Merge tag 'locking-core-2023-05-05' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / fs / nilfs2 / page.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Buffer/page management specific to NILFS
4  *
5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6  *
7  * Written by Ryusuke Konishi and Seiji Kihara.
8  */
9
10 #include <linux/pagemap.h>
11 #include <linux/writeback.h>
12 #include <linux/swap.h>
13 #include <linux/bitops.h>
14 #include <linux/page-flags.h>
15 #include <linux/list.h>
16 #include <linux/highmem.h>
17 #include <linux/pagevec.h>
18 #include <linux/gfp.h>
19 #include "nilfs.h"
20 #include "page.h"
21 #include "mdt.h"
22
23
24 #define NILFS_BUFFER_INHERENT_BITS                                      \
25         (BIT(BH_Uptodate) | BIT(BH_Mapped) | BIT(BH_NILFS_Node) |       \
26          BIT(BH_NILFS_Volatile) | BIT(BH_NILFS_Checked))
27
28 static struct buffer_head *
29 __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
30                        int blkbits, unsigned long b_state)
31
32 {
33         unsigned long first_block;
34         struct buffer_head *bh;
35
36         if (!page_has_buffers(page))
37                 create_empty_buffers(page, 1 << blkbits, b_state);
38
39         first_block = (unsigned long)index << (PAGE_SHIFT - blkbits);
40         bh = nilfs_page_get_nth_block(page, block - first_block);
41
42         touch_buffer(bh);
43         wait_on_buffer(bh);
44         return bh;
45 }
46
47 struct buffer_head *nilfs_grab_buffer(struct inode *inode,
48                                       struct address_space *mapping,
49                                       unsigned long blkoff,
50                                       unsigned long b_state)
51 {
52         int blkbits = inode->i_blkbits;
53         pgoff_t index = blkoff >> (PAGE_SHIFT - blkbits);
54         struct page *page;
55         struct buffer_head *bh;
56
57         page = grab_cache_page(mapping, index);
58         if (unlikely(!page))
59                 return NULL;
60
61         bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
62         if (unlikely(!bh)) {
63                 unlock_page(page);
64                 put_page(page);
65                 return NULL;
66         }
67         return bh;
68 }
69
70 /**
71  * nilfs_forget_buffer - discard dirty state
72  * @bh: buffer head of the buffer to be discarded
73  */
74 void nilfs_forget_buffer(struct buffer_head *bh)
75 {
76         struct page *page = bh->b_page;
77         const unsigned long clear_bits =
78                 (BIT(BH_Uptodate) | BIT(BH_Dirty) | BIT(BH_Mapped) |
79                  BIT(BH_Async_Write) | BIT(BH_NILFS_Volatile) |
80                  BIT(BH_NILFS_Checked) | BIT(BH_NILFS_Redirected));
81
82         lock_buffer(bh);
83         set_mask_bits(&bh->b_state, clear_bits, 0);
84         if (nilfs_page_buffers_clean(page))
85                 __nilfs_clear_page_dirty(page);
86
87         bh->b_blocknr = -1;
88         ClearPageUptodate(page);
89         ClearPageMappedToDisk(page);
90         unlock_buffer(bh);
91         brelse(bh);
92 }
93
94 /**
95  * nilfs_copy_buffer -- copy buffer data and flags
96  * @dbh: destination buffer
97  * @sbh: source buffer
98  */
99 void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
100 {
101         void *kaddr0, *kaddr1;
102         unsigned long bits;
103         struct page *spage = sbh->b_page, *dpage = dbh->b_page;
104         struct buffer_head *bh;
105
106         kaddr0 = kmap_atomic(spage);
107         kaddr1 = kmap_atomic(dpage);
108         memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
109         kunmap_atomic(kaddr1);
110         kunmap_atomic(kaddr0);
111
112         dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
113         dbh->b_blocknr = sbh->b_blocknr;
114         dbh->b_bdev = sbh->b_bdev;
115
116         bh = dbh;
117         bits = sbh->b_state & (BIT(BH_Uptodate) | BIT(BH_Mapped));
118         while ((bh = bh->b_this_page) != dbh) {
119                 lock_buffer(bh);
120                 bits &= bh->b_state;
121                 unlock_buffer(bh);
122         }
123         if (bits & BIT(BH_Uptodate))
124                 SetPageUptodate(dpage);
125         else
126                 ClearPageUptodate(dpage);
127         if (bits & BIT(BH_Mapped))
128                 SetPageMappedToDisk(dpage);
129         else
130                 ClearPageMappedToDisk(dpage);
131 }
132
133 /**
134  * nilfs_page_buffers_clean - check if a page has dirty buffers or not.
135  * @page: page to be checked
136  *
137  * nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
138  * Otherwise, it returns non-zero value.
139  */
140 int nilfs_page_buffers_clean(struct page *page)
141 {
142         struct buffer_head *bh, *head;
143
144         bh = head = page_buffers(page);
145         do {
146                 if (buffer_dirty(bh))
147                         return 0;
148                 bh = bh->b_this_page;
149         } while (bh != head);
150         return 1;
151 }
152
153 void nilfs_page_bug(struct page *page)
154 {
155         struct address_space *m;
156         unsigned long ino;
157
158         if (unlikely(!page)) {
159                 printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
160                 return;
161         }
162
163         m = page->mapping;
164         ino = m ? m->host->i_ino : 0;
165
166         printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
167                "mapping=%p ino=%lu\n",
168                page, page_ref_count(page),
169                (unsigned long long)page->index, page->flags, m, ino);
170
171         if (page_has_buffers(page)) {
172                 struct buffer_head *bh, *head;
173                 int i = 0;
174
175                 bh = head = page_buffers(page);
176                 do {
177                         printk(KERN_CRIT
178                                " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
179                                i++, bh, atomic_read(&bh->b_count),
180                                (unsigned long long)bh->b_blocknr, bh->b_state);
181                         bh = bh->b_this_page;
182                 } while (bh != head);
183         }
184 }
185
186 /**
187  * nilfs_copy_page -- copy the page with buffers
188  * @dst: destination page
189  * @src: source page
190  * @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
191  *
192  * This function is for both data pages and btnode pages.  The dirty flag
193  * should be treated by caller.  The page must not be under i/o.
194  * Both src and dst page must be locked
195  */
196 static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
197 {
198         struct buffer_head *dbh, *dbufs, *sbh;
199         unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
200
201         BUG_ON(PageWriteback(dst));
202
203         sbh = page_buffers(src);
204         if (!page_has_buffers(dst))
205                 create_empty_buffers(dst, sbh->b_size, 0);
206
207         if (copy_dirty)
208                 mask |= BIT(BH_Dirty);
209
210         dbh = dbufs = page_buffers(dst);
211         do {
212                 lock_buffer(sbh);
213                 lock_buffer(dbh);
214                 dbh->b_state = sbh->b_state & mask;
215                 dbh->b_blocknr = sbh->b_blocknr;
216                 dbh->b_bdev = sbh->b_bdev;
217                 sbh = sbh->b_this_page;
218                 dbh = dbh->b_this_page;
219         } while (dbh != dbufs);
220
221         copy_highpage(dst, src);
222
223         if (PageUptodate(src) && !PageUptodate(dst))
224                 SetPageUptodate(dst);
225         else if (!PageUptodate(src) && PageUptodate(dst))
226                 ClearPageUptodate(dst);
227         if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
228                 SetPageMappedToDisk(dst);
229         else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
230                 ClearPageMappedToDisk(dst);
231
232         do {
233                 unlock_buffer(sbh);
234                 unlock_buffer(dbh);
235                 sbh = sbh->b_this_page;
236                 dbh = dbh->b_this_page;
237         } while (dbh != dbufs);
238 }
239
240 int nilfs_copy_dirty_pages(struct address_space *dmap,
241                            struct address_space *smap)
242 {
243         struct folio_batch fbatch;
244         unsigned int i;
245         pgoff_t index = 0;
246         int err = 0;
247
248         folio_batch_init(&fbatch);
249 repeat:
250         if (!filemap_get_folios_tag(smap, &index, (pgoff_t)-1,
251                                 PAGECACHE_TAG_DIRTY, &fbatch))
252                 return 0;
253
254         for (i = 0; i < folio_batch_count(&fbatch); i++) {
255                 struct folio *folio = fbatch.folios[i], *dfolio;
256
257                 folio_lock(folio);
258                 if (unlikely(!folio_test_dirty(folio)))
259                         NILFS_PAGE_BUG(&folio->page, "inconsistent dirty state");
260
261                 dfolio = filemap_grab_folio(dmap, folio->index);
262                 if (unlikely(IS_ERR(dfolio))) {
263                         /* No empty page is added to the page cache */
264                         folio_unlock(folio);
265                         err = PTR_ERR(dfolio);
266                         break;
267                 }
268                 if (unlikely(!folio_buffers(folio)))
269                         NILFS_PAGE_BUG(&folio->page,
270                                        "found empty page in dat page cache");
271
272                 nilfs_copy_page(&dfolio->page, &folio->page, 1);
273                 filemap_dirty_folio(folio_mapping(dfolio), dfolio);
274
275                 folio_unlock(dfolio);
276                 folio_put(dfolio);
277                 folio_unlock(folio);
278         }
279         folio_batch_release(&fbatch);
280         cond_resched();
281
282         if (likely(!err))
283                 goto repeat;
284         return err;
285 }
286
287 /**
288  * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache
289  * @dmap: destination page cache
290  * @smap: source page cache
291  *
292  * No pages must be added to the cache during this process.
293  * This must be ensured by the caller.
294  */
295 void nilfs_copy_back_pages(struct address_space *dmap,
296                            struct address_space *smap)
297 {
298         struct folio_batch fbatch;
299         unsigned int i, n;
300         pgoff_t start = 0;
301
302         folio_batch_init(&fbatch);
303 repeat:
304         n = filemap_get_folios(smap, &start, ~0UL, &fbatch);
305         if (!n)
306                 return;
307
308         for (i = 0; i < folio_batch_count(&fbatch); i++) {
309                 struct folio *folio = fbatch.folios[i], *dfolio;
310                 pgoff_t index = folio->index;
311
312                 folio_lock(folio);
313                 dfolio = filemap_lock_folio(dmap, index);
314                 if (!IS_ERR(dfolio)) {
315                         /* overwrite existing folio in the destination cache */
316                         WARN_ON(folio_test_dirty(dfolio));
317                         nilfs_copy_page(&dfolio->page, &folio->page, 0);
318                         folio_unlock(dfolio);
319                         folio_put(dfolio);
320                         /* Do we not need to remove folio from smap here? */
321                 } else {
322                         struct folio *f;
323
324                         /* move the folio to the destination cache */
325                         xa_lock_irq(&smap->i_pages);
326                         f = __xa_erase(&smap->i_pages, index);
327                         WARN_ON(folio != f);
328                         smap->nrpages--;
329                         xa_unlock_irq(&smap->i_pages);
330
331                         xa_lock_irq(&dmap->i_pages);
332                         f = __xa_store(&dmap->i_pages, index, folio, GFP_NOFS);
333                         if (unlikely(f)) {
334                                 /* Probably -ENOMEM */
335                                 folio->mapping = NULL;
336                                 folio_put(folio);
337                         } else {
338                                 folio->mapping = dmap;
339                                 dmap->nrpages++;
340                                 if (folio_test_dirty(folio))
341                                         __xa_set_mark(&dmap->i_pages, index,
342                                                         PAGECACHE_TAG_DIRTY);
343                         }
344                         xa_unlock_irq(&dmap->i_pages);
345                 }
346                 folio_unlock(folio);
347         }
348         folio_batch_release(&fbatch);
349         cond_resched();
350
351         goto repeat;
352 }
353
354 /**
355  * nilfs_clear_dirty_pages - discard dirty pages in address space
356  * @mapping: address space with dirty pages for discarding
357  * @silent: suppress [true] or print [false] warning messages
358  */
359 void nilfs_clear_dirty_pages(struct address_space *mapping, bool silent)
360 {
361         struct folio_batch fbatch;
362         unsigned int i;
363         pgoff_t index = 0;
364
365         folio_batch_init(&fbatch);
366
367         while (filemap_get_folios_tag(mapping, &index, (pgoff_t)-1,
368                                 PAGECACHE_TAG_DIRTY, &fbatch)) {
369                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
370                         struct folio *folio = fbatch.folios[i];
371
372                         folio_lock(folio);
373                         nilfs_clear_dirty_page(&folio->page, silent);
374                         folio_unlock(folio);
375                 }
376                 folio_batch_release(&fbatch);
377                 cond_resched();
378         }
379 }
380
381 /**
382  * nilfs_clear_dirty_page - discard dirty page
383  * @page: dirty page that will be discarded
384  * @silent: suppress [true] or print [false] warning messages
385  */
386 void nilfs_clear_dirty_page(struct page *page, bool silent)
387 {
388         struct inode *inode = page->mapping->host;
389         struct super_block *sb = inode->i_sb;
390
391         BUG_ON(!PageLocked(page));
392
393         if (!silent)
394                 nilfs_warn(sb, "discard dirty page: offset=%lld, ino=%lu",
395                            page_offset(page), inode->i_ino);
396
397         ClearPageUptodate(page);
398         ClearPageMappedToDisk(page);
399
400         if (page_has_buffers(page)) {
401                 struct buffer_head *bh, *head;
402                 const unsigned long clear_bits =
403                         (BIT(BH_Uptodate) | BIT(BH_Dirty) | BIT(BH_Mapped) |
404                          BIT(BH_Async_Write) | BIT(BH_NILFS_Volatile) |
405                          BIT(BH_NILFS_Checked) | BIT(BH_NILFS_Redirected));
406
407                 bh = head = page_buffers(page);
408                 do {
409                         lock_buffer(bh);
410                         if (!silent)
411                                 nilfs_warn(sb,
412                                            "discard dirty block: blocknr=%llu, size=%zu",
413                                            (u64)bh->b_blocknr, bh->b_size);
414
415                         set_mask_bits(&bh->b_state, clear_bits, 0);
416                         unlock_buffer(bh);
417                 } while (bh = bh->b_this_page, bh != head);
418         }
419
420         __nilfs_clear_page_dirty(page);
421 }
422
423 unsigned int nilfs_page_count_clean_buffers(struct page *page,
424                                             unsigned int from, unsigned int to)
425 {
426         unsigned int block_start, block_end;
427         struct buffer_head *bh, *head;
428         unsigned int nc = 0;
429
430         for (bh = head = page_buffers(page), block_start = 0;
431              bh != head || !block_start;
432              block_start = block_end, bh = bh->b_this_page) {
433                 block_end = block_start + bh->b_size;
434                 if (block_end > from && block_start < to && !buffer_dirty(bh))
435                         nc++;
436         }
437         return nc;
438 }
439
440 /*
441  * NILFS2 needs clear_page_dirty() in the following two cases:
442  *
443  * 1) For B-tree node pages and data pages of DAT file, NILFS2 clears dirty
444  *    flag of pages when it copies back pages from shadow cache to the
445  *    original cache.
446  *
447  * 2) Some B-tree operations like insertion or deletion may dispose buffers
448  *    in dirty state, and this needs to cancel the dirty state of their pages.
449  */
450 int __nilfs_clear_page_dirty(struct page *page)
451 {
452         struct address_space *mapping = page->mapping;
453
454         if (mapping) {
455                 xa_lock_irq(&mapping->i_pages);
456                 if (test_bit(PG_dirty, &page->flags)) {
457                         __xa_clear_mark(&mapping->i_pages, page_index(page),
458                                              PAGECACHE_TAG_DIRTY);
459                         xa_unlock_irq(&mapping->i_pages);
460                         return clear_page_dirty_for_io(page);
461                 }
462                 xa_unlock_irq(&mapping->i_pages);
463                 return 0;
464         }
465         return TestClearPageDirty(page);
466 }
467
468 /**
469  * nilfs_find_uncommitted_extent - find extent of uncommitted data
470  * @inode: inode
471  * @start_blk: start block offset (in)
472  * @blkoff: start offset of the found extent (out)
473  *
474  * This function searches an extent of buffers marked "delayed" which
475  * starts from a block offset equal to or larger than @start_blk.  If
476  * such an extent was found, this will store the start offset in
477  * @blkoff and return its length in blocks.  Otherwise, zero is
478  * returned.
479  */
480 unsigned long nilfs_find_uncommitted_extent(struct inode *inode,
481                                             sector_t start_blk,
482                                             sector_t *blkoff)
483 {
484         unsigned int i, nr_folios;
485         pgoff_t index;
486         unsigned long length = 0;
487         struct folio_batch fbatch;
488         struct folio *folio;
489
490         if (inode->i_mapping->nrpages == 0)
491                 return 0;
492
493         index = start_blk >> (PAGE_SHIFT - inode->i_blkbits);
494
495         folio_batch_init(&fbatch);
496
497 repeat:
498         nr_folios = filemap_get_folios_contig(inode->i_mapping, &index, ULONG_MAX,
499                         &fbatch);
500         if (nr_folios == 0)
501                 return length;
502
503         i = 0;
504         do {
505                 folio = fbatch.folios[i];
506
507                 folio_lock(folio);
508                 if (folio_buffers(folio)) {
509                         struct buffer_head *bh, *head;
510                         sector_t b;
511
512                         b = folio->index << (PAGE_SHIFT - inode->i_blkbits);
513                         bh = head = folio_buffers(folio);
514                         do {
515                                 if (b < start_blk)
516                                         continue;
517                                 if (buffer_delay(bh)) {
518                                         if (length == 0)
519                                                 *blkoff = b;
520                                         length++;
521                                 } else if (length > 0) {
522                                         goto out_locked;
523                                 }
524                         } while (++b, bh = bh->b_this_page, bh != head);
525                 } else {
526                         if (length > 0)
527                                 goto out_locked;
528                 }
529                 folio_unlock(folio);
530
531         } while (++i < nr_folios);
532
533         folio_batch_release(&fbatch);
534         cond_resched();
535         goto repeat;
536
537 out_locked:
538         folio_unlock(folio);
539         folio_batch_release(&fbatch);
540         return length;
541 }