1 // SPDX-License-Identifier: GPL-2.0-only
4 * Library for filesystems writers.
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 #include <linux/pidfs.h>
28 #include <linux/uaccess.h>
32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
33 struct kstat *stat, u32 request_mask,
34 unsigned int query_flags)
36 struct inode *inode = d_inode(path->dentry);
37 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
38 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
41 EXPORT_SYMBOL(simple_getattr);
43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
45 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
47 buf->f_fsid = u64_to_fsid(id);
48 buf->f_type = dentry->d_sb->s_magic;
49 buf->f_bsize = PAGE_SIZE;
50 buf->f_namelen = NAME_MAX;
53 EXPORT_SYMBOL(simple_statfs);
56 * Retaining negative dentries for an in-memory filesystem just wastes
57 * memory and lookup time: arrange for them to be deleted immediately.
59 int always_delete_dentry(const struct dentry *dentry)
63 EXPORT_SYMBOL(always_delete_dentry);
65 const struct dentry_operations simple_dentry_operations = {
66 .d_delete = always_delete_dentry,
68 EXPORT_SYMBOL(simple_dentry_operations);
71 * Lookup the data. This is trivial - if the dentry didn't already
72 * exist, we know it is negative. Set d_op to delete negative dentries.
74 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
76 if (dentry->d_name.len > NAME_MAX)
77 return ERR_PTR(-ENAMETOOLONG);
78 if (!dentry->d_sb->s_d_op)
79 d_set_d_op(dentry, &simple_dentry_operations);
81 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
87 EXPORT_SYMBOL(simple_lookup);
89 int dcache_dir_open(struct inode *inode, struct file *file)
91 file->private_data = d_alloc_cursor(file->f_path.dentry);
93 return file->private_data ? 0 : -ENOMEM;
95 EXPORT_SYMBOL(dcache_dir_open);
97 int dcache_dir_close(struct inode *inode, struct file *file)
99 dput(file->private_data);
102 EXPORT_SYMBOL(dcache_dir_close);
104 /* parent is locked at least shared */
106 * Returns an element of siblings' list.
107 * We are looking for <count>th positive after <p>; if
108 * found, dentry is grabbed and returned to caller.
109 * If no such element exists, NULL is returned.
111 static struct dentry *scan_positives(struct dentry *cursor,
112 struct hlist_node **p,
116 struct dentry *dentry = cursor->d_parent, *found = NULL;
118 spin_lock(&dentry->d_lock);
120 struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
122 // we must at least skip cursors, to avoid livelocks
123 if (d->d_flags & DCACHE_DENTRY_CURSOR)
125 if (simple_positive(d) && !--count) {
126 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
127 if (simple_positive(d))
128 found = dget_dlock(d);
129 spin_unlock(&d->d_lock);
134 if (need_resched()) {
135 if (!hlist_unhashed(&cursor->d_sib))
136 __hlist_del(&cursor->d_sib);
137 hlist_add_behind(&cursor->d_sib, &d->d_sib);
138 p = &cursor->d_sib.next;
139 spin_unlock(&dentry->d_lock);
141 spin_lock(&dentry->d_lock);
144 spin_unlock(&dentry->d_lock);
149 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
151 struct dentry *dentry = file->f_path.dentry;
154 offset += file->f_pos;
163 if (offset != file->f_pos) {
164 struct dentry *cursor = file->private_data;
165 struct dentry *to = NULL;
167 inode_lock_shared(dentry->d_inode);
170 to = scan_positives(cursor, &dentry->d_children.first,
172 spin_lock(&dentry->d_lock);
173 hlist_del_init(&cursor->d_sib);
175 hlist_add_behind(&cursor->d_sib, &to->d_sib);
176 spin_unlock(&dentry->d_lock);
179 file->f_pos = offset;
181 inode_unlock_shared(dentry->d_inode);
185 EXPORT_SYMBOL(dcache_dir_lseek);
188 * Directory is locked and all positive dentries in it are safe, since
189 * for ramfs-type trees they can't go away without unlink() or rmdir(),
190 * both impossible due to the lock on directory.
193 int dcache_readdir(struct file *file, struct dir_context *ctx)
195 struct dentry *dentry = file->f_path.dentry;
196 struct dentry *cursor = file->private_data;
197 struct dentry *next = NULL;
198 struct hlist_node **p;
200 if (!dir_emit_dots(file, ctx))
204 p = &dentry->d_children.first;
206 p = &cursor->d_sib.next;
208 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
209 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
210 d_inode(next)->i_ino,
211 fs_umode_to_dtype(d_inode(next)->i_mode)))
214 p = &next->d_sib.next;
216 spin_lock(&dentry->d_lock);
217 hlist_del_init(&cursor->d_sib);
219 hlist_add_before(&cursor->d_sib, &next->d_sib);
220 spin_unlock(&dentry->d_lock);
225 EXPORT_SYMBOL(dcache_readdir);
227 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
231 EXPORT_SYMBOL(generic_read_dir);
233 const struct file_operations simple_dir_operations = {
234 .open = dcache_dir_open,
235 .release = dcache_dir_close,
236 .llseek = dcache_dir_lseek,
237 .read = generic_read_dir,
238 .iterate_shared = dcache_readdir,
241 EXPORT_SYMBOL(simple_dir_operations);
243 const struct inode_operations simple_dir_inode_operations = {
244 .lookup = simple_lookup,
246 EXPORT_SYMBOL(simple_dir_inode_operations);
248 /* simple_offset_add() never assigns these to a dentry */
250 DIR_OFFSET_FIRST = 2, /* Find first real entry */
251 DIR_OFFSET_EOD = S32_MAX,
254 /* simple_offset_add() allocation range */
256 DIR_OFFSET_MIN = DIR_OFFSET_FIRST + 1,
257 DIR_OFFSET_MAX = DIR_OFFSET_EOD - 1,
260 static void offset_set(struct dentry *dentry, long offset)
262 dentry->d_fsdata = (void *)offset;
265 static long dentry2offset(struct dentry *dentry)
267 return (long)dentry->d_fsdata;
270 static struct lock_class_key simple_offset_lock_class;
273 * simple_offset_init - initialize an offset_ctx
274 * @octx: directory offset map to be initialized
277 void simple_offset_init(struct offset_ctx *octx)
279 mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
280 lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
281 octx->next_offset = DIR_OFFSET_MIN;
285 * simple_offset_add - Add an entry to a directory's offset map
286 * @octx: directory offset ctx to be updated
287 * @dentry: new dentry being added
289 * Returns zero on success. @octx and the dentry's offset are updated.
290 * Otherwise, a negative errno value is returned.
292 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
294 unsigned long offset;
297 if (dentry2offset(dentry) != 0)
300 ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
301 DIR_OFFSET_MAX, &octx->next_offset,
303 if (unlikely(ret < 0))
304 return ret == -EBUSY ? -ENOSPC : ret;
306 offset_set(dentry, offset);
310 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
315 ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
318 offset_set(dentry, offset);
323 * simple_offset_remove - Remove an entry to a directory's offset map
324 * @octx: directory offset ctx to be updated
325 * @dentry: dentry being removed
328 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
332 offset = dentry2offset(dentry);
336 mtree_erase(&octx->mt, offset);
337 offset_set(dentry, 0);
341 * simple_offset_rename - handle directory offsets for rename
342 * @old_dir: parent directory of source entry
343 * @old_dentry: dentry of source entry
344 * @new_dir: parent_directory of destination entry
345 * @new_dentry: dentry of destination
347 * Caller provides appropriate serialization.
349 * User space expects the directory offset value of the replaced
350 * (new) directory entry to be unchanged after a rename.
352 * Returns zero on success, a negative errno value on failure.
354 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
355 struct inode *new_dir, struct dentry *new_dentry)
357 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
358 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
359 long new_offset = dentry2offset(new_dentry);
361 simple_offset_remove(old_ctx, old_dentry);
364 offset_set(new_dentry, 0);
365 return simple_offset_replace(new_ctx, old_dentry, new_offset);
367 return simple_offset_add(new_ctx, old_dentry);
371 * simple_offset_rename_exchange - exchange rename with directory offsets
372 * @old_dir: parent of dentry being moved
373 * @old_dentry: dentry being moved
374 * @new_dir: destination parent
375 * @new_dentry: destination dentry
377 * This API preserves the directory offset values. Caller provides
378 * appropriate serialization.
380 * Returns zero on success. Otherwise a negative errno is returned and the
381 * rename is rolled back.
383 int simple_offset_rename_exchange(struct inode *old_dir,
384 struct dentry *old_dentry,
385 struct inode *new_dir,
386 struct dentry *new_dentry)
388 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
389 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
390 long old_index = dentry2offset(old_dentry);
391 long new_index = dentry2offset(new_dentry);
394 simple_offset_remove(old_ctx, old_dentry);
395 simple_offset_remove(new_ctx, new_dentry);
397 ret = simple_offset_replace(new_ctx, old_dentry, new_index);
401 ret = simple_offset_replace(old_ctx, new_dentry, old_index);
403 simple_offset_remove(new_ctx, old_dentry);
407 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
409 simple_offset_remove(new_ctx, old_dentry);
410 simple_offset_remove(old_ctx, new_dentry);
416 (void)simple_offset_replace(old_ctx, old_dentry, old_index);
417 (void)simple_offset_replace(new_ctx, new_dentry, new_index);
422 * simple_offset_destroy - Release offset map
423 * @octx: directory offset ctx that is about to be destroyed
425 * During fs teardown (eg. umount), a directory's offset map might still
426 * contain entries. xa_destroy() cleans out anything that remains.
428 void simple_offset_destroy(struct offset_ctx *octx)
430 mtree_destroy(&octx->mt);
434 * offset_dir_llseek - Advance the read position of a directory descriptor
435 * @file: an open directory whose position is to be updated
436 * @offset: a byte offset
437 * @whence: enumerator describing the starting position for this update
439 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
441 * Returns the updated read position if successful; otherwise a
442 * negative errno is returned and the read position remains unchanged.
444 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
448 offset += file->f_pos;
458 return vfs_setpos(file, offset, LONG_MAX);
461 static struct dentry *find_positive_dentry(struct dentry *parent,
462 struct dentry *dentry,
465 struct dentry *found = NULL;
467 spin_lock(&parent->d_lock);
469 dentry = d_next_sibling(dentry);
471 dentry = d_first_child(parent);
472 hlist_for_each_entry_from(dentry, d_sib) {
473 if (!simple_positive(dentry))
475 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
476 if (simple_positive(dentry))
477 found = dget_dlock(dentry);
478 spin_unlock(&dentry->d_lock);
482 spin_unlock(&parent->d_lock);
486 static noinline_for_stack struct dentry *
487 offset_dir_lookup(struct dentry *parent, loff_t offset)
489 struct inode *inode = d_inode(parent);
490 struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
491 struct dentry *child, *found = NULL;
493 MA_STATE(mas, &octx->mt, offset, offset);
495 if (offset == DIR_OFFSET_FIRST)
496 found = find_positive_dentry(parent, NULL, false);
499 child = mas_find_rev(&mas, DIR_OFFSET_MIN);
500 found = find_positive_dentry(parent, child, false);
506 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
508 struct inode *inode = d_inode(dentry);
510 return dir_emit(ctx, dentry->d_name.name, dentry->d_name.len,
511 inode->i_ino, fs_umode_to_dtype(inode->i_mode));
514 static void offset_iterate_dir(struct file *file, struct dir_context *ctx)
516 struct dentry *dir = file->f_path.dentry;
517 struct dentry *dentry;
519 dentry = offset_dir_lookup(dir, ctx->pos);
525 ctx->pos = dentry2offset(dentry);
526 if (!offset_dir_emit(ctx, dentry))
529 next = find_positive_dentry(dir, dentry, true);
540 ctx->pos = DIR_OFFSET_EOD;
544 * offset_readdir - Emit entries starting at offset @ctx->pos
545 * @file: an open directory to iterate over
546 * @ctx: directory iteration context
548 * Caller must hold @file's i_rwsem to prevent insertion or removal of
549 * entries during this call.
551 * On entry, @ctx->pos contains an offset that represents the first entry
552 * to be read from the directory.
554 * The operation continues until there are no more entries to read, or
555 * until the ctx->actor indicates there is no more space in the caller's
558 * On return, @ctx->pos contains an offset that will read the next entry
559 * in this directory when offset_readdir() is called again with @ctx.
560 * Caller places this value in the d_off field of the last entry in the
566 static int offset_readdir(struct file *file, struct dir_context *ctx)
568 struct dentry *dir = file->f_path.dentry;
570 lockdep_assert_held(&d_inode(dir)->i_rwsem);
572 if (!dir_emit_dots(file, ctx))
574 if (ctx->pos != DIR_OFFSET_EOD)
575 offset_iterate_dir(file, ctx);
579 const struct file_operations simple_offset_dir_operations = {
580 .llseek = offset_dir_llseek,
581 .iterate_shared = offset_readdir,
582 .read = generic_read_dir,
586 struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
588 struct dentry *child = NULL, *d;
590 spin_lock(&parent->d_lock);
591 d = prev ? d_next_sibling(prev) : d_first_child(parent);
592 hlist_for_each_entry_from(d, d_sib) {
593 if (simple_positive(d)) {
594 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
595 if (simple_positive(d))
596 child = dget_dlock(d);
597 spin_unlock(&d->d_lock);
602 spin_unlock(&parent->d_lock);
606 EXPORT_SYMBOL(find_next_child);
608 void simple_recursive_removal(struct dentry *dentry,
609 void (*callback)(struct dentry *))
611 struct dentry *this = dget(dentry);
613 struct dentry *victim = NULL, *child;
614 struct inode *inode = this->d_inode;
618 inode->i_flags |= S_DEAD;
619 while ((child = find_next_child(this, victim)) == NULL) {
621 // update metadata while it's still locked
622 inode_set_ctime_current(inode);
626 this = this->d_parent;
627 inode = this->d_inode;
629 if (simple_positive(victim)) {
630 d_invalidate(victim); // avoid lost mounts
631 if (d_is_dir(victim))
632 fsnotify_rmdir(inode, victim);
634 fsnotify_unlink(inode, victim);
637 dput(victim); // unpin it
639 if (victim == dentry) {
640 inode_set_mtime_to_ts(inode,
641 inode_set_ctime_current(inode));
642 if (d_is_dir(dentry))
653 EXPORT_SYMBOL(simple_recursive_removal);
655 static const struct super_operations simple_super_operations = {
656 .statfs = simple_statfs,
659 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
661 struct pseudo_fs_context *ctx = fc->fs_private;
664 s->s_maxbytes = MAX_LFS_FILESIZE;
665 s->s_blocksize = PAGE_SIZE;
666 s->s_blocksize_bits = PAGE_SHIFT;
667 s->s_magic = ctx->magic;
668 s->s_op = ctx->ops ?: &simple_super_operations;
669 s->s_export_op = ctx->eops;
670 s->s_xattr = ctx->xattr;
677 * since this is the first inode, make it number 1. New inodes created
678 * after this must take care not to collide with it (by passing
679 * max_reserved of 1 to iunique).
682 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
683 simple_inode_init_ts(root);
684 s->s_root = d_make_root(root);
687 s->s_d_op = ctx->dops;
691 static int pseudo_fs_get_tree(struct fs_context *fc)
693 return get_tree_nodev(fc, pseudo_fs_fill_super);
696 static void pseudo_fs_free(struct fs_context *fc)
698 kfree(fc->fs_private);
701 static const struct fs_context_operations pseudo_fs_context_ops = {
702 .free = pseudo_fs_free,
703 .get_tree = pseudo_fs_get_tree,
707 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
708 * will never be mountable)
710 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
713 struct pseudo_fs_context *ctx;
715 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
718 fc->fs_private = ctx;
719 fc->ops = &pseudo_fs_context_ops;
720 fc->sb_flags |= SB_NOUSER;
725 EXPORT_SYMBOL(init_pseudo);
727 int simple_open(struct inode *inode, struct file *file)
729 if (inode->i_private)
730 file->private_data = inode->i_private;
733 EXPORT_SYMBOL(simple_open);
735 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
737 struct inode *inode = d_inode(old_dentry);
739 inode_set_mtime_to_ts(dir,
740 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
744 d_instantiate(dentry, inode);
747 EXPORT_SYMBOL(simple_link);
749 int simple_empty(struct dentry *dentry)
751 struct dentry *child;
754 spin_lock(&dentry->d_lock);
755 hlist_for_each_entry(child, &dentry->d_children, d_sib) {
756 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
757 if (simple_positive(child)) {
758 spin_unlock(&child->d_lock);
761 spin_unlock(&child->d_lock);
765 spin_unlock(&dentry->d_lock);
768 EXPORT_SYMBOL(simple_empty);
770 int simple_unlink(struct inode *dir, struct dentry *dentry)
772 struct inode *inode = d_inode(dentry);
774 inode_set_mtime_to_ts(dir,
775 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
780 EXPORT_SYMBOL(simple_unlink);
782 int simple_rmdir(struct inode *dir, struct dentry *dentry)
784 if (!simple_empty(dentry))
787 drop_nlink(d_inode(dentry));
788 simple_unlink(dir, dentry);
792 EXPORT_SYMBOL(simple_rmdir);
795 * simple_rename_timestamp - update the various inode timestamps for rename
796 * @old_dir: old parent directory
797 * @old_dentry: dentry that is being renamed
798 * @new_dir: new parent directory
799 * @new_dentry: target for rename
801 * POSIX mandates that the old and new parent directories have their ctime and
802 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
803 * their ctime updated.
805 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
806 struct inode *new_dir, struct dentry *new_dentry)
808 struct inode *newino = d_inode(new_dentry);
810 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
811 if (new_dir != old_dir)
812 inode_set_mtime_to_ts(new_dir,
813 inode_set_ctime_current(new_dir));
814 inode_set_ctime_current(d_inode(old_dentry));
816 inode_set_ctime_current(newino);
818 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
820 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
821 struct inode *new_dir, struct dentry *new_dentry)
823 bool old_is_dir = d_is_dir(old_dentry);
824 bool new_is_dir = d_is_dir(new_dentry);
826 if (old_dir != new_dir && old_is_dir != new_is_dir) {
835 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
838 EXPORT_SYMBOL_GPL(simple_rename_exchange);
840 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
841 struct dentry *old_dentry, struct inode *new_dir,
842 struct dentry *new_dentry, unsigned int flags)
844 int they_are_dirs = d_is_dir(old_dentry);
846 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
849 if (flags & RENAME_EXCHANGE)
850 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
852 if (!simple_empty(new_dentry))
855 if (d_really_is_positive(new_dentry)) {
856 simple_unlink(new_dir, new_dentry);
858 drop_nlink(d_inode(new_dentry));
861 } else if (they_are_dirs) {
866 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
869 EXPORT_SYMBOL(simple_rename);
872 * simple_setattr - setattr for simple filesystem
873 * @idmap: idmap of the target mount
875 * @iattr: iattr structure
877 * Returns 0 on success, -error on failure.
879 * simple_setattr is a simple ->setattr implementation without a proper
880 * implementation of size changes.
882 * It can either be used for in-memory filesystems or special files
883 * on simple regular filesystems. Anything that needs to change on-disk
884 * or wire state on size changes needs its own setattr method.
886 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
889 struct inode *inode = d_inode(dentry);
892 error = setattr_prepare(idmap, dentry, iattr);
896 if (iattr->ia_valid & ATTR_SIZE)
897 truncate_setsize(inode, iattr->ia_size);
898 setattr_copy(idmap, inode, iattr);
899 mark_inode_dirty(inode);
902 EXPORT_SYMBOL(simple_setattr);
904 static int simple_read_folio(struct file *file, struct folio *folio)
906 folio_zero_range(folio, 0, folio_size(folio));
907 flush_dcache_folio(folio);
908 folio_mark_uptodate(folio);
913 int simple_write_begin(struct file *file, struct address_space *mapping,
914 loff_t pos, unsigned len,
915 struct folio **foliop, void **fsdata)
919 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
920 mapping_gfp_mask(mapping));
922 return PTR_ERR(folio);
926 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
927 size_t from = offset_in_folio(folio, pos);
929 folio_zero_segments(folio, 0, from,
930 from + len, folio_size(folio));
934 EXPORT_SYMBOL(simple_write_begin);
937 * simple_write_end - .write_end helper for non-block-device FSes
938 * @file: See .write_end of address_space_operations
946 * simple_write_end does the minimum needed for updating a folio after
947 * writing is done. It has the same API signature as the .write_end of
948 * address_space_operations vector. So it can just be set onto .write_end for
949 * FSes that don't need any other processing. i_mutex is assumed to be held.
950 * Block based filesystems should use generic_write_end().
951 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
952 * is not called, so a filesystem that actually does store data in .write_inode
953 * should extend on what's done here with a call to mark_inode_dirty() in the
954 * case that i_size has changed.
956 * Use *ONLY* with simple_read_folio()
958 static int simple_write_end(struct file *file, struct address_space *mapping,
959 loff_t pos, unsigned len, unsigned copied,
960 struct folio *folio, void *fsdata)
962 struct inode *inode = folio->mapping->host;
963 loff_t last_pos = pos + copied;
965 /* zero the stale part of the folio if we did a short copy */
966 if (!folio_test_uptodate(folio)) {
968 size_t from = offset_in_folio(folio, pos);
970 folio_zero_range(folio, from + copied, len - copied);
972 folio_mark_uptodate(folio);
975 * No need to use i_size_read() here, the i_size
976 * cannot change under us because we hold the i_mutex.
978 if (last_pos > inode->i_size)
979 i_size_write(inode, last_pos);
981 folio_mark_dirty(folio);
989 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
991 const struct address_space_operations ram_aops = {
992 .read_folio = simple_read_folio,
993 .write_begin = simple_write_begin,
994 .write_end = simple_write_end,
995 .dirty_folio = noop_dirty_folio,
997 EXPORT_SYMBOL(ram_aops);
1000 * the inodes created here are not hashed. If you use iunique to generate
1001 * unique inode values later for this filesystem, then you must take care
1002 * to pass it an appropriate max_reserved value to avoid collisions.
1004 int simple_fill_super(struct super_block *s, unsigned long magic,
1005 const struct tree_descr *files)
1007 struct inode *inode;
1008 struct dentry *dentry;
1011 s->s_blocksize = PAGE_SIZE;
1012 s->s_blocksize_bits = PAGE_SHIFT;
1014 s->s_op = &simple_super_operations;
1017 inode = new_inode(s);
1021 * because the root inode is 1, the files array must not contain an
1025 inode->i_mode = S_IFDIR | 0755;
1026 simple_inode_init_ts(inode);
1027 inode->i_op = &simple_dir_inode_operations;
1028 inode->i_fop = &simple_dir_operations;
1029 set_nlink(inode, 2);
1030 s->s_root = d_make_root(inode);
1033 for (i = 0; !files->name || files->name[0]; i++, files++) {
1037 /* warn if it tries to conflict with the root inode */
1038 if (unlikely(i == 1))
1039 printk(KERN_WARNING "%s: %s passed in a files array"
1040 "with an index of 1!\n", __func__,
1043 dentry = d_alloc_name(s->s_root, files->name);
1046 inode = new_inode(s);
1051 inode->i_mode = S_IFREG | files->mode;
1052 simple_inode_init_ts(inode);
1053 inode->i_fop = files->ops;
1055 d_add(dentry, inode);
1059 EXPORT_SYMBOL(simple_fill_super);
1061 static DEFINE_SPINLOCK(pin_fs_lock);
1063 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1065 struct vfsmount *mnt = NULL;
1066 spin_lock(&pin_fs_lock);
1067 if (unlikely(!*mount)) {
1068 spin_unlock(&pin_fs_lock);
1069 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1071 return PTR_ERR(mnt);
1072 spin_lock(&pin_fs_lock);
1078 spin_unlock(&pin_fs_lock);
1082 EXPORT_SYMBOL(simple_pin_fs);
1084 void simple_release_fs(struct vfsmount **mount, int *count)
1086 struct vfsmount *mnt;
1087 spin_lock(&pin_fs_lock);
1091 spin_unlock(&pin_fs_lock);
1094 EXPORT_SYMBOL(simple_release_fs);
1097 * simple_read_from_buffer - copy data from the buffer to user space
1098 * @to: the user space buffer to read to
1099 * @count: the maximum number of bytes to read
1100 * @ppos: the current position in the buffer
1101 * @from: the buffer to read from
1102 * @available: the size of the buffer
1104 * The simple_read_from_buffer() function reads up to @count bytes from the
1105 * buffer @from at offset @ppos into the user space address starting at @to.
1107 * On success, the number of bytes read is returned and the offset @ppos is
1108 * advanced by this number, or negative value is returned on error.
1110 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1111 const void *from, size_t available)
1118 if (pos >= available || !count)
1120 if (count > available - pos)
1121 count = available - pos;
1122 ret = copy_to_user(to, from + pos, count);
1126 *ppos = pos + count;
1129 EXPORT_SYMBOL(simple_read_from_buffer);
1132 * simple_write_to_buffer - copy data from user space to the buffer
1133 * @to: the buffer to write to
1134 * @available: the size of the buffer
1135 * @ppos: the current position in the buffer
1136 * @from: the user space buffer to read from
1137 * @count: the maximum number of bytes to read
1139 * The simple_write_to_buffer() function reads up to @count bytes from the user
1140 * space address starting at @from into the buffer @to at offset @ppos.
1142 * On success, the number of bytes written is returned and the offset @ppos is
1143 * advanced by this number, or negative value is returned on error.
1145 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1146 const void __user *from, size_t count)
1153 if (pos >= available || !count)
1155 if (count > available - pos)
1156 count = available - pos;
1157 res = copy_from_user(to + pos, from, count);
1161 *ppos = pos + count;
1164 EXPORT_SYMBOL(simple_write_to_buffer);
1167 * memory_read_from_buffer - copy data from the buffer
1168 * @to: the kernel space buffer to read to
1169 * @count: the maximum number of bytes to read
1170 * @ppos: the current position in the buffer
1171 * @from: the buffer to read from
1172 * @available: the size of the buffer
1174 * The memory_read_from_buffer() function reads up to @count bytes from the
1175 * buffer @from at offset @ppos into the kernel space address starting at @to.
1177 * On success, the number of bytes read is returned and the offset @ppos is
1178 * advanced by this number, or negative value is returned on error.
1180 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1181 const void *from, size_t available)
1187 if (pos >= available)
1189 if (count > available - pos)
1190 count = available - pos;
1191 memcpy(to, from + pos, count);
1192 *ppos = pos + count;
1196 EXPORT_SYMBOL(memory_read_from_buffer);
1199 * Transaction based IO.
1200 * The file expects a single write which triggers the transaction, and then
1201 * possibly a read which collects the result - which is stored in a
1202 * file-local buffer.
1205 void simple_transaction_set(struct file *file, size_t n)
1207 struct simple_transaction_argresp *ar = file->private_data;
1209 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1212 * The barrier ensures that ar->size will really remain zero until
1213 * ar->data is ready for reading.
1218 EXPORT_SYMBOL(simple_transaction_set);
1220 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1222 struct simple_transaction_argresp *ar;
1223 static DEFINE_SPINLOCK(simple_transaction_lock);
1225 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1226 return ERR_PTR(-EFBIG);
1228 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1230 return ERR_PTR(-ENOMEM);
1232 spin_lock(&simple_transaction_lock);
1234 /* only one write allowed per open */
1235 if (file->private_data) {
1236 spin_unlock(&simple_transaction_lock);
1237 free_page((unsigned long)ar);
1238 return ERR_PTR(-EBUSY);
1241 file->private_data = ar;
1243 spin_unlock(&simple_transaction_lock);
1245 if (copy_from_user(ar->data, buf, size))
1246 return ERR_PTR(-EFAULT);
1250 EXPORT_SYMBOL(simple_transaction_get);
1252 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1254 struct simple_transaction_argresp *ar = file->private_data;
1258 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1260 EXPORT_SYMBOL(simple_transaction_read);
1262 int simple_transaction_release(struct inode *inode, struct file *file)
1264 free_page((unsigned long)file->private_data);
1267 EXPORT_SYMBOL(simple_transaction_release);
1269 /* Simple attribute files */
1271 struct simple_attr {
1272 int (*get)(void *, u64 *);
1273 int (*set)(void *, u64);
1274 char get_buf[24]; /* enough to store a u64 and "\n\0" */
1277 const char *fmt; /* format for read operation */
1278 struct mutex mutex; /* protects access to these buffers */
1281 /* simple_attr_open is called by an actual attribute open file operation
1282 * to set the attribute specific access operations. */
1283 int simple_attr_open(struct inode *inode, struct file *file,
1284 int (*get)(void *, u64 *), int (*set)(void *, u64),
1287 struct simple_attr *attr;
1289 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1295 attr->data = inode->i_private;
1297 mutex_init(&attr->mutex);
1299 file->private_data = attr;
1301 return nonseekable_open(inode, file);
1303 EXPORT_SYMBOL_GPL(simple_attr_open);
1305 int simple_attr_release(struct inode *inode, struct file *file)
1307 kfree(file->private_data);
1310 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
1312 /* read from the buffer that is filled with the get function */
1313 ssize_t simple_attr_read(struct file *file, char __user *buf,
1314 size_t len, loff_t *ppos)
1316 struct simple_attr *attr;
1320 attr = file->private_data;
1325 ret = mutex_lock_interruptible(&attr->mutex);
1329 if (*ppos && attr->get_buf[0]) {
1330 /* continued read */
1331 size = strlen(attr->get_buf);
1335 ret = attr->get(attr->data, &val);
1339 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1340 attr->fmt, (unsigned long long)val);
1343 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1345 mutex_unlock(&attr->mutex);
1348 EXPORT_SYMBOL_GPL(simple_attr_read);
1350 /* interpret the buffer as a number to call the set function with */
1351 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1352 size_t len, loff_t *ppos, bool is_signed)
1354 struct simple_attr *attr;
1355 unsigned long long val;
1359 attr = file->private_data;
1363 ret = mutex_lock_interruptible(&attr->mutex);
1368 size = min(sizeof(attr->set_buf) - 1, len);
1369 if (copy_from_user(attr->set_buf, buf, size))
1372 attr->set_buf[size] = '\0';
1374 ret = kstrtoll(attr->set_buf, 0, &val);
1376 ret = kstrtoull(attr->set_buf, 0, &val);
1379 ret = attr->set(attr->data, val);
1381 ret = len; /* on success, claim we got the whole input */
1383 mutex_unlock(&attr->mutex);
1387 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1388 size_t len, loff_t *ppos)
1390 return simple_attr_write_xsigned(file, buf, len, ppos, false);
1392 EXPORT_SYMBOL_GPL(simple_attr_write);
1394 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1395 size_t len, loff_t *ppos)
1397 return simple_attr_write_xsigned(file, buf, len, ppos, true);
1399 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1402 * generic_encode_ino32_fh - generic export_operations->encode_fh function
1403 * @inode: the object to encode
1404 * @fh: where to store the file handle fragment
1405 * @max_len: maximum length to store there (in 4 byte units)
1406 * @parent: parent directory inode, if wanted
1408 * This generic encode_fh function assumes that the 32 inode number
1409 * is suitable for locating an inode, and that the generation number
1410 * can be used to check that it is still valid. It places them in the
1411 * filehandle fragment where export_decode_fh expects to find them.
1413 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1414 struct inode *parent)
1416 struct fid *fid = (void *)fh;
1418 int type = FILEID_INO32_GEN;
1420 if (parent && (len < 4)) {
1422 return FILEID_INVALID;
1423 } else if (len < 2) {
1425 return FILEID_INVALID;
1429 fid->i32.ino = inode->i_ino;
1430 fid->i32.gen = inode->i_generation;
1432 fid->i32.parent_ino = parent->i_ino;
1433 fid->i32.parent_gen = parent->i_generation;
1435 type = FILEID_INO32_GEN_PARENT;
1440 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1443 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1444 * @sb: filesystem to do the file handle conversion on
1445 * @fid: file handle to convert
1446 * @fh_len: length of the file handle in bytes
1447 * @fh_type: type of file handle
1448 * @get_inode: filesystem callback to retrieve inode
1450 * This function decodes @fid as long as it has one of the well-known
1451 * Linux filehandle types and calls @get_inode on it to retrieve the
1452 * inode for the object specified in the file handle.
1454 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1455 int fh_len, int fh_type, struct inode *(*get_inode)
1456 (struct super_block *sb, u64 ino, u32 gen))
1458 struct inode *inode = NULL;
1464 case FILEID_INO32_GEN:
1465 case FILEID_INO32_GEN_PARENT:
1466 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1470 return d_obtain_alias(inode);
1472 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1475 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1476 * @sb: filesystem to do the file handle conversion on
1477 * @fid: file handle to convert
1478 * @fh_len: length of the file handle in bytes
1479 * @fh_type: type of file handle
1480 * @get_inode: filesystem callback to retrieve inode
1482 * This function decodes @fid as long as it has one of the well-known
1483 * Linux filehandle types and calls @get_inode on it to retrieve the
1484 * inode for the _parent_ object specified in the file handle if it
1485 * is specified in the file handle, or NULL otherwise.
1487 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1488 int fh_len, int fh_type, struct inode *(*get_inode)
1489 (struct super_block *sb, u64 ino, u32 gen))
1491 struct inode *inode = NULL;
1497 case FILEID_INO32_GEN_PARENT:
1498 inode = get_inode(sb, fid->i32.parent_ino,
1499 (fh_len > 3 ? fid->i32.parent_gen : 0));
1503 return d_obtain_alias(inode);
1505 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1508 * __generic_file_fsync - generic fsync implementation for simple filesystems
1510 * @file: file to synchronize
1511 * @start: start offset in bytes
1512 * @end: end offset in bytes (inclusive)
1513 * @datasync: only synchronize essential metadata if true
1515 * This is a generic implementation of the fsync method for simple
1516 * filesystems which track all non-inode metadata in the buffers list
1517 * hanging off the address_space structure.
1519 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1522 struct inode *inode = file->f_mapping->host;
1526 err = file_write_and_wait_range(file, start, end);
1531 ret = sync_mapping_buffers(inode->i_mapping);
1532 if (!(inode->i_state & I_DIRTY_ALL))
1534 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1537 err = sync_inode_metadata(inode, 1);
1542 inode_unlock(inode);
1543 /* check and advance again to catch errors after syncing out buffers */
1544 err = file_check_and_advance_wb_err(file);
1549 EXPORT_SYMBOL(__generic_file_fsync);
1552 * generic_file_fsync - generic fsync implementation for simple filesystems
1554 * @file: file to synchronize
1555 * @start: start offset in bytes
1556 * @end: end offset in bytes (inclusive)
1557 * @datasync: only synchronize essential metadata if true
1561 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1564 struct inode *inode = file->f_mapping->host;
1567 err = __generic_file_fsync(file, start, end, datasync);
1570 return blkdev_issue_flush(inode->i_sb->s_bdev);
1572 EXPORT_SYMBOL(generic_file_fsync);
1575 * generic_check_addressable - Check addressability of file system
1576 * @blocksize_bits: log of file system block size
1577 * @num_blocks: number of blocks in file system
1579 * Determine whether a file system with @num_blocks blocks (and a
1580 * block size of 2**@blocksize_bits) is addressable by the sector_t
1581 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1583 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1585 u64 last_fs_block = num_blocks - 1;
1587 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1589 if (unlikely(num_blocks == 0))
1592 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1595 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1596 (last_fs_page > (pgoff_t)(~0ULL))) {
1601 EXPORT_SYMBOL(generic_check_addressable);
1604 * No-op implementation of ->fsync for in-memory filesystems.
1606 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1610 EXPORT_SYMBOL(noop_fsync);
1612 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1615 * iomap based filesystems support direct I/O without need for
1616 * this callback. However, it still needs to be set in
1617 * inode->a_ops so that open/fcntl know that direct I/O is
1618 * generally supported.
1622 EXPORT_SYMBOL_GPL(noop_direct_IO);
1624 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1625 void kfree_link(void *p)
1629 EXPORT_SYMBOL(kfree_link);
1631 struct inode *alloc_anon_inode(struct super_block *s)
1633 static const struct address_space_operations anon_aops = {
1634 .dirty_folio = noop_dirty_folio,
1636 struct inode *inode = new_inode_pseudo(s);
1639 return ERR_PTR(-ENOMEM);
1641 inode->i_ino = get_next_ino();
1642 inode->i_mapping->a_ops = &anon_aops;
1645 * Mark the inode dirty from the very beginning,
1646 * that way it will never be moved to the dirty
1647 * list because mark_inode_dirty() will think
1648 * that it already _is_ on the dirty list.
1650 inode->i_state = I_DIRTY;
1652 * Historically anonymous inodes don't have a type at all and
1653 * userspace has come to rely on this.
1655 inode->i_mode = S_IRUSR | S_IWUSR;
1656 inode->i_uid = current_fsuid();
1657 inode->i_gid = current_fsgid();
1658 inode->i_flags |= S_PRIVATE | S_ANON_INODE;
1659 simple_inode_init_ts(inode);
1662 EXPORT_SYMBOL(alloc_anon_inode);
1665 * simple_nosetlease - generic helper for prohibiting leases
1666 * @filp: file pointer
1667 * @arg: type of lease to obtain
1668 * @flp: new lease supplied for insertion
1669 * @priv: private data for lm_setup operation
1671 * Generic helper for filesystems that do not wish to allow leases to be set.
1672 * All arguments are ignored and it just returns -EINVAL.
1675 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1680 EXPORT_SYMBOL(simple_nosetlease);
1683 * simple_get_link - generic helper to get the target of "fast" symlinks
1684 * @dentry: not used here
1685 * @inode: the symlink inode
1686 * @done: not used here
1688 * Generic helper for filesystems to use for symlink inodes where a pointer to
1689 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1690 * since as an optimization the path lookup code uses any non-NULL ->i_link
1691 * directly, without calling ->get_link(). But ->get_link() still must be set,
1692 * to mark the inode_operations as being for a symlink.
1694 * Return: the symlink target
1696 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1697 struct delayed_call *done)
1699 return inode->i_link;
1701 EXPORT_SYMBOL(simple_get_link);
1703 const struct inode_operations simple_symlink_inode_operations = {
1704 .get_link = simple_get_link,
1706 EXPORT_SYMBOL(simple_symlink_inode_operations);
1709 * Operations for a permanently empty directory.
1711 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1713 return ERR_PTR(-ENOENT);
1716 static int empty_dir_setattr(struct mnt_idmap *idmap,
1717 struct dentry *dentry, struct iattr *attr)
1722 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1727 static const struct inode_operations empty_dir_inode_operations = {
1728 .lookup = empty_dir_lookup,
1729 .setattr = empty_dir_setattr,
1730 .listxattr = empty_dir_listxattr,
1733 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1735 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1736 return generic_file_llseek_size(file, offset, whence, 2, 2);
1739 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1741 dir_emit_dots(file, ctx);
1745 static const struct file_operations empty_dir_operations = {
1746 .llseek = empty_dir_llseek,
1747 .read = generic_read_dir,
1748 .iterate_shared = empty_dir_readdir,
1749 .fsync = noop_fsync,
1753 void make_empty_dir_inode(struct inode *inode)
1755 set_nlink(inode, 2);
1756 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1757 inode->i_uid = GLOBAL_ROOT_UID;
1758 inode->i_gid = GLOBAL_ROOT_GID;
1761 inode->i_blkbits = PAGE_SHIFT;
1762 inode->i_blocks = 0;
1764 inode->i_op = &empty_dir_inode_operations;
1765 inode->i_opflags &= ~IOP_XATTR;
1766 inode->i_fop = &empty_dir_operations;
1769 bool is_empty_dir_inode(struct inode *inode)
1771 return (inode->i_fop == &empty_dir_operations) &&
1772 (inode->i_op == &empty_dir_inode_operations);
1775 #if IS_ENABLED(CONFIG_UNICODE)
1777 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1778 * @dentry: dentry whose name we are checking against
1779 * @len: len of name of dentry
1780 * @str: str pointer to name of dentry
1781 * @name: Name to compare against
1783 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1785 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1786 const char *str, const struct qstr *name)
1788 const struct dentry *parent;
1789 const struct inode *dir;
1790 union shortname_store strbuf;
1794 * Attempt a case-sensitive match first. It is cheaper and
1795 * should cover most lookups, including all the sane
1796 * applications that expect a case-sensitive filesystem.
1798 * This comparison is safe under RCU because the caller
1799 * guarantees the consistency between str and len. See
1800 * __d_lookup_rcu_op_compare() for details.
1802 if (len == name->len && !memcmp(str, name->name, len))
1805 parent = READ_ONCE(dentry->d_parent);
1806 dir = READ_ONCE(parent->d_inode);
1807 if (!dir || !IS_CASEFOLDED(dir))
1813 * If the dentry name is stored in-line, then it may be concurrently
1814 * modified by a rename. If this happens, the VFS will eventually retry
1815 * the lookup, so it doesn't matter what ->d_compare() returns.
1816 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1817 * string. Therefore, we have to copy the name into a temporary buffer.
1818 * As above, len is guaranteed to match str, so the shortname case
1819 * is exactly when str points to ->d_shortname.
1821 if (qstr.name == dentry->d_shortname.string) {
1822 strbuf = dentry->d_shortname; // NUL is guaranteed to be in there
1823 qstr.name = strbuf.string;
1824 /* prevent compiler from optimizing out the temporary buffer */
1828 return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1830 EXPORT_SYMBOL(generic_ci_d_compare);
1833 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1834 * @dentry: dentry of the parent directory
1835 * @str: qstr of name whose hash we should fill in
1837 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1839 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1841 const struct inode *dir = READ_ONCE(dentry->d_inode);
1842 struct super_block *sb = dentry->d_sb;
1843 const struct unicode_map *um = sb->s_encoding;
1846 if (!dir || !IS_CASEFOLDED(dir))
1849 ret = utf8_casefold_hash(um, dentry, str);
1850 if (ret < 0 && sb_has_strict_encoding(sb))
1854 EXPORT_SYMBOL(generic_ci_d_hash);
1856 static const struct dentry_operations generic_ci_dentry_ops = {
1857 .d_hash = generic_ci_d_hash,
1858 .d_compare = generic_ci_d_compare,
1859 #ifdef CONFIG_FS_ENCRYPTION
1860 .d_revalidate = fscrypt_d_revalidate,
1865 * generic_ci_match() - Match a name (case-insensitively) with a dirent.
1866 * This is a filesystem helper for comparison with directory entries.
1867 * generic_ci_d_compare should be used in VFS' ->d_compare instead.
1869 * @parent: Inode of the parent of the dirent under comparison
1870 * @name: name under lookup.
1871 * @folded_name: Optional pre-folded name under lookup
1872 * @de_name: Dirent name.
1873 * @de_name_len: dirent name length.
1875 * Test whether a case-insensitive directory entry matches the filename
1876 * being searched. If @folded_name is provided, it is used instead of
1877 * recalculating the casefold of @name.
1879 * Return: > 0 if the directory entry matches, 0 if it doesn't match, or
1882 int generic_ci_match(const struct inode *parent,
1883 const struct qstr *name,
1884 const struct qstr *folded_name,
1885 const u8 *de_name, u32 de_name_len)
1887 const struct super_block *sb = parent->i_sb;
1888 const struct unicode_map *um = sb->s_encoding;
1889 struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
1890 struct qstr dirent = QSTR_INIT(de_name, de_name_len);
1893 if (IS_ENCRYPTED(parent)) {
1894 const struct fscrypt_str encrypted_name =
1895 FSTR_INIT((u8 *) de_name, de_name_len);
1897 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent)))
1900 decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
1901 if (!decrypted_name.name)
1903 res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name,
1906 kfree(decrypted_name.name);
1909 dirent.name = decrypted_name.name;
1910 dirent.len = decrypted_name.len;
1914 * Attempt a case-sensitive match first. It is cheaper and
1915 * should cover most lookups, including all the sane
1916 * applications that expect a case-sensitive filesystem.
1919 if (dirent.len == name->len &&
1920 !memcmp(name->name, dirent.name, dirent.len))
1923 if (folded_name->name)
1924 res = utf8_strncasecmp_folded(um, folded_name, &dirent);
1926 res = utf8_strncasecmp(um, name, &dirent);
1929 kfree(decrypted_name.name);
1930 if (res < 0 && sb_has_strict_encoding(sb)) {
1931 pr_err_ratelimited("Directory contains filename that is invalid UTF-8");
1936 EXPORT_SYMBOL(generic_ci_match);
1939 #ifdef CONFIG_FS_ENCRYPTION
1940 static const struct dentry_operations generic_encrypted_dentry_ops = {
1941 .d_revalidate = fscrypt_d_revalidate,
1946 * generic_set_sb_d_ops - helper for choosing the set of
1947 * filesystem-wide dentry operations for the enabled features
1948 * @sb: superblock to be configured
1950 * Filesystems supporting casefolding and/or fscrypt can call this
1951 * helper at mount-time to configure sb->s_d_op to best set of dentry
1952 * operations required for the enabled features. The helper must be
1953 * called after these have been configured, but before the root dentry
1956 void generic_set_sb_d_ops(struct super_block *sb)
1958 #if IS_ENABLED(CONFIG_UNICODE)
1959 if (sb->s_encoding) {
1960 sb->s_d_op = &generic_ci_dentry_ops;
1964 #ifdef CONFIG_FS_ENCRYPTION
1966 sb->s_d_op = &generic_encrypted_dentry_ops;
1971 EXPORT_SYMBOL(generic_set_sb_d_ops);
1974 * inode_maybe_inc_iversion - increments i_version
1975 * @inode: inode with the i_version that should be updated
1976 * @force: increment the counter even if it's not necessary?
1978 * Every time the inode is modified, the i_version field must be seen to have
1979 * changed by any observer.
1981 * If "force" is set or the QUERIED flag is set, then ensure that we increment
1982 * the value, and clear the queried flag.
1984 * In the common case where neither is set, then we can return "false" without
1985 * updating i_version.
1987 * If this function returns false, and no other metadata has changed, then we
1988 * can avoid logging the metadata.
1990 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1995 * The i_version field is not strictly ordered with any other inode
1996 * information, but the legacy inode_inc_iversion code used a spinlock
1997 * to serialize increments.
1999 * We add a full memory barrier to ensure that any de facto ordering
2000 * with other state is preserved (either implicitly coming from cmpxchg
2001 * or explicitly from smp_mb if we don't know upfront if we will execute
2004 * These barriers pair with inode_query_iversion().
2006 cur = inode_peek_iversion_raw(inode);
2007 if (!force && !(cur & I_VERSION_QUERIED)) {
2009 cur = inode_peek_iversion_raw(inode);
2013 /* If flag is clear then we needn't do anything */
2014 if (!force && !(cur & I_VERSION_QUERIED))
2017 /* Since lowest bit is flag, add 2 to avoid it */
2018 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
2019 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2022 EXPORT_SYMBOL(inode_maybe_inc_iversion);
2025 * inode_query_iversion - read i_version for later use
2026 * @inode: inode from which i_version should be read
2028 * Read the inode i_version counter. This should be used by callers that wish
2029 * to store the returned i_version for later comparison. This will guarantee
2030 * that a later query of the i_version will result in a different value if
2031 * anything has changed.
2033 * In this implementation, we fetch the current value, set the QUERIED flag and
2034 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
2035 * that fails, we try again with the newly fetched value from the cmpxchg.
2037 u64 inode_query_iversion(struct inode *inode)
2040 bool fenced = false;
2043 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with
2044 * inode_maybe_inc_iversion(), see that routine for more details.
2046 cur = inode_peek_iversion_raw(inode);
2048 /* If flag is already set, then no need to swap */
2049 if (cur & I_VERSION_QUERIED) {
2056 new = cur | I_VERSION_QUERIED;
2057 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2058 return cur >> I_VERSION_QUERIED_SHIFT;
2060 EXPORT_SYMBOL(inode_query_iversion);
2062 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
2063 ssize_t direct_written, ssize_t buffered_written)
2065 struct address_space *mapping = iocb->ki_filp->f_mapping;
2066 loff_t pos = iocb->ki_pos - buffered_written;
2067 loff_t end = iocb->ki_pos - 1;
2071 * If the buffered write fallback returned an error, we want to return
2072 * the number of bytes which were written by direct I/O, or the error
2073 * code if that was zero.
2075 * Note that this differs from normal direct-io semantics, which will
2076 * return -EFOO even if some bytes were written.
2078 if (unlikely(buffered_written < 0)) {
2080 return direct_written;
2081 return buffered_written;
2085 * We need to ensure that the page cache pages are written to disk and
2086 * invalidated to preserve the expected O_DIRECT semantics.
2088 err = filemap_write_and_wait_range(mapping, pos, end);
2091 * We don't know how much we wrote, so just return the number of
2092 * bytes which were direct-written
2094 iocb->ki_pos -= buffered_written;
2096 return direct_written;
2099 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2100 return direct_written + buffered_written;
2102 EXPORT_SYMBOL_GPL(direct_write_fallback);
2105 * simple_inode_init_ts - initialize the timestamps for a new inode
2106 * @inode: inode to be initialized
2108 * When a new inode is created, most filesystems set the timestamps to the
2109 * current time. Add a helper to do this.
2111 struct timespec64 simple_inode_init_ts(struct inode *inode)
2113 struct timespec64 ts = inode_set_ctime_current(inode);
2115 inode_set_atime_to_ts(inode, ts);
2116 inode_set_mtime_to_ts(inode, ts);
2119 EXPORT_SYMBOL(simple_inode_init_ts);
2121 struct dentry *stashed_dentry_get(struct dentry **stashed)
2123 struct dentry *dentry;
2126 dentry = rcu_dereference(*stashed);
2129 if (!lockref_get_not_dead(&dentry->d_lockref))
2134 static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2135 struct super_block *sb,
2138 struct dentry *dentry;
2139 struct inode *inode;
2140 const struct stashed_operations *sops = sb->s_fs_info;
2143 inode = new_inode_pseudo(sb);
2145 sops->put_data(data);
2146 return ERR_PTR(-ENOMEM);
2149 inode->i_flags |= S_IMMUTABLE;
2150 inode->i_mode = S_IFREG;
2151 simple_inode_init_ts(inode);
2153 ret = sops->init_inode(inode, data);
2156 return ERR_PTR(ret);
2159 /* Notice when this is changed. */
2160 WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2161 WARN_ON_ONCE(!IS_IMMUTABLE(inode));
2163 dentry = d_alloc_anon(sb);
2166 return ERR_PTR(-ENOMEM);
2169 /* Store address of location where dentry's supposed to be stashed. */
2170 dentry->d_fsdata = stashed;
2172 /* @data is now owned by the fs */
2173 d_instantiate(dentry, inode);
2177 static struct dentry *stash_dentry(struct dentry **stashed,
2178 struct dentry *dentry)
2184 /* Assume any old dentry was cleared out. */
2185 old = cmpxchg(stashed, NULL, dentry);
2189 /* Check if somebody else installed a reusable dentry. */
2190 if (lockref_get_not_dead(&old->d_lockref))
2193 /* There's an old dead dentry there, try to take it over. */
2194 if (likely(try_cmpxchg(stashed, &old, dentry)))
2200 * path_from_stashed - create path from stashed or new dentry
2201 * @stashed: where to retrieve or stash dentry
2202 * @mnt: mnt of the filesystems to use
2203 * @data: data to store in inode->i_private
2204 * @path: path to create
2206 * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2207 * is still valid then it will be reused. If the dentry isn't able the function
2208 * will allocate a new dentry and inode. It will then check again whether it
2209 * can reuse an existing dentry in case one has been added in the meantime or
2210 * update @stashed with the newly added dentry.
2212 * Special-purpose helper for nsfs and pidfs.
2214 * Return: On success zero and on failure a negative error is returned.
2216 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2219 struct dentry *dentry;
2220 const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2222 /* See if dentry can be reused. */
2223 path->dentry = stashed_dentry_get(stashed);
2225 sops->put_data(data);
2229 /* Allocate a new dentry. */
2230 dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2232 return PTR_ERR(dentry);
2234 /* Added a new dentry. @data is now owned by the filesystem. */
2235 path->dentry = stash_dentry(stashed, dentry);
2236 if (path->dentry != dentry)
2240 WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2241 WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2242 path->mnt = mntget(mnt);
2246 void stashed_dentry_prune(struct dentry *dentry)
2248 struct dentry **stashed = dentry->d_fsdata;
2249 struct inode *inode = d_inode(dentry);
2251 if (WARN_ON_ONCE(!stashed))
2258 * Only replace our own @dentry as someone else might've
2259 * already cleared out @dentry and stashed their own
2262 cmpxchg(stashed, dentry, NULL);