Merge branch 'userns-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[linux-2.6-block.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  * Some corrections by tytso.
10  */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now 
56  * replaced with a single function lookup_dentry() that can handle all 
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *      inside the path - always follow.
99  *      in the last component in creation/removal/renaming - never follow.
100  *      if LOOKUP_FOLLOW passed - follow.
101  *      if the pathname has trailing slashes - follow.
102  *      otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124
125 #define EMBEDDED_NAME_MAX       (PATH_MAX - offsetof(struct filename, iname))
126
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130         struct filename *result;
131         char *kname;
132         int len;
133
134         result = audit_reusename(filename);
135         if (result)
136                 return result;
137
138         result = __getname();
139         if (unlikely(!result))
140                 return ERR_PTR(-ENOMEM);
141
142         /*
143          * First, try to embed the struct filename inside the names_cache
144          * allocation
145          */
146         kname = (char *)result->iname;
147         result->name = kname;
148
149         len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150         if (unlikely(len < 0)) {
151                 __putname(result);
152                 return ERR_PTR(len);
153         }
154
155         /*
156          * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157          * separate struct filename so we can dedicate the entire
158          * names_cache allocation for the pathname, and re-do the copy from
159          * userland.
160          */
161         if (unlikely(len == EMBEDDED_NAME_MAX)) {
162                 const size_t size = offsetof(struct filename, iname[1]);
163                 kname = (char *)result;
164
165                 /*
166                  * size is chosen that way we to guarantee that
167                  * result->iname[0] is within the same object and that
168                  * kname can't be equal to result->iname, no matter what.
169                  */
170                 result = kzalloc(size, GFP_KERNEL);
171                 if (unlikely(!result)) {
172                         __putname(kname);
173                         return ERR_PTR(-ENOMEM);
174                 }
175                 result->name = kname;
176                 len = strncpy_from_user(kname, filename, PATH_MAX);
177                 if (unlikely(len < 0)) {
178                         __putname(kname);
179                         kfree(result);
180                         return ERR_PTR(len);
181                 }
182                 if (unlikely(len == PATH_MAX)) {
183                         __putname(kname);
184                         kfree(result);
185                         return ERR_PTR(-ENAMETOOLONG);
186                 }
187         }
188
189         result->refcnt = 1;
190         /* The empty path is special. */
191         if (unlikely(!len)) {
192                 if (empty)
193                         *empty = 1;
194                 if (!(flags & LOOKUP_EMPTY)) {
195                         putname(result);
196                         return ERR_PTR(-ENOENT);
197                 }
198         }
199
200         result->uptr = filename;
201         result->aname = NULL;
202         audit_getname(result);
203         return result;
204 }
205
206 struct filename *
207 getname(const char __user * filename)
208 {
209         return getname_flags(filename, 0, NULL);
210 }
211
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215         struct filename *result;
216         int len = strlen(filename) + 1;
217
218         result = __getname();
219         if (unlikely(!result))
220                 return ERR_PTR(-ENOMEM);
221
222         if (len <= EMBEDDED_NAME_MAX) {
223                 result->name = (char *)result->iname;
224         } else if (len <= PATH_MAX) {
225                 struct filename *tmp;
226
227                 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
228                 if (unlikely(!tmp)) {
229                         __putname(result);
230                         return ERR_PTR(-ENOMEM);
231                 }
232                 tmp->name = (char *)result;
233                 result = tmp;
234         } else {
235                 __putname(result);
236                 return ERR_PTR(-ENAMETOOLONG);
237         }
238         memcpy((char *)result->name, filename, len);
239         result->uptr = NULL;
240         result->aname = NULL;
241         result->refcnt = 1;
242         audit_getname(result);
243
244         return result;
245 }
246
247 void putname(struct filename *name)
248 {
249         BUG_ON(name->refcnt <= 0);
250
251         if (--name->refcnt > 0)
252                 return;
253
254         if (name->name != name->iname) {
255                 __putname(name->name);
256                 kfree(name);
257         } else
258                 __putname(name);
259 }
260
261 static int check_acl(struct inode *inode, int mask)
262 {
263 #ifdef CONFIG_FS_POSIX_ACL
264         struct posix_acl *acl;
265
266         if (mask & MAY_NOT_BLOCK) {
267                 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
268                 if (!acl)
269                         return -EAGAIN;
270                 /* no ->get_acl() calls in RCU mode... */
271                 if (is_uncached_acl(acl))
272                         return -ECHILD;
273                 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
274         }
275
276         acl = get_acl(inode, ACL_TYPE_ACCESS);
277         if (IS_ERR(acl))
278                 return PTR_ERR(acl);
279         if (acl) {
280                 int error = posix_acl_permission(inode, acl, mask);
281                 posix_acl_release(acl);
282                 return error;
283         }
284 #endif
285
286         return -EAGAIN;
287 }
288
289 /*
290  * This does the basic permission checking
291  */
292 static int acl_permission_check(struct inode *inode, int mask)
293 {
294         unsigned int mode = inode->i_mode;
295
296         if (likely(uid_eq(current_fsuid(), inode->i_uid)))
297                 mode >>= 6;
298         else {
299                 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
300                         int error = check_acl(inode, mask);
301                         if (error != -EAGAIN)
302                                 return error;
303                 }
304
305                 if (in_group_p(inode->i_gid))
306                         mode >>= 3;
307         }
308
309         /*
310          * If the DACs are ok we don't need any capability check.
311          */
312         if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
313                 return 0;
314         return -EACCES;
315 }
316
317 /**
318  * generic_permission -  check for access rights on a Posix-like filesystem
319  * @inode:      inode to check access rights for
320  * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
321  *
322  * Used to check for read/write/execute permissions on a file.
323  * We use "fsuid" for this, letting us set arbitrary permissions
324  * for filesystem access without changing the "normal" uids which
325  * are used for other things.
326  *
327  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
328  * request cannot be satisfied (eg. requires blocking or too much complexity).
329  * It would then be called again in ref-walk mode.
330  */
331 int generic_permission(struct inode *inode, int mask)
332 {
333         int ret;
334
335         /*
336          * Do the basic permission checks.
337          */
338         ret = acl_permission_check(inode, mask);
339         if (ret != -EACCES)
340                 return ret;
341
342         if (S_ISDIR(inode->i_mode)) {
343                 /* DACs are overridable for directories */
344                 if (!(mask & MAY_WRITE))
345                         if (capable_wrt_inode_uidgid(inode,
346                                                      CAP_DAC_READ_SEARCH))
347                                 return 0;
348                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
349                         return 0;
350                 return -EACCES;
351         }
352
353         /*
354          * Searching includes executable on directories, else just read.
355          */
356         mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357         if (mask == MAY_READ)
358                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359                         return 0;
360         /*
361          * Read/write DACs are always overridable.
362          * Executable DACs are overridable when there is
363          * at least one exec bit set.
364          */
365         if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
366                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
367                         return 0;
368
369         return -EACCES;
370 }
371 EXPORT_SYMBOL(generic_permission);
372
373 /*
374  * We _really_ want to just do "generic_permission()" without
375  * even looking at the inode->i_op values. So we keep a cache
376  * flag in inode->i_opflags, that says "this has not special
377  * permission function, use the fast case".
378  */
379 static inline int do_inode_permission(struct inode *inode, int mask)
380 {
381         if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
382                 if (likely(inode->i_op->permission))
383                         return inode->i_op->permission(inode, mask);
384
385                 /* This gets set once for the inode lifetime */
386                 spin_lock(&inode->i_lock);
387                 inode->i_opflags |= IOP_FASTPERM;
388                 spin_unlock(&inode->i_lock);
389         }
390         return generic_permission(inode, mask);
391 }
392
393 /**
394  * __inode_permission - Check for access rights to a given inode
395  * @inode: Inode to check permission on
396  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
397  *
398  * Check for read/write/execute permissions on an inode.
399  *
400  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
401  *
402  * This does not check for a read-only file system.  You probably want
403  * inode_permission().
404  */
405 int __inode_permission(struct inode *inode, int mask)
406 {
407         int retval;
408
409         if (unlikely(mask & MAY_WRITE)) {
410                 /*
411                  * Nobody gets write access to an immutable file.
412                  */
413                 if (IS_IMMUTABLE(inode))
414                         return -EPERM;
415
416                 /*
417                  * Updating mtime will likely cause i_uid and i_gid to be
418                  * written back improperly if their true value is unknown
419                  * to the vfs.
420                  */
421                 if (HAS_UNMAPPED_ID(inode))
422                         return -EACCES;
423         }
424
425         retval = do_inode_permission(inode, mask);
426         if (retval)
427                 return retval;
428
429         retval = devcgroup_inode_permission(inode, mask);
430         if (retval)
431                 return retval;
432
433         return security_inode_permission(inode, mask);
434 }
435 EXPORT_SYMBOL(__inode_permission);
436
437 /**
438  * sb_permission - Check superblock-level permissions
439  * @sb: Superblock of inode to check permission on
440  * @inode: Inode to check permission on
441  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
442  *
443  * Separate out file-system wide checks from inode-specific permission checks.
444  */
445 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
446 {
447         if (unlikely(mask & MAY_WRITE)) {
448                 umode_t mode = inode->i_mode;
449
450                 /* Nobody gets write access to a read-only fs. */
451                 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
452                         return -EROFS;
453         }
454         return 0;
455 }
456
457 /**
458  * inode_permission - Check for access rights to a given inode
459  * @inode: Inode to check permission on
460  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461  *
462  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
463  * this, letting us set arbitrary permissions for filesystem access without
464  * changing the "normal" UIDs which are used for other things.
465  *
466  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
467  */
468 int inode_permission(struct inode *inode, int mask)
469 {
470         int retval;
471
472         retval = sb_permission(inode->i_sb, inode, mask);
473         if (retval)
474                 return retval;
475         return __inode_permission(inode, mask);
476 }
477 EXPORT_SYMBOL(inode_permission);
478
479 /**
480  * path_get - get a reference to a path
481  * @path: path to get the reference to
482  *
483  * Given a path increment the reference count to the dentry and the vfsmount.
484  */
485 void path_get(const struct path *path)
486 {
487         mntget(path->mnt);
488         dget(path->dentry);
489 }
490 EXPORT_SYMBOL(path_get);
491
492 /**
493  * path_put - put a reference to a path
494  * @path: path to put the reference to
495  *
496  * Given a path decrement the reference count to the dentry and the vfsmount.
497  */
498 void path_put(const struct path *path)
499 {
500         dput(path->dentry);
501         mntput(path->mnt);
502 }
503 EXPORT_SYMBOL(path_put);
504
505 #define EMBEDDED_LEVELS 2
506 struct nameidata {
507         struct path     path;
508         struct qstr     last;
509         struct path     root;
510         struct inode    *inode; /* path.dentry.d_inode */
511         unsigned int    flags;
512         unsigned        seq, m_seq;
513         int             last_type;
514         unsigned        depth;
515         int             total_link_count;
516         struct saved {
517                 struct path link;
518                 struct delayed_call done;
519                 const char *name;
520                 unsigned seq;
521         } *stack, internal[EMBEDDED_LEVELS];
522         struct filename *name;
523         struct nameidata *saved;
524         struct inode    *link_inode;
525         unsigned        root_seq;
526         int             dfd;
527 } __randomize_layout;
528
529 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
530 {
531         struct nameidata *old = current->nameidata;
532         p->stack = p->internal;
533         p->dfd = dfd;
534         p->name = name;
535         p->total_link_count = old ? old->total_link_count : 0;
536         p->saved = old;
537         current->nameidata = p;
538 }
539
540 static void restore_nameidata(void)
541 {
542         struct nameidata *now = current->nameidata, *old = now->saved;
543
544         current->nameidata = old;
545         if (old)
546                 old->total_link_count = now->total_link_count;
547         if (now->stack != now->internal)
548                 kfree(now->stack);
549 }
550
551 static int __nd_alloc_stack(struct nameidata *nd)
552 {
553         struct saved *p;
554
555         if (nd->flags & LOOKUP_RCU) {
556                 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
557                                   GFP_ATOMIC);
558                 if (unlikely(!p))
559                         return -ECHILD;
560         } else {
561                 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
562                                   GFP_KERNEL);
563                 if (unlikely(!p))
564                         return -ENOMEM;
565         }
566         memcpy(p, nd->internal, sizeof(nd->internal));
567         nd->stack = p;
568         return 0;
569 }
570
571 /**
572  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
573  * @path: nameidate to verify
574  *
575  * Rename can sometimes move a file or directory outside of a bind
576  * mount, path_connected allows those cases to be detected.
577  */
578 static bool path_connected(const struct path *path)
579 {
580         struct vfsmount *mnt = path->mnt;
581
582         /* Only bind mounts can have disconnected paths */
583         if (mnt->mnt_root == mnt->mnt_sb->s_root)
584                 return true;
585
586         return is_subdir(path->dentry, mnt->mnt_root);
587 }
588
589 static inline int nd_alloc_stack(struct nameidata *nd)
590 {
591         if (likely(nd->depth != EMBEDDED_LEVELS))
592                 return 0;
593         if (likely(nd->stack != nd->internal))
594                 return 0;
595         return __nd_alloc_stack(nd);
596 }
597
598 static void drop_links(struct nameidata *nd)
599 {
600         int i = nd->depth;
601         while (i--) {
602                 struct saved *last = nd->stack + i;
603                 do_delayed_call(&last->done);
604                 clear_delayed_call(&last->done);
605         }
606 }
607
608 static void terminate_walk(struct nameidata *nd)
609 {
610         drop_links(nd);
611         if (!(nd->flags & LOOKUP_RCU)) {
612                 int i;
613                 path_put(&nd->path);
614                 for (i = 0; i < nd->depth; i++)
615                         path_put(&nd->stack[i].link);
616                 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
617                         path_put(&nd->root);
618                         nd->root.mnt = NULL;
619                 }
620         } else {
621                 nd->flags &= ~LOOKUP_RCU;
622                 if (!(nd->flags & LOOKUP_ROOT))
623                         nd->root.mnt = NULL;
624                 rcu_read_unlock();
625         }
626         nd->depth = 0;
627 }
628
629 /* path_put is needed afterwards regardless of success or failure */
630 static bool legitimize_path(struct nameidata *nd,
631                             struct path *path, unsigned seq)
632 {
633         int res = __legitimize_mnt(path->mnt, nd->m_seq);
634         if (unlikely(res)) {
635                 if (res > 0)
636                         path->mnt = NULL;
637                 path->dentry = NULL;
638                 return false;
639         }
640         if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
641                 path->dentry = NULL;
642                 return false;
643         }
644         return !read_seqcount_retry(&path->dentry->d_seq, seq);
645 }
646
647 static bool legitimize_links(struct nameidata *nd)
648 {
649         int i;
650         for (i = 0; i < nd->depth; i++) {
651                 struct saved *last = nd->stack + i;
652                 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
653                         drop_links(nd);
654                         nd->depth = i + 1;
655                         return false;
656                 }
657         }
658         return true;
659 }
660
661 /*
662  * Path walking has 2 modes, rcu-walk and ref-walk (see
663  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
664  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
665  * normal reference counts on dentries and vfsmounts to transition to ref-walk
666  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
667  * got stuck, so ref-walk may continue from there. If this is not successful
668  * (eg. a seqcount has changed), then failure is returned and it's up to caller
669  * to restart the path walk from the beginning in ref-walk mode.
670  */
671
672 /**
673  * unlazy_walk - try to switch to ref-walk mode.
674  * @nd: nameidata pathwalk data
675  * Returns: 0 on success, -ECHILD on failure
676  *
677  * unlazy_walk attempts to legitimize the current nd->path and nd->root
678  * for ref-walk mode.
679  * Must be called from rcu-walk context.
680  * Nothing should touch nameidata between unlazy_walk() failure and
681  * terminate_walk().
682  */
683 static int unlazy_walk(struct nameidata *nd)
684 {
685         struct dentry *parent = nd->path.dentry;
686
687         BUG_ON(!(nd->flags & LOOKUP_RCU));
688
689         nd->flags &= ~LOOKUP_RCU;
690         if (unlikely(!legitimize_links(nd)))
691                 goto out2;
692         if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
693                 goto out1;
694         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
695                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
696                         goto out;
697         }
698         rcu_read_unlock();
699         BUG_ON(nd->inode != parent->d_inode);
700         return 0;
701
702 out2:
703         nd->path.mnt = NULL;
704         nd->path.dentry = NULL;
705 out1:
706         if (!(nd->flags & LOOKUP_ROOT))
707                 nd->root.mnt = NULL;
708 out:
709         rcu_read_unlock();
710         return -ECHILD;
711 }
712
713 /**
714  * unlazy_child - try to switch to ref-walk mode.
715  * @nd: nameidata pathwalk data
716  * @dentry: child of nd->path.dentry
717  * @seq: seq number to check dentry against
718  * Returns: 0 on success, -ECHILD on failure
719  *
720  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
721  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
722  * @nd.  Must be called from rcu-walk context.
723  * Nothing should touch nameidata between unlazy_child() failure and
724  * terminate_walk().
725  */
726 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
727 {
728         BUG_ON(!(nd->flags & LOOKUP_RCU));
729
730         nd->flags &= ~LOOKUP_RCU;
731         if (unlikely(!legitimize_links(nd)))
732                 goto out2;
733         if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
734                 goto out2;
735         if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
736                 goto out1;
737
738         /*
739          * We need to move both the parent and the dentry from the RCU domain
740          * to be properly refcounted. And the sequence number in the dentry
741          * validates *both* dentry counters, since we checked the sequence
742          * number of the parent after we got the child sequence number. So we
743          * know the parent must still be valid if the child sequence number is
744          */
745         if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
746                 goto out;
747         if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
748                 rcu_read_unlock();
749                 dput(dentry);
750                 goto drop_root_mnt;
751         }
752         /*
753          * Sequence counts matched. Now make sure that the root is
754          * still valid and get it if required.
755          */
756         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
757                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
758                         rcu_read_unlock();
759                         dput(dentry);
760                         return -ECHILD;
761                 }
762         }
763
764         rcu_read_unlock();
765         return 0;
766
767 out2:
768         nd->path.mnt = NULL;
769 out1:
770         nd->path.dentry = NULL;
771 out:
772         rcu_read_unlock();
773 drop_root_mnt:
774         if (!(nd->flags & LOOKUP_ROOT))
775                 nd->root.mnt = NULL;
776         return -ECHILD;
777 }
778
779 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
780 {
781         if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
782                 return dentry->d_op->d_revalidate(dentry, flags);
783         else
784                 return 1;
785 }
786
787 /**
788  * complete_walk - successful completion of path walk
789  * @nd:  pointer nameidata
790  *
791  * If we had been in RCU mode, drop out of it and legitimize nd->path.
792  * Revalidate the final result, unless we'd already done that during
793  * the path walk or the filesystem doesn't ask for it.  Return 0 on
794  * success, -error on failure.  In case of failure caller does not
795  * need to drop nd->path.
796  */
797 static int complete_walk(struct nameidata *nd)
798 {
799         struct dentry *dentry = nd->path.dentry;
800         int status;
801
802         if (nd->flags & LOOKUP_RCU) {
803                 if (!(nd->flags & LOOKUP_ROOT))
804                         nd->root.mnt = NULL;
805                 if (unlikely(unlazy_walk(nd)))
806                         return -ECHILD;
807         }
808
809         if (likely(!(nd->flags & LOOKUP_JUMPED)))
810                 return 0;
811
812         if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
813                 return 0;
814
815         status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
816         if (status > 0)
817                 return 0;
818
819         if (!status)
820                 status = -ESTALE;
821
822         return status;
823 }
824
825 static void set_root(struct nameidata *nd)
826 {
827         struct fs_struct *fs = current->fs;
828
829         if (nd->flags & LOOKUP_RCU) {
830                 unsigned seq;
831
832                 do {
833                         seq = read_seqcount_begin(&fs->seq);
834                         nd->root = fs->root;
835                         nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
836                 } while (read_seqcount_retry(&fs->seq, seq));
837         } else {
838                 get_fs_root(fs, &nd->root);
839         }
840 }
841
842 static void path_put_conditional(struct path *path, struct nameidata *nd)
843 {
844         dput(path->dentry);
845         if (path->mnt != nd->path.mnt)
846                 mntput(path->mnt);
847 }
848
849 static inline void path_to_nameidata(const struct path *path,
850                                         struct nameidata *nd)
851 {
852         if (!(nd->flags & LOOKUP_RCU)) {
853                 dput(nd->path.dentry);
854                 if (nd->path.mnt != path->mnt)
855                         mntput(nd->path.mnt);
856         }
857         nd->path.mnt = path->mnt;
858         nd->path.dentry = path->dentry;
859 }
860
861 static int nd_jump_root(struct nameidata *nd)
862 {
863         if (nd->flags & LOOKUP_RCU) {
864                 struct dentry *d;
865                 nd->path = nd->root;
866                 d = nd->path.dentry;
867                 nd->inode = d->d_inode;
868                 nd->seq = nd->root_seq;
869                 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
870                         return -ECHILD;
871         } else {
872                 path_put(&nd->path);
873                 nd->path = nd->root;
874                 path_get(&nd->path);
875                 nd->inode = nd->path.dentry->d_inode;
876         }
877         nd->flags |= LOOKUP_JUMPED;
878         return 0;
879 }
880
881 /*
882  * Helper to directly jump to a known parsed path from ->get_link,
883  * caller must have taken a reference to path beforehand.
884  */
885 void nd_jump_link(struct path *path)
886 {
887         struct nameidata *nd = current->nameidata;
888         path_put(&nd->path);
889
890         nd->path = *path;
891         nd->inode = nd->path.dentry->d_inode;
892         nd->flags |= LOOKUP_JUMPED;
893 }
894
895 static inline void put_link(struct nameidata *nd)
896 {
897         struct saved *last = nd->stack + --nd->depth;
898         do_delayed_call(&last->done);
899         if (!(nd->flags & LOOKUP_RCU))
900                 path_put(&last->link);
901 }
902
903 int sysctl_protected_symlinks __read_mostly = 0;
904 int sysctl_protected_hardlinks __read_mostly = 0;
905
906 /**
907  * may_follow_link - Check symlink following for unsafe situations
908  * @nd: nameidata pathwalk data
909  *
910  * In the case of the sysctl_protected_symlinks sysctl being enabled,
911  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
912  * in a sticky world-writable directory. This is to protect privileged
913  * processes from failing races against path names that may change out
914  * from under them by way of other users creating malicious symlinks.
915  * It will permit symlinks to be followed only when outside a sticky
916  * world-writable directory, or when the uid of the symlink and follower
917  * match, or when the directory owner matches the symlink's owner.
918  *
919  * Returns 0 if following the symlink is allowed, -ve on error.
920  */
921 static inline int may_follow_link(struct nameidata *nd)
922 {
923         const struct inode *inode;
924         const struct inode *parent;
925         kuid_t puid;
926
927         if (!sysctl_protected_symlinks)
928                 return 0;
929
930         /* Allowed if owner and follower match. */
931         inode = nd->link_inode;
932         if (uid_eq(current_cred()->fsuid, inode->i_uid))
933                 return 0;
934
935         /* Allowed if parent directory not sticky and world-writable. */
936         parent = nd->inode;
937         if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
938                 return 0;
939
940         /* Allowed if parent directory and link owner match. */
941         puid = parent->i_uid;
942         if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
943                 return 0;
944
945         if (nd->flags & LOOKUP_RCU)
946                 return -ECHILD;
947
948         audit_log_link_denied("follow_link", &nd->stack[0].link);
949         return -EACCES;
950 }
951
952 /**
953  * safe_hardlink_source - Check for safe hardlink conditions
954  * @inode: the source inode to hardlink from
955  *
956  * Return false if at least one of the following conditions:
957  *    - inode is not a regular file
958  *    - inode is setuid
959  *    - inode is setgid and group-exec
960  *    - access failure for read and write
961  *
962  * Otherwise returns true.
963  */
964 static bool safe_hardlink_source(struct inode *inode)
965 {
966         umode_t mode = inode->i_mode;
967
968         /* Special files should not get pinned to the filesystem. */
969         if (!S_ISREG(mode))
970                 return false;
971
972         /* Setuid files should not get pinned to the filesystem. */
973         if (mode & S_ISUID)
974                 return false;
975
976         /* Executable setgid files should not get pinned to the filesystem. */
977         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
978                 return false;
979
980         /* Hardlinking to unreadable or unwritable sources is dangerous. */
981         if (inode_permission(inode, MAY_READ | MAY_WRITE))
982                 return false;
983
984         return true;
985 }
986
987 /**
988  * may_linkat - Check permissions for creating a hardlink
989  * @link: the source to hardlink from
990  *
991  * Block hardlink when all of:
992  *  - sysctl_protected_hardlinks enabled
993  *  - fsuid does not match inode
994  *  - hardlink source is unsafe (see safe_hardlink_source() above)
995  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
996  *
997  * Returns 0 if successful, -ve on error.
998  */
999 static int may_linkat(struct path *link)
1000 {
1001         struct inode *inode;
1002
1003         if (!sysctl_protected_hardlinks)
1004                 return 0;
1005
1006         inode = link->dentry->d_inode;
1007
1008         /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1009          * otherwise, it must be a safe source.
1010          */
1011         if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1012                 return 0;
1013
1014         audit_log_link_denied("linkat", link);
1015         return -EPERM;
1016 }
1017
1018 static __always_inline
1019 const char *get_link(struct nameidata *nd)
1020 {
1021         struct saved *last = nd->stack + nd->depth - 1;
1022         struct dentry *dentry = last->link.dentry;
1023         struct inode *inode = nd->link_inode;
1024         int error;
1025         const char *res;
1026
1027         if (!(nd->flags & LOOKUP_RCU)) {
1028                 touch_atime(&last->link);
1029                 cond_resched();
1030         } else if (atime_needs_update_rcu(&last->link, inode)) {
1031                 if (unlikely(unlazy_walk(nd)))
1032                         return ERR_PTR(-ECHILD);
1033                 touch_atime(&last->link);
1034         }
1035
1036         error = security_inode_follow_link(dentry, inode,
1037                                            nd->flags & LOOKUP_RCU);
1038         if (unlikely(error))
1039                 return ERR_PTR(error);
1040
1041         nd->last_type = LAST_BIND;
1042         res = inode->i_link;
1043         if (!res) {
1044                 const char * (*get)(struct dentry *, struct inode *,
1045                                 struct delayed_call *);
1046                 get = inode->i_op->get_link;
1047                 if (nd->flags & LOOKUP_RCU) {
1048                         res = get(NULL, inode, &last->done);
1049                         if (res == ERR_PTR(-ECHILD)) {
1050                                 if (unlikely(unlazy_walk(nd)))
1051                                         return ERR_PTR(-ECHILD);
1052                                 res = get(dentry, inode, &last->done);
1053                         }
1054                 } else {
1055                         res = get(dentry, inode, &last->done);
1056                 }
1057                 if (IS_ERR_OR_NULL(res))
1058                         return res;
1059         }
1060         if (*res == '/') {
1061                 if (!nd->root.mnt)
1062                         set_root(nd);
1063                 if (unlikely(nd_jump_root(nd)))
1064                         return ERR_PTR(-ECHILD);
1065                 while (unlikely(*++res == '/'))
1066                         ;
1067         }
1068         if (!*res)
1069                 res = NULL;
1070         return res;
1071 }
1072
1073 /*
1074  * follow_up - Find the mountpoint of path's vfsmount
1075  *
1076  * Given a path, find the mountpoint of its source file system.
1077  * Replace @path with the path of the mountpoint in the parent mount.
1078  * Up is towards /.
1079  *
1080  * Return 1 if we went up a level and 0 if we were already at the
1081  * root.
1082  */
1083 int follow_up(struct path *path)
1084 {
1085         struct mount *mnt = real_mount(path->mnt);
1086         struct mount *parent;
1087         struct dentry *mountpoint;
1088
1089         read_seqlock_excl(&mount_lock);
1090         parent = mnt->mnt_parent;
1091         if (parent == mnt) {
1092                 read_sequnlock_excl(&mount_lock);
1093                 return 0;
1094         }
1095         mntget(&parent->mnt);
1096         mountpoint = dget(mnt->mnt_mountpoint);
1097         read_sequnlock_excl(&mount_lock);
1098         dput(path->dentry);
1099         path->dentry = mountpoint;
1100         mntput(path->mnt);
1101         path->mnt = &parent->mnt;
1102         return 1;
1103 }
1104 EXPORT_SYMBOL(follow_up);
1105
1106 /*
1107  * Perform an automount
1108  * - return -EISDIR to tell follow_managed() to stop and return the path we
1109  *   were called with.
1110  */
1111 static int follow_automount(struct path *path, struct nameidata *nd,
1112                             bool *need_mntput)
1113 {
1114         struct vfsmount *mnt;
1115         int err;
1116
1117         if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1118                 return -EREMOTE;
1119
1120         /* We don't want to mount if someone's just doing a stat -
1121          * unless they're stat'ing a directory and appended a '/' to
1122          * the name.
1123          *
1124          * We do, however, want to mount if someone wants to open or
1125          * create a file of any type under the mountpoint, wants to
1126          * traverse through the mountpoint or wants to open the
1127          * mounted directory.  Also, autofs may mark negative dentries
1128          * as being automount points.  These will need the attentions
1129          * of the daemon to instantiate them before they can be used.
1130          */
1131         if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1132                            LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1133             path->dentry->d_inode)
1134                 return -EISDIR;
1135
1136         nd->total_link_count++;
1137         if (nd->total_link_count >= 40)
1138                 return -ELOOP;
1139
1140         mnt = path->dentry->d_op->d_automount(path);
1141         if (IS_ERR(mnt)) {
1142                 /*
1143                  * The filesystem is allowed to return -EISDIR here to indicate
1144                  * it doesn't want to automount.  For instance, autofs would do
1145                  * this so that its userspace daemon can mount on this dentry.
1146                  *
1147                  * However, we can only permit this if it's a terminal point in
1148                  * the path being looked up; if it wasn't then the remainder of
1149                  * the path is inaccessible and we should say so.
1150                  */
1151                 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1152                         return -EREMOTE;
1153                 return PTR_ERR(mnt);
1154         }
1155
1156         if (!mnt) /* mount collision */
1157                 return 0;
1158
1159         if (!*need_mntput) {
1160                 /* lock_mount() may release path->mnt on error */
1161                 mntget(path->mnt);
1162                 *need_mntput = true;
1163         }
1164         err = finish_automount(mnt, path);
1165
1166         switch (err) {
1167         case -EBUSY:
1168                 /* Someone else made a mount here whilst we were busy */
1169                 return 0;
1170         case 0:
1171                 path_put(path);
1172                 path->mnt = mnt;
1173                 path->dentry = dget(mnt->mnt_root);
1174                 return 0;
1175         default:
1176                 return err;
1177         }
1178
1179 }
1180
1181 /*
1182  * Handle a dentry that is managed in some way.
1183  * - Flagged for transit management (autofs)
1184  * - Flagged as mountpoint
1185  * - Flagged as automount point
1186  *
1187  * This may only be called in refwalk mode.
1188  *
1189  * Serialization is taken care of in namespace.c
1190  */
1191 static int follow_managed(struct path *path, struct nameidata *nd)
1192 {
1193         struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1194         unsigned managed;
1195         bool need_mntput = false;
1196         int ret = 0;
1197
1198         /* Given that we're not holding a lock here, we retain the value in a
1199          * local variable for each dentry as we look at it so that we don't see
1200          * the components of that value change under us */
1201         while (managed = READ_ONCE(path->dentry->d_flags),
1202                managed &= DCACHE_MANAGED_DENTRY,
1203                unlikely(managed != 0)) {
1204                 /* Allow the filesystem to manage the transit without i_mutex
1205                  * being held. */
1206                 if (managed & DCACHE_MANAGE_TRANSIT) {
1207                         BUG_ON(!path->dentry->d_op);
1208                         BUG_ON(!path->dentry->d_op->d_manage);
1209                         ret = path->dentry->d_op->d_manage(path, false);
1210                         if (ret < 0)
1211                                 break;
1212                 }
1213
1214                 /* Transit to a mounted filesystem. */
1215                 if (managed & DCACHE_MOUNTED) {
1216                         struct vfsmount *mounted = lookup_mnt(path);
1217                         if (mounted) {
1218                                 dput(path->dentry);
1219                                 if (need_mntput)
1220                                         mntput(path->mnt);
1221                                 path->mnt = mounted;
1222                                 path->dentry = dget(mounted->mnt_root);
1223                                 need_mntput = true;
1224                                 continue;
1225                         }
1226
1227                         /* Something is mounted on this dentry in another
1228                          * namespace and/or whatever was mounted there in this
1229                          * namespace got unmounted before lookup_mnt() could
1230                          * get it */
1231                 }
1232
1233                 /* Handle an automount point */
1234                 if (managed & DCACHE_NEED_AUTOMOUNT) {
1235                         ret = follow_automount(path, nd, &need_mntput);
1236                         if (ret < 0)
1237                                 break;
1238                         continue;
1239                 }
1240
1241                 /* We didn't change the current path point */
1242                 break;
1243         }
1244
1245         if (need_mntput && path->mnt == mnt)
1246                 mntput(path->mnt);
1247         if (ret == -EISDIR || !ret)
1248                 ret = 1;
1249         if (need_mntput)
1250                 nd->flags |= LOOKUP_JUMPED;
1251         if (unlikely(ret < 0))
1252                 path_put_conditional(path, nd);
1253         return ret;
1254 }
1255
1256 int follow_down_one(struct path *path)
1257 {
1258         struct vfsmount *mounted;
1259
1260         mounted = lookup_mnt(path);
1261         if (mounted) {
1262                 dput(path->dentry);
1263                 mntput(path->mnt);
1264                 path->mnt = mounted;
1265                 path->dentry = dget(mounted->mnt_root);
1266                 return 1;
1267         }
1268         return 0;
1269 }
1270 EXPORT_SYMBOL(follow_down_one);
1271
1272 static inline int managed_dentry_rcu(const struct path *path)
1273 {
1274         return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1275                 path->dentry->d_op->d_manage(path, true) : 0;
1276 }
1277
1278 /*
1279  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1280  * we meet a managed dentry that would need blocking.
1281  */
1282 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1283                                struct inode **inode, unsigned *seqp)
1284 {
1285         for (;;) {
1286                 struct mount *mounted;
1287                 /*
1288                  * Don't forget we might have a non-mountpoint managed dentry
1289                  * that wants to block transit.
1290                  */
1291                 switch (managed_dentry_rcu(path)) {
1292                 case -ECHILD:
1293                 default:
1294                         return false;
1295                 case -EISDIR:
1296                         return true;
1297                 case 0:
1298                         break;
1299                 }
1300
1301                 if (!d_mountpoint(path->dentry))
1302                         return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1303
1304                 mounted = __lookup_mnt(path->mnt, path->dentry);
1305                 if (!mounted)
1306                         break;
1307                 path->mnt = &mounted->mnt;
1308                 path->dentry = mounted->mnt.mnt_root;
1309                 nd->flags |= LOOKUP_JUMPED;
1310                 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1311                 /*
1312                  * Update the inode too. We don't need to re-check the
1313                  * dentry sequence number here after this d_inode read,
1314                  * because a mount-point is always pinned.
1315                  */
1316                 *inode = path->dentry->d_inode;
1317         }
1318         return !read_seqretry(&mount_lock, nd->m_seq) &&
1319                 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1320 }
1321
1322 static int follow_dotdot_rcu(struct nameidata *nd)
1323 {
1324         struct inode *inode = nd->inode;
1325
1326         while (1) {
1327                 if (path_equal(&nd->path, &nd->root))
1328                         break;
1329                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1330                         struct dentry *old = nd->path.dentry;
1331                         struct dentry *parent = old->d_parent;
1332                         unsigned seq;
1333
1334                         inode = parent->d_inode;
1335                         seq = read_seqcount_begin(&parent->d_seq);
1336                         if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1337                                 return -ECHILD;
1338                         nd->path.dentry = parent;
1339                         nd->seq = seq;
1340                         if (unlikely(!path_connected(&nd->path)))
1341                                 return -ENOENT;
1342                         break;
1343                 } else {
1344                         struct mount *mnt = real_mount(nd->path.mnt);
1345                         struct mount *mparent = mnt->mnt_parent;
1346                         struct dentry *mountpoint = mnt->mnt_mountpoint;
1347                         struct inode *inode2 = mountpoint->d_inode;
1348                         unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1349                         if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1350                                 return -ECHILD;
1351                         if (&mparent->mnt == nd->path.mnt)
1352                                 break;
1353                         /* we know that mountpoint was pinned */
1354                         nd->path.dentry = mountpoint;
1355                         nd->path.mnt = &mparent->mnt;
1356                         inode = inode2;
1357                         nd->seq = seq;
1358                 }
1359         }
1360         while (unlikely(d_mountpoint(nd->path.dentry))) {
1361                 struct mount *mounted;
1362                 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1363                 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1364                         return -ECHILD;
1365                 if (!mounted)
1366                         break;
1367                 nd->path.mnt = &mounted->mnt;
1368                 nd->path.dentry = mounted->mnt.mnt_root;
1369                 inode = nd->path.dentry->d_inode;
1370                 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1371         }
1372         nd->inode = inode;
1373         return 0;
1374 }
1375
1376 /*
1377  * Follow down to the covering mount currently visible to userspace.  At each
1378  * point, the filesystem owning that dentry may be queried as to whether the
1379  * caller is permitted to proceed or not.
1380  */
1381 int follow_down(struct path *path)
1382 {
1383         unsigned managed;
1384         int ret;
1385
1386         while (managed = READ_ONCE(path->dentry->d_flags),
1387                unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1388                 /* Allow the filesystem to manage the transit without i_mutex
1389                  * being held.
1390                  *
1391                  * We indicate to the filesystem if someone is trying to mount
1392                  * something here.  This gives autofs the chance to deny anyone
1393                  * other than its daemon the right to mount on its
1394                  * superstructure.
1395                  *
1396                  * The filesystem may sleep at this point.
1397                  */
1398                 if (managed & DCACHE_MANAGE_TRANSIT) {
1399                         BUG_ON(!path->dentry->d_op);
1400                         BUG_ON(!path->dentry->d_op->d_manage);
1401                         ret = path->dentry->d_op->d_manage(path, false);
1402                         if (ret < 0)
1403                                 return ret == -EISDIR ? 0 : ret;
1404                 }
1405
1406                 /* Transit to a mounted filesystem. */
1407                 if (managed & DCACHE_MOUNTED) {
1408                         struct vfsmount *mounted = lookup_mnt(path);
1409                         if (!mounted)
1410                                 break;
1411                         dput(path->dentry);
1412                         mntput(path->mnt);
1413                         path->mnt = mounted;
1414                         path->dentry = dget(mounted->mnt_root);
1415                         continue;
1416                 }
1417
1418                 /* Don't handle automount points here */
1419                 break;
1420         }
1421         return 0;
1422 }
1423 EXPORT_SYMBOL(follow_down);
1424
1425 /*
1426  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1427  */
1428 static void follow_mount(struct path *path)
1429 {
1430         while (d_mountpoint(path->dentry)) {
1431                 struct vfsmount *mounted = lookup_mnt(path);
1432                 if (!mounted)
1433                         break;
1434                 dput(path->dentry);
1435                 mntput(path->mnt);
1436                 path->mnt = mounted;
1437                 path->dentry = dget(mounted->mnt_root);
1438         }
1439 }
1440
1441 static int path_parent_directory(struct path *path)
1442 {
1443         struct dentry *old = path->dentry;
1444         /* rare case of legitimate dget_parent()... */
1445         path->dentry = dget_parent(path->dentry);
1446         dput(old);
1447         if (unlikely(!path_connected(path)))
1448                 return -ENOENT;
1449         return 0;
1450 }
1451
1452 static int follow_dotdot(struct nameidata *nd)
1453 {
1454         while(1) {
1455                 if (nd->path.dentry == nd->root.dentry &&
1456                     nd->path.mnt == nd->root.mnt) {
1457                         break;
1458                 }
1459                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1460                         int ret = path_parent_directory(&nd->path);
1461                         if (ret)
1462                                 return ret;
1463                         break;
1464                 }
1465                 if (!follow_up(&nd->path))
1466                         break;
1467         }
1468         follow_mount(&nd->path);
1469         nd->inode = nd->path.dentry->d_inode;
1470         return 0;
1471 }
1472
1473 /*
1474  * This looks up the name in dcache and possibly revalidates the found dentry.
1475  * NULL is returned if the dentry does not exist in the cache.
1476  */
1477 static struct dentry *lookup_dcache(const struct qstr *name,
1478                                     struct dentry *dir,
1479                                     unsigned int flags)
1480 {
1481         struct dentry *dentry = d_lookup(dir, name);
1482         if (dentry) {
1483                 int error = d_revalidate(dentry, flags);
1484                 if (unlikely(error <= 0)) {
1485                         if (!error)
1486                                 d_invalidate(dentry);
1487                         dput(dentry);
1488                         return ERR_PTR(error);
1489                 }
1490         }
1491         return dentry;
1492 }
1493
1494 /*
1495  * Call i_op->lookup on the dentry.  The dentry must be negative and
1496  * unhashed.
1497  *
1498  * dir->d_inode->i_mutex must be held
1499  */
1500 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1501                                   unsigned int flags)
1502 {
1503         struct dentry *old;
1504
1505         /* Don't create child dentry for a dead directory. */
1506         if (unlikely(IS_DEADDIR(dir))) {
1507                 dput(dentry);
1508                 return ERR_PTR(-ENOENT);
1509         }
1510
1511         old = dir->i_op->lookup(dir, dentry, flags);
1512         if (unlikely(old)) {
1513                 dput(dentry);
1514                 dentry = old;
1515         }
1516         return dentry;
1517 }
1518
1519 static struct dentry *__lookup_hash(const struct qstr *name,
1520                 struct dentry *base, unsigned int flags)
1521 {
1522         struct dentry *dentry = lookup_dcache(name, base, flags);
1523
1524         if (dentry)
1525                 return dentry;
1526
1527         dentry = d_alloc(base, name);
1528         if (unlikely(!dentry))
1529                 return ERR_PTR(-ENOMEM);
1530
1531         return lookup_real(base->d_inode, dentry, flags);
1532 }
1533
1534 static int lookup_fast(struct nameidata *nd,
1535                        struct path *path, struct inode **inode,
1536                        unsigned *seqp)
1537 {
1538         struct vfsmount *mnt = nd->path.mnt;
1539         struct dentry *dentry, *parent = nd->path.dentry;
1540         int status = 1;
1541         int err;
1542
1543         /*
1544          * Rename seqlock is not required here because in the off chance
1545          * of a false negative due to a concurrent rename, the caller is
1546          * going to fall back to non-racy lookup.
1547          */
1548         if (nd->flags & LOOKUP_RCU) {
1549                 unsigned seq;
1550                 bool negative;
1551                 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1552                 if (unlikely(!dentry)) {
1553                         if (unlazy_walk(nd))
1554                                 return -ECHILD;
1555                         return 0;
1556                 }
1557
1558                 /*
1559                  * This sequence count validates that the inode matches
1560                  * the dentry name information from lookup.
1561                  */
1562                 *inode = d_backing_inode(dentry);
1563                 negative = d_is_negative(dentry);
1564                 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1565                         return -ECHILD;
1566
1567                 /*
1568                  * This sequence count validates that the parent had no
1569                  * changes while we did the lookup of the dentry above.
1570                  *
1571                  * The memory barrier in read_seqcount_begin of child is
1572                  *  enough, we can use __read_seqcount_retry here.
1573                  */
1574                 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1575                         return -ECHILD;
1576
1577                 *seqp = seq;
1578                 status = d_revalidate(dentry, nd->flags);
1579                 if (likely(status > 0)) {
1580                         /*
1581                          * Note: do negative dentry check after revalidation in
1582                          * case that drops it.
1583                          */
1584                         if (unlikely(negative))
1585                                 return -ENOENT;
1586                         path->mnt = mnt;
1587                         path->dentry = dentry;
1588                         if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1589                                 return 1;
1590                 }
1591                 if (unlazy_child(nd, dentry, seq))
1592                         return -ECHILD;
1593                 if (unlikely(status == -ECHILD))
1594                         /* we'd been told to redo it in non-rcu mode */
1595                         status = d_revalidate(dentry, nd->flags);
1596         } else {
1597                 dentry = __d_lookup(parent, &nd->last);
1598                 if (unlikely(!dentry))
1599                         return 0;
1600                 status = d_revalidate(dentry, nd->flags);
1601         }
1602         if (unlikely(status <= 0)) {
1603                 if (!status)
1604                         d_invalidate(dentry);
1605                 dput(dentry);
1606                 return status;
1607         }
1608         if (unlikely(d_is_negative(dentry))) {
1609                 dput(dentry);
1610                 return -ENOENT;
1611         }
1612
1613         path->mnt = mnt;
1614         path->dentry = dentry;
1615         err = follow_managed(path, nd);
1616         if (likely(err > 0))
1617                 *inode = d_backing_inode(path->dentry);
1618         return err;
1619 }
1620
1621 /* Fast lookup failed, do it the slow way */
1622 static struct dentry *lookup_slow(const struct qstr *name,
1623                                   struct dentry *dir,
1624                                   unsigned int flags)
1625 {
1626         struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1627         struct inode *inode = dir->d_inode;
1628         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1629
1630         inode_lock_shared(inode);
1631         /* Don't go there if it's already dead */
1632         if (unlikely(IS_DEADDIR(inode)))
1633                 goto out;
1634 again:
1635         dentry = d_alloc_parallel(dir, name, &wq);
1636         if (IS_ERR(dentry))
1637                 goto out;
1638         if (unlikely(!d_in_lookup(dentry))) {
1639                 if (!(flags & LOOKUP_NO_REVAL)) {
1640                         int error = d_revalidate(dentry, flags);
1641                         if (unlikely(error <= 0)) {
1642                                 if (!error) {
1643                                         d_invalidate(dentry);
1644                                         dput(dentry);
1645                                         goto again;
1646                                 }
1647                                 dput(dentry);
1648                                 dentry = ERR_PTR(error);
1649                         }
1650                 }
1651         } else {
1652                 old = inode->i_op->lookup(inode, dentry, flags);
1653                 d_lookup_done(dentry);
1654                 if (unlikely(old)) {
1655                         dput(dentry);
1656                         dentry = old;
1657                 }
1658         }
1659 out:
1660         inode_unlock_shared(inode);
1661         return dentry;
1662 }
1663
1664 static inline int may_lookup(struct nameidata *nd)
1665 {
1666         if (nd->flags & LOOKUP_RCU) {
1667                 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1668                 if (err != -ECHILD)
1669                         return err;
1670                 if (unlazy_walk(nd))
1671                         return -ECHILD;
1672         }
1673         return inode_permission(nd->inode, MAY_EXEC);
1674 }
1675
1676 static inline int handle_dots(struct nameidata *nd, int type)
1677 {
1678         if (type == LAST_DOTDOT) {
1679                 if (!nd->root.mnt)
1680                         set_root(nd);
1681                 if (nd->flags & LOOKUP_RCU) {
1682                         return follow_dotdot_rcu(nd);
1683                 } else
1684                         return follow_dotdot(nd);
1685         }
1686         return 0;
1687 }
1688
1689 static int pick_link(struct nameidata *nd, struct path *link,
1690                      struct inode *inode, unsigned seq)
1691 {
1692         int error;
1693         struct saved *last;
1694         if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1695                 path_to_nameidata(link, nd);
1696                 return -ELOOP;
1697         }
1698         if (!(nd->flags & LOOKUP_RCU)) {
1699                 if (link->mnt == nd->path.mnt)
1700                         mntget(link->mnt);
1701         }
1702         error = nd_alloc_stack(nd);
1703         if (unlikely(error)) {
1704                 if (error == -ECHILD) {
1705                         if (unlikely(!legitimize_path(nd, link, seq))) {
1706                                 drop_links(nd);
1707                                 nd->depth = 0;
1708                                 nd->flags &= ~LOOKUP_RCU;
1709                                 nd->path.mnt = NULL;
1710                                 nd->path.dentry = NULL;
1711                                 if (!(nd->flags & LOOKUP_ROOT))
1712                                         nd->root.mnt = NULL;
1713                                 rcu_read_unlock();
1714                         } else if (likely(unlazy_walk(nd)) == 0)
1715                                 error = nd_alloc_stack(nd);
1716                 }
1717                 if (error) {
1718                         path_put(link);
1719                         return error;
1720                 }
1721         }
1722
1723         last = nd->stack + nd->depth++;
1724         last->link = *link;
1725         clear_delayed_call(&last->done);
1726         nd->link_inode = inode;
1727         last->seq = seq;
1728         return 1;
1729 }
1730
1731 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1732
1733 /*
1734  * Do we need to follow links? We _really_ want to be able
1735  * to do this check without having to look at inode->i_op,
1736  * so we keep a cache of "no, this doesn't need follow_link"
1737  * for the common case.
1738  */
1739 static inline int step_into(struct nameidata *nd, struct path *path,
1740                             int flags, struct inode *inode, unsigned seq)
1741 {
1742         if (!(flags & WALK_MORE) && nd->depth)
1743                 put_link(nd);
1744         if (likely(!d_is_symlink(path->dentry)) ||
1745            !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1746                 /* not a symlink or should not follow */
1747                 path_to_nameidata(path, nd);
1748                 nd->inode = inode;
1749                 nd->seq = seq;
1750                 return 0;
1751         }
1752         /* make sure that d_is_symlink above matches inode */
1753         if (nd->flags & LOOKUP_RCU) {
1754                 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1755                         return -ECHILD;
1756         }
1757         return pick_link(nd, path, inode, seq);
1758 }
1759
1760 static int walk_component(struct nameidata *nd, int flags)
1761 {
1762         struct path path;
1763         struct inode *inode;
1764         unsigned seq;
1765         int err;
1766         /*
1767          * "." and ".." are special - ".." especially so because it has
1768          * to be able to know about the current root directory and
1769          * parent relationships.
1770          */
1771         if (unlikely(nd->last_type != LAST_NORM)) {
1772                 err = handle_dots(nd, nd->last_type);
1773                 if (!(flags & WALK_MORE) && nd->depth)
1774                         put_link(nd);
1775                 return err;
1776         }
1777         err = lookup_fast(nd, &path, &inode, &seq);
1778         if (unlikely(err <= 0)) {
1779                 if (err < 0)
1780                         return err;
1781                 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1782                                           nd->flags);
1783                 if (IS_ERR(path.dentry))
1784                         return PTR_ERR(path.dentry);
1785
1786                 path.mnt = nd->path.mnt;
1787                 err = follow_managed(&path, nd);
1788                 if (unlikely(err < 0))
1789                         return err;
1790
1791                 if (unlikely(d_is_negative(path.dentry))) {
1792                         path_to_nameidata(&path, nd);
1793                         return -ENOENT;
1794                 }
1795
1796                 seq = 0;        /* we are already out of RCU mode */
1797                 inode = d_backing_inode(path.dentry);
1798         }
1799
1800         return step_into(nd, &path, flags, inode, seq);
1801 }
1802
1803 /*
1804  * We can do the critical dentry name comparison and hashing
1805  * operations one word at a time, but we are limited to:
1806  *
1807  * - Architectures with fast unaligned word accesses. We could
1808  *   do a "get_unaligned()" if this helps and is sufficiently
1809  *   fast.
1810  *
1811  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1812  *   do not trap on the (extremely unlikely) case of a page
1813  *   crossing operation.
1814  *
1815  * - Furthermore, we need an efficient 64-bit compile for the
1816  *   64-bit case in order to generate the "number of bytes in
1817  *   the final mask". Again, that could be replaced with a
1818  *   efficient population count instruction or similar.
1819  */
1820 #ifdef CONFIG_DCACHE_WORD_ACCESS
1821
1822 #include <asm/word-at-a-time.h>
1823
1824 #ifdef HASH_MIX
1825
1826 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1827
1828 #elif defined(CONFIG_64BIT)
1829 /*
1830  * Register pressure in the mixing function is an issue, particularly
1831  * on 32-bit x86, but almost any function requires one state value and
1832  * one temporary.  Instead, use a function designed for two state values
1833  * and no temporaries.
1834  *
1835  * This function cannot create a collision in only two iterations, so
1836  * we have two iterations to achieve avalanche.  In those two iterations,
1837  * we have six layers of mixing, which is enough to spread one bit's
1838  * influence out to 2^6 = 64 state bits.
1839  *
1840  * Rotate constants are scored by considering either 64 one-bit input
1841  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1842  * probability of that delta causing a change to each of the 128 output
1843  * bits, using a sample of random initial states.
1844  *
1845  * The Shannon entropy of the computed probabilities is then summed
1846  * to produce a score.  Ideally, any input change has a 50% chance of
1847  * toggling any given output bit.
1848  *
1849  * Mixing scores (in bits) for (12,45):
1850  * Input delta: 1-bit      2-bit
1851  * 1 round:     713.3    42542.6
1852  * 2 rounds:   2753.7   140389.8
1853  * 3 rounds:   5954.1   233458.2
1854  * 4 rounds:   7862.6   256672.2
1855  * Perfect:    8192     258048
1856  *            (64*128) (64*63/2 * 128)
1857  */
1858 #define HASH_MIX(x, y, a)       \
1859         (       x ^= (a),       \
1860         y ^= x, x = rol64(x,12),\
1861         x += y, y = rol64(y,45),\
1862         y *= 9                  )
1863
1864 /*
1865  * Fold two longs into one 32-bit hash value.  This must be fast, but
1866  * latency isn't quite as critical, as there is a fair bit of additional
1867  * work done before the hash value is used.
1868  */
1869 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1870 {
1871         y ^= x * GOLDEN_RATIO_64;
1872         y *= GOLDEN_RATIO_64;
1873         return y >> 32;
1874 }
1875
1876 #else   /* 32-bit case */
1877
1878 /*
1879  * Mixing scores (in bits) for (7,20):
1880  * Input delta: 1-bit      2-bit
1881  * 1 round:     330.3     9201.6
1882  * 2 rounds:   1246.4    25475.4
1883  * 3 rounds:   1907.1    31295.1
1884  * 4 rounds:   2042.3    31718.6
1885  * Perfect:    2048      31744
1886  *            (32*64)   (32*31/2 * 64)
1887  */
1888 #define HASH_MIX(x, y, a)       \
1889         (       x ^= (a),       \
1890         y ^= x, x = rol32(x, 7),\
1891         x += y, y = rol32(y,20),\
1892         y *= 9                  )
1893
1894 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1895 {
1896         /* Use arch-optimized multiply if one exists */
1897         return __hash_32(y ^ __hash_32(x));
1898 }
1899
1900 #endif
1901
1902 /*
1903  * Return the hash of a string of known length.  This is carfully
1904  * designed to match hash_name(), which is the more critical function.
1905  * In particular, we must end by hashing a final word containing 0..7
1906  * payload bytes, to match the way that hash_name() iterates until it
1907  * finds the delimiter after the name.
1908  */
1909 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1910 {
1911         unsigned long a, x = 0, y = (unsigned long)salt;
1912
1913         for (;;) {
1914                 if (!len)
1915                         goto done;
1916                 a = load_unaligned_zeropad(name);
1917                 if (len < sizeof(unsigned long))
1918                         break;
1919                 HASH_MIX(x, y, a);
1920                 name += sizeof(unsigned long);
1921                 len -= sizeof(unsigned long);
1922         }
1923         x ^= a & bytemask_from_count(len);
1924 done:
1925         return fold_hash(x, y);
1926 }
1927 EXPORT_SYMBOL(full_name_hash);
1928
1929 /* Return the "hash_len" (hash and length) of a null-terminated string */
1930 u64 hashlen_string(const void *salt, const char *name)
1931 {
1932         unsigned long a = 0, x = 0, y = (unsigned long)salt;
1933         unsigned long adata, mask, len;
1934         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1935
1936         len = 0;
1937         goto inside;
1938
1939         do {
1940                 HASH_MIX(x, y, a);
1941                 len += sizeof(unsigned long);
1942 inside:
1943                 a = load_unaligned_zeropad(name+len);
1944         } while (!has_zero(a, &adata, &constants));
1945
1946         adata = prep_zero_mask(a, adata, &constants);
1947         mask = create_zero_mask(adata);
1948         x ^= a & zero_bytemask(mask);
1949
1950         return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1951 }
1952 EXPORT_SYMBOL(hashlen_string);
1953
1954 /*
1955  * Calculate the length and hash of the path component, and
1956  * return the "hash_len" as the result.
1957  */
1958 static inline u64 hash_name(const void *salt, const char *name)
1959 {
1960         unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1961         unsigned long adata, bdata, mask, len;
1962         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1963
1964         len = 0;
1965         goto inside;
1966
1967         do {
1968                 HASH_MIX(x, y, a);
1969                 len += sizeof(unsigned long);
1970 inside:
1971                 a = load_unaligned_zeropad(name+len);
1972                 b = a ^ REPEAT_BYTE('/');
1973         } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1974
1975         adata = prep_zero_mask(a, adata, &constants);
1976         bdata = prep_zero_mask(b, bdata, &constants);
1977         mask = create_zero_mask(adata | bdata);
1978         x ^= a & zero_bytemask(mask);
1979
1980         return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1981 }
1982
1983 #else   /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1984
1985 /* Return the hash of a string of known length */
1986 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1987 {
1988         unsigned long hash = init_name_hash(salt);
1989         while (len--)
1990                 hash = partial_name_hash((unsigned char)*name++, hash);
1991         return end_name_hash(hash);
1992 }
1993 EXPORT_SYMBOL(full_name_hash);
1994
1995 /* Return the "hash_len" (hash and length) of a null-terminated string */
1996 u64 hashlen_string(const void *salt, const char *name)
1997 {
1998         unsigned long hash = init_name_hash(salt);
1999         unsigned long len = 0, c;
2000
2001         c = (unsigned char)*name;
2002         while (c) {
2003                 len++;
2004                 hash = partial_name_hash(c, hash);
2005                 c = (unsigned char)name[len];
2006         }
2007         return hashlen_create(end_name_hash(hash), len);
2008 }
2009 EXPORT_SYMBOL(hashlen_string);
2010
2011 /*
2012  * We know there's a real path component here of at least
2013  * one character.
2014  */
2015 static inline u64 hash_name(const void *salt, const char *name)
2016 {
2017         unsigned long hash = init_name_hash(salt);
2018         unsigned long len = 0, c;
2019
2020         c = (unsigned char)*name;
2021         do {
2022                 len++;
2023                 hash = partial_name_hash(c, hash);
2024                 c = (unsigned char)name[len];
2025         } while (c && c != '/');
2026         return hashlen_create(end_name_hash(hash), len);
2027 }
2028
2029 #endif
2030
2031 /*
2032  * Name resolution.
2033  * This is the basic name resolution function, turning a pathname into
2034  * the final dentry. We expect 'base' to be positive and a directory.
2035  *
2036  * Returns 0 and nd will have valid dentry and mnt on success.
2037  * Returns error and drops reference to input namei data on failure.
2038  */
2039 static int link_path_walk(const char *name, struct nameidata *nd)
2040 {
2041         int err;
2042
2043         while (*name=='/')
2044                 name++;
2045         if (!*name)
2046                 return 0;
2047
2048         /* At this point we know we have a real path component. */
2049         for(;;) {
2050                 u64 hash_len;
2051                 int type;
2052
2053                 err = may_lookup(nd);
2054                 if (err)
2055                         return err;
2056
2057                 hash_len = hash_name(nd->path.dentry, name);
2058
2059                 type = LAST_NORM;
2060                 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2061                         case 2:
2062                                 if (name[1] == '.') {
2063                                         type = LAST_DOTDOT;
2064                                         nd->flags |= LOOKUP_JUMPED;
2065                                 }
2066                                 break;
2067                         case 1:
2068                                 type = LAST_DOT;
2069                 }
2070                 if (likely(type == LAST_NORM)) {
2071                         struct dentry *parent = nd->path.dentry;
2072                         nd->flags &= ~LOOKUP_JUMPED;
2073                         if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2074                                 struct qstr this = { { .hash_len = hash_len }, .name = name };
2075                                 err = parent->d_op->d_hash(parent, &this);
2076                                 if (err < 0)
2077                                         return err;
2078                                 hash_len = this.hash_len;
2079                                 name = this.name;
2080                         }
2081                 }
2082
2083                 nd->last.hash_len = hash_len;
2084                 nd->last.name = name;
2085                 nd->last_type = type;
2086
2087                 name += hashlen_len(hash_len);
2088                 if (!*name)
2089                         goto OK;
2090                 /*
2091                  * If it wasn't NUL, we know it was '/'. Skip that
2092                  * slash, and continue until no more slashes.
2093                  */
2094                 do {
2095                         name++;
2096                 } while (unlikely(*name == '/'));
2097                 if (unlikely(!*name)) {
2098 OK:
2099                         /* pathname body, done */
2100                         if (!nd->depth)
2101                                 return 0;
2102                         name = nd->stack[nd->depth - 1].name;
2103                         /* trailing symlink, done */
2104                         if (!name)
2105                                 return 0;
2106                         /* last component of nested symlink */
2107                         err = walk_component(nd, WALK_FOLLOW);
2108                 } else {
2109                         /* not the last component */
2110                         err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2111                 }
2112                 if (err < 0)
2113                         return err;
2114
2115                 if (err) {
2116                         const char *s = get_link(nd);
2117
2118                         if (IS_ERR(s))
2119                                 return PTR_ERR(s);
2120                         err = 0;
2121                         if (unlikely(!s)) {
2122                                 /* jumped */
2123                                 put_link(nd);
2124                         } else {
2125                                 nd->stack[nd->depth - 1].name = name;
2126                                 name = s;
2127                                 continue;
2128                         }
2129                 }
2130                 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2131                         if (nd->flags & LOOKUP_RCU) {
2132                                 if (unlazy_walk(nd))
2133                                         return -ECHILD;
2134                         }
2135                         return -ENOTDIR;
2136                 }
2137         }
2138 }
2139
2140 static const char *path_init(struct nameidata *nd, unsigned flags)
2141 {
2142         const char *s = nd->name->name;
2143
2144         if (!*s)
2145                 flags &= ~LOOKUP_RCU;
2146
2147         nd->last_type = LAST_ROOT; /* if there are only slashes... */
2148         nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2149         nd->depth = 0;
2150         if (flags & LOOKUP_ROOT) {
2151                 struct dentry *root = nd->root.dentry;
2152                 struct inode *inode = root->d_inode;
2153                 if (*s && unlikely(!d_can_lookup(root)))
2154                         return ERR_PTR(-ENOTDIR);
2155                 nd->path = nd->root;
2156                 nd->inode = inode;
2157                 if (flags & LOOKUP_RCU) {
2158                         rcu_read_lock();
2159                         nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2160                         nd->root_seq = nd->seq;
2161                         nd->m_seq = read_seqbegin(&mount_lock);
2162                 } else {
2163                         path_get(&nd->path);
2164                 }
2165                 return s;
2166         }
2167
2168         nd->root.mnt = NULL;
2169         nd->path.mnt = NULL;
2170         nd->path.dentry = NULL;
2171
2172         nd->m_seq = read_seqbegin(&mount_lock);
2173         if (*s == '/') {
2174                 if (flags & LOOKUP_RCU)
2175                         rcu_read_lock();
2176                 set_root(nd);
2177                 if (likely(!nd_jump_root(nd)))
2178                         return s;
2179                 nd->root.mnt = NULL;
2180                 rcu_read_unlock();
2181                 return ERR_PTR(-ECHILD);
2182         } else if (nd->dfd == AT_FDCWD) {
2183                 if (flags & LOOKUP_RCU) {
2184                         struct fs_struct *fs = current->fs;
2185                         unsigned seq;
2186
2187                         rcu_read_lock();
2188
2189                         do {
2190                                 seq = read_seqcount_begin(&fs->seq);
2191                                 nd->path = fs->pwd;
2192                                 nd->inode = nd->path.dentry->d_inode;
2193                                 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2194                         } while (read_seqcount_retry(&fs->seq, seq));
2195                 } else {
2196                         get_fs_pwd(current->fs, &nd->path);
2197                         nd->inode = nd->path.dentry->d_inode;
2198                 }
2199                 return s;
2200         } else {
2201                 /* Caller must check execute permissions on the starting path component */
2202                 struct fd f = fdget_raw(nd->dfd);
2203                 struct dentry *dentry;
2204
2205                 if (!f.file)
2206                         return ERR_PTR(-EBADF);
2207
2208                 dentry = f.file->f_path.dentry;
2209
2210                 if (*s) {
2211                         if (!d_can_lookup(dentry)) {
2212                                 fdput(f);
2213                                 return ERR_PTR(-ENOTDIR);
2214                         }
2215                 }
2216
2217                 nd->path = f.file->f_path;
2218                 if (flags & LOOKUP_RCU) {
2219                         rcu_read_lock();
2220                         nd->inode = nd->path.dentry->d_inode;
2221                         nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2222                 } else {
2223                         path_get(&nd->path);
2224                         nd->inode = nd->path.dentry->d_inode;
2225                 }
2226                 fdput(f);
2227                 return s;
2228         }
2229 }
2230
2231 static const char *trailing_symlink(struct nameidata *nd)
2232 {
2233         const char *s;
2234         int error = may_follow_link(nd);
2235         if (unlikely(error))
2236                 return ERR_PTR(error);
2237         nd->flags |= LOOKUP_PARENT;
2238         nd->stack[0].name = NULL;
2239         s = get_link(nd);
2240         return s ? s : "";
2241 }
2242
2243 static inline int lookup_last(struct nameidata *nd)
2244 {
2245         if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2246                 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2247
2248         nd->flags &= ~LOOKUP_PARENT;
2249         return walk_component(nd, 0);
2250 }
2251
2252 static int handle_lookup_down(struct nameidata *nd)
2253 {
2254         struct path path = nd->path;
2255         struct inode *inode = nd->inode;
2256         unsigned seq = nd->seq;
2257         int err;
2258
2259         if (nd->flags & LOOKUP_RCU) {
2260                 /*
2261                  * don't bother with unlazy_walk on failure - we are
2262                  * at the very beginning of walk, so we lose nothing
2263                  * if we simply redo everything in non-RCU mode
2264                  */
2265                 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2266                         return -ECHILD;
2267         } else {
2268                 dget(path.dentry);
2269                 err = follow_managed(&path, nd);
2270                 if (unlikely(err < 0))
2271                         return err;
2272                 inode = d_backing_inode(path.dentry);
2273                 seq = 0;
2274         }
2275         path_to_nameidata(&path, nd);
2276         nd->inode = inode;
2277         nd->seq = seq;
2278         return 0;
2279 }
2280
2281 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2282 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2283 {
2284         const char *s = path_init(nd, flags);
2285         int err;
2286
2287         if (IS_ERR(s))
2288                 return PTR_ERR(s);
2289
2290         if (unlikely(flags & LOOKUP_DOWN)) {
2291                 err = handle_lookup_down(nd);
2292                 if (unlikely(err < 0)) {
2293                         terminate_walk(nd);
2294                         return err;
2295                 }
2296         }
2297
2298         while (!(err = link_path_walk(s, nd))
2299                 && ((err = lookup_last(nd)) > 0)) {
2300                 s = trailing_symlink(nd);
2301                 if (IS_ERR(s)) {
2302                         err = PTR_ERR(s);
2303                         break;
2304                 }
2305         }
2306         if (!err)
2307                 err = complete_walk(nd);
2308
2309         if (!err && nd->flags & LOOKUP_DIRECTORY)
2310                 if (!d_can_lookup(nd->path.dentry))
2311                         err = -ENOTDIR;
2312         if (!err) {
2313                 *path = nd->path;
2314                 nd->path.mnt = NULL;
2315                 nd->path.dentry = NULL;
2316         }
2317         terminate_walk(nd);
2318         return err;
2319 }
2320
2321 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2322                            struct path *path, struct path *root)
2323 {
2324         int retval;
2325         struct nameidata nd;
2326         if (IS_ERR(name))
2327                 return PTR_ERR(name);
2328         if (unlikely(root)) {
2329                 nd.root = *root;
2330                 flags |= LOOKUP_ROOT;
2331         }
2332         set_nameidata(&nd, dfd, name);
2333         retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2334         if (unlikely(retval == -ECHILD))
2335                 retval = path_lookupat(&nd, flags, path);
2336         if (unlikely(retval == -ESTALE))
2337                 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2338
2339         if (likely(!retval))
2340                 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2341         restore_nameidata();
2342         putname(name);
2343         return retval;
2344 }
2345
2346 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2347 static int path_parentat(struct nameidata *nd, unsigned flags,
2348                                 struct path *parent)
2349 {
2350         const char *s = path_init(nd, flags);
2351         int err;
2352         if (IS_ERR(s))
2353                 return PTR_ERR(s);
2354         err = link_path_walk(s, nd);
2355         if (!err)
2356                 err = complete_walk(nd);
2357         if (!err) {
2358                 *parent = nd->path;
2359                 nd->path.mnt = NULL;
2360                 nd->path.dentry = NULL;
2361         }
2362         terminate_walk(nd);
2363         return err;
2364 }
2365
2366 static struct filename *filename_parentat(int dfd, struct filename *name,
2367                                 unsigned int flags, struct path *parent,
2368                                 struct qstr *last, int *type)
2369 {
2370         int retval;
2371         struct nameidata nd;
2372
2373         if (IS_ERR(name))
2374                 return name;
2375         set_nameidata(&nd, dfd, name);
2376         retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2377         if (unlikely(retval == -ECHILD))
2378                 retval = path_parentat(&nd, flags, parent);
2379         if (unlikely(retval == -ESTALE))
2380                 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2381         if (likely(!retval)) {
2382                 *last = nd.last;
2383                 *type = nd.last_type;
2384                 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2385         } else {
2386                 putname(name);
2387                 name = ERR_PTR(retval);
2388         }
2389         restore_nameidata();
2390         return name;
2391 }
2392
2393 /* does lookup, returns the object with parent locked */
2394 struct dentry *kern_path_locked(const char *name, struct path *path)
2395 {
2396         struct filename *filename;
2397         struct dentry *d;
2398         struct qstr last;
2399         int type;
2400
2401         filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2402                                     &last, &type);
2403         if (IS_ERR(filename))
2404                 return ERR_CAST(filename);
2405         if (unlikely(type != LAST_NORM)) {
2406                 path_put(path);
2407                 putname(filename);
2408                 return ERR_PTR(-EINVAL);
2409         }
2410         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2411         d = __lookup_hash(&last, path->dentry, 0);
2412         if (IS_ERR(d)) {
2413                 inode_unlock(path->dentry->d_inode);
2414                 path_put(path);
2415         }
2416         putname(filename);
2417         return d;
2418 }
2419
2420 int kern_path(const char *name, unsigned int flags, struct path *path)
2421 {
2422         return filename_lookup(AT_FDCWD, getname_kernel(name),
2423                                flags, path, NULL);
2424 }
2425 EXPORT_SYMBOL(kern_path);
2426
2427 /**
2428  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2429  * @dentry:  pointer to dentry of the base directory
2430  * @mnt: pointer to vfs mount of the base directory
2431  * @name: pointer to file name
2432  * @flags: lookup flags
2433  * @path: pointer to struct path to fill
2434  */
2435 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2436                     const char *name, unsigned int flags,
2437                     struct path *path)
2438 {
2439         struct path root = {.mnt = mnt, .dentry = dentry};
2440         /* the first argument of filename_lookup() is ignored with root */
2441         return filename_lookup(AT_FDCWD, getname_kernel(name),
2442                                flags , path, &root);
2443 }
2444 EXPORT_SYMBOL(vfs_path_lookup);
2445
2446 /**
2447  * lookup_one_len - filesystem helper to lookup single pathname component
2448  * @name:       pathname component to lookup
2449  * @base:       base directory to lookup from
2450  * @len:        maximum length @len should be interpreted to
2451  *
2452  * Note that this routine is purely a helper for filesystem usage and should
2453  * not be called by generic code.
2454  *
2455  * The caller must hold base->i_mutex.
2456  */
2457 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2458 {
2459         struct qstr this;
2460         unsigned int c;
2461         int err;
2462
2463         WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2464
2465         this.name = name;
2466         this.len = len;
2467         this.hash = full_name_hash(base, name, len);
2468         if (!len)
2469                 return ERR_PTR(-EACCES);
2470
2471         if (unlikely(name[0] == '.')) {
2472                 if (len < 2 || (len == 2 && name[1] == '.'))
2473                         return ERR_PTR(-EACCES);
2474         }
2475
2476         while (len--) {
2477                 c = *(const unsigned char *)name++;
2478                 if (c == '/' || c == '\0')
2479                         return ERR_PTR(-EACCES);
2480         }
2481         /*
2482          * See if the low-level filesystem might want
2483          * to use its own hash..
2484          */
2485         if (base->d_flags & DCACHE_OP_HASH) {
2486                 int err = base->d_op->d_hash(base, &this);
2487                 if (err < 0)
2488                         return ERR_PTR(err);
2489         }
2490
2491         err = inode_permission(base->d_inode, MAY_EXEC);
2492         if (err)
2493                 return ERR_PTR(err);
2494
2495         return __lookup_hash(&this, base, 0);
2496 }
2497 EXPORT_SYMBOL(lookup_one_len);
2498
2499 /**
2500  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2501  * @name:       pathname component to lookup
2502  * @base:       base directory to lookup from
2503  * @len:        maximum length @len should be interpreted to
2504  *
2505  * Note that this routine is purely a helper for filesystem usage and should
2506  * not be called by generic code.
2507  *
2508  * Unlike lookup_one_len, it should be called without the parent
2509  * i_mutex held, and will take the i_mutex itself if necessary.
2510  */
2511 struct dentry *lookup_one_len_unlocked(const char *name,
2512                                        struct dentry *base, int len)
2513 {
2514         struct qstr this;
2515         unsigned int c;
2516         int err;
2517         struct dentry *ret;
2518
2519         this.name = name;
2520         this.len = len;
2521         this.hash = full_name_hash(base, name, len);
2522         if (!len)
2523                 return ERR_PTR(-EACCES);
2524
2525         if (unlikely(name[0] == '.')) {
2526                 if (len < 2 || (len == 2 && name[1] == '.'))
2527                         return ERR_PTR(-EACCES);
2528         }
2529
2530         while (len--) {
2531                 c = *(const unsigned char *)name++;
2532                 if (c == '/' || c == '\0')
2533                         return ERR_PTR(-EACCES);
2534         }
2535         /*
2536          * See if the low-level filesystem might want
2537          * to use its own hash..
2538          */
2539         if (base->d_flags & DCACHE_OP_HASH) {
2540                 int err = base->d_op->d_hash(base, &this);
2541                 if (err < 0)
2542                         return ERR_PTR(err);
2543         }
2544
2545         err = inode_permission(base->d_inode, MAY_EXEC);
2546         if (err)
2547                 return ERR_PTR(err);
2548
2549         ret = lookup_dcache(&this, base, 0);
2550         if (!ret)
2551                 ret = lookup_slow(&this, base, 0);
2552         return ret;
2553 }
2554 EXPORT_SYMBOL(lookup_one_len_unlocked);
2555
2556 #ifdef CONFIG_UNIX98_PTYS
2557 int path_pts(struct path *path)
2558 {
2559         /* Find something mounted on "pts" in the same directory as
2560          * the input path.
2561          */
2562         struct dentry *child, *parent;
2563         struct qstr this;
2564         int ret;
2565
2566         ret = path_parent_directory(path);
2567         if (ret)
2568                 return ret;
2569
2570         parent = path->dentry;
2571         this.name = "pts";
2572         this.len = 3;
2573         child = d_hash_and_lookup(parent, &this);
2574         if (!child)
2575                 return -ENOENT;
2576
2577         path->dentry = child;
2578         dput(parent);
2579         follow_mount(path);
2580         return 0;
2581 }
2582 #endif
2583
2584 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2585                  struct path *path, int *empty)
2586 {
2587         return filename_lookup(dfd, getname_flags(name, flags, empty),
2588                                flags, path, NULL);
2589 }
2590 EXPORT_SYMBOL(user_path_at_empty);
2591
2592 /**
2593  * mountpoint_last - look up last component for umount
2594  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2595  *
2596  * This is a special lookup_last function just for umount. In this case, we
2597  * need to resolve the path without doing any revalidation.
2598  *
2599  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2600  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2601  * in almost all cases, this lookup will be served out of the dcache. The only
2602  * cases where it won't are if nd->last refers to a symlink or the path is
2603  * bogus and it doesn't exist.
2604  *
2605  * Returns:
2606  * -error: if there was an error during lookup. This includes -ENOENT if the
2607  *         lookup found a negative dentry.
2608  *
2609  * 0:      if we successfully resolved nd->last and found it to not to be a
2610  *         symlink that needs to be followed.
2611  *
2612  * 1:      if we successfully resolved nd->last and found it to be a symlink
2613  *         that needs to be followed.
2614  */
2615 static int
2616 mountpoint_last(struct nameidata *nd)
2617 {
2618         int error = 0;
2619         struct dentry *dir = nd->path.dentry;
2620         struct path path;
2621
2622         /* If we're in rcuwalk, drop out of it to handle last component */
2623         if (nd->flags & LOOKUP_RCU) {
2624                 if (unlazy_walk(nd))
2625                         return -ECHILD;
2626         }
2627
2628         nd->flags &= ~LOOKUP_PARENT;
2629
2630         if (unlikely(nd->last_type != LAST_NORM)) {
2631                 error = handle_dots(nd, nd->last_type);
2632                 if (error)
2633                         return error;
2634                 path.dentry = dget(nd->path.dentry);
2635         } else {
2636                 path.dentry = d_lookup(dir, &nd->last);
2637                 if (!path.dentry) {
2638                         /*
2639                          * No cached dentry. Mounted dentries are pinned in the
2640                          * cache, so that means that this dentry is probably
2641                          * a symlink or the path doesn't actually point
2642                          * to a mounted dentry.
2643                          */
2644                         path.dentry = lookup_slow(&nd->last, dir,
2645                                              nd->flags | LOOKUP_NO_REVAL);
2646                         if (IS_ERR(path.dentry))
2647                                 return PTR_ERR(path.dentry);
2648                 }
2649         }
2650         if (d_is_negative(path.dentry)) {
2651                 dput(path.dentry);
2652                 return -ENOENT;
2653         }
2654         path.mnt = nd->path.mnt;
2655         return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2656 }
2657
2658 /**
2659  * path_mountpoint - look up a path to be umounted
2660  * @nd:         lookup context
2661  * @flags:      lookup flags
2662  * @path:       pointer to container for result
2663  *
2664  * Look up the given name, but don't attempt to revalidate the last component.
2665  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2666  */
2667 static int
2668 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2669 {
2670         const char *s = path_init(nd, flags);
2671         int err;
2672         if (IS_ERR(s))
2673                 return PTR_ERR(s);
2674         while (!(err = link_path_walk(s, nd)) &&
2675                 (err = mountpoint_last(nd)) > 0) {
2676                 s = trailing_symlink(nd);
2677                 if (IS_ERR(s)) {
2678                         err = PTR_ERR(s);
2679                         break;
2680                 }
2681         }
2682         if (!err) {
2683                 *path = nd->path;
2684                 nd->path.mnt = NULL;
2685                 nd->path.dentry = NULL;
2686                 follow_mount(path);
2687         }
2688         terminate_walk(nd);
2689         return err;
2690 }
2691
2692 static int
2693 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2694                         unsigned int flags)
2695 {
2696         struct nameidata nd;
2697         int error;
2698         if (IS_ERR(name))
2699                 return PTR_ERR(name);
2700         set_nameidata(&nd, dfd, name);
2701         error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2702         if (unlikely(error == -ECHILD))
2703                 error = path_mountpoint(&nd, flags, path);
2704         if (unlikely(error == -ESTALE))
2705                 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2706         if (likely(!error))
2707                 audit_inode(name, path->dentry, 0);
2708         restore_nameidata();
2709         putname(name);
2710         return error;
2711 }
2712
2713 /**
2714  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2715  * @dfd:        directory file descriptor
2716  * @name:       pathname from userland
2717  * @flags:      lookup flags
2718  * @path:       pointer to container to hold result
2719  *
2720  * A umount is a special case for path walking. We're not actually interested
2721  * in the inode in this situation, and ESTALE errors can be a problem. We
2722  * simply want track down the dentry and vfsmount attached at the mountpoint
2723  * and avoid revalidating the last component.
2724  *
2725  * Returns 0 and populates "path" on success.
2726  */
2727 int
2728 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2729                         struct path *path)
2730 {
2731         return filename_mountpoint(dfd, getname(name), path, flags);
2732 }
2733
2734 int
2735 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2736                         unsigned int flags)
2737 {
2738         return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2739 }
2740 EXPORT_SYMBOL(kern_path_mountpoint);
2741
2742 int __check_sticky(struct inode *dir, struct inode *inode)
2743 {
2744         kuid_t fsuid = current_fsuid();
2745
2746         if (uid_eq(inode->i_uid, fsuid))
2747                 return 0;
2748         if (uid_eq(dir->i_uid, fsuid))
2749                 return 0;
2750         return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2751 }
2752 EXPORT_SYMBOL(__check_sticky);
2753
2754 /*
2755  *      Check whether we can remove a link victim from directory dir, check
2756  *  whether the type of victim is right.
2757  *  1. We can't do it if dir is read-only (done in permission())
2758  *  2. We should have write and exec permissions on dir
2759  *  3. We can't remove anything from append-only dir
2760  *  4. We can't do anything with immutable dir (done in permission())
2761  *  5. If the sticky bit on dir is set we should either
2762  *      a. be owner of dir, or
2763  *      b. be owner of victim, or
2764  *      c. have CAP_FOWNER capability
2765  *  6. If the victim is append-only or immutable we can't do antyhing with
2766  *     links pointing to it.
2767  *  7. If the victim has an unknown uid or gid we can't change the inode.
2768  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2769  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2770  * 10. We can't remove a root or mountpoint.
2771  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2772  *     nfs_async_unlink().
2773  */
2774 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2775 {
2776         struct inode *inode = d_backing_inode(victim);
2777         int error;
2778
2779         if (d_is_negative(victim))
2780                 return -ENOENT;
2781         BUG_ON(!inode);
2782
2783         BUG_ON(victim->d_parent->d_inode != dir);
2784         audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2785
2786         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2787         if (error)
2788                 return error;
2789         if (IS_APPEND(dir))
2790                 return -EPERM;
2791
2792         if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2793             IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2794                 return -EPERM;
2795         if (isdir) {
2796                 if (!d_is_dir(victim))
2797                         return -ENOTDIR;
2798                 if (IS_ROOT(victim))
2799                         return -EBUSY;
2800         } else if (d_is_dir(victim))
2801                 return -EISDIR;
2802         if (IS_DEADDIR(dir))
2803                 return -ENOENT;
2804         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2805                 return -EBUSY;
2806         return 0;
2807 }
2808
2809 /*      Check whether we can create an object with dentry child in directory
2810  *  dir.
2811  *  1. We can't do it if child already exists (open has special treatment for
2812  *     this case, but since we are inlined it's OK)
2813  *  2. We can't do it if dir is read-only (done in permission())
2814  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2815  *  4. We should have write and exec permissions on dir
2816  *  5. We can't do it if dir is immutable (done in permission())
2817  */
2818 static inline int may_create(struct inode *dir, struct dentry *child)
2819 {
2820         struct user_namespace *s_user_ns;
2821         audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2822         if (child->d_inode)
2823                 return -EEXIST;
2824         if (IS_DEADDIR(dir))
2825                 return -ENOENT;
2826         s_user_ns = dir->i_sb->s_user_ns;
2827         if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2828             !kgid_has_mapping(s_user_ns, current_fsgid()))
2829                 return -EOVERFLOW;
2830         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2831 }
2832
2833 /*
2834  * p1 and p2 should be directories on the same fs.
2835  */
2836 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2837 {
2838         struct dentry *p;
2839
2840         if (p1 == p2) {
2841                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2842                 return NULL;
2843         }
2844
2845         mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2846
2847         p = d_ancestor(p2, p1);
2848         if (p) {
2849                 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2850                 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2851                 return p;
2852         }
2853
2854         p = d_ancestor(p1, p2);
2855         if (p) {
2856                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2857                 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2858                 return p;
2859         }
2860
2861         inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2862         inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2863         return NULL;
2864 }
2865 EXPORT_SYMBOL(lock_rename);
2866
2867 void unlock_rename(struct dentry *p1, struct dentry *p2)
2868 {
2869         inode_unlock(p1->d_inode);
2870         if (p1 != p2) {
2871                 inode_unlock(p2->d_inode);
2872                 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2873         }
2874 }
2875 EXPORT_SYMBOL(unlock_rename);
2876
2877 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2878                 bool want_excl)
2879 {
2880         int error = may_create(dir, dentry);
2881         if (error)
2882                 return error;
2883
2884         if (!dir->i_op->create)
2885                 return -EACCES; /* shouldn't it be ENOSYS? */
2886         mode &= S_IALLUGO;
2887         mode |= S_IFREG;
2888         error = security_inode_create(dir, dentry, mode);
2889         if (error)
2890                 return error;
2891         error = dir->i_op->create(dir, dentry, mode, want_excl);
2892         if (!error)
2893                 fsnotify_create(dir, dentry);
2894         return error;
2895 }
2896 EXPORT_SYMBOL(vfs_create);
2897
2898 bool may_open_dev(const struct path *path)
2899 {
2900         return !(path->mnt->mnt_flags & MNT_NODEV) &&
2901                 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2902 }
2903
2904 static int may_open(const struct path *path, int acc_mode, int flag)
2905 {
2906         struct dentry *dentry = path->dentry;
2907         struct inode *inode = dentry->d_inode;
2908         int error;
2909
2910         if (!inode)
2911                 return -ENOENT;
2912
2913         switch (inode->i_mode & S_IFMT) {
2914         case S_IFLNK:
2915                 return -ELOOP;
2916         case S_IFDIR:
2917                 if (acc_mode & MAY_WRITE)
2918                         return -EISDIR;
2919                 break;
2920         case S_IFBLK:
2921         case S_IFCHR:
2922                 if (!may_open_dev(path))
2923                         return -EACCES;
2924                 /*FALLTHRU*/
2925         case S_IFIFO:
2926         case S_IFSOCK:
2927                 flag &= ~O_TRUNC;
2928                 break;
2929         }
2930
2931         error = inode_permission(inode, MAY_OPEN | acc_mode);
2932         if (error)
2933                 return error;
2934
2935         /*
2936          * An append-only file must be opened in append mode for writing.
2937          */
2938         if (IS_APPEND(inode)) {
2939                 if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2940                         return -EPERM;
2941                 if (flag & O_TRUNC)
2942                         return -EPERM;
2943         }
2944
2945         /* O_NOATIME can only be set by the owner or superuser */
2946         if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2947                 return -EPERM;
2948
2949         return 0;
2950 }
2951
2952 static int handle_truncate(struct file *filp)
2953 {
2954         const struct path *path = &filp->f_path;
2955         struct inode *inode = path->dentry->d_inode;
2956         int error = get_write_access(inode);
2957         if (error)
2958                 return error;
2959         /*
2960          * Refuse to truncate files with mandatory locks held on them.
2961          */
2962         error = locks_verify_locked(filp);
2963         if (!error)
2964                 error = security_path_truncate(path);
2965         if (!error) {
2966                 error = do_truncate(path->dentry, 0,
2967                                     ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2968                                     filp);
2969         }
2970         put_write_access(inode);
2971         return error;
2972 }
2973
2974 static inline int open_to_namei_flags(int flag)
2975 {
2976         if ((flag & O_ACCMODE) == 3)
2977                 flag--;
2978         return flag;
2979 }
2980
2981 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2982 {
2983         struct user_namespace *s_user_ns;
2984         int error = security_path_mknod(dir, dentry, mode, 0);
2985         if (error)
2986                 return error;
2987
2988         s_user_ns = dir->dentry->d_sb->s_user_ns;
2989         if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2990             !kgid_has_mapping(s_user_ns, current_fsgid()))
2991                 return -EOVERFLOW;
2992
2993         error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2994         if (error)
2995                 return error;
2996
2997         return security_inode_create(dir->dentry->d_inode, dentry, mode);
2998 }
2999
3000 /*
3001  * Attempt to atomically look up, create and open a file from a negative
3002  * dentry.
3003  *
3004  * Returns 0 if successful.  The file will have been created and attached to
3005  * @file by the filesystem calling finish_open().
3006  *
3007  * Returns 1 if the file was looked up only or didn't need creating.  The
3008  * caller will need to perform the open themselves.  @path will have been
3009  * updated to point to the new dentry.  This may be negative.
3010  *
3011  * Returns an error code otherwise.
3012  */
3013 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3014                         struct path *path, struct file *file,
3015                         const struct open_flags *op,
3016                         int open_flag, umode_t mode,
3017                         int *opened)
3018 {
3019         struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3020         struct inode *dir =  nd->path.dentry->d_inode;
3021         int error;
3022
3023         if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3024                 open_flag &= ~O_TRUNC;
3025
3026         if (nd->flags & LOOKUP_DIRECTORY)
3027                 open_flag |= O_DIRECTORY;
3028
3029         file->f_path.dentry = DENTRY_NOT_SET;
3030         file->f_path.mnt = nd->path.mnt;
3031         error = dir->i_op->atomic_open(dir, dentry, file,
3032                                        open_to_namei_flags(open_flag),
3033                                        mode, opened);
3034         d_lookup_done(dentry);
3035         if (!error) {
3036                 /*
3037                  * We didn't have the inode before the open, so check open
3038                  * permission here.
3039                  */
3040                 int acc_mode = op->acc_mode;
3041                 if (*opened & FILE_CREATED) {
3042                         WARN_ON(!(open_flag & O_CREAT));
3043                         fsnotify_create(dir, dentry);
3044                         acc_mode = 0;
3045                 }
3046                 error = may_open(&file->f_path, acc_mode, open_flag);
3047                 if (WARN_ON(error > 0))
3048                         error = -EINVAL;
3049         } else if (error > 0) {
3050                 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3051                         error = -EIO;
3052                 } else {
3053                         if (file->f_path.dentry) {
3054                                 dput(dentry);
3055                                 dentry = file->f_path.dentry;
3056                         }
3057                         if (*opened & FILE_CREATED)
3058                                 fsnotify_create(dir, dentry);
3059                         if (unlikely(d_is_negative(dentry))) {
3060                                 error = -ENOENT;
3061                         } else {
3062                                 path->dentry = dentry;
3063                                 path->mnt = nd->path.mnt;
3064                                 return 1;
3065                         }
3066                 }
3067         }
3068         dput(dentry);
3069         return error;
3070 }
3071
3072 /*
3073  * Look up and maybe create and open the last component.
3074  *
3075  * Must be called with i_mutex held on parent.
3076  *
3077  * Returns 0 if the file was successfully atomically created (if necessary) and
3078  * opened.  In this case the file will be returned attached to @file.
3079  *
3080  * Returns 1 if the file was not completely opened at this time, though lookups
3081  * and creations will have been performed and the dentry returned in @path will
3082  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3083  * specified then a negative dentry may be returned.
3084  *
3085  * An error code is returned otherwise.
3086  *
3087  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3088  * cleared otherwise prior to returning.
3089  */
3090 static int lookup_open(struct nameidata *nd, struct path *path,
3091                         struct file *file,
3092                         const struct open_flags *op,
3093                         bool got_write, int *opened)
3094 {
3095         struct dentry *dir = nd->path.dentry;
3096         struct inode *dir_inode = dir->d_inode;
3097         int open_flag = op->open_flag;
3098         struct dentry *dentry;
3099         int error, create_error = 0;
3100         umode_t mode = op->mode;
3101         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3102
3103         if (unlikely(IS_DEADDIR(dir_inode)))
3104                 return -ENOENT;
3105
3106         *opened &= ~FILE_CREATED;
3107         dentry = d_lookup(dir, &nd->last);
3108         for (;;) {
3109                 if (!dentry) {
3110                         dentry = d_alloc_parallel(dir, &nd->last, &wq);
3111                         if (IS_ERR(dentry))
3112                                 return PTR_ERR(dentry);
3113                 }
3114                 if (d_in_lookup(dentry))
3115                         break;
3116
3117                 error = d_revalidate(dentry, nd->flags);
3118                 if (likely(error > 0))
3119                         break;
3120                 if (error)
3121                         goto out_dput;
3122                 d_invalidate(dentry);
3123                 dput(dentry);
3124                 dentry = NULL;
3125         }
3126         if (dentry->d_inode) {
3127                 /* Cached positive dentry: will open in f_op->open */
3128                 goto out_no_open;
3129         }
3130
3131         /*
3132          * Checking write permission is tricky, bacuse we don't know if we are
3133          * going to actually need it: O_CREAT opens should work as long as the
3134          * file exists.  But checking existence breaks atomicity.  The trick is
3135          * to check access and if not granted clear O_CREAT from the flags.
3136          *
3137          * Another problem is returing the "right" error value (e.g. for an
3138          * O_EXCL open we want to return EEXIST not EROFS).
3139          */
3140         if (open_flag & O_CREAT) {
3141                 if (!IS_POSIXACL(dir->d_inode))
3142                         mode &= ~current_umask();
3143                 if (unlikely(!got_write)) {
3144                         create_error = -EROFS;
3145                         open_flag &= ~O_CREAT;
3146                         if (open_flag & (O_EXCL | O_TRUNC))
3147                                 goto no_open;
3148                         /* No side effects, safe to clear O_CREAT */
3149                 } else {
3150                         create_error = may_o_create(&nd->path, dentry, mode);
3151                         if (create_error) {
3152                                 open_flag &= ~O_CREAT;
3153                                 if (open_flag & O_EXCL)
3154                                         goto no_open;
3155                         }
3156                 }
3157         } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3158                    unlikely(!got_write)) {
3159                 /*
3160                  * No O_CREATE -> atomicity not a requirement -> fall
3161                  * back to lookup + open
3162                  */
3163                 goto no_open;
3164         }
3165
3166         if (dir_inode->i_op->atomic_open) {
3167                 error = atomic_open(nd, dentry, path, file, op, open_flag,
3168                                     mode, opened);
3169                 if (unlikely(error == -ENOENT) && create_error)
3170                         error = create_error;
3171                 return error;
3172         }
3173
3174 no_open:
3175         if (d_in_lookup(dentry)) {
3176                 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3177                                                              nd->flags);
3178                 d_lookup_done(dentry);
3179                 if (unlikely(res)) {
3180                         if (IS_ERR(res)) {
3181                                 error = PTR_ERR(res);
3182                                 goto out_dput;
3183                         }
3184                         dput(dentry);
3185                         dentry = res;
3186                 }
3187         }
3188
3189         /* Negative dentry, just create the file */
3190         if (!dentry->d_inode && (open_flag & O_CREAT)) {
3191                 *opened |= FILE_CREATED;
3192                 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3193                 if (!dir_inode->i_op->create) {
3194                         error = -EACCES;
3195                         goto out_dput;
3196                 }
3197                 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3198                                                 open_flag & O_EXCL);
3199                 if (error)
3200                         goto out_dput;
3201                 fsnotify_create(dir_inode, dentry);
3202         }
3203         if (unlikely(create_error) && !dentry->d_inode) {
3204                 error = create_error;
3205                 goto out_dput;
3206         }
3207 out_no_open:
3208         path->dentry = dentry;
3209         path->mnt = nd->path.mnt;
3210         return 1;
3211
3212 out_dput:
3213         dput(dentry);
3214         return error;
3215 }
3216
3217 /*
3218  * Handle the last step of open()
3219  */
3220 static int do_last(struct nameidata *nd,
3221                    struct file *file, const struct open_flags *op,
3222                    int *opened)
3223 {
3224         struct dentry *dir = nd->path.dentry;
3225         int open_flag = op->open_flag;
3226         bool will_truncate = (open_flag & O_TRUNC) != 0;
3227         bool got_write = false;
3228         int acc_mode = op->acc_mode;
3229         unsigned seq;
3230         struct inode *inode;
3231         struct path path;
3232         int error;
3233
3234         nd->flags &= ~LOOKUP_PARENT;
3235         nd->flags |= op->intent;
3236
3237         if (nd->last_type != LAST_NORM) {
3238                 error = handle_dots(nd, nd->last_type);
3239                 if (unlikely(error))
3240                         return error;
3241                 goto finish_open;
3242         }
3243
3244         if (!(open_flag & O_CREAT)) {
3245                 if (nd->last.name[nd->last.len])
3246                         nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3247                 /* we _can_ be in RCU mode here */
3248                 error = lookup_fast(nd, &path, &inode, &seq);
3249                 if (likely(error > 0))
3250                         goto finish_lookup;
3251
3252                 if (error < 0)
3253                         return error;
3254
3255                 BUG_ON(nd->inode != dir->d_inode);
3256                 BUG_ON(nd->flags & LOOKUP_RCU);
3257         } else {
3258                 /* create side of things */
3259                 /*
3260                  * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3261                  * has been cleared when we got to the last component we are
3262                  * about to look up
3263                  */
3264                 error = complete_walk(nd);
3265                 if (error)
3266                         return error;
3267
3268                 audit_inode(nd->name, dir, LOOKUP_PARENT);
3269                 /* trailing slashes? */
3270                 if (unlikely(nd->last.name[nd->last.len]))
3271                         return -EISDIR;
3272         }
3273
3274         if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3275                 error = mnt_want_write(nd->path.mnt);
3276                 if (!error)
3277                         got_write = true;
3278                 /*
3279                  * do _not_ fail yet - we might not need that or fail with
3280                  * a different error; let lookup_open() decide; we'll be
3281                  * dropping this one anyway.
3282                  */
3283         }
3284         if (open_flag & O_CREAT)
3285                 inode_lock(dir->d_inode);
3286         else
3287                 inode_lock_shared(dir->d_inode);
3288         error = lookup_open(nd, &path, file, op, got_write, opened);
3289         if (open_flag & O_CREAT)
3290                 inode_unlock(dir->d_inode);
3291         else
3292                 inode_unlock_shared(dir->d_inode);
3293
3294         if (error <= 0) {
3295                 if (error)
3296                         goto out;
3297
3298                 if ((*opened & FILE_CREATED) ||
3299                     !S_ISREG(file_inode(file)->i_mode))
3300                         will_truncate = false;
3301
3302                 audit_inode(nd->name, file->f_path.dentry, 0);
3303                 goto opened;
3304         }
3305
3306         if (*opened & FILE_CREATED) {
3307                 /* Don't check for write permission, don't truncate */
3308                 open_flag &= ~O_TRUNC;
3309                 will_truncate = false;
3310                 acc_mode = 0;
3311                 path_to_nameidata(&path, nd);
3312                 goto finish_open_created;
3313         }
3314
3315         /*
3316          * If atomic_open() acquired write access it is dropped now due to
3317          * possible mount and symlink following (this might be optimized away if
3318          * necessary...)
3319          */
3320         if (got_write) {
3321                 mnt_drop_write(nd->path.mnt);
3322                 got_write = false;
3323         }
3324
3325         error = follow_managed(&path, nd);
3326         if (unlikely(error < 0))
3327                 return error;
3328
3329         if (unlikely(d_is_negative(path.dentry))) {
3330                 path_to_nameidata(&path, nd);
3331                 return -ENOENT;
3332         }
3333
3334         /*
3335          * create/update audit record if it already exists.
3336          */
3337         audit_inode(nd->name, path.dentry, 0);
3338
3339         if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3340                 path_to_nameidata(&path, nd);
3341                 return -EEXIST;
3342         }
3343
3344         seq = 0;        /* out of RCU mode, so the value doesn't matter */
3345         inode = d_backing_inode(path.dentry);
3346 finish_lookup:
3347         error = step_into(nd, &path, 0, inode, seq);
3348         if (unlikely(error))
3349                 return error;
3350 finish_open:
3351         /* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3352         error = complete_walk(nd);
3353         if (error)
3354                 return error;
3355         audit_inode(nd->name, nd->path.dentry, 0);
3356         error = -EISDIR;
3357         if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3358                 goto out;
3359         error = -ENOTDIR;
3360         if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3361                 goto out;
3362         if (!d_is_reg(nd->path.dentry))
3363                 will_truncate = false;
3364
3365         if (will_truncate) {
3366                 error = mnt_want_write(nd->path.mnt);
3367                 if (error)
3368                         goto out;
3369                 got_write = true;
3370         }
3371 finish_open_created:
3372         error = may_open(&nd->path, acc_mode, open_flag);
3373         if (error)
3374                 goto out;
3375         BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3376         error = vfs_open(&nd->path, file, current_cred());
3377         if (error)
3378                 goto out;
3379         *opened |= FILE_OPENED;
3380 opened:
3381         error = open_check_o_direct(file);
3382         if (!error)
3383                 error = ima_file_check(file, op->acc_mode, *opened);
3384         if (!error && will_truncate)
3385                 error = handle_truncate(file);
3386 out:
3387         if (unlikely(error) && (*opened & FILE_OPENED))
3388                 fput(file);
3389         if (unlikely(error > 0)) {
3390                 WARN_ON(1);
3391                 error = -EINVAL;
3392         }
3393         if (got_write)
3394                 mnt_drop_write(nd->path.mnt);
3395         return error;
3396 }
3397
3398 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3399 {
3400         struct dentry *child = NULL;
3401         struct inode *dir = dentry->d_inode;
3402         struct inode *inode;
3403         int error;
3404
3405         /* we want directory to be writable */
3406         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3407         if (error)
3408                 goto out_err;
3409         error = -EOPNOTSUPP;
3410         if (!dir->i_op->tmpfile)
3411                 goto out_err;
3412         error = -ENOMEM;
3413         child = d_alloc(dentry, &slash_name);
3414         if (unlikely(!child))
3415                 goto out_err;
3416         error = dir->i_op->tmpfile(dir, child, mode);
3417         if (error)
3418                 goto out_err;
3419         error = -ENOENT;
3420         inode = child->d_inode;
3421         if (unlikely(!inode))
3422                 goto out_err;
3423         if (!(open_flag & O_EXCL)) {
3424                 spin_lock(&inode->i_lock);
3425                 inode->i_state |= I_LINKABLE;
3426                 spin_unlock(&inode->i_lock);
3427         }
3428         return child;
3429
3430 out_err:
3431         dput(child);
3432         return ERR_PTR(error);
3433 }
3434 EXPORT_SYMBOL(vfs_tmpfile);
3435
3436 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3437                 const struct open_flags *op,
3438                 struct file *file, int *opened)
3439 {
3440         struct dentry *child;
3441         struct path path;
3442         int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3443         if (unlikely(error))
3444                 return error;
3445         error = mnt_want_write(path.mnt);
3446         if (unlikely(error))
3447                 goto out;
3448         child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3449         error = PTR_ERR(child);
3450         if (IS_ERR(child))
3451                 goto out2;
3452         dput(path.dentry);
3453         path.dentry = child;
3454         audit_inode(nd->name, child, 0);
3455         /* Don't check for other permissions, the inode was just created */
3456         error = may_open(&path, 0, op->open_flag);
3457         if (error)
3458                 goto out2;
3459         file->f_path.mnt = path.mnt;
3460         error = finish_open(file, child, NULL, opened);
3461         if (error)
3462                 goto out2;
3463         error = open_check_o_direct(file);
3464         if (error)
3465                 fput(file);
3466 out2:
3467         mnt_drop_write(path.mnt);
3468 out:
3469         path_put(&path);
3470         return error;
3471 }
3472
3473 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3474 {
3475         struct path path;
3476         int error = path_lookupat(nd, flags, &path);
3477         if (!error) {
3478                 audit_inode(nd->name, path.dentry, 0);
3479                 error = vfs_open(&path, file, current_cred());
3480                 path_put(&path);
3481         }
3482         return error;
3483 }
3484
3485 static struct file *path_openat(struct nameidata *nd,
3486                         const struct open_flags *op, unsigned flags)
3487 {
3488         const char *s;
3489         struct file *file;
3490         int opened = 0;
3491         int error;
3492
3493         file = get_empty_filp();
3494         if (IS_ERR(file))
3495                 return file;
3496
3497         file->f_flags = op->open_flag;
3498
3499         if (unlikely(file->f_flags & __O_TMPFILE)) {
3500                 error = do_tmpfile(nd, flags, op, file, &opened);
3501                 goto out2;
3502         }
3503
3504         if (unlikely(file->f_flags & O_PATH)) {
3505                 error = do_o_path(nd, flags, file);
3506                 if (!error)
3507                         opened |= FILE_OPENED;
3508                 goto out2;
3509         }
3510
3511         s = path_init(nd, flags);
3512         if (IS_ERR(s)) {
3513                 put_filp(file);
3514                 return ERR_CAST(s);
3515         }
3516         while (!(error = link_path_walk(s, nd)) &&
3517                 (error = do_last(nd, file, op, &opened)) > 0) {
3518                 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3519                 s = trailing_symlink(nd);
3520                 if (IS_ERR(s)) {
3521                         error = PTR_ERR(s);
3522                         break;
3523                 }
3524         }
3525         terminate_walk(nd);
3526 out2:
3527         if (!(opened & FILE_OPENED)) {
3528                 BUG_ON(!error);
3529                 put_filp(file);
3530         }
3531         if (unlikely(error)) {
3532                 if (error == -EOPENSTALE) {
3533                         if (flags & LOOKUP_RCU)
3534                                 error = -ECHILD;
3535                         else
3536                                 error = -ESTALE;
3537                 }
3538                 file = ERR_PTR(error);
3539         }
3540         return file;
3541 }
3542
3543 struct file *do_filp_open(int dfd, struct filename *pathname,
3544                 const struct open_flags *op)
3545 {
3546         struct nameidata nd;
3547         int flags = op->lookup_flags;
3548         struct file *filp;
3549
3550         set_nameidata(&nd, dfd, pathname);
3551         filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3552         if (unlikely(filp == ERR_PTR(-ECHILD)))
3553                 filp = path_openat(&nd, op, flags);
3554         if (unlikely(filp == ERR_PTR(-ESTALE)))
3555                 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3556         restore_nameidata();
3557         return filp;
3558 }
3559
3560 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3561                 const char *name, const struct open_flags *op)
3562 {
3563         struct nameidata nd;
3564         struct file *file;
3565         struct filename *filename;
3566         int flags = op->lookup_flags | LOOKUP_ROOT;
3567
3568         nd.root.mnt = mnt;
3569         nd.root.dentry = dentry;
3570
3571         if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3572                 return ERR_PTR(-ELOOP);
3573
3574         filename = getname_kernel(name);
3575         if (IS_ERR(filename))
3576                 return ERR_CAST(filename);
3577
3578         set_nameidata(&nd, -1, filename);
3579         file = path_openat(&nd, op, flags | LOOKUP_RCU);
3580         if (unlikely(file == ERR_PTR(-ECHILD)))
3581                 file = path_openat(&nd, op, flags);
3582         if (unlikely(file == ERR_PTR(-ESTALE)))
3583                 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3584         restore_nameidata();
3585         putname(filename);
3586         return file;
3587 }
3588
3589 static struct dentry *filename_create(int dfd, struct filename *name,
3590                                 struct path *path, unsigned int lookup_flags)
3591 {
3592         struct dentry *dentry = ERR_PTR(-EEXIST);
3593         struct qstr last;
3594         int type;
3595         int err2;
3596         int error;
3597         bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3598
3599         /*
3600          * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3601          * other flags passed in are ignored!
3602          */
3603         lookup_flags &= LOOKUP_REVAL;
3604
3605         name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3606         if (IS_ERR(name))
3607                 return ERR_CAST(name);
3608
3609         /*
3610          * Yucky last component or no last component at all?
3611          * (foo/., foo/.., /////)
3612          */
3613         if (unlikely(type != LAST_NORM))
3614                 goto out;
3615
3616         /* don't fail immediately if it's r/o, at least try to report other errors */
3617         err2 = mnt_want_write(path->mnt);
3618         /*
3619          * Do the final lookup.
3620          */
3621         lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3622         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3623         dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3624         if (IS_ERR(dentry))
3625                 goto unlock;
3626
3627         error = -EEXIST;
3628         if (d_is_positive(dentry))
3629                 goto fail;
3630
3631         /*
3632          * Special case - lookup gave negative, but... we had foo/bar/
3633          * From the vfs_mknod() POV we just have a negative dentry -
3634          * all is fine. Let's be bastards - you had / on the end, you've
3635          * been asking for (non-existent) directory. -ENOENT for you.
3636          */
3637         if (unlikely(!is_dir && last.name[last.len])) {
3638                 error = -ENOENT;
3639                 goto fail;
3640         }
3641         if (unlikely(err2)) {
3642                 error = err2;
3643                 goto fail;
3644         }
3645         putname(name);
3646         return dentry;
3647 fail:
3648         dput(dentry);
3649         dentry = ERR_PTR(error);
3650 unlock:
3651         inode_unlock(path->dentry->d_inode);
3652         if (!err2)
3653                 mnt_drop_write(path->mnt);
3654 out:
3655         path_put(path);
3656         putname(name);
3657         return dentry;
3658 }
3659
3660 struct dentry *kern_path_create(int dfd, const char *pathname,
3661                                 struct path *path, unsigned int lookup_flags)
3662 {
3663         return filename_create(dfd, getname_kernel(pathname),
3664                                 path, lookup_flags);
3665 }
3666 EXPORT_SYMBOL(kern_path_create);
3667
3668 void done_path_create(struct path *path, struct dentry *dentry)
3669 {
3670         dput(dentry);
3671         inode_unlock(path->dentry->d_inode);
3672         mnt_drop_write(path->mnt);
3673         path_put(path);
3674 }
3675 EXPORT_SYMBOL(done_path_create);
3676
3677 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3678                                 struct path *path, unsigned int lookup_flags)
3679 {
3680         return filename_create(dfd, getname(pathname), path, lookup_flags);
3681 }
3682 EXPORT_SYMBOL(user_path_create);
3683
3684 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3685 {
3686         int error = may_create(dir, dentry);
3687
3688         if (error)
3689                 return error;
3690
3691         if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3692                 return -EPERM;
3693
3694         if (!dir->i_op->mknod)
3695                 return -EPERM;
3696
3697         error = devcgroup_inode_mknod(mode, dev);
3698         if (error)
3699                 return error;
3700
3701         error = security_inode_mknod(dir, dentry, mode, dev);
3702         if (error)
3703                 return error;
3704
3705         error = dir->i_op->mknod(dir, dentry, mode, dev);
3706         if (!error)
3707                 fsnotify_create(dir, dentry);
3708         return error;
3709 }
3710 EXPORT_SYMBOL(vfs_mknod);
3711
3712 static int may_mknod(umode_t mode)
3713 {
3714         switch (mode & S_IFMT) {
3715         case S_IFREG:
3716         case S_IFCHR:
3717         case S_IFBLK:
3718         case S_IFIFO:
3719         case S_IFSOCK:
3720         case 0: /* zero mode translates to S_IFREG */
3721                 return 0;
3722         case S_IFDIR:
3723                 return -EPERM;
3724         default:
3725                 return -EINVAL;
3726         }
3727 }
3728
3729 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3730                 unsigned, dev)
3731 {
3732         struct dentry *dentry;
3733         struct path path;
3734         int error;
3735         unsigned int lookup_flags = 0;
3736
3737         error = may_mknod(mode);
3738         if (error)
3739                 return error;
3740 retry:
3741         dentry = user_path_create(dfd, filename, &path, lookup_flags);
3742         if (IS_ERR(dentry))
3743                 return PTR_ERR(dentry);
3744
3745         if (!IS_POSIXACL(path.dentry->d_inode))
3746                 mode &= ~current_umask();
3747         error = security_path_mknod(&path, dentry, mode, dev);
3748         if (error)
3749                 goto out;
3750         switch (mode & S_IFMT) {
3751                 case 0: case S_IFREG:
3752                         error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3753                         if (!error)
3754                                 ima_post_path_mknod(dentry);
3755                         break;
3756                 case S_IFCHR: case S_IFBLK:
3757                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3758                                         new_decode_dev(dev));
3759                         break;
3760                 case S_IFIFO: case S_IFSOCK:
3761                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3762                         break;
3763         }
3764 out:
3765         done_path_create(&path, dentry);
3766         if (retry_estale(error, lookup_flags)) {
3767                 lookup_flags |= LOOKUP_REVAL;
3768                 goto retry;
3769         }
3770         return error;
3771 }
3772
3773 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3774 {
3775         return sys_mknodat(AT_FDCWD, filename, mode, dev);
3776 }
3777
3778 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3779 {
3780         int error = may_create(dir, dentry);
3781         unsigned max_links = dir->i_sb->s_max_links;
3782
3783         if (error)
3784                 return error;
3785
3786         if (!dir->i_op->mkdir)
3787                 return -EPERM;
3788
3789         mode &= (S_IRWXUGO|S_ISVTX);
3790         error = security_inode_mkdir(dir, dentry, mode);
3791         if (error)
3792                 return error;
3793
3794         if (max_links && dir->i_nlink >= max_links)
3795                 return -EMLINK;
3796
3797         error = dir->i_op->mkdir(dir, dentry, mode);
3798         if (!error)
3799                 fsnotify_mkdir(dir, dentry);
3800         return error;
3801 }
3802 EXPORT_SYMBOL(vfs_mkdir);
3803
3804 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3805 {
3806         struct dentry *dentry;
3807         struct path path;
3808         int error;
3809         unsigned int lookup_flags = LOOKUP_DIRECTORY;
3810
3811 retry:
3812         dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3813         if (IS_ERR(dentry))
3814                 return PTR_ERR(dentry);
3815
3816         if (!IS_POSIXACL(path.dentry->d_inode))
3817                 mode &= ~current_umask();
3818         error = security_path_mkdir(&path, dentry, mode);
3819         if (!error)
3820                 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3821         done_path_create(&path, dentry);
3822         if (retry_estale(error, lookup_flags)) {
3823                 lookup_flags |= LOOKUP_REVAL;
3824                 goto retry;
3825         }
3826         return error;
3827 }
3828
3829 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3830 {
3831         return sys_mkdirat(AT_FDCWD, pathname, mode);
3832 }
3833
3834 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3835 {
3836         int error = may_delete(dir, dentry, 1);
3837
3838         if (error)
3839                 return error;
3840
3841         if (!dir->i_op->rmdir)
3842                 return -EPERM;
3843
3844         dget(dentry);
3845         inode_lock(dentry->d_inode);
3846
3847         error = -EBUSY;
3848         if (is_local_mountpoint(dentry))
3849                 goto out;
3850
3851         error = security_inode_rmdir(dir, dentry);
3852         if (error)
3853                 goto out;
3854
3855         shrink_dcache_parent(dentry);
3856         error = dir->i_op->rmdir(dir, dentry);
3857         if (error)
3858                 goto out;
3859
3860         dentry->d_inode->i_flags |= S_DEAD;
3861         dont_mount(dentry);
3862         detach_mounts(dentry);
3863
3864 out:
3865         inode_unlock(dentry->d_inode);
3866         dput(dentry);
3867         if (!error)
3868                 d_delete(dentry);
3869         return error;
3870 }
3871 EXPORT_SYMBOL(vfs_rmdir);
3872
3873 static long do_rmdir(int dfd, const char __user *pathname)
3874 {
3875         int error = 0;
3876         struct filename *name;
3877         struct dentry *dentry;
3878         struct path path;
3879         struct qstr last;
3880         int type;
3881         unsigned int lookup_flags = 0;
3882 retry:
3883         name = filename_parentat(dfd, getname(pathname), lookup_flags,
3884                                 &path, &last, &type);
3885         if (IS_ERR(name))
3886                 return PTR_ERR(name);
3887
3888         switch (type) {
3889         case LAST_DOTDOT:
3890                 error = -ENOTEMPTY;
3891                 goto exit1;
3892         case LAST_DOT:
3893                 error = -EINVAL;
3894                 goto exit1;
3895         case LAST_ROOT:
3896                 error = -EBUSY;
3897                 goto exit1;
3898         }
3899
3900         error = mnt_want_write(path.mnt);
3901         if (error)
3902                 goto exit1;
3903
3904         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3905         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3906         error = PTR_ERR(dentry);
3907         if (IS_ERR(dentry))
3908                 goto exit2;
3909         if (!dentry->d_inode) {
3910                 error = -ENOENT;
3911                 goto exit3;
3912         }
3913         error = security_path_rmdir(&path, dentry);
3914         if (error)
3915                 goto exit3;
3916         error = vfs_rmdir(path.dentry->d_inode, dentry);
3917 exit3:
3918         dput(dentry);
3919 exit2:
3920         inode_unlock(path.dentry->d_inode);
3921         mnt_drop_write(path.mnt);
3922 exit1:
3923         path_put(&path);
3924         putname(name);
3925         if (retry_estale(error, lookup_flags)) {
3926                 lookup_flags |= LOOKUP_REVAL;
3927                 goto retry;
3928         }
3929         return error;
3930 }
3931
3932 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3933 {
3934         return do_rmdir(AT_FDCWD, pathname);
3935 }
3936
3937 /**
3938  * vfs_unlink - unlink a filesystem object
3939  * @dir:        parent directory
3940  * @dentry:     victim
3941  * @delegated_inode: returns victim inode, if the inode is delegated.
3942  *
3943  * The caller must hold dir->i_mutex.
3944  *
3945  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3946  * return a reference to the inode in delegated_inode.  The caller
3947  * should then break the delegation on that inode and retry.  Because
3948  * breaking a delegation may take a long time, the caller should drop
3949  * dir->i_mutex before doing so.
3950  *
3951  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3952  * be appropriate for callers that expect the underlying filesystem not
3953  * to be NFS exported.
3954  */
3955 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3956 {
3957         struct inode *target = dentry->d_inode;
3958         int error = may_delete(dir, dentry, 0);
3959
3960         if (error)
3961                 return error;
3962
3963         if (!dir->i_op->unlink)
3964                 return -EPERM;
3965
3966         inode_lock(target);
3967         if (is_local_mountpoint(dentry))
3968                 error = -EBUSY;
3969         else {
3970                 error = security_inode_unlink(dir, dentry);
3971                 if (!error) {
3972                         error = try_break_deleg(target, delegated_inode);
3973                         if (error)
3974                                 goto out;
3975                         error = dir->i_op->unlink(dir, dentry);
3976                         if (!error) {
3977                                 dont_mount(dentry);
3978                                 detach_mounts(dentry);
3979                         }
3980                 }
3981         }
3982 out:
3983         inode_unlock(target);
3984
3985         /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3986         if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3987                 fsnotify_link_count(target);
3988                 d_delete(dentry);
3989         }
3990
3991         return error;
3992 }
3993 EXPORT_SYMBOL(vfs_unlink);
3994
3995 /*
3996  * Make sure that the actual truncation of the file will occur outside its
3997  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3998  * writeout happening, and we don't want to prevent access to the directory
3999  * while waiting on the I/O.
4000  */
4001 long do_unlinkat(int dfd, struct filename *name)
4002 {
4003         int error;
4004         struct dentry *dentry;
4005         struct path path;
4006         struct qstr last;
4007         int type;
4008         struct inode *inode = NULL;
4009         struct inode *delegated_inode = NULL;
4010         unsigned int lookup_flags = 0;
4011 retry:
4012         name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4013         if (IS_ERR(name))
4014                 return PTR_ERR(name);
4015
4016         error = -EISDIR;
4017         if (type != LAST_NORM)
4018                 goto exit1;
4019
4020         error = mnt_want_write(path.mnt);
4021         if (error)
4022                 goto exit1;
4023 retry_deleg:
4024         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4025         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4026         error = PTR_ERR(dentry);
4027         if (!IS_ERR(dentry)) {
4028                 /* Why not before? Because we want correct error value */
4029                 if (last.name[last.len])
4030                         goto slashes;
4031                 inode = dentry->d_inode;
4032                 if (d_is_negative(dentry))
4033                         goto slashes;
4034                 ihold(inode);
4035                 error = security_path_unlink(&path, dentry);
4036                 if (error)
4037                         goto exit2;
4038                 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4039 exit2:
4040                 dput(dentry);
4041         }
4042         inode_unlock(path.dentry->d_inode);
4043         if (inode)
4044                 iput(inode);    /* truncate the inode here */
4045         inode = NULL;
4046         if (delegated_inode) {
4047                 error = break_deleg_wait(&delegated_inode);
4048                 if (!error)
4049                         goto retry_deleg;
4050         }
4051         mnt_drop_write(path.mnt);
4052 exit1:
4053         path_put(&path);
4054         if (retry_estale(error, lookup_flags)) {
4055                 lookup_flags |= LOOKUP_REVAL;
4056                 inode = NULL;
4057                 goto retry;
4058         }
4059         putname(name);
4060         return error;
4061
4062 slashes:
4063         if (d_is_negative(dentry))
4064                 error = -ENOENT;
4065         else if (d_is_dir(dentry))
4066                 error = -EISDIR;
4067         else
4068                 error = -ENOTDIR;
4069         goto exit2;
4070 }
4071
4072 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4073 {
4074         if ((flag & ~AT_REMOVEDIR) != 0)
4075                 return -EINVAL;
4076
4077         if (flag & AT_REMOVEDIR)
4078                 return do_rmdir(dfd, pathname);
4079
4080         return do_unlinkat(dfd, getname(pathname));
4081 }
4082
4083 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4084 {
4085         return do_unlinkat(AT_FDCWD, getname(pathname));
4086 }
4087
4088 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4089 {
4090         int error = may_create(dir, dentry);
4091
4092         if (error)
4093                 return error;
4094
4095         if (!dir->i_op->symlink)
4096                 return -EPERM;
4097
4098         error = security_inode_symlink(dir, dentry, oldname);
4099         if (error)
4100                 return error;
4101
4102         error = dir->i_op->symlink(dir, dentry, oldname);
4103         if (!error)
4104                 fsnotify_create(dir, dentry);
4105         return error;
4106 }
4107 EXPORT_SYMBOL(vfs_symlink);
4108
4109 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4110                 int, newdfd, const char __user *, newname)
4111 {
4112         int error;
4113         struct filename *from;
4114         struct dentry *dentry;
4115         struct path path;
4116         unsigned int lookup_flags = 0;
4117
4118         from = getname(oldname);
4119         if (IS_ERR(from))
4120                 return PTR_ERR(from);
4121 retry:
4122         dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4123         error = PTR_ERR(dentry);
4124         if (IS_ERR(dentry))
4125                 goto out_putname;
4126
4127         error = security_path_symlink(&path, dentry, from->name);
4128         if (!error)
4129                 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4130         done_path_create(&path, dentry);
4131         if (retry_estale(error, lookup_flags)) {
4132                 lookup_flags |= LOOKUP_REVAL;
4133                 goto retry;
4134         }
4135 out_putname:
4136         putname(from);
4137         return error;
4138 }
4139
4140 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4141 {
4142         return sys_symlinkat(oldname, AT_FDCWD, newname);
4143 }
4144
4145 /**
4146  * vfs_link - create a new link
4147  * @old_dentry: object to be linked
4148  * @dir:        new parent
4149  * @new_dentry: where to create the new link
4150  * @delegated_inode: returns inode needing a delegation break
4151  *
4152  * The caller must hold dir->i_mutex
4153  *
4154  * If vfs_link discovers a delegation on the to-be-linked file in need
4155  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4156  * inode in delegated_inode.  The caller should then break the delegation
4157  * and retry.  Because breaking a delegation may take a long time, the
4158  * caller should drop the i_mutex before doing so.
4159  *
4160  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4161  * be appropriate for callers that expect the underlying filesystem not
4162  * to be NFS exported.
4163  */
4164 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4165 {
4166         struct inode *inode = old_dentry->d_inode;
4167         unsigned max_links = dir->i_sb->s_max_links;
4168         int error;
4169
4170         if (!inode)
4171                 return -ENOENT;
4172
4173         error = may_create(dir, new_dentry);
4174         if (error)
4175                 return error;
4176
4177         if (dir->i_sb != inode->i_sb)
4178                 return -EXDEV;
4179
4180         /*
4181          * A link to an append-only or immutable file cannot be created.
4182          */
4183         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4184                 return -EPERM;
4185         /*
4186          * Updating the link count will likely cause i_uid and i_gid to
4187          * be writen back improperly if their true value is unknown to
4188          * the vfs.
4189          */
4190         if (HAS_UNMAPPED_ID(inode))
4191                 return -EPERM;
4192         if (!dir->i_op->link)
4193                 return -EPERM;
4194         if (S_ISDIR(inode->i_mode))
4195                 return -EPERM;
4196
4197         error = security_inode_link(old_dentry, dir, new_dentry);
4198         if (error)
4199                 return error;
4200
4201         inode_lock(inode);
4202         /* Make sure we don't allow creating hardlink to an unlinked file */
4203         if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4204                 error =  -ENOENT;
4205         else if (max_links && inode->i_nlink >= max_links)
4206                 error = -EMLINK;
4207         else {
4208                 error = try_break_deleg(inode, delegated_inode);
4209                 if (!error)
4210                         error = dir->i_op->link(old_dentry, dir, new_dentry);
4211         }
4212
4213         if (!error && (inode->i_state & I_LINKABLE)) {
4214                 spin_lock(&inode->i_lock);
4215                 inode->i_state &= ~I_LINKABLE;
4216                 spin_unlock(&inode->i_lock);
4217         }
4218         inode_unlock(inode);
4219         if (!error)
4220                 fsnotify_link(dir, inode, new_dentry);
4221         return error;
4222 }
4223 EXPORT_SYMBOL(vfs_link);
4224
4225 /*
4226  * Hardlinks are often used in delicate situations.  We avoid
4227  * security-related surprises by not following symlinks on the
4228  * newname.  --KAB
4229  *
4230  * We don't follow them on the oldname either to be compatible
4231  * with linux 2.0, and to avoid hard-linking to directories
4232  * and other special files.  --ADM
4233  */
4234 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4235                 int, newdfd, const char __user *, newname, int, flags)
4236 {
4237         struct dentry *new_dentry;
4238         struct path old_path, new_path;
4239         struct inode *delegated_inode = NULL;
4240         int how = 0;
4241         int error;
4242
4243         if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4244                 return -EINVAL;
4245         /*
4246          * To use null names we require CAP_DAC_READ_SEARCH
4247          * This ensures that not everyone will be able to create
4248          * handlink using the passed filedescriptor.
4249          */
4250         if (flags & AT_EMPTY_PATH) {
4251                 if (!capable(CAP_DAC_READ_SEARCH))
4252                         return -ENOENT;
4253                 how = LOOKUP_EMPTY;
4254         }
4255
4256         if (flags & AT_SYMLINK_FOLLOW)
4257                 how |= LOOKUP_FOLLOW;
4258 retry:
4259         error = user_path_at(olddfd, oldname, how, &old_path);
4260         if (error)
4261                 return error;
4262
4263         new_dentry = user_path_create(newdfd, newname, &new_path,
4264                                         (how & LOOKUP_REVAL));
4265         error = PTR_ERR(new_dentry);
4266         if (IS_ERR(new_dentry))
4267                 goto out;
4268
4269         error = -EXDEV;
4270         if (old_path.mnt != new_path.mnt)
4271                 goto out_dput;
4272         error = may_linkat(&old_path);
4273         if (unlikely(error))
4274                 goto out_dput;
4275         error = security_path_link(old_path.dentry, &new_path, new_dentry);
4276         if (error)
4277                 goto out_dput;
4278         error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4279 out_dput:
4280         done_path_create(&new_path, new_dentry);
4281         if (delegated_inode) {
4282                 error = break_deleg_wait(&delegated_inode);
4283                 if (!error) {
4284                         path_put(&old_path);
4285                         goto retry;
4286                 }
4287         }
4288         if (retry_estale(error, how)) {
4289                 path_put(&old_path);
4290                 how |= LOOKUP_REVAL;
4291                 goto retry;
4292         }
4293 out:
4294         path_put(&old_path);
4295
4296         return error;
4297 }
4298
4299 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4300 {
4301         return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4302 }
4303
4304 /**
4305  * vfs_rename - rename a filesystem object
4306  * @old_dir:    parent of source
4307  * @old_dentry: source
4308  * @new_dir:    parent of destination
4309  * @new_dentry: destination
4310  * @delegated_inode: returns an inode needing a delegation break
4311  * @flags:      rename flags
4312  *
4313  * The caller must hold multiple mutexes--see lock_rename()).
4314  *
4315  * If vfs_rename discovers a delegation in need of breaking at either
4316  * the source or destination, it will return -EWOULDBLOCK and return a
4317  * reference to the inode in delegated_inode.  The caller should then
4318  * break the delegation and retry.  Because breaking a delegation may
4319  * take a long time, the caller should drop all locks before doing
4320  * so.
4321  *
4322  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4323  * be appropriate for callers that expect the underlying filesystem not
4324  * to be NFS exported.
4325  *
4326  * The worst of all namespace operations - renaming directory. "Perverted"
4327  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4328  * Problems:
4329  *
4330  *      a) we can get into loop creation.
4331  *      b) race potential - two innocent renames can create a loop together.
4332  *         That's where 4.4 screws up. Current fix: serialization on
4333  *         sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4334  *         story.
4335  *      c) we have to lock _four_ objects - parents and victim (if it exists),
4336  *         and source (if it is not a directory).
4337  *         And that - after we got ->i_mutex on parents (until then we don't know
4338  *         whether the target exists).  Solution: try to be smart with locking
4339  *         order for inodes.  We rely on the fact that tree topology may change
4340  *         only under ->s_vfs_rename_mutex _and_ that parent of the object we
4341  *         move will be locked.  Thus we can rank directories by the tree
4342  *         (ancestors first) and rank all non-directories after them.
4343  *         That works since everybody except rename does "lock parent, lookup,
4344  *         lock child" and rename is under ->s_vfs_rename_mutex.
4345  *         HOWEVER, it relies on the assumption that any object with ->lookup()
4346  *         has no more than 1 dentry.  If "hybrid" objects will ever appear,
4347  *         we'd better make sure that there's no link(2) for them.
4348  *      d) conversion from fhandle to dentry may come in the wrong moment - when
4349  *         we are removing the target. Solution: we will have to grab ->i_mutex
4350  *         in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4351  *         ->i_mutex on parents, which works but leads to some truly excessive
4352  *         locking].
4353  */
4354 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4355                struct inode *new_dir, struct dentry *new_dentry,
4356                struct inode **delegated_inode, unsigned int flags)
4357 {
4358         int error;
4359         bool is_dir = d_is_dir(old_dentry);
4360         struct inode *source = old_dentry->d_inode;
4361         struct inode *target = new_dentry->d_inode;
4362         bool new_is_dir = false;
4363         unsigned max_links = new_dir->i_sb->s_max_links;
4364         struct name_snapshot old_name;
4365
4366         if (source == target)
4367                 return 0;
4368
4369         error = may_delete(old_dir, old_dentry, is_dir);
4370         if (error)
4371                 return error;
4372
4373         if (!target) {
4374                 error = may_create(new_dir, new_dentry);
4375         } else {
4376                 new_is_dir = d_is_dir(new_dentry);
4377
4378                 if (!(flags & RENAME_EXCHANGE))
4379                         error = may_delete(new_dir, new_dentry, is_dir);
4380                 else
4381                         error = may_delete(new_dir, new_dentry, new_is_dir);
4382         }
4383         if (error)
4384                 return error;
4385
4386         if (!old_dir->i_op->rename)
4387                 return -EPERM;
4388
4389         /*
4390          * If we are going to change the parent - check write permissions,
4391          * we'll need to flip '..'.
4392          */
4393         if (new_dir != old_dir) {
4394                 if (is_dir) {
4395                         error = inode_permission(source, MAY_WRITE);
4396                         if (error)
4397                                 return error;
4398                 }
4399                 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4400                         error = inode_permission(target, MAY_WRITE);
4401                         if (error)
4402                                 return error;
4403                 }
4404         }
4405
4406         error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4407                                       flags);
4408         if (error)
4409                 return error;
4410
4411         take_dentry_name_snapshot(&old_name, old_dentry);
4412         dget(new_dentry);
4413         if (!is_dir || (flags & RENAME_EXCHANGE))
4414                 lock_two_nondirectories(source, target);
4415         else if (target)
4416                 inode_lock(target);
4417
4418         error = -EBUSY;
4419         if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4420                 goto out;
4421
4422         if (max_links && new_dir != old_dir) {
4423                 error = -EMLINK;
4424                 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4425                         goto out;
4426                 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4427                     old_dir->i_nlink >= max_links)
4428                         goto out;
4429         }
4430         if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4431                 shrink_dcache_parent(new_dentry);
4432         if (!is_dir) {
4433                 error = try_break_deleg(source, delegated_inode);
4434                 if (error)
4435                         goto out;
4436         }
4437         if (target && !new_is_dir) {
4438                 error = try_break_deleg(target, delegated_inode);
4439                 if (error)
4440                         goto out;
4441         }
4442         error = old_dir->i_op->rename(old_dir, old_dentry,
4443                                        new_dir, new_dentry, flags);
4444         if (error)
4445                 goto out;
4446
4447         if (!(flags & RENAME_EXCHANGE) && target) {
4448                 if (is_dir)
4449                         target->i_flags |= S_DEAD;
4450                 dont_mount(new_dentry);
4451                 detach_mounts(new_dentry);
4452         }
4453         if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4454                 if (!(flags & RENAME_EXCHANGE))
4455                         d_move(old_dentry, new_dentry);
4456                 else
4457                         d_exchange(old_dentry, new_dentry);
4458         }
4459 out:
4460         if (!is_dir || (flags & RENAME_EXCHANGE))
4461                 unlock_two_nondirectories(source, target);
4462         else if (target)
4463                 inode_unlock(target);
4464         dput(new_dentry);
4465         if (!error) {
4466                 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4467                               !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4468                 if (flags & RENAME_EXCHANGE) {
4469                         fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4470                                       new_is_dir, NULL, new_dentry);
4471                 }
4472         }
4473         release_dentry_name_snapshot(&old_name);
4474
4475         return error;
4476 }
4477 EXPORT_SYMBOL(vfs_rename);
4478
4479 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4480                 int, newdfd, const char __user *, newname, unsigned int, flags)
4481 {
4482         struct dentry *old_dentry, *new_dentry;
4483         struct dentry *trap;
4484         struct path old_path, new_path;
4485         struct qstr old_last, new_last;
4486         int old_type, new_type;
4487         struct inode *delegated_inode = NULL;
4488         struct filename *from;
4489         struct filename *to;
4490         unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4491         bool should_retry = false;
4492         int error;
4493
4494         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4495                 return -EINVAL;
4496
4497         if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4498             (flags & RENAME_EXCHANGE))
4499                 return -EINVAL;
4500
4501         if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4502                 return -EPERM;
4503
4504         if (flags & RENAME_EXCHANGE)
4505                 target_flags = 0;
4506
4507 retry:
4508         from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4509                                 &old_path, &old_last, &old_type);
4510         if (IS_ERR(from)) {
4511                 error = PTR_ERR(from);
4512                 goto exit;
4513         }
4514
4515         to = filename_parentat(newdfd, getname(newname), lookup_flags,
4516                                 &new_path, &new_last, &new_type);
4517         if (IS_ERR(to)) {
4518                 error = PTR_ERR(to);
4519                 goto exit1;
4520         }
4521
4522         error = -EXDEV;
4523         if (old_path.mnt != new_path.mnt)
4524                 goto exit2;
4525
4526         error = -EBUSY;
4527         if (old_type != LAST_NORM)
4528                 goto exit2;
4529
4530         if (flags & RENAME_NOREPLACE)
4531                 error = -EEXIST;
4532         if (new_type != LAST_NORM)
4533                 goto exit2;
4534
4535         error = mnt_want_write(old_path.mnt);
4536         if (error)
4537                 goto exit2;
4538
4539 retry_deleg:
4540         trap = lock_rename(new_path.dentry, old_path.dentry);
4541
4542         old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4543         error = PTR_ERR(old_dentry);
4544         if (IS_ERR(old_dentry))
4545                 goto exit3;
4546         /* source must exist */
4547         error = -ENOENT;
4548         if (d_is_negative(old_dentry))
4549                 goto exit4;
4550         new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4551         error = PTR_ERR(new_dentry);
4552         if (IS_ERR(new_dentry))
4553                 goto exit4;
4554         error = -EEXIST;
4555         if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4556                 goto exit5;
4557         if (flags & RENAME_EXCHANGE) {
4558                 error = -ENOENT;
4559                 if (d_is_negative(new_dentry))
4560                         goto exit5;
4561
4562                 if (!d_is_dir(new_dentry)) {
4563                         error = -ENOTDIR;
4564                         if (new_last.name[new_last.len])
4565                                 goto exit5;
4566                 }
4567         }
4568         /* unless the source is a directory trailing slashes give -ENOTDIR */
4569         if (!d_is_dir(old_dentry)) {
4570                 error = -ENOTDIR;
4571                 if (old_last.name[old_last.len])
4572                         goto exit5;
4573                 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4574                         goto exit5;
4575         }
4576         /* source should not be ancestor of target */
4577         error = -EINVAL;
4578         if (old_dentry == trap)
4579                 goto exit5;
4580         /* target should not be an ancestor of source */
4581         if (!(flags & RENAME_EXCHANGE))
4582                 error = -ENOTEMPTY;
4583         if (new_dentry == trap)
4584                 goto exit5;
4585
4586         error = security_path_rename(&old_path, old_dentry,
4587                                      &new_path, new_dentry, flags);
4588         if (error)
4589                 goto exit5;
4590         error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4591                            new_path.dentry->d_inode, new_dentry,
4592                            &delegated_inode, flags);
4593 exit5:
4594         dput(new_dentry);
4595 exit4:
4596         dput(old_dentry);
4597 exit3:
4598         unlock_rename(new_path.dentry, old_path.dentry);
4599         if (delegated_inode) {
4600                 error = break_deleg_wait(&delegated_inode);
4601                 if (!error)
4602                         goto retry_deleg;
4603         }
4604         mnt_drop_write(old_path.mnt);
4605 exit2:
4606         if (retry_estale(error, lookup_flags))
4607                 should_retry = true;
4608         path_put(&new_path);
4609         putname(to);
4610 exit1:
4611         path_put(&old_path);
4612         putname(from);
4613         if (should_retry) {
4614                 should_retry = false;
4615                 lookup_flags |= LOOKUP_REVAL;
4616                 goto retry;
4617         }
4618 exit:
4619         return error;
4620 }
4621
4622 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4623                 int, newdfd, const char __user *, newname)
4624 {
4625         return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4626 }
4627
4628 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4629 {
4630         return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4631 }
4632
4633 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4634 {
4635         int error = may_create(dir, dentry);
4636         if (error)
4637                 return error;
4638
4639         if (!dir->i_op->mknod)
4640                 return -EPERM;
4641
4642         return dir->i_op->mknod(dir, dentry,
4643                                 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4644 }
4645 EXPORT_SYMBOL(vfs_whiteout);
4646
4647 int readlink_copy(char __user *buffer, int buflen, const char *link)
4648 {
4649         int len = PTR_ERR(link);
4650         if (IS_ERR(link))
4651                 goto out;
4652
4653         len = strlen(link);
4654         if (len > (unsigned) buflen)
4655                 len = buflen;
4656         if (copy_to_user(buffer, link, len))
4657                 len = -EFAULT;
4658 out:
4659         return len;
4660 }
4661
4662 /*
4663  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4664  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4665  * for any given inode is up to filesystem.
4666  */
4667 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4668                             int buflen)
4669 {
4670         DEFINE_DELAYED_CALL(done);
4671         struct inode *inode = d_inode(dentry);
4672         const char *link = inode->i_link;
4673         int res;
4674
4675         if (!link) {
4676                 link = inode->i_op->get_link(dentry, inode, &done);
4677                 if (IS_ERR(link))
4678                         return PTR_ERR(link);
4679         }
4680         res = readlink_copy(buffer, buflen, link);
4681         do_delayed_call(&done);
4682         return res;
4683 }
4684
4685 /**
4686  * vfs_readlink - copy symlink body into userspace buffer
4687  * @dentry: dentry on which to get symbolic link
4688  * @buffer: user memory pointer
4689  * @buflen: size of buffer
4690  *
4691  * Does not touch atime.  That's up to the caller if necessary
4692  *
4693  * Does not call security hook.
4694  */
4695 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4696 {
4697         struct inode *inode = d_inode(dentry);
4698
4699         if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4700                 if (unlikely(inode->i_op->readlink))
4701                         return inode->i_op->readlink(dentry, buffer, buflen);
4702
4703                 if (!d_is_symlink(dentry))
4704                         return -EINVAL;
4705
4706                 spin_lock(&inode->i_lock);
4707                 inode->i_opflags |= IOP_DEFAULT_READLINK;
4708                 spin_unlock(&inode->i_lock);
4709         }
4710
4711         return generic_readlink(dentry, buffer, buflen);
4712 }
4713 EXPORT_SYMBOL(vfs_readlink);
4714
4715 /**
4716  * vfs_get_link - get symlink body
4717  * @dentry: dentry on which to get symbolic link
4718  * @done: caller needs to free returned data with this
4719  *
4720  * Calls security hook and i_op->get_link() on the supplied inode.
4721  *
4722  * It does not touch atime.  That's up to the caller if necessary.
4723  *
4724  * Does not work on "special" symlinks like /proc/$$/fd/N
4725  */
4726 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4727 {
4728         const char *res = ERR_PTR(-EINVAL);
4729         struct inode *inode = d_inode(dentry);
4730
4731         if (d_is_symlink(dentry)) {
4732                 res = ERR_PTR(security_inode_readlink(dentry));
4733                 if (!res)
4734                         res = inode->i_op->get_link(dentry, inode, done);
4735         }
4736         return res;
4737 }
4738 EXPORT_SYMBOL(vfs_get_link);
4739
4740 /* get the link contents into pagecache */
4741 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4742                           struct delayed_call *callback)
4743 {
4744         char *kaddr;
4745         struct page *page;
4746         struct address_space *mapping = inode->i_mapping;
4747
4748         if (!dentry) {
4749                 page = find_get_page(mapping, 0);
4750                 if (!page)
4751                         return ERR_PTR(-ECHILD);
4752                 if (!PageUptodate(page)) {
4753                         put_page(page);
4754                         return ERR_PTR(-ECHILD);
4755                 }
4756         } else {
4757                 page = read_mapping_page(mapping, 0, NULL);
4758                 if (IS_ERR(page))
4759                         return (char*)page;
4760         }
4761         set_delayed_call(callback, page_put_link, page);
4762         BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4763         kaddr = page_address(page);
4764         nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4765         return kaddr;
4766 }
4767
4768 EXPORT_SYMBOL(page_get_link);
4769
4770 void page_put_link(void *arg)
4771 {
4772         put_page(arg);
4773 }
4774 EXPORT_SYMBOL(page_put_link);
4775
4776 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4777 {
4778         DEFINE_DELAYED_CALL(done);
4779         int res = readlink_copy(buffer, buflen,
4780                                 page_get_link(dentry, d_inode(dentry),
4781                                               &done));
4782         do_delayed_call(&done);
4783         return res;
4784 }
4785 EXPORT_SYMBOL(page_readlink);
4786
4787 /*
4788  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4789  */
4790 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4791 {
4792         struct address_space *mapping = inode->i_mapping;
4793         struct page *page;
4794         void *fsdata;
4795         int err;
4796         unsigned int flags = 0;
4797         if (nofs)
4798                 flags |= AOP_FLAG_NOFS;
4799
4800 retry:
4801         err = pagecache_write_begin(NULL, mapping, 0, len-1,
4802                                 flags, &page, &fsdata);
4803         if (err)
4804                 goto fail;
4805
4806         memcpy(page_address(page), symname, len-1);
4807
4808         err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4809                                                         page, fsdata);
4810         if (err < 0)
4811                 goto fail;
4812         if (err < len-1)
4813                 goto retry;
4814
4815         mark_inode_dirty(inode);
4816         return 0;
4817 fail:
4818         return err;
4819 }
4820 EXPORT_SYMBOL(__page_symlink);
4821
4822 int page_symlink(struct inode *inode, const char *symname, int len)
4823 {
4824         return __page_symlink(inode, symname, len,
4825                         !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4826 }
4827 EXPORT_SYMBOL(page_symlink);
4828
4829 const struct inode_operations page_symlink_inode_operations = {
4830         .get_link       = page_get_link,
4831 };
4832 EXPORT_SYMBOL(page_symlink_inode_operations);