          * 0 is the magic code for a bmap error..
460          */
461         if (ocfs2_is_refcount_inode(inode))
462                 return 0;
463
464         /* We don't need to lock journal system files, since they aren't
465          * accessed concurrently from multiple nodes.
466          */
467         if (!INODE_JOURNAL(inode)) {
468                 err = ocfs2_inode_lock(inode, NULL, 0);
469                 if (err) {
470                         if (err != -ENOENT)
471                                 mlog_errno(err);
472                         goto bail;
473                 }
474                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
475         }
476
477         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
478                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
479                                                   NULL);
480
481         if (!INODE_JOURNAL(inode)) {
482                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
483                 ocfs2_inode_unlock(inode, 0);
484         }
485
486         if (err) {
487                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
488                      (unsigned long long)block);
489                 mlog_errno(err);
490                 goto bail;
491         }
492
493 bail:
494         status = err ? 0 : p_blkno;
495
496         return status;
497 }
498
499 static bool ocfs2_release_folio(struct folio *folio, gfp_t wait)
500 {
501         if (!folio_buffers(folio))
502                 return false;
503         return try_to_free_buffers(folio);
504 }
505
506 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
507                                             u32 cpos,
508                                             unsigned int *start,
509                                             unsigned int *end)
510 {
511         unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
512
513         if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
514                 unsigned int cpp;
515
516                 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
517
518                 cluster_start = cpos % cpp;
519                 cluster_start = cluster_start << osb->s_clustersize_bits;
520
521                 cluster_end = cluster_start + osb->s_clustersize;
522         }
523
524         BUG_ON(cluster_start > PAGE_SIZE);
525         BUG_ON(cluster_end > PAGE_SIZE);
526
527         if (start)
528                 *start = cluster_start;
529         if (end)
530                 *end = cluster_end;
531 }
532
533 /*
534  * 'from' and 'to' are the region in the page to avoid zeroing.
535  *
536  * If pagesize > clustersize, this function will avoid zeroing outside
537  * of the cluster boundary.
538  *
539  * from == to == 0 is code for "zero the entire cluster region"
540  */
541 static void ocfs2_clear_page_regions(struct page *page,
542                                      struct ocfs2_super *osb, u32 cpos,
543                                      unsigned from, unsigned to)
544 {
545         void *kaddr;
546         unsigned int cluster_start, cluster_end;
547
548         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
549
550         kaddr = kmap_atomic(page);
551
552         if (from || to) {
553                 if (from > cluster_start)
554                         memset(kaddr + cluster_start, 0, from - cluster_start);
555                 if (to < cluster_end)
556                         memset(kaddr + to, 0, cluster_end - to);
557         } else {
558                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
559         }
560
561         kunmap_atomic(kaddr);
562 }
563
564 /*
565  * Nonsparse file systems fully allocate before we get to the write
566  * code. This prevents ocfs2_write() from tagging the write as an
567  * allocating one, which means ocfs2_map_page_blocks() might try to
568  * read-in the blocks at the tail of our file. Avoid reading them by
569  * testing i_size against each block offset.
570  */
571 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
572                                  unsigned int block_start)
573 {
574         u64 offset = page_offset(page) + block_start;
575
576         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
577                 return 1;
578
579         if (i_size_read(inode) > offset)
580                 return 1;
581
582         return 0;
583 }
584
585 /*
586  * Some of this taken from __block_write_begin(). We already have our
587  * mapping by now though, and the entire write will be allocating or
588  * it won't, so not much need to use BH_New.
589  *
590  * This will also skip zeroing, which is handled externally.
591  */
592 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
593                           struct inode *inode, unsigned int from,
594                           unsigned int to, int new)
595 {
596         int ret = 0;
597         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
598         unsigned int block_end, block_start;
599         unsigned int bsize = i_blocksize(inode);
600
601         if (!page_has_buffers(page))
602                 create_empty_buffers(page, bsize, 0);
603
604         head = page_buffers(page);
605         for (bh = head, block_start = 0; bh != head || !block_start;
606              bh = bh->b_this_page, block_start += bsize) {
607                 block_end = block_start + bsize;
608
609                 clear_buffer_new(bh);
610
611                 /*
612                  * Ignore blocks outside of our i/o range -
613                  * they may belong to unallocated clusters.
614                  */
615                 if (block_start >= to || block_end <= from) {
616                         if (PageUptodate(page))
617                                 set_buffer_uptodate(bh);
618                         continue;
619                 }
620
621                 /*
622                  * For an allocating write with cluster size >= page
623                  * size, we always write the entire page.
624                  */
625                 if (new)
626                         set_buffer_new(bh);
627
628                 if (!buffer_mapped(bh)) {
629                         map_bh(bh, inode->i_sb, *p_blkno);
630                         clean_bdev_bh_alias(bh);
631                 }
632
633                 if (PageUptodate(page)) {
634                         set_buffer_uptodate(bh);
635                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
636                            !buffer_new(bh) &&
637                            ocfs2_should_read_blk(inode, page, block_start) &&
638                            (block_start < from || block_end > to)) {
639                         bh_read_nowait(bh, 0);
640                         *wait_bh++=bh;
641                 }
642
643                 *p_blkno = *p_blkno + 1;
644         }
645
646         /*
647          * If we issued read requests - let them complete.
648          */
649         while(wait_bh > wait) {
650                 wait_on_buffer(*--wait_bh);
651                 if (!buffer_uptodate(*wait_bh))
652                         ret = -EIO;
653         }
654
655         if (ret == 0 || !new)
656                 return ret;
657
658         /*
659          * If we get -EIO above, zero out any newly allocated blocks
660          * to avoid exposing stale data.
661          */
662         bh = head;
663         block_start = 0;
664         do {
665                 block_end = block_start + bsize;
666                 if (block_end <= from)
667                         goto next_bh;
668                 if (block_start >= to)
669                         break;
670
671                 zero_user(page, block_start, bh->b_size);
672                 set_buffer_uptodate(bh);
673                 mark_buffer_dirty(bh);
674
675 next_bh:
676                 block_start = block_end;
677                 bh = bh->b_this_page;
678         } while (bh != head);
679
680         return ret;
681 }
682
683 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
684 #define OCFS2_MAX_CTXT_PAGES    1
685 #else
686 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
687 #endif
688
689 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
690
691 struct ocfs2_unwritten_extent {
692         struct list_head        ue_node;
693         struct list_head        ue_ip_node;
694         u32                     ue_cpos;
695         u32                     ue_phys;
696 };
697
698 /*
699  * Describe the state of a single cluster to be written to.
700  */
701 struct ocfs2_write_cluster_desc {
702         u32             c_cpos;
703         u32             c_phys;
704         /*
705          * Give this a unique field because c_phys eventually gets
706          * filled.
707          */
708         unsigned        c_new;
709         unsigned        c_clear_unwritten;
710         unsigned        c_needs_zero;
711 };
712
713 struct ocfs2_write_ctxt {
714         /* Logical cluster position / len of write */
715         u32                             w_cpos;
716         u32                             w_clen;
717
718         /* First cluster allocated in a nonsparse extend */
719         u32                             w_first_new_cpos;
720
721         /* Type of caller. Must be one of buffer, mmap, direct.  */
722         ocfs2_write_type_t              w_type;
723
724         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
725
726         /*
727          * This is true if page_size > cluster_size.
728          *
729          * It triggers a set of special cases during write which might
730          * have to deal with allocating writes to partial pages.
731          */
732         unsigned int                    w_large_pages;
733
734         /*
735          * Pages involved in this write.
736          *
737          * w_target_page is the page being written to by the user.
738          *
739          * w_pages is an array of pages which always contains
740          * w_target_page, and in the case of an allocating write with
741          * page_size < cluster size, it will contain zero'd and mapped
742          * pages adjacent to w_target_page which need to be written
743          * out in so that future reads from that region will get
744          * zero's.
745          */
746         unsigned int                    w_num_pages;
747         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
748         struct page                     *w_target_page;
749
750         /*
751          * w_target_locked is used for page_mkwrite path indicating no unlocking
752          * against w_target_page in ocfs2_write_end_nolock.
753          */
754         unsigned int                    w_target_locked:1;
755
756         /*
757          * ocfs2_write_end() uses this to know what the real range to
758          * write in the target should be.
759          */
760         unsigned int                    w_target_from;
761         unsigned int                    w_target_to;
762
763         /*
764          * We could use journal_current_handle() but this is cleaner,
765          * IMHO -Mark
766          */
767         handle_t                        *w_handle;
768
769         struct buffer_head              *w_di_bh;
770
771         struct ocfs2_cached_dealloc_ctxt w_dealloc;
772
773         struct list_head                w_unwritten_list;
774         unsigned int                    w_unwritten_count;
775 };
776
777 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
778 {
779         int i;
780
781         for(i = 0; i < num_pages; i++) {
782                 if (pages[i]) {
783                         unlock_page(pages[i]);
784                         mark_page_accessed(pages[i]);
785                         put_page(pages[i]);
786                 }
787         }
788 }
789
790 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
791 {
792         int i;
793
794         /*
795          * w_target_locked is only set to true in the page_mkwrite() case.
796          * The intent is to allow us to lock the target page from write_begin()
797          * to write_end(). The caller must hold a ref on w_target_page.
798          */
799         if (wc->w_target_locked) {
800                 BUG_ON(!wc->w_target_page);
801                 for (i = 0; i < wc->w_num_pages; i++) {
802                         if (wc->w_target_page == wc->w_pages[i]) {
803                                 wc->w_pages[i] = NULL;
804                                 break;
805                         }
806                 }
807                 mark_page_accessed(wc->w_target_page);
808                 put_page(wc->w_target_page);
809         }
810         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
811 }
812
813 static void ocfs2_free_unwritten_list(struct inode *inode,
814                                  struct list_head *head)
815 {
816         struct ocfs2_inode_info *oi = OCFS2_I(inode);
817         struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
818
819         list_for_each_entry_safe(ue, tmp, head, ue_node) {
820                 list_del(&ue->ue_node);
821                 spin_lock(&oi->ip_lock);
822                 list_del(&ue->ue_ip_node);
823                 spin_unlock(&oi->ip_lock);
824                 kfree(ue);
825         }
826 }
827
828 static void ocfs2_free_write_ctxt(struct inode *inode,
829                                   struct ocfs2_write_ctxt *wc)
830 {
831         ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
832         ocfs2_unlock_pages(wc);
833         brelse(wc->w_di_bh);
834         kfree(wc);
835 }
836
837 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
838                                   struct ocfs2_super *osb, loff_t pos,
839                                   unsigned len, ocfs2_write_type_t type,
840                                   struct buffer_head *di_bh)
841 {
842         u32 cend;
843         struct ocfs2_write_ctxt *wc;
844
845         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
846         if (!wc)
847                 return -ENOMEM;
848
849         wc->w_cpos = pos >> osb->s_clustersize_bits;
850         wc->w_first_new_cpos = UINT_MAX;
851         cend = (pos + len - 1) >> osb->s_clustersize_bits;
852         wc->w_clen = cend - wc->w_cpos + 1;
853         get_bh(di_bh);
854         wc->w_di_bh = di_bh;
855         wc->w_type = type;
856
857         if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
858                 wc->w_large_pages = 1;
859         else
860                 wc->w_large_pages = 0;
861
862         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
863         INIT_LIST_HEAD(&wc->w_unwritten_list);
864
865         *wcp = wc;
866
867         return 0;
868 }
869
870 /*
871  * If a page has any new buffers, zero them out here, and mark them uptodate
872  * and dirty so they'll be written out (in order to prevent uninitialised
873  * block data from leaking). And clear the new bit.
874  */
875 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
876 {
877         unsigned int block_start, block_end;
878         struct buffer_head *head, *bh;
879
880         BUG_ON(!PageLocked(page));
881         if (!page_has_buffers(page))
882                 return;
883
884         bh = head = page_buffers(page);
885         block_start = 0;
886         do {
887                 block_end = block_start + bh->b_size;
888
889                 if (buffer_new(bh)) {
890                         if (block_end > from && block_start < to) {
891                                 if (!PageUptodate(page)) {
892                                         unsigned start, end;
893
894                                         start = max(from, block_start);
895                                         end = min(to, block_end);
896
897                                         zero_user_segment(page, start, end);
898                                         set_buffer_uptodate(bh);
899                                 }
900
901                                 clear_buffer_new(bh);
902                                 mark_buffer_dirty(bh);
903                         }
904                 }
905
906                 block_start = block_end;
907                 bh = bh->b_this_page;
908         } while (bh != head);
909 }
910
911 /*
912  * Only called when we have a failure during allocating write to write
913  * zero's to the newly allocated region.
914  */
915 static void ocfs2_write_failure(struct inode *inode,
916                                 struct ocfs2_write_ctxt *wc,
917                                 loff_t user_pos, unsigned user_len)
918 {
919         int i;
920         unsigned from = user_pos & (PAGE_SIZE - 1),
921                 to = user_pos + user_len;
922         struct page *tmppage;
923
924         if (wc->w_target_page)
925                 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
926
927         for(i = 0; i < wc->w_num_pages; i++) {
928                 tmppage = wc->w_pages[i];
929
930                 if (tmppage && page_has_buffers(tmppage)) {
931                         if (ocfs2_should_order_data(inode))
932                                 ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
933                                                            user_pos, user_len);
934
935                         block_commit_write(tmppage, from, to);
936                 }
937         }
938 }
939
940 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
941                                         struct ocfs2_write_ctxt *wc,
942                                         struct page *page, u32 cpos,
943                                         loff_t user_pos, unsigned user_len,
944                                         int new)
945 {
946         int ret;
947         unsigned int map_from = 0, map_to = 0;
948         unsigned int cluster_start, cluster_end;
949         unsigned int user_data_from = 0, user_data_to = 0;
950
951         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
952                                         &cluster_start, &cluster_end);
953
954         /* treat the write as new if the a hole/lseek spanned across
955          * the page boundary.
956          */
957         new = new | ((i_size_read(inode) <= page_offset(page)) &&
958                         (page_offset(page) <= user_pos));
959
960         if (page == wc->w_target_page) {
961                 map_from = user_pos & (PAGE_SIZE - 1);
962                 map_to = map_from + user_len;
963
964                 if (new)
965                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
966                                                     cluster_start, cluster_end,
967                                                     new);
968                 else
969                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
970                                                     map_from, map_to, new);
971                 if (ret) {
972                         mlog_errno(ret);
973                         goto out;
974                 }
975
976                 user_data_from = map_from;
977                 user_data_to = map_to;
978                 if (new) {
979                         map_from = cluster_start;
980                         map_to = cluster_end;
981                 }
982         } else {
983                 /*
984                  * If we haven't allocated the new page yet, we
985                  * shouldn't be writing it out without copying user
986                  * data. This is likely a math error from the caller.
987                  */
988                 BUG_ON(!new);
989
990                 map_from = cluster_start;
991                 map_to = cluster_end;
992
993                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
994                                             cluster_start, cluster_end, new);
995                 if (ret) {
996                         mlog_errno(ret);
997                         goto out;
998                 }
999         }
1000
1001         /*
1002          * Parts of newly allocated pages need to be zero'd.
1003          *
1004          * Above, we have also rewritten 'to' and 'from' - as far as
1005          * the rest of the function is concerned, the entire cluster
1006          * range inside of a page needs to be written.
1007          *
1008          * We can skip this if the page is up to date - it's already
1009          * been zero'd from being read in as a hole.
1010          */
1011         if (new && !PageUptodate(page))
1012                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1013                                          cpos, user_data_from, user_data_to);
1014
1015         flush_dcache_page(page);
1016
1017 out:
1018         return ret;
1019 }
1020
1021 /*
1022  * This function will only grab one clusters worth of pages.
1023  */
1024 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1025                                       struct ocfs2_write_ctxt *wc,
1026                                       u32 cpos, loff_t user_pos,
1027                                       unsigned user_len, int new,
1028                                       struct page *mmap_page)
1029 {
1030         int ret = 0, i;
1031         unsigned long start, target_index, end_index, index;
1032         struct inode *inode = mapping->host;
1033         loff_t last_byte;
1034
1035         target_index = user_pos >> PAGE_SHIFT;
1036
1037         /*
1038          * Figure out how many pages we'll be manipulating here. For
1039          * non allocating write, we just change the one
1040          * page. Otherwise, we'll need a whole clusters worth.  If we're
1041          * writing past i_size, we only need enough pages to cover the
1042          * last page of the write.
1043          */
1044         if (new) {
1045                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1046                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1047                 /*
1048                  * We need the index *past* the last page we could possibly
1049                  * touch.  This is the page past the end of the write or
1050                  * i_size, whichever is greater.
1051                  */
1052                 last_byte = max(user_pos + user_len, i_size_read(inode));
1053                 BUG_ON(last_byte < 1);
1054                 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1055                 if ((start + wc->w_num_pages) > end_index)
1056                         wc->w_num_pages = end_index - start;
1057         } else {
1058                 wc->w_num_pages = 1;
1059                 start = target_index;
1060         }
1061         end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1062
1063         for(i = 0; i < wc->w_num_pages; i++) {
1064                 index = start + i;
1065
1066                 if (index >= target_index && index <= end_index &&
1067                     wc->w_type == OCFS2_WRITE_MMAP) {
1068                         /*
1069                          * ocfs2_pagemkwrite() is a little different
1070                          * and wants us to directly use the page
1071                          * passed in.
1072                          */
1073                         lock_page(mmap_page);
1074
1075                         /* Exit and let the caller retry */
1076                         if (mmap_page->mapping != mapping) {
1077                                 WARN_ON(mmap_page->mapping);
1078                                 unlock_page(mmap_page);
1079                                 ret = -EAGAIN;
1080                                 goto out;
1081                         }
1082
1083                         get_page(mmap_page);
1084                         wc->w_pages[i] = mmap_page;
1085                         wc->w_target_locked = true;
1086                 } else if (index >= target_index && index <= end_index &&
1087                            wc->w_type == OCFS2_WRITE_DIRECT) {
1088                         /* Direct write has no mapping page. */
1089                         wc->w_pages[i] = NULL;
1090                         continue;
1091                 } else {
1092                         wc->w_pages[i] = find_or_create_page(mapping, index,
1093                                                              GFP_NOFS);
1094                         if (!wc->w_pages[i]) {
1095                                 ret = -ENOMEM;
1096                                 mlog_errno(ret);
1097                                 goto out;
1098                         }
1099                 }
1100                 wait_for_stable_page(wc->w_pages[i]);
1101
1102                 if (index == target_index)
1103                         wc->w_target_page = wc->w_pages[i];
1104         }
1105 out:
1106         if (ret)
1107                 wc->w_target_locked = false;
1108         return ret;
1109 }
1110
1111 /*
1112  * Prepare a single cluster for write one cluster into the file.
1113  */
1114 static int ocfs2_write_cluster(struct address_space *mapping,
1115                                u32 *phys, unsigned int new,
1116                                unsigned int clear_unwritten,
1117                                unsigned int should_zero,
1118                                struct ocfs2_alloc_context *data_ac,
1119                                struct ocfs2_alloc_context *meta_ac,
1120                                struct ocfs2_write_ctxt *wc, u32 cpos,
1121                                loff_t user_pos, unsigned user_len)
1122 {
1123         int ret, i;
1124         u64 p_blkno;
1125         struct inode *inode = mapping->host;
1126         struct ocfs2_extent_tree et;
1127         int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1128
1129         if (new) {
1130                 u32 tmp_pos;
1131
1132                 /*
1133                  * This is safe to call with the page locks - it won't take
1134                  * any additional semaphores or cluster locks.
1135                  */
1136                 tmp_pos = cpos;
1137                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1138                                            &tmp_pos, 1, !clear_unwritten,
1139                                            wc->w_di_bh, wc->w_handle,
1140                                            data_ac, meta_ac, NULL);
1141                 /*
1142                  * This shouldn't happen because we must have already
1143                  * calculated the correct meta data allocation required. The
1144                  * internal tree allocation code should know how to increase
1145                  * transaction credits itself.
1146                  *
1147                  * If need be, we could handle -EAGAIN for a
1148                  * RESTART_TRANS here.
1149                  */
1150                 mlog_bug_on_msg(ret == -EAGAIN,
1151                                 "Inode %llu: EAGAIN return during allocation.\n",
1152                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1153                 if (ret < 0) {
1154                         mlog_errno(ret);
1155                         goto out;
1156                 }
1157         } else if (clear_unwritten) {
1158                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1159                                               wc->w_di_bh);
1160                 ret = ocfs2_mark_extent_written(inode, &et,
1161                                                 wc->w_handle, cpos, 1, *phys,
1162                                                 meta_ac, &wc->w_dealloc);
1163                 if (ret < 0) {
1164                         mlog_errno(ret);
1165                         goto out;
1166                 }
1167         }
1168
1169         /*
1170          * The only reason this should fail is due to an inability to
1171          * find the extent added.
1172          */
1173         ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1174         if (ret < 0) {
1175                 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1176                             "at logical cluster %u",
1177                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1178                 goto out;
1179         }
1180
1181         BUG_ON(*phys == 0);
1182
1183         p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1184         if (!should_zero)
1185                 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1186
1187         for(i = 0; i < wc->w_num_pages; i++) {
1188                 int tmpret;
1189
1190                 /* This is the direct io target page. */
1191                 if (wc->w_pages[i] == NULL) {
1192                         p_blkno++;
1193                         continue;
1194                 }
1195
1196                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1197                                                       wc->w_pages[i], cpos,
1198                                                       user_pos, user_len,
1199                                                       should_zero);
1200                 if (tmpret) {
1201                         mlog_errno(tmpret);
1202                         if (ret == 0)
1203                                 ret = tmpret;
1204                 }
1205         }
1206
1207         /*
1208          * We only have cleanup to do in case of allocating write.
1209          */
1210         if (ret && new)
1211                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1212
1213 out:
1214
1215         return ret;
1216 }
1217
1218 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1219                                        struct ocfs2_alloc_context *data_ac,
1220                                        struct ocfs2_alloc_context *meta_ac,
1221                                        struct ocfs2_write_ctxt *wc,
1222                                        loff_t pos, unsigned len)
1223 {
1224         int ret, i;
1225         loff_t cluster_off;
1226         unsigned int local_len = len;
1227         struct ocfs2_write_cluster_desc *desc;
1228         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1229
1230         for (i = 0; i < wc->w_clen; i++) {
1231                 desc = &wc->w_desc[i];
1232
1233                 /*
1234                  * We have to make sure that the total write passed in
1235                  * doesn't extend past a single cluster.
1236                  */
1237                 local_len = len;
1238                 cluster_off = pos & (osb->s_clustersize - 1);
1239                 if ((cluster_off + local_len) > osb->s_clustersize)
1240                         local_len = osb->s_clustersize - cluster_off;
1241
1242                 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1243                                           desc->c_new,
1244                                           desc->c_clear_unwritten,
1245                                           desc->c_needs_zero,
1246                                           data_ac, meta_ac,
1247                                           wc, desc->c_cpos, pos, local_len);
1248                 if (ret) {
1249                         mlog_errno(ret);
1250                         goto out;
1251                 }
1252
1253                 len -= local_len;
1254                 pos += local_len;
1255         }
1256
1257         ret = 0;
1258 out:
1259         return ret;
1260 }
1261
1262 /*
1263  * ocfs2_write_end() wants to know which parts of the target page it
1264  * should complete the write on. It's easiest to compute them ahead of
1265  * time when a more complete view of the write is available.
1266  */
1267 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1268                                         struct ocfs2_write_ctxt *wc,
1269                                         loff_t pos, unsigned len, int alloc)
1270 {
1271         struct ocfs2_write_cluster_desc *desc;
1272
1273         wc->w_target_from = pos & (PAGE_SIZE - 1);
1274         wc->w_target_to = wc->w_target_from + len;
1275
1276         if (alloc == 0)
1277                 return;
1278
1279         /*
1280          * Allocating write - we may have different boundaries based
1281          * on page size and cluster size.
1282          *
1283          * NOTE: We can no longer compute one value from the other as
1284          * the actual write length and user provided length may be
1285          * different.
1286          */
1287
1288         if (wc->w_large_pages) {
1289                 /*
1290                  * We only care about the 1st and last cluster within
1291                  * our range and whether they should be zero'd or not. Either
1292                  * value may be extended out to the start/end of a
1293                  * newly allocated cluster.
1294                  */
1295                 desc = &wc->w_desc[0];
1296                 if (desc->c_needs_zero)
1297                         ocfs2_figure_cluster_boundaries(osb,
1298                                                         desc->c_cpos,
1299                                                         &wc->w_target_from,
1300                                                         NULL);
1301
1302                 desc = &wc->w_desc[wc->w_clen - 1];
1303                 if (desc->c_needs_zero)
1304                         ocfs2_figure_cluster_boundaries(osb,
1305                                                         desc->c_cpos,
1306                                                         NULL,
1307                                                         &wc->w_target_to);
1308         } else {
1309                 wc->w_target_from = 0;
1310                 wc->w_target_to = PAGE_SIZE;
1311         }
1312 }
1313
1314 /*
1315  * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1316  * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1317  * by the direct io procedure.
1318  * If this is a new extent that allocated by direct io, we should mark it in
1319  * the ip_unwritten_list.
1320  */
1321 static int ocfs2_unwritten_check(struct inode *inode,
1322                                  struct ocfs2_write_ctxt *wc,
1323                                  struct ocfs2_write_cluster_desc *desc)
1324 {
1325         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1326         struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1327         int ret = 0;
1328
1329         if (!desc->c_needs_zero)
1330                 return 0;
1331
1332 retry:
1333         spin_lock(&oi->ip_lock);
1334         /* Needs not to zero no metter buffer or direct. The one who is zero
1335          * the cluster is doing zero. And he will clear unwritten after all
1336          * cluster io finished. */
1337         list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1338                 if (desc->c_cpos == ue->ue_cpos) {
1339                         BUG_ON(desc->c_new);
1340                         desc->c_needs_zero = 0;
1341                         desc->c_clear_unwritten = 0;
1342                         goto unlock;
1343                 }
1344         }
1345
1346         if (wc->w_type != OCFS2_WRITE_DIRECT)
1347                 goto unlock;
1348
1349         if (new == NULL) {
1350                 spin_unlock(&oi->ip_lock);
1351                 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1352                              GFP_NOFS);
1353                 if (new == NULL) {
1354                         ret = -ENOMEM;
1355                         goto out;
1356                 }
1357                 goto retry;
1358         }
1359         /* This direct write will doing zero. */
1360         new->ue_cpos = desc->c_cpos;
1361         new->ue_phys = desc->c_phys;
1362         desc->c_clear_unwritten = 0;
1363         list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1364         list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1365         wc->w_unwritten_count++;
1366         new = NULL;
1367 unlock:
1368         spin_unlock(&oi->ip_lock);
1369 out:
1370         kfree(new);
1371         return ret;
1372 }
1373
1374 /*
1375  * Populate each single-cluster write descriptor in the write context
1376  * with information about the i/o to be done.
1377  *
1378  * Returns the number of clusters that will have to be allocated, as
1379  * well as a worst case estimate of the number of extent records that
1380  * would have to be created during a write to an unwritten region.
1381  */
1382 static int ocfs2_populate_write_desc(struct inode *inode,
1383                                      struct ocfs2_write_ctxt *wc,
1384                                      unsigned int *clusters_to_alloc,
1385                                      unsigned int *extents_to_split)
1386 {
1387         int ret;
1388         struct ocfs2_write_cluster_desc *desc;
1389         unsigned int num_clusters = 0;
1390         unsigned int ext_flags = 0;
1391         u32 phys = 0;
1392         int i;
1393
1394         *clusters_to_alloc = 0;
1395         *extents_to_split = 0;
1396
1397         for (i = 0; i < wc->w_clen; i++) {
1398                 desc = &wc->w_desc[i];
1399                 desc->c_cpos = wc->w_cpos + i;
1400
1401                 if (num_clusters == 0) {
1402                         /*
1403                          * Need to look up the next extent record.
1404                          */
1405                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1406                                                  &num_clusters, &ext_flags);
1407                         if (ret) {
1408                                 mlog_errno(ret);
1409                                 goto out;
1410                         }
1411
1412                         /* We should already CoW the refcountd extent. */
1413                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1414
1415                         /*
1416                          * Assume worst case - that we're writing in
1417                          * the middle of the extent.
1418                          *
1419                          * We can assume that the write proceeds from
1420                          * left to right, in which case the extent
1421                          * insert code is smart enough to coalesce the
1422                          * next splits into the previous records created.
1423                          */
1424                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1425                                 *extents_to_split = *extents_to_split + 2;
1426                 } else if (phys) {
1427                         /*
1428                          * Only increment phys if it doesn't describe
1429                          * a hole.
1430                          */
1431                         phys++;
1432                 }
1433
1434                 /*
1435                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1436                  * file that got extended.  w_first_new_cpos tells us
1437                  * where the newly allocated clusters are so we can
1438                  * zero them.
1439                  */
1440                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1441                         BUG_ON(phys == 0);
1442                         desc->c_needs_zero = 1;
1443                 }
1444
1445                 desc->c_phys = phys;
1446                 if (phys == 0) {
1447                         desc->c_new = 1;
1448                         desc->c_needs_zero = 1;
1449                         desc->c_clear_unwritten = 1;
1450                         *clusters_to_alloc = *clusters_to_alloc + 1;
1451                 }
1452
1453                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1454                         desc->c_clear_unwritten = 1;
1455                         desc->c_needs_zero = 1;
1456                 }
1457
1458                 ret = ocfs2_unwritten_check(inode, wc, desc);
1459                 if (ret) {
1460                         mlog_errno(ret);
1461                         goto out;
1462                 }
1463
1464                 num_clusters--;
1465         }
1466
1467         ret = 0;
1468 out:
1469         return ret;
1470 }
1471
1472 static int ocfs2_write_begin_inline(struct address_space *mapping,
1473                                     struct inode *inode,
1474                                     struct ocfs2_write_ctxt *wc)
1475 {
1476         int ret;
1477         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1478         struct page *page;
1479         handle_t *handle;
1480         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1481
1482         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1483         if (IS_ERR(handle)) {
1484                 ret = PTR_ERR(handle);
1485                 mlog_errno(ret);
1486                 goto out;
1487         }
1488
1489         page = find_or_create_page(mapping, 0, GFP_NOFS);
1490         if (!page) {
1491                 ocfs2_commit_trans(osb, handle);
1492                 ret = -ENOMEM;
1493                 mlog_errno(ret);
1494                 goto out;
1495         }
1496         /*
1497          * If we don't set w_num_pages then this page won't get unlocked
1498          * and freed on cleanup of the write context.
1499          */
1500         wc->w_pages[0] = wc->w_target_page = page;
1501         wc->w_num_pages = 1;
1502
1503         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1504                                       OCFS2_JOURNAL_ACCESS_WRITE);
1505         if (ret) {
1506                 ocfs2_commit_trans(osb, handle);
1507
1508                 mlog_errno(ret);
1509                 goto out;
1510         }
1511
1512         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1513                 ocfs2_set_inode_data_inline(inode, di);
1514
1515         if (!PageUptodate(page)) {
1516                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1517                 if (ret) {
1518                         ocfs2_commit_trans(osb, handle);
1519
1520                         goto out;
1521                 }
1522         }
1523
1524         wc->w_handle = handle;
1525 out:
1526         return ret;
1527 }
1528
1529 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1530 {
1531         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1532
1533         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1534                 return 1;
1535         return 0;
1536 }
1537
1538 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1539                                           struct inode *inode, loff_t pos,
1540                                           unsigned len, struct page *mmap_page,
1541                                           struct ocfs2_write_ctxt *wc)
1542 {
1543         int ret, written = 0;
1544         loff_t end = pos + len;
1545         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1546         struct ocfs2_dinode *di = NULL;
1547
1548         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1549                                              len, (unsigned long long)pos,
1550                                              oi->ip_dyn_features);
1551
1552         /*
1553          * Handle inodes which already have inline data 1st.
1554          */
1555         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1556                 if (mmap_page == NULL &&
1557                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1558                         goto do_inline_write;
1559
1560                 /*
1561                  * The write won't fit - we have to give this inode an
1562                  * inline extent list now.
1563                  */
1564                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1565                 if (ret)
1566                         mlog_errno(ret);
1567                 goto out;
1568         }
1569
1570         /*
1571          * Check whether the inode can accept inline data.
1572          */
1573         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1574                 return 0;
1575
1576         /*
1577          * Check whether the write can fit.
1578          */
1579         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1580         if (mmap_page ||
1581             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1582                 return 0;
1583
1584 do_inline_write:
1585         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1586         if (ret) {
1587                 mlog_errno(ret);
1588                 goto out;
1589         }
1590
1591         /*
1592          * This signals to the caller that the data can be written
1593          * inline.
1594          */
1595         written = 1;
1596 out:
1597         return written ? written : ret;
1598 }
1599
1600 /*
1601  * This function only does anything for file systems which can't
1602  * handle sparse files.
1603  *
1604  * What we want to do here is fill in any hole between the current end
1605  * of allocation and the end of our write. That way the rest of the
1606  * write path can treat it as an non-allocating write, which has no
1607  * special case code for sparse/nonsparse files.
1608  */
1609 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1610                                         struct buffer_head *di_bh,
1611                                         loff_t pos, unsigned len,
1612                                         struct ocfs2_write_ctxt *wc)
1613 {
1614         int ret;
1615         loff_t newsize = pos + len;
1616
1617         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1618
1619         if (newsize <= i_size_read(inode))
1620                 return 0;
1621
1622         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1623         if (ret)
1624                 mlog_errno(ret);
1625
1626         /* There is no wc if this is call from direct. */
1627         if (wc)
1628                 wc->w_first_new_cpos =
1629                         ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1630
1631         return ret;
1632 }
1633
1634 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1635                            loff_t pos)
1636 {
1637         int ret = 0;
1638
1639         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1640         if (pos > i_size_read(inode))
1641                 ret = ocfs2_zero_extend(inode, di_bh, pos);
1642
1643         return ret;
1644 }
1645
1646 int ocfs2_write_begin_nolock(struct address_space *mapping,
1647                              loff_t pos, unsigned len, ocfs2_write_type_t type,
1648                              struct page **pagep, void **fsdata,
1649                              struct buffer_head *di_bh, struct page *mmap_page)
1650 {
1651         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1652         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1653         struct ocfs2_write_ctxt *wc;
1654         struct inode *inode = mapping->host;
1655         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1656         struct ocfs2_dinode *di;
1657         struct ocfs2_alloc_context *data_ac = NULL;
1658         struct ocfs2_alloc_context *meta_ac = NULL;
1659         handle_t *handle;
1660         struct ocfs2_extent_tree et;
1661         int try_free = 1, ret1;
1662
1663 try_again:
1664         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1665         if (ret) {
1666                 mlog_errno(ret);
1667                 return ret;
1668         }
1669
1670         if (ocfs2_supports_inline_data(osb)) {
1671                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1672                                                      mmap_page, wc);
1673                 if (ret == 1) {
1674                         ret = 0;
1675                         goto success;
1676                 }
1677                 if (ret < 0) {
1678                         mlog_errno(ret);
1679                         goto out;
1680                 }
1681         }
1682
1683         /* Direct io change i_size late, should not zero tail here. */
1684         if (type != OCFS2_WRITE_DIRECT) {
1685                 if (ocfs2_sparse_alloc(osb))
1686                         ret = ocfs2_zero_tail(inode, di_bh, pos);
1687                 else
1688                         ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1689                                                            len, wc);
1690                 if (ret) {
1691                         mlog_errno(ret);
1692                         goto out;
1693                 }
1694         }
1695
1696         ret = ocfs2_check_range_for_refcount(inode, pos, len);
1697         if (ret < 0) {
1698                 mlog_errno(ret);
1699                 goto out;
1700         } else if (ret == 1) {
1701                 clusters_need = wc->w_clen;
1702                 ret = ocfs2_refcount_cow(inode, di_bh,
1703                                          wc->w_cpos, wc->w_clen, UINT_MAX);
1704                 if (ret) {
1705                         mlog_errno(ret);
1706                         goto out;
1707                 }
1708         }
1709
1710         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1711                                         &extents_to_split);
1712         if (ret) {
1713                 mlog_errno(ret);
1714                 goto out;
1715         }
1716         clusters_need += clusters_to_alloc;
1717
1718         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1719
1720         trace_ocfs2_write_begin_nolock(
1721                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1722                         (long long)i_size_read(inode),
1723                         le32_to_cpu(di->i_clusters),
1724                         pos, len, type, mmap_page,
1725                         clusters_to_alloc, extents_to_split);
1726
1727         /*
1728          * We set w_target_from, w_target_to here so that
1729          * ocfs2_write_end() knows which range in the target page to
1730          * write out. An allocation requires that we write the entire
1731          * cluster range.
1732          */
1733         if (clusters_to_alloc || extents_to_split) {
1734                 /*
1735                  * XXX: We are stretching the limits of
1736                  * ocfs2_lock_allocators(). It greatly over-estimates
1737                  * the work to be done.
1738                  */
1739                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1740                                               wc->w_di_bh);
1741                 ret = ocfs2_lock_allocators(inode, &et,
1742                                             clusters_to_alloc, extents_to_split,
1743                                             &data_ac, &meta_ac);
1744                 if (ret) {
1745                         mlog_errno(ret);
1746                         goto out;
1747                 }
1748
1749                 if (data_ac)
1750                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1751
1752                 credits = ocfs2_calc_extend_credits(inode->i_sb,
1753                                                     &di->id2.i_list);
1754         } else if (type == OCFS2_WRITE_DIRECT)
1755                 /* direct write needs not to start trans if no extents alloc. */
1756                 goto success;
1757
1758         /*
1759          * We have to zero sparse allocated clusters, unwritten extent clusters,
1760          * and non-sparse clusters we just extended.  For non-sparse writes,
1761          * we know zeros will only be needed in the first and/or last cluster.
1762          */
1763         if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1764                            wc->w_desc[wc->w_clen - 1].c_needs_zero))
1765                 cluster_of_pages = 1;
1766         else
1767                 cluster_of_pages = 0;
1768
1769         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1770
1771         handle = ocfs2_start_trans(osb, credits);
1772         if (IS_ERR(handle)) {
1773                 ret = PTR_ERR(handle);
1774                 mlog_errno(ret);
1775                 goto out;
1776         }
1777
1778         wc->w_handle = handle;
1779
1780         if (clusters_to_alloc) {
1781                 ret = dquot_alloc_space_nodirty(inode,
1782                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1783                 if (ret)
1784                         goto out_commit;
1785         }
1786
1787         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1788                                       OCFS2_JOURNAL_ACCESS_WRITE);
1789         if (ret) {
1790                 mlog_errno(ret);
1791                 goto out_quota;
1792         }
1793
1794         /*
1795          * Fill our page array first. That way we've grabbed enough so
1796          * that we can zero and flush if we error after adding the
1797          * extent.
1798          */
1799         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1800                                          cluster_of_pages, mmap_page);
1801         if (ret) {
1802                 /*
1803                  * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1804                  * the target page. In this case, we exit with no error and no target
1805                  * page. This will trigger the caller, page_mkwrite(), to re-try
1806                  * the operation.
1807                  */
1808                 if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
1809                         BUG_ON(wc->w_target_page);
1810                         ret = 0;
1811                         goto out_quota;
1812                 }
1813
1814                 mlog_errno(ret);
1815                 goto out_quota;
1816         }
1817
1818         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1819                                           len);
1820         if (ret) {
1821                 mlog_errno(ret);
1822                 goto out_quota;
1823         }
1824
1825         if (data_ac)
1826                 ocfs2_free_alloc_context(data_ac);
1827         if (meta_ac)
1828                 ocfs2_free_alloc_context(meta_ac);
1829
1830 success:
1831         if (pagep)
1832                 *pagep = wc->w_target_page;
1833         *fsdata = wc;
1834         return 0;
1835 out_quota:
1836         if (clusters_to_alloc)
1837                 dquot_free_space(inode,
1838                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1839 out_commit:
1840         ocfs2_commit_trans(osb, handle);
1841
1842 out:
1843         /*
1844          * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1845          * even in case of error here like ENOSPC and ENOMEM. So, we need
1846          * to unlock the target page manually to prevent deadlocks when
1847          * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1848          * to VM code.
1849          */
1850         if (wc->w_target_locked)
1851                 unlock_page(mmap_page);
1852
1853         ocfs2_free_write_ctxt(inode, wc);
1854
1855         if (data_ac) {
1856                 ocfs2_free_alloc_context(data_ac);
1857                 data_ac = NULL;
1858         }
1859         if (meta_ac) {
1860                 ocfs2_free_alloc_context(meta_ac);
1861                 meta_ac = NULL;
1862         }
1863
1864         if (ret == -ENOSPC && try_free) {
1865                 /*
1866                  * Try to free some truncate log so that we can have enough
1867                  * clusters to allocate.
1868                  */
1869                 try_free = 0;
1870
1871                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1872                 if (ret1 == 1)
1873                         goto try_again;
1874
1875                 if (ret1 < 0)
1876                         mlog_errno(ret1);
1877         }
1878
1879         return ret;
1880 }
1881
1882 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1883                              loff_t pos, unsigned len,
1884                              struct page **pagep, void **fsdata)
1885 {
1886         int ret;
1887         struct buffer_head *di_bh = NULL;
1888         struct inode *inode = mapping->host;
1889
1890         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1891         if (ret) {
1892                 mlog_errno(ret);
1893                 return ret;
1894         }
1895
1896         /*
1897          * Take alloc sem here to prevent concurrent lookups. That way
1898          * the mapping, zeroing and tree manipulation within
1899          * ocfs2_write() will be safe against ->read_folio(). This
1900          * should also serve to lock out allocation from a shared
1901          * writeable region.
1902          */
1903         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1904
1905         ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1906                                        pagep, fsdata, di_bh, NULL);
1907         if (ret) {
1908                 mlog_errno(ret);
1909                 goto out_fail;
1910         }
1911
1912         brelse(di_bh);
1913
1914         return 0;
1915
1916 out_fail:
1917         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1918
1919         brelse(di_bh);
1920         ocfs2_inode_unlock(inode, 1);
1921
1922         return ret;
1923 }
1924
1925 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1926                                    unsigned len, unsigned *copied,
1927                                    struct ocfs2_dinode *di,
1928                                    struct ocfs2_write_ctxt *wc)
1929 {
1930         void *kaddr;
1931
1932         if (unlikely(*copied < len)) {
1933                 if (!PageUptodate(wc->w_target_page)) {
1934                         *copied = 0;
1935                         return;
1936                 }
1937         }
1938
1939         kaddr = kmap_atomic(wc->w_target_page);
1940         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1941         kunmap_atomic(kaddr);
1942
1943         trace_ocfs2_write_end_inline(
1944              (unsigned long long)OCFS2_I(inode)->ip_blkno,
1945              (unsigned long long)pos, *copied,
1946              le16_to_cpu(di->id2.i_data.id_count),
1947              le16_to_cpu(di->i_dyn_features));
1948 }
1949
1950 int ocfs2_write_end_nolock(struct address_space *mapping,
1951                            loff_t pos, unsigned len, unsigned copied, void *fsdata)
1952 {
1953         int i, ret;
1954         unsigned from, to, start = pos & (PAGE_SIZE - 1);
1955         struct inode *inode = mapping->host;
1956         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1957         struct ocfs2_write_ctxt *wc = fsdata;
1958         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1959         handle_t *handle = wc->w_handle;
1960         struct page *tmppage;
1961
1962         BUG_ON(!list_empty(&wc->w_unwritten_list));
1963
1964         if (handle) {
1965                 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1966                                 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1967                 if (ret) {
1968                         copied = ret;
1969                         mlog_errno(ret);
1970                         goto out;
1971                 }
1972         }
1973
1974         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1975                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1976                 goto out_write_size;
1977         }
1978
1979         if (unlikely(copied < len) && wc->w_target_page) {
1980                 loff_t new_isize;
1981
1982                 if (!PageUptodate(wc->w_target_page))
1983                         copied = 0;
1984
1985                 new_isize = max_t(loff_t, i_size_read(inode), pos + copied);
1986                 if (new_isize > page_offset(wc->w_target_page))
1987                         ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1988                                                start+len);
1989                 else {
1990                         /*
1991                          * When page is fully beyond new isize (data copy
1992                          * failed), do not bother zeroing the page. Invalidate
1993                          * it instead so that writeback does not get confused
1994                          * put page & buffer dirty bits into inconsistent
1995                          * state.
1996                          */
1997                         block_invalidate_folio(page_folio(wc->w_target_page),
1998                                                 0, PAGE_SIZE);
1999                 }
2000         }
2001         if (wc->w_target_page)
2002                 flush_dcache_page(wc->w_target_page);
2003
2004         for(i = 0; i < wc->w_num_pages; i++) {
2005                 tmppage = wc->w_pages[i];
2006
2007                 /* This is the direct io target page. */
2008                 if (tmppage == NULL)
2009                         continue;
2010
2011                 if (tmppage == wc->w_target_page) {
2012                         from = wc->w_target_from;
2013                         to = wc->w_target_to;
2014
2015                         BUG_ON(from > PAGE_SIZE ||
2016                                to > PAGE_SIZE ||
2017                                to < from);
2018                 } else {
2019                         /*
2020                          * Pages adjacent to the target (if any) imply
2021                          * a hole-filling write in which case we want
2022                          * to flush their entire range.
2023                          */
2024                         from = 0;
2025                         to = PAGE_SIZE;
2026                 }
2027
2028                 if (page_has_buffers(tmppage)) {
2029                         if (handle && ocfs2_should_order_data(inode)) {
2030                                 loff_t start_byte =
2031                                         ((loff_t)tmppage->index << PAGE_SHIFT) +
2032                                         from;
2033                                 loff_t length = to - from;
2034                                 ocfs2_jbd2_inode_add_write(handle, inode,
2035                                                            start_byte, length);
2036                         }
2037                         block_commit_write(tmppage, from, to);
2038                 }
2039         }
2040
2041 out_write_size:
2042         /* Direct io do not update i_size here. */
2043         if (wc->w_type != OCFS2_WRITE_DIRECT) {
2044                 pos += copied;
2045                 if (pos > i_size_read(inode)) {
2046                         i_size_write(inode, pos);
2047                         mark_inode_dirty(inode);
2048                 }
2049                 inode->i_blocks = ocfs2_inode_sector_count(inode);
2050                 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2051                 inode->i_mtime = inode->i_ctime = current_time(inode);
2052                 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2053                 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2054                 if (handle)
2055                         ocfs2_update_inode_fsync_trans(handle, inode, 1);
2056         }
2057         if (handle)
2058                 ocfs2_journal_dirty(handle, wc->w_di_bh);
2059
2060 out:
2061         /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2062          * lock, or it will cause a deadlock since journal commit threads holds
2063          * this lock and will ask for the page lock when flushing the data.
2064          * put it here to preserve the unlock order.
2065          */
2066         ocfs2_unlock_pages(wc);
2067
2068         if (handle)
2069                 ocfs2_commit_trans(osb, handle);
2070
2071         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2072
2073         brelse(wc->w_di_bh);
2074         kfree(wc);
2075
2076         return copied;
2077 }
2078
2079 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2080                            loff_t pos, unsigned len, unsigned copied,
2081                            struct page *page, void *fsdata)
2082 {
2083         int ret;
2084         struct inode *inode = mapping->host;
2085
2086         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2087
2088         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2089         ocfs2_inode_unlock(inode, 1);
2090
2091         return ret;
2092 }
2093
2094 struct ocfs2_dio_write_ctxt {
2095         struct list_head        dw_zero_list;
2096         unsigned                dw_zero_count;
2097         int                     dw_orphaned;
2098         pid_t                   dw_writer_pid;
2099 };
2100
2101 static struct ocfs2_dio_write_ctxt *
2102 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2103 {
2104         struct ocfs2_dio_write_ctxt *dwc = NULL;
2105
2106         if (bh->b_private)
2107                 return bh->b_private;
2108
2109         dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2110         if (dwc == NULL)
2111                 return NULL;
2112         INIT_LIST_HEAD(&dwc->dw_zero_list);
2113         dwc->dw_zero_count = 0;
2114         dwc->dw_orphaned = 0;
2115         dwc->dw_writer_pid = task_pid_nr(current);
2116         bh->b_private = dwc;
2117         *alloc = 1;
2118
2119         return dwc;
2120 }
2121
2122 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2123                                      struct ocfs2_dio_write_ctxt *dwc)
2124 {
2125         ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2126         kfree(dwc);
2127 }
2128
2129 /*
2130  * TODO: Make this into a generic get_blocks function.
2131  *
2132  * From do_direct_io in direct-io.c:
2133  *  "So what we do is to permit the ->get_blocks function to populate
2134  *   bh.b_size with the size of IO which is permitted at this offset and
2135  *   this i_blkbits."
2136  *
2137  * This function is called directly from get_more_blocks in direct-io.c.
2138  *
2139  * called like this: dio->get_blocks(dio->inode, fs_startblk,
2140  *                                      fs_count, map_bh, dio->rw == WRITE);
2141  */
2142 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2143                                struct buffer_head *bh_result, int create)
2144 {
2145         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2146         struct ocfs2_inode_info *oi = OCFS2_I(inode);
2147         struct ocfs2_write_ctxt *wc;
2148         struct ocfs2_write_cluster_desc *desc = NULL;
2149         struct ocfs2_dio_write_ctxt *dwc = NULL;
2150         struct buffer_head *di_bh = NULL;
2151         u64 p_blkno;
2152         unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2153         loff_t pos = iblock << i_blkbits;
2154         sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2155         unsigned len, total_len = bh_result->b_size;
2156         int ret = 0, first_get_block = 0;
2157
2158         len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2159         len = min(total_len, len);
2160
2161         /*
2162          * bh_result->b_size is count in get_more_blocks according to write
2163          * "pos" and "end", we need map twice to return different buffer state:
2164          * 1. area in file size, not set NEW;
2165          * 2. area out file size, set  NEW.
2166          *
2167          *                 iblock    endblk
2168          * |--------|---------|---------|---------
2169          * |<-------area in file------->|
2170          */
2171
2172         if ((iblock <= endblk) &&
2173             ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2174                 len = (endblk - iblock + 1) << i_blkbits;
2175
2176         mlog(0, "get block of %lu at %llu:%u req %u\n",
2177                         inode->i_ino, pos, len, total_len);
2178
2179         /*
2180          * Because we need to change file size in ocfs2_dio_end_io_write(), or
2181          * we may need to add it to orphan dir. So can not fall to fast path
2182          * while file size will be changed.
2183          */
2184         if (pos + total_len <= i_size_read(inode)) {
2185
2186                 /* This is the fast path for re-write. */
2187                 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2188                 if (buffer_mapped(bh_result) &&
2189                     !buffer_new(bh_result) &&
2190                     ret == 0)
2191                         goto out;
2192
2193                 /* Clear state set by ocfs2_get_block. */
2194                 bh_result->b_state = 0;
2195         }
2196
2197         dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2198         if (unlikely(dwc == NULL)) {
2199                 ret = -ENOMEM;
2200                 mlog_errno(ret);
2201                 goto out;
2202         }
2203
2204         if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2205             ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2206             !dwc->dw_orphaned) {
2207                 /*
2208                  * when we are going to alloc extents beyond file size, add the
2209                  * inode to orphan dir, so we can recall those spaces when
2210                  * system crashed during write.
2211                  */
2212                 ret = ocfs2_add_inode_to_orphan(osb, inode);
2213                 if (ret < 0) {
2214                         mlog_errno(ret);
2215                         goto out;
2216                 }
2217                 dwc->dw_orphaned = 1;
2218         }
2219
2220         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2221         if (ret) {
2222                 mlog_errno(ret);
2223                 goto out;
2224         }
2225
2226         down_write(&oi->ip_alloc_sem);
2227
2228         if (first_get_block) {
2229                 if (ocfs2_sparse_alloc(osb))
2230                         ret = ocfs2_zero_tail(inode, di_bh, pos);
2231                 else
2232                         ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2233                                                            total_len, NULL);
2234                 if (ret < 0) {
2235                         mlog_errno(ret);
2236                         goto unlock;
2237                 }
2238         }
2239
2240         ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2241                                        OCFS2_WRITE_DIRECT, NULL,
2242                                        (void **)&wc, di_bh, NULL);
2243         if (ret) {
2244                 mlog_errno(ret);
2245                 goto unlock;
2246         }
2247
2248         desc = &wc->w_desc[0];
2249
2250         p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2251         BUG_ON(p_blkno == 0);
2252         p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2253
2254         map_bh(bh_result, inode->i_sb, p_blkno);
2255         bh_result->b_size = len;
2256         if (desc->c_needs_zero)
2257                 set_buffer_new(bh_result);
2258
2259         if (iblock > endblk)
2260                 set_buffer_new(bh_result);
2261
2262         /* May sleep in end_io. It should not happen in a irq context. So defer
2263          * it to dio work queue. */
2264         set_buffer_defer_completion(bh_result);
2265
2266         if (!list_empty(&wc->w_unwritten_list)) {
2267                 struct ocfs2_unwritten_extent *ue = NULL;
2268
2269                 ue = list_first_entry(&wc->w_unwritten_list,
2270                                       struct ocfs2_unwritten_extent,
2271                                       ue_node);
2272                 BUG_ON(ue->ue_cpos != desc->c_cpos);
2273                 /* The physical address may be 0, fill it. */
2274                 ue->ue_phys = desc->c_phys;
2275
2276                 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2277                 dwc->dw_zero_count += wc->w_unwritten_count;
2278         }
2279
2280         ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2281         BUG_ON(ret != len);
2282         ret = 0;
2283 unlock:
2284         up_write(&oi->ip_alloc_sem);
2285         ocfs2_inode_unlock(inode, 1);
2286         brelse(di_bh);
2287 out:
2288         if (ret < 0)
2289                 ret = -EIO;
2290         return ret;
2291 }
2292
2293 static int ocfs2_dio_end_io_write(struct inode *inode,
2294                                   struct ocfs2_dio_write_ctxt *dwc,
2295                                   loff_t offset,
2296                                   ssize_t bytes)
2297 {
2298         struct ocfs2_cached_dealloc_ctxt dealloc;
2299         struct ocfs2_extent_tree et;
2300         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2301         struct ocfs2_inode_info *oi = OCFS2_I(inode);
2302         struct ocfs2_unwritten_extent *ue = NULL;
2303         struct buffer_head *di_bh = NULL;
2304         struct ocfs2_dinode *di;
2305         struct ocfs2_alloc_context *data_ac = NULL;
2306         struct ocfs2_alloc_context *meta_ac = NULL;
2307         handle_t *handle = NULL;
2308         loff_t end = offset + bytes;
2309         int ret = 0, credits = 0;
2310
2311         ocfs2_init_dealloc_ctxt(&dealloc);
2312
2313         /* We do clear unwritten, delete orphan, change i_size here. If neither
2314          * of these happen, we can skip all this. */
2315         if (list_empty(&dwc->dw_zero_list) &&
2316             end <= i_size_read(inode) &&
2317             !dwc->dw_orphaned)
2318                 goto out;
2319
2320         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2321         if (ret < 0) {
2322                 mlog_errno(ret);
2323                 goto out;
2324         }
2325
2326         down_write(&oi->ip_alloc_sem);
2327
2328         /* Delete orphan before acquire i_rwsem. */
2329         if (dwc->dw_orphaned) {
2330                 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2331
2332                 end = end > i_size_read(inode) ? end : 0;
2333
2334                 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2335                                 !!end, end);
2336                 if (ret < 0)
2337                         mlog_errno(ret);
2338         }
2339
2340         di = (struct ocfs2_dinode *)di_bh->b_data;
2341
2342         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2343
2344         /* Attach dealloc with extent tree in case that we may reuse extents
2345          * which are already unlinked from current extent tree due to extent
2346          * rotation and merging.
2347          */
2348         et.et_dealloc = &dealloc;
2349
2350         ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2351                                     &data_ac, &meta_ac);
2352         if (ret) {
2353                 mlog_errno(ret);
2354                 goto unlock;
2355         }
2356
2357         credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2358
2359         handle = ocfs2_start_trans(osb, credits);
2360         if (IS_ERR(handle)) {
2361                 ret = PTR_ERR(handle);
2362                 mlog_errno(ret);
2363                 goto unlock;
2364         }
2365         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2366                                       OCFS2_JOURNAL_ACCESS_WRITE);
2367         if (ret) {
2368                 mlog_errno(ret);
2369                 goto commit;
2370         }
2371
2372         list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2373                 ret = ocfs2_mark_extent_written(inode, &et, handle,
2374                                                 ue->ue_cpos, 1,
2375                                                 ue->ue_phys,
2376                                                 meta_ac, &dealloc);
2377                 if (ret < 0) {
2378                         mlog_errno(ret);
2379                         break;
2380                 }
2381         }
2382
2383         if (end > i_size_read(inode)) {
2384                 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2385                 if (ret < 0)
2386                         mlog_errno(ret);
2387         }
2388 commit:
2389         ocfs2_commit_trans(osb, handle);
2390 unlock:
2391         up_write(&oi->ip_alloc_sem);
2392         ocfs2_inode_unlock(inode, 1);
2393         brelse(di_bh);
2394 out:
2395         if (data_ac)
2396                 ocfs2_free_alloc_context(data_ac);
2397         if (meta_ac)
2398                 ocfs2_free_alloc_context(meta_ac);
2399         ocfs2_run_deallocs(osb, &dealloc);
2400         ocfs2_dio_free_write_ctx(inode, dwc);
2401
2402         return ret;
2403 }
2404
2405 /*
2406  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2407  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2408  * to protect io on one node from truncation on another.
2409  */
2410 static int ocfs2_dio_end_io(struct kiocb *iocb,
2411                             loff_t offset,
2412                             ssize_t bytes,
2413                             void *private)
2414 {
2415         struct inode *inode = file_inode(iocb->ki_filp);
2416         int level;
2417         int ret = 0;
2418
2419         /* this io's submitter should not have unlocked this before we could */
2420         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2421
2422         if (bytes <= 0)
2423                 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2424                                  (long long)bytes);
2425         if (private) {
2426                 if (bytes > 0)
2427                         ret = ocfs2_dio_end_io_write(inode, private, offset,
2428                                                      bytes);
2429                 else
2430                         ocfs2_dio_free_write_ctx(inode, private);
2431         }
2432
2433         ocfs2_iocb_clear_rw_locked(iocb);
2434
2435         level = ocfs2_iocb_rw_locked_level(iocb);
2436         ocfs2_rw_unlock(inode, level);
2437         return ret;
2438 }
2439
2440 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2441 {
2442         struct file *file = iocb->ki_filp;
2443         struct inode *inode = file->f_mapping->host;
2444         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2445         get_block_t *get_block;
2446
2447         /*
2448          * Fallback to buffered I/O if we see an inode without
2449          * extents.
2450          */
2451         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2452                 return 0;
2453
2454         /* Fallback to buffered I/O if we do not support append dio. */
2455         if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2456             !ocfs2_supports_append_dio(osb))
2457                 return 0;
2458
2459         if (iov_iter_rw(iter) == READ)
2460                 get_block = ocfs2_lock_get_block;
2461         else
2462                 get_block = ocfs2_dio_wr_get_block;
2463
2464         return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2465                                     iter, get_block,
2466                                     ocfs2_dio_end_io, 0);
2467 }
2468
2469 const struct address_space_operations ocfs2_aops = {
2470         .dirty_folio            = block_dirty_folio,
2471         .read_folio             = ocfs2_read_folio,
2472         .readahead              = ocfs2_readahead,
2473         .writepage              = ocfs2_writepage,
2474         .write_begin            = ocfs2_write_begin,
2475         .write_end              = ocfs2_write_end,
2476         .bmap                   = ocfs2_bmap,
2477         .direct_IO              = ocfs2_direct_IO,
2478         .invalidate_folio       = block_invalidate_folio,
2479         .release_folio          = ocfs2_release_folio,
2480         .migrate_folio          = buffer_migrate_folio,
2481         .is_partially_uptodate  = block_is_partially_uptodate,
2482         .error_remove_page      = generic_error_remove_page,
2483 };