1 // SPDX-License-Identifier: GPL-2.0-only
4 * Library for filesystems writers.
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
27 #include <linux/uaccess.h>
31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
32 struct kstat *stat, u32 request_mask,
33 unsigned int query_flags)
35 struct inode *inode = d_inode(path->dentry);
36 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
37 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
40 EXPORT_SYMBOL(simple_getattr);
42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
44 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
46 buf->f_fsid = u64_to_fsid(id);
47 buf->f_type = dentry->d_sb->s_magic;
48 buf->f_bsize = PAGE_SIZE;
49 buf->f_namelen = NAME_MAX;
52 EXPORT_SYMBOL(simple_statfs);
55 * Retaining negative dentries for an in-memory filesystem just wastes
56 * memory and lookup time: arrange for them to be deleted immediately.
58 int always_delete_dentry(const struct dentry *dentry)
62 EXPORT_SYMBOL(always_delete_dentry);
64 const struct dentry_operations simple_dentry_operations = {
65 .d_delete = always_delete_dentry,
67 EXPORT_SYMBOL(simple_dentry_operations);
70 * Lookup the data. This is trivial - if the dentry didn't already
71 * exist, we know it is negative. Set d_op to delete negative dentries.
73 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
75 if (dentry->d_name.len > NAME_MAX)
76 return ERR_PTR(-ENAMETOOLONG);
77 if (!dentry->d_sb->s_d_op)
78 d_set_d_op(dentry, &simple_dentry_operations);
82 EXPORT_SYMBOL(simple_lookup);
84 int dcache_dir_open(struct inode *inode, struct file *file)
86 file->private_data = d_alloc_cursor(file->f_path.dentry);
88 return file->private_data ? 0 : -ENOMEM;
90 EXPORT_SYMBOL(dcache_dir_open);
92 int dcache_dir_close(struct inode *inode, struct file *file)
94 dput(file->private_data);
97 EXPORT_SYMBOL(dcache_dir_close);
99 /* parent is locked at least shared */
101 * Returns an element of siblings' list.
102 * We are looking for <count>th positive after <p>; if
103 * found, dentry is grabbed and returned to caller.
104 * If no such element exists, NULL is returned.
106 static struct dentry *scan_positives(struct dentry *cursor,
111 struct dentry *dentry = cursor->d_parent, *found = NULL;
113 spin_lock(&dentry->d_lock);
114 while ((p = p->next) != &dentry->d_subdirs) {
115 struct dentry *d = list_entry(p, struct dentry, d_child);
116 // we must at least skip cursors, to avoid livelocks
117 if (d->d_flags & DCACHE_DENTRY_CURSOR)
119 if (simple_positive(d) && !--count) {
120 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
121 if (simple_positive(d))
122 found = dget_dlock(d);
123 spin_unlock(&d->d_lock);
128 if (need_resched()) {
129 list_move(&cursor->d_child, p);
130 p = &cursor->d_child;
131 spin_unlock(&dentry->d_lock);
133 spin_lock(&dentry->d_lock);
136 spin_unlock(&dentry->d_lock);
141 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
143 struct dentry *dentry = file->f_path.dentry;
146 offset += file->f_pos;
155 if (offset != file->f_pos) {
156 struct dentry *cursor = file->private_data;
157 struct dentry *to = NULL;
159 inode_lock_shared(dentry->d_inode);
162 to = scan_positives(cursor, &dentry->d_subdirs,
164 spin_lock(&dentry->d_lock);
166 list_move(&cursor->d_child, &to->d_child);
168 list_del_init(&cursor->d_child);
169 spin_unlock(&dentry->d_lock);
172 file->f_pos = offset;
174 inode_unlock_shared(dentry->d_inode);
178 EXPORT_SYMBOL(dcache_dir_lseek);
181 * Directory is locked and all positive dentries in it are safe, since
182 * for ramfs-type trees they can't go away without unlink() or rmdir(),
183 * both impossible due to the lock on directory.
186 int dcache_readdir(struct file *file, struct dir_context *ctx)
188 struct dentry *dentry = file->f_path.dentry;
189 struct dentry *cursor = file->private_data;
190 struct list_head *anchor = &dentry->d_subdirs;
191 struct dentry *next = NULL;
194 if (!dir_emit_dots(file, ctx))
199 else if (!list_empty(&cursor->d_child))
200 p = &cursor->d_child;
204 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
205 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
206 d_inode(next)->i_ino,
207 fs_umode_to_dtype(d_inode(next)->i_mode)))
212 spin_lock(&dentry->d_lock);
214 list_move_tail(&cursor->d_child, &next->d_child);
216 list_del_init(&cursor->d_child);
217 spin_unlock(&dentry->d_lock);
222 EXPORT_SYMBOL(dcache_readdir);
224 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
228 EXPORT_SYMBOL(generic_read_dir);
230 const struct file_operations simple_dir_operations = {
231 .open = dcache_dir_open,
232 .release = dcache_dir_close,
233 .llseek = dcache_dir_lseek,
234 .read = generic_read_dir,
235 .iterate_shared = dcache_readdir,
238 EXPORT_SYMBOL(simple_dir_operations);
240 const struct inode_operations simple_dir_inode_operations = {
241 .lookup = simple_lookup,
243 EXPORT_SYMBOL(simple_dir_inode_operations);
245 static void offset_set(struct dentry *dentry, u32 offset)
247 dentry->d_fsdata = (void *)((uintptr_t)(offset));
250 static u32 dentry2offset(struct dentry *dentry)
252 return (u32)((uintptr_t)(dentry->d_fsdata));
255 static struct lock_class_key simple_offset_xa_lock;
258 * simple_offset_init - initialize an offset_ctx
259 * @octx: directory offset map to be initialized
262 void simple_offset_init(struct offset_ctx *octx)
264 xa_init_flags(&octx->xa, XA_FLAGS_ALLOC1);
265 lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock);
267 /* 0 is '.', 1 is '..', so always start with offset 2 */
268 octx->next_offset = 2;
272 * simple_offset_add - Add an entry to a directory's offset map
273 * @octx: directory offset ctx to be updated
274 * @dentry: new dentry being added
276 * Returns zero on success. @so_ctx and the dentry offset are updated.
277 * Otherwise, a negative errno value is returned.
279 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
281 static const struct xa_limit limit = XA_LIMIT(2, U32_MAX);
285 if (dentry2offset(dentry) != 0)
288 ret = xa_alloc_cyclic(&octx->xa, &offset, dentry, limit,
289 &octx->next_offset, GFP_KERNEL);
293 offset_set(dentry, offset);
298 * simple_offset_remove - Remove an entry to a directory's offset map
299 * @octx: directory offset ctx to be updated
300 * @dentry: dentry being removed
303 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
307 offset = dentry2offset(dentry);
311 xa_erase(&octx->xa, offset);
312 offset_set(dentry, 0);
316 * simple_offset_rename_exchange - exchange rename with directory offsets
317 * @old_dir: parent of dentry being moved
318 * @old_dentry: dentry being moved
319 * @new_dir: destination parent
320 * @new_dentry: destination dentry
322 * Returns zero on success. Otherwise a negative errno is returned and the
323 * rename is rolled back.
325 int simple_offset_rename_exchange(struct inode *old_dir,
326 struct dentry *old_dentry,
327 struct inode *new_dir,
328 struct dentry *new_dentry)
330 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
331 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
332 u32 old_index = dentry2offset(old_dentry);
333 u32 new_index = dentry2offset(new_dentry);
336 simple_offset_remove(old_ctx, old_dentry);
337 simple_offset_remove(new_ctx, new_dentry);
339 ret = simple_offset_add(new_ctx, old_dentry);
343 ret = simple_offset_add(old_ctx, new_dentry);
345 simple_offset_remove(new_ctx, old_dentry);
349 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
351 simple_offset_remove(new_ctx, old_dentry);
352 simple_offset_remove(old_ctx, new_dentry);
358 offset_set(old_dentry, old_index);
359 xa_store(&old_ctx->xa, old_index, old_dentry, GFP_KERNEL);
360 offset_set(new_dentry, new_index);
361 xa_store(&new_ctx->xa, new_index, new_dentry, GFP_KERNEL);
366 * simple_offset_destroy - Release offset map
367 * @octx: directory offset ctx that is about to be destroyed
369 * During fs teardown (eg. umount), a directory's offset map might still
370 * contain entries. xa_destroy() cleans out anything that remains.
372 void simple_offset_destroy(struct offset_ctx *octx)
374 xa_destroy(&octx->xa);
378 * offset_dir_llseek - Advance the read position of a directory descriptor
379 * @file: an open directory whose position is to be updated
380 * @offset: a byte offset
381 * @whence: enumerator describing the starting position for this update
383 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
385 * Returns the updated read position if successful; otherwise a
386 * negative errno is returned and the read position remains unchanged.
388 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
392 offset += file->f_pos;
402 return vfs_setpos(file, offset, U32_MAX);
405 static struct dentry *offset_find_next(struct xa_state *xas)
407 struct dentry *child, *found = NULL;
410 child = xas_next_entry(xas, U32_MAX);
413 spin_lock(&child->d_lock);
414 if (simple_positive(child))
415 found = dget_dlock(child);
416 spin_unlock(&child->d_lock);
422 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
424 u32 offset = dentry2offset(dentry);
425 struct inode *inode = d_inode(dentry);
427 return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
428 inode->i_ino, fs_umode_to_dtype(inode->i_mode));
431 static void offset_iterate_dir(struct inode *inode, struct dir_context *ctx)
433 struct offset_ctx *so_ctx = inode->i_op->get_offset_ctx(inode);
434 XA_STATE(xas, &so_ctx->xa, ctx->pos);
435 struct dentry *dentry;
438 dentry = offset_find_next(&xas);
442 if (!offset_dir_emit(ctx, dentry)) {
448 ctx->pos = xas.xa_index + 1;
453 * offset_readdir - Emit entries starting at offset @ctx->pos
454 * @file: an open directory to iterate over
455 * @ctx: directory iteration context
457 * Caller must hold @file's i_rwsem to prevent insertion or removal of
458 * entries during this call.
460 * On entry, @ctx->pos contains an offset that represents the first entry
461 * to be read from the directory.
463 * The operation continues until there are no more entries to read, or
464 * until the ctx->actor indicates there is no more space in the caller's
467 * On return, @ctx->pos contains an offset that will read the next entry
468 * in this directory when offset_readdir() is called again with @ctx.
473 static int offset_readdir(struct file *file, struct dir_context *ctx)
475 struct dentry *dir = file->f_path.dentry;
477 lockdep_assert_held(&d_inode(dir)->i_rwsem);
479 if (!dir_emit_dots(file, ctx))
482 offset_iterate_dir(d_inode(dir), ctx);
486 const struct file_operations simple_offset_dir_operations = {
487 .llseek = offset_dir_llseek,
488 .iterate_shared = offset_readdir,
489 .read = generic_read_dir,
493 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
495 struct dentry *child = NULL;
496 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
498 spin_lock(&parent->d_lock);
499 while ((p = p->next) != &parent->d_subdirs) {
500 struct dentry *d = container_of(p, struct dentry, d_child);
501 if (simple_positive(d)) {
502 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
503 if (simple_positive(d))
504 child = dget_dlock(d);
505 spin_unlock(&d->d_lock);
510 spin_unlock(&parent->d_lock);
515 void simple_recursive_removal(struct dentry *dentry,
516 void (*callback)(struct dentry *))
518 struct dentry *this = dget(dentry);
520 struct dentry *victim = NULL, *child;
521 struct inode *inode = this->d_inode;
525 inode->i_flags |= S_DEAD;
526 while ((child = find_next_child(this, victim)) == NULL) {
528 // update metadata while it's still locked
529 inode_set_ctime_current(inode);
533 this = this->d_parent;
534 inode = this->d_inode;
536 if (simple_positive(victim)) {
537 d_invalidate(victim); // avoid lost mounts
538 if (d_is_dir(victim))
539 fsnotify_rmdir(inode, victim);
541 fsnotify_unlink(inode, victim);
544 dput(victim); // unpin it
546 if (victim == dentry) {
547 inode_set_mtime_to_ts(inode,
548 inode_set_ctime_current(inode));
549 if (d_is_dir(dentry))
560 EXPORT_SYMBOL(simple_recursive_removal);
562 static const struct super_operations simple_super_operations = {
563 .statfs = simple_statfs,
566 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
568 struct pseudo_fs_context *ctx = fc->fs_private;
571 s->s_maxbytes = MAX_LFS_FILESIZE;
572 s->s_blocksize = PAGE_SIZE;
573 s->s_blocksize_bits = PAGE_SHIFT;
574 s->s_magic = ctx->magic;
575 s->s_op = ctx->ops ?: &simple_super_operations;
576 s->s_xattr = ctx->xattr;
583 * since this is the first inode, make it number 1. New inodes created
584 * after this must take care not to collide with it (by passing
585 * max_reserved of 1 to iunique).
588 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
589 simple_inode_init_ts(root);
590 s->s_root = d_make_root(root);
593 s->s_d_op = ctx->dops;
597 static int pseudo_fs_get_tree(struct fs_context *fc)
599 return get_tree_nodev(fc, pseudo_fs_fill_super);
602 static void pseudo_fs_free(struct fs_context *fc)
604 kfree(fc->fs_private);
607 static const struct fs_context_operations pseudo_fs_context_ops = {
608 .free = pseudo_fs_free,
609 .get_tree = pseudo_fs_get_tree,
613 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
614 * will never be mountable)
616 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
619 struct pseudo_fs_context *ctx;
621 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
624 fc->fs_private = ctx;
625 fc->ops = &pseudo_fs_context_ops;
626 fc->sb_flags |= SB_NOUSER;
631 EXPORT_SYMBOL(init_pseudo);
633 int simple_open(struct inode *inode, struct file *file)
635 if (inode->i_private)
636 file->private_data = inode->i_private;
639 EXPORT_SYMBOL(simple_open);
641 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
643 struct inode *inode = d_inode(old_dentry);
645 inode_set_mtime_to_ts(dir,
646 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
650 d_instantiate(dentry, inode);
653 EXPORT_SYMBOL(simple_link);
655 int simple_empty(struct dentry *dentry)
657 struct dentry *child;
660 spin_lock(&dentry->d_lock);
661 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
662 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
663 if (simple_positive(child)) {
664 spin_unlock(&child->d_lock);
667 spin_unlock(&child->d_lock);
671 spin_unlock(&dentry->d_lock);
674 EXPORT_SYMBOL(simple_empty);
676 int simple_unlink(struct inode *dir, struct dentry *dentry)
678 struct inode *inode = d_inode(dentry);
680 inode_set_mtime_to_ts(dir,
681 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
686 EXPORT_SYMBOL(simple_unlink);
688 int simple_rmdir(struct inode *dir, struct dentry *dentry)
690 if (!simple_empty(dentry))
693 drop_nlink(d_inode(dentry));
694 simple_unlink(dir, dentry);
698 EXPORT_SYMBOL(simple_rmdir);
701 * simple_rename_timestamp - update the various inode timestamps for rename
702 * @old_dir: old parent directory
703 * @old_dentry: dentry that is being renamed
704 * @new_dir: new parent directory
705 * @new_dentry: target for rename
707 * POSIX mandates that the old and new parent directories have their ctime and
708 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
709 * their ctime updated.
711 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
712 struct inode *new_dir, struct dentry *new_dentry)
714 struct inode *newino = d_inode(new_dentry);
716 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
717 if (new_dir != old_dir)
718 inode_set_mtime_to_ts(new_dir,
719 inode_set_ctime_current(new_dir));
720 inode_set_ctime_current(d_inode(old_dentry));
722 inode_set_ctime_current(newino);
724 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
726 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
727 struct inode *new_dir, struct dentry *new_dentry)
729 bool old_is_dir = d_is_dir(old_dentry);
730 bool new_is_dir = d_is_dir(new_dentry);
732 if (old_dir != new_dir && old_is_dir != new_is_dir) {
741 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
744 EXPORT_SYMBOL_GPL(simple_rename_exchange);
746 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
747 struct dentry *old_dentry, struct inode *new_dir,
748 struct dentry *new_dentry, unsigned int flags)
750 int they_are_dirs = d_is_dir(old_dentry);
752 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
755 if (flags & RENAME_EXCHANGE)
756 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
758 if (!simple_empty(new_dentry))
761 if (d_really_is_positive(new_dentry)) {
762 simple_unlink(new_dir, new_dentry);
764 drop_nlink(d_inode(new_dentry));
767 } else if (they_are_dirs) {
772 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
775 EXPORT_SYMBOL(simple_rename);
778 * simple_setattr - setattr for simple filesystem
779 * @idmap: idmap of the target mount
781 * @iattr: iattr structure
783 * Returns 0 on success, -error on failure.
785 * simple_setattr is a simple ->setattr implementation without a proper
786 * implementation of size changes.
788 * It can either be used for in-memory filesystems or special files
789 * on simple regular filesystems. Anything that needs to change on-disk
790 * or wire state on size changes needs its own setattr method.
792 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
795 struct inode *inode = d_inode(dentry);
798 error = setattr_prepare(idmap, dentry, iattr);
802 if (iattr->ia_valid & ATTR_SIZE)
803 truncate_setsize(inode, iattr->ia_size);
804 setattr_copy(idmap, inode, iattr);
805 mark_inode_dirty(inode);
808 EXPORT_SYMBOL(simple_setattr);
810 static int simple_read_folio(struct file *file, struct folio *folio)
812 folio_zero_range(folio, 0, folio_size(folio));
813 flush_dcache_folio(folio);
814 folio_mark_uptodate(folio);
819 int simple_write_begin(struct file *file, struct address_space *mapping,
820 loff_t pos, unsigned len,
821 struct page **pagep, void **fsdata)
825 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
826 mapping_gfp_mask(mapping));
828 return PTR_ERR(folio);
830 *pagep = &folio->page;
832 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
833 size_t from = offset_in_folio(folio, pos);
835 folio_zero_segments(folio, 0, from,
836 from + len, folio_size(folio));
840 EXPORT_SYMBOL(simple_write_begin);
843 * simple_write_end - .write_end helper for non-block-device FSes
844 * @file: See .write_end of address_space_operations
852 * simple_write_end does the minimum needed for updating a page after writing is
853 * done. It has the same API signature as the .write_end of
854 * address_space_operations vector. So it can just be set onto .write_end for
855 * FSes that don't need any other processing. i_mutex is assumed to be held.
856 * Block based filesystems should use generic_write_end().
857 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
858 * is not called, so a filesystem that actually does store data in .write_inode
859 * should extend on what's done here with a call to mark_inode_dirty() in the
860 * case that i_size has changed.
862 * Use *ONLY* with simple_read_folio()
864 static int simple_write_end(struct file *file, struct address_space *mapping,
865 loff_t pos, unsigned len, unsigned copied,
866 struct page *page, void *fsdata)
868 struct folio *folio = page_folio(page);
869 struct inode *inode = folio->mapping->host;
870 loff_t last_pos = pos + copied;
872 /* zero the stale part of the folio if we did a short copy */
873 if (!folio_test_uptodate(folio)) {
875 size_t from = offset_in_folio(folio, pos);
877 folio_zero_range(folio, from + copied, len - copied);
879 folio_mark_uptodate(folio);
882 * No need to use i_size_read() here, the i_size
883 * cannot change under us because we hold the i_mutex.
885 if (last_pos > inode->i_size)
886 i_size_write(inode, last_pos);
888 folio_mark_dirty(folio);
896 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
898 const struct address_space_operations ram_aops = {
899 .read_folio = simple_read_folio,
900 .write_begin = simple_write_begin,
901 .write_end = simple_write_end,
902 .dirty_folio = noop_dirty_folio,
904 EXPORT_SYMBOL(ram_aops);
907 * the inodes created here are not hashed. If you use iunique to generate
908 * unique inode values later for this filesystem, then you must take care
909 * to pass it an appropriate max_reserved value to avoid collisions.
911 int simple_fill_super(struct super_block *s, unsigned long magic,
912 const struct tree_descr *files)
916 struct dentry *dentry;
919 s->s_blocksize = PAGE_SIZE;
920 s->s_blocksize_bits = PAGE_SHIFT;
922 s->s_op = &simple_super_operations;
925 inode = new_inode(s);
929 * because the root inode is 1, the files array must not contain an
933 inode->i_mode = S_IFDIR | 0755;
934 simple_inode_init_ts(inode);
935 inode->i_op = &simple_dir_inode_operations;
936 inode->i_fop = &simple_dir_operations;
938 root = d_make_root(inode);
941 for (i = 0; !files->name || files->name[0]; i++, files++) {
945 /* warn if it tries to conflict with the root inode */
946 if (unlikely(i == 1))
947 printk(KERN_WARNING "%s: %s passed in a files array"
948 "with an index of 1!\n", __func__,
951 dentry = d_alloc_name(root, files->name);
954 inode = new_inode(s);
959 inode->i_mode = S_IFREG | files->mode;
960 simple_inode_init_ts(inode);
961 inode->i_fop = files->ops;
963 d_add(dentry, inode);
969 shrink_dcache_parent(root);
973 EXPORT_SYMBOL(simple_fill_super);
975 static DEFINE_SPINLOCK(pin_fs_lock);
977 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
979 struct vfsmount *mnt = NULL;
980 spin_lock(&pin_fs_lock);
981 if (unlikely(!*mount)) {
982 spin_unlock(&pin_fs_lock);
983 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
986 spin_lock(&pin_fs_lock);
992 spin_unlock(&pin_fs_lock);
996 EXPORT_SYMBOL(simple_pin_fs);
998 void simple_release_fs(struct vfsmount **mount, int *count)
1000 struct vfsmount *mnt;
1001 spin_lock(&pin_fs_lock);
1005 spin_unlock(&pin_fs_lock);
1008 EXPORT_SYMBOL(simple_release_fs);
1011 * simple_read_from_buffer - copy data from the buffer to user space
1012 * @to: the user space buffer to read to
1013 * @count: the maximum number of bytes to read
1014 * @ppos: the current position in the buffer
1015 * @from: the buffer to read from
1016 * @available: the size of the buffer
1018 * The simple_read_from_buffer() function reads up to @count bytes from the
1019 * buffer @from at offset @ppos into the user space address starting at @to.
1021 * On success, the number of bytes read is returned and the offset @ppos is
1022 * advanced by this number, or negative value is returned on error.
1024 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1025 const void *from, size_t available)
1032 if (pos >= available || !count)
1034 if (count > available - pos)
1035 count = available - pos;
1036 ret = copy_to_user(to, from + pos, count);
1040 *ppos = pos + count;
1043 EXPORT_SYMBOL(simple_read_from_buffer);
1046 * simple_write_to_buffer - copy data from user space to the buffer
1047 * @to: the buffer to write to
1048 * @available: the size of the buffer
1049 * @ppos: the current position in the buffer
1050 * @from: the user space buffer to read from
1051 * @count: the maximum number of bytes to read
1053 * The simple_write_to_buffer() function reads up to @count bytes from the user
1054 * space address starting at @from into the buffer @to at offset @ppos.
1056 * On success, the number of bytes written is returned and the offset @ppos is
1057 * advanced by this number, or negative value is returned on error.
1059 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1060 const void __user *from, size_t count)
1067 if (pos >= available || !count)
1069 if (count > available - pos)
1070 count = available - pos;
1071 res = copy_from_user(to + pos, from, count);
1075 *ppos = pos + count;
1078 EXPORT_SYMBOL(simple_write_to_buffer);
1081 * memory_read_from_buffer - copy data from the buffer
1082 * @to: the kernel space buffer to read to
1083 * @count: the maximum number of bytes to read
1084 * @ppos: the current position in the buffer
1085 * @from: the buffer to read from
1086 * @available: the size of the buffer
1088 * The memory_read_from_buffer() function reads up to @count bytes from the
1089 * buffer @from at offset @ppos into the kernel space address starting at @to.
1091 * On success, the number of bytes read is returned and the offset @ppos is
1092 * advanced by this number, or negative value is returned on error.
1094 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1095 const void *from, size_t available)
1101 if (pos >= available)
1103 if (count > available - pos)
1104 count = available - pos;
1105 memcpy(to, from + pos, count);
1106 *ppos = pos + count;
1110 EXPORT_SYMBOL(memory_read_from_buffer);
1113 * Transaction based IO.
1114 * The file expects a single write which triggers the transaction, and then
1115 * possibly a read which collects the result - which is stored in a
1116 * file-local buffer.
1119 void simple_transaction_set(struct file *file, size_t n)
1121 struct simple_transaction_argresp *ar = file->private_data;
1123 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1126 * The barrier ensures that ar->size will really remain zero until
1127 * ar->data is ready for reading.
1132 EXPORT_SYMBOL(simple_transaction_set);
1134 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1136 struct simple_transaction_argresp *ar;
1137 static DEFINE_SPINLOCK(simple_transaction_lock);
1139 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1140 return ERR_PTR(-EFBIG);
1142 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1144 return ERR_PTR(-ENOMEM);
1146 spin_lock(&simple_transaction_lock);
1148 /* only one write allowed per open */
1149 if (file->private_data) {
1150 spin_unlock(&simple_transaction_lock);
1151 free_page((unsigned long)ar);
1152 return ERR_PTR(-EBUSY);
1155 file->private_data = ar;
1157 spin_unlock(&simple_transaction_lock);
1159 if (copy_from_user(ar->data, buf, size))
1160 return ERR_PTR(-EFAULT);
1164 EXPORT_SYMBOL(simple_transaction_get);
1166 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1168 struct simple_transaction_argresp *ar = file->private_data;
1172 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1174 EXPORT_SYMBOL(simple_transaction_read);
1176 int simple_transaction_release(struct inode *inode, struct file *file)
1178 free_page((unsigned long)file->private_data);
1181 EXPORT_SYMBOL(simple_transaction_release);
1183 /* Simple attribute files */
1185 struct simple_attr {
1186 int (*get)(void *, u64 *);
1187 int (*set)(void *, u64);
1188 char get_buf[24]; /* enough to store a u64 and "\n\0" */
1191 const char *fmt; /* format for read operation */
1192 struct mutex mutex; /* protects access to these buffers */
1195 /* simple_attr_open is called by an actual attribute open file operation
1196 * to set the attribute specific access operations. */
1197 int simple_attr_open(struct inode *inode, struct file *file,
1198 int (*get)(void *, u64 *), int (*set)(void *, u64),
1201 struct simple_attr *attr;
1203 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1209 attr->data = inode->i_private;
1211 mutex_init(&attr->mutex);
1213 file->private_data = attr;
1215 return nonseekable_open(inode, file);
1217 EXPORT_SYMBOL_GPL(simple_attr_open);
1219 int simple_attr_release(struct inode *inode, struct file *file)
1221 kfree(file->private_data);
1224 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
1226 /* read from the buffer that is filled with the get function */
1227 ssize_t simple_attr_read(struct file *file, char __user *buf,
1228 size_t len, loff_t *ppos)
1230 struct simple_attr *attr;
1234 attr = file->private_data;
1239 ret = mutex_lock_interruptible(&attr->mutex);
1243 if (*ppos && attr->get_buf[0]) {
1244 /* continued read */
1245 size = strlen(attr->get_buf);
1249 ret = attr->get(attr->data, &val);
1253 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1254 attr->fmt, (unsigned long long)val);
1257 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1259 mutex_unlock(&attr->mutex);
1262 EXPORT_SYMBOL_GPL(simple_attr_read);
1264 /* interpret the buffer as a number to call the set function with */
1265 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1266 size_t len, loff_t *ppos, bool is_signed)
1268 struct simple_attr *attr;
1269 unsigned long long val;
1273 attr = file->private_data;
1277 ret = mutex_lock_interruptible(&attr->mutex);
1282 size = min(sizeof(attr->set_buf) - 1, len);
1283 if (copy_from_user(attr->set_buf, buf, size))
1286 attr->set_buf[size] = '\0';
1288 ret = kstrtoll(attr->set_buf, 0, &val);
1290 ret = kstrtoull(attr->set_buf, 0, &val);
1293 ret = attr->set(attr->data, val);
1295 ret = len; /* on success, claim we got the whole input */
1297 mutex_unlock(&attr->mutex);
1301 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1302 size_t len, loff_t *ppos)
1304 return simple_attr_write_xsigned(file, buf, len, ppos, false);
1306 EXPORT_SYMBOL_GPL(simple_attr_write);
1308 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1309 size_t len, loff_t *ppos)
1311 return simple_attr_write_xsigned(file, buf, len, ppos, true);
1313 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1316 * generic_encode_ino32_fh - generic export_operations->encode_fh function
1317 * @inode: the object to encode
1318 * @fh: where to store the file handle fragment
1319 * @max_len: maximum length to store there (in 4 byte units)
1320 * @parent: parent directory inode, if wanted
1322 * This generic encode_fh function assumes that the 32 inode number
1323 * is suitable for locating an inode, and that the generation number
1324 * can be used to check that it is still valid. It places them in the
1325 * filehandle fragment where export_decode_fh expects to find them.
1327 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1328 struct inode *parent)
1330 struct fid *fid = (void *)fh;
1332 int type = FILEID_INO32_GEN;
1334 if (parent && (len < 4)) {
1336 return FILEID_INVALID;
1337 } else if (len < 2) {
1339 return FILEID_INVALID;
1343 fid->i32.ino = inode->i_ino;
1344 fid->i32.gen = inode->i_generation;
1346 fid->i32.parent_ino = parent->i_ino;
1347 fid->i32.parent_gen = parent->i_generation;
1349 type = FILEID_INO32_GEN_PARENT;
1354 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1357 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1358 * @sb: filesystem to do the file handle conversion on
1359 * @fid: file handle to convert
1360 * @fh_len: length of the file handle in bytes
1361 * @fh_type: type of file handle
1362 * @get_inode: filesystem callback to retrieve inode
1364 * This function decodes @fid as long as it has one of the well-known
1365 * Linux filehandle types and calls @get_inode on it to retrieve the
1366 * inode for the object specified in the file handle.
1368 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1369 int fh_len, int fh_type, struct inode *(*get_inode)
1370 (struct super_block *sb, u64 ino, u32 gen))
1372 struct inode *inode = NULL;
1378 case FILEID_INO32_GEN:
1379 case FILEID_INO32_GEN_PARENT:
1380 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1384 return d_obtain_alias(inode);
1386 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1389 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1390 * @sb: filesystem to do the file handle conversion on
1391 * @fid: file handle to convert
1392 * @fh_len: length of the file handle in bytes
1393 * @fh_type: type of file handle
1394 * @get_inode: filesystem callback to retrieve inode
1396 * This function decodes @fid as long as it has one of the well-known
1397 * Linux filehandle types and calls @get_inode on it to retrieve the
1398 * inode for the _parent_ object specified in the file handle if it
1399 * is specified in the file handle, or NULL otherwise.
1401 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1402 int fh_len, int fh_type, struct inode *(*get_inode)
1403 (struct super_block *sb, u64 ino, u32 gen))
1405 struct inode *inode = NULL;
1411 case FILEID_INO32_GEN_PARENT:
1412 inode = get_inode(sb, fid->i32.parent_ino,
1413 (fh_len > 3 ? fid->i32.parent_gen : 0));
1417 return d_obtain_alias(inode);
1419 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1422 * __generic_file_fsync - generic fsync implementation for simple filesystems
1424 * @file: file to synchronize
1425 * @start: start offset in bytes
1426 * @end: end offset in bytes (inclusive)
1427 * @datasync: only synchronize essential metadata if true
1429 * This is a generic implementation of the fsync method for simple
1430 * filesystems which track all non-inode metadata in the buffers list
1431 * hanging off the address_space structure.
1433 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1436 struct inode *inode = file->f_mapping->host;
1440 err = file_write_and_wait_range(file, start, end);
1445 ret = sync_mapping_buffers(inode->i_mapping);
1446 if (!(inode->i_state & I_DIRTY_ALL))
1448 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1451 err = sync_inode_metadata(inode, 1);
1456 inode_unlock(inode);
1457 /* check and advance again to catch errors after syncing out buffers */
1458 err = file_check_and_advance_wb_err(file);
1463 EXPORT_SYMBOL(__generic_file_fsync);
1466 * generic_file_fsync - generic fsync implementation for simple filesystems
1468 * @file: file to synchronize
1469 * @start: start offset in bytes
1470 * @end: end offset in bytes (inclusive)
1471 * @datasync: only synchronize essential metadata if true
1475 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1478 struct inode *inode = file->f_mapping->host;
1481 err = __generic_file_fsync(file, start, end, datasync);
1484 return blkdev_issue_flush(inode->i_sb->s_bdev);
1486 EXPORT_SYMBOL(generic_file_fsync);
1489 * generic_check_addressable - Check addressability of file system
1490 * @blocksize_bits: log of file system block size
1491 * @num_blocks: number of blocks in file system
1493 * Determine whether a file system with @num_blocks blocks (and a
1494 * block size of 2**@blocksize_bits) is addressable by the sector_t
1495 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1497 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1499 u64 last_fs_block = num_blocks - 1;
1501 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1503 if (unlikely(num_blocks == 0))
1506 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1509 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1510 (last_fs_page > (pgoff_t)(~0ULL))) {
1515 EXPORT_SYMBOL(generic_check_addressable);
1518 * No-op implementation of ->fsync for in-memory filesystems.
1520 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1524 EXPORT_SYMBOL(noop_fsync);
1526 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1529 * iomap based filesystems support direct I/O without need for
1530 * this callback. However, it still needs to be set in
1531 * inode->a_ops so that open/fcntl know that direct I/O is
1532 * generally supported.
1536 EXPORT_SYMBOL_GPL(noop_direct_IO);
1538 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1539 void kfree_link(void *p)
1543 EXPORT_SYMBOL(kfree_link);
1545 struct inode *alloc_anon_inode(struct super_block *s)
1547 static const struct address_space_operations anon_aops = {
1548 .dirty_folio = noop_dirty_folio,
1550 struct inode *inode = new_inode_pseudo(s);
1553 return ERR_PTR(-ENOMEM);
1555 inode->i_ino = get_next_ino();
1556 inode->i_mapping->a_ops = &anon_aops;
1559 * Mark the inode dirty from the very beginning,
1560 * that way it will never be moved to the dirty
1561 * list because mark_inode_dirty() will think
1562 * that it already _is_ on the dirty list.
1564 inode->i_state = I_DIRTY;
1565 inode->i_mode = S_IRUSR | S_IWUSR;
1566 inode->i_uid = current_fsuid();
1567 inode->i_gid = current_fsgid();
1568 inode->i_flags |= S_PRIVATE;
1569 simple_inode_init_ts(inode);
1572 EXPORT_SYMBOL(alloc_anon_inode);
1575 * simple_nosetlease - generic helper for prohibiting leases
1576 * @filp: file pointer
1577 * @arg: type of lease to obtain
1578 * @flp: new lease supplied for insertion
1579 * @priv: private data for lm_setup operation
1581 * Generic helper for filesystems that do not wish to allow leases to be set.
1582 * All arguments are ignored and it just returns -EINVAL.
1585 simple_nosetlease(struct file *filp, int arg, struct file_lock **flp,
1590 EXPORT_SYMBOL(simple_nosetlease);
1593 * simple_get_link - generic helper to get the target of "fast" symlinks
1594 * @dentry: not used here
1595 * @inode: the symlink inode
1596 * @done: not used here
1598 * Generic helper for filesystems to use for symlink inodes where a pointer to
1599 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1600 * since as an optimization the path lookup code uses any non-NULL ->i_link
1601 * directly, without calling ->get_link(). But ->get_link() still must be set,
1602 * to mark the inode_operations as being for a symlink.
1604 * Return: the symlink target
1606 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1607 struct delayed_call *done)
1609 return inode->i_link;
1611 EXPORT_SYMBOL(simple_get_link);
1613 const struct inode_operations simple_symlink_inode_operations = {
1614 .get_link = simple_get_link,
1616 EXPORT_SYMBOL(simple_symlink_inode_operations);
1619 * Operations for a permanently empty directory.
1621 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1623 return ERR_PTR(-ENOENT);
1626 static int empty_dir_getattr(struct mnt_idmap *idmap,
1627 const struct path *path, struct kstat *stat,
1628 u32 request_mask, unsigned int query_flags)
1630 struct inode *inode = d_inode(path->dentry);
1631 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1635 static int empty_dir_setattr(struct mnt_idmap *idmap,
1636 struct dentry *dentry, struct iattr *attr)
1641 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1646 static const struct inode_operations empty_dir_inode_operations = {
1647 .lookup = empty_dir_lookup,
1648 .permission = generic_permission,
1649 .setattr = empty_dir_setattr,
1650 .getattr = empty_dir_getattr,
1651 .listxattr = empty_dir_listxattr,
1654 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1656 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1657 return generic_file_llseek_size(file, offset, whence, 2, 2);
1660 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1662 dir_emit_dots(file, ctx);
1666 static const struct file_operations empty_dir_operations = {
1667 .llseek = empty_dir_llseek,
1668 .read = generic_read_dir,
1669 .iterate_shared = empty_dir_readdir,
1670 .fsync = noop_fsync,
1674 void make_empty_dir_inode(struct inode *inode)
1676 set_nlink(inode, 2);
1677 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1678 inode->i_uid = GLOBAL_ROOT_UID;
1679 inode->i_gid = GLOBAL_ROOT_GID;
1682 inode->i_blkbits = PAGE_SHIFT;
1683 inode->i_blocks = 0;
1685 inode->i_op = &empty_dir_inode_operations;
1686 inode->i_opflags &= ~IOP_XATTR;
1687 inode->i_fop = &empty_dir_operations;
1690 bool is_empty_dir_inode(struct inode *inode)
1692 return (inode->i_fop == &empty_dir_operations) &&
1693 (inode->i_op == &empty_dir_inode_operations);
1696 #if IS_ENABLED(CONFIG_UNICODE)
1698 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1699 * @dentry: dentry whose name we are checking against
1700 * @len: len of name of dentry
1701 * @str: str pointer to name of dentry
1702 * @name: Name to compare against
1704 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1706 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1707 const char *str, const struct qstr *name)
1709 const struct dentry *parent = READ_ONCE(dentry->d_parent);
1710 const struct inode *dir = READ_ONCE(parent->d_inode);
1711 const struct super_block *sb = dentry->d_sb;
1712 const struct unicode_map *um = sb->s_encoding;
1713 struct qstr qstr = QSTR_INIT(str, len);
1714 char strbuf[DNAME_INLINE_LEN];
1717 if (!dir || !IS_CASEFOLDED(dir))
1720 * If the dentry name is stored in-line, then it may be concurrently
1721 * modified by a rename. If this happens, the VFS will eventually retry
1722 * the lookup, so it doesn't matter what ->d_compare() returns.
1723 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1724 * string. Therefore, we have to copy the name into a temporary buffer.
1726 if (len <= DNAME_INLINE_LEN - 1) {
1727 memcpy(strbuf, str, len);
1730 /* prevent compiler from optimizing out the temporary buffer */
1733 ret = utf8_strncasecmp(um, name, &qstr);
1737 if (sb_has_strict_encoding(sb))
1740 if (len != name->len)
1742 return !!memcmp(str, name->name, len);
1746 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1747 * @dentry: dentry of the parent directory
1748 * @str: qstr of name whose hash we should fill in
1750 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1752 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1754 const struct inode *dir = READ_ONCE(dentry->d_inode);
1755 struct super_block *sb = dentry->d_sb;
1756 const struct unicode_map *um = sb->s_encoding;
1759 if (!dir || !IS_CASEFOLDED(dir))
1762 ret = utf8_casefold_hash(um, dentry, str);
1763 if (ret < 0 && sb_has_strict_encoding(sb))
1768 static const struct dentry_operations generic_ci_dentry_ops = {
1769 .d_hash = generic_ci_d_hash,
1770 .d_compare = generic_ci_d_compare,
1774 #ifdef CONFIG_FS_ENCRYPTION
1775 static const struct dentry_operations generic_encrypted_dentry_ops = {
1776 .d_revalidate = fscrypt_d_revalidate,
1780 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1781 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1782 .d_hash = generic_ci_d_hash,
1783 .d_compare = generic_ci_d_compare,
1784 .d_revalidate = fscrypt_d_revalidate,
1789 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1790 * @dentry: dentry to set ops on
1792 * Casefolded directories need d_hash and d_compare set, so that the dentries
1793 * contained in them are handled case-insensitively. Note that these operations
1794 * are needed on the parent directory rather than on the dentries in it, and
1795 * while the casefolding flag can be toggled on and off on an empty directory,
1796 * dentry_operations can't be changed later. As a result, if the filesystem has
1797 * casefolding support enabled at all, we have to give all dentries the
1798 * casefolding operations even if their inode doesn't have the casefolding flag
1799 * currently (and thus the casefolding ops would be no-ops for now).
1801 * Encryption works differently in that the only dentry operation it needs is
1802 * d_revalidate, which it only needs on dentries that have the no-key name flag.
1803 * The no-key flag can't be set "later", so we don't have to worry about that.
1805 * Finally, to maximize compatibility with overlayfs (which isn't compatible
1806 * with certain dentry operations) and to avoid taking an unnecessary
1807 * performance hit, we use custom dentry_operations for each possible
1808 * combination rather than always installing all operations.
1810 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1812 #ifdef CONFIG_FS_ENCRYPTION
1813 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1815 #if IS_ENABLED(CONFIG_UNICODE)
1816 bool needs_ci_ops = dentry->d_sb->s_encoding;
1818 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1819 if (needs_encrypt_ops && needs_ci_ops) {
1820 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1824 #ifdef CONFIG_FS_ENCRYPTION
1825 if (needs_encrypt_ops) {
1826 d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1830 #if IS_ENABLED(CONFIG_UNICODE)
1832 d_set_d_op(dentry, &generic_ci_dentry_ops);
1837 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1840 * inode_maybe_inc_iversion - increments i_version
1841 * @inode: inode with the i_version that should be updated
1842 * @force: increment the counter even if it's not necessary?
1844 * Every time the inode is modified, the i_version field must be seen to have
1845 * changed by any observer.
1847 * If "force" is set or the QUERIED flag is set, then ensure that we increment
1848 * the value, and clear the queried flag.
1850 * In the common case where neither is set, then we can return "false" without
1851 * updating i_version.
1853 * If this function returns false, and no other metadata has changed, then we
1854 * can avoid logging the metadata.
1856 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1861 * The i_version field is not strictly ordered with any other inode
1862 * information, but the legacy inode_inc_iversion code used a spinlock
1863 * to serialize increments.
1865 * Here, we add full memory barriers to ensure that any de-facto
1866 * ordering with other info is preserved.
1868 * This barrier pairs with the barrier in inode_query_iversion()
1871 cur = inode_peek_iversion_raw(inode);
1873 /* If flag is clear then we needn't do anything */
1874 if (!force && !(cur & I_VERSION_QUERIED))
1877 /* Since lowest bit is flag, add 2 to avoid it */
1878 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1879 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1882 EXPORT_SYMBOL(inode_maybe_inc_iversion);
1885 * inode_query_iversion - read i_version for later use
1886 * @inode: inode from which i_version should be read
1888 * Read the inode i_version counter. This should be used by callers that wish
1889 * to store the returned i_version for later comparison. This will guarantee
1890 * that a later query of the i_version will result in a different value if
1891 * anything has changed.
1893 * In this implementation, we fetch the current value, set the QUERIED flag and
1894 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1895 * that fails, we try again with the newly fetched value from the cmpxchg.
1897 u64 inode_query_iversion(struct inode *inode)
1901 cur = inode_peek_iversion_raw(inode);
1903 /* If flag is already set, then no need to swap */
1904 if (cur & I_VERSION_QUERIED) {
1906 * This barrier (and the implicit barrier in the
1907 * cmpxchg below) pairs with the barrier in
1908 * inode_maybe_inc_iversion().
1914 new = cur | I_VERSION_QUERIED;
1915 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1916 return cur >> I_VERSION_QUERIED_SHIFT;
1918 EXPORT_SYMBOL(inode_query_iversion);
1920 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
1921 ssize_t direct_written, ssize_t buffered_written)
1923 struct address_space *mapping = iocb->ki_filp->f_mapping;
1924 loff_t pos = iocb->ki_pos - buffered_written;
1925 loff_t end = iocb->ki_pos - 1;
1929 * If the buffered write fallback returned an error, we want to return
1930 * the number of bytes which were written by direct I/O, or the error
1931 * code if that was zero.
1933 * Note that this differs from normal direct-io semantics, which will
1934 * return -EFOO even if some bytes were written.
1936 if (unlikely(buffered_written < 0)) {
1938 return direct_written;
1939 return buffered_written;
1943 * We need to ensure that the page cache pages are written to disk and
1944 * invalidated to preserve the expected O_DIRECT semantics.
1946 err = filemap_write_and_wait_range(mapping, pos, end);
1949 * We don't know how much we wrote, so just return the number of
1950 * bytes which were direct-written
1952 iocb->ki_pos -= buffered_written;
1954 return direct_written;
1957 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
1958 return direct_written + buffered_written;
1960 EXPORT_SYMBOL_GPL(direct_write_fallback);
1963 * simple_inode_init_ts - initialize the timestamps for a new inode
1964 * @inode: inode to be initialized
1966 * When a new inode is created, most filesystems set the timestamps to the
1967 * current time. Add a helper to do this.
1969 struct timespec64 simple_inode_init_ts(struct inode *inode)
1971 struct timespec64 ts = inode_set_ctime_current(inode);
1973 inode_set_atime_to_ts(inode, ts);
1974 inode_set_mtime_to_ts(inode, ts);
1977 EXPORT_SYMBOL(simple_inode_init_ts);